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Propositions: 

1. To support the immune system by dietary fibers, one should eat whole grain 
food. 
(this thesis) 

2. Fibers steer macrophages. 
 (this thesis) 

3. Artificial intelligence is smarter than humans. 

4. Plants have an adaptive immune system. 
(Spoel et al., Nature Reviews Immunology. 2012. 12(2): 89-100) 

5. Amyloid-ß peptide protects the brain. 
(Kumar et al., Science Translational Medicine. 2016. 8(340): 340ra72) 

6. To be yourself, select food smartly, otherwise you will be controlled by 
microbiota. 

7. A guaranteed result of research is that it leads to new scientific questions. 
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Intestinal immune barrier 

The intestine has an intestinal immune barrier which is composed of, firstly, the epithelial 

barrier that is formed by a single layer of intestinal epithelial cells (IECs) composed of 

various cell lineages, such as enterocytes, enteroendocrine cells, Paneth cells, goblet 

cells, and Microfold cells (M cells), all differentiated from a common intestinal epithelial 

stem cells [1]. IECs provide a physical protective barrier for luminal factors 

harmful/undesired for the body and are involved in regulation of inflammatory processes 

[2]. IECs can regulate inflammation in response to antigens by secreting cytokines that 

attract and/or activate immune cells. IECs not only function as barrier but also absorb 

nutrients and other compounds from the intestinal lumen. This leads to the passage of 

an enormous number of antigens into the body. These antigens can be derived from 

commensal microbiota, pathogens, or ingested foods. To respond to these antigens, 

there is a large body of immune cells present in the intestines that have a gatekeeper 

function and form a second part of the intestinal immune barrier (Figure 1). These can be 

found in the lamina propria of the intestine, but also in Peyers paches (PPs), mesenteric 

lymph nodes (MLNs), colon patches, and appendix. 

The intestinal immune system includes B cells, T cells, monocytes, macrophages, 

dendritic cells, and recently discovered innate lymphoid cells (ILCs) [3]. The intestinal 

homeostatic balance between tolerance and inflammation, requires complex 

interactions between intestinal microbiota, IECs, and intestinal immune cells. Intestinal 

homeostasis is jeopardized upon imbalance of tolerance and inflammation, and can lead 

to intestinal dysfunction. As IECs and macrophages are in the first line of immune 

defense, their response towards food components is pivotal to analyze the 

immunomodulatory effects of foods. 

 

Intestinal epithelial cells  

The intestinal epithelium is the largest surface of the human body. Often, its surface is 

described as approximately 300 m2, but recent estimates are more in the order of 30 m2 

[4]. The principal function of IECs is that of absorptive enterocytes, to process and 

absorb nutrients to serve metabolic and digestive functions. Besides that, it also serves 

as a physical barrier that aids in maintaining intestinal homeostasis. IECs form an 

essential part of immunity, by maintaining the integrity, and through secretion of mucins 

by goblet cells, antimicrobial proteins by Paneth cells, and transcytosis of IgA after 

secretion by plasma cells [5]. IECs also express Toll-like receptors (TLRs) that respond to 

LPS, LPA, or flagellin which are pathogen-associated molecular patterns (PAMPs) from 
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microorganisms [6]. TLR2 and TLR4 are reported to be limitedly expressed by IECs. 

However, when intestinal damage induces inflammatory stress, TLR2 stimulation 

effectively preserves tight junction integrity and controls intestinal inflammation [7]. 

Mucosal inflammation and apoptosis in colitis were suppressed by oral TLR2 ligand 

treatment which resulted in restoring tight junction-associated barrier [7]. In addition, it 

was shown that TLR2 could be activated by a dietary fibre (Inulin β 2→1-fructans) [8]. 

 

 

 

Figure 1. The intestinal immune barrier is composed of an epithelial barrier formed by various cell 

types with immune cells residing in the lamina propria, Peyer’s path, mesenteric lymph nodes, 

colon patches, and appendix (Adapted and modified from [9]). 

 

M cells as specialized IECs, sample antigens and interact with microbiota to communicate 

with immune cells. These immune cells are concentrated in Peyer’s patches. In addition, 

IECs recognize and integrate signals from the luminal side to intestinal immune cells [10] 

by secreting cytokines and chemokines that in turn modulate cytokine production by 

immune cells [11, 12]. Cytokines produced by the IECs in a steady-status function as anti-

inflammatory and include TSLP, TGFβ, IL8, CCL20, CXCL10, IL18, IL33, and IL37. Those anti-
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inflammatory cytokines are important to maintain immune tolerance, wound healing and 

also to recruit monocytes, neutrophils, eosinophils, lymphocytes, T cells, B cells, 

macrophages, and dendritic cells [11, 13, 14]. Specifically the role of TSLP in maintaining 

immune homeostasis by IEC that attenuate inflammation status and promote anti-

inflammation is important, since TSLP secretion could inhibit IL12 production by DCs and 

activates Th2 polarizing cells [15]. 

 

Intestinal macrophages 

Macrophages are described as one of the largest populations of cells which function in 

maintaining intestinal immune barrier [16]. Macrophages can be differentiated from 

monocytes in response to antigens presented by IECs or other immune cells [17]. In the 

steady state, these signals will be anti-inflammatory, produced by the IECs that are in 

close contact with the macrophages and resident Treg cells. This will lead to tolerant 

macrophages. In inflammatory status, those anti-inflammatory signals are reduced and 

inflammatory signals are produced which lead to inflammatory macrophages. 

Macrophages work as effector cells of the intestinal innate immune system. The contact 

between macrophages and IECs includes numerous immunoregulatory signals. This 

contact is in part mediated by the interaction of IECs and microbiota [18]. Through those 

interactions, macrophages direct the appropriate innate and adaptive immune cell 

responses and  limited intestinal inflammation [19].  

Two extreme phenotypes have been described for macrophages, and termed as classical 

macrophages (inflammatory macrophages or M1) [20] or alternative macrophages 

(tolerant macrophages or M2) [21]. Based on the most recent insights, an even larger 

variation of macrophage phenotypes has been described with an almost infinite 

continuum between the two most extremes. Therefore, it was suggested to indicate 

specific conditions that are used to polarize macrophages when describing macrophages 

subsets [22]. 

M1 are known to be formed from monocytes by exposure to IFNγ, LPS, or cytokines as 

TNFα, and are characterised by high expression of IL12, IL1β, TNFα, and IL6. This M1 

inflammatory phenotype can be identified by specific markers such as IDO1, CXCL9, 

CXCL10, and CXCL11 [23]. M2 can be differentiated from monocytes after IL4 or IL13 

stimulation and express a characteristic low level of IL12 and high levels of IL10 and 

scavenger receptors and receptors for mannose and galactose [21]. 

Beside the M1/M2 classification on a linear scale, a colour wheel of macrophages 

activation was introduced which was based on defined fundamental functions of 
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macrophages such as host defence, wound healing, and immune regulation [20]. In 

example, resolution-phase macrophages were defined as intermediate between M1 and 

M2, displaying predominantly an M2 phenotype, with weaker antibacterial activity than 

M1 macrophages, but expressing even higher levels of M1 markers than M1 (i.e., COX-2 

and iNOS) [24]. These resolution-phase macrophages are supposed to have a role in 

mediating ILCs repopulation and restoring tissue homeostasis. 

Based on their tissue localisation, intestinal macrophages were grouped as lamina 

propria macrophages (LpMs) and muscularis propria macrophages (MMs) [25, 26]. 

Those two types of intestinal macrophages were distinguished by morphological 

features and cell dynamics in distinct microenvironments in the intestinal tissue. LpMs 

show M1 features with highly expressed proinflammatory genes, such as IL1B, IL12B, and 

CCL24, and increased CD80 and increased oxidative burst. MMs typically show M2 

features, with highly expressed Retnla, MRC1, CD163, and IL10, which are tissue 

protective and wound healing-related genes. 

 

Non-digestible polysaccharide 

Non-digestible polysaccharides (NDP), represent a class of food fibres composed of 

polymers of carbohydrates that are resistant to digestion in the stomach and small 

intestine but often are fermentable by the microbiota in the large intestine (Box 1) [27]. 

NDPs are typically long chain which can be made up of over a hundred thousand 

monomeric units but also can be shorter forming oligomers of only 10 sugar units. Beside 

differences in degree of polymerisation, they can have a complex composition of 

different types of sugars with variable linkages and different degrees of branching [28, 

29]. NDPs have a proven physiological benefit to the intestine and immune related health, 

which will be discussed in more detail in next paragraphs.  

 

Health effects of NDPs 

NDPs initially received interest because for their function to increase stool bulk and 

improve laxation [30]. Later, also other physiological aspects of NDPs were 

demonstrated, both in vitro and in vivo. Increased intake of NDPs is associated with 

reduced incidence of cardiovascular disease [31] and colon cancer [32, 33]. Besides that, 

human trials have shown biological activity of specific NDPs on cholesterol lowering [34], 

serum glucose control [35], immunomodulation [36, 37], anticancer activity [38], and 

towards mitigation of inflammatory bowel disease [39]. 
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Box 1 Dietary fibres classification 

 

These health effects of NDPs might link to the intestinal immune barrier modulation 

through NDPs consumption. Cytokines that are produced by IECs or immune cells have 

a crucial role in the pathogenesis of intestinal disease [43] and NDPs appear to have the 

potency to modulate these [44]. As an example, beneficial effects of NDPs on the 

treatment and prevention of IBD and direct effects on inflammation have been reported 

[44]. -Glucans from either oat or shiitake inhibited pro-inflammatory factors such as 

TNFα, IL1β, IL6 and iNOS in colonic tissues in DSS-treated colitis mice [45, 46]. NDPs can 

Dietary fibre has been recognized as having health benefits.  However, often 

information on e.g. source, characterisation, etc. is lacking. Classification of dietary 

fibre was attempted based on their role in the plant, the type of polysaccharides, the 

ability to stimulate gastrointestinal activity, site of digestion, or products of 

digestion; however such classifications are still under debate [40]. The solubility or 

fermentability in an in vitro system were most commonly used to classify dietary 

components. Based on such criteria, fibres were classified as non-starch 

polysaccharide, non-digestible polysaccharides, or fermentable polysaccharides. 

Non-starch polysaccharides (NSPs). NSPs include all the plant polysaccharides other 

than starch. They are the key components of the cell walls of various grains and cover 

a great variety of biological functions and chemical structures. The major 

polysaccharides of NSP are cellulose, pectin, β-glucans, pentosans, heteroxylans, and 

xyloglucan which cannot be hydrolysed by the endogenous enzymes of humans and 

monogastric animals [41]. 

Non-digestible polysaccharides (NDPs). Indigestible polysaccharides (fibre 

components) are all fibres that are resistant to digestion in the small intestine and 

that are fermentable in the large intestine. These polysaccharides are typically long 

polymeric carbohydrate chains containing up to several hundred thousand 

monomeric units. The polysaccharides differ by the number and type of monomeric 

units linked together, the order in the chain, the types of linkages between the 

various monomers, the presence of branch points in the backbone of the molecule, 

and those having acidic groups present (for example, uronic acids in pectins) [40]. 

Fermentable polysaccharides. Most fibre types are at least partially fermented, and, 

generally, well fermented fibres are soluble in water, while partially or poorly 

fermented fibres are insoluble. They can be fermented by intestinal microbiota into 

SCFA as major product [42]. 
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mediate the intestinal immune barrier through multiple ways such as changing 

fermentation products and microbiota composition, or activation of pattern recognition 

receptors (PRRs) (Box 2) and inducing cytokines expression and cellular responses. 

 

Direct Interaction between NDP and intestinal immune barrier 

The direct interaction of NDP with intestinal immunity was demonstrated by using 

fluorescent labelled β-glucans in vivo [47]. Those particles might adhere to and be 

transported by epithelial cells including M cells [48]. Orally administered β-glucans can 

also be taken up by macrophages and transported to other body tissue as spleen, lymph 

nodes, and bone marrow [47]. Macrophages subsequently can process these glucans 

and secrete β-1,3-glucan fragments that activate complement receptor 3 (CR3) resulting 

in enhanced granulocyte activity [47]. 

By direct interaction with IECs, NDPs demonstrated their ability to increase cytokine and 

chemokine gene expression and protein production in IECs (Caco-2 cells) [49]. This 

illustrates that NDPs could modulate immune responses via the IECs. Such effects are in 

some case linked to MW as low MW of cereal β-glucan (40 kDa) increased IL8 secretion 

both in a dose and time dependent manner, in contrast to high MW cereal β-glucan (123-

359 kDa) [50]. Short chain NDPs (α3-sialyllactose and fructooligosaccharides) can reduce 

the production of proinflammatory cytokines as IL12 and TNFα in IECs (Caco-2 cells) via 

activation of PPARγ and peptidoglycan recognition protein 3 [51]. 

NDPs directly activate immune cells by increasing cell numbers and cytokines secretion 

in the intestine. NDPs have been shown to trigger innate immune responses by activating 

antigen presenting cells of the intestinal immune system [52, 53], increasing the number 

of lymphocytes and IFNγ production [54], and  increasing the regulatory T cell population 

in the intestine [55, 56]. Oral intake of NDP decreased DSS-induced weight loss and 

intestinal inflammation in mice. This specific NDP was a multi-fiber mixture including 

insoluble and soluble polysaccharides [56]. Another well-described NDP are human-milk 

oligosaccharides (HMO) which are non-digestible and are expected to have an important 

role in early life. The immune effects of HMO are related to both changing microbiota 

composition and direct interaction with immune cells. HMO can skew the Th1/Th2 

balance [57] and affect Th2-dominated immune response to peanut allergen in allergic 

individuals [58]. HMO can be recognized by CD209 which is expressed on macrophages 

and dendritic cells [59]. 
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Box 2 Pattern recognition receptors (PRRs) 

 

The direct activation of immune cells by NDPs might be mediated via PRR activation. For 

example, β-1,3-Glucans  are well described for their interaction with dectin-1. These 

glucans are important components of cell walls from nearly all fungi, and are recognized 

by dectin-1 (CLEC7A), a c-type lectin-like receptor. Interaction between β-glucans and 

dectin-1 strongly influences intestinal immune barrier and health. Absence of dectin-1 in 

PRRs are receptors expressed on a variety of cells, of which mainly immune cells 

including macrophages and DCs, but also IECs. PRRs include the Toll-like receptors 

(TLRs), C-type lectin receptors (CLRs), Nod-like receptors (NLRs), and RIG-I-like 

receptors (RLRs) families. These receptors interact with evolutionary conserved 

structures on pathogens termed pathogen-associated molecular patterns (PAMPs).  

Toll-like receptors (TLRs): The TLR family has 13 members in humans. TLRs can be 

expressed on the cell surface (TLR1, TLR2, TLR4, and TLR5), or intracellularly in 

endosomes (TLR3, TLR4, TLR7, TLR8, and TLR9). TLRs on intestinal epithelial cells 

can be activated by ligation of bacterial-derived structures such as 

lipopolysaccharides or lipoteichoic acid to induce antimicrobial peptide expression, 

IgA secretion and cell proliferation by the intestinal immune barrier [9]. 

C-type lectin receptors (CLRs): CLRs and their signalling pathways are essential for 

immune activation. Some of these CLRs were already reported respond to NDPs such 

as dectin-1, dectin-2, dectin-3, Mincle, and DC-SIGN. These CLRs could be activated by 

carbohydrate structures that are located in cell walls such as β-glucan and mannan 

[60-62]. CLR activation modulates both innate and adaptive responses. The response 

to CLR activation includes phagocytosis, cytokines secretion, and also helper T cells 

activation.  

Nod-like receptor (NLR): NLR proteins are intracellular LRR (leucine-rich repeat)-

containing proteins that can form an inflammasome upon binding of PAMPs. The 

formation of inflammasomes can also be induced by non-microbial danger signals 

such as microbial-derived products and cellular metabolic stress. NLRs can induce 

the production of pro-inflammatory cytokines such as IL1β and IL18 from pro-IL1β and 

pro-IL18 [63]. 

RIG-I-like receptor (RLR): The RLRs include RIG-I, MDA5, and LGP2 which detect a 

virus infection through viral RNA and initiate innate immune activation and 

inflammation to control infection. The RLRs cooperate in signalling crosstalk 

networks with TLRs to modulate both innate and adaptive immune response [64]. 
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colitis mice correlated to increased susceptibility to fungi [65]. The activation of dectin-1 

by insoluble β-glucans initiates an innate immune response via phagocytosis and it could 

be blocked by soluble β-glucans [66]. Beside β-glucans from yeast, β-glucans from the 

shiitake mushroom also showed to inhibit IL8 gene expression and activate NFκB in DSS-

induced colitis [67]. This could also be mediated via dectin-1 activation as α-Mannans, 

that are found in β-glucan preparations from shiitake, were shown to activate both 

dectin-2 and dectin-3 resulting in an inflammatory response [68] and also induced Th17 

cell differentiation [69]. Inulin is another NDPs that can activate intestinal immunity 

through direct interaction with intestinal immune cells. Inulin β 2→1-fructans directly 

activated NF-κB/AP-1 for PBMCs via mainly TLR2 in vitro [70]. These direct effects related 

to chain length as shorter chain fructans induced a regulatory balance (IL10/IL12 ratio) 

more towards IL10 compared to longer chain fructans. In addition, β 2→1-fructans were 

also shown to modulate the immune system in conventional mice [71]. The 

immunomodulatory effects were again shown to be DP-dependent as both short chain 

and long chain β 2→1-fructans increased the number of Th1 cells in PPs, while only short-

chain β 2→1-fructans increased Treg and CD11b-CD103-DCs in MLNs. This effect is likely 

not mediated by fermentation products and microbiota as no change in microbiota 

composition and SCFA production were reported. Microbiota-independent effects were 

also observed in germ-free mice, where β 2→1-fructans had no effects on Th1 cells, and 

only short chain β 2→1-fructans induced lower CD80 expression on CD11b-CD103-DCs in 

PPs [71].  

 

Indirect interaction between NDP and intestinal immune barrier 

Both via technological advances and because of an enormous increase in the 

understanding of the role of the microbiota, also the importance of microbial 

fermentation of NDPs and the formation of short chain fatty acids (SCFAs) from these 

have drawn attention [72, 73]. Fermentation of NDPs by intestinal microbiota results in 

changes of microbiota composition and SCFA production in both cecum and colon [74, 

75]. Pectin supplementation modulated gut microbiota due to rapid fermentation, which 

in turn contributes to a shift in fermentation of cereal arabinoxylans [74]. Pectin 

structure and origin are important for shifting the fermentation site closer to distal parts 

of the large intestine in pig and for changing the composition of microbiota [75]. These 

types of responses to NDP could be source and composition independent since various 

NDPs were found to induce similar mucosa responses through PPARγ in mice [76]. The 

microbiota composition is very relevant for intestinal homeostasis. It has been reported 

that transplanted microbiota from obese female to germ-free mice increased total body 
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and fat mass, as well as induced obesity-associated metabolic phenotypes, compared to 

transplanted microbiota from lean female to germ-free mice [77]. The SCFA are 

considered as immunomodulatory products that are ligands of FFAR1, FFAR2, and 

GPR109A. Those GPCRs are broadly expressed on immune cells such as macrophages, 

dendritic cells, neutrophils, and eosinophils [78-80]. SCFA can target PPARγ and 

stimulate ANGPTL4 synthesis in vitro, and these effects were confirmed by feeding inulin 

to mice which subsequently showed an activation of PPARγ target genes and pathways 

in colon tissue [81]. By activating PPAR and ANGPTL4, NDPs could regulate the lipid 

metabolism and protect against severe inflammation through SCFA production [82].  

 

Figure 2. Overview of the structure of this thesis. 

 

Outline of this thesis 

This thesis focuses on the question to what extent and by which mechanisms NDPs 

directly interact with the intestinal immune barrier, and how the macrophages 

subsequently respond towards other immune cells (monocytes as an example) which 

could contribute to the observed intestinal immune support for NDPs. Although some of 

the NDPs immunomodulatory effects were already reported, this information is still 

limited regarding their direct interaction with the intestinal immune barrier. To 

investigate this, we chose five NDPs known to interact with the intestinal immune barrier 

to link our data to other findings (Figure 2). We selected Caco-2 and macrophages to 

represent the IEC and immune component of the intestinal immune barrier. Next to 

investigating the interaction of NDPs with those Caco-2 and macrophages separately, we 
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also applied NDPs on a co-culture of Caco-2 and macrophages. Besides this, we wanted 

to developed analysis strategies that could classify NDPs based on their bioactive activity. 

In this thesis, research is based on 5 different NDPs with varying structure, 

monosaccharide composition, branch chain connection, and sources (chapter 2). These 

NDPs are Wellmune Soluble (a glucan from yeast), RG-I (a pectin from apple), OBG90 (a 

glucan from oat), LCES (lentinan containing extract from shiitake), and Naxus (rich in 

arabinoxylan from wheat). 

As a first exploration of the potential direct effect of NDPs, research was based on 

intestinal epithelial cells, Caco-2 cells grown in transwell system for 21-days to resemble 

small intestine. The Caco-2 were exposed to various NDPs for 6 h. Cell layer integrity, 

whole-genome gene expression, and chemokine secretion were analysed and compared 

to characterize the result of the direct exposure (chapter 2).  

Macrophages are amongst the most prevalent immune cells in the intestine. Therefore, 

as a next step we analysed the direct response of macrophages to NDPs (chapter 3).  To 

this end we generated human macrophages from primary monocytes in vitro and 

established polarising cultures to acquire M1-like and M2-like macrophages to mimic 

inflammatory and tolerant macrophages in intestine, respectively. We did so using gene 

expression markers described in literature and found through microarray analysis. After 

stimulation with NDPs for 18 h, gene expression was analysed by qPCR and whole-

genome gene expression of macrophages was analysed by microarray. This revealed 

that NDPs can stimulate macrophages towards an alternative subset macrophages 

(MNDP). Subsequently the potential function of this MNDP was studied by functional assays 

like phagocytosis capacity and antigen processing capacity. Specifically, the analysis of 

secreted cytokines and the effects on migration of immune cells revealed some of its 

potential function (chapter 4). Furthermore, it was studied whether NDPs can also 

modulate phenotype and function of M1 or M2 polarized cells towards this alternative 

subset MNDP. This was to reveal the macrophage plasticity and NDPs immunomodulatory 

capacity which could be important in vivo as NDPs might encounter both types of 

macrophages in the intestine and should not over-stimulate in a certain stage (chapter 

5). 

Finally, in chapter 6, results from this thesis are discussed in relation to each other, to 

current literature and a general perspective in the research towards revealing immune 

support of NDPs by current and future models are given. 
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Abstract 

Scope: Dietary non-digestible polysaccharides (NDPs) have shown immunomodulatory 

activity following oral intake. The role of direct interaction with small intestinal epithelial 

cells, which are the first point of direct contact with NDPs, in this process is unclear. Here 

the transcriptional changes and cellular responses of small intestinal-like cells in 

response to different types of NDPs have been studied. 

Methods and results: Polarized Caco-2 cells were exposed to NDPs (500 μg/ml) at the 

luminal side for 6 h. The NDPs reduced translocation of FITC-Dextran of 4 kDa across the 

epithelial layer, potentially through physical interference. Microarray analysis revealed 

unique gene expression characteristics in Caco-2 cells upon exposure to different NDPs. 

An arabinoxylan preparation from wheat and a lentinan containing extract from shiitake 

mushrooms induced transcriptional upregulation of the NF-κB pathway and production 

of CXCL10. Besides these immune-related changes by some NDPs, we also observed 

changes in transcriptional levels of some cell surface receptors (like TLR2, CD14 and 

GPCRs) and intracellular pathways, amongst which the cholesterol biosynthesis pathway. 

Conclusion: NDP preparations are a direct trigger for intestinal epithelial cells to produce 

chemokines, via the NF-κB pathway. This may support communication towards the 

innate and adaptive immune cells in gut-associated lymphoid tissue. 

Keywords: Arabinoxylan / β-Glucan / Microarray / NF-κB pathway / Oat 

Abbreviations: FID, flame ionization detector; IECs, intestinal epithelial cells; LCES, 

lentinan containing extracted from shiitake; MW, molecular weight; NDP, non-digestible 

polysaccharide; PRRs, pathogen recognition receptors; TEER, trans-epithelial electrical 

resistance 
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1 Introduction 

Polysaccharides are long chains of monosaccharide units bound together by glycosidic 

linkages. As the units, linkages, chain lengths and branching can vary, an almost infinite 

variation of polysaccharides can be found in nature, or be engineered [1, 2]. Dietary fibres 

or non-digestible polysaccharides (NDPs) are not hydrolysed by the endogenous 

enzymes in the small intestine of humans [3]. NDPs found in common foods, e.g. β-

glucans, arabinoxylans, pectins, cellulose and chitin are, on a quantitative basis, 

nutritionally important dietary fibres and gained a lot of interest because of health 

effects as found by epidemiological research. Increased intake of dietary fibres is 

correlated with reduced incidences of cardiovascular disease [4] and colon cancer [5, 6] 

among others. Besides that, human trials have shown biological activity of specific NDPs 

on lowering of cholesterol [7], control of serum glucose [8], immunomodulation [9, 10], 

anticancer activity [11] and towards mitigation of inflammatory bowel disease [12]. 

Part of the bioactivity of these orally applied NDPs will result from effects on our gut and 

immune system. Indeed, receptors have been identified on different human gut and 

immune cells that detect the presence of NDPs and increase both the innate and 

adaptive host defence. An example are β-glucans found in the cell wall of yeast, fungi 

and bacteria, which can interact with the dectin-1 receptor [13, 14] and the complement 

receptor [15] as studied in immune cells (i.e. dendritic cells, macrophages, monocytes 

and lymphocytes) both in vitro and in vivo [16, 17]. Recently we reported that some NPDs 

can steer the polarisation of macrophages to a subset that can be distinguished from 

both inflammatory and tolerant macrophage subsets [18]. A less studied field is how β-

glucans and other NDPs interact directly with small intestinal epithelial cells and whether 

the response of these cells contributes to the biological activity and maintenance of 

health.  

Intestinal epithelial cells (IECs) form a physical barrier in the intestine. The enterocytes 

are the dominant lineage within the IECs (90% of total cells) [19] which can be mimicked 

in vitro by the use of Caco-2 cells. These cells can be differentiated towards polarised 

small intestinal-like cells [20], and express receptors such as pathogen recognition 

receptors (PRRs) [21, 22], G-protein coupled receptors, the low density lipid receptor [23], 

leptin receptor [24], and aryl hydrocarbon receptor [25]. Caco-2 cells have shown to be 

responsive to many food compounds [26, 27] although direct effects of NDPs have only 

been studied to a limited degree. 

In this study, we exposed transwell-grown Caco-2 cells to five NDP preparations and 

analysed the effects on cell layer integrity, gene expression and chemokine secretion. 

This study can be used as a basis to build hypotheses on direct activity of NDPs towards 
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enterocytes which can be used as part of the classification of NDPs on the basis of their 

specific bioactivity. 

 

2 Materials and Methods 

2.1 Sources, preparation and handling of non-digestible polysaccharides 

A water soluble β beta 1,3/1,6 glucan isolated from the yeast Saccharomyces cerevisiae 

(F3020 lot 12111-016) was provided by BioThera (Eagan, MN, USA). We will refer to this 

sample as Wellmune Soluble (Wellmune in tables and figures). A preparation of oat 

water soluble 1,3/1,4 beta-glucan was provided by Swedish Oat Fiber AB (Bua, Sweden) 

[28]. This sample will be referred to as OBG90. A polysaccharide from wheat flour rich in 

arabinoxylan (LC-AX 120305), was provided by BioActor (Maastricht, The Netherlands). 

This sample will be referred to as Naxus.  

Shiitake mushrooms were grinded, boiled in water for 8 h, filtered over cheesecloth, and 

the supernatant ethanol precipitated after which the pellet was freeze dried and 

powdered. This water soluble, ethanol insoluble fraction contained mainly shiitake-

derived beta 1,3/1,6 glucans (lentinan) and a minor amount of alfa 1,4/1,6 glucan, 

identified by susceptibility to hydrolysis by Termamyl (Novozymes). This sample is 

termed LCES (lentinan containing extract from shiitake). 

A concentrate of rhamnogalacturonan I was prepared from apple juice. Apple juice was 

prepared under inert atmosphere at the INRA (Paris, France) experimental facility in Le 

Rheu. Apple juice was treated with pectin methyl esterase (30 UI/L, Rapidase SPE, DSM) 

and polygalacturonase (20 UI/L, PG, Megazyme) at 4 °C for 12 h in order to limitedly 

hydrolyse pectin. Sample was then concentrated by cross flow ultrafiltration using a 

ceramic membrane (0.5 m², diameter 25 mm, cut-off 8 kDa). A diafiltration step was 

further applied (dilution factor 1000), and the sample was finally centrifuged (2800 x g, 

30 min, 4 °C) and freeze dried. This sample will be labelled as RG-I.  

To improve solubilisation and to control the concentration in cell culture medium, NDPs 

were suspended in MQ (typically 0.5 mg/mL), boiled for 30 min, aliquoted, freeze dried 

and stored at -20 oC until use. Boiling did not result in breakdown of the samples as the 

molecular weight (MW), analysed by SEC-RI before and after the treatment, did not 

change (data not shown). Before use, the samples were re-suspended in DMEM 

containing 10% FBS at 37 °C. 

  



 NDPs modulated Caco-2 immune and cholesterol-related genes 

31 

 

 

 

    

T
ab

le
 1

. C
h

ar
ac

te
ri

za
ti

o
n

 o
f 

th
e

 N
D

P
 s

am
p

le
s.

 

 
 

W
e

ll
m

u
n

e
 

R
G

-I
 

O
B

G
9

0
 

LC
E

S
 

N
ax

u
s 

S
o

u
rc

e
 

 
Y

e
as

t 
A

p
p

le
 

O
at

 
S

h
iit

ak
e

 
W

h
e

at
 

m
o

n
o

 
R

h
a 

0
.5

 
4

.4
 

0
.5

 
0

.3
 

0
.2

 
su

g
ar

 
Fu

c 
0

.0
 

0
.7

 
0

.0
 

0
.9

 
0

.0
 

co
m

p
o

si
ti

o
n

 
A

ra
 

0
.0

 
23

.5
 

0
.6

 
1.

8
 

24
.5

 
 

X
yl

 
0

.0
 

1.
8

 
0

.7
 

0
.4

 
29

.5
 

 
M

an
 

0
.0

 
0

.3
 

0
.0

 
4

.6
 

1.
2 

 
G

al
 

0
.0

 
18

.5
 

0
.0

 
4

.0
 

11
.8

 
 

G
lc

 
9

3.
1 

1.
4

 
8

8
.2

 
59

.0
 

9
.2

 
 

U
A

 
1.

0
 

29
.7

 
1.

1 
1.

6
 

1.
0

 

T
o

ta
l s

u
g

ar
 

p
e

rc
e

n
ta

g
e

 
9

4
.6

 
8

0
.3

 
9

1.
1 

72
.6

 
77

.4
 

M
ai

n
 b

as
al

 
st

ru
ct

u
re

 
 

A
 β

 1
,3

 G
lc

 

b
ac

kb
o

n
e

 w
it

h
 

sh
o

rt
 (

4
-6

) 

si
d

e
 c

h
ai

n
s 

vi
a 

β
 1

-6
 li

n
ka

g
e

s 

 

R
h

am
n

o
- 

g
al

ac
tu

ro
n

an
 I 

w
it

h
 

b
ra

n
ch

e
d

 L
-

ar
ab

in
an

, t
yp

e
 II

 
ar

ab
in

o
g

al
ac

ta
n

 a
n

d
 

p
ro

b
ab

ly
 li

n
e

ar
 L

-
ar

ab
in

an
 s

id
e

 c
h

ai
n

s 

1,
3/

1,
4

 li
n

ke
d

 β
-

g
lu

ca
n

 
β

 1
,3

 G
lc

 b
ac

kb
o

n
e

 

an
d

 β
 1

,6
 li

n
ka

g
e

s 
 

G
lc

 r
am

if
ic

at
io

n
s 

to
g

e
th

e
r 

w
it

h
 s

o
m

e
 

st
ar

ch
 β

 -1
,4

- a
n

d
 

1,
4

,6
-g

lu
co

se
 

lin
ka

g
e

s 

A
ra

b
in

o
x

yl
an

s 
an

d
 

ad
d

it
io

n
al

 
ar

ab
in

o
g

al
ac

ta
n

 
p

e
p

ti
d

e
s 

to
g

e
th

e
r 

w
it

h
 s

o
m

e
 1

,3
/1

,4
-

lin
ke

d
 β

- g
lu

ca
n

s 
an

d
 β

(1
,4

)-
m

an
n

an
s 

M
W

  
kD

a 
~

17
 

~
9

5 
an

d
 ~

14
 

~
6

0
0

 
~

21
0

0
0

 
~

9
5 

P
ro

te
in

 
p

e
rc

e
n

ta
g

e
 

0
.5

 
10

.0
 

  
16

.2
 

7.
7 

S
ta

rc
h

 
p

e
rc

e
n

ta
g

e
 

0
.8

 
0

.3
 

0
.5

 
8

.6
 

0
.6

 

S
o

lu
b

ili
ty

 
 

S
o

lu
b

le
 

S
o

lu
b

le
 

S
o

lu
b

le
 (

af
te

r 
p

re
h

e
at

in
g

) 
P

ar
tl

y 
in

so
lu

b
le

 
S

o
lu

b
le

 

E
n

d
o

to
x

in
 

le
ve

ls
  

n
g

/m
g

 N
D

P
 

p
re

p
ar

at
io

n
 

<
0

.0
1 

~
10

.0
 

~
5.

0
 

~
10

0
 

~
10

.0
 

 
A

b
b

re
vi

at
io

n
s:

 R
h

a,
 F

u
c,

 A
ra

, X
yl

, M
an

, G
al

, G
lc

, U
A

: r
h

am
n

o
se

, f
u

co
se

, a
ra

b
in

o
se

, x
yl

o
se

, m
an

n
o

se
, g

al
ac

to
se

, g
lu

co
se

, 

u
ro

n
ic

 a
ci

d
; t

o
ta

l s
u

g
ar

: s
u

m
 o

f 
th

e
 n

o
n

-s
ta

rc
h

 s
u

g
ar

s.
 



Chapter 2 

32 

2.2 Chemical analysis 

Constituent neutral sugar analysis was based on acidic hydrolysis, and derivation into 

alditol acetates and GC as described [29]. In short, acid hydrolysis was performed with 1 

M sulfuric acid (2 h, 100 °C) and subsequent derivation was performed as published [30]. 

Alditolacetates were separated on a DB 225 capillary column (J&W Scientific, Folsorn, CA, 

USA; temperature 205 °C, carrier gas H2). Standard sugars solution and inositol as internal 

standard were used for calibration.  

Secondly, uronic acids in hydrolysates were quantified using an automated 

metahydroxydiphenyl colorimetric acid method [31]. 

Chemical linkages between monomers were determined by permethylation analysis. 

Polysaccharides were dissolved in DMSO and methylated using the procedure described 

by Anumula and Taylor [32]. Methylated carbohydrates were hydrolysed with 2 M 

trifluoroacetic acid and converted to their alditol acetates. The partially methylated 

alditol acetates were analysed by GC/MS (TRACE-GC-ISQ, Therm, Breda, Netherlands) on 

a non-polar thermo scientific™ TraceGOLD™ TG-1MS GC Column (30 m x 0.25 mm x 0.25 

µm), carrier gas H2 at 1.5 ml/min. The sample was injected at 240 °C. The oven 

temperature was maintained for 5 min at 60 °C and increased up to 315 °C (3 °C/min), 

where it was maintained for 2 min. The flow rate was set at 1.5 ml/min. The ion source 

temperature of the electron impact (EI) mass spectrometer was 230 °C. Masses were 

acquired with a scan range from m/z 100 to 500. Identification of partially methylated 

alditol acetates was based on their retention time and confirmed by mass spectra 

fragmentation. Quantitative detection was performed at 220 °C with a flame ionization 

detector (FID). 

Starch quantification was performed according to McCleary et al. [33] using enzymatic 

digestion by α-amylase and amyloglucosidase and measurement of glucose released by 

HPAEC (CarboPac PA1 column, Thermo, isocratic mode, NaOH 100 mM). Standard 

glucose solutions and rhamnose as internal standard were used for calibration. MW 

analysis was carried out on an HPSEC system with on-line laser light scattering detection 

allowing absolute MW determination, and viscosity detection allowing determination of 

intrinsic viscosity. Solution at approximately 5 mg/ml (except for LCES: 0.5 mg/ml) were 

prepared in MilliQ water and filtered through a 0.45 μm filter (Millex-HV, PVDF) prior to 

injection. HPSEC was carried out at room temperature on a system consisting of a 

Shodex OH SB-G guard column (Shodex, Tokyo, Japan) and two Shodex OH-Pak columns 

SB-805HQ and SB-804HQ. Injection volume was 50 µL and columns were eluted at 0.7 

ml/min with 50 mM sodium nitrate. A Viscotek tri-SEC model 270 was used for light 

scattering and differential pressure detection, and a Viscotek VE 3580 RI detector was  
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Figure 1. Response of transwell grown Caco-2 to a concentration range of LPS. Transwell grown 

Caco-2 cells were exposed to LPS ranging from 1 pg/ml to 1 μg/ml for 6 h. Gene expression of three 

marker genes (NF-κB, IL1β and IL8) were measured with qPCR and shown as fold change 

normalized to the geometric mean of GAPDH and RPLP0 and medium control (ΔΔct). The line chart 

shows mean values ± SEM, based on two independent experiments. Statistically significant 

differences between LPS and medium were calculated with one-way ANOVA by Graphpad Prism 6 

and only found significant changes for IL-1β (p<0.05) following 0.01 μg/ml LPS exposure.  

 

used for the determination of polymer concentration. A refractive index increment per 

unit concentration increment (dn/dc) value of 0.146 ml/g was used for concentration 

determination. Data were collected with Omnisec 4.7 software (Viscotek), and all 

calculations on polymer peaks (concentration, average molecular weights, intrinsic 

viscosity) were carried out using Omnisec software. 

Lipopolysaccharide (LPS) contamination was analysed by ToxinSensortm Chromogenic 

LAL endotoxin Assay Kit (GenScript) and indicated as ng/mg NDP. 
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2.3 Cell culture and exposure 

Caco-2 cells (American Type Culture Collection, Rockville, USA) were used between 

passage number 30 and 40 and grown on transwell inserts (Greiner Bio-one, Monroe, NC, 

USA) in 24-well plates. Cells were seeded with 3.375×104 cells in 150 μl per insert and 

grown for 21 days with 5% CO2 at 37 °C. The medium DMEM (Gibco, Bleiswijk, The 

Netherlands) supplemented with 10% FBS (HyClone, Eindhoven, The Netherlands) was 

used to maintain Caco-2 cells and to replace medium of cells three times a week during 

differentiation on transwell inserts. One day before exposure to an NDP, we refreshed 

the apical and basolateral medium. The next day, cells were stimulated for 6 h in triplicate 

by replacing apical medium with medium containing an NDP or control treatment. 

Experiments were performed three times, including a medium control. 

2.4 Cell Integrity and measurement of FD4 translocation 

Trans-Epithelial Electrical Resistance (TEER) was measured using a MilliCell-ERS 

(Millipore) on transwell-grown Caco-2 before adding test samples. In all experiments, 

only Caco-2 monolayers with TEER values within the range of 280-400 Ω.cm2 were 

included in the experiment. TEER was measured directly, 1, 3 and 6 h after exposure of 

Caco-2 cells and depicted as percentages relative to medium stimulated cells at the same 

time point [34].  

In order to measure permeability, 1 mg/ml FITC-dextran 4 kDa (FD4, Sigma, St. Louis, MO, 

USA) was added to the apical compartments with or without NDP [35]. After 8 h 

incubation, 100 µl medium was taken from the basolateral compartments for FD4 

fluorescence intensity assay in multimode microplate readers (Infinite 200 PRO, Tecan, 

Männedorf, Switzerland) at 544 nm excitation and 590 nm emission wavelengths. FD4 

concentration was calculated according to FD4 standard curve. 

2.5 RNA extraction and cDNA synthesis 

RNA was extracted and cDNA was prepared as described previously [36]. In brief, RNA 

extraction with 200 μL TRIzol (Invitrogen, Bleiswijk, The Netherlands) was followed by 

RNeasy (Qiagen, Venlo, The Netherlands) clean-up. RNA concentration and purity were 

checked using the Nanodrop spectrophotometer system (ND-1000 3.3; Nanodrop 

Technologies, Wilmington, DE, USA). The integrity of the ribosomal RNA was further 

checked using agarose (Eurogentec, Liège, Belgium) gel electrophoresis (1%). Only 

samples with a ratio (Abs 260/280 nm) between 1.8 and 2.1 were used for Reverse-

Transcriptase quantitative Polymerase Chain Reaction (RT-qPCR) and microarray analysis 

experiments. cDNA was synthesised with iScript (Bio-Rad, Veenendaal, The Netherlands). 
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2.6 RT-qPCR 

5 μL cDNA were mixed with 10 μl iQ™ SYBR Green supermix (Bio-Rad), together with 

forward and revers primers after which MQ was added to total 20 μl. Primer 

concentrations and sequences used for qPCR were chosen based on the sequences 

available in the GenBank database (www.ncbi.nlm.nih.gov), synthesized by Biolegio 

(Biolegio, Nijmegen, the Netherlands) and are listed in the supplementary Table 1. 

GAPDH, RPLP0, IL8, IL1 β and NF-κB were designed by Clone manager professional 9. 

 

Figure 2. NDPs did not change monolayer 

integrity or barrier function of transwell 

grown Caco-2. Transwell grown Caco-2 cells 

were exposed to Wellmune, RG-I, OBG90, 

LCES and Naxus at 500 μg/ml. (A) Monolayer 

integrity was determined by measuring TEER 

at T= 1, 3, 6 and 24 and shown as percentage 

normalized to levels at T=0 and medium. (B) 

Barrier function was tested after exposure for 

24 h with NDPs and subsequently 8 h with FD4 

and NDPs. (C) Barrier function was tested 

after exposure for 24 h with NDPs and 

subsequently 8 h with FD4. Bar charts show 

mean values + SEM, n = 3 independent 

experiments. Statistically significant 

differences relative to medium were 

calculated with one-way ANOVA: **: p<0.01. 
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Figure 3. Transwell grown Caco-2 respond with different gene responses to exposure to various 

NDPs. Transwell grown Caco-2 cells were exposed to Wellmune, RG-I, OBG90, LCES and Naxus at 

500 μg/ml and analysed for their gene expression profile using microarray. Genes that were 

assigned a UPC value >0.5 and a p-value <0.05 compared to medium control were included in these 

analysis. (A) Bar chart depicting the number of significantly up- and down-regulated genes for each 

NDP. (B) Venn diagram displaying NDP unique and shared differential gene expression responses. 

(C) PCA plot based on signal-log ratio compared to medium with numbers in parentheses 

indicating relative scaling of the principal variables. (D) IPA protein network based on the 34 genes 

in figure 3B excluded genes without demonstrated functional interaction with at least one other 

gene. Values represent fold change (upper number) and p-value (lower number) of differential 

gene expression following Naxus stimulation. Gene symbols in dark grey indicates a significant 

upregulation of expression and gene symbols in white indicates significant downregulation of 

expression. Data are expressed as mean values, n = 3 independent experiments.  

CCL20 and CXCL10 were derived from the Harvard PrimerBank 

(http://pga.mgh.harvard.edu/primerbank/). The following thermal cycling conditions 

were used for amplifying the target sequences by C1000 thermal cycler (Bio-Rad): 90 s 

at 95 oC, followed by 40 cycles at 95 oC for 10 s, 58 oC for 10 s and 72 oC for 15 s, and a final 

elongation step at 72 oC for 2 min. qPCR were performed in duplicate, and all samples 
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were normalised to geometric means of GAPDH (Glyceraldehyde-3-phosphate 

dehydrogenase) and RPLP0 (Ribosomal Protein, Large, P0) expression and medium 

(ΔΔct) using the qBase+ software (Biogazelle, Gent, Belgium). The melting curve and 

agarose gel analysis of amplified qPCR products were checked for amplification of a 

single product.  

2.7 Microarray analysis 

RNA quality was verified with the RNA 6000 Nano assay on an Agilent 2100 Bioanalyzer 

and was >8 (Agilent Technologies, Amstelveen, The Netherlands). Hybridization, 

washing and scanning of the Affymetrix Human Gene 1.1 ST array plate was performed 

according to standard protocols on an Affymetrix Gene Titan platform. Bioconductor 

was used to analyse the scans of the arrays [37]. Genes were considered to be expressed 

if the UPC algorithm valued expression with p>0.5 on at least one array [38]. Changes in 

gene expression were calculated as signal log ratio’s or fold changes between NDP 

exposure and medium control. Genes which significant changed (p< 0.05 on at least one 

NDP, IBMT regularised paired t-test) were selected. The functional interpretation of 

gene signatures was executed using IPA 3.0 (Ingenuity, QIAGEN, Redwood, CA, USA). 

Microarray data were deposited in the Gene Expression Omnibus database. 

2.8 Cholesterol uptake assay  

The cholesterol uptake assay was performed using the Cholesterol Uptake Cell-Based 

Assay Kit (Cayman, Ann Arbor, MI, USA) according to the manufacturers’ instructions. In 

brief, transwell grown Caco-2 were washed with medium (phenol red free DMEM 

without FBS) and exposed to medium (control) or NDPs at 500 μg/ml with or without 

NBD-cholesterol (20 µg/ml). After 24 h incubation, cells were trypsinized (Gibco), washed 

and resuspended in 100 µl of assay buffer. Fluorescence of the cells, apical and 

basolateral medium was analysed with excitation and emission at 485 nm and 535 nm, 

respectively. Fluorescent signals of NDP+NBD cholesterol exposed cells were subtracted 

with the signals of the NDP exposed cells to correct of auto-fluorescent signals. 

Subsequently the data were expressed as normalized to medium control. 

2.9 ELISA analysis 

Transwell grown Caco-2 were exposed to 500 μg/ml of NDPs for 24 h. Subsequently, 

Caco-2 spend medium, both apical and basolateral, was collected and chemokines 

(CCL20 (Sigma); CXCL10 (BioLegend, San Diego, CA, USA) measured by ELISA according 

to the manufacturer's instructions. The production of CCL20 and CXCL10 was calculated 

as total amount based on concentration measured and volumes in the transwell system 

(150 µl for apical and 700 µl for basolateral compartments). 
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2.10 Statistics 

All parameters are presented as means ± SEM and differences between parameters were 

assessed for their significance with one-way ANOVA using Prism 6 (Graphpad, La Jolla, CA, 

USA). Differences with p<0.05 were considered significant. 

 

3 Results 

3.1 Biochemical analysis of NDP preparations 

The five NDP preparations used in this study were characterized for composition, 

structure and endotoxin levels (Table 1). Wellmune Soluble, OBG90 and LCES were 

mainly composed of glucose, but have different backbone structure and side chain 

branches. OBG90 is a linear 1,3/1,4 linked β-D-glucan whereas LCES is a high MW, 

branched 1,3/1,6 linked β-D-glucan with a 1,3-linked backbone and 1,6-linked glucose side 

chains. Both preparations did not dissolve fully in regular culture medium. Wellmune 

Soluble is a low MW branched 1,3/1,6-linked β -D-glucan typical for yeast β-glucan. Naxus 

has a more complex composition with xylose, arabinose and galactose as major 

constituents with xylose and part of arabinose originating from arabinoxylans while 

galactose and part of the arabinose originate from arabinogalactan-proteins [39]. Naxus 

also contained some glucose originating from 1,3/1,4-linked β-D-glucan. The 

arabinoxylans, however, represents 62% of total polysaccharide in Naxus. 

RG-I is composed of various neutral sugars (arabinose, galactose and rhamnose) and 

galacturonic acid. RG-I is primarily a mix of pectin backbone of rhamnogalacturonan I and 

homogalacturonan.  

Besides NDP, the preparations contained proteins and other compounds of unknown 

origin which have not been examined in further detail. The levels of LPS contamination 

were determined as it is known that the presence of LPS can hamper certain in vitro 

analyses. The lowest contamination was found for Wellmune Soluble (<0.01 ng/mg) and 

the highest level of LPS contamination was found for LCES (~100 ng/mg). The NDP 

concentrations of the preparations ranged from 94.6% (i.e., Wellmune Soluble) to 72.6% 

(i.e., LCES). Sample concentrations for experiments were adjusted based on these total 

carbohydrate values to include equal amounts of NDPs. 

3.2 Transwell grown Caco-2 cells are non-responsive to levels of endotoxin 

contaminations as found in NDP preparations 

To investigate whether the observed levels of LPS contamination could lead to non-

specific responses in Caco-2 cells, we exposed the Caco-2 cells for 6 h to a range of LPS 
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concentrations (Figure 1). Cell responses were determined by gene transcription analysis 

of known early response markers NF-κB, IL1β and IL8. Results indicate that gene 

expression of these markers are not significantly changed when cells are exposed to LPS 

concentrations of 1 µg/ml or below.  

3.3 Selected experimental NDP concentration does not change transwell grown Caco-2 

monolayer integrity  

The main goal of the study is to investigate effects that NDP preparations can have on 

enterocytes mimicked by transwell 21-days-grown Caco-2 cells. First, the maximum NDP 

concentration was determined that did not induce unwanted side effects like apoptosis. 

Therefore, the cells were exposed to various concentrations of NDPs (ranging from 10 

to 1000 µg/ml) for 6 h and we analysed cell viability and cell layer integrity. Cell viability 

was measured using the MTT assay and cell layer integrity was determined by measuring 

TEER. Both results indicated that Caco-2 cells were not significantly negatively (nor 

positively) affected by NDP concentrations up to 500 µg/ml. At an NDP concentration of 

500 µg/ml all samples also contain LPS contamination levels below the threshold level 

(Table 1).  

Time series experiments confirmed that 500 µg/ml NDP did not affect Caco-2 TEER values 

following 6 h of incubation. In addition, significant changes were also not observed after 

a shorter incubation period of 1 or 3 h, or a longer incubation period of 24 h (Figure 2A). 

FD4 is a marker for paracellular transport and was added together with the NDP and, 

following 8 h of exposure, the basolateral FD4 content was measured. Lowered FD4 

levels in the basolateral compartment of NDP-exposed cells compared to control 

indicated that FD4 translocation was reduced by all NDPs (Figure 2B). However, when 

the Caco-2 cells were pre-incubated with NDP and subsequently exposed to FD4 in the 

absence of NDP, then no effect of the NDPs on FD4 translocation was observed (Figure 

2C).  

3.4 NDPs induce unique gene expression patterns in transwell grown Caco-2 

To determine gene transcription responses of transwell grown Caco-2 following 6 h 

exposure to NDP we performed microarray analysis. NDP-mediated gene expression was 

compared to medium control and results showed that NDPs significantly affected 

expression of genes in Caco-2 cells. We observed the lowest number of significant 

differentially expressed genes for Wellmune Soluble (i.e. 281 genes) and the highest 

number for OBG90 (i.e. 584 genes) (Figure 3A). A minority of 34 genes were significant 

differentially expressed by all NDPs (Figure 3B). This overlap is relatively small as for 

instance OBG90 induces differential regulation of 283 genes that are not affected by any  
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Table 2. List of genes significantly affected in expression by all NDP preparations. 

Genes Wellmune  RG-I OBG90 LCES Naxus 

ABI3BP 1.32 1.31 1.33 1.25 1.24 

APOBEC3C 1.11 1.10 1.16 1.13 1.14 

C17orf78 1.18 1.17 1.23 1.27 1.21 

CCL20 1.21 1.18 1.35 1.56 1.80 

CDC42EP2 1.13 1.14 1.12 1.11 1.13 

CIDEC 1.19 1.19 1.22 1.15 1.20 

CYP1A1 1.41 1.26 1.64 1.74 1.47 

DUSP1 1.15 1.19 1.25 1.22 1.21 

ELF3 1.13 1.14 1.14 1.14 1.16 

GATAD2A 1.12 1.13 1.09 1.11 1.09 

GNA13 1.13 1.14 1.11 1.12 1.17 

HMGCS1 1.07 1.07 1.09 1.09 1.08 

HNF4G 1.16 1.22 1.20 1.18 1.23 

ICAM1 1.12 1.12 1.15 1.23 1.25 

IKBKE 1.15 1.19 1.17 1.29 1.30 

IRF1 1.18 1.21 1.16 1.25 1.14 

MXD1 1.16 1.16 1.17 1.21 1.17 

NFKBIA 1.15 1.11 1.20 1.22 1.30 

OCEL1 1.13 1.10 1.11 1.16 1.12 

PELO 1.13 1.17 1.13 1.10 1.10 

SDC4 1.10 1.14 1.19 1.20 1.23 

SLC20A2 1.11 1.19 1.17 1.11 1.15 

SPRED2 1.08 1.09 1.08 1.17 1.07 

STC1 1.31 1.26 1.27 1.39 1.26 

TCN2 1.18 1.21 1.24 1.15 1.17 

TNFAIP3 1.15 1.12 1.20 1.21 1.31 

WBP2 1.10 1.14 1.13 1.19 1.14 

B3GALNT2 -1.17 -1.15 -1.18 -1.22 -1.19 

CLASP2 -1.12 -1.10 -1.19 -1.12 -1.12 

FAM86EP -1.17 -1.19 -1.22 -1.17 -1.15 

PLXNC1 -1.16 -1.16 -1.14 -1.20 -1.19 

RBM5 -1.08 -1.08 -1.09 -1.08 -1.12 

SNORD52 -1.22 -1.41 -1.22 -1.33 -1.29 

TAS2R13 -1.50 -1.57 -1.76 -2.03 -2.05 

  Values represent fold changes of gene expression, n=3 experiments. Statistically significant 

differences were calculated with IBMT regularised paired t-test: all genes have p<0.05. 



 NDPs modulated Caco-2 immune and cholesterol-related genes 

41 

other NDP. These strong differences between NDPs are reflected in the PCA plot 

showing a unique response of Caco-2 cells to each individual NDP (Figure 3C).  

Interestingly, genes involved in immune-related processes are amongst the genes whose 

expression shows significant changes in response to all NDPs (Table 2), such as the 13 

genes within the network centred around NFKBIA (Figure 3D). Furthermore, two genes 

related to G protein-coupled receptors (GPCRs) based signalling (GNA13 and TASR13) and 

two genes within the cholesterol pathway (HMGCS1 and APOBEC3C) showed significant 

changes for all NDPs. 
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3.5 NDPs mediated minor change in expression of cholesterol pathway-related genes 

in transwell grown Caco-2 

The NDP OBG90 is structurally related to the oat beta-glucan that has demonstrated 

cholesterol lowering effects in vivo [40]. Based on that knowledge and the observation 

that two genes related to the cholesterol pathway were identified within the overlap 

between all NDPs, we set out to detect other differentially regulated genes associated 

to the cholesterol pathway making use of the IPA software. Significant differentially 

expressed genes induced by the exposure to at least one NDP, compared to medium 

control, were listed in table 3. Results indicate that gene expression showed subtle, but 

significant changes and most differentially regulated genes were found to be 

upregulated. To analyse how the changes in gene expression induced by the NDPs relate 

to cholesterol uptake, Caco-2 cells were exposed to OBG90 and Naxus in the presence 

of fluorescently labelled cholesterol. Both OBG90 and Naxus increased the cholesterol 

uptake in the enterocytes and following Naxus stimulation we observed a significantly 

Figure 4. Naxus increases cholesterol 

uptake but not transport by Caco-2. 

Transwell grown Caco-2 cells were 

exposed to OBG90 and Naxus with or 

without fluorescent labelled cholesterol 

(20 µg/ml) for 24 h. Cholesterol uptake in 

cells was normalized to medium control. 

Bar chart shows mean values + SEM, n = 

3 independent experiments. Statistically 

significant differences were calculated 

with one-way ANOVA: *: p<0.05. 
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increased fluorescent signal in the Caco-2 (p<0.028; Figure 4). No significant difference 

in fluorescent signal was found in the basolateral compartment indicating that the 

cholesterol was incorporated or utilised by the cells and not excreted, or at least not 

basolaterally (data not shown).  

 

Table 3. Differential expression of cholesterol-metabolism-related genes. 

Gene class Genes Wellmu

ne  

RG-I OBG90 LCES Naxus 

Cholesterol  NSDHL 1.05 1.05 1.04 1.06* 1.08* 
biosynthesis DHCR24 1.06* 1.06* 1.03 1.04 1.06* 

 EBP 1.05 1.12* 1.11* 1.10 1.13* 

 FDFT1 1.07 1.09 1.11* 1.09 1.11* 

 GGPS1 1.04 1.10 1.07 1.16* 1.08 

 HMGCR 1.10* 1.08 1.07 1.09* 1.05 

 HMGCS1 1.07* 1.07* 1.09* 1.09* 1.08* 

 IDI1 1.06 1.07 1.13* 1.08 1.15* 

 MSMO1 1.16* 1.09 1.14* 1.16* 1.17* 

 MVD 1.07 1.13* 1.14* 1.13* 1.12* 

 SC5DL 1.11 1.06 1.14* 1.06 1.16* 

 SQLE 1.06 1.09* 1.05 1.09* 1.09* 

Cholesterol  LDLR 1.08* 1.09* 1.07 1.12* 1.08* 
influx SCARB1 1.08 1.09* 1.06 1.06 1.05 

HDL related APOA1 1.05 1.04 1.07* 1.03 1.05 
 APOD 1.17* 1.12* 1.18* 1.07 1.18* 

Chylomicron  MTTP 1.12* 1.14* 1.15* 1.11* 1.10 
related APOBEC3

C 

1.11* 1.10* 1.16* 1.13* 1.14* 
Listed genes are part of the cholesterol biosynthesis pathway as described in IPA and shown 

significant different expression by at least one NDP exposure compared to medium control. Values 

represent fold changes of gene expression, n=3 experiments. Statistically significant differences 

were calculated with IBMT regularised paired t-test: *: p<0.05. 

 

3.6 Most strongly differentially regulated genes in response to Naxus and LCES 

demonstrated a link to immunomodulation 

In order to identify specific effects of NDPs towards transwell-grown Caco-2 cells, the 

top 10 up and down-regulated genes were studied (Table 4). Besides the genes that 

demonstrated significant differential expression by all NDPs (among others CYP1A1, 

CCL20 and ABI3BP; see Table 2), NDPs also show specific changes in gene expression, 

such as the group of five metallothioneins upregulated specifically by RG-I. From an 

immunological perspective, the CXCL10, CCL20, BIRC3, CASP1, PTGS2 and CYP1A1 genes  
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Table 4. Top 10 up- and down- regulated genes for each NDP. 
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Values represent fold changes of gene expression, n = 3 experiments. Statistically significant 

differences were calculated with IBMT regularised paired t-test: All genes have p<0.05. 
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are of particular interest. These were all within the top 10 of genes which transcription 

was significant upregulated by Naxus and transcription of most of them was also 

significantly upregulated by LCES. These genes are involved in NF-κB signalling (BIRC3 

and CASP1), code for chemokines (CXCL10, CCL20), or are involved in the regulation of 

inflammation processes via prostaglandins (PTGS2 and ALOX5AP). 

3.7 NF-κB pathway in transwell-grown Caco-2 is most strongly activated by Naxus and 

LCES exposure  

Next, we performed IPA analysis with all significant differentially regulated genes. All 

NDPs demonstrated to significantly alter gene expression of genes in the NF-κB 

downstream pathway (Figure 5 and Table 5). LCES (Figure 5D) and Naxus (Figure 5E) 

again showed the largest number of genes with altered transcription downstream of the 

NF-κB pathway. In addition, we analysed gene transcription of upstream NF-κB 

regulators which suggests CD14 and TLR2 might be involved in Naxus or RG-I and OBG90, 

respectively, mediated NF-κB pathway activation (Table 5). The gene transcription of 

other NF-κB upstream regulators following Naxus stimulation are presented in more 

detail in figure 5F. Furthermore, IPA predicted, indicated by z-scores above 2, that NDPs 

activate the NF-κB complex and REL-associated protein involved in NF-κB heterodimer 

formation, nuclear translocation and activation (Table 5). G-protein coupled receptors 

(GPCRs) are suggested to be involved in regulation of NF-κB pathway but are not 

integrated in the IPA pathways. Since a number of GPCRs were found to be in the top 10 

of transcriptionally downregulated genes following Caco-2 exposure to NDPs, we 

generated an overview including all the GPCRs that revealed significant different 

expression following at least one NDP exposure (Table 6). This indicated that gene 

transcription of in particular GPCRs classified as taste receptors were downregulated by 

the NDPs. 

3.8 Microarray data could partially be confirmed by qPCR and ELISA 

As some of the most relevant changes in gene expression were connected to the NF-κB 

pathway and downstream effector genes, a validation of these effects was performed. 

First, transcriptional changes of two chemokine encoding genes, CXCL10 and CCL20, 

were analysed by qPCR. The qPCR data confirmed that the upregulation of gene 

expression of CXCL10 and CCL20 by Naxus were both significant (Figure 6A and B). 

Although both genes were also in the top 10 of LCES, we could only confirm significant 

increased expression of CCL20 by qPCR.  

Subsequently, ELISAs were performed to analyse whether observed changes in gene 

expression translated to increased protein production and subsequently excreted   
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Table 5. Differential expression of family members and inhibitor genes related to NF-κB 

complex following NDP exposure of Caco-2. 

Genes Wellmune  RG-I OBG90 LCES Naxus 

Upstream regulators     

CD14 1.28* 1.17 1.21* 1.26* 1.30* 

ICAM1 1.12* 1.12* 1.15* 1.23* 1.25* 

TLR2 1.14 1.23* 1.27* 1.21 1.18 

EGFR 1.08 1.07 1.09* 1.13* 1.06 

ANXA1 1.15 -1.04 1.16 1.16 1.28* 

CAV1 1.17 1.22* 1.21* 1.46* 1.17 

BCAR1 1.08 1.07 1.09 1.10 1.06 

GJA1 1.00 1.09 1.14* -1.01 1.02 

DLG1 -1.04 -1.07 -1.10* -1.06 -1.06 

Transcriptional change      

NFKB2 1.03 1.04 1.09 1.20* 1.20* 

IKBKE 1.15* 1.19* 1.17* 1.29* 1.30* 

IKBIP 1.11 1.24* 1.07 1.14 1.14 

NFKBIA 1.15* 1.11* 1.20* 1.22* 1.30* 

NFKBIB 1.10 1.04 1.25* 1.13 1.17* 

NFKBIE -1.01 1.08 1.11 1.10 1.13* 

Predicated activation state    

EGFR NA 1.05 1.01 1.87 2.77# 

NFKB complex 2.61# 3.11# 2.44# 3.09# 3.30# 

ReLA 2.22# 2.78# 2.61# 2.79# 2.97# 

Genes were included when significantly affected in gene expression by one or more NDPs. Values 

represent fold changes of gene expression, n=3 experiments. Statistically significant differences 

were calculated with IBMT regularised paired t-test: *: p<0.05. According IPA predication: #: Z 

score >2, Activated. NA: Not available. 

chemokines into the medium. To this end, we analysed CCL20 and CXCL10 protein in 

medium following exposure of transwell-grown Caco-2 to NDPs for 24 h. Results 

demonstrated that both LCES and Naxus induced a significant production of CXCL10 

when compared to medium stimulated Caco-2 (Figure 6C). However, no significant 

changes in the medium levels of CCL20 could be observed (Figure 6D). 

 

  



 NDPs modulated Caco-2 immune and cholesterol-related genes 

47 

4 Discussion 

Dietary non-digestible polysaccharides have been reported to have many biological 

effects, including cholesterol lowering and immunomodulatory effects. As these 

biological effects will partly be exerted through direct interaction with the IEC of the gut, 

we set out to study direct effects of NDPs towards enterocytes, making up 

approximately 90% of all IECs [19] .To this end, five NDP preparations were selected 

which originated from different sources (yeast, mushroom, oat grain, wheat grain and 

apple fruit), differed in compositional structure, molecular weight and solubility. The 

composition of the NDP preparations were in line with commonly reported compositions 

of such polysaccharide preparations in literature [39, 41-44], except for the MW of 

Wellmune Soluble which was smaller (~ 17kDa) than was previously reported for soluble 

yeast beta-glucan preparations (i.e. ~150kDa) [15]. This is important in comparing results 

from this research with previous studies as it has been demonstrated that bioactivity of 

polysaccharides can depend on the structure. For instance, lowering the molecular 

weight can reduce or abolish bioactivity [45, 46].  

IEC models like Caco-2 are a promising strategy in the analysis of bioactivity of NDPs as 

Caco-2 cells can be grown routinely, display many in vivo features of enterocytes and 

have been shown to respond to different interventions including food compounds. Caco-

2 cells are used in many labs, resulting in a collection of microarray data that can be 

systematically exploited to support dedicated enterocyte analysis and the generation of 

new hypothesis on the relation between food and intestinal function [47]. For research 

towards the effects of food compounds, such as NPDs, Caco-2 cells have another 

advantage as they are reasonably tolerant to LPS upon differentiation and polarisation 

[48]. The sensitivity of Caco-2 cells to LPS, as determined here by studying the threshold 

for induced expression of major response genes, has been set around 0.1 µg/ml. 

Compared to immune cells such as monocytes and macrophages this makes the Caco-2 

cells approximately 1x107 times less sensitive [49]. LPS concentrations present in the 

NDPs used in our exposure experiments most likely do not affect the Caco-2 gene 

responses directly, although we cannot exclude synergistic effects between LPS and 

NDPs. 

To fully characterize gene transcription responses of Caco-2 to NDPs we performed 

microarray analysis which provides a broad overview of transcriptional responses. IPA-

mediated analysis of all significant differentially regulated genes demonstrated a 

potential role for NF-κB signalling in recognition of NDPs by Caco-2. Our analysis 

indicated that NDP stimulation of Caco-2 cells significantly upregulated transcription of 

NF-κB-complex-related genes and upstream regulators and IPA predicted RelA as  
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Figure 6. Q-PCR and ELISA validate CXCL10 expression and protein production following Naxus and 

LCES stimulation of Caco-2. Transwell grown Caco-2 cells were exposed to Wellmune, RG-I, OBG90, 

LCES and Naxus at 500 μg/ml for 6 h and analysed for gene expression by qPCR (A and B) or 

exposed for 24 h and analysed for protein level by ELISA (C and D). Bar charts represent (A) CXCL10 

and (B) CCL20 gene expression are shown as fold change normalized to geometric mean of GAPDH 

and RPLP0 and medium control (ΔΔct) and (C) CXCL10 and (D) CCL20 protein totals in the medium 

24 h after exposure. Protein analysis was performed on a mixture of apical and basolateral medium 

and corrected for combined medium volumes to yield a total protein amount. Bar chart shows 

mean values + SEM, n = 3 independent experiments. Statistically significant differences were 

calculated with one-way ANOVA: *: p<0.05; **: p< 0.01; ***: p<0.001. 

activated upstream regulator. This is in line with previous findings for enterocytes [50, 

51] and other immune cells [52] including in vivo and in vitro studies [53-55].  

We also observed enhanced transcription of TLR2 and CD14, which are known upstream 

activators of NF-κB [50]. This supports previous studies that identified TLR2 as receptor 

for other NDPs [56, 57]. Besides, we also observed upregulation of CYP1A1, a key enzyme 

in elimination and detoxification of compounds in different cell types, which has been 

shown to be under control of TLR2 activation [58]. This TLR2 receptor and co-receptor 
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CD14 have been found to work together in pathogen recognition and innate defence 

response against bacterial pathogens like Yersinia spp, Listeria and Rickettsia akari [59] 

and are important for proper immune function [60]. This would be in line with the 

hypothesis that some NPSs can activate the innate defence responses similar as 

pathogens.  

The NF-κB complex controls, amongst a number of functions, the production of 

cytokines and chemokines such as CXCL10 and CCL20. Gene expression of these 

signalling molecules was upregulated by Naxus and LCES.  

 

Table 6. Differential expression of GPCRs following NDP exposure of Caco-2  

Genes Wellmune RG-I OBG90 LCES Naxus 

GPR108 1.07 1.06 1.08 1.08 1.10* 

GPR114 1.13 1.15* 1.09 1.09 1.09 

GPR133 1.18 1.28* 1.21* 1.13 1.14 

GPR160 1.15* 1.05 1.12 1.08 1.09 

TAS2R13 -1.50* -1.57* -1.76* -2.03* -2.05* 

TAS2R14 -1.25 -1.41* -1.38* -1.20 -1.39* 

TAS2R19 -1.31 

 

-1.32 -1.38* -1.33 -1.46* 

TAS2R20 -1.15 -1.27 -1.30 -1.27 -1.42 

TAS2R3 -1.15 -1.35* -1.42* -1.30 -1.27 

TAS2R31 -1.14 -1.27 -1.26 -1.36* -1.40* 

TAS2R4 -1.21 -1.27 -1.41* -1.30* -1.42* 

TAS2R50 -1.15 -1.27 -1.22 -1.24 -1.38* 

Genes were included when significantly affected in gene expression by one or more NDPs. Values 

represent fold changes of gene expression, n=3 experiments. Statistically significant differences 

were calculated with IBMT regularised paired t-test: *: p<0.05. 

Further analysis demonstrated that CXCL10 protein secretion was also increased 

following Naxus and LCES stimulation of Caco-2, in contrast to CCL20. CXCL10 production 

by Caco-2 cells was previously reported in response to stimulation with various mixtures 

of pro-inflammatory cytokines [61]. CXCL10 was demonstrated to control intestinal 

epithelial cell movement together with IL-13 [62] and, together with CXCR3, held 

responsible for recruiting CXCR3-positive immune cells in inflammatory bowel disease 

[63]. It remains to be proven whether observed significant changes in gene transcription 

of, for instance, ICAM-1 also contributes to attraction of immune cells as these have 

shown to be involved in adhesion of activated T cells [64]. This potential stimulation of 

immune cell migration by intestinal enterocytes following exposure to NDPs is 
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supported by previous results for 1,3/1,6-β-glucan from baker’s yeast that has been 

shown to increase the number of intraepithelial lymphocytes in the intestine in C57BL/6 

mice [65].  

NDPs are known for their capability to bind compounds like proteins, cholesterol, bile 

acids, fatty acids, and phytochemicals [66-68]. Interestingly, we found that NDPs 

reduced FD4 translocation without changing monolayer integrity, but only when NDPs 

and FD4 were present in the medium simultaneously. Pre-incubation with NDPs had no 

effect on FD4 translocation suggesting that exposure to NDPs did not change active 

paracellular transport of Caco-2 but that a direct physical interaction between NDPs and 

FD4 is preventing translocation. In addition, NDPs increased gene transcription of genes 

involved in the cholesterol biosynthesis pathway and uptake of cholesterol from medium. 

Those results indicate that NDPs induce cellular cholesterol levels potentially leading to 

changed characteristics of cell membranes [69]. The induction of cholesterol related 

genes was found for all NDPs, but most strongly for LCES, Naxus and OBG90. Oral 

administration of oat β-glucan was shown to support maintenance of normal [70] and 

reduction of blood cholesterol levels [71] by a proposed direct binding of bile acids in the 

lumen and thereby increased faecal excretion [72]. Arabinoxylans from wheat bran also 

have been shown to reduce total plasma cholesterol and LDL cholesterol concentrations 

in hamsters [73]. Our results suggest that a cellular mechanism of intestinal cells might 

contribute to this cholesterol lowering effects of NDPs in vivo.  

In this study, we have attempted to characterize NDPs through their stimulation of 

enterocytes. We performed gene expression profiling in combination with dedicated 

functional assays such as analysis of barrier integrity, translocation, cholesterol 

regulation and chemokine production. The results demonstrated strong differences in 

Caco-2 responses to the various NDPs, indicating that these analyses discriminate 

between functional activities of the NDPs. The next step in research to characterize the 

bioactivity of these NDPs should be human intervention studies to couple our in vitro 

data to in vivo. Cholesterol lowering effects, which are relatively easy to study and for 

which trial design and biomarkers are validated, can be expected for some of these NDPs. 

Besides, the immune modulatory effects could be studied by vaccination efficacy studies 

and blood cellular parameters.  
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Supplementary Table 1. Primer details  

Genes Forward (5’-3’) Reverse (5’-3’) Accession 

numbera GAPDH TGCACCACCAACTGCTTAGC GGCATGGACTGTGGTCATGAG NM_002046 

RPLP0 GCAATGTTGCCAGTGTCTG GCCTTGACCTTTTCAGCAA NM_001002.3 

IL8 CTGATTTCTGCAGCTCTGTG GGGTGGAAAGGTTTGGAGTATG NM_000584.2 

IL1β GTGGCAATGAGGATGACTTGTTC TAGTGGTGGTCGGAGATTCGTA NM_000576.2 

NFκB TGAGTCCTGCTCCTTCCA GCTTCGGTGTAGCCCATT NM_003998.2 

CCL20 TGCTGTACCAAGAGTTTGCTC CGCACACAGACAACTTTTTCTTT NM_004591 

CXCL10 GTGGCATTCAAGGAGTACCTC TGATGGCCTTCGATTCTGGATT NM_001565 

a Gene accession number refer to the sequence on which the primer design was based. 

 

 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=Nucleotide&term=NM_004591
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=Nucleotide&term=NM_001565


 

 

 

 Chapter 3 
 

Macrophages treated with non-digestible 

polysaccharides reveal a transcriptionally 

unique phenotype 

 

Yongfu Tang*, Coen Govers*, Harry J. Wichers, Jurriaan J. Mes 

 

*These authors contributed equally to this work. 

Journal of functional foods, 2017 (36): 280-289 

 



Chapter 3 

58 

Abstract 

Dietary non-digestible polysaccharides (NDPs) might promote intestinal health via 

immuno-modulation. Immunomodulatory effects of NDP are most likely brought about 

by antigen processing cells such as macrophages that populate the intestine, although 

the mechanisms are still poorly understood. We validated the in vitro model of M1 and 

M2 macrophages to mimic the intestinal inflammatory and tolerant macrophages using 

literature and microarray-derived gene markers. All these markers were used to 

characterise the macrophage phenotype following NDP stimulation. This identified an 

alternative subset, termed MNDP, which commonly modulated a set of 126 genes, 

involved in migration, metabolic processes, cell cycle, and inflammatory immune 

function. This gene-based analysis for macrophage subsets provides an additional tool 

to characterise NDP bioactivity for their in vivo potential.  

Keywords: Arabinoxylan; β-Glucans; Intestinal immunity; Macrophage polarisation; Gene 

expression markers 

Abbreviations: CLRs, C-type lectin receptors; GO-BP, gene ontology – biological process;  

IECs, intestinal epithelial cells; LCES, lentinan containing extracted from shiitake; MNDP, 

NDP specific macrophage subset; NDP, non-digestible polysaccharide; PCA, principal 

component analysis; PRRs, pattern recognition receptors; TLRs, toll‑like receptors;  

Graphical abstract: 
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1 Introduction 

Dietary non-digestible polysaccharides (NDPs), amongst which glucans [1], pectin [2], 

arabinoxylan [3], inulin [4], and resistant starch [5] are described to possess immune 

modulatory activity. NDPs have been shown to trigger innate immune responses by 

activating antigen processing cells of the intestinal immune system [6] and to increase 

the regulatory T cell population in the intestine and tip the balance towards an anti-

inflammatory phenotype [7]. The mechanism behind this is of great interest and only 

partially understood. Also, NDPs have demonstrated to directly interact with the 

microbiota and gut epithelium. Fermentation of NDPs by intestinal microbiota results in 

changes of microbiota composition and short chain fatty acid production in both the 

cecum [8] and the colon [9]. We and others found that NDPs were also able to directly 

interact with intestinal epithelial cells. NDPs have been demonstrated to increase 

cytokine and chemokine gene expression and protein production in Caco-2 cells [10], 

illustrating that NDPs might modulate immune responses via the intestinal epithelial cells. 

Since a large amount of macrophages are to be found in the intestine [11], these cells 

likely are important in maintaining homeostasis. Within these intestinal macrophage 

population tolerant and inflammatory subsets have been described [12]. Tolerant 

macrophages are the main subset found in homeostasis. They have a low turnover and 

are located underneath the submucosal region in close proximity to CD4 T cell 

populations [13] and are sustained by stromal cues [14]. These cells lack expression of 

CD14, TLR2, CCR2 and MHC class II and production of TNFα [15], but demonstrate 

phagocytic and bactericidal activity [14], produce IL-10 and balance T cell differentiation 

away from Th17 cells towards a regulatory T cell phenotype [13]. Inflammatory 

macrophages appear to be absent under homeostatic conditions but are rapidly 

recruited in large numbers upon infection following CCR2-dependent monocyte 

migration and differentiation [16]. These macrophages have a high rate of turnover and 

express various pattern recognition receptors and produce TNFα and multiple other pro-

inflammatory cytokines [17, 18]. Both subsets were found to be able to directly sample 

the luminal content by extending protrusions between epithelial cells in a CX3CR1-

dependent manner [19, 20]. 

We are interested in these direct interactions of NDP with intestinal macrophages and 

used in vitro cultures and conditions to generate non-polarised macrophages (i.e. M0), 

inflammatory or classically activated macrophages (i.e. M1), or tolerant or alternatively 

activated macrophages (i.e. M2). Besides markers that have been described in the 

literature additional markers were selected and subsequently used to characterise the 

macrophage subset after exposure to four different NDPs. This revealed that NDPs 
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induce a distinct phenotype characterised by putative epigenetic modification resulting 

in differential transcription of genes related to migration, metabolic processes, cell cycle 

progression and inflammatory responses and which combined may prove a practical 

resource for studying the effects of NDPs in vitro and potentially in vivo. 

 

2 Materials and Methods 

2.1 NDP characterisation 

We used four NDPs being: Wellmune Soluble (referred to as ‘Wellmune’ in table and 

figures), RG-I, LCES and Naxus. Wellmune Soluble is a 94% pure preparation of water 

soluble β-1,3/1,6-glucan of approximately 17 kDa isolated from the yeast Saccharomyces 

cerevisiae and provided by BioThera (Eagan, MN, USA). RG-I is a 80% pure preparation of 

rhamno-galacturonan-I with branced L-arabinan, type II arabinogalactan and probably 

linear L-arabinan side chains with a molecular weight (MW) of approximately 95 and 14 

kDa isolated from apple and provided by INRA (Paris, France). The isolation procedure 

including pectin methyl esterase (30 U/L, Rapidase SPE, DSM) and polygalacturonase (20 

UI/L, PG, Megazyme, IL, USA) treatment at 4°C for 12 h after which the extract was 

concentrated by cross flow ultrafiltration using a ceramic membrane (0.5 m², diameter 

25 mm, cut-off 8 kDa). Next, a diafiltration step was applied (dilution factor 1000), and 

the sample was centrifuged (2800 x g, 30 min, 4 °C) and lyophilized. LCES (lentinan 

containing extract from shiitake) is a 73% pure preparation of β-1,3/1,6-glucan, with a 

minor amount of α-1,4/1,6 glucan and mannose and galactose units, of approximately 

21000 kDa isolated from shiitake mushrooms. For isolation of LCES the mushrooms were 

minced and boiled for 8 h in water, filtered over cheesecloth, and LCES was precipitated 

with ethanol and finally lyophilized. Naxus is 77% pure preparation of arabinoxylans with 

additional arabinogalactan peptides together with some 1,3/1,4-linked β- glucans and 

β(1,4)-mannans with an average MW of ~95 kDa isolated from wheat and provided by 

BioActor (Maastricht, The Netherlands).  

To remove LPS contamination, NDPs were treated as previously described [21]. In brief, 

RG-I was treated with alkaline-ethanol at 4 oC for 5 h, while LCES and Naxus were treated 

with alkaline-ethanol at 56 oC for 5 h. NDPs were lyophilized following neutralization with 

HCl. For Wellmune Soluble, low in LPS contamination, no LPS removal treatment was 

applied. For all NDPs, LPS levels were below those that would result in immune 

stimulations [21].  
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2.2 Primary macrophage differentiation and polarization 

Human monocytes were obtained from buffy coats from healthy donors (Sanquin, 

Nijmegen, The Netherlands) using the quadroMACS system and CD14 microbeads 

according to the manufacturer’s protocol (Miltenyi Biotec, Leiden, The Netherlands). A 

written informed consent was obtained before sample collection. Monocytes were 

differentiated into macrophages following 7 days culturing in RPMI 1640 - Glutamax 

medium (Gibco, Bleiswijk, The Netherlands) supplemented with 10% fetal bovine serum 

(FBS, Hyclone, Eindhoven, The Netherlands), 1% MEM non-essential amino acids (Gibco), 

1% Na-pyruvate (Lonza, Breda, The Netherlands), 1% Pen/strep (Sigma, St. Louis, MO, USA) 

and 50 ng/ml MCSF (R&D systems, Minneapolis, MN, USA) at 1×106 cells / 2 ml / well in a 

24-well plate. Half of the medium was replaced after 3 and 5 days of culture with medium 

containing 100 ng/ml MCSF. On day 7, macrophages were polarized by replacing all the 

culture medium with medium containing no additions (M0), 20 ng/ml TNF-α (R&D 

systems) and 20 ng/ml IFN-γ (R&D systems) (M1), 20 ng/ml IL-4 (R&D systems) (M2) or 

500 μg/ml NDPs without MCSF and incubated for 18 h. 

2.3 RNA extraction and cDNA synthesis 

RNA was extracted by lysing cells with 200 μL TRIzol (Invitrogen, Bleiswijk, The 

Netherlands) for each well in the 24-well plates. This was followed by RNeasy (Qiagen, 

Venlo, The Netherlands) clean-up according to manufacturer’s protocol. The integrity of 

the ribosomal RNA was analysed using agarose (Eurogentec, Liège, Belgium) gel 

electrophoresis (1%). RNA concentration and purity were checked using the Nanodrop 

spectrophotometer system (Nanodrop Technologies, Wilmington, DE, USA) and only 

samples with a ratio (Abs 260/280 nm) between 1.8 and 2.1 were used for qPCR and 

microarray analysis. Subsequently, cDNA was synthesised with iScript (Bio-Rad, 

Veenendaal, The Netherlands) according to manufacturer’s protocol. 

2.4 qPCR 

qPCR was performed as described elsewhere [22]. In brief, 5 μl cDNA was mixed with 10 

μl iQ™ SYBR Green supermix (Bio-Rad), forward and reverse primers, and milliQ to a total 

volume of 20 μl. Primers were derived from the Harvard Primerbank 

(http://pga.mgh.harvard.edu/primerbank/) or designed using Clone Manager 

Professional 9 and synthesized by Biolegio (Nijmegen, The Netherlands). Primers and 

their final used concentrations are listed in supplementary Table 1. The following thermal 

cycling conditions were used for amplifying the target sequences: 90 s at 95 oC, followed 

by 40 cycles at 95 oC for 10 s, 58 oC for 10 s and 72 oC for 15 s, and a final elongation step  
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at 72 oC for 2 min and performed on the CFX96 Touch Real-Time PCR Detection System 

(Bio-Rad). qPCR was performed in technical duplicate, and all samples were normalised 

to geometric means of PUM1 and RPLP0 expression and medium-stimulated 

macrophages using the qBase+ software (Biogazelle, Gent, Belgium). To allow 

comparison in terms of fold change, transcript levels below detection thresholds in M0 

were set at 40 cycles. 

 

 

Table 1. Most differentially expressed genes in M1 and M2 macrophages as determined 

by microarray 

Subsets Genes Mean 

FC: 

Description 

M1 

IDO1 122.00 indoleamine 2,3-dioxygenase 1 

IRG1 121.95 immunoresponsive 1 homolog (mouse) 

ANKRD22 105.57 ankyrin repeat domain 22 

GBP5 91.66 guanylate binding protein 5 

GBP4 89.87 guanylate binding protein 4 

RARRES3 59.52 retinoic acid receptor responder (tazarotene 

induced) 3 IFITM1 50.21 interferon induced transmembrane protein 1 

GCH1 48.16 GTP cyclohydrolase 1 

HAPLN3 46.59 hyaluronan and proteoglycan link protein 3 

VCAM1 43.32 vascular cell adhesion molecule 1 

CLEC6A 42.85 C-type lectin domain family 6, member A 

UBD 40.35 ubiquitin D 

SCIN 39.03 scinderin 

RSAD2 36.36 radical S-adenosyl methionine domain containing 2 

IDO2 35.93 indoleamine 2,3-dioxygenase 2 

PLA1A 35.15 phospholipase A1 member A 

LAMP3 34.38 lysosomal-associated membrane protein 3 

IL31RA 32.74 interleukin 31 receptor A 

IFI27 32.71 interferon, alpha-inducible protein 27 

CXCL11 32.48 chemokine (C-X-C motif) ligand 11 

FAM26F 32.20 family with sequence similarity 26, member F 

CCL15 31.92 chemokine (C-C motif) ligand 15 

CLEC4E 30.64 C-type lectin domain family 4, member E 

C1S 29.65 complement component 1, s subcomponent 

ETV7 27.78 ets variant 7 
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M2  

IL17RB 59.72 interleukin 17 receptor B 

ALOX15 42.4 arachidonate 15-lipoxygenase 

CD180 31.9 CD180 molecule 

ST8SIA6 30.81 ST8 alpha-N-acetyl-neuraminide alpha-2,8-

sialyltransferase 6 CHDH 24.61 choline dehydrogenase 

GPR34 24.54 G protein-coupled receptor 34 

CCL13 20.16 chemokine (C-C motif) ligand 13 

FCER2 19.13 Fc fragment of IgE, low affinity II, receptor for 

(CD23) MAOA 18.49 monoamine oxidase A 

CCL26 18.08 chemokine (C-C motif) ligand 26 

PTGFRN 18.01 prostaglandin F2 receptor inhibitor 

TSPAN15 17.8 tetraspanin 15 

THBD 17.65 thrombomodulin 

PPM1L 17.26 protein phosphatase, Mg2+/Mn2+ dependent, 1L 

TMEM37 17.02 transmembrane protein 37 

CD200R1 15.65 CD200 receptor 1 

DNASE1L3 15.59 deoxyribonuclease I-like 3 

KLHL13 15.1 kelch-like family member 13 

FAXDC2 14.69 fatty acid hydroxylase domain containing 2 

CTNNAL1 14.38 catenin (cadherin-associated protein), alpha-like 1 

TMEM71 14.35 transmembrane protein 71 

GNG2 13.81 guanine nucleotide binding protein (G protein), 

gamma 2 METTL7A 13.63 methyltransferase like 7A 

GSDMA 13.22 gasdermin A 

IL1R1 13.1 interleukin 1 receptor, type I 

Values represent fold changes of gene expression of M1 over M2, or M2 over M1, n=3 different 

donors. 

 

2.5 Microarray analysis 

Microarray analysis was performed as described previously [23]. Briefly, RNA quality was 

verified with the RNA 6000 Nano assay on an Agilent 2100 Bioanalyzer (Agilent 

Technologies, Amstelveen, The Netherlands). Hybridization, washing and scanning of 

the Affymetrix Human Gene 1.1 ST array plate was performed on an Affymetrix Gene 

Titan platform according to standard protocols. Scans of arrays were analysed using 

package from Bioconductor project. Raw signal intensities were obtained by Robust 

Multi-array Average method. Probe sets were defined using remapped chip definition 

file (CDF) based on Entrez gene database. Individual Genes were considered to be 
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expressed if UPC algorithm values are above 0.5 on at least one array [24]. Genes were 

selected that meet the cut-off of absolute fold change > 1.8 and false discovery rate 

corrected p<0.05 (IBMT regularised paired t-test) on at least one treatment. The 

functional interpretation of gene signatures was executed using IPA 3.0 (Ingenuity, 

QIAGEN, Redwood, CA, USA). Microarray data were deposited in the Gene Expression 

Omnibus (GEO) database. 

2.6 Statistics 

All parameters are presented as means ± SEM and differences between parameters were 

assessed for their significance with one-way ANOVA using Prism 6 (Graphpad, La Jolla, 

CA, USA). Differences with p<0.05 were considered significant. To relate changes in 

groups and genes, principal component analysis [25] was used as implemented in the 

CANOCO 5 software package [26]. 
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Figure 1. Literature marker list substantiates macrophage polarization and is expanded using 

microarray. Primary monocytes were differentiated for 7 days to macrophages and were 

subsequently polarised to M1 or M2.  Markers identified in literature for M1 (A) and M2 (B) and by 
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microarray for M1 (C) and M2 (D) were tested for gene expression in polarised macrophages by 

qPCR. Results are shown as fold change between M1 and M2 macrophages with bars representing 

mean values ± SEM, n=3 or 6 different donors. 

 

3 Results 

3.1 Polarised primary macrophages can be characterized by specific gene transcription 

markers 

Inflammatory and tolerant macrophages were generated according to established 

protocols [27]. Stimulation with TNFα and IFNγ yielded inflammatory macrophages (M1) 

and stimulation with IL-4 yielded tolerant macrophages (M2). To verify polarization a 

qPCR-based approach was used to analyse the gene expression of reported M1 markers 

(i.e. IL8, IL12p40, CD80, TNFA, and STAT1) and M2 markers (i.e. Dectin-1, CD209, MRC1, 

MRC2, CD36 and PPARG). Fold change expression ratios of M1 markers and M2 markers 

indicated that the polarisation protocol applied indeed yielded M1 and M2 macrophages 

(Figure 1A and 1B). 

Considering the lack of standards in macrophage culture and polarization, we decided to 

further characterize our M1 and M2 macrophages by microarray analysis. Interestingly, 

when ranking the differential expressed genes, some genes revealed to be more 

discriminative than most genes reported in literature. The top 25 most differentially 

expressed genes between M1 and M2 macrophages are listed in Table 1. From this table, 

we selected genes to serve as M1 and M2 markers based on their expression level or 

potential function in macrophage reactivity towards NDPs (supplementary Table 2). 

qPCR analysis to validate these genes, similar to the markers reported in literature, 

verified the high expression levels and discrimination between M1 and M2 macrophages 

(Figure 1C and 1D). In fact, differential fold changes were between 1.1 and 657 times 

higher when compared to microarray analysis. 

3.2 Based on M1 and M2 markers, NDPs induce an alternative macrophage phenotype 

We used the newly identified gene marker set as means to identify macrophage 

responses following exposure to NDPs in comparison to M1 or M2 macrophage 

polarisation. We treated macrophages with a yeast- (Wellmune Soluble), a shiitake-

derived (LCES) β-glucan, an apple rhamnogalacturonan I-derived from pectin (RG-I) and 

a wheat-derived arabinoxylan (Naxus). Gene transcription responses for M1 and M2 

polarisation were similar as before, whereas the NDPs demonstrated a variety of 

changes to the transcriptional response (Figure 2). We did not observe any significant 

alteration in gene transcription following macrophage exposure to Wellmune Soluble.  
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Figure 2. NDPs induce a M1 and M2 independent macrophage phenotype. Primary monocytes were 

differentiated for 7 days to macrophages and were subsequently polarised to M1 or M2 or exposed 

to Wellmune, RG-I, LCES, or Naxus. Macrophages were analysed for gene expression of M1 and M2 

markers by qPCR and results are shown in mean values as fold change compared to non-treated 

macrophages, n=2 or 3 different donors. Statistically significant differences were analysed by one-

way ANOVA: * p<0.05, ** p<0.01, *** p<0.001.  

 



 Unique phenotype for NDP treated macrophages subsets 

67 

 

Figure 3. NDPs induce a transcriptionally unique macrophage subset. Primary monocytes were 

differentiated for 7 days to macrophages and were subsequently polarised to M1 or M2 or exposed 

to Wellmune, RG-I, LCES, or Naxus. Gene expression of M1 () and M2 () markers as analysed 

by qPCR and shown in Figure 2 were log-2 manipulated and shown in a PCA plot with relative 

scaling of the principal variables indicated, n=3 different donors. 

 

LCES only significantly enhanced expression of three M1 markers. In contrast, RG-I and 

Naxus comparably enhanced transcription of most of the M1 markers and at the same 

time significantly downregulated expression of the M2 marker gene MGL. Of interest are 

also the gene markers of which expression is not altered by the NDPs. The M1 specific 

markers GBP5, IRF1, and STAT1 were not significantly increased in expression indicating 

NDPs do not induce a full M1 phenotype. PCA analysis clearly indicates that NDP 

exposure induced a macrophage phenotype that differs from M1 and M2 macrophages 

(Figure 3). Naxus, RG-I, and LCES appeared to induce a comparable specific macrophage 

subset which we coined MNDP. The PCA analysis also suggested that IDO1 and LAMP3, in 

addition to being M1 markers, might also function as MNDP markers. 
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3.3 NDPs affect expression of a specific subset of genes in macrophages 

Following our finding that Naxus, RG-I, and LCES induced a transcriptional unique NDP-

macrophage subset, we aimed to identify MNDP specific markers. To this end, we 

performed microarray analysis of the NDP-treated macrophage transcriptome. When 

analysing the metadata of these microarrays, we observed the most significantly altered 

gene transcription compared to medium following Naxus treatment (945 genes) and the 

least following Wellmune Soluble treatment (4 genes; Figure 4A). Furthermore, using 

PCA the NDP-treated macrophages could clearly be distinguished from M1 and M2 

macrophages (Figure 4B). As could be expected, Wellmune Soluble appeared to be most 

similar to medium-treated macrophages while Naxus demonstrated the strongest 

changes over especially PC-1. The NDPs that strongly affected macrophage gene 

transcription (i.e. RG-I, LCES, and Naxus) demonstrated similar effects for 126 genes 

(Figure 4C), of which expression was upregulated for 59 genes and downregulated for 

67 genes (Figure 5). These genes therefore appear most related to the MNDP macrophage 

subset. 

We investigated this list of 126 genes for functional relationships using gene ontology – 

biological process (GO-BP) descriptions (Figure 5). GO-BP terms describing migration 

were observed for 6 transcriptionally downregulated genes and 12 upregulated genes 

and included a number of C-C motif chemokine ligands. We also found a subset of genes 

involved in cell cycle. Expression was downregulated for 17 genes and upregulated for 9 

genes, which in fact negatively influenced cell cycle. Within the group of 17 

downregulated genes, 3 were part of the replication-dependent HIST1-family, of which 

another 4 were downregulated but lack a GO-BP description. GO-BP terms describing 

metabolic processes were observed for 9 transcriptionally downregulated and 10 

transcriptionally upregulated genes. Not to our surprise, within the cluster of 

inflammatory immune function, genes of which expression was upregulated included 

IDO1 and LAMP3. These genes were clustered together based on GO-BP terms 

demonstrating inflammatory responses and were already linked to the MNDP phenotype 

in the PCA plot (Figure 3). 

3.4 NDPs demonstrate varying transcriptional profiles of CLRs 

Many C-type lectin receptors (CLRs) have been described to be important in NDP 

recognition. We observed 2 CLRs, CLEC5A and CLEC6A, to be similar transcriptionally 

regulated following macrophage exposure to RG-I, LCES or Naxus (Figure 5). Further 

analysis revealed that each macrophage subset affects transcription of a number of CLRs. 

Strikingly, M1 polarisation strongly affected transcription of CLEC4E (Mincle) and 

CLEC6A (Dectin-2) and M2 polarisation strongly affected transcription of CLEC4A,  



 Unique phenotype for NDP treated macrophages subsets 

69 

 

Figure 4. NDPs vary in their genome-

wide differential gene expression. 

Primary monocytes were 

differentiated for 7 days to 

macrophages and were subsequently 

polarised to M1 or M2 or exposed to 

Wellmune, RG-I, LCES, or Naxus. Gene 

expression was analysed using 

microarray and compared to non-

treated macrophages. The number of 

up- and down-regulated genes for 

each treatment is depicted in a bar 

chart (A). Relative gene expression is 

shown as PCA plot, based on a signal-

log ratio, with relative scaling of the 

principal variables indicated (B). 

Number of NDP unique and shared 

differentially regulated genes is 

shown in a Venn diagram (C). Data 

are expressed as mean values, n=3 

different donors. 
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Table 2. C-type lectin expression profiles as determined by microarray 

Genes Aliases M1 M2 Wellmune RG-I LCES Naxus 

CLEC6A Dectin-2 24.53*** 1.04 4.28 8.59* 5.71* 5.34* 

CLEC4E Mincle 12.52*** -2.99 3.77 8.99** 3.94 6.36** 

CLEC4D Dectin-3/MCL 6.74** -1.08 2.45 5.77* 1.99 4.86** 

CLEC2C CD69 2.32*** -1.1 -1.08 1.01 1.00 -1.05 

CLEC4J FCER2/CD23 1.21 23.73*** 1.82 1.58 2.52 2.60 

CLEC10A MGL 1.04 19.81*** 2.01 -1.11 -1.39 -1.93 

CLEC4L DC-

SIGN/CD209 

-2.40* 13.08*** 1.93 1.59 -1.17 -1.55 

CLEC4A DCIR -3.11** 4.28*** 2.12 3.16** 1.22 1.47 

CLEC13D  MRC1 -4.69*** 2.73* 2.12 1.67 1.68 1.10 

CLEC8A  LOX-1/OLR1 -4.60* -1.61 1.89 3.11 6.99** 9.88*** 

CLEC13A DCL-1/CD302 -3.35*** 1.01 -1.52 -2.60* -2.84** -4.92*** 

CLEC13E  MRC2 -1.95** -1.19 -1.61 -2.14* -1.63 -2.56*** 

CLEC7A Dectin-1 -1.44 1.87** 1.34 1.32* -1.03 -1.65* 

CLEC5A MDL1 -1.50 -1.96 3.39 3.33** 3.52** 2.06* 

CLEC4G LSECtin 1.05 2.40** 1.21 1.17 1.05 -1.03 

CLEC1A - -1.10 2.60** 1.71 2.07* 1.26 1.13 

Values represent fold changes of gene expression, n=3 experiments. Statistically significant 

differences were calculated with IBMT regularised paired t-test: * FDR p<0.05, ** FDR p<0.01; *** 

FDR p<0.001. 

 

CLEC4L, CLEC10A (MGL), and CLEC13D (Figure 1C and D). In total, we found significant 

transcriptional upregulation of 4 CLRs in M1 and 8 CLRs in M2 macrophages, and 

downregulation of 6 CLRs in M1 and none in M2 macrophages (Table 2). 

There are clear differences in CLR gene expression profiles between M1, M2 and NDP-

treated macrophages. Gene expression of CLEC5A and CLEC8A (LOX-1) was found  
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Gene RG-I LCES Naxus Gene RG-I LCES Naxus Gene RG-I LCES Naxus

CCL1 4.6 5.8 7.9 INHBA 3.4 6.0 7.5 HIVEP2 1.1 1.6 3.2

CCL24 4.2 6.9 7.2 IL7R 5.4 4.2 5.2 MSC 2.0 1.8 2.4

CXCL8 5.1 4.1 5.7 MMP12 3.9 4.3 4.7 C17orf96 2.0 1.8 2.2

IL1B 4.3 3.4 5.0 SLAMF1 3.2 2.2 4.9 MB21D2 1.3 1.0 2.1

SLC7A11 4.5 3.9 4.5 SOCS3 2.8 2.3 4.0 ARRDC4 1.9 1.3 2.1

CCL4 2.1 3.3 3.6 KDM6B 0.9 1.5 2.2 FAM20A 2.0 1.0 1.9

SERPINE1 2.3 2.6 3.3 LRP12 1.6 1.2 2.1 MOB3B 1.1 1.2 1.8

CCL3L3 1.4 2.0 2.8 DCUN1D3 1.4 0.9 1.4 C15orf48 1.2 1.0 1.7

PDPN 3.1 2.0 2.7 VDR 1.2 0.9 1.1 SRXN1 1.9 1.2 1.6

CCL3 1.4 2.2 2.7 HIST1H2BF -1.1 -1.3 -1.0 STAC 2.2 1.6 1.5

ICAM1 1.7 1.2 2.1 HIST1H2AI -0.9 -1.0 -1.3 ZSWIM4 1.3 0.9 1.3

MMP14 1.6 1.1 1.7 HIST1H3B -1.9 -1.3 -2.0 SLC41A2 1.4 1.2 1.8

ITGA4 -1.0 -1.0 -1.8 HIST1H2BM -2.0 -1.6 -2.4 RHBDF2 0.9 0.9 1.3

PRR5L -1.7 -1.2 -2.0 HIST1H3G -2.2 -1.5 -2.6 ZNF836 -1.1 -1.0 -1.1

SORL1 -2.5 -1.8 -2.3 HIST1H3F -1.5 -1.3 -2.0 SRGAP3 -1.3 -1.3 -1.1

HGF -2.5 -2.3 -2.4 HIST1H1B -1.1 -1.1 -1.6 ZNF33B -0.9 -1.1 -1.2

IGF1 -2.1 -2.3 -2.7 ANLN -1.3 -1.0 -1.5 LPAR5 -1.1 -1.1 -1.2

ADORA3 -2.8 -3.3 -4.1 MYBL2 -1.1 -0.9 -1.5 GPBAR1 -1.1 -1.1 -1.3

PLK1 -1.3 -1.0 -1.3 RHOBTB1 -1.3 -1.1 -1.3

Gene RG-I LCES Naxus APPL2 -0.9 -1.2 -1.2 MAML3 -1.0 -1.1 -1.3

IDO1 4.0 2.0 5.8 FANCI -1.0 -1.0 -1.2 ASRGL1 -1.0 -0.9 -1.4

IL3RA 4.5 4.3 5.8 PRLR -1.3 -1.3 -1.3 FXYD6 -1.3 -1.2 -1.5

TNIP3 5.4 2.4 5.5 REPS2 -1.3 -1.1 -1.4 DBP -1.2 -1.2 -1.7

TNFAIP6 3.7 1.9 5.3 ESCO2 -1.0 -1.1 -1.9 FAXDC2 -2.0 -1.7 -1.7

LAMP3 3.6 1.5 4.0 TOP2A -1.4 -1.1 -2.0 PTGFRN -1.4 -0.9 -1.7

TRAF1 2.4 2.7 4.0 RRM2 -1.8 -1.0 -2.0 RAD51AP1 -1.2 -1.0 -1.9

BIRC3 1.7 1.6 3.3 SLC46A3 -0.9 -1.3 -1.9

IRAK2 1.3 1.7 3.0 Gene RG-I LCES Naxus CRYBB1 -1.3 -1.6 -2.1

CD274 2.0 1.3 2.6 HS3ST3B1 2.9 1.7 4.1 RGS18 -1.6 -1.5 -2.2

CLEC6A 3.1 2.5 2.4 G0S2 3.3 1.9 2.9 GPR155 -1.3 -1.5 -2.3

TNFAIP3 1.3 1.6 2.4 SH3PXD2B 2.9 1.8 2.7 SLC40A1 -2.9 -3.2 -2.8

TNIP1 1.8 1.3 2.4 ABCG1 1.2 1.2 2.6 MRO -2.2 -2.5 -2.9

CD40 1.2 1.1 1.6 CYP27B1 1.7 1.6 2.5 P2RY8 -2.5 -2.6 -3.1

KCNN4 0.9 1.3 1.3 STK17A 1.4 0.9 1.8 TMEM37 -2.1 -3.5 -4.3

CLEC5A 1.7 1.8 1.0 MAOA 2.0 1.0 1.6 MS4A6A -2.1 -4.0 -4.6

PIK3IP1 -1.2 -1.1 -1.0 SOD2 1.7 0.9 1.6

APOBEC3B -1.0 -1.1 -1.3 ST3GAL2 0.9 1.0 1.5

CD28 -1.4 -1.4 -1.7 ABCA1 1.0 0.9 1.2

SIGLEC16 -1.4 -2.0 -1.8 DPEP2 -1.3 -1.1 -1.2

CD200R1 -1.4 -1.0 -1.9 AMDHD1 -1.1 -0.9 -1.2

TLR5 -1.3 -1.3 -2.1 CD101 -1.6 -1.1 -1.4

DEPTOR -1.6 -1.8 -2.1 CMBL -1.1 -1.5 -1.9

CD302 -1.4 -1.5 -2.3 GATM -1.5 -1.4 -2.1

FFAR4 -1.8 -1.0 -2.3 GCNT1 -1.4 -1.6 -2.6

MEF2C -1.7 -1.6 -2.3 SLC46A1 -1.8 -2.1 -2.8

LILRB5 -1.4 -2.3 -2.7 GAL3ST4 -1.9 -3.2 -3.3

GAPT -3.1 -3.6 -3.3 SEPP1 -3.0 -3.7 -4.1

TLR7 -3.0 -3.0 -3.5

Cell migration Cell cycle

Metabolic process

Other functions

Inflammatory immune function
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decreased and CLEC10A increased in both M1 and M2 macrophages, albeit not all 

significant, but oppositely regulated in MNDP. Furthermore, gene expression of CLEC4L 

and CLEC13D were decreased in M1 and increased in M2 but not affected by NDPs. NDPs 

also affected transcription of some CLRs similarly to M1 or M2 macrophages. Differential 

CLR gene expression as in M1 macrophages was observed in LCES-treated macrophages 

in case of 2 CLRs and in Naxus-treated and RG-I-treated macrophages in case of 5 CLRs, 

which include CLEC6A. However, only RG-I also significantly affected gene expression of 

CLRs (CLEC1A, CLEC4A and CLEC7A) similar as in M2 macrophages. The CLR 

transcriptional profile therefore appears representative for the alternative MNDP subset 

when compared to M1 and M2. 

3.5 Naxus and RG-I differ in the kinetics of induction of IDO1 and LAMP3 gene expression 

The 18 h exposure time point used in the previous analyses was based on pilot 

experiments when setting up the polarisation towards M1 and M2 macrophages 

characterised by the markers from literature. In order to better understand the 

expression kinetics related to MNDP, we analysed gene transcription levels of IDO1 and 

LAMP3, being markers for M1 (Figure 1) and MNDP (Figure 6). Analysis of a time series of 

M1 polarisation or macrophage exposure to RG-I or Naxus demonstrated that IDO1 and 

LAMP3 expression was already significant upregulated in M1 polarised and RG-I-treated 

macrophages after 4 h, with an expression that peaked at 18 h for M1 and 8 h for RG-I. 

Differential IDO1 and LAMP3 gene expression following Naxus treatment reached 

significance only after 8 h and also peaked at 18 h after which the expression remained 

stable until the 48 h time point. In contrast, IDO1 expression in response to RG-I declined 

after peaking at 8 h. 

 

4 Discussion 

Macrophages that can sample antigens in the lumen can, in particular, be expected to 

have a central role in responding to luminal stimuli and maintaining homeostasis in the 

intestine [20, 28]. Non-digestible polysaccharides are not or to a limited extent degraded 

in the upper gastric tract and can therefore act as luminal stimuli to these sampling 

macrophages. Indeed, macrophages express receptors such as dectin-1 to respond to 

treatment with β-glucan preparations with cytokine release [29]. 

To investigate the effects of NDPs on macrophages in more detail, we used a monocyte-

derived macrophage culture system as a follow-up to previous work on THP-1 

macrophages [30]. Upon differentiation, the macrophages were treated with NDPs or 

polarised towards inflammatory or tolerant subsets. The latter two subsets can be  
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Figure 6. Naxus and RG-I demonstrate an opposite gene expression kinetics for IDO1 and 

LAMP3. Primary monocytes were differentiated for 7 days to macrophages and were 

subsequently polarised to M1 or exposed to RG-I or Naxus. IDO1 and LAMP3 gene expression 

was analysed by qPCR at 1 h, 4 h, 8 h, 18 h, 24 h, 48 h and results shown as fold change 

compared to non-treated macrophages by mean values ± SEM, n=2 different donors. 

Statistically significant differences were analysed by one-way ANOVA: * p<0.05, ** P<0.01, *** 

p<0.001. (See next page). 
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considered extremes to be found in the intestine depending on whether there is a 

homeostatic or inflammatory environment [12]. Polarisation of macrophages to a 

tolerant (M2) or inflammatory (M1) phenotype can be determined by gene markers 

reported in the literature [31-33], which were confirmed in our study. For IL12p40 it was 

shown that this gene was also specifically upregulated in inflammatory macrophages in 

the intestine of mice as it was in M1 macrophages in our system [19]. Similarly, MRC1 was 

upregulated in tolerant M2 type macrophages. Our microarray analysis, supported by 

qPCR validation, revealed gene markers that are even more strongly differentiating 

between M1 and M2 macrophages in our culture system. Among those genes are IDO1, 

LAMP3, CXCL11, Dectin-2, and Mincle that can be used as M1 markers and IL17RB, CD209, 

and MRC1 to identify M2 macrophages. This resulted in a final marker gene list as shown 

in Figure 2 which can be used for improved characterisation of inflammatory and tolerant 

macrophages in vitro and potentially also in vivo. This list mainly contains markers related 

to microbial carbohydrate recognition (M1 or M2), inflammatory responses (M1), 

immunoregulation and energy supply (all M2; supplementary Table 2). For both M1 and 

M2 macrophages we observed a strong transcriptional regulation of CLRs, which are 

receptors specific for carbohydrate recognition [34] enabling recognition of microbial 

structures [35]. 

When using the marker gene set to characterise macrophage phenotypes following NDP 

exposure, we observed a transcriptionally unique macrophage subset that we termed 

MNDP. Remarkably, PCA analysis based on all differential expressed genes demonstrated 

that NDPs induced a similar macrophage subset but with different intensity, although 

only limited effects on gene expression were observed for Wellmune Soluble. Wellmune 

Soluble was described to interact with the CR3 receptor to prime this for binding to 

antibodies [36]. In contrast, Wellmune Soluble does not cluster cell surface receptors 

and fails in initiating intracellular signalling [29]. Therefore, it is likely that Wellmune 

Soluble does not induce gene transcription in our model. The other NDPs induced 

macrophage gene transcription to various extents, with Naxus being the most potent. 

This likely occurred via interactions with carbohydrate binding receptors [35]. For 

example, it has been shown that dectin-1 binds β-glucans, the major polysaccharide in 

LCES, and arabinoxylan, the major constituent of Naxus [37, 38]. Furthermore, Mincle 

was demonstrated to recognize α-mannose, which can be found in the Naxus and LCES 

preparations, and both Dectin-2 and Dectin-3 were shown to bind α-mannans [39-41], 

which are also present in Naxus. As a result of NDP recognition, macrophages mainly 

increased expression of CLRs, which might constitute a positive feedback mechanism to 

enhance vigilance towards microbes or fungi. 
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Gene markers that related to the MNDP phenotype are LAMP3 and IDO1. LAMP3 was 

reported to associate with dendritic cell differentiation and maturation by performing a 

key role in processing of exogenous antigens [42]. IDO1 is an enzyme that catalyses the 

first and rate-limiting step in tryptophan catabolism to N-formyl-kynurenine [43], and 

thereby modulates innate and adaptive immune responses [44] and potentially 

represents an important feedback mechanism for macrophage activity. Both genes 

therefore have an important role in macrophage functionality which prompted us to 

analyse the expression pattern in more depth following NDP exposure that showed a 

strong upregulated LAMP3 and IDO1 gene expression (i.e. Naxus and RG-I). M1 

macrophages and macrophages treated with RG-I or Naxus all demonstrated a different 

kinetic profile of gene transcription of both IDO1 and LAMP3. A striking difference 

between M1 and RG-I on the one hand and Naxus-treated macrophages on the other 

hand is the rapid increase versus the lag time in transcription, respectively. IDO1 

transcription has been described to be regulated by STAT1, which can directly bind to the 

gene promotor, or indirectly regulated by STAT3, via activation of the non-canonical 

NFκB pathway which could lead to alternative kinetics in IDO1 gene transcription [45, 46]. 

Activity of transcription factors can be inferred from gene transcription profiles using 

IPA Upstream Regulator Analysis resulting in Z-scores. In concordance with observed 

IDO1 transcription and anticipated kinetic difference in STAT transcriptional activity, 

STAT1 was predicted to be active in M1 with a Z-score above 2 (i.e. 3.4). For RG-I-treated 

macrophages, demonstrating a minor lag time compared to M1 macrophages, STAT1 but 

also STAT3 were predicted to be active with a Z-score of 2.0 and 2.2, respectively. Finally, 

for Naxus-treated macrophages STAT1 was not predicted to be active (Z-score of 0.1), 

but STAT3 activation was predicted with a Z-score of 1.6 suggesting a mainly STAT3 

driven IDO1 transcription. Differences in carbohydrate recognition receptor ligation 

might result in variable STAT1 and STAT3 activation which likely can result in alternative 

kinetics of IDO1 gene transcription. So, although these genes represent suitable MNDP 

markers between 8 and 48 h of treatment, their expression kinetics might enable further 

discrimination between NDP bioactivity.  

A continuous concern for in vitro immune analysis of for instance NDPs, is 

lipopolysaccharide [47] contamination. LPS is often found in food-derived preparations 

and can be a cause of false positive results [48]. To be able to identify LPS-mediated 

macrophage responses we opted to induce M1 polarisation with TNFα and IFNγ instead 

of the frequently used combination of LPS and IFNγ. LPS also demonstrated the potency 

to induce IDO1 and LAMP3 expression in macrophages (supplementary Figure 1A and B). 

CXCL11, which serves in our panel as M1 marker, has also been shown to be a strong 

response marker for LPS recognition by primary monocytes [49]. Indeed, CXCL11 
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expression is significantly enhanced in our macrophages when exposing these to as low 

as 100 fg/ml of LPS (supplementary Figure 1C). In a previous study we demonstrated that 

LPS was efficiently removed from NDPs using a NaOH-based treatment [21]. Exposing 

macrophages to treated NDPs confirms the absence of LPS in our samples as no 

significant differential CXCL11 transcription was observed (supplementary Figure 1D). 

Extended analysis of macrophage transcriptional responses to NDP treatment revealed 

the downregulation of HIST1 family genes. These replication-dependent histones are 

actively transcribed during mitosis and reach a peak during the S-phase of the cell cycle 

[50, 51]. Not only via alternative HIST1 gene regulation, but also by expression of lysine-

specific demethylase 6B (KDM6B/Jmjd3; Figure 5), that can demethylate both 

trimethylated and dimethylated H3K27 histones [52], NDP appear to affect macrophage 

phenotype via epigenetic regulation. This demethylation increases transcription of 

inflammatory genes via activation of various signalling pathways, including NFκB, STAT, 

SMAD, and T-bet transcription factors [53]. This is in line with candida-derived NDP, from 

the sub-group of glucans which includes lentinan, which demonstrated to use epigenetic 

regulation to induce so-called ‘trained immunity’ [54]. Epigenetic changes upon β-glucan-

induced trained immunity results in transcriptional profiles most similar to classical 

macrophages [55]. In contrast, putatively induced HIST1-dependent proliferation linked 

to the M2 phenotype. 

Taken together, we describe a qPCR marker set to characterise inflammatory (M1) or 

tolerant (M2) phenotypes and identified a distinct macrophage subset following 

exposure to NDPs. It will be of interest to analyse whether this transcriptionally unique 

MNDP subset can also be distinguished in vivo and how this depends on the NDPs in our 

diet or other luminal triggers such as microbiota composition or metabolites. The unique 

and overlapping set of gene markers to identify M1, M2, and MNDP can likely contribute 

to those analyses. 
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Supplementary Table 1. Primer details  

Genes Forward (5’-3’) Reverse (5’-3’) 

PUM1 TGAGGTGTGCACCATGAAC CAGAATGTGCTTGCCATAGG 

RPLP0 GCAATGTTGCCAGTGTCTG GCCTTGACCTTTTCAGCAA 

IL8 CTGATTTCTGCAGCTCTGTG GGGTGGAAAGGTTTGGAGTATG 

IL12p40 CTCTGGCAAAACCCTGACC GCTTAGAACCTCGCCTCCTT 

CD80 ACCATCCAAGTGTCCATACC CACGTGGATAACACCTGAAC 

STAT1 CTGGCACCAGAACGAATG GCTGACGTTGGAGATCAC 

TNFA GGCGTGGAGCTGAGAGATAA GATGGCAGAGAGGAGGTTGA 

CD209 AGGAGCAGAACTTCCTAC GCTCTCCTCTGTTCCAATAC 

MRC1 CAGCGCTTGTGATCTTCATT TACCCCTGCTCCTGGTTTTT 

MRC2 GGAAACTCCCACGGAAAG GTCTCGCAGTCGTTACTC 

PPARG TCTAAAGAGCCTGCGAAAGC GCGGTCTCCACTGAGAATAATG 

CD36 GCCAAGGAAAATGTAACCCAGG GCCTCTGTTCCAACTGATAGTGA 

IDO1 GCCAGCTTCGAGAAAGAGTTG ATCCCAGAACTAGACGTGCAA 

GBP5 ACATTAGTTCTGCTTGACACCG GCTGCTCAGTAAGAGTGCCAG 

GCH1 ACGAGCTGAACCTCCCTAAC GAACCAAGTGATGCTCACACA 

LAMP3 ACTACCCCAGCGACTACAAAA CTAGGGCCGACTGTAACTTCA 

CXCL11 GACGCTGTCTTTGCATAGGC GGATTTAGGCATCGTTGTCCTTT 

IRF1 GCAGCTACACAGTTCCAGG GTCCTCAGGTAATTTCCCTTCCT 

Mincle CTGAAACACAATGCACAGAGAGA AAAGATGCGAAATGTCACAACAC 

Dectin-1 AACCACAGCTACCCAAGAAAAC GGGCACACTACACAGTTGGTC 

Dectin-2 GCTTTCAGACCCACAAGGTAAT GCAGAATGATTGGGCTCACCTA 

IL17RB GGCTGCCTAGACCACATAATG GCTGTGTTGGATAAGAGCCAT 

CHDH TATCACCCTCCATTCAGCACA GAACCCACCTGTTTCCAGATG 

DCIR GACTGTGCTAGAATGGAGGCT GTCGCTGACCTTCTGGATCTG 

MGL AGCAACTTCACCTCAAACACTG AGATGCTATCGTTTCTTCCAAGC 
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Supplementary Table 2: Function of gene markers for M1 and M2 

Subset General functiona Gene Microarrayb qPCRb Notes 

M1 

Carbohydrate 
recognition 

Dectin-
2 

23 154 Binds high-mannose 
carbohydrates 

Mincle 16 128 Binds damaged cells, 
fungi and mycobacteria 

Interferon related 
transcription factor 

STAT1 5 27 Mediates cellular 
responses to interferons  

IRF1 23 82 Activator of interferon-α 
and-β transcription 

Functional 
inflammatory 
responses to 
pathogens 

CD80 10 11 Provides co-stimulatory 
signals essential for T 
cell activation LAMP3 81 70 Involved in antigen 
processing 

GBP5 74 904 Activator of NLRP3 
inflammasome 

GCH1 32 196 Positively regulates 
nitric oxide synthesis 

IDO1 799 30780 Catalyzes rate-limiting 
step in tryptophan 
catabolism as part of 
antimicrobial defense 

CXCL11 32 21017 Induces chemotactic 
responses in activated T 
cells 

M2 

Energy supply 

CD36 1 8 Binds long-chain fatty 
acids and facilitates 
their transport into cells 

PPARG 2 6 
Controls the 
peroxisomal beta-
oxidation pathway of 
fatty acids CHDH 25 162 Mitochondrial 
oxidoreductase activity 

Carbohydrate 
recognition 

MRC1 7 20 Mediates the 
endocytosis of 
glycoproteins Dectin-

1 
3 4 Specifically binds β-1,3-

linked and β-1,6-linked 
glucans CD209 15 70 Mediates the 
endocytosis of 
pathogens DCIR 7 14 Putative role in 
regulating immune 
reactivity MGL 19 26 Binds to glycoproteins 

Intestinal 
immunoregulatory 
activity 

IL17RB 12 995 
Receptor that can 
activate NF-κB and 
induce IL-8 production 

a Function was extracted from description in www.genecards.org. b Fold-change of M1/M2 (for 

M1 cells) or M2/M1 (for M2 cells).  
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Supplementary Figure 1. LPS induces IDO1, LAMP3 and CXCL11 expression in macrophages, of 

which the latter is not observed in RG-I- and Naxus-stimulated macrophages. Primary monocytes 

were differentiated for 7 days to macrophages which were subsequently stimulated with various 

concentrations of LPS or NDPs. Gene expression of (A) IDO1, (B) LAMP3, and (C) CXCL11 was 

analysed by qPCR following M0 stimulation with various concentrations of LPS, n=3 different 

donors. (D) CXCL11 gene expression was analysed by qPCR in more details following 1, 4, 8, 18, 24, 

and 48 h of M1 polarisation or RG-I or Naxus stimulation. Results are shown as fold change 

compared to non-stimulated macrophages by mean values ± SEM. Statistically significant 

differences were analysed by one-way ANOVA: * p<0.05, ** P<0.01, *** p<0.001.
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Abstract 

Scope: The immunomodulatory properties of non-digestible polysaccharides (NDPs) 

have been recognized in in vitro and in vivo studies. Macrophages represent an 

important cell type for mediating immune signaling following NDP consumption. In a 

previous study we analyzed macrophage gene transcription following NDP treatment 

with four different NDPs which revealed a transcriptionally unique phenotype when 

compared to M1 or M2 macrophages. The aim of this study was to functionally 

characterize MNDP in comparison to M1 and M2 macrophages. 

Methods and results: We assessed M1 and M2 and NDP-treated macrophages for IDO 

activity, characteristic of M1 macrophages, and antigen uptake and processing capacity, 

characteristic of M2 macrophages, and for phagocytotic capacity. Surprisingly, NDP-

treated macrophages showed no IDO activity and inhibited antigen uptake and 

processing. Their phagocytotic capacity was reduced compared to M1 or M2 

macrophages. Furthermore, microarray analysis revealed an alternative expression 

pattern for NDP-treated macrophages which was confirmed by protein measurements. 

The signature mix of CCL1, CCL5, CCL20, CCL24, CXCL8, and IL1β secreted by MNDP, and in 

particular when macrophages were treated with Naxus, was shown to induce migration 

of monocytes.  

Conclusion: We have shown that NDP-treatments results in a macrophage phenotype 

that is transcriptionally and functionally different from M1 and M2 macrophages. This 

MNDP might represent an intermediate phenotype that contributes to the maintenance 

of intestinal homeostasis. 

Keywords: Arabinoxylan; Cytokines; β-Glucans; Migration; Phagocytosis; Wheat 

Abbreviations: LCES, lentinan containing extracted from shiitake; MFI, Mean 

fluorescence intensity; MNDP, NDP specific macrophage subset; NDP, non-digestible 

polysaccharide;  
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1 Introduction 

Non-digestible polysaccharides (NDPs) are known for their immune-modulating 

properties [1, 2]. These properties were not only demonstrated in vitro but also reported 

in clinical studies. NDP intake by obese people resulted in a reduction of pro-

inflammatory cytokines (i.e. IL6 and TNFα) and an increase in the anti-inflammatory IL10 

levels in peripheral blood [3]. These changes in cytokine balance were accompanied by a 

reduced waist circumference and blood pressure which are considered risk factors. 

Furthermore, NDPs demonstrated to increase NK cell activity and peripheral blood levels 

of myeloid dendritic cells and TH1 related cytokines in multiple myeloma patients, 

however without reported beneficial effects on disease progress [4]. Other examples in 

which NDPs demonstrated effects in clinical trials include an increase in NK cell activity 

linked to a reduction in metastasis in lung and breast cancer patients [5]; an increase in 

blood leukocytes, neutrophils, IgG and IgM accompanied by a delayed progression of 

non-small cell lung cancer [6]; and transiently increased blood levels of IgG and IgM and 

NK cell counts linked to a reduction in flu and flu-like symptoms and respiratory tract 

infections in children [7]. 

To benefit health through immunomodulation, NDPs need to be recognized and/or 

sampled to induce cellular responses. NDPs can come into contact with intestinal 

immune cells located in the Peyer’s patches by transcytosis across the intestinal 

epithelium by microfold cells [8]. Peyer’s patches consist of a wide array of immune cells 

including T cells, B cells, dendritic cells and macrophages. Alternatively, NDPs have been 

shown to directly interact with the intestinal immune system [9]. Especially CX3CR1-

positive antigen presenting cells can directly sample the lumen and were shown to 

consist for 75-80% of macrophages [10]. These CX3CR1-macrophages were demonstrated 

to be of an immune suppressive subset (often referred to as M2) [11]. In case of intestinal 

inflammation the influx of an inflammatory macrophage subset can be observed (often 

referred to as M1) [12, 13]. Both macrophages subsets have an important role in 

maintaining homeostasis [14]. β-Glucans can potentially influence the polarisation of 

macrophages through interaction with expressed pattern recognition receptors (PRRs) 

such as dectin-1. This was the first receptor proven to bind β-glucans to initiate functional 

responses in macrophages [15]. More and more PRRs are being identified through which 

NDPs can modulate immune responses including dectin-2 [16], mannose receptor [17], 

complement receptor 3 [18] and scavenger receptors [19]. We previous showed that 

NDPs increased gene expression of dectin-2, dectin-3, Mincle, and LOX1, and decreased 

CD302, MRC2, and MDL1 on [20], which might suggest a positive-feedback signal. 
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In a previous study we demonstrated that NDPs from different sources induced a 

transcriptionally unique macrophage subset, termed MNDP, compared to inflammatory 

and tolerant macrophages [20]. Here, we analysed the functionality of MNDP in 

comparison to M1 and M2 macrophages to gain insight into the potential implications of 

interactions between NDP and macrophages in the intestine. 

 

2 Materials and Methods 

2.1 NDP characteristics 

Macrophages were treated with Wellmune Soluble, RG-I, LCES, or Naxus as described 

previously [20]. In brief, Wellmune Soluble (referred as Wellmune in tables and figures) 

is a water soluble β-1,3/1,6-glucan from the yeast Saccharomyces cerevisiae provided by 

BioThera (Eagan, MN, USA). RG-I is a concentrate of rhamnogalacturonan I from apple 

juice provided by INRA (Paris, France). LCES (lentinan containing extract from shiitake) 

is a β-1,3/1,6-glucan extract from shiitake. Naxus is a polysaccharide from wheat, rich in 

arabinoxylan, provided by BioActor (Maastricht, The Netherlands). Before exposure to 

macrophages, RG-I was treated with alkaline-ethanol at 4 oC for 5 h, and LCES and Naxus 

were treated with alkaline-ethanol at 56 oC for 5 h, followed by neutralization with HCl 

and freeze-drying to inactivate lipopolysaccharide (LPS) [21]. Resulting functional LPS 

contaminations of all NDPs samples was demonstrated to be below 0.01 EU/mg [21]. 

2.2 Primary macrophage differentiation and polarization 

Primary macrophages were differentiated as previously described [20]. In brief, human 

monocytes were obtained from buffy coats from healthy donors (Sanquin, Nijmegen, 

The Netherlands) using the QuadroMACS system and CD14 microbeads according to 

manufacturer’s protocol (Miltenyi Biotec, Leiden, The Netherlands). A written informed 

consent was obtained before sample collection. Monocytes were differentiated into 

macrophages following 7 days culturing in presence of 50 ng/ml MCSF (R&D systems, 

Minneapolis, USA). MCSF was replenished after 3 and 5 days of culture. On day 7 

macrophages were polarized by addition of medium containing 20 ng/ml TNFα and 20 

ng/ml IFNγ (for M1), 20 ng/ml IL4 (for M2) or 500 μg/ml NDPs (for MNDP generation) for 

18 h (unless stated otherwise). 

2.3 RNA extraction and microarray analysis 

RNA extraction and microarray analysis was performed as described previously [20]. 

Briefly, RNA was extracted with TRIzol (Invitrogen, Bleiswijk, The Netherlands) and 

RNeasy kits (Qiagen, Venlo, The Netherlands). RNA quality was verified with the RNA 
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6000 Nano assay on the Agilent 2100 Bioanalyzer (Agilent Technologies, Amstelveen, 

The Netherlands) and microarray analysis was performed using Affymetrix Human Gene 

1.1 ST array plates and an Affymetrix Geen Titan platform. Data was processed using the 

Bioconductor project package, the Robust Multi-array Average method to acquire signal 

intensities, remapped chip definition file (CDF) to define probe sets, and the UPC 

algorithm to identify expressed genes. Next, cut-off values of absolute fold change 

compared to non-stimulated macrophages >1.8 and a false discovery rate of p<0.05 

(IBMT regularised paired t-test) for at least one treatment were used to select genes for 

functional interpretation with Ingenuity Pathway Analysis (IPA) 3.0 (Ingenuity, Qiagen, 

Redwood, CA, USA). Microarray data were deposited in the Gene Expression Omnibus 

(GEO) database. 

2.4 Kynurenine assay 

Polarised, NDP-treated or medium stimulated macrophages were washed with PBS and 

incubated with 0.5 mM tryptophan (Sigma, St. Louis, MO, USA) for 24 h. Supernatant of 

macrophage cultures (100 μl) was mixed with 20 μL of 30% trichloroacetic acid and 

incubated at 50 oC for 30 minutes followed by centrifugation at 2500 g for 15 minutes. 

Subsequently, 75 μl of supernatant was added to 75 μl of Ehrlich reagent (100 mg P-

dimethylbenzaldehyde (Sigma) in 5 mL glacial acetic acid) in 96-well plate wells and 

measured at 475 nm with a microplate reader (Tecan, Männedorf, Switzerland). A 

calibration range of kynurenine concentration (0-200 μM) was included in each plate. All 

assays were performed in biological triplicates and each sample analysed by technical 

duplicates. 

2.5 Flow cytometry 

IDO protein level was analysed by intracellular staining and analysed by flow cytometry. 

Polarised, NDP-treated or medium stimulated macrophages were washed with PBS 

without calcium and magnesium and detached by 10 minutes incubation with 0.25% 

Trypsin/EDTA (Gibco, Bleiswijk, The Netherlands) at 37 oC. Following two washes with 

PBS (450g centrifugation), macrophages were permeabilized using the FIX&PERM cell 

permeabilization kit (Invitrogen) according to the manufacturer’s instructions. Cells 

were subsequently stained with 2 μl of IDO-APC (R&D systems) or an isotype control (BD 

Biosciences, Breda, The Netherlands) for 30 minutes in the dark at RT. Finally, cells were 

washed with PBS and analysed using flow cytometry (excitation at 635 nm, emission at 

670 nm) (Accuri™ C6, BD Biosciences) with Accuri C6 software. 
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Figure 1. NDP-treated macrophages demonstrated decreased phagocytosis of E.coli particles. 

Macrophages were polarised towards M1 or M2 or treated with 500 μg/ml Wellmune Soluble, RG-

I, LCES, or Naxus for 18 (A) or 48 h (B) and subsequently incubated for 1 h with fluorescent E.coli-

bioparticles. Phagocytosis of E.coli-bioparticles was analysed by measuring MFI using flow 

cytometry. Bar charts show mean values normalised to medium stimulation (100%) ± SEM of n=5 

(A) or 2 (B) different donors. Statistically significant differences were analysed compared to 

medium by one-way ANOVA: * p<0.05 

 

2.6 Phagocytosis assay and antigen processing analysis 

To analyse phagocytic activity and antigen processing, polarised, NDP-treated or 

medium stimulated macrophages were washed with PBS and incubated for 1 h in 0.5 ml 

culture medium containing 2 μg/ml E.coli bioparticles (Molecular Probes, Leiden, The 

Netherlands) or 10 ng/ml DQ-OVA (D12053, Molecular Probes), respectively. Before 
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addition, E.coli bioparticles were re-suspended in non-heat-inactivated human serum (2 

mg / 100 μl) and incubated for 60 minutes at 37 oC. Macrophages were detached as 

described above and diluted three times with PBS with 2% FBS. Cells were re-suspended 

in 200 μl PBS and analysed using flow cytometry (bioparticles: excitation at 495 nm, 

emission at 519 nm; DQ-OVA: excitation at 505 nm, emission at 515 nm) with Accuri C6 

software. 

2.7 Multiplex cytokine analysis 

Secretion of cytokines and chemokines by macrophages following stimulation with 

medium, polarisation or treatment with NDP was measured using Bio-Plex Pro Reagent 

Kit (BioRad, Veenendaal, The Netherlands) according to the manufacturer’s instructions. 

In brief, 50 µL magnetic beads were dispersed in a plate together with 50 µl of undiluted 

sample or standard and incubated for 1 h at RT. Subsequently, the beads were incubated 

with 25 µl detection antibodies for 30 min and with 50 µl streptavidin-PE for 10 min at RT. 

The beads were re-suspended in 125 µl assay buffer and read by Bio-Plex® MAGPIX™ 

Multiplex Reader (BioRad). Data processing was performed by using Bio-Plex Manager 

5.0, and concentrations (in pg/ml) were interpolated from standard curves. To identify 

relations and to display our results most effectively, we used lower or upper limit of the 

standard curve for data points that were below or above the standard curve, 

respectively. 

2.8 Migration assay 

Migration assays were performed using an xCELLigence RTCA DP system (xCELLigence, 

ACEA Biosciences, San Diego, USA) and CIM-16 well plates, according to the 

manufacturer’s instructions. In brief, 160 µl of macrophage-conditioned medium 

following polarisation, NDP-treatment or medium stimulation were added to the lower 

chamber of CIM-16 well plates. Fresh macrophage culture medium was used as negative 

control and CCL5 (400 ng/ml) as positive control. Following upper chamber attachment 

to the lower chamber, the upper chamber wells were filled with 50 µl THP-1 cell culture 

medium and equilibrated at 37 oC for 1 h which was recorded as background cell index. 

Next, 50 µl THP-1 cell suspension (8x106 cells/ml) was added to the upper chamber after 

which cells were allowed to settle for 5 minutes at RT. The cell index is a unit-less 

parameter used to indicate the impedance of electron flow caused by adherent cells and 

defined as (impedance at time point impedance - impedance in the absence of cells) / 

nominal impedance value. The cell index was measured every 5 min over the course of 

22 h. Monocyte migration was subsequently calculated as area under the curve using 

Prism 6 software (Graphpad, La Jolla, USA). 
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2.9 Statistics 

All parameters are presented as means ± SEM and differences between parameters were 

assessed for their significance with one-way ANOVA using Prism 6 software. Differences 

with p<0.05 were considered significant. 

 

0

4 0

8 0

1 2 0

N
o

r
m

a
li

z
e

d
 t

o
 M

e
d

iu
n

 (
%

)

*

*

M
e
d

iu
m M

1
M

2

W
e
ll
m

u
n

e

R
G

-I

L
C

E
S

N
a
x
u

s

0

4 0

8 0

1 2 0

N
o

r
m

a
li

z
e

d
 t

o
 M

e
d

iu
n

 (
%

)

*

*

A

B

 

Figure 2. NDP-treatment of macrophages decreases their antigen processing capacity. 

Macrophages were polarised towards M1 or M2 or treated with 500 μg/ml Wellmune Soluble, RG-

I, LCES, or Naxus for 18 (A) or 48 h (B) and subsequently incubated for 1 h with DQ-OVA. Processing 

of DQ-OVA was analysed by measuring MFI using flow cytometry. Bar charts show mean values 

normalised to medium stimulation (100%) ± SEM of n=4 (A) or 2 (B) different donors. Statistically 

significant differences were compared to medium by one-way ANOVA: * p<0.05. 
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3 Results 

3.1 NDPs LCES and Naxus reduce macrophage phagocytic capacity 

Phagocytosis constitutes an important function and characteristic of macrophages [22]. 

In our previous study, where we investigated gene transcriptional responses of 

macrophages, analysis with Ingenuity Pathway analysis (IPA) revealed that genes coding 

for proteins involved in the pathway of phagosome formation were strongly affected by 

the NDPs (Supplementary Table 1) [20]. Those genes included receptors for NDP 

recognition (Dectin-1, MRC1, MRC2, CD302, MTERTK, TLR3, TLR4, and TLR7) and adaptors 

for modulating signalling pathways (SYK, PKC, PI3K, Rho-GTPase). To evaluate 

phagocytosis capacity of macrophages stimulated with various NDPs, we analysed 

uptake of E. coli bioparticles by flow cytometry (Figure 1). Following 18 and 48 h of 

incubation, M2 macrophages demonstrated an enhanced uptake of E.coli-bioparticles 

and M1 macrophages showed a reduced uptake. Interestingly, LCES and Naxus 

significantly reduced E.coli-bioparticle uptake following 18 h and, even more pronounced, 

following 48 h of incubation. In addition, RG-I demonstrated a reduced, albeit not 

significant, phagocytosis after 48 h of incubation. 

3.2 NDP-treated macrophages demonstrated reduced antigen processing capacity 

As phagocytosis of pathogens can lead to antigen presentation [23], we investigated 

whether LCES and Naxus also reduce antigen processing in macrophages. To study this, 

polarized or NDP-treated macrophages were incubated with DQ-OVA, a self-quenching 

conjugate of ovalbumin that fluoresces upon proteolytic degradation (Figure 2). 

Following 18 h of macrophage treatment, M1 and M2 macrophages demonstrated no 

change in antigen processing. However, NDPs RG-I and Naxus significantly, and LCES 

non-significantly, reduced antigen processing of macrophages. Of note, M1 

macrophages and also Naxus-treated macrophages, but not RG-I-treated macrophages, 

showed significantly reduced antigen processing following 48 h of incubation. 

3.3 NDPs did not induce IDO translation and activity 

IDO activity is considered a key characteristic of M1 [24] and IDO1 was identified as MNDP 

gene transcription marker [20]. To investigate IDO activity we analysed kynurenine levels 

in macrophage-conditioned medium following polarisation towards M1, M2, or 

treatment with NDPs (Figure 3A). As expected, we found high concentrations of 

kynurenine in M1-conditioned medium and could not detect kynurenine in M2-

conditioned medium. Surprisingly, kynurenine levels in MNDP-conditioned medium was 

also non detectable. To investigate the discrepancy between IDO gene transcription and 

activity in macrophages treated with NDPs, we analysed IDO protein expression   
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following 4, 8, 18, 24, and 48 h of incubation in M1- and Naxus-treated macrophages, 

which induced the strongest increase in IDO1 transcription among the NDPs. We used 

flow cytometry and analysed relative intracellular IDO protein concentrations by 

detecting mean fluorescence intensity (Figure 3B-D). This revealed that M1 macrophages 

contain significantly increased levels of IDO protein compared to medium-stimulated 

macrophages following 24 h of incubation. Naxus-treated macrophages, however, 

demonstrated no apparent increase in IDO protein level compared to medium control at 

any time point. 

Figure 3. Naxus-treated macrophages do not 

induce IDO activity nor protein production. (A) 

Macrophages were polarised to M1 or M2 

macrophages or treated with 500 μg/ml 

Wellmune Soluble, RG-I, LCES, or Naxus for 18 h. 

Macrophages were subsequently incubated 

with tryptophan for 24 h after which 

kynurenine secretion was analysed by 

colorimetric assay. (B-D) Macrophages were 

analysed for IDO protein production by flow 

cytometry during polarisation towards M1 or 

treatment with Naxus following 1, 4, 8, 18, 24, 

and 48 h. Bar charts show mean values + SEM 

of n=3 different donors. Statistically significant 

differences were analysed compared to 

medium by one-way ANOVA: * p<0.05. 
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3.4 NDPs promote macrophage secretion of a unique set of signalling molecules 

Analysis of gene transcriptional responses of macrophages to NDPs revealed a distinct 

signature profile of cytokine and chemokine gene expression when compared to M1 and 

M2 macrophages (Table 1). To analyse how these high levels of transcripts related to 

protein production, we quantified cytokines and chemokines in macrophage-

conditioned medium following 18 and 48 h of incubation by multiplex cytokine analysis 

(Figure 4 and Supplementary Figure 1, respectively). CXCL9, CXCL10, CXCL11, and TNFα 

were chosen for analysis based on M1 macrophage gene expression levels, CCL24 was 

chosen based on M2 macrophage gene expression levels, and CCL1, CCL5, CCL20, CXCL8, 

IL1, and MMP-1 were chosen based on NDP-treated macrophage gene expression levels. 

Most of the significant differences in gene transcription between medium stimulated 

and NDP-treated or polarised macrophages could not be confirmed with protein 

secretion. However, the multiplex results did even more strongly than gene transcription 

analysis demonstrate the unique profile of cytokine and chemokine production of NDP-

treated macrophages when compared to medium, or M1 and M2 macrophages. M1 

macrophages demonstrated a significant increase in secretion of TNFα, CXCL9, CXCL10, 

and CXCL11 following 18 h of polarisation and also of CCL5 following 48 h of incubation. 

In contrast, M2 macrophages did not show a significant change in cytokine and 

chemokine secretion compared to medium following either 18 or 48 h of incubation, 

including CCL24 which was identified as M2 macrophage marker. Naxus-treated 

macrophages demonstrated a significant increase in CCL1, CCL5, CCL20, CXCL8, and IL1β 

secretion following 18 h of incubation and also of CCL24 following 48 h of incubation. 

Macrophages treated with LCES significantly increased secretion of CCL1, CCL24, and 

CXCL8 following 18 h of incubation whereas RG-I-treated macrophages only significantly 

increased CXCL8 production. Finally, none of the cytokines or chemokines of which 

Wellmune Soluble significantly increase gene transcription revealed an increased 

secretion level compared to medium-stimulated macrophages. 

 

Figure 4. Macrophages treated with NDPs secrete a unique mixture of cytokines and 

chemokines. Macrophages were polarised towards M1 or M2 or treated with 500 μg/ml 

Wellmune Soluble, RG-I, LCES, or Naxus for 18 h. Cytokine and chemokine secretion was 

analysed with Bio-Plex multiplex analysis. Bar charts show mean values ± SEM of n=3 different 

donors. Statistically significant differences were analysed compared to medium by one-way 

ANOVA: * p<0.05, ** p<0.01, *** P<0.001. (See next page) 
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3.5 Naxus promotes macrophages recruitment of monocytes 

M1 macrophages and NDP-treated macrophages, in particular after treatment with 

Naxus, demonstrated production of varying combinations of cytokines and chemokines. 

Based on the described activities of the signalling molecules (Table 1), we anticipated 

that the different combinations mainly lead to migration of monocytes and T cells. In 

addition, Naxus-treated macrophages might also induce migration of various 

granulocytes. To test whether the secreted signalling molecules of M1 and Naxus-treated 

macrophages indeed induce migration of monocytes and T cells, we performed a cell 

migration assay. To this end we used a transwell system in which the impedance of 

electron flow through the permeable membrane indicates cellular migration. We added 

monocytes or T cells to the upper compartment and CCL5 or macrophage-conditioned 

medium to the lower compartment. Unfortunately, the T cells were not able to impede 

the electric current, possible due to too small cell size, as no signal was detected whilst 

T cells could be detected by microscope in the lower compartment (data not shown). In 

contrast, monocyte migration was detected and variable depending on the medium 

added to the lower compartment (Figure 5). Monocytes did not spontaneously migrate 

as no signal was detected when fresh macrophage medium was added to the lower 

compartment. The presence of CCL5 or signalling molecules released by non-stimulated 

macrophages induced significant monocyte migration compared to fresh medium. In 

turn, signalling molecules released by M1 or Naxus-treated macrophages induced a 

significant increase in migration compared to non-stimulated macrophages. 

 

4 Discussion 

NDPs are considered immunomodulatory food components but the mechanism of 

action is not well understood yet. Besides that, different NDPs are expected to have 

different bioactive properties but there is no consensus on strategies how to properly 

analyse the bioactivity of NDPs [25]. Based on a large body of evidence it can be 

hypothesised that macrophages, as one of the key resident cell types in intestinal tissue, 

including Peyer’s Patches, are involved in sensing NDPs in or from the lumen [26]. Based 

on the interaction with luminal ligands, macrophages will signal to other immune cells 

and hence may activate a multitude of complex downstream events. Here, we analysed 

four different NDPs with different biochemical characteristics for their effects on 

macrophage functionality in comparison to M1 and M2 macrophages. We demonstrated 

that an NDP such as Naxus can modulate macrophage function by decreasing 

phagocytosis and antigen processing capacity, which are essential innate immune  
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Figure 5. Naxus-treated macrophages promotes migration of monocytes.  Macrophages were non-

treated, polarised towards M1 or treated with 500 μg/ml Naxus for 18 h. The macrophage-

conditioned medium, CCL5 or fresh medium was placed in the bottom compartment of the 

xCeLLigence RTCA DP system and THP-1 monocytes in the upper compartment. Migration of 

monocytes was determined by measuring every 5 minutes the electrical current resulting from the 

connection of electrodes by monocyte passage which is shown as the cell index. (A) Migration 

curves are shown as cell index that was recorded every 5 min. (B) Monocyte migration was 

compared by analysing area under curve. Bar charts show mean values ± SEM of n=3 different 

donors. Statistically significant differences were analysed compared to M0-conditioned medium 

by one-way ANOVA: * p<0.05, ** p<0.01. 
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functions and part of the first line of defence. At the same time, Naxus increases 

chemokine production and enhances monocyte recruitment by macrophages and 

possibly other immune cells towards the place of exposure. 

A characteristic function of M1 macrophages is their IDO activity [27]. As IDO gene 

transcription was also strongly induced in NDP-stimulated macrophages [20], we 

analysed IDO protein expression and activity. M1 macrophages indeed demonstrated a 

strong IDO protein expression and activity, but, surprisingly, NDP-stimulated 

macrophages did not increase IDO protein content nor demonstrated IDO activity and 

kynurenine production (Figure 3). This suggests an inadequate translation of IDO mRNA 

or a selective inhibition of IDO protein production. Short-hairpin RNA (shRNA) was used 

to reduce IDO activity in tumour models which abrogated immune suppression [28]. It 

would therefore be of interest to analyse whether NDP-treatment of macrophages 

results in increases anti-IDO shRNA production as this might benefit colon cancer 

treatments. 

M2 macrophages demonstrate increased particle uptake and processing capabilities 

when compared to M1 macrophages [29]. Interestingly, NDP-treated macrophages, in 

particular those treated with Naxus and LCES, strongly decreased phagocytosis 

compared to M2 and M1 macrophages. This decrease might be linked to the previously 

described reduction in gene expression of certain lectins such as CD302, MERTK and 

dectin-1. All are known to be involved in formation of the phagocytic synapse and uptake 

of particles [20, 30, 31].   

When particle uptake is reduced one might anticipate to also observe a reduced particle 

processing. However, we used DQ-OVA to test particle processing and ovalbumin uptake 

was linked to mannose receptor (Aliases: MRC-1, CLEC13D, CD206) activity [32] which 

expression was not affected by NDPs [20]. Without evidence that the uptake of DQ-OVA 

might be impeded it appears that NDP-stimulated macrophages have a reduced capacity 

to process particles as well as a reduced capacity to take up particles. Indeed, the NDPs 

significantly downregulate gene expression of HLA-DM and HLA-DO (Supplementary 

Table 2) which are critically involved in loading of lysosomal antigens on HLA-class II 

molecules [33].  

NDP-treated macrophages are equally dissimilar from M1 and M2 macrophages 

regarding cytokine/chemokine production as for the above described characteristics. 

NDP-treated macrophages, in particular Naxus, secreted a signature mix of CCL1, CCL5, 

CCL20, CCL24, CXCL8 and IL1β in the absence of CXCL9, 10 and 11 (Figure 4). Notably, the 

absence of CXCL11 as well as functional IDO protein production by NDP-treated 

macrophages again confirms that our NDP-preparations were devoid of functional LPS-
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contaminations. We observed that chemokines produced by M1 macrophages strongly 

attract monocytes (Figure 5). This is in line with literature which indicates that an influx 

of bone-marrow-derived monocytes replenishes intestinal macrophage populations and 

in particular M1-like macrophages [13]. Similarly, Naxus-treated macrophages also 

induced migration of monocytes. The combination of chemokines produced by Naxus-

treated macrophages might also attract eosinophils, neutrophils, basophils and resting 

T cells (Table 1). More directly, IL1β production was shown to be important for intestinal 

ILC3 activation [34], CCL5 mediates recruitment of CCR5-positive regulatory T cells into 

the intestine [35] and CCL20 is essential for migration of CCR6-positive TH17 cells towards 

the intestine [36]. As all these cells have demonstrated to prevent exacerbation of 

inflammation in the intestine, NDP-treated macrophages might strongly contribute to 

maintenance of intestinal homeostasis. 

This broad effect on immune interaction and activity is in line with various studies 

describing beneficial health effects of orally administered NDPs [3, 5, 7]. The recruitment 

of a variety of immune cells by macrophages may be pivotal in orchestrating a full blown 

innate response, resulting in signalling to and, possibly, activation of the adaptive 

immune functions. 

In conclusion, following a transcriptional analysis we here characterized MNDP from a 

functional perspective. NDPs and especially Naxus were shown to induce an alternative 

functionality in macrophages compared to inflammatory or tolerant macrophages. NDP-

treated macrophages were also characterized by a unique cytokine and chemokine 

secretion profile and prompted macrophages recruitment on monocytes. This specific 

NDP-induced phenotype may be relevant in regulating the physiological consequences 

of NDP-intake. Ex vivo analysis of macrophage phenotypes following oral intake of NDPs 

coupled to intestinal health and homeostasis measurement could clarify such possible 

relevance. 
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Supplementary Table 1 Differential expression of genes in phagosome formation 

pathway  

Gene  M1 M2 Wellmune RG-I LCES Naxus 

ITGA2 1.3 1.07 1.14 2.2 1.6 6.7** 

FCAR -1.7 -1.71 2.23* 3.7*** 1.6 3.1*** 

RND3 1.4 -1.54 2.06* 2.5** 2.3*** 3.1** 

ITGA5 1.1 1.14 1.50** 1.7*** 2.1*** 2.9*** 

RHOH 1.3 -1.01 1.11 2.0 1.1 2.9** 

FCER2 1.2 23.73*** 1.82 1.6 2.5* 2.6* 

PRKCH -2.5*** -1.6* 1.1 1.2 1.7* 2.1** 

PLCB1 -1.1 2.7*** 1.1 1.1 1.7* 2.0** 

TLR2 -1.5 -1.6* 2.0** 2.8*** -1.2 1.5 

PIK3R6 1.5* 2.1*** 1.3 1.4 1.3 1.3 

RHOQ 2.1*** 1.2 1.0 1.3* 1.4** 1.2 

RHOF -2.0*** 1.5* -1.1 -1.1 1.1 1.2 

RHOU 2.0*** -1.0 1.3 1.7** -1.4* 1.2 

FCGR2A -3.6*** 1.0 1.0 1.3 -1.6* 1.1 

MRC1 -4.7*** 2.7*** 2.1** 1.7* 1.7* 1.1 

FCGR2B -4.8** 1.8 1.7 1.6 -1.4 -1.0 

PRKCA -2.1*** 1.0 -1.1 -1.4* 1.1 -1.2 

FN1 -2.2* 2.0 -1.5 -1.2 -1.0 -1.4 

MARCKS 1.4 1.4 -1.2 1.1 -2.8*** -1.5 

Dectin-1 -1.4* 1.9*** 1.3 1.3* -1.0 -1.7** 

PIK3C2B -2.1*** 1.3 -1.7* -1.9** -1.4 -1.7* 

TLR8 2.9** -1.4 -1.2 -1.0 -1.8* -1.8 

MSR1 -1.4 -1.3 -1.3 -1.7* -1.2 -1.8* 

PIK3CD -1.3 1.2 -1.4 -1.3 -1.5* -1.9*** 

PIK3R3 1.6 -1.1 -1.3 -1.9* -1.7 -1.9* 

PLCL2 -1.2 -1.2 -1.3* -1.5*** -1.8*** -2.0*** 

TLR3 1.4 -1.1 -1.5 -1.5 -2.3** -2.1** 

TLR4 1.2 -1.3 -1.2 -1.4 -2.1*** -2.2*** 

ITGA3 -2.9*** 1.0 -1.4 -2.0*** -1.3 -2.2*** 

MRC2 -2.0*** -1.2 -1.6* -2.1*** -1.6** -2.6*** 

INPP5D 1.1 1.2 -1.2 -1.6* -1.6* -2.7*** 

FCGR3A -2.9*** -1.1 1.1 -1.0 -2.2** -3.4*** 

ITGA4 -2.0*** -1.1 -1.4 -2.0*** -1.9*** -3.6*** 

MERTK -5.1*** -1.8 -1.1 -1.3 -2.1* -3.7*** 

TLR5 -4.7*** -1.1 -1.2 -2.4*** -2.5*** -4.3*** 

CD302 -3.4*** 1.0 -1.5 -2.6* -2.8** -4.9*** 

TLR7 -1.0 -3.4** -4.2** -8.2*** -7.9*** -11.2*** 
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Values represent fold changes of gene expression of M1 or M2 macrophages or Wellmune Soluble, 

RG-I, LCES or Naxus-treated macrophages compared to non-stimulated macrophages of n=3 

different donors. Statistically significant differences were calculated with IBMT regularised paired 

t-test: * FDR P<0.05, ** FDR p<0.01; *** FDR p<0.001. 

 

Supplementary Table 2 Differential expression of antigen processing related genes 

Genes M1 M2 Wellmune RG-I LCES Naxus 

CD80 11.7*** 1.7* 2.4** 4.7*** 2.2** 4.9*** 

CD83 2.9*** 1.4** 1.1 1.1 1.7*** 2.0*** 

CD274 12.8*** 3.0*** 2.2** 4.0*** 2.5*** 5.9*** 

HLA-DMA 1.3* 1.2 1.0 -1.5** -1.5** -1.9*** 

HLA-DMB 1.3 -1.0 -1.2 -2.2*** -1.7** -3.1*** 

HLA-DOA 3.6*** 1.7*** -1.2 -1.8*** -1.7*** -3.5*** 

HLA-DOB 5.6*** 1.3 1.1 1.1 1.1 1.1 

HLA-DQA2 11.4*** 1.1 2.2 2.2 1.5 2.2 

HLA-DQB2 3.0*** 1.1 1.2 1.3 1.0 -1.1 

HLA-F 2.8*** -1.0 1.1 1.2 -1.0 1.0 

HLA-L 3.3*** 1.1 -1.3 -1.0 -1.1 -1.0 

Values represent fold changes of gene expression of M1 or M2 macrophages or Wellmune Soluble, 

RG-I, LCES or Naxus-treated macrophages compared to non-stimulated macrophages of n=3 

different donors. Statistically significant differences were calculated with IBMT regularised paired 

t-test: * FDR P<0.05, ** FDR p<0.01; *** FDR p<0.001. 

 

  

  

Supplementary Figure 1. Macrophages treated with NDPs produce a unique cytokine and 

chemokine profile following 48 h of incubation. Macrophages were polarised towards M1 or 

M2 or treated with 500 μg/ml Wellmune Soluble, RG-I, LCES, or Naxus for 48 h. Cytokine and 

chemokine secretion was analysed with Bio-Plex multiplex analysis. Bar charts show mean 

values ± SEM of n=2 different donors. Statistically significant differences compare to medium 

were analysed by one-way ANOVA: * p<0.05, ** p<0.01, *** P<0.001. (See next page) 
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Abstract 

Macrophage plasticity is essential for intestinal immune homeostasis. We previously 

reported that non-digestible polysaccharides (NDPs) skewed macrophages to an 

alternative subset MNDP compared to inflammatory macrophages (M1) as induced by 

TNFα and IFNγ or tolerant macrophages (M2) as induced by IL4. Here, we analysed 

plasticity of M1 and M2 macrophages in response to NDPs treatment to evaluate 

whether phenotype and function of M1 and M2 can be further modulated. Subset 

specific gene expression markers were analysed together with functional properties 

including phagocytosis capacity, antigen processing capacity, cytokine secretion, and 

monocytes recruiting. Macrophage plasticity was demonstrated as M1 and M2 

macrophages could be skewed to an alternative subset indicated by gene expression 

markers. In addition, phagocytosis and antigen processing capacity of both M1 and M2 

were decreased by the NDP Naxus. Besides, cytokine secretion by both M1 and M2 

macrophages were induced by Naxus. In addition, Naxus induced M2 macrophages 

recruiting ability, but not M1. In conclusion, we observed that NDP Naxus modulated M1 

and M2 macrophage towards phenotype and function of MNDP, which implies the NDP 

Naxus might be used for modulating intestinal immune balance. 

Keywords: Arabinoxylan; Inflammatory macrophages; Macrophages function; Tolerant 

macrophages; Wheat 
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1 Introduction 

Macrophages play a critical role in intestinal immunity as the largest amount of immune 

cells in intestine [1]. Intestinal macrophages are constantly replenished from circulating 

CD14+ monocytes by CCR2-dependent influx in the intestine [2]. They play a role in 

maintaining intestinal homeostasis by remodelling tissue [3] and clearing dying cells [4]. 

These functions are initiated upon activation of pattern recognition receptors (PRRs) 

through ligand binding [5] or as response to environmental ques in the form of cytokines 

or other signalling molecules [6, 7].  

Macrophages respond with modulating their phenotype (also termed plasticity) upon 

these stimulations exemplified by skewing of tolerant (M2) macrophages to 

inflammatory (M1) macrophages by LPS stimulation [8]. The process of subset skewing  

is accompanied by metabolic reprogramming [9]. For instance, M1 macrophages 

polarised by LPS were modulated by IL10 and underwent metabolic reprogramming 

from glucose uptake and glycolysis to oxidative phosphorylation [9]. 

There are two main subsets of intestinal macrophages termed lamina propria 

macrophages (LpM) and muscularis propria macrophages (MMs), which function as M1 

and M2 macrophages, respectively [10]. Those two subsets balance intestinal immunity 

by sensing the danger signals from the local environment and are important for wound 

healing and tissue repair [5]. Research has shown that microbiota and dietary 

components are able to direct macrophage subtypes [11]. ω-3 fatty acid exhibited anti-

inflammatory effects by decreasing both gene expression and protein secretion of LPS-

induced M1 markers TNFα and IL6 through PPAR4 activation [12]. In addition, yeast-

derived β-glucan converted M1 to M2 as shown by an enhanced glycolysis, Krebs cycle, 

and glutamine utilization [13]. 

Non-digestible polysaccharides (NDPs) potentially simulate cell wall fragments of natural 

pathogens which can be recognized by receptors on the surface of macrophages. β-

Glucan, as component in fungal cell walls, was proven to activate dectin-1 and trigger 

NFAT activation in macrophages and dendritic cells to secrete cytokines [14]. This 

activation initiated an innate immune response via dectin-1 activation and was 

accompanied with the formation of a phagocytic synapse [15]. Like the fungus-derived 

β-glucans, also the yeast-derived β-glucans could skew M2 to M1 through dectin-1 and 

subsequently the Syk-Card9-ERK pathway [13]. Also other dietary β-glucans were 

reported to be taken up and transported by intestinal macrophages [16]. Lentinan, the 

β-glucan from shiitake, upregulated pro-inflammatory cytokines (IL1α, TNFα, and IL6) 

through TLR4 signalling in murine macrophages in vitro. However, it also inhibits IL1β 

production through inhibiting AIM2 inflammasome activation [17]. In addition, a 



Chapter 5 

 112 

randomized dietary intervention in healthy young adults demonstrated that shiitake 

mushrooms affected immunity by increasing IL4, IL10, TNFα and IL1α levels and 

decreased MIP1α/CCL3 level [18]. Oral intake of oat β-glucans activated NF-κB 

transactivation and increased IL12 in intestinal leukocytes in mice [19]. Immune activation 

by cereal glucans might also proceed through the dectin-1 pathway. For example, barley 

β-glucans induced IL6 secretion in murine macrophages, and this activation is mediated 

by the dectin-1 pathway and accompanied by phosphorylation of Syk [20].  Furthermore, 

we previously showed that NDPs derived from wheat, apple and shiitake skewed 

macrophages to an alternative subset (MNDP). These MNDP were characterised by 

increasing gene expression of IDO1, LAMP3, dectin-2, Mincle, CD80, GCH1, and 

decreasing gene expression of CXCL11 and MGL compared to medium control (M0) [21]. 

In addition, MNDP showed decreased phagocytosis and antigen processing capacity 

(Chapter 4) but an increased production of chemokines and recruiting ability towards 

monocytes compared to M0 (Chapter 4). 

M1 and M2 subset macrophages do play distinct roles in intestinal immunity. It is hence 

interesting to investigate whether NDPs can induce plasticity in these subsets and re-

polarize these macrophage subsets towards the newly identified MNDP. In this study, we 

confirmed the effects of NDPs on the phenotype and functional capacity of M1 and M2. 

As a result, the effects of NDPs on M1 and M2 showed a similar trend in the gene 

expression as primary non-polarised macrophages exposed to NDP; Naxus significantly 

decreased phagocytosis and antigen processing capacity of both M1 and M2 while 

increasing the secretion of CCL1 and other cytokines. This enhanced recruiting ability 

capacity of M2 but not of M1. However, these effects on M1 and M2 were blocked by a 

Caco-2 monolayer of small intestinal cells in a coculture system indicating that a physical 

interaction of NDPs and macrophages is required. 

 

2 Materials and Methods 

2.1 NDPs information 

Macrophages were treated with Wellmune Soluble, RG-I, LCES, or Naxus as described 

previously [21]. In brief, Wellmune Soluble (referred as Wellmune in tables and figures) 

is a water soluble β-1,3/1,6-glucan from the yeast Saccharomyces cerevisiae provided by 

BioThera (Eagan, MN, USA). RG-I is a concentrate of rhamnogalacturonan I from apple 

juice provided by INRA (Paris, France). LCES (lentinan containing extract from shiitake) 

is a β-1,3/1,6-glucan extract from shiitake. Naxus is a polysaccharide from wheat, rich in 

arabinoxylan, provided by BioActor (Maastricht, The Netherlands). Before exposure to 
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macrophages, RG-I was treated with alkaline-ethanol at 4 oC for 5 h, and LCES and Naxus 

were treated with alkaline-ethanol at 56 oC for 5 h, followed by neutralization with HCl 

and freeze-drying to inactivate lipopolysaccharide (LPS) [22]. Resulting functional LPS 

contaminations of all NDPs samples was demonstrated to be below 0.01 EU/mg [22].  

2.2 Primary macrophage differentiation and polarization 

Primary macrophages were differentiated as previously described [21]. In brief, human 

monocytes were obtained from buffy coats from healthy donors (Sanquin, Nijmegen, 

The Netherlands) using the QuadroMACS system and CD14 microbeads according to 

manufacturer’s protocol (Miltenyi Biotec, Leiden, The Netherlands). A written informed 

consent was obtained before sample collection. Monocytes were differentiated into 

macrophages following 7 days culturing in presence of 50 ng/ml MCSF (R&D systems, 

Minneapolis, USA). MCSF was replenished after 3 and 5 days of culture. On day 7, 

macrophages were polarised by 20 ng/ml TNFα and 20 ng/ml IFNγ (for M1 polarization), 

or 20 ng/ml IL4 (for M2 polarization) without MCSF for 18 h. To analyse plasticity, these 

M1 and M2 macrophages subsets at day 8 were then exposed to 500 μg/ml NDPs in 

medium without and appropriate controls for 24 h. 

2.3 RNA extraction and cDNA synthesis 

RNA was extracted by lysing cells with 200 μL TRIzol (Invitrogen, Bleiswijk, The 

Netherlands) for each well in the 24-well plates. This was followed by RNeasy (Qiagen, 

Venlo, The Netherlands) clean-up according to manufacturer’s protocol. The integrity of 

the ribosomal RNA was analysed using agarose (Eurogentec, Liège, Belgium) gel 

electrophoresis (1%). RNA concentration and purity were checked using the Nanodrop 

spectrophotometer system (Nanodrop Technologies, Wilmington, DE, USA) and only 

samples with a ratio (Abs 260/280 nm) between 1.8 and 2.1 were used for qPCR and 

microarray analysis. Subsequently, cDNA was synthesised with iScript (Bio-Rad, 

Veenendaal, The Netherlands) according to manufacturer’s protocol. 

2.4 qPCR 

qPCR was performed as described elsewhere [23]. In brief, 5 μl cDNA was mixed with 10 

μl iQ™ SYBR Green supermix (Bio-Rad), forward and reverse primers, and milliQ water to 

total 20 μl. Primers were derived from the Harvard Primerbank 

(http://pga.mgh.harvard.edu/primerbank/) or designed using Clone Manager 

Professional 9 and synthesized by Biolegio (Nijmegen, The Netherlands). Primers are 

listed in Supplementary Table 2. The following thermal cycling conditions were used for 

amplifying the target sequences: 90 s at 95 oC, followed by 40 cycles at 95 oC for 10 s, 58 
oC for 10 s and 72 oC for 15 s, and a final elongation step at 72 oC for 2 min and performed 
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on the CFX96 Touch Real-Time PCR Detection System (Bio-Rad). qPCR was performed in 

technical duplicate, and all samples were normalised to geometric means of PUM1 and 

RPLP0 expression [24] and medium-stimulated macrophages using the qBase+ software 

(Biogazelle, Gent, Belgium). 

2.5 Microarray analysis 

Microarray analysis was performed as described previously [25]. Briefly, RNA quality was 

verified with the RNA 6000 Nano assay on an Agilent 2100 Bioanalyzer (Agilent 

Technologies, Amstelveen, The Netherlands). Hybridization, washing and scanning of 

the Affymetrix Human Gene 1.1 ST array plate was performed on an Affymetrix Gene 

Titan platform according to standard protocols. Scans of arrays were analysed using 

package from Bioconductor project. Raw signal intensities were obtained by Robust 

Multi-array Average method. Probe sets were defined using remapped chip definition 

file (CDF) based on Entrez gene database. Individual Genes were considered to be 

expressed if UPC algorithm values are above 0.5 on at least one array [26]. Genes were 

selected that meet the cut-off of absolute fold change > 1.8 and false discovery rate 

corrected p<0.05 (IBMT regularised paired t-test) on at least one treatment. The 

functional interpretation of gene signatures was executed using IPA 3.0 (Ingenuity, 

QIAGEN, Redwood, CA, USA). Microarray data were deposited in the Gene Expression 

Omnibus (GEO) database. 

2.6 Phagocytosis assay and antigen processing analysis 

To analyse phagocytic activity and antigen processing, M1 and M2 macrophages with or 

without NDP treatment were washed with PBS and incubated for 1 h in 0.5 ml culture 

medium containing 2 μg/ml E.coli bioparticles (Molecular Probes, Leiden, The 

Netherlands) or 10 ng/ml DQ-OVA (Molecular Probes), respectively. Before addition, 

E.coli bioparticles were re-suspended in non-heat-inactivated human serum (2 mg / 100 

μl) and incubated for 60 minutes at 37 oC. Macrophages were detached as described 

above and diluted three times with PBS with 2% FBS. Cells were re-suspended in 200 μl 

PBS and analysed using flow cytometry (bioparticles: excitation at 495 nm, emission at 

519 nm; DQ-OVA: excitation at 505 nm, emission at 515 nm) with Accuri C6 software. 

2.7 Multiplex cytokine analysis 

Secretion of cytokines and chemokines by M1 and M2 macrophages with or without NDP 

stimulation were measured using Bio-Plex Pro Reagent Kit (BioRad, Veenendaal, The 

Netherlands) according to the manufacturer’s instructions. In brief, 50 µL magnetic 

beads were dispersed in a plate together with 50 µl of undiluted sample or standard and 

incubated for 1 h at RT. Subsequently, the beads were incubated with 25 µl detection 
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antibodies for 30 min and with 50 µl streptavidin-PE for 10 min at RT. The beads were re-

suspended in 125 µl assay buffer and read by Bio-Plex® MAGPIX™ Multiplex Reader 

(BioRad). Data processing was performed by using Bio-Plex Manager 5.0, and 

concentrations (in pg/ml) were interpolated from standard curves. To identify relations 

and to display our results most effectively, we used lower or upper limit of the standard 

curve for data points that were below or above the standard curve, respectively. 

2.8 Migration assay 

Migration assays were performed using an xCELLigence RTCA DP system (xCELLigence, 

ACEA Biosciences, San Diego, USA) and CIM-16 well plates, according to the 

manufacturer’s instructions. In brief, 160 µl of macrophage-conditioned medium were  
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Figure 1A 

(Legend on page 117) 
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added to the lower chamber of CIM-16 well plates. Fresh macrophage culture medium 

was used as negative control and CCL5 (400 ng/ml) as positive control. Following upper 

chamber attachment to the lower chamber, the upper chamber wells were filled with 50 

µl THP-1 cell culture medium and equilibrated at 37 oC for 1 h which was recorded as 

background cell index. Next, 50 µl THP-1 cell suspension (8x106 cells/ml) was added to 

the upper chamber after which cells were allowed to settle for 5 minutes at RT. The cell 

index is a unit-less parameter used to indicate the impedance of electron flow caused by 

adherent cells and defined as (impedance at time point impedance - impedance in the 

absence of cells) / nominal impedance value. The cell index was measured every 5 min 

over the course of 22 h. Monocyte migration was subsequently calculated as area under 

the curve using Prism 6 software (Graphpad, La Jolla, USA). 
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(Legend on page 117) 
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2.9 Caco-2-macrophages coculture 

Macrophages were differentiated on 250 µl hydrogel (Cellendes, Reutingen, Germany) 

coated 24-well plate for 7 days with MCSF and differentiated to either M0, M1 or M2 for 

18 h. This was followed with coculturing with 21-day transwell grown Caco-2 (Chapter 1) 

which were stimulated with either medium control, LCES (500 µg/ml) or Naxus (500 

µg/ml). Macrophage-conditioned medium was collected for migration analysis, and 

macrophages were collected by TRizel for qPCR. 

2.11 Statistics 

All parameters are presented as means ± SEM and differences between parameters were 

assessed for their significance with one-way ANOVA using Prism 6. Differences with 

p<0.05 were considered significant. 
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Figure 1. Gene expression pattern of macrophages following exposure to titrated amounts of LPS. 

M0 macrophages were stimulated with various concentrations of LPS (ng/ml) for 18 h and analysed 

for gene expression of M1 (A) and M2 (B) markers using qPCR. Results are shown as fold change 

compared to non-stimulated macrophages by mean values ± SEM, n=2 different donors. 

Statistically significant differences were analysed by one-way ANOVA: * p<0.05, ** p<0.01, *** 

P<0.001. C. M2 macrophages were stimulated with various concentrations of LPS (ng/ml) for 24 h 

and analysed gene expression of M1 markers using qPCR. Results are shown as fold change 

compared to non-stimulated macrophages, n=1 donors. 

Figure 1C 
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3 Results 

3.1 Macrophages plasticity characterised by responding to LPS 

To study the plasticity of macrophages, first the response to a strong immune potent 

agent was analysed by exposure to different concentrations of LPS. M1 (GCH1, GBP5, 

dectin-2, CD80, IL8, and STAT1) and M2 (MRC1, MRC2, PPARG, CD36, dectin-1, and CD209) 

specific gene expression markers were subsequently analysed by qPCR. Results clearly 

showed that gene expression of M1 markers on M0 were increased in an LPS 

concentration dependent manner (Figure 1A). Expression of GCH1, dectin-2, and IL-8 

showed more sensitivity than other M1 makers and already significant changes in 

expression were found at 0.01 ng/ml LPS. On the other hand, gene expression of M2 

markers on M0 were decreased in an LPS concentration dependent manner (Figure 1B). 

MRC1, MRC2, and PPARγ were more sensitive than other M2 markers, and MRC1 

responded stronger to the highest experimental concentration (100 ng/ml) than other 

markers.  

To investigate plasticity of our macrophages, we analysed gene expression of some M1 

markers in M2 cells exposed to LPS (Figure 1C). The expression of all of the genes in the 

list was increased and showed to be concentration dependent. IDO1, CXCL11, and LAMP3 

showed more sensitively in responding to LPS than other genes. This gene expression 

trend of M1 markers shows the inherent ability of M2 macrophages to alter their 

phenotype in our culturing and polarization method.  

3.2 NDPs can re-polarise both M1 and M2 macrophages towards an MNDP subset based 

on gene expression analysis 

Our previous research showed that NDPs can also polarise M0 towards a phenotype 

alternative to pro-inflammatory and tolerant macrophages which was termed MNDP. This 

could be demonstrated most clearly based on gene expression of IDO1, LAMP3, CD80, 

Mincle, dectin-2, CXCL11, MGL, and IRF1 [21]. Through microarray analysis, the marker 

panel is expanded with CCL20, IL1β, IL8, LOX1, TNF, CCL13, and TLR7 (Supplementary 

Table 1) which all specifically responded to NDP-stimulations. To investigate whether 

NDPs can also re-polarise M1 and M2 polarised macrophages, we stimulated M1 with four 

different NDPs (i.e. Wellmune soluble, RG-I, LCES, and Naxus) and analysed gene 

expression (Figure 2). Naxus treatment increased gene expression of IL1B, IL8, TNF, 

CD80, dectin-2, Mincle, LOX1, CCL20, and LAMP3, while it decreased gene expression of 

MGL, TLR7, and CXCL11. Similarly, RG-I increased gene expression for IL1B, IL8, CD80, 

dectin-2, Mincle, LOX1, CCL20, and LAMP3, while it decreased gene expression for MGL, 

TLR7, and CXCL11. LCES increased IL1B, IL8, and CCL20 gene expression, while it  
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Figure 2. NDPs promote re-polarisation of M1 to an MNDP phenotype. M1 polarised macrophages 

were stimulated with Wellmune, RG-I, LCES, and Naxus at 500 μg/ml for 24 h and analysed for gene 

expression using qPCR. Results are shown as fold change by mean values ± SEM in a bar chart, n=3-

4 different donors. Statistically significant differences compared to medium control were analysed 

by two-way ANOVA: * p<0.05, ** p<0.01, *** p<0.001. 
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Figure 3. NDPs promote re-polarisation of M2 polarised macrophages towards a MNDP phenotype. 

M2 polarised macrophages were stimulated with Wellmune, RG-I, LCES, and Naxus at 500 μg/ml 

for 24 h and analysed for gene expression using qPCR. Results are shown as fold change by mean 

values ± SEM in a bar chart, n=2-3 different donors. Statistically significant differences compared 

to medium control were analysed by two-way ANOVA: * p<0.05, ** p<0.01, *** p<0.001. 
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decreased gene expression of MGL. Wellmune Soluble did not modulate gene 

expression of these genes, similar as we had seen when M0 were exposed to Wellmune 

Soluble [21]. 

Similar as for the plasticity of M1 macrophages we also studied the plasticity of M2 

macrophage subsets when exposed to the four NDPs and analysed gene expression 

(Figure 3). Interestingly, NDPs triggered a similar gene expression trend in M2 

macrophages as they did in M1 (Figure 9). Naxus increased gene expression of IL-1B, IL-

8, TNF, CD80, dectin-2, Mincle, LOX1, CCL20, IDO1, LAMP3, and IRF1, while it decreased 

gene expression of MGL, TLR7, CXCL11, and CCL13. Again, also LCES increased gene 

expression for IL-1B, IL-8, TNF, CD80, dectin-2, Mincle, LOX1, CCL20, IDO1, and LAMP3, 

while it decreased gene expression for MGL, TLR7, and CXCL11. RG-I increased gene 

expression for IL-1B, IL-8, dectin-2, Mincle, IDO1, and LAMP3, while it decreased gene 

expression for TLR7. Wellmune Soluble only increased gene expression of CCL20. 

These profiles following stimulation of M1 or M2 polarised macrophages indicate that 

NDPs have the capacity to change the macrophage phenotype and skew them towards 

an MNDP subset (Figure 9 and Supplementary Table 1). 
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Figure 4. NDP decreased phagocytosis function of M1 and M2. M1 (A) and M2 (B) were stimulated 

with Wellmune, RG-I, LCES, and Naxus at 500 μg/ml for 24 h followed by 1 h incubation with E.coli 

bioparticles and analysis with flow cytometry. The bar chart shows mean fluorescence intensity 

(MFI) values ± SEM, n=3 different donors. Data was normalized to medium control. Statistically 

significant differences compared to medium control were analysed by one-way ANOVA: * p<0.05. 
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3.3 NDPs decrease phagocytosis capacity of both M1 and M2 polarised macrophages 

We previously showed that LCES and Naxus decreased the phagocytosis capacity of M0 

macrophages both after 18 h and 48 h stimulation (Chapter 4). Similarly, Naxus 

significantly decreased the uptake of E. coli bioparticles for M1 polarised macrophages 

(Figure 4A) and at the same time it also deceased phagocytosis capacity of M2 polarised 

macrophages, although this was not significant (Figure 4B). LCES showed a lowering, 

but insignificant trend in phagocytosis capacity for both M1 and M2 polarised 

macrophages. The other NDPs did not modulate uptake of E. coli bioparticles by neither 

M1 nor M2 polarised macrophages. This was also found for M0 macrophages exposed to 

these same NDPs.  

3.4 NDPs decrease antigen processing capacity of both M1 and M2 polarised 

macrophages 

Our previous research proved that both RG-I and Naxus decreased antigen processing 

capacity of M0 (Chapter 4). To analyse whether NDPs modulate antigen processing 

capacity of inflammatory or tolerant macrophages, M1 and M2 were stimulated by NDPs 

and antigen processing was analysed by using DQ-OVA. Naxus significantly decreased 

processing of DQ-OVA for M1 polarised macrophages but other NDPs did not show any 

effect on this activity (Figure 5A). Again, only Naxus changed antigen processing capacity 

of M2 polarised macrophages (Figure 5B). 
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Figure 5. NDP decreased antigen procession function of M1 and M2 polarised macrophages. M1 (A) 

and M2 (B) polarised macrophages were stimulated with Wellmune, RG-I, LCES, and Naxus at 500 

μg/ml for 24 h followed by 1 h incubation with DQ-OVA and analysed by flow cytometry. The bar 

chart shows MFI values ± SEM, n=3 different donors. Data was normalized to medium control. 

Statistically significant differences compared to medium control were analysed by one-way 

ANOVA: * p<0.05, ** p<0.01. 
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3.5 NDPs activated M1 and M2 to produce CCL1 

A significantly increased CCL1 production was previously found when Mo cells were 

exposed to Naxus and LCES, while M1 or M2 polarised macrophages showed no 

significant CCL1 production. Here, we analysed whether NDPs are capable of modulating 

CCL1 production in M1 and M2 polarised macrophages. Indeed, Naxus increased 

production of CCL1 in both M1 and M2 polarised macrophages, albeit only significant for 

M1 polarised macrophages (Figure 6). In addition, we analysed other cytokines and 

chemokines (Table 1). M1 polarised macrophages were stimulated with Naxus which 

resulted in increased IL8, CCL5, CCL20, CCL24, IL1β, and TNFα production, while 

stimulation with RG-I increased IL8, CCL5, CCL20, CCL24, and TNFα production and LCES 

stimulation increased IL8 production. M2 polarised macrophages stimulated with Naxus 

or LCES increased IL8, CCL5, CCL20, CCL24, IL1β, and TNFα production, while stimulation 

with RG-I increased IL8, CCL5, CCL20, and TNFα production. All tested NDPs had no 

effects on secretion of MMP-1, CXCL9, CXCL10, and CXCL11 by M1 or M2 polarised 

macrophages. 

 

Table 1. NDPs modulate cytokines M1 and M2 macrophage cytokine secretion. 

 

 

 

 

 

 

 

 

 

  

 IL8 CCL5 CCL20 CCL24 IL1β TNFα 
MMP-

1 

CXCL9 CXCL10 CXCL11 

M1-

Medium 

921.0 916.3 17.8 14.9 0.2 203.4 122.7 24198.6 224944.3 1188.0 

M1-RG-I 15864.9 1897.8 110.3 54.1 0.3 3035.3 251.9 24198.6 2603.3 36.6 

M1-

LCES 

4335.5 704.9 13.2 16.4 0.2 284.0 122.7 24198.6 699198.1 409.5 

M1-

Naxus 

19590.0 4961.2 1783.8 647.7 3.1 30330.8 122.7 24198.6 17327.2 698.2 

M2-

Medium 

298.4 9.9 0.8 352.1 0.1 2.3 122.7 25.2 13.5 0.1 

M2-RG-I 21968.3 375.4 18.3 271.5 0.2 549.0 251.9 37.7 18.7 0.1 

M2-

LCES 

23591.8 889.6 223.4 1969.8 1.3 10011.8 251.9 37.7 28.8 0.2 

M2-

Naxus 

23213.1 1928.8 858.7 1784.3 4.1 23877.0 367.0 126.2 64.8 0.4 

 
Values represent concentration of cytokines/chemokines (pg/ml) analysed by Bio-Plex multiplex, n=1 donor. 
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Figure 6. Naxus induced CCL1 production in M1 and M2 polarised macrophages. M1 (A) and M2 (B) 

polarised macrophages were stimulated with Wellmune, RG-I, LCES, and Naxus at 500 μg/ml for 24 

h. CCL1 secretion was analysed by Bio-Plex multiplex analysis. The bar chart shows mean values ± 

SEM, n=2 different donors. Statistically significant differences compared to medium control were 

analysed by one-way ANOVA: ** p<0.01. 
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Figure 7.  Naxus enhanced M2 macrophages recruiting ability which can abolished by Caco-2 barrier 

in coculture. M0, M1, and M2 macrophages were stimulated with Naxus (NA) at 500 μg/ml or 

medium control (Me) for 24 h either direct interact with macrophages by single culture (A) or 

indirect interact by adding to Caco-2 in coculture (B). Chemoattraction were analysed by THP-1 

monocytes cell migration induced by macrophages conditioned medium. The bar chart shows 

mean values ± SEM, n=3 different experiments (A) or n=2 technique replicates (B). Statistically 

significant differences were analysed by one-way ANOVA: ** p<0.01. 

A B 
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3.6 NDPs promote recruiting ability for M2 polarised macrophages but not for M1 

In comparison to M1 and M2 polarised macrophages, MNDP had shown increased 

chemokine secretion. Therefore, we analysed migration of THP-1 monocytes by 

conditioned medium from M1 or M2 macrophages that had been exposed to Naxus 

(Figure 7A). M0 conditioned medium showed increased recruiting ability compared to 

fresh medium (background control) and CCL5 (the positive control). M1 and M2 polarised 

macrophage conditioned medium demonstrated a slight increase in monocyte 

recruitment compared to M0 conditioned medium. Naxus exposure did not change THP-

1 monocyte recruiting ability by M1 polarised macrophages. However, Naxus exposure 

did significantly increase recruiting ability by M2 polarised macrophages. 

3.7 Intestinal immune system in vitro model  

To mimic the intestinal immune barrier in vitro, an intestinal epithelial cells-macrophages 

coculture system was used. As a first test, it was studied whether cocultivation of 21 days 

differentiated small intestinal-like Caco-2 grown on the transwell with M1 or M2 polarised 

macrophages in the basolateral compartment affected specific gene expression markers 

of the polarised macrophages. Neither expression of the M1 gene markers (CXCL11, IDO1, 

dectin-2, and CXCL9), the M2 markers (CCL13, MGL, CCL18, and IL17RB) nor the MNDP 

gene marker (CCL-1, IL8, CCL24, and CXCL5) were significantly changed in M1 or M2 

polarised macrophages following coculture (Figure 8). Subsequently, we analysed 

whether the NDPs Naxus or LCES could directly or indirectly influence macrophage 

polarization when applied in the apical compartment. Therefore, we analysed changes 

in macrophage polarisation again using the gene expression markers (Figure 8). M1 

markers CXCL11, IDO1, dectin-2, and CXCL9 were similarly high expressed in M1 polarised 

macrophages in coculture, following apical exposure to both LCES and Naxus, as in single 

cultures. The same was found for the M2 specific gene markers CCL13, MGL, CCL1B, and 

IL17RB which were also not changed in the coculture compared to the single cultured 

cells. CCL1, IL8, CCL24, and CXCL5 gene expression, indicators for NDPs recognition and 

responses by macrophages in single cultures, neither changed. In addition, we analysed 

recruiting ability of THP-1 monocytes by basolateral medium from the M0, M1, and M2 

coculture system with and without apical exposure of Naxus (Figure 7B). The results 

indicate that the apical exposure of Naxus did not influence the recruitment capability 

of the M0, M1, or M2 polarised macrophages.  
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4 Discussion 

The intestine contains the largest macrophage population in the body [1]. Within this 

population, a continuous spectrum of subsets exists, with inflammatory (M1) and 

tolerant macrophages (M2) as extremes [10]. Plasticity of macrophages is one of the 

functional properties to balance the intestinal immune status. Macrophages are 

polarised towards the M1 subset upon inflammatory stimulation such as the sensing of 

danger signals resulting in macrophages capacity to kill microorganisms and increase 

cytokine secretion in the host [27]. The M2 subset is formed after IL-4, and IL13 

stimulation, and functions in wound healing, tissue repair and remodeling [6]. Food 

components that impact the macrophage phenotype may lead to the formation of 

inflammatory or tolerant macrophages or to an alternative status. We previously found 

that NDPs skewed macrophages to an alternative subset compared to M1 and M2, based 

on gene expression markers [21].  

In this study, we analysed the immunomodulatory effects of NDPs on M1 and M2 by 

analysing phenotype and functionality after NDP-stimulation. We used cocultures of 

intestinal epithelial cells and macrophages in vitro to mimic the intestinal immune barrier 

and to evaluate the effects of NDPs on this model. Previous studies revealed that Caco-

2 spent medium enhanced cytokine production by dendritic cells which was attenuated 

by dietary fibers [28]. However, the direct effects of NDPs on macrophages were blocked 

by the Caco-2 layers, for both gene expression and monocyte recruitment. This might be 

due to the lack of direct physical interaction of NDPs with immune cells, since the Caco-

2 layer can block passage and signals from the apical side. This might be supported by 

our previous finding that NDPs reduced FD4 translocation by Caco-2 (Chapter 2). To 

investigate the importance of direct contact between Caco-2 and macrophages, the up-

side-down culture model might be applied [29]. In the coculture system, macrophage 

phenotype and recruiting ability were not influenced by Caco-2. Also, M cells might be 

interesting to be included in such studies, since M cells might sample NDPs to 

macrophages. 

  

Figure 8. Naxus and LCES do not affect macrophages gene transcription in coculture with Caco-2. 

Transwell grown 21 days differentiated Caco-2 were placed in wells with M0, M1 or M2 polarised 

macrophages for 24 h. On the apical side, Caco-2 were stimulated with either medium control, 500 

µg/ml LCES or Naxus. M0, M1, and M2 polarised macrophages located at the basolateral side were 

analysed for gene expression using qPCR. The bar chart shows fold change by mean values ± SEM, 

n=2 different donors. Statistically significant differences were analysed by one-way ANOVA: * p<0.05, 

** p<0.01, *** p<0.001, **** p<0.005. (Legend for page 126) 
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Upon direct exposure of M1 and M2 polarised macrophages to Naxus we observed a 

skewing to a subset similar as found for M0 exposed to the same NDP. This intermediate 

MNPD could be hypothesised to be an intermediate and resolving type of macrophage 

that in case of inflammation can prohibit overstimulation and damage of tissue. Similar 

conclusions on anti-inflammatory activity have been drawn previously for several 

polysaccharides based on inhibiting LPS-induced nitric oxide production in macrophages, 

including arabinoxylans and lentinan containing extracts [30, 31]. Some studies 

hypothesized that this effect could be caused by blocking of the TLR4 receptor as some 

of the molecular structures of polysaccharides show similar structures with LPS [32]. Our 

experimental setup, however, is free of LPS as we used TNFα and IFNγ, instead of LPS, 

to induce M1 polarisation and our polysaccharides were devoid of functional levels of 

LPS contaminations [22]. Instead of blocking the TLR4 receptor, the NDPs might signal 

via other receptors to exert their effect. Volman and colleagues proposed other TLRs 

such as TLR2 and TLR6 for recognition of β-glucan [33], while others suggested the 

involvement of CR3 in arabinoxylan-mediated immune responses [34] or identified 

dectin-1 to be involved in recognition of arabinoxylan [35]. Alternatively, our 

arabinoxylan preparation has been demonstrated to contain β-glucans and mannose 

(Chapter 3), potentially for stability, and these structures might also provide signalling 

towards the macrophages [36].  

Naxus significantly decreased phagocytosis and antigen processing capacity for both M1 

and M2 polarised macrophages. This is in contrast to arabinoxylan from rice and finger 

millet that both increased phagocytosis of yeast by macrophages [37, 38]. These 

contradicting results might stem from non-detected LPS contaminations or might be due 

to the use of arabinoxylans derived from various sources with different molecular 

weights and degree of branching [36, 39]. 

Our results imply that Naxus might be a potential candidate for modulating intestinal 

macrophages and immunomodulatory activity as also pointed out in several studies and 

reviews [36, 40]. In particular the capability to reduce inflammatory macrophages can be 

an interesting direction for future research as several intestinal diseases have shown to 

involve inflammation as a common factor like crohn’s disease, ulcerative colitis and 

irritable bowel syndrome (IBS). Interestingly, research with polysaccharides, including 

lentinan and arabinoxylan arrived at similar conclusions as oral administration of lentinan 

significantly ameliorated DSS-induced colitis [41] and arabinoxylan has been reported to 

significantly decrease diarrhoea, constipation and CRP values in IBS patients [42]. 

Taken together the plasticity of macrophages is demonstrated by showing that the NDP 

Naxus can skew both inflammatory and tolerant macrophages to an alternative subset 

defined previously as MNDP which warrant further in depth in vivo studies using this NDP.  
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Supplementary Table 1. Gene expression profile on M0 determined by microarray. 

Genes M1 M2 Wellmune RG-I LCES Naxus 

IL1B -1.4 -3.7 8.8 19.4*** 10.7** 32.8*** 
IL8 1.3 -3.6 13.3 33.9*** 17.2** 51.2*** 
TNF 11.4*** -1.2 1.5 1.0 2.3 5.7** 
CD80 11.7*** 1.7 2.4 4.7*** 2.2 4.9*** 
Dectin-2 24.5*** 1.0 4.3 8.6* 5.7* 5.3* 
Mincle 12.5*** -3.0 3.8 9.0** 3.9 6.4** 
LOX1 -4.6* -1.6 1.9 3.1 7.0** 9.9*** 
MGL 1.0 19.8*** 2.0 -1.1 -1.4 -1.9 
TLR7 -1.0 -3.4 -4.2 -8.2** -7.9** -11.2*** 
CCL20 6.2* -1.5 2.6 7.3 4.3 69.9*** 
CXCL11 304.0*** 1.1 1.9 1.7 1.3 -1.1 
CCL13 3.4 94.1*** 10.3 10.8* 2.9 1.5 
IDO1 799.7*** 1.2 2.7 15.8*** 4.1* 54.0*** 
LAMP3 83.0*** 2.2* 1.4 12.1*** 2.8** 16.0*** 
IRF1 22.0*** -1.3 1.2 1.5 1.5 3.1*** 

Values represent fold changes of gene expression, n=3 donors. Statistically significant 

differences were calculated with IBMT regularised paired t-test: * FDR p<0.05, ** FDR 

p<0.01; *** FDR p<0.001. 
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Supplementary Table 2. Primer details  

Genes Forward (5’-3’) Reverse (5’-3’) 

PUM1 TGAGGTGTGCACCATGAAC CAGAATGTGCTTGCCATAGG 
RPLP0 GCAATGTTGCCAGTGTCTG GCCTTGACCTTTTCAGCAA 
IL8 CTGATTTCTGCAGCTCTGTG GGGTGGAAAGGTTTGGAGTATG 
CD80 ACCATCCAAGTGTCCATACC CACGTGGATAACACCTGAAC 
STAT1 CTGGCACCAGAACGAATG GCTGACGTTGGAGATCAC 
TNF GGCGTGGAGCTGAGAGATAA GATGGCAGAGAGGAGGTTGA 
CD209 AGGAGCAGAACTTCCTAC GCTCTCCTCTGTTCCAATAC 
MRC1 CAGCGCTTGTGATCTTCATT TACCCCTGCTCCTGGTTTTT 
MRC2 GGAAACTCCCACGGAAAG GTCTCGCAGTCGTTACTC 
PPARG TCTAAAGAGCCTGCGAAAGC GCGGTCTCCACTGAGAATAATG 
CD36 GCCAAGGAAAATGTAACCCAGG GCCTCTGTTCCAACTGATAGTGA 
IDO1 GCCAGCTTCGAGAAAGAGTTG ATCCCAGAACTAGACGTGCAA 
GBP5 ACATTAGTTCTGCTTGACACCG GCTGCTCAGTAAGAGTGCCAG 
GCH1 ACGAGCTGAACCTCCCTAAC GAACCAAGTGATGCTCACACA 
LAMP3 ACTACCCCAGCGACTACAAAA CTAGGGCCGACTGTAACTTCA 
CXCL11 GACGCTGTCTTTGCATAGGC GGATTTAGGCATCGTTGTCCTTT 
IRF1 GCAGCTACACAGTTCCAGG GTCCTCAGGTAATTTCCCTTCCT 
Mincle CTGAAACACAATGCACAGAGAGA AAAGATGCGAAATGTCACAACAC 
Dectin-1 AACCACAGCTACCCAAGAAAAC GGGCACACTACACAGTTGGTC 
Dectin-2 GCTTTCAGACCCACAAGGTAAT GCAGAATGATTGGGCTCACCTA 
MGL AGCAACTTCACCTCAAACACTG AGATGCTATCGTTTCTTCCAAGC 
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Non-digestible polysaccharides (NDPs), gain attention for their immunomodulatory 

activity. The mechanism of the immunomodulatory effects of NDPs on the intestinal 

immunity remained largely unknown. Some research resulted in the hypothesis that the 

health effects would result from fermentation products of NDPs, such as short chain 

fatty acids which are subsequently recognized by immune cells, leading to regulation of 

intestinal immunity [1]. Others studies demonstrated a direct interaction of NDPs with 

immune cells aligning the intestine. It is clear that the intestinal immune system involves 

an abundant set of immune cells both in types (include dendritic cells, macrophages, T 

cells, B cell as well as innate lymphoid cells (ILCs)) and in number, as it contains 

approximately 70% of all immune cells [2]. This high abundance and complexity of the 

intestinal immune system on the one hand and the presence of many different NDPs that 

are or could be part of our diet raised the interest to gain more knowledge on which 

NDPs interact with these intestinal immune cells and how, and to what immune effects 

that leads. As the variation of NDPs in our diet is almost endless it is hard to image that 

all these different structures can be recognized by immune cells or lead to similar effects. 

Our research presented in this thesis focused on this direct interaction between NDPs 

and intestinal immune cells and has formed a basis to start in differentiating these NDPs 

based on immunomodulating effects. Our research included the interaction between 

NDPs and intestinal epithelial cells (IECs), macrophages, and macrophage subsets like 

the inflammatory macrophages and tolerant macrophages. NDPs could reduce FD4 

translocation across the epithelial cells through physical interaction. Microarray analysis 

revealed characteristics of NDPs activation on gene expression of surface markers, NF-

κB family members, and cytokines. Based on transcriptome and functional analysis of 

macrophages, we revealed that NDPs can direct macrophages towards a specific subset 

for which we used the term MNDP, a separate group compared to inflammatory 

macrophages or tolerant macrophages. Comparing the effects provoked by the 

different NDPs that we had to our disposal, we have to conclude that the wheat-derived 

arabinoxylan-rich preparation Naxus revealed the strongest activation of this MNDP 

subset and related responses. Therefore, we advocate that this product should be 

further studied in vivo for its immunomodulatory effect in order to link the observed in 

vitro activity to biological relevance for the in vivo situation. The models developed and 

used in this thesis and the studied components like Naxus could lead to their 

development in a functional supplement that supports a healthy human gut and immune 

status. 
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Intestinal immune barrier 

Studying the function of human small intestinal tissue and the responses to luminal 

factors is not easy. Small intestinal biopsy material is difficult to sample and ex vivo 

stimulations in Ussing chambers have shown that incubation time should be short 

(preferable <1h), that RNA after such incubation is hard to obtain and cytokine 

expression often too low to detect due to large buffer volumes required (John-Peter 

Ganda Mall, personal communication). An alternative research tool to study the 

responses of small intestinal tissue that is currently developed is based on organoids, 

either derived from human inducible pluripotent stem cell lines [3, 4] or from intestinal 

crypt cells derived from biopsies or surgery [5]. Both strategies have high potency for 

future research, each having its advantages and disadvantages. However, a robust 

protocol for generating 2D multicellular human tissue with a reproducible make up of 

cell types from these 3D spheres still needs further optimisation before it can be applied 

on a routine base. Especially, as foods are likely to generate only mild changes, methods 

applied should be highly reproducible.   

In literature several intestinal epithelial in vitro cell models were described which 

included various cell lines as HT29, T84, and Caco-2. These cell lines have shown such a 

reliable performance, although also for these cell systems lab-to-lab and experiment-to-

experiment variation is not uncommon. Since many labs are using Caco-2 as a model, 

data can be integrated and used for more systematic comparison and effects evaluation 

like we did in our lab [6]. Therefore we chose Caco-2 as IECs model for NDP evaluation. 

Twenty-one-days differentiated Caco-2 cells, grown in transwells, have shown to 

resemble small intestinal cells. These epithelial layers can build up a transepithelial 

electrical resistance (TEER) between 800 and 1200 (Ω*cm2) per transwell in 24 well plates. 

TEER values are both used to check for the quality of the insert tissue but also can be 

used to analyse the effect of a treatment on intestinal integrity. Our data are based on 

single measurements on specific time points. However, continuous measurements of 

TEER by e.g. cellZscope or similar methods can even be used for a more detailed time-

dose response on TEER [7]. But only when grown on membranes like in the transwell 

system TEER measurements can be combined with other measurements to study 

integrity e.g. by analysing translocation of markers like FD4. Low layer integrity is 

correlated with high translocation of FD4, but due to a fine regulation of cell-cell 

junctions a high layer integrity does not always correlate with low FD4 translocation. 

In Chapter 2, we found that NDPs do not affect TEER, and physically block FD4 transport. 

This physical blocking could potentially also occur by other molecules in the lumen and 

therefore it can be hypothesised that NDPs could inhibit uptake of nutrients but also of 
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risk factors resulting in positive health effects. A protected barrier function can therefore 

be defined in different ways; an inhibition of translocation by maintaining cell integrity 

or support in blocking translocation of undesired components which both can have a 

physiological background (active response of cells) and a physical background (direct 

binding). In fact, a dietary fibre like 2/1fructan was found to exert a polysaccharide 

length-dependent protection of barrier function on T84 IECs [8]. This protection involved 

TLR-2 activation as the effects were inhibited by a TLR-2 blocking antibody [8]. In practise 

also other mechanisms can have an effect on barrier function, e.g. mucus (not produced 

in Caco-2 in biologically relevant amounts [9]) have the capability of trapping luminal 

factors and food based treatments that can stimulate this mucus production [10]. 

Besides that, many cellular factors will be involved in maintenance of tissue integrity 

including the energy supply and mitochondrial function, as it was reported that an 

increased permeability linked to mitochondrial inhibition [11].  

Intestinal integrity is very relevant for gut health and is correlated with tight junction (TJ) 

proteins. These TJ proteins are composed of transmembrane proteins (occludins and 

claudins) and intracellular scaffold proteins (ZO-1, ZO-2, and ZO-3). Some reports claim 

that tight junction proteins are upregulated by polysaccharides [12]. However, we found 

no change in TJ-gene expression after NDP treatment in Caco-2. We did find that our 21-

day differentiated Caco-2 exhibited high TEER values and low permeability. This suggests 

that TJ proteins are abundantly expressed but not changed by NDPs. We, however, did 

not study intracellular protein translocation and protein folding of TJ proteins which 

could also be effected by exposures without changes in de novo synthesis. The Caco-2 

layer could also block LPS and NDP translocation, prohibiting to detect changes in gene 

expression by macrophages (Chapter 5).  

 

Caco-2 challenge model could support research 

As discussed above, 21-days differentiated Caco-2 form an intact epithelial layer for which 

we could not detect FD4 passage and for which we found that it blocked the potency of 

NDPs to signal towards macrophages in the basolateral department (chapter 5). Similar 

results were observed for LPS transport over Caco-2 which was fully blocked as studied 

with basolateral THP-1 macrophages which are able to respond to LPS even at very low 

concentrations of LPS [13].  

M cells and goblet cells function as transporters of luminal antigens or food components 

to underneath located immune cells such as macrophages and DCs [14]. Twenty-one-

days differentiated Caco-2 might lack M cells and goblet cells or do not have the full 
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functional capacity to transport NDPs or LPS. In vitro models of IECs therefore should 

make more use of methods to introduce these transporter cells, e.g. by inducing M cells 

via co-culturing with Raij B cells [15]. Also other immune cells are likely to signal to IECs 

to steer differentiation and activation towards these transport cells and structures [16].  
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Figure 1. TEER and barrier integrity of Caco-2 with ethanol challenge. Twenty-one-day 

differentiated Caco-2 cells were stimulated with 15% ethanol for 3, 6, 8, and 24 h. Cells were 

monitored by TEER (A) and FD4 translocation (B). N=3 different experiments. Statistically 

significant differences were analysed compared to medium (A) or baseline (B) by one-way ANOVA: 

* p<0.05, ** p<0.01, *** p<0.001. 

 

Another approach we and others followed to study effects of treatments towards IECs 

was based on challenge models. The general idea is that the intestinal system has to 

counteract challenges and that the time needed to restore the intestinal barrier and 

homeostasis is an indication for health. Also for IECs several of these challenge models 

have been developed including bacterial derived toxins (e.g. C. difficile Tox A and B), DON 

(mycotoxin), melittin (bee venom), lectins like WGA, glycoalkaloids (e.g. from the 

Solanum family), and mixtures of inflammatory cytokines (such as TNFα and INFγ) [17]. 

We also challenged Caco-2 with ethanol as model for the effect of alcohol consumption 

and found that the TEER decreased within the first 6 h and then starts to recover. TEER 

reached even higher values than control levels after 24 h (Figure 1A) indicating that cell 

morphology or connections between cells (over)compensate for the loss of integrity. 

This whole process was also monitored with FD4 translocation and basolateral 

accumulation, indicating that even after 8 hours, when the TEER started to restore, 

translocation was still proceeding (Figure 1B). The ethanol-induced decrease in TEER is 
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also dose-dependent. Changes in TJ protein (ZO-1 and claudin-1) [18] and activation of 

the mitogen activated protein kinase pathway might be involved [19]. Therefore, this 

ethanol method, or any other model mentioned earlier, could be used to further test the 

ability of NDPs to support recovery of intestinal homeostasis.  

 

Immunomodulating signals of IECs 

Besides forming a physical barrier, IECs also signal towards neighbouring cells and 

associated immune cells to warn, recruit, and instruct other immune cells [20]. IECs 

produce TSLP, TGFβ, IL25, and APRIL that activate intestinal immune cells to limit 

inflammation and direct appropriate immune responses [21]. For instance, after helminth 

infection, IECs produce TSLP and IL25 to drive Th2 cells to promote the development of 

type 2 cytokine [22, 23]. To give an example for in vitro results, 21-days differentiated 

Caco-2 respond to LPS when applied apically at high concentration. LPS is also 

abundantly present in the intestine. However, as these IECs should not continuously be 

triggered by luminal factors like LPS, they have a higher threshold/tolerance level than 

immune cells. For Caco-2 this tolerance of direct apical LPS stimulation was determined 

to be 1 µg/ml E.coli LPS, at which level no significant difference in gene expression of 

inflammatory markers was detected (Chapter 2). This threshold level of LPS is around 106 

higher than for THP-1 macrophages [13] and 103 higher than or primary macrophages [24]. 

The relatively high tolerance of Caco-2 to LPS compared to macrophages might be due 

to less TLR4 expression on the apical side of Caco-2 [25]. Twenty-one-days Caco-2 

exposed to NDPs showed a mild but significant increase in gene expression and protein 

secretion of CXCL10 and CCL20 (Chapter 2). Similar results were previously reported for 

IEC18 cells secreting CCL2, CXCL1, and CXCL2 when incubated with oligosaccharides as 

FOS, GOS, GMOS, and inulin [26]. HT-29, another IEC cell line used in vitro, was reported 

to respond to zymosan and curdlan by secretion of IL8 in a dose-dependent manner, but 

not other cytokines (CCL2, IL1β, TNFα, IL6, IL10, or IL12p70) [27]. In addition, cereal β-

glucan was reported to be unable to directly activate IL8 secretion in both Caco-2 and 

HT-29 [28]. In fact, an animal study showed that cytokine secretion from enterocytes 

might be due to cellular interaction with intestinal leukocytes that are activated by 

dietary β-glucan [29]. These immune responses could be activated by TLR4 and are 

dependent on activation of NF-B and Myd88 signalling [26], or activated by dectin-1 and 

dependent on activation of SyK signalling [27]. Our data revealed that the expression of 

cytokines induced by NDP exposure was routed via the NF-B pathway and likely via the 

TLR2 receptors (Chapter 2).  
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Sampling in intestinal immunity 

The classical view to study risk related factors in relation to intestinal immunity is based 

on a passive response to invading pathogens when they have entered the tissue [30, 31]. 

However, recent studies based on high resolution imaging revealed that dendrites of 

APC like macrophages can cross the intestinal barrier to sample pathogens [32]. The 

macrophages that reside in the intestine are the largest population of macrophages  in 

the body [33]. They are continuously replenished by recruiting Ly6Chi monocytes [34]. A 

subset of mononuclear cells, including macrophages, extended dendrites across the 

intestinal barrier into the intestinal lumen in a CX3CR1 dependent manner, as 

demonstrated based on transgenic mice [35]. CX3CR1 is a GPCR transmembrane protein 

expressed by monocytes, macrophages, dendritic cells and T-cells. The CX3CR1 positive 

cells showed a response to Salmonella enterica in vivo, which was absent in 

transepithelial dendrite-deficient (CX3CR1GFP/GFP) mice [35]. In fact, CX3CR1+ cells are non-

migratory intestine-resident cells with slow turnover rates and characterized by a poor 

response to FLT-3L and MCSF [36]. Within CX3CR1+ cells, 70% of these cells were 

macrophages expressing the CD64 marker [37]. In contrast to CX3CR1+ cells, CD103+ DCs 

migrate into the intestine draining mesenteric lymph nodes at both steady state and in 

inflammatory conditions with high T cell stimulatory capacity [36]. Interaction between 

CX3CR1+ macrophages and CD103+ DCs further revealed the role of CX3CR1+ macrophages 

in taking up soluble antigens and quickly transferring them to CD103+ DCs in a Connexin 

43-dependent manner and requiring membrane transfer [38]. The starting point for our 

research was therefore that the cells in the intestine that interact with NDPs should be 

resident macrophages. Intestinal resident macrophages are highly phagocytic and in the 

steady-state show no enhanced production of inflammatory cytokines as IL1, IL6, and 

TNF in response to ligation of TLR [39], but they do produce substantial amounts of 

IL10 [34]. By exposing the macrophages to NDPs, we could use the data to better predict 

and explain how NDPs impact human health. 

  

Macrophage based research 

To investigate effects of food components on intestinal immunity in vitro, models 

preferably should mimic both the intestinal epithelial layers and should contain the 

sampling immune cells as explained above. In literature, several models are described 

such as Caco-2 and HT-29 as IECs in coculture and with THP-1 macrophages or RAW 264.7 

macrophages as immune cells. However, the IEC-barrier could also abolish the response 

by macrophages as we found, since the dendrites of immune cells do not cross the IEC 

barrier in the in vitro co-culture model. We chose to evaluate the direct interaction of 
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NDPs and macrophages, which is still valuable to evaluate NDPs immunomodulatory 

activity. 

In general, there are two ways to obtain macrophages. The first is based on a human cell 

line like THP-1 monocytes which can be differentiated into macrophages by PMA. THP-1 

cells are a human leukemia cell line broadly used for in vitro assays to evaluate 

immunomodulatory effects of food components [40], since it is sensitive and robust. 

THP-1 macrophages have been used to study immunomodulating effects of quercetin, 

citrus pectin, and barley glucan [41]. This macrophage model was further used to 

compare the immunomodulating properties of three β-glucans derived from oat, barley, 

and shiitake [42]. THP-1 macrophages respond to LPS as low as 1 pg/ml [13], while the 

primary M0 macrophages threshold is higher than THP-1 macrophages (1 ng/ml; data not 

shown). THP-1 macrophages can be further polarized to M1 or M2 subsets that express 

specific marker genes and show specific functionality [43]. This model also has shown to 

be capable of identifying food components with macrophage-polarizing potential.  

The second strategy for obtaining human macrophages, which was used in this thesis, is 

based on primary human monocytes isolated from blood buffy coat from which 

macrophages can be differentiated by stimulation with MCSF in vitro. Human 

macrophages obtained from healthy donors have the advantage that they reflect the 

human steady status. However, the disadvantage is that this also influences the 

responses to stimuli and therefore research should always be based on at least two or 

three donors. Again, these macrophages can be further polarized to inflammatory or 

tolerant macrophages with specific stimulations. We used TNF together with INF 

instead of LPS (in order to discriminate between effects of NDPs and those that might 

be generated by LPS contaminations in the NDP samples) to polarize to inflammatory 

macrophages. At the start of our research no fixed set of gene expression markers was 

available to characterize these subsets of macrophages. Therefore, we invested in 

selecting and validating a marker gene set (chapter 3). These sets of gene markers we 

setup were well established and could be useful for food components evaluation. We 

also studied the macrophage functionality by several assays such as phagocytic assay, 

antigen processing assay, and immune cell recruitment assay (chapter 4). Next, we used 

such human macrophages, both the non-differentiated Mo and the M1 and M2 subsets, 

to study the effect of NDPs on their differentiation. Furthermore, we studied the effects 

that macrophage-NDP interactions could have on their functionality and on 

immunological processes in the intestine. This revealed that NDPs can direct 

macrophages towards an alternative subset which was termed MNDP (chapter 3) and that 

this effect is strong enough to redirect macrophages that already were differentiated in 

a specific M1 or M2 subset (chapter 4). Characterization of this MNDP subset showed a 
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specific secretion profile of cytokines, reduced phagocytosis and antigen processing 

capacity, and increased recruiting ability towards at least monocytes. The composition 

of the produced chemokines, which we showed in Chapter 4, suggested that more cell 

types could be interesting to be tested in future such as eosinophils, neutrophils, 

basophils, and resting and activated T cells. Our current results could be interpreted as 

that intestinal macrophages (those sampling from the lumen or situated in Peyer’s 

patches in which NDPs were transported across the intestinal epithelium), whatever 

their differentiation stage or subsets, are (re-)directed towards a somewhat tolerant 

subset that is more active than intestinal residing tolerant macrophages in attracting 

other immune cells to the relevant location. This could result in a higher degree of 

infiltration of intestinal tissue with immune cells and therefore in a high immune capacity 

to respond in case of emergency (like wound/damage or infection).  

 

Continuum, flexibility and plasticity of macrophages 

As explained above, macrophage phenotypes appear not to be restricted to only a few 

sharply defined subsets. Instead, there appears to be a continuum of phenotype and 

function. The MNDP also do not have sharply defined characteristics and, more 

importantly, also not all NDPs appear to have the same capacity in directing this 

differentiation. Based on the diversity of health effect described for NDPs (e.g. some 

have shown cholesterol lowering effects while others have not [44]), variety in capacity 

of NDPs could also be expected. As described in chapter 3 and 4 it is very likely that 

specific (C-type lectin) receptors expressed on the surface of macrophages are involved 

and therefore the NDP should be able to correctly bind to the receptors and induce 

receptor clustering, crosslinking or (hetero)dimerization and subsequently activation, 

polarization, internalization as part of this differentiation activity [45, 46]. Not knowing 

the exact activity, it will be difficult to study this activation by specific receptor based 

assays, which as a consequence can be better performed by cells that express the full 

receptor panel.  

The differences in potency of NDPs to direct macrophage subset differentiation should 

be further studied in vivo to develop this model to a more validated prediction strategy. 

This implies that in vivo research should be performed also with potentially less potent 

NDPs to be able to rank the full palette of bioactive NDPs. In our set of NDPs, Wellmune 

Soluble showed the least activity towards macrophage differentiation which might be in 

agreement with a previous report that Wellmune Soluble has reduced receptor 

crosslinking for dectin-1 activation [46]. We did not directly compare with the non-

solubilized Wellmune, the particulate WGP, for which a strong bioactivity has been 
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reported previously, both based on in vitro and in vivo studies [46, 47]. When completing 

a validation of the macrophage polarization approach and aligning it with in vivo effects 

the method could pave the way for more fundamental studies towards efficient NDP 

structure-function relations, effects of processing and preparations, matrix effect in 

food formulation and many more.  

 

Macrophages respond stronger to nutrients than IEC  

As discussed above, Caco-2 resembling IECs could produce cytokines and chemokines in 

response to food exposure. However those responses were weak compared to the 

reactions we observed for macrophages. This may relate to the fact that exposure to 

luminal compounds is continuously changing with our diet and IECs major function is 

maintaining barrier integrity, while at the same time absorbing nutrients. Next comes 

support to immune cells by signalling molecules, in particular when the intestine is 

challenged. Although responses of IEC towards the NDPs were mild, these NDPs showed 

a strong immune regulating effect, with Naxus inducing the strongest responses in both 

Caco-2 (Chapter 2) and macrophages (Chapter 4 and 5). Unfortunately, results from the 

human trials with these same fibres have not been published yet. However, from results 

that have been communicated, among the tested NDPs Naxus also showed the 

strongest support of the immune system based on a flu vaccination model including 

elderly subjects. In this model, a 2 week NDP intervention was given prior to the seasonal 

flu vaccination and during the following 3 weeks. After this exposure, antibody titres 

against all three flu strains present in the vaccine were tested. Naxus showed a trend 

(though not significant) towards an increased antibody titre and increased serum 

protection levels for all three strains, which was higher than for any other NDP included 

in the study (J. Schrezenmeir, personal communication). This indicates that Naxus 

indeed can be the most potent NDP in our set of NDPs tested and therefore correlates 

surprisingly well with the immune responses found, both on Caco-2 and macrophages.  

 

Trained immunity vs Tolerance 

Immune cells are often divided as being either innate immune cells or adaptive immune 

cells. The innate immune system, also known as non-specific or in-born immune system, 

provides an immediate defence against pathogens based on general recognition and 

defence responses. The adaptive, or acquired, immune system, is based on specialised 

cells and processes to eliminate pathogens which is based on immunological memory. 

Upon an initial response by a pathogen the memory enables an enhanced response in 
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case of re-exposure. Recently it was shown that innate immune cells also possess 

memory. This memory by innate immune cells has been named trained immunity which 

is characterized as an intensified response to a secondary infection of the same 

pathogen but also to a different one [48]. Trained immunity has been shown for instance 

for monocytes primed by -glucans [49]. This trained immunity strongly responded to 

TLR2 agonists like Pam3Cys resulting in an enhanced TNF and IL6 secretion which 

supports long term immune activation [49]. Trained immunity likely is mediated via an 

epigenetic reprogramming as demonstrated by the changes in expression of three 

histone markers (H3K4me1, H3K4me3, and H3K27ac) [49]. We found that NDPs (RG-I, 

LCES, and Naxus) uniquely downregulated the expression of HIST1 family genes [24] 

which suggested that these NDPs might also function as stimulators of the trained 

immunity with epigenetic regulation. Actually, NDP treated macrophages showed an 

increased secretion of IL1β, TNF, and IL8, and also a group of chemokines (Chapter 4). 

Besides, trained monocytes have been characterised for their high glucose consumption, 

high lactate production and activation of mTOR through a dectin-1-AKT-HIF-1α pathway 

[50]. Our preliminary data on macrophages exposed to Naxus also identified a high 

lactate production (data not shown). Although we detected NDP responses by 

macrophages after 18 hours and training of monocytes was performed over 6 days, the 

responses are in line which leads us to hypothesize that NDPs like Naxus could train 

macrophages resulting in a broad improved innate defence against pathogens. 

In contrast to -glucan-trained monocytes, LPS-primed monocytes are characterized by 

a long-term tolerance with low levels of secreted proinflammation cytokines (TNFα and 

IL6) [49]. Endotoxin-induced tolerance is a phenomenon in which cells arrive in a 

transient unresponsive state and are resistant to further challenges with endotoxin [51]. 

An example is presented where dendritic cells, after a long term LPS stimulation, 

attained a self-tolerant status, which revealed IDO to be involved in intracellular 

signalling and maintenance of a stable regulatory phenotype [52]. 

Trained immunity and tolerance can therefore be seen as opposing functional programs 

which greatly depend on the type and concentration of pathogen-associated molecular 

patterns (PAMPs) [53]. A strong infection could lead to fast resolution and to a tolerant 

activation state. However, a low grade of infection/food based stimulation can support 

trained immunity, leading to a broad enhanced defence and support of the development 

of memory of the immune system. 
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Food and trained immunity 

Based on the previous discussion, the question raises whether dietary compounds can 

train this innate immunity and whether ‘functional’ foods, containing these bioactive 

compounds, can be used as an effective strategy to treat immune deficiency status or 

modulating exaggerated inflammation [54, 55]. Several NDPs were reported to have 

immunomodulatory effects, including yeast/fungal and cereal β-glucans which share 

common structural features with β-glucans as present in pathogens. It is therefore not 

unlikely that food, containing these β-glucans, can train our immune system, especially 

when intestinal cells can recognize these β-glucans and pass this ‘training’ signal 

systemically. The macrophages that cross the intestinal barrier for sampling could also 

initiate the interaction of immune cells and β-glucans [32]. The results on vaccination 

efficacy increase by Naxus, as explained earlier, also resulting in a reduced incidence of 

common cold and respiratory tract infection (unpublished data), are therefore in line. 

These NDPs, as a food product or supplement, are therefore worth to study for this 

trained immune effects. Optimal dosing and duration of intervention need to be fine-

tuned. Also, duration of maintained trained status and the cross protection against a 

large array of pathogens need to be established.  

 

Techniques to prove immunomodulatory function of food components 

To study the immunomodulatory or training activity of NDPs and other food compounds 

we need efficient methods to study the status and function of immune cells. In the early 

stage of our research, at the time we developed the methods to polarise macrophages 

to M1 and M2, we applied common methods like flow cytometry based on established 

surface markers (like HLA2, CD80, and CD83 as M1 markers and CD209, CD163 as M2 

markers). This resulted in only slight differences between these subsets. The reason for 

this could be that macrophages, differentiated by MCSF for 6-days, push macrophages 

to express a high background level of those markers. We next applied qPCR to check 

gene expression of IL8, IL1, IL12p40, TNF as M1 markers, and dectin-1, CD209, MRC1, 

MRC2, PPAR, and CD36 as M2 markers. These showed to provide more information on 

differential status of the subsets and the marker list could be easily expanded based on 

microarray analysis. Gene expression markers are therefore preferred over surface 

markers for this type of in vitro analysis although some of the newly identified markers 

like the C-type lectins could be valuable surface markers, especially as it is likely that they 

are capable of identifying a highly variable set of carbohydrate structures. However, in 

vitro, changes in gene expression can be followed but not necessarily describe the true 

physiological status of the immune cell. So the challenge will be how to apply gene 
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expression markers more self-explanatorily in in vivo situations. Also here the best 

strategy might be to apply a challenge (like PAMPs) on whole blood, PBMCs or 

separately on isolated monocytes or macrophages and to analyse the responses by gene 

expression and cytokine analysis.  
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Figure 2. Correlation between gene expression and excreted protein for macrophages stimulated 

with NDPs. Gene expression data and cytokines protein production were analysed for the linear 

regression analysis by GraphPad Prism 6 (GraphPad Software, Inc., La Jolla, CA). 

 

Gene expression predicts protein level 

The gene expression markers set that we developed to distinguish M1 and M2 and to 

characterise the newly identified MNDP subset can have interesting applications in future 

research. However, as current research makes us of cytokines instead of gene 

expression markers, we studied the correlation between expression of cytokine genes 

and excreted proteins in our macrophage model. Here we include some additional data, 

analysed by linear regression analysis, to the data presented in the separate chapters 
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(Figure 2). These data indicate that mRNA expression is significantly correlated with 

protein production for CXCL11 (p=0.001), CCL20 (p=0.022), and TNF (p=0.004). Only IL1β 

did not reach significance (p=0.051), which might be due to the low expression of both 

gene and protein or the sampling time point used for the gene expression analysis was 

not optimal. Overall, from our experience we believe that gene expression analysis in cell 

models is a rapid and sensitive tool. 

Future perspectives 

A macrophage polarisation model has been developed and is descried in this thesis, 

together with the effects of NDPs studied based on this macrophage model. The study 

revealed that MNDP could be characterized by gene expression of a panel of markers, by 

secretion of cytokines and chemokines, and that MNDP induce functional changes in 

phagocytosis, antigen processing, and recruiting ability. Furthermore the gene 

expression of a group of C-type lectin receptors were changed by NDPs [24]. To be more 

specific, we found that dectin-2 and Mincle are both increased in expression when 

macrophages are incubated with NDPs. Those two receptors also have been shown to 

be involved in -mannose recognition, both independently. These two receptors also 

can form a heterodimer with different sensitivity and diversity for recognizing 

microbiota [45]. It would be interesting to study these receptors in more detail, 

specifically in relation to NDP recognition. In addition, it would be worthwhile to study 

the intercellular signalling in macrophages and to analyse whether receptor activation 

leads to similar or divergent signals that eventually regulate immune functionality. It 

would be also interesting to use this in vitro model as selection tool for other NDPs and 

to correlate to in vivo data. By using these analyses, possibly we can select and target 

the NDPs as functional food ingredients to support maintenance of the intestinal 

immune barrier, support the immune system, or support both.  
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Non-digestible polysaccharides (NDPs) are considered as important ingredients to 

support health. Among these health effects, immunomodulatory effects raised interests 

in the past decade. The intestine is the primary organ that interact with NDPs. The 

intestinal epithelial cells (IECs) form a dynamic physical barrier and together with 

associated immune cells determine for a large part our immune homeostasis. Studying 

the direct interaction between NDPs and intestinal and immune cells could help us to 

uncover the mechanism by which NDPs exert immunomodulatory effects and how NDPs 

can differ in this activity. In this thesis, we investigated the immunomodulatory effects 

of NDPs through interaction with intestinal immune cells using in vitro methods in order 

to characterise the NDPs and preselect NDPs with differential activity for further in vivo 

evaluations. 

The intestinal immune barrier is formed by various IECs and immune cells, which are 

introduced and their specific functions discussed in Chapter 1. NDPs could interact 

directly with both IECs and immune cells that sample in or from the lumen. The majority 

of IECs are enterocytes and most relevant immune cells responsible for sampling in the 

lumen have been characterised as macrophages, which leads us to focus on these cell 

types by in vitro approaches. In addition, basic information on NDPs and current status 

on health effects of NDPs both in vitro and in vivo are discussed.   

In Chapter 2, the direct response of IEC to NDPs stimulation was investigated. IECs form 

the largest surface of the body that, with a crucial role as barrier also, perform a role in 

signalling towards immune cells. We used 21-day transwell cultured Caco-2 to resemble 

the small intestinal enterocytes that form largest part of this intestinal layer. We first 

characterized the chemical composition of five NDPs which revealed different mono 

sugar composition, linkages of backbone and side chains and a wide range of MW (from 

17 KDa to 2100 KDa). The NDPs could reduce translocation of FITC-Dextran of 4 kDa 

across the epithelial layer, potentially through physical interference. Gene expression 

analysis indicated the induction of unique gene expression characteristics in Caco-2 cells 

upon exposure to different NDPs. An arabinoxylan preparation from wheat and a 

lentinan-containing extract from shiitake mushrooms showed upregulation of gene 

expression of the NF-κB family and chemokines CCL20 and CXCL10. Besides these 

immune related changes by some NDPs, we also observed changes in receptor 

expression (like TLR2, CD14 and GPCRs) and other pathways, amongst which the 

cholesterol biosynthesis pathway. 

Macrophages, as the resident population of immune cells penetrating between or 

associating with close contact with the IECs, are generally classified as inflammatory (M1) 

or as tolerant (M2) macrophages. In Chapter 3, we set up a macrophage differentiation 
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method based on primary blood cells and selected and validated M1 and M2 specific 

gene expression markers. Next, we analysed the effect when macrophages are exposed 

to NDPs and compared the resulting macrophages with M1 and M2 macrophages. Based 

on M1 and M2 markers we identified an alternative subset that we named MNDP. This 

MNDP was further studied by microarray analysis and revealed a commonly modulated 

set of genes, involved in migration, metabolic processes, cell cycle, and inflammatory 

immune function.  

In Chapter 4, we further functionally characterize these MNDP in comparison to M1 and 

M2 macrophages based on a set of functional assays. NDP-treated macrophages showed 

no IDO activity and showed an inhibited antigen uptake and processing capacity 

compared to M1 and M2 macrophages. Also their phagocytic capacity was reduced 

compared to both M1 and M2 macrophages. Furthermore, the alternative expression 

pattern for NDP-treated macrophages, as demonstrated by gene expression, was 

confirmed by protein measurements. The signature mix of the chemokines CCL1, CCL5, 

CCL20, CCL24, CXCL8, and IL1β secreted by MNDP, and in particular when macrophages 

were treated with Naxus, was shown to induce a recruitment of monocytes. 

As macrophage plasticity could be essential for intestinal immune homeostasis, 

resolving activity of inflammatory responses upon a challenge is important. Besides, 

redirecting differentiation and function of tolerant macrophages can also be beneficial 

to the intestinal immune status. In Chapter 5, we analysed plasticity of M1 and M2 

macrophages to NDPs exposure. Macrophage plasticity was demonstrated as M1 and 

M2 could be skewed to an alternative subset indicated by a dedicated set of gene 

expression markers, selected to characterize M1, M2 and MNDP macrophages. In addition, 

phagocytosis and antigen processing capacity of both M1 and M2 were decreased by the 

NDP Naxus. Besides, Naxus could change the secretion of cytokines by macrophages 

that previously were differentiated towards M1 and M2. For M2, this resulted in an 

increase of recruitment of monocytes by M2 macrophages.  

In Chapter 6, we discussed the important findings in each chapter of this thesis together 

with current literature, and gave a general perspective on this research line focussing on 

the immunomodulating activity of NDPs and the direction for future research. We 

suggested NDPs in terms of Naxus as candidate for guiding investigations in ex vivo and 

in vivo studies for immunomodulation of intestinal disease.
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