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PROPOSITIONS

1. A ‘one-size fits all’ indicator for methane emission that can be measured in bovine milk
is not achievable.
(this thesis)

2. Counterintuitively, combining indicators for methane emission that can be measured
in bovine milk does not result in a better estimation of methane emission of dairy cows
fed a wide range of roughage-based diets.

(this thesis)

3. The second challenge of interdisciplinary research is understanding each other’s jargon,

concepts, and reasoning.

4. Reviewers of scientific articles are sometimes like children — you should not want to

win every battle.

5. Introducing yourself as a biologist comes with unrealistic expectations.

6. To derive more robust conclusions from animal research, stimulating their natural
behavior is needed, which counteracts with the reduction in the number of animals
used.

7. Typical driving behavior is contrary to evolutionary beneficial behavior.
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Chapter 1

General introduction




CHAPTER 1

ENTERIC FERMENTATION

The rumen harbors a diverse microbial population comprising mainly bactetia,
protozoa, fungi, and archaea. These microbes reside in the rumen symbiotically with the host
and grow through the process of microbial fermentation of feed ingested by the host, also called
enteric fermentation. With this process, ruminants are able to effectively turn human inedible
biomass, such as coatse plant material, into high quality protein in the form of milk and meat
for human consumption (Gerber et al., 2015).

Enteric fermentation occurs in the gastrointestinal tract of ruminants, predominantly
within the rumen (~87%) and to a small extent in the large intestines (~13%) (Murray et al.,
1976). Microorganisms in the rumen hydrolyze protein and carbohydrates into amino acids and
sugars, which in turn are fermented into amongst others volatile fatty acids (VFA), hydrogen
(Hz2), and carbon dioxide (CO2). The VFA are partly absorbed through the rumen wall and are
the main energy supply required for maintenance and productive functions of the ruminant
(Boadi et al., 2004). As a final step, methanogenic archaea generate metabolic energy in the form
of ATP for their maintenance and growth, by forming methane (CHj) using mainly CO2 and Ha
(Ellis et al., 2008; McAllister and Newbold, 2008). This process of methanogenesis is essential
for a good performance of the rumen because it assures a low concentration of H in the rumen,
allowing the ruminal microbial population to function under optimal conditions to support the
continuation of substrate fermentation (McAllister and Newbold, 2008). Van Lingen et al. (20106)
however demonstrated that not all main fermentation processes, viz. glucose fermentation
pathways, are controlled by the ruminal concentrations of Ha. The CH4 produced by the ruminal
methanogens is predominately released into the environment through eructation and breath, and

as a greenhouse gas (GHG) significantly contributes to global warming.

THE ENVIRONMENTAL IMPACT OF ENTERIC FERMENTATION

Methane is, together with COz and nitrous oxide, one of the three main GHG and has
a global warming potential of 28 CO; equivalents (Myhre et al., 2013). Methane originates from
natural sources, such as wetlands, and from anthropogenic sources, such as natural gas
production, landfills, and agticulture (Lassey, 2008). The livestock sector was estimated to be
responsible for approximately 14.5% of total global anthropogenic GHG emissions (Gerber et
al., 2013). Enteric fermentation is the main source of GHG emissions from dairy cattle,
representing 46% of the total emissions in the dairy supply chain (Gerber et al, 2013).
Furthermore, based on the expected farming and consumer lifestyle practices, global CHy
emissions from enteric fermentation is expected to increase by 70% in 2055, compared with
1995 (Popp et al., 2010). This makes enteric CH4 emission one of the main targets of the GHG
mitigation objectives of the dairy cattle sector (Hristov et al., 2013a). At present, there are several
strategies to mitigate CH4 emissions. For example, increased animal productivity, which can be
achieved through improvements in animal genetics, feeding, reproduction, health, and overall
management, may allow a reduction of the number of animals needed to maintain constant
output with a reduced CH4 emission (Hristov et al., 2013a). Additionally, several altered feeding
strategies as well as other farm management practices are available to mitigate CH4 emissions,
which have been extensively reviewed by, for example, Hristov et al. (2013a,b), Montes et al.
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GENERAL INTRODUCTION

(2013), and Knapp et al. (2014). The effect of a mitigation strategy may vary depending on the
unit in which enteric CH4 production can be expressed. See Textbox 1 for a description of the

different units to express enteric CH4 production.

TECHNIQUES TO QUANTIFY AND MEASURE ENTERIC METHANE
PRODUCTION

Accurate and repeatable measurements of CHy emission from individual dairy cows
are required to assess the efficacy of possible mitigation strategies, to decrease uncertainties
associated with national GHG inventories, and to develop protocols for genetic selection for
cows with reduced CH4 emission (Hammond et al., 2016). There are several techniques to
estimate or measure enteric CHy production of dairy cows, including mathematical models, the
in vitro gas production technique, and several iz vivo measurement techniques.

A wide range of mathematical models have been developed to estimate CH4 emission
from ruminants using nutrient intake data as input. These include dynamic mechanistic models,
which estimate CHy4 emission based on a representation of microbial fermentation processes that
occur in the rumen and hindgut, and empirical (or statistical) models, which relate nutrient intake
to CHy4 emission directly (Bannink et al.,, 2011). Dynamic mechanistic models may be more
successful in predicting observed variation in CH4 emission than empirical models, but they
require detailed dietary inputs which may not be commonly available at the national level or at
the individual farm level (Alemu et al., 2011). Because mechanistic models have, in comparison
with empirical models, a more detailed representation of the underlying mechanisms of microbial
activity and methanogenesis, they have an advantage in terms of evaluating the effectiveness of
CH4 mitigation options that may be implemented on farm. Empirical models are however very
useful because of their simplicity and ease of use. The accuracy of empirical models to evaluate
specific dietary mitigation measures is generally lower than that of mechanistic models because
no diet specific information is included. Subsequently, use of empirical models may introduce
errors into the accounting of mitigation measures in inventories of GHG emissions and lead to
incorrect mitigation recommendations (Ellis et al., 2010).

Various techniques are available to measure CHy4 emission. The iz vitro gas production
technique has been widely used to evaluate the nutritive value of feeds for ruminants, and in the
last decade to assess the CHy4 production potential of different feeds as well (Yafiez-Ruiz et al.,
2016). As recently reviewed by Yafiez-Ruiz et al. (2016), in vitro and in vivo results, however, are
poortly related. Therefore, in vitro CHy production results with well-buffered and standardized
fermentation conditions should be interpreted with care and may not reflect the 7# vivo CHy
production. According to Yafez-Ruiz et al. (20106), for the 7 vitro gas production technique, one
should only use rumen fluid from donor animals that were fed the same diet as incubated or
should be of similar nutrient composition, because using rumen fluid from adapted versus non-
adapted animals significantly affects # vitro CHy production. The importance of using rumen
fluid of adapted animals has also been demonstrated by Klop et al. (2017). However, as
demonstrated by Hatew et al. (2015), even inoculum obtained from specifically adapted animals

may still lead to a large difference between CHg4 production observed iz vitro and in vivo.
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CHAPTER 1

Text box 1. Different units to express enteric methane production

There is currently limited consensus on which unit of CHy4 emission to use for
evaluating the CH4 mitigation potential of altered feeding strategies or for lowering the
carbon footprint of milk production through genetic selection (Negussie et al., 2017). It
could be ecither of the three units CH4 production, CHy yield, or CHy4 intensity. When
referring to CH4 production, the typical unit is mass (g) or volume (L) per unit of time (e.g.,
day), per animal. The obvious problem with this unit of CH4 emission is that it is highly
correlated with the dry matter intake (IDMI) of the animal (De Haas et al., 2017). Most of
the CH4 production originates from enteric fermentation, hence more fermentation due to
a higher DMI will increase the total CH4 production per day. Additionally, CH4 production
is also highly correlated with the production trait of interest: in sheep or beef, meet
production; in dairy, milk production (De Haas et al., 2017). A higher milk yield is often
associated with a higher DMI (Garnsworthy et al., 2012), and, as already explained above, a
higher DMI is often associated with a higher daily CH4 production (e.g., Hristov et al., 2013).
Hence, a positive association between milk yield and CH4 production exists in dairy cows.

For breeding putposes, CH4 production might be the best phenotype of CHy
emission to breed for (Lassen and Levendahl, 2016; De Haas et al., 2017; Negussie et al.,
2017). Not only does it represent the direct goal, namely the trait of interest which needs to
be improved (Herd et al., 2013), but also the most correct way to breed for reduced CHy
emission, because the relationship with feed intake or milk production could be accounted
for by including these in the final selection index or scheme (De Haas et al., 2017; Negussie
et al,, 2017). It is however questionable whether it might be more effective or accurate to
directly use feed intake-corrected CH4 emission or milk production-corrected CH4 emission
(e.g., CHy yield or CHy intensity) as the breeding goal.

When referring to CHy yield, the typical unit is g or L of CH4 per kg DMI. To
exclude the effect of feed intake in the expression of CH4 emission, Dijkstra et al. (2011)
proposed that the evaluation of nutritional mitigation strategies should be based on CHy
production relative to feed intake as this avoids the confounding effect of DMI. There are,
however, uncertainties in measuring DMI at the farm level, making an accurate relation of
CH,4 to DMI difficult in practice (Bannink et al., 2011). In addition, the nutritional value of
feed can affect animal productivity despite a similar DMI. Therefore, another unit of
expression refers to CHy intensity (g or L of CHy per unit of product yield). The CHy
intensity for dairy cattle is usually expressed as CH4 production per unit of fat- and protein-
corrected milk. As clearly demonstrated by Warner et al. (2015), CH4 intensity takes the value
and characteristics (i.e., digestibility) of gross energy intake by dairy cows into account,
illustrating that this unit of CHy emission has great value. In the context of global food supply
and efficient use of resources it is important to consider the latter two units, CHy yield and
CHy intensity, in particular.
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GENERAL INTRODUCTION

The need for high throughput measurements of enteric CH4 emission has led to the
development of a variety of approaches for measuring this emission 7z vivo, many of which have
been reviewed by Hammond et al. (2016). Enclosure techniques, tracer gas, and short-term
measurements are among those techniques and are briefly described below. The open-circuit
respiration chambers are a 'gold standard' in terms of accuracy and precision under the condition
that they are routinely calibrated and gas recovery approximates 100% (Hammond et al., 2016).
However, CH4 measurements are conducted under highly controlled conditions which do not
exist under practical farming. Additionally, the costs of construction and operation are high and
the throughput capacity of the system is limited, making this technique unsuitable for large scale
measurements. Therefore, alternative high throughput measurement techniques have been
developed.

A commonly used CH4 measurement technique is the sulfur hexafluoride (SFe) tracer
technique; a technique suitable for penned as well as free ranging and grazing animals
(Hammond et al., 2016). Although the SF¢ tracer technique allows for measurement of CHy4
emission from many individual animals whilst in their natural environment, the SFq tracer
technique provides a mean CH4 emission that can differ from that obtained for the same animals
in respiration chambers (Hammond et al., 2016). Also, within- and between-animal variation is
larger when using the SFe tracer technique for dairy cattle compared to the respiration chamber
technique (Grainger et al., 2007). More recently, however, Deighton et al. (2014) demonstrated
that a modified SF¢ tracer technique (e.g., a constant sample collection rate) reduced errors
associated with SF¢ release, sample collection, and analysis. Therefore, these authors concluded
that their modified SFg tracer technique can be an accurate and versatile research tool for
measuring CHy4 emission of ruminants. Relative to the climate respiration chambers, the SF
tracer technique has a higher throughput in terms of animal measurements obtained relative to
time and cost, but this technique is labor intensive and dependent on implementation and
technical skill to minimize experimental error (Hammond et al., 2016).

Other techniques that have been developed involve the short-term measurement of
CH, emission with spot measurements of exhaled CHy at certain time points (e.g., at milking or
during feeding). These techniques are usually automated, non-invasive, and non-intrusive,
allowing a high throughput of animals, such as the GreenFeed system, so-called ‘sniffer’
techniques, CH4:COs ratio techniques, and the handheld laser CH4 detector (Hammond et al.,
2016). Methane emission from an animal is, however, not constant throughout the day, with
diurnal patterns affected by the diet, feed allowance and feeding pattern. The timing and duration
of sampling of the short-term measurement techniques is therefore critical for accuracy as well
as precision, and there is in principle a high potential of biased measurement (or estimates
derived from those measurements) of CH4 emission. Hence, serious concerns regarding the
accuracy, repeatability, and precision of the data obtained with such short-term measurement

techniques exist (Hammond et al., 2016).
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CHAPTER 1

PROXIES

As described above, in the last few years efforts have been made to develop direct,
reliable, and low-cost measurement techniques for CH4 emissions of individual animals.
However, progress has not been as fast as desired, mainly because direct measurement of CHy
on an individual-animal basis is still difficult and expensive (Pickering et al., 2015). This has
stimulated researchers to look for proxies for CH4 emission of dairy cattle as alternatives for
direct CH4 measurement techniques.

Proxies for CH4 emission of dairy cows are indicators or indirect traits that are
correlated with enteric CHy production. There are several criteria that a proxy needs to adhere
to, in order to actually be valuable. From a technical point of view, it is important that a proxy
is both accurate and precise when estimating CH4 emission. Accuracy refers to how closely the
model-predicted value(s) is (are) to the true observed value(s). If a proxy is not accurate, it could
result in a biased prediction (over- or underprediction) of CHy emission and thus systematically
deviates from the reality (Tedeschi, 2000). Precision refers to the magnitude of the scatter around
the average mean. If a proxy is not precise, the proxy is most likely not able to detect differences
among model predictions (Tedeschi, 2000). Ideally, in terms of accuracy and precision, the proxy
should be able to estimate CHy4 emission of both individual cows and of dairy herds, with a
certain level of robustnesst (also accurate and precise CHy4 estimates under different dietary
regimes, environmental condition, farming systems, and so on), to support farmers in their
management to reduce CHj4 emission. If the precision and accuracy of such proxies is
satisfactory, they might serve as the much-needed alternative to expensive direct CHy
measurements. To achieve this, a proxy should also be valuable from a practical points of view,
such as easy to measure at relatively low costs on a large scale. These practical issues can be
assigned to the attributes simplicity, costs, invasiveness, and throughput (Negussie et al., 2017).
Simplicity refers to the ease with which proxies can be measured. Costs refer to all costs
associated with the measurement of the proxy, including the costs of construction, operation,
and analysis. Invasiveness is the intensity of animal handling that is required to measure the
proxy, and throughput is the number of observations within in a given period per animal.

Negussie et al. (2017) assessed existing potential proxies for CHy4 emissions of dairy
cows both in terms of statistical and practical aspect, including proxies related to (1) feed intake
and feeding behavior, (2) rumen function, metabolites, and microbiome, (3) milk production and
composition, (4) hindgut and feces, and (5) measurements at the level of the whole animal (e.g.,
body condition score, body weight, and lactation stage). To illustrate, results of Negussie et al.
(2017) indicate that proxies based on samples from the rumen or related to rumen sources are
pootly to moderately related to enteric CH4 production (i.e., statistical aspect). Moreover, these
proxies were considered too costly and difficult for routine on-farm implementation (i.e.,
practical aspect). Proxies related to body weight, milk yield, and milk composition (e.g., milk
fatty acids) appeared to be moderately to highly accurate predictors of enteric CH4 production
(i.e., statistical aspect) and are relatively simple, inexpensive, and easy to implement in practice
(i.e., practical aspect). Hence, one can imagine that latter type of proxies are more suitable proxies
for CH4 emission than the rumen related proxies. In particular, milk mid-infrared spectroscopy
is a promising proxy; accurate, cheap, and easily implemented in routine milk analysis at no extra
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GENERAL INTRODUCTION

cost (Negussie et al., 2017). The latter authors emphasized that no single proxy may accurately
predict enteric CHy production, and that combining proxies may be the best way forward.
Combining proxies for CH4 emission will allow improved description of independent sources
of variations in CH4 emissions and result in the most accurate prediction of CH4 emissions in
dairy cows (Negussie et al., 2017). Examples of combinations of proxies include prediction of
CH,4 emission based on diet-specific milk fatty acid composition or milk mid-infrared
spectroscopy combined with lactation stage.

It is important to note though that enteric CHy production is influenced by many
factors, including dietary factors (such as the type and the amount of feed), animal factors (such
as milk yield, body weight, activity, lactation stage, and genetic traits), management factors (such
as feeding frequency), and environmental factors (such as seasons and temperature) (e.g., Hristov
et al., 2013a,b). These factors together result in large variation in CHy4 emission of dairy cattle,

making it a challenge to develop a universal CHy4 proxy.

RESEARCH OBJECTIVES

As outlined above, proxies might serve as a good alternative to quantify CH4 emission
of dairy cattle. Therefore, the general objective of the PhD study described in this thesis was to
develop a proxy for CHy emission that can be measured in milk of dairy cows. To this end, a
large range of chemical analyses was performed on milk samples obtained from cows fed a wide
range of roughage-based diets while housed in climate respiration chambers. These data on milk
composition were subsequently used to examine relationships between the chemical
composition of milk and the CHy4 emitted by the cows. This PhD study builds further on a CHy4
prediction model recently proposed by Dijkstra et al. (2011) which is exclusively based on the
fatty acid composition of milk. It is hypothesized that the addition of other metabolites in this
prediction model will enhance its predictive power and thus will lead to a better indicator in milk
for enteric CHy production of dairy cows. For the identification of these components (i.c., fatty
acids, volatile metabolites, and non-volatiles metabolites) in milk, gas chromatography, gas
chromatography-mass spectroscopy, and nuclear magnetic resonance equipment, respectively,
were required. These techniques are, however, not suitable for large-scale measurements.
Therefore, to apply the indicator in practice, a method based on Fourier-transform infrared
spectroscopy has been used in this PhD study as well. Overall, the specific objectives of this
PhD study were:

1. to quantify the relation between enteric CH4 production and individual milk fatty acids,
volatile metabolites, and non-volatile metabolites based on data of dairy cows fed diets
with increasing amounts of corn silage at the expense of grass silage;

2. to determine the CHy prediction potential of milk fatty acids alone, volatile metabolites
alone, non-volatile metabolites alone, and the combination of these three component
groups;

3. to determine the CHy4 prediction potential of milk Fourier-transform infrared

spectroscopy;
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CHAPTER 1

4. to evaluate the robustness of the established relationships between enteric CHy
production and milk fatty acids, volatile metabolites, and non-volatile metabolites upon
linseed oil supplementation in the diet of dairy cows with a different DGAT7 K232A
polymorphism.

The research presented in this thesis was part of the TI Food and Nutrition project entitled

'Reduced methane emissions of dairy cows' (see Textbox 2 for a brief project description).

Textbox 2. TTI Food and Nutrition program Reduced methane emissions from dairy
cows: towards sustainable dairy cattle production by increased understanding of

genetic variation and rumen functioning

This multi-disciplinary project aimed to increase our knowledge regarding CHy
emission by dairy cows in order to decrease the ecological footprint of dairy production and
to contribute to the goal of a 30% decrease in greenhouse gas emission from the Dutch dairy
sector by 2020. For this purpose, a proxy for CH4 emission from individual cows based on
milk metabolite composition was developed, with the use of data from climate respiration
chamber experiments originating from the Dutch 'Low Emission Animal Feed' research
program. Another proxy was developed based on gases expelled by cows, and was used to
explore the genetic variation in CHy emission between cows. These two proxies can be used
as simple and inexpensive quantification tools for estimating enteric CH4 emissions from
dairy cattle under field conditions. The understanding of processes related to CHy
production has increased by characterization of the composition and functioning of micro-
organisms and the metabolites produced in the rumen of the cow in response to feed
composition and diurnal patterns of feed intake. The interaction between diet, microbiome
composition, and genotype of animals has been explored to obtain a more holistic
understanding of factors affecting ruminal CH4 production. Various modeling approaches
have been applied to improve the systematic understanding of rumen fermentation. These
approaches and their results provided a profound basis for relating CH4 production to
feeding regime and feed composition.

The multidisciplinary project team was comprised of experts in Animal Breeding
and Genetics, Animal Nutrition, Dairy Science and Technology, and Microbiology. The team
was based at Wageningen University and collaborated with researchers from the industrial
parties CRV, Lely Industries, and Qlip. Financial support was obtained from the Centraal
Bureau Levensmiddelenhandel (CBL), Cooperative cattle improvement organization CRV,
Federatie Nederlandse Levensmiddelen Industrie (FNLI), Lely Industries NV, Dutch
Ministry of Economic Affairs, Qlip BV, Wageningen University & Research, and ZuivelNL.
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GENERAL INTRODUCTION

OUTLINE OF THE THESIS

The research in this thesis focuses on the development of a proxy for CH4 emission
that can be measured in milk of dairy cows. Chapter 2 provides an overview of recent research
that relates milk fatty acids with CH4 emission, and discusses the opportunities and limitations
of using milk mid-infrared spectroscopy to estimate CH4 emissions of dairy cattle. Chapter 3
describes the effects of replacing grass silage with corn silage on enteric CHy production, rumen
VFA concentrations, milk production, and milk composition including the fatty acid profile.
Based on the data from the experiment described in Chapter 3, the relation between enteric CHy4
production and individual volatile metabolites and non-volatile metabolites is quantified and
described in Chapter 4. Chapter 5 describes the CH4 prediction potential of milk fatty acids
alone, volatile metabolites alone, non-volatile metabolites alone, and the combination of these
three (also using data from the experiment described in Chapter 3). In Chapter 6, the relation
between enteric CH4 production and the individual milk metabolites as well as the CHy
prediction potential of the milk metabolites is described, using a larger dataset comprising 6
experiments and a wide range of roughage-based diets. Chapter 7 describes the effect of dietary
linseed oil, the DGAT7 K232A polymorphism, and their interaction, on enteric CHy production,
rumen VFA concentrations, milk production, and milk composition including fatty acid profile.
In Chapter 8 the robustness is evaluated of the relationship between enteric CH4 production
and the fatty acids, volatile metabolites, and non-volatile metabolites in milk, upon linseed oil
supplementation in the diet of dairy cows with a different DGAT7 K232A polymorphism. In
Chapter 9, the CHy prediction potential of milk Fourier-transform infrared spectroscopy is
determined and compared with the prediction potential milk fatty acids. Finally, Chapter 10
comprises a general discussion of the results in this thesis, including suggestions for future
research, and providing general conclusions on the applicability and development of milk proxies

for enteric CH4 emission.
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CHAPTER 2

ABSTRACT

Enteric methane (CHj4) production is among the main targets of greenhouse gas
mitigation practices for the dairy industry. A simple, robust and inexpensive measurement
technique applicable on large scale to estimate CH4 emission from dairy cattle would therefore
be valuable. Milk fatty acids (MFA) are related to CHy4 production because of the common
biochemical pathway between CH4 and fatty acids in the rumen. A summary of studies that
investigated the predictive power of MFA composition for CH4 emission indicated good
potential, with predictive power ranging between 47 and 95%. Untl recently, gas
chromatography (GC) was the principal method used to determine the MFA profile, but GC is
unsuitable for routine analysis. This has led to the application of mid-infrared (MIR)
spectroscopy. The major advantages of using MIR spectroscopy to predict CH4 emission include
its simplicity and potential practical application at large scale. Disadvantages include the inability
to predict important MFA for CHy prediction, and the moderate predictive power for CHy
emission. It may not be sufficient to predict CH4 emission based on MIR alone. Integration with
other factors, like feed intake, nutrient composition of the feed, parity, and lactation stage may
improve the prediction of CH4 emission using MIR spectra.
Keywords: mid-infrared spectroscopy, milk fatty acids, methane emission, dairy cows

INTRODUCTION

Enteric methane (CHy) is produced in the gastrointestinal tract of ruminants, mainly
the rumen, by methanogenic arhaea. Enteric CH4 comprises 17% of global CHy, and is therefore
the single largest source of anthropogenic CH4 (Knapp et al., 2014). In addition to its relevance
of environmental impact, CHy represents an energy loss, making CH4 emission one of the main
targets of greenhouse gas (GHG) mitigation practices for the dairy industry (Hristov et al., 2013).
The quantification of CHy4 emission is important to understand factors that contribute to the
variation and to identify effective CH4 mitigation strategies. Several techniques, such as the
climate respiration chambers, the sulfur hexafluoride tracer (SFg) technique, and mathematical
models, have been developed to estimate CH4 emission, many of which have been reviewed by
Kebreab et al. (2006) and Storm et al. (2012). However, a simple, robust and inexpensive
measurement technique applicable on large scale to estimate CH4 emission from dairy cattle in
commercial practice is still missing and would be valuable for the dairy industry (Van Lingen et
al., 2014). Therefore, the potential of various metabolites in milk as biomatkers of CH4 emission
gained interest, including milk fatty acids (MFA; Fievez et al.,, 2012). The aim of this review is
to provide an overview of the recent research that relates MFA with CH4 emission, and to discuss
the opportunities and limitations of using mid-infrared (MIR) spectroscopy to estimate, direct

and indirect, CH4 emission of dairy cattle.

MILK FATTY ACIDS AND METHANE EMISSION
Several studies have related individual MFA (g/100 g fatty acids; FA) to CHy4 emission
in dairy cows (Chilliard et al., 2009; Castro-Montoya et al., 2011; Dijkstra et al., 2011; Mohammed
et al,, 2011; Van Lingen et al., 2014; Williams et al., 2014; Dijkstra et al., 2016; Rico et al., 2016).
Straight short- and medium-chain fatty acids (SMCFA) in milk arise almost exclusively from de
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novo synthesis in the mammary gland from acetate and 3-hydroxybutyrate produced in the rumen
(Bernard et al., 2008). Ruminal acetate and butyrate are positively associated with enteric CHy
emission (Boadi et al., 2004; Ellis et al., 2008). Hence, a positive relationship between CHy4
emission and SMCFA can be assumed due to the common biochemical pathway (Ellis et al.,
2008; Chilliard et al., 2009). Odd- and branched-chain fatty acids (OBCFA) in milk can also be
used to predict CH4 emission (Fievez et al., 2012). Propionate is a substrate for de novo synthesis
of C15:0 and C17:0 in the mammary gland, and given the negative relation between propionate
and CH,4 emission (Boadi et al., 2004; Ellis et al., 2008), a negative relation between CH4 emission
and these linear odd-chain FA in the milk can be assumed. In addition, milk OBCFA are of
microbial origin in the rumen, which in turn relate directly to CH4 emission. Fibrolytic bacteria
are generally enriched in 450 FA, whereas amylolytic bacteria contain high amounts of linear odd-
chain FA and anteiso FA (Vlaeminck et al., 2006). Hence, a positive relation between CHjy
emission and zso FA can be assumed, as well as a negative relation between CH4 emission and
linear odd-chain FA and anteiso FA (Fievez et al., 2012).

A higher content of dietary unsaturated fatty acids (UFA) is negatively associated with
CH,4 emission (Patra et al., 2013; Van Lingen et al., 2014). This CH4 suppressing effect may be
related to the intermediary metabolic products resulting from biohydrogenation (BHG) of UFA
in the rumen, such as C18:1 and C18:2 isomers (Mohammed et al., 2011). Because several long-
chain UFA in milk originate from dietary UFA and their BHG products formed in the rumen, a
negative relation can be assumed between long-chain UFA in milk and CH4 emission (Van
Lingen et al., 2014).

A negative relation can also be expected between CHy4 emission and BHG intermediates
in milk, because certain dietary strategies, including low-fiber diets and high-concentrate diets,
alter the rumen environment and lower ruminal pH (Boadi et al., 2004). This often results in
microbial population shifts, which have been associated with modifications in the BHG
pathways. With a lower ruminal pH, BHG becomes more incomplete (i.e., concentrations of
BHG intermediates increase) and C18:1 #rans-10 replaces C18:1 #rans-11 as the predominant #rans
C18:1 isomer of milk fat (Bauman and Griinari, 2003). Furthermore, a lower ruminal pH reduces
the activity of rumen methanogens, and inhibits fiber fermentation, whereas starch fermentation
is not reduced. Hence, propionate production is favored, thereby reducing H» availability for the
production of CH4 (Bannink et al., 2008).
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The relation between MFA and CHj4 emission has resulted in the suggestion that MFA
composition can be used to predict CH4 emission in lactating dairy cows. Table 2.1 summarizes
the studies that have investigated the predictive power of MFA composition for CH4 emission
and derived multivariate models to predict CH4 emission (Chilliard et al., 2009; Dijkstra et al.,
2011; Mohammed et al., 2011; Van Lingen et al.,, 2014; Rico et al., 2016). In all studies, MFA
profile was elucidated using gas chromatography (GC), and detailed information regarding the
GC method used to determine the MFA profile is provided in the respective studies. In general,
the significant correlations found between individual MFA and CH4 emission are moderate
(correlation coefficient ranging between 0.3 and 0.7), with the exception of the ones reported by
Chilliard et al. (2009). Four studies (Chilliard et al., 2009; Dijkstra et al., 2011; Van Lingen et al.,
2014; Rico et al., 2016) associated OBCFA with CH4 emission, with varying results; C15:0 was
negatively related with CHy4 production (g/d) in one study (Rico et al., 2016), positively related
with CHy4 production (g/d) and intensity (g/kg fat- and protein-corrected milk; FPCM) in two
studies (Chilliard et al., 2009; Van Lingen et al., 2014), and not related with CHy yield (g/kg dry
matter intake; DMI) in another study (Dijkstra et al., 2011). All studies have relative similar
results for the C18:1 and C18:2 isomers, which were generally found to be negatively related to
CH4 emission, and all studies have relative similar results for the SMCFA, which were generally
found to be positively related to CHy4 emission. However, the specific SMCFA positively
associated with CHy4 emission differ between studies, with C10:0 and C16:0 having a positive
association with CH4 emission in four studies each, but C4:0 having a positive relation with CHy4
production (g/d; Chilliard et al., 2009) or a negative relation with CHy intensity (g/kg FPCM,;
Van Lingen et al., 2014). Williams et al. (2014) (not included in the table) studied the relation
between CHy4 production (g/d) and both C8:0 and total C18 FA in milk and concluded that the
concentrations of C8:0 and total C18 FA in milk do not enable accurate prediction of CHy
production (g/d). The variation between the studies regarding the SMCFA and individual C18
FA (Table 2.1), may explain why Williams et al. (2014) did not find a significant association
between both C8:0 and total C18 FA in milk and CH4 production (g/d). It should be noted here
that the studies used different units to express CHy4 emission (CH4 production in g/d, CHs yield
in g/kg DMI, and CHy intensity in g/kg FPCM; Table 2.1), which may affect the relationships
as well. For example, Van Lingen et al. (2014) and Dijkstra et al. (2016) found strong negative
relations between CHy yield (g/kg DMI) and certain #rans C18:1 FA (e.g., C18:1 #rans-10 or C18:1
trans-10+11), but these wete not observed for CHy intensity (g/kg FPCM). This can be explained
by the vatious BHG intermediates in milk being associated with a reduction of CHy yield (g/kg
DMI), as well as with milk fat depression. This negatively affects the amount of FPCM, resulting
in the absence of a significant relationship between these various MFA and CHy intensity (g/kg
FPCM) despite a strong negative relation with CHy yield (g/kg DMI).

Although these studies, with exception of Williams et al. (2014), show that MFA hold
potential to reflect changes in rumen fermentation, due to discrepancies between studies, it
remains unclear which MFA have the greatest potential as biomarker for CH4 emission. Similar
reservations hold for the CHy4 prediction equations given in several studies (Chilliard et al., 2009;
Dijkstra et al., 2011; Mohammed et al., 2011; Van Lingen et al., 2014; Rico et al., 2016). The
predictive power of the prediction equations range between 47% and 95% (Table 2.1), but the
MFA included in these equations often differ between studies, with only C17:1 ¢s-9 (Mohammed
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etal., 2011; Rico etal., 2016) and C18:1 ¢is-11 (Dijkstra et al., 2011; Mohammed et al., 2011; Rico
et al., 2016) appearing in two or more equations. The discrepancies between the studies might
be the result of the different CH4 measurement techniques and analytical methods used to
determine the MFA profile, the unit in which CHy is expressed, and the number of experiments
used to determine the relation between MFA and CHy. Overall, the predictive power seems
higher when CHy is expressed as yield (g/kg DMI) or as production (g/d) with feed intake
included as explanatory variable. This is because feed intake is a principal predictor of CHy
production (g/d) (Moraes et al., 2014). However, in practice feed intake is usually unknown and
therefore CHy intensity (g/kg FPCM) is of interest.

The most extensive dataset (i.e., number of studies and observations) was used by Van
Lingen et al. (2014) with a wide variety of diets in order to assess the potential of MFA as an
indicator for CHy emission (Table 2.1). Despite using a similar CH4 measurement technique and
a large number of experiments, Van Lingen et al. (2014) concluded that MFA have moderate
potential to predict CH4 emission, because the predictive power of the best CH4 prediction
equation was 0.47 for CHy intensity (g/kg FPCM) and 0.54 for CHy yield (g/kg DMI). Because
these prediction equations were developed on a wide range of dietary treatments, the results of
Van Lingen et al. (2014) suggest that one prediction equation for CH4 emission may not be
realistic. This is in agreement with independent evaluations (Mohammed et al., 2011; Dijkstra et
al., 2016). Mohammed et al. (2011) compared observed CHy4 emission with CHs emission
predicted by the equations of Chilliard et al. (2009) and Dijkstra et al. (2011). Estimating CH4
emission using the other equations resulted in overprediction of CH4 emission. Dijkstra et al.
(2016) compared observed CH4 emission of dairy cattle fed grass- and grass silage-based diets
with CH4 emission predicted by the equations of Van Lingen et al. (2014). It was concluded that
these prediction equations could not accurately predict CHy yield (g/kg DMI) and intensity (g/kg
FPCM), indicating that the relation between MFA profile and CHy4 emission in dairy cows fed
grass- and grass silage-based diets differ from those determined for other types of diets. This
suggests that diet specific prediction equations may have to be developed.

Although the relation between MFA and CH4 emission seems moderate and diet
specific, it might provide a simple method to predict CH4 emission from dairy cattle on large
scale. Because enteric CH4 emission is among the main targets of GHG mitigation practices for
the dairy industry (Hristov et al., 2013), it is worthwhile to further explore the application of this

biomarker technique.

MID-INFRARED TO MEASURE MILK FATTY ACIDS

Until recently, GC was the principal method for MFA analysis as GC measures a large
number of MFA precise and accurately, even those present at low concentrations in milk fat.
However, the GC method is unsuitable for routine milk recording (Soyeurt et al., 2011). Infrared
spectroscopy techniques are inexpensive, non-destructive, rapid, and multi-parametric (Coppa
et al., 2014). Both near-infrared spectroscopy and MIR show good prediction performance for
MFA concentrations (either in g/100 g FA or g/kg milk) allowing their use for routine MFA
composition recording (Coppa et al., 2014). At present, MIR spectroscopy is routinely used in
milk recording systems worldwide to predict fat, protein, lactose, and urea contents in dairy milk
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(Coates, 2000) to assist in farm management decisions and for breeding purposes. Because MIR
is already a major tool in dairy science and therefore easily implementable for estimating CHy
emission, this review focuses only on MIR.

Several studies have investigated the potential use of MIR spectroscopy to predict MFA
composition in dairy cattle (Soyeurt et al., 2006, 2011; Rutten et al., 2009; De Marchi et al., 2011;
Ferrand etal., 2011; Maurice-Van Eijndhoven et al., 2012), which have been extensively reviewed
by De Marchi et al. (2014). In general, these studies find a clear relationship between MFA
concentration (g/100 g FA) and the accuracy of the MIR spectroscopy prediction models; the
accuracy of the MIR spectroscopy prediction models for major MFA is higher compared with
minor MFA. The accuracy of MIR spectroscopy prediction models is also higher for individual
saturated fatty acids (SFA) than individual UFA. When dividing UFA in two groups, namely
mono unsaturated fatty acids (MUFA) and poly unsaturated fatty acids (PUFA), good accuracy
is achieved for MIR spectroscopy prediction models for MUFA, whereas it is not for PUFA (De
Marchi et al., 2014).

The results from these studies (i.e., Soyeurt et al., 2006, 2011; Rutten et al., 2009; De
Marchi et al., 2011; Ferrand et al., 2011; Maurice-Van Eijndhoven et al., 2012) confirm the
potential of MIR spectroscopy for accurate prediction of several individual, in particular major,
MFA and groups of MFA, but a considerable number of lower abundant MFA cannot be
predicted by MIR. In addition, Eskildsen et al. (2014) investigated whether the predictions of
individual MFA using MIR spectroscopy rely on direct association or indirect correlations, which
are confined to covariance structures in the dataset. It was concluded that the prediction of MFA
with MIR spectroscopy is indirect and based primarily on covariation between individual MFA
and total fat content of the milk. This indicates that the implementation of MIR spectroscopy
MFA predictions in milk recording systems must account for the universal validity of these
indirect correlations, because the ratio between individual MFA and total fat content found in
calibration milk samples may not be conserved in future milk samples resulting in incorrect and
biased predictions for future milk samples (Eskilden et al., 2014). Therefore, MIR spectroscopy
predicted MFA in calibration milk samples always need to be cross validated with the use of an
external and independent dataset. Overall, MIR spectroscopy is an interesting alternative in the
dairy sector for providing indications of the MFA profile of dairy cows (Soyeurt et al., 2000).

MID-INFRARED TO ESTIMATE METHANE EMISSION

In general, CH4 emission is linked to MFA profile. As MIR spectroscopy reflects the
MFA profile, it is logical to assume that MIR spectroscopy could estimate CHy4 emission from
dairy cows. Van Lingen et al. (2014) evaluated, indirectly via MFA composition, the use of MIR
spectroscopy to estimate CH4 emission of dairy cows and developed prediction models with
restricted selection of MFA based on the MIR results of Soyeurt et al. (2011) and of Rutten et
al. (2009). The prediction equations for CHy yield (g/kg DMI) decreased in predictive powet
from R? = 0.54 when using all MFA to R? = 0.43 when using the accurately MIR determined
MFA reported by Soyeurt et al. (2011) and to R? = 0.29 when using the accurately MIR
determined MFA reported by Rutten et al. (2009). Similarly, the predictive power for CHy
emission intensity (g/kg FPCM) decteased from R? = 0.47 when using all MFA to R? = 0.36
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when using the accurately MIR determined MFA reported by Soyeurt et al. (2011) and to R? =
0.28 when using the accurately MIR determined MFA reported by Rutten et al. (2009). These
results indicate that the performance of MIR spectroscopy limits the potential for estimating
CH,4 emission based on MFA, compared with GC, because several lower abundant MFA that
appear in various CHy prediction equations published (Chilliard et al., 2009; Dijkstra et al., 2011;
Mohammed et al., 2011; Van Lingen et al., 2014; Rico et al., 2016). are not available when MFA
is determined using MIR spectroscopy (Van Lingen et al., 2014).

Kandel et al. (2015) assessed indirectly whether MIR spectrometry can predict CHy
production (g/d) from daity cows by the use of four CHy4 prediction equations, each developed
by Chilliard et al. (2009). The predicted CH4 production (g/d) was within the expected range
from 350 £ 40 to 449 £ 65 g CH4/d, and Kandel et al. (2015) concluded that it is feasible to use
MIR spectroscopy to predict CH4 production (g/d). However, only the CH4 prediction
equations developed by Chilliard et al. (2009) were considered, because these were developed
from abundant MFA which have a high MIR prediction accuracy (Soyeurt et al., 2011). This
highlights, similar to Van Lingen et al. (2014) that the performance of MIR spectroscopy is
limited compared with GC, because lower abundant MFA important for the prediction of CH4
emission are not available when MFA is determined using MIR spectroscopy.

At present, there are two studies that investigated directly with no intermediate steps
(.e., MFA profile) if MIR spectroscopy can predict CH4 emission from individual cows.
Dehareng et al. (2012) used two experiments involving 11 lactating Holstein cows and three
dietary treatments, in which CH4 emission was measured using the SFe-tracer technique, and
MIR spectroscopy prediction models were developed using average milk spectra from morning
and evening milk samples. The accuracy of the different developed MIR spectroscopy prediction
models for CH4 production (g/d) and CHy intensity (g/kg milk) on this small dataset is rathet
high; the cross-validation coefficient of determination ranges from 0.68 to 0.79. However,
according to Vanlierde et al. (2015), the predicted CHy4 emission using the MIR spectroscopy
prediction models from Dehateng et al. (2012) was lowest in early lactation to increase thereafter,
which is biologically not meaningful (Vanlierde et al., 2015). Therefore, Vanlierde et al. (2015)
developed lactation stage dependent predictions of CH4 emission from MIR spectra, using a
total of 446 CH4 measurements of 142 Holstein, Jersey and Holstein-Jersey cows, measured with
the SFs tracer technique. Methane predictions using MIR spectra only were compared with CH4
predictions using MIR spectra and days in milk (DIM). The average CHs production (g/d)
predicted by both models hardly differed (both models, standard error of calibration of 63 g
CH4/d; observed mean of 416 g CH4/d). However, in contrast to the predictions based on MIR
spectra only, the predictions that included DIM showed biologically meaningful behavior
throughout lactation (an inctrease in CHy4 production (g/d) after calving up to some 100 DIM,
followed by gradual decline to end of lactation). Both studies (Dehareng et al., 2012; Vanlierde
et al., 2015) show the potential to estimate CH4 emission directly using MIR spectroscopy, in
particular in combination with other characteristics such as DIM.

The inclusion of other milk constituents may also result in better CH4 emission
prediction. Moraes et al. (2014) identified milk fat proportion as key explanatory variable for
CH, emission. This component can be swiftly and easily determined. In addition, there are new
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developments to include other milk constituents. Van Gastelen et al. (2015) show the potential
to use volatile and non-volatile metabolites in milk to quantify CH4 emission. However, the
techniques for identifying volatile (i.e., gas chromatography-mass spectrometry) and non-volatile

metabolites (i.e., nuclear magnetic resonance) are not suitable for large-scale measurements.

IMPLICATIONS AND CONCLUSIONS

The predicted power of MFA-based equations indicates good potential for CHy
emission prediction, but the GC method used to determine the MFA profile is unsuitable for
routine analysis. The use of MIR spectroscopy appears to be a promising approach to predict
CH, emission routinely at large scale. MIR spectroscopy is able to predict CH4 emission directly
or indirectly by prediction of a number of MFA, which in turn can be used to estimate CHy4
emission. The major advantages of using MIR spectroscopy to predict CH4 emission include its
simplicity and potential practical application at large scale. Disadvantages include the inability to
predict important MFA for CH4 prediction, and the moderate predictive power for CHy4
emission, both direct and indirect. It may not be sufficient to predict CH4 emission based on
MIR alone. Integration with other factors, like feed intake, nutrient composition of the feed,
parity, and lactation stage may improve the prediction of CH4 emission using MIR spectra.

More research is needed, including cross-validation with external and independent data
to account for the universal validity of indirect correlations, more observations and a larger
variation in dietary treatments, to establish the robustness, accuracy and repeatability of MIR
spectroscopy to predict CHy emission of dairy cows directly and indirectly, and to make MIR

spectroscopy more reliable and potentially implementable.

REFERENCES

Bannink, A., J. France, S. Lopez, W. J. ]. Gerrits, E. Kebreab, S. Tamminga, and J. Dijkstra. 2008. Modelling the
implications of feeding strategy on rumen fermentation and functioning of the rumen wall. Anim. Feed Sci.
Technol. 143:3-26.

Bauman, D. E., and J. M. Griinari. Nuttitional regulation of milk fat synthesis. Annu. Rev. Nutr. 23:203-227.

Bernard, L., C. Leroux, and Y. Chilliard. 2008. Expression and nutritional regulation of lipogenic genes in the ruminant
lactating mammary gland. Adv. Exp. Med. Biol. 606:67-108.

Boadi, D., C. Benchaat, J. Chiquette, and D. Masse. 2004. Mitigation strategies to reduce entetic methane emissions from
dairy cows: update review. Can. J. Anim. Sci. 84:319-335.

Castro-Montoya, J., A. M. Bhagwat, N. Peiren, S. De Campencere, B. De Baets, and V. Fievez. 2011. Relationships
between odd- and branched-chain fatty acid profiles in milk and calculated entetic methane proportion for
lactating dairy cattle. Anim. Feed Sci. Technol. 166-167:596-602.

Chilliard, Y., C. Martin, J. Roual, and M. Doreau. 2009. Milk fatty acids in dairy cows fed whole crude linseed, extruded
linseed, ot linseed oil, and their relationship with methane output. J. Dairy Sci. 92: 5199-5211.

Coppa, M., A. Revello-Chion, D. Giaccone, A. Ferlay, E. Tabacco, and G. Borreani. 2014. Comparison of near and
medium infrared spectroscopy to predict fatty acid composition on fresh and thawed milk. Food Chem.
150:49-57.

Coates, J. 2000. Interpretation of infrared spectre, a practical approach. Pages 10815-10837 in Encyclopedia of Analytical
Chemistry. R. A. Meyers, ed. John Wiley & Sons, New York, NY.

Dehateng, F., C. Delfosse, E. Froidmont, H. Soyeurt, C. Martin, N. Gengler, A. Vanlierde, and P. Dardenne. 2012.
Potential use of milk mid-infrared spectra to predict individual methane emission of dairy cows. Animal
6:1694-1701.

29



CHAPTER 2

Dijkstra, J., S. M. van Zijderveld, J. A. Apajalahti, A. Bannink, W. J. ]. Gerrits, J. R. Newbold, H. B. Perdok, and H.
Berends. 2011. Relationships between methane production and milk fatty acid profiles in dairy cattle. Anim.
Feed Sci. Technol. 166-167:590-595.

Dijkstra, J., S. van Gastelen, E. C. Antunes-Fernandes, D. Warner, B. Hatew, G. Klop, S. C. Podesta, H. J. van Lingen,
K. A. Hettinga, and A. Bannink. 2016. Relationships between milk fatty acid profiles and enteric methane
production in dairy cattle fed grass- or grass silage-based diets. Anim. Prod. Sci. 56:541-548.

De Marchi, M., M. Penasa, A. Cecchinato, M. Mele, P. Secchiari, and G. Bittante. 2011. Effectiveness of mid-infrared
spectroscopy to predict fatty acid composition of Brown Swiss bovine milk. Animal 5:1653-1658.

De Marchi, M., V. Toffanin, M. Cassandro, and M. Penasa. 2014. Invited review: mid-infrared spectroscopy as
phenotyping tool for milk traits. J. Dairy Sci. 97:1171-1186.

Ellis, J. L., J. Dijkstra, E. Kebreab, A. Bannink, N. E. Odongo, B. W. McBride, and J. France. 2008. Aspects of rumen
microbiology central to mechanistic modelling of methane production in cattle. ]. Agric. Sci. 146: 213-233.

Eskilden, C. E., M. A. Rasmussen, S. B. Engelsen, L. B. Larsen, N. A. Poulsen, and T. Skov. 2014. Quantification of
individual fatty acids in bovine milk by infrared spectroscopy and chemometrics: Understanding predictions
of highly collinear reference variables. J. Dairy Sci. 97:7940-7951.

Ferrand, M., B. Huquet, S. Barbey, F. Barillet, F. Faucon, H. Larroque, O. Leray. 2011. Trommenschlager JM and
Brochard M, Determination of fatty acid profile in cow’s milk using mid-infrared spectrometry: Interest of
applying a variable selection by genetic algorithms before a PLS regression. Chemom. Intell. Lab. Syst.
106:183-189.

Fievez, V., E. Colman, J. M. Castro-Montoya, 1. Stefanov, and B. Vlaeminck. 2012. Milk odd- and branched-chain fatty
acids as biomarkers of rumen function—An update. Anim. Feed Sci. Technol. 172:51-65.

Hiristov, A. N., J. Oh, J. L. Firkins, J. Dijkstra, E. Kebreab, G. Waghorn, H. P. S. Makkar, A. T. Adesogan, W. Yang, C.
Lee, P. J. Gerber, B. Henderson, and J. M. Tricatico. 2013. SPECIAL TOPICS - Mitigation of methane and
nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options1. J. Anim.
Sci. 91:5045-5069.

Kandel, P. B., N. Gengler, and H. Soyeurt. Assessing variability of literature based methane indicator traits in a large
dairy cow population. Biotechnol. Agron. Soc. Eaviron. 19:11-19.

Kebreab, E., K. Clark, C. Wagner-Riddle, and J. France. 2006. Methane and nitrous oxide emissions from Canadian
animal agriculture: A review. Can. J. Anim. Sci. 86:135-158.

Knapp, J. R., G. L. Laur, P. A. Vadas, W. P. Weiss, and J. M. Tricarico. 2014. Invited review: Enteric methane in dairy
cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 97:3231-
3261.

Maurice-Van Eijndhoven, M. H. T., H. Soyeurt, F. Dehareng, and M. P. L. Calus. 2012. Validation of fatty acid
predictions in milk using mid-infrared spectrometry across cattle breeds. Animal 7:348-354.

Mohammed, R., S. M. McGinn, and K. A. Beauchemin. 2011. Prediction of enteric methane output from milk fatty acid
concentrations and rumen fermentation parameters in dairy cows fed sunflower, flax, or canola seeds. J.
Daity Sci. 94: 6057-6068.

Moraes, L. E., A. B. Strathe, J. G. Fadel, D. P. Casper, and E, Kebreab. 2014. Prediction of enteric methane emissions
from cattle. Glob. Change Biol. 20:2140-2148.

Patra, A. K. 2013. The effect of dietary fats on methane emissions, and its other effects on digestibility, rumen
fermentation and lactation performance in cattle: A meta-analysis. Livest. Sci. 155:244-254.

Rico, D. E., P. Y. Chouinard, F. Hassanat, C. Benchaar, and R. Gervais. 2016. Prediction of enteric methane emissions
from Holstein dairy cows fed various forage sources. Animal 10:203-211.

Rutten, M. J. M., H. Bovenhuis, K. A. Hettinga, H. J. F. van Valenberg, and J. A. M. van Arendonk. 2009. Predicting
bovine milk fat composition using infrared spectroscopy based on milk samples collected in winter and
summer. J. Dairy Sci. 92:6202-6209.

Soyeurt, H., P. Dardenne, F. Dehareng, G. Lognay, D. Veselko, M. Matlier, C. Bertozzi, P. Mayeres, and N. Gengler.
20006. Estimating fatty acid content on cow milk using mid-infrared spectrometry. J. Dairy Sci. 89:3690-3695.

Soyeurt, H., F. Dehareng, N. Gengler, S. McParland, E. Wall, D. P. Berry, M. Coffey, and P. Dardenne. 2011. Mid-
infrated prediction of bovine fatty acids across multiple breeds, production systems, and countties. J. Daity
Sci. 94:1657-1667.

30



MILK FATTY ACIDS AND MID-INFRARED SPECTROSCOPY TO PREDICT METHANE

Storm, I. M. L. D., A. L. F. Hellwing, N. I. Nielsen, J. Madsen. 2012. Methods for measuring and estimating methane
emission from ruminants. Animals 2:160-183.

Van Gastelen, S., E. C. Antunes Fernandes, K.A. Hettinga, and J. Dijkstra. 2015. Predicting methane emission of dairy
cows using fatty acids and volatile and non-volatile metabolites in milk. J. Dairy Sci. 98:E-supplement 1,
p-600.

Vanlierde, A., M. L. Vanrobays, F. Dehareng, E. Froidmont, H. Soyeurt, S. McParland, E. Lewis, M. H. Deighton, F.
Grandl, M. Kreuzer, B. Gredler, P. Dardenne, and N. Gengler. 2015. Hot topic: Innovative lactation-stage-
dependent prediction of methane emissions from milk mid-infrared spectra. J. Dairy Sci. 98:5740-5747.

Van Lingen, H. J., L. A. Crompton, W. H. Hendriks, C. K. Reynolds, and J. Dijkstra. 2014. Meta-analysis of relationships
between enteric methane yield and milk fatty acid profile in dairy cattle. J. Dairy. Sci. 97:7115-7132.

Vlaeminck, B., V. Fievez, A. R. J. Cabrita, A. J. M. Fonseca, and R. ]. Dewhurst. 2006. Factors affecting odd- and
branched-chain fatty acids in milk: A review. Anim. Feed Sci. Technol. 131:389-417.

Williams, S. R. O., P. J. Moate, M. H. Deighton, M. C. Hannah, and W. J. Wales. 2014. Methane emissions of dairy cows
cannot be predicted by the concentrations of C8:0 and total C18 fatty acids in milk. Anim. Prod. Sci. 54:1757-
1761.

31






Chapter 3

Enteric methane production, rumen
volatile fatty acid concentrations, and milk fatty
acid composition in lactating Holstein-Friesian

cows fed grass silage- or corn silage-based diets

S. van Gastelen,*} E. C. Antunes-Fernandes,*} K. A. Hettinga,} G. Klop,}
S.J.J. Alferink,} W. H. Hendriks,} and J. Dijkstrat

* Top Institute Food and Nutrition, Wageningen, the Netherlands
T Animal Nutrition Group, Wageningen University & Research, Wageningen, the Nethetlands

1 Food Quality Design Group, Wageningen University & Research, Wageningen, the Netherlands

Journal of Dairy Science (2015) 98:1915-1927



CHAPTER 3

ABSTRACT

The objective of this study was to determine the effects of replacing grass silage
(GS) with corn silage (CS) in dairy cow diets on enteric methane (CHj) production, rumen
volatile fatty acid concentrations, and milk fatty acid (FA) composition. A completely
randomized block design experiment was conducted with 32 multiparous lactating Holstein-
Friesian cows. Four dietary treatments were used, all having a roughage-to-concentrate ratio of
80:20 based on dry matter (DM). The roughage consisted of either 100% GS, 67% GS and
33% CS, 33% GS and 67% CS, or 100% CS (all DM basis). Feed intake was restricted (95% of
ad libitnm DM intake) to avoid confounding effects of DM intake on CH4 production.
Nutrient intake, apparent digestibility, milk production and composition, nitrogen (N) and
energy balance, and CH4 production were measured during a 5-d period in climate respiration
chambers after adaptation to the diet for 12 d. Increasing CS proportion linearly decreased
neutral detergent fiber and crude protein intake and linearly increased starch intake. Milk
production and milk fat content (on average 23.4 kg/d and 4.68%, respectively) wete not
affected by increasing CS inclusion, whereas milk protein content increased quadratically.
Rumen variables were unaffected by increasing CS inclusion, except the molar proportion of
butyrate, which increased linearly. Methane production (g/d), yield (% gross energy intake), and
intensity (g/kg fat- and protein-corrected milk; FPCM) decreased quadratically with increasing
CS inclusion, and decreased lineatly when expressed as yield (g CHy / kg DM intake; DMI).
In compatison with 100% GS, CHy, yield (g/kg DM intake) and CHy intensity (g/kg FPCM)
were 11 and 8% reduced for the 100% CS diet, respectively. Nitrogen efficiency increased
linearly with increased inclusion of CS. The concentration of #ans C18:1 FA, C18:1 ¢is-12,
and total CLA increased quadratically, and 0 C16:0, C18:1 ¢s-13, and C18:2n-6 increased
linearly, whereas the concentration of C15:0, 0 C15:0, C17:0, and C18:3n-3 decreased linearly
with increasing inclusion of CS. No differences were found in short- and medium-straight,
even-chain FA concentrations, with the exception of C4:0 which increased linearly with
increased inclusion of CS. Replacing GS with CS in a common forage-based diet for dairy
cattle offers an effective strategy to decrease enteric CHy4 production without negatively
affecting dairy cow performance, although a critical level of starch in the diet seems to be
needed.

Keywords: dairy cow, enteric methane production, grass silage, corn silage

INTRODUCTION
Developing strategies to reduce enteric methane (CHy) emissions from ruminants has
received increasing interest recently, as it reduces the ecological footprint of milk production
and potentially improves feed efficiency. Dietary manipulation seems to be the most direct and
effective approach for reducing CHy production from ruminants (Beauchemin et al., 2009)
because CHy4 production depends greatly on the level of feed intake and dietary composition,
in particular the type of carbohydrates (Beauchemin et al., 2008; Ellis et al., 2008). Including

vatious inhibitors or electron receptors in ruminant diets can reduce CH4 production up to

50%, but in view of effectiveness and safety issues (e.g., issues with nitrates include potential
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toxicity from intermediate products), reductions of 10 to 30% are more likely in commercial
practice (Hristov et al.,, 2013). Roughage represents the major component in dairy cow diets
and, therefore, it is interesting to investigate the reduction of CHy production using roughage-
based diets.

Replacing fiber-rich roughage with starch-rich roughage has potential to reduce CHy4
emissions (Brask et al., 2013; Hassanat et al., 2013). Fermentation of starch favors the ruminal
production of propionate at the expense of acetate and decreases rumen pH, which reduces
hydrogen availability and activity of rumen methanogens (Van Kessel and Russell, 1996;
Hook et al.,, 2011). The scientific evidence for this particular dietary replacement strategy is
limited and does not always reflect diets used in practice. Staerfl et al. (2012) investigated
this strategy, but the corn silage (CS) used had a net energy content some 10% lower than
that of the grass silage (GS), which is uncommon in many countries. Brask et al. (2013) also
investigated the effect of this dietary strategy, but the CS used had a starch content of only
150 g/kg of DM, which is low and uncommon compared with the reported starch content
of CS at comparable DM contents (Sutton et al., 2000; Mc Geough et al., 2010a); therefore,
the difference in starch content between the CS- (141 g/kg of DM) and the GS-diet (43
g/kg of DM) was not large.

When manipulating dairy cow diet for CHs reduction, one should be aware that the
composition of milk can also change. Several studies observed that changes in dietary
proportion of GS and CS can alter milk FA composition (Ferlay et al., 2006; Nielsen et al.,
20006; Kliem et al., 2008). These studies were mainly interested in altering milk FA from a
human health perspective, because milk and dairy products are an important source of fat
and specific FA in the human diet (Van Valenberg et al., 2013). In terms of dietary CHs
mitigation strategies, differences in milk FA are interesting because they reflect the variations
in the amount and composition of carbohydrate between GS and CS (Nielsen et al., 2000),
which influences both rumen environment and biohydrogenation of unsaturated FA (Kliem et
al., 2008). Consequently, milk FA composition has been suggested as a method to predict
enteric CHy4 output in lactating dairy cattle (Dijkstra et al., 2011).

Roughages are nutritionally and economically important (Hassanat et al,, 2013).
Therefore, it is imperative to investigate dietary strategies using roughage-based diets to
mitigate CHy production and to determine its effect on milk FA composition. Although GS
and CS represent the major conserved roughages and are commonly used in dairy production
(Wilkinson et al., 1996), to the best of our knowledge no study has investigated the effect
of replacing GS with CS on enteric CHy production, rumen VFA concentrations, and milk
production and composition, including milk FA composition together. Thus, the objectives
of our study were (1) to gain more scientific evidence for the CH4 mitigation strategy of
replacing fiber-rich GS with starch-rich CS, (2) to examine the changes in ruminal VFA
concentration and pH when replacing GS with CS, and (3) to determine the effects of
replacing GS with CS on milk production and milk FA composition.

35



CHAPTER 3

MATERIALS AND METHODS

Experimental design

The experiment was conducted from October to December 2012 in accordance with
Dutch law and approved by the Animal Care and Use Committee of Wageningen University &
Research. The experiment followed a completely randomized block design with 4 dietary
treatments and 32 multiparous lactating Holstein-Friesian cows with an average milk
production of 34.0 = 5.71 kg/d and 192 £ 87 DIM at the start of the experiment. Cows were
blocked in groups of 4 according to lactation stage, parity, milk production, and presence of
a rumen cannula (12 cows), and within each block cows were randomly assigned to 1 of 4

dietary treatments; treatment periods, 8 in total, lasted 17 d.

Table 3.1. Ingredient and chemical composition of experimental diets

Treatment!
Item GS100 GS67 GS33 GSO
Ingredient (g/kg DM)
Grass silage? 800 533 267 -
Corn silage? - 267 533 800
Concentrate* 200 200 200 200
Chemical composition (g/kg DM)
Organic matter 924 931 938 945
Crude protein 192 182 172 163
Crude fat 22 22 21 21
Gross energy (M]/kg DM) 18.8 18.7 18.6 18.5
Neutral detergent fiber 431 396 360 325
Acid detergent fiber 233 219 204 190
Acid detergent lignin 14 14 15 15
Starch 5 91 177 262
Reducing sugars 130 98 66 34

! Treatments had a roughage:concentrate ratio of 80:20 (DM basis). Concentrate was similar for all treatments.
2 Dry matter = 471 g/kg, chemical composition (g/kg DM): CP = 112, fat = 22, ash = 68, gross energy = 18.8 MJ/kg
DM, net energy for lactation = 6.5 MJ/kg DM, NDF = 510, sugar = 133, ensiling characteristics (g/kg DM): acetic
acid = 22, lactic acid = 47, ammonia = 2, and pH = 4.8.

3 Dry matter = 320 g/kg, chemical composition (g/kg DM): CP = 76, fat = 20, ash = 42, gross energy = 18.5 MJ/kg
DM, net energy for lactation = 6.7M]J/kg DM, NDF = 377, starch = 322, sugar = 14, ensiling characteristics (g/kg
DM): ammonia = 1, and pH = 3.8.

4 Contained (g/kg DM): solvent extracted soybean meal 502, formaldehyde treated soybean meal 300, citrus pulp 80,
molasses 50, urea 30, CaCOs 15, NaCl 8, trace mineral and vitamin premix 8, and MgO 7; dry matter = 882 g/kg;
chemical composition (g/kg DM): CP = 510, fat = 23, ash = 109, gross energy = 18.6 MJ/kg DM, net energy for
lactation = 7.4 MJ/kg DM, NDF = 116, starch = 24, sugar = 116.

Diets and feeding

All dietary treatments had a roughage-to-concentrate ratio of 80:20 based on DM
content. The composition of the compound feed was the same for all 4 treatments, whereas
the roughage was GS, CS, or a mixture of both. The ingredient and chemical composition of
the 4 diets are presented in Table 3.1. Dietary treatments were (ingredient as percentage of the
total amount of roughage in the diet; DM basis): (1) 100% GS (GS100); (2) 67% GS and

36



GRASS SILAGE VERSUS CORN SILAGE AND METHANE MITIGATION

33% CS (GS67); (3) 33% GS and 67% CS (GS33); and (4) 100% CS (GS0).

Cows were fed individually and feed refusals collected to determine DMI throughout
the experiment. The cows received their feed twice daily in equal portions before milking,
with compound feed supplied on top of the roughage. The cows were fed ad libitum during
the first 7 d of the adaptation period in the tiestalls. From d 8 to 17 [i.e, last 5 d of the
adaptation period and the 5-d period in the climate respiration chambers (CRC)], feed intake
was restricted to 95% of the ad libitum DMI of the cow within a block consuming the lowest
amount of feed during d 5 to 8, as described previously by Van Zijderveld et al. (2011a).

Samples of GS, CS, and compound feed were obtained when fresh feed was prepared
(i.e., twice a week). These samples were subsequently pooled per period and subsampled for
analyses. Orts,when presentduring the 5-d period in the CRC, were collected and pooled per
cow and a representative sample was collected. The samples of GS, CS, compound feed, and

orts were stored at —20°C until further analyses.

Housing and climate respiration chambers

In each treatment period, 4 cows of 1 block were individually housed in tiestalls for a
12-d period to become accustomed to the diet and restriction in movement. After the
adaptation period, the cows were housed in identical CRC for a 5-d period to determine
gaseous exchange, energy and nitrogen (N) balance, and apparent digestibility. Clean drinking
water was ad libitum provided and cows were milked and fed twice daily at 0600 and 1600
h during the entire experiment. Cows were exposed to 16 h of light per day (from 0530
to 2130 h).

Two large CRC were used, each containing 2 individual airtight compartments. The
CRC were equipped with thin walls with windows, to ensure cows could see and hear each
other to minimize the effect of social isolation on cow behavior and performance. The principles
of the CRC are described in detail by Verstegen et al. (1987). The ventilation rate within
the CRC was 42 m’/h per compartment. Each compartment had an area of 11.8 m? and a
volume of 34.5 m?, and the relative humidity was maintained at 70% and temperature at 16°C
by 2 computer-controlled air conditioning units. The relative humidity was monitored by 1
relative humidity sensor (Novasina Hygrodat100, Novasina AG, Lachen, Switzerland), and the
temperature was monitored by 5 PT100 temperature sensors (Sensor Data BV, Rijswijk, the
Netherlands) evenly distributed over the chamber at animal height.

Air from outside was pumped into each compartment via a gas volume meter (Itron
Delta 2080 G100, Itron GmbH, Karlsruhe, Germany). Exhaust air exited through a duct with
an iris valve controlling the pressure inside the compartment. Within each compartment, a
positive pressure of 120 Pa was maintained. The inlet and exhaust air of each compartment was
sampled for gas analysis (CHi, O32, and COy). Gas analyzers (ABB Advance Optima
AO2000 systems, ABB, Berlin, Germany) were setup in series with analysis of CO» and CH,4
concentration using a nondispersive infrared method, and O concentration using a
paramagnetic method.

The volumes of inlet and exhaust air of the CRC were corrected for pressure,
temperature, and humidity to arrive at standard temperature pressure dewpoint volumes. Inlet

37



CHAPTER 3

and exhaust volumes of CHy, O3, and CO; were calculated by multiplying the respective
gasconcentrations with the standard temperature pressure dewpoint volumes of inlet and
exhaust air. Production of CO; and CH4 and consumption of O was calculated from the
difference between inlet and exhaust gas volumes. This was measured with 10-min intervals
because the 4 compartments share 1 gas analysis system. Computer-controlled valves direct
the air sample from the 4 compartments in sequence (i.e., inlet air, exhaust air compartment
A, B, C, and D) to the gas analysis system. Sampled air was flushed through the gas analysis
system for 120 s and the average gas concentration of the last 30 s was stored in a computer
database. After 120 s the air valves switched to the next compartment.

Once a day, calibration gasses were sampled for gas analysis instead of the inlet air.
The analyzed and actual values of these calibration gasses were used to correct the measured gas
concentrations from the inlet air and exhaust air of the 4 compartments. In addition, before
the experiment started, compartments were checked by releasing known amounts of COz in
each compartment and comparing these values with the data from the gas analysis system to
calculate the recovery. The recovered amounts of CO; were between 98 and 100%.

Staff entered each CRC compartment twice daily at 0600 and 1600 h for
approximately 30 min for milking and feeding. The gas measurements during the opening
of the CRC were not used for data analysis; CHs and CO» production and O consumption
during these periods was assumed to be linear between the last data point before opening and
the first data point after closing the CRC.

For the CH4 and CO; production and O, consumption, 3 full 24-h periods were used
(i.c., starting at 0800 h of d 14 until 0800 h of d 17). For N and energy balance, manure of
each cow of the complete measuring period in the CRC (i.c., starting at 1500 h on d 13 until
0900 h on d 17) was quantitatively collected in the CRC, weighed, mixed, sampled for
analyses, and stored at —20°C until further analyses. Cows were weighed immediately after
entering and before leaving the CRC. All data presented in the current paper refer to the
period the cows were in the CRC. In contrast to other experiments previously performed in
the CRC of Wageningen University & Research where 2 cows were housed in 1 large CRC
(e.g., Van Zijderveld et al., 2011b), in the present experiment the experimental unit is the
individual cow because cows were individually housed in the compartments of the CRC.

Milk yield and composition

Milk yield was recorded during each milking. In the CRC, a milk sample (10 mL)
of each milking was collected in a tube containing sodium azide (5 pL) for preservation. These
samples, 8 in total per cow, were analyzed for fat, protein, and lactose content by mid-
infrared spectroscopy, and for MUN using the pH difference technique (ISO 14637; ISO, 2004)
at Qlip (Zutphen, the Netherlands). Milk composition was corrected for differences in milk
yield between individual milkings and the average was used for data analysis.

A representative sample (5 g/kg of milk production) was obtained at each milking
from each cow, pooled per cow for the entite period in the CRC, and stored at —20°C
pending analyses for gross energy (GE) and N. For milk FA composition, another
representative sample was obtained (5 g/kg of milk production at each milking from each cow).
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Sodium azide (0.05% wt/wt) was added afterwards to the pooled sample of the first 4
milkings, followed by the same procedure for milking 5 to 8 in a separate bottle. Both bottles
were stored at 5°C. After the last milking, these 2 subsamples (milkings 1-4 and 5-8) were
pooled and stored at —40°C until FA composition analysis.

Rumen fermentation parameters and VFA

Samples of rumen fluid were taken from the rumen cannulated cows on d 10 and
11 to determine VFA concentration and pH levels. Rumen fluid samples (approximately 200
ml) were collected 1 h before, and 1, 2, 4, 6, and 8 h after morning feeding on both
days. Rumen fluid samples were obtained as described by Van Zijderveld et al. (2011b), and
collected in 3 equal amounts from the front and middle of the ventral sac and from the
cranial sac of the rumen. After collection, the collected rumen fluid was thoroughly mixed, pH
was measured using an electronic pH meter (HI9024C, Hanna Instruments, IJsselstein, the
Netherlands), and 2 rumen fluid samples (600 pL ecach) were taken and acidified with an
equal volume of 0.85% A ortho-phosphoric acid containing 19.68 mM isocaproic acid as
internal standard. These 2 rumen fluid samples were directly frozen (—20°C) to stop microbial

fermentation and stored at —20°C until VFA analysis.

Analytical procedures

Prior to analyses, GS, CS, and compound feed samples were thawed at room
temperature, air-dried at 60°C, ground to pass a 1-mm screen using a Wiley mill (Peppink
100AN, Olst, the Netherlands), and analyzed for DM, ash, crude fat, starch (except for GS
samples), reducing sugars (all carbohydrates with reducing properties and soluble in 40%
ethanol), NDF, ADF, ADL, GE, and N. Orts were analyzed for DM, ash, GE, and N.

The manure samples (i.e., feces plus urine combined) were analyzed for DM, ash,
N, NDF, GE, crude fat, and starch. Prior to analyses, these samples were thawed at room
temperature, air-dried at 60°C, and ground to pass a 1-mm screen. In addition, to determine
the N balance, the total amount of condensed water (i.e., collected from the heat exchanger)
produced, and the increase in 25% sulfuric acid solution (wt/wt; i.c., through which the
outflowing air was led to trap aerial ammonia) of each CRC compartment was measured (both
in grams). Samples of both condensed water and 25% sulfuric acid solution were analyzed for
N.

Ash, DM, N, crude fat, starch, reducing sugars (all carbohydrates with reducing
properties and soluble in 40% ethanol), NDF, ADF, and ADL of feed and manure
samples were analyzed as described by Abrahamse etal. (2008a). Bomb calorimetry (ISO 9831;
1SO, 1998) was used to determine GE. Crude protein was calculated as N X 6.25. Starch,
NDF, and crude fat were assumed to be absent in urine, allowing for calculation of
apparent digestibility of these components from analysis of starch, NDF, and crude fat in the
combined mixture of feces and urine and in feed.

Milk FA composition was analyzed through gas chromatograph analysis by Qlip. Milk
fatwas extracted from the milk samples and FAME were prepared from fat fractions (ISO
15884; ISO, 2002a). Methyl esters were analyzed (ISO 15885; ISO, 2002b) on a TRACE
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Ultra gas chromatograph (Thermo Electron Corporation, Waltham, MA) with a
split/splitless injector operated in split mode (split ratio 1:100), at a temperature of 270°C,
using a Varian WCOT fused silica column with CP-select CB for FAME as stationary
phase (100 m X 0.25 mm i.d.; Varian Inc., Palo Alto, CA) and hydrogen as carrier gas, and
fitted to a flame ionization detector (FID; 250°C). The initial temperature was held at 65°C
for 1 min, increased to 225°C at 3°C/min, and held at 225°C for 5 min. A volume of
1 uL was injected. Peaks were identified and quantified using pure methyl esters (Sigma-
Aldrich, Zwijndrecht, the Netherlands; Larodan, Malmo, Sweden; Lipidox). Results of FA
were corrected for FID response and expressed as grams per 100 g of total FA.

For determination of VFA, the rumen fluid samples were thawed and centrifuged
for 5 min at 14,000 X gat room temperature. The clear supernatant (1 ul) was injected
onto a gas chromatograph (Fisons HRGC Mega 2, CE Instruments, Milan, Italy) with a
split/splitless injector operated in split mode (split ratio 1:10), at a temperature of 225°C,
using a capillary column (EC-1000, Alltech, Deerfield, IL; 30 m, id. = 0.53mm, film
thickness = 1 um) and helium as cartier gas, and fitted to an FID. The initial temperature
of the column was held at 110°C for 2 min, increased to 200°C at 18°C/min, and held at
200°C for 2 min. Identification and quantification was conducted with a chemical standard
solution (0.85% M ortho-phosphoric acid), including an internal standard (19.681 mM

isocaproic acid) for correction.

Statistical analysis

All parameters related to feed, milk production, and milk composition while cows
were housed in the CRC were averaged over a 4-d period. The parameters related to energy
and N balance were expressed per kilogram of metabolic body weight (BW%75) per day. One
cow (receiving diet GSO) was excluded from the experiment because large feed residuals while
housed in the CRC resulted in much lower DMI compared with the last 4 d in the tiestall and
the other cows in that block. Cow was considered the expetimental unit for all parameters.
Data were analyzed using the MIXED procedure in SAS (version 9.2, SAS Institute Inc., Cary,
NC).

The model included dietary treatment as a fixed effect and period (which is equal
to block) as a random effect. For all analyses, the fixed effect of CRC was initially included
in the model, but was removed because it was found not significant. Autoregressive 1, variance
component, compound symmetry, and unstructured covariance structutres were tested for each
analysis, and the covariance structure with the lowest overall Akaike’s information criterion
values (i.e., variance component) was selected. The rumen variables were averaged per time
point per cow and subjected to repeated-measures ANOVA to take repeated samples within
the same animal into account. This model included cow and period as random effects and
diet, time of sampling, and the interaction of diet and time of sampling as fixed effects. To
take the unbalanced sampling time intervals into account, the spatial covariance structure was
selected.

Both models had unequal vatiances, therefore, the Kenward-Roger option was used
to estimate the denominator degrees of freedom. Orthogonal polynomial contrasts (linear and
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quadratic) were used to examine treatment effect on response variables. A significant effect

of treatment on least squares means was declared when P < 0.05.

RESULTS

Feed intake and digestibility

Increasing the proportion of CS in the diet resulted in a linear increase of DMI
(Table 3.2). No difference was found when comparing the DMI of the cows housed in the CRC
with the DMI of the cows housed in the tiestall during the 4 d before entering the CRC (P
= 0.153, data not shown). Intakes of CP, NDF, ADF, and reducing sugars declined linearly
(P<0.002), whereas intake of starch increased linearly (P < 0.001) as the dietary proportion
of CS increased. Apparent total-tract digestibility of NDF decreased quadratically (P <
0.001), whereas apparent total-tract digestibility of fat increased quadratically (P < 0.001)
and of starch linearly (P < 0.001) as the CS proportion in the diet increased.

Milk production and composition

Milk production, fat- and protein-corrected milk production (FPCM), milk fat
content, and fat yield were unaffected by increasing proportion of CS in the diet (Table 3.3). A
quadratic increase was observed for milk protein and milk lactose content (P < 0.001) when
CS proportion of diet increased. Protein yield increased linearly (P < 0.019), whereas MUN
decreased linearly (P < 0.001) with an increasing proportion of CS in the diet.

Table 3.2. Intake and apparent total tract digestibility of nutrients in lactating dairy cows fed different proportions
of grass silage in the diet

Treatment! P-value
Item GS100 GS67 GS33 GSO SEM Linear Quadratic
Intake (kg/d)
Dry matter 16.2 16.7 16.6 17.5 0.41 0.001 0.858
Organic 14.8 15.4 15.4 16.4 0.47 0.020 0.776
Crude protein 3.11 3.05 2.90 2.86 0.101 0.002 0.790
Crude fat 0.36 0.36 0.35 0.36 0.013 0.324 0.915
Gross energy 303.7 311.2 308.7 322.5 9.34 0.222 0.863
NDF 6.97 6.58 5.97 5.68 0.202 < 0.001 0.926
ADF 3.78 3.64 3.39 3.32 0.114 < 0.001 0.873
ADL 0.23 0.24 0.24 0.26 0.013 0.159 0.831
Starch 0.08 1.51 2.92 4.59 0.070 < 0.001 0.105
Reducing 2.11 1.65 1.10 0.61 0.130 < 0.001 0.776
Apparent digestibility (% of intake)
Fat 48.9 56.4 61.8 68.4 1.43 < 0.001 < 0.001
NDF 73.1 71.4 62.6 48.4 1.42 < 0.001 < 0.001
Starch 13.8 94.4 97.5 98.6 1.52 < 0.001 0.716

! Treatments had a roughage:concentrate ratio of 80:20 (DM basis). Concentrate was similar for all treatments.
Roughage consisted of (all DM basis) 100% grass silage for GS100; 67% grass silage and 33% corn silage for GS67;
33% grass silage and 67% corn silage for GS33; 100% corn silage for GSO (n = 8 for GS100, GS67, and GS33; n =
7 for GSO).
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Table 3.3. Milk production and milk composition of lactating dairy cows fed different proportions of grass silage

in the diet

Treatment! P-value
Ttem GS100 GS67 GS33 GS0 SEM Linear Quadratic
Milk production (kg/d) 22.6 232 24.2 23.6 1.19 0.457 0.185
FPCM? (kg/d) 24.0 24.9 25.7 25.6 0.93 0.125 0.297
Milk fat content (%) 4.61 4.77 4.72 4.62 0.148 0.885 0.317
Milk protein content (%o) 3.44 3.49 3.34 3.67 0.104 0.003 < 0.001
Milk lactose content (%o) 4.39 4.55 4.60 4.61 0.041 < 0.001 < 0.001
Fat yield (g/d) 1,019 1,069 1,106 1,080 40.0 0.165 0.190
Protein yield (g/d) 771 782 781 833 19.0 0.019 0.245
MUN (mg/dL) 14.6 11.9 11.5 10.3 0.80 < 0.001 0.288

! Treatments had a roughage:concentrate ratio of 80:20 (DM basis). Concentrate was similar for all treatments.
Roughage consisted of (all DM basis) 100% grass silage for GS100; 67% grass silage and 33% corn silage for GS67;
33% grass silage and 67% corn silage for GS33; 100% corn silage for GSO (n = 8 for GS100, GS67, and GS33; n =
7 for GSO0).

2 Fat- and protein-corrected milk = (0.337 + 0.116 X fat% + 0.06 X protein%) X milk yield (kg/d).

Methane emission

Methane yield (g/kg of DMI) decreased linearly (P = 0.010) with increasing
dietary CS proportion (Table 3.4). A quadratic decrease (P < 0.001) was observed for CHy4
production (g/d), intensity (¢/kg FPCM), and yield as a percent of GE intake (GEI). The
total decrease in CH4 emission observed when the dietary GS proportion was replaced
with CS was 11, 8, and 7% for CHy yield (g/kg DMI), intensity (g/kg FPCM), and yield as a
percent of GEI, respectively.

Rumen VFA concentrations and pH

All rumen variables were affected by time of rumen sampling (P = 0.002) and the
interaction between diet and time of rumen sampling (P < 0.001; data not shown). In general,
rumen pH initially decreased after morning feeding and increased again several hours later,
whereas VFA concentration showed the opposite pattern. Butyrate molar proportions
increased linearly (P = 0.006) when the dietary proportion of CS increased (Table 3.5). No
other rumen variables responded linearly or quadratically upon increasing the dietary CS

proportion.

Energy and nitrogen balance

All parameters related to the energy balance and expressed per kilograms of Bw 7>

per day [ie, GEI, CHj production, metabolizable energy intake (MEI), heat production,
energy retention (ER) total, ER protein, ER fat, and energy output in milk] were unaffected
by increasing the proportion of CS in the diet (Table 3.6). Nitrogen intake and N output
in manure decreased linearly (P < 0.001) with increasing dietary CS proportion (Table
3.6), whereas N output in milk and the N balance were unaffected by dietary CS

proportion. A linear increase was observed for N efficiency (P < 0.001).
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Table 3.4. Methane production of lactating dairy cows fed different proportions of grass silage in the diet

Treatment! P-value
Item GS100 GS67 GS33 GSO SEM Linear Quadratic
CHs (g/d) 399 414 411 387 12.8 0.028 < 0.001
CHg (g/kg DMI) 24.6 25.0 24.5 22.0 0.38 0.010 0.107
CHs (g/kg 16.6 17.0 16.2 15.3 0.50 < 0.001 < 0.001
CHa (% of GEDI) 6.96 7.17 7.11 6.45 0.107 < 0.001 < 0.001

!'Treatments had a roughage:concentrate ratio of 80:20 (DM basis). Concentrate was similar for all diets. Roughage
consisted of (all DM basis) 100% grass silage for GS100; 67% grass silage and 33% corn silage for GS67; 33% grass
silage and 67% corn silage for GS33; 100% corn silage for GSO (n = 8 for GS100, GS67, and GS33; n = 7 for GS0).
2 Fat- and protein-corrected milk.

3 Gross energy intake.

Table 3.5. Rumen pH, total VFA concentration, and VFA molar proportions of fistulated lactating dairy cows fed
different proportions of grass silage in the diet!

Treatment? P-value
Ttem GS100 GS67 GS33 GSO SEM Linear Quadratic
pH 6.77 6.74 6.73 6.72 0.100 0.671 0.917
Total VFA (mM) 103 100 98 98 6.6 0.580 0.804
VFA (% of total VFA)
Acetate 65.6 66.0 65.8 63.6 1.23 0.126 0.127
Propionate 18.9 17.8 17.7 17.1 1.10 0.141 0.590
Butyrate 11.7 12.5 13.0 15.2 0.41 0.006 0.577
Isobutyrate 1.06 1.05 0.96 1.05 0.033 0.756 0.138
Valerate 1.54 1.33 1.28 1.37 0.138 0.338 0.227
Isovalerate 1.20 1.32 1.30 1.73 0.069 0.061 0.313
Acetate : 3.55 3.83 3.97 3.78 0.318 0.426 0.241

! Data shown are the mean of values on d 10 and d 11.

2 Treatments had a roughage:concentrate ratio of 80:20 (DM basis). Concentrate was similar for all diets. Roughage
consisted of (all DM basis) 100% grass silage for GS100; 67% grass silage and 33% corn silage for GS67; 33% grass
silage and 67% corn silage for GS33; 100% corn silage for GSO (n = 8 for GS100, GS67, and GS33; n = 7 for GSO).

Milk fatty acid composition

The total SFA, total MUFA, and total PUFA concentrations in milk fat were
unaffected by dietary CS proportion (Table 3.7). Concentrations of C18:3n-3 decreased linearly
(P < 0.001), whereas C18:2n-6 concentration increased linearly (P = 0.003) and the n-6-to-
n-3 ratio increased quadratically (P= 0.005) with an increasing proportion of CS in the diet.
Concentration of C18:1 es-13 increased linearly (P= 0.01), and the concentrations of C18:1
as-12, C18:1 trans-9, C18:1 trans-10, C18:1 #trans-11, and total CLLA increased quadratically
(P < 0.026) with increasing proportion of dietary CS. A quadratic response was observed for
C18:0(P=0.022). Most of the short- and medium-chain milk FA were unaffected, whereas
some odd- and branched-chain FA were affected by dietary treatment (Table 3.7).
Concentration of 70 C15:0 decreased linearly (P < 0.001), whereas 40 C16:0
concentrations increased linearly (P < 0.001) with increasing dietary CS proportion. A
quadratic response was observed for 750 C14:0 concentrations (P = 0.011). Concentrations
of C15:0 and C17:0 decreased linearly (P < 0.001) and antezs0C15:0 concentration decreased
quadratically (P=0.027) with increasing dietary CS proportion.
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Table 3.6. Energy balance and nitrogen balance of lactating dairy cows fed different proportions of grass silage in
the diet

Treatment! P-value
Item GS100 GS67 GS33 GSO SEM Linear Quadratic
Metabolic BW? (kg75) 123 128 126 126 1.1 0.124 0.035
Energy balance (k] /kg of BW"75/d)
GETP 2,587 2,515 2,551 2,644 79.2 0.671 0.297
CHa4 production 180 179 181 171 6.5 0.110 0.172
MEI* 1,647 1,638 1,634 1,651 45.8 0.923 0.834
MEI:GEI ratio 63.8 65.1 64.1 62.5 0.74 0.154 0.057
Heat production 896 876 893 922 21.0 0.265 0.113
Energy in milk 590 622 629 620 30.8 0.507 0.435
ER total® 161 138 113 110 39.7 0.261 0.738
ER protein® 52 60 67 51 10.5 0.989 0.175
ER fat’ 109 78 45 59 39.0 0.217 0.415
Nitrogen balance (mg/kg of BW?73/d)
N intake® 4,155 3,942 3,827 3,694 141.0 < 0.001 0.971
N manure 2,748 2,487 2,330 2,251 108.0 < 0.001 0.410
N milk 993 1,000 987 1,059 44.6 0.370 0.479
N condense + acid 59 45 53 38 8.2 0.044 0.857
N balance 355 409 457 347 71.1 0.989 0.175
N efficiency’ 0.24 0.25 0.26 0.29 0.008 < 0.001 0.380

! Treatments had a roughage:concentrate ratio of 80:20 (DM basis). Concentrate was similar for all diets. Roughage
consisted of (all DM basis) 100% grass silage for GS100; 67% grass silage and 33% corn silage for GS67; 33% grass
silage and 67% corn silage for GS§33; 100% corn silage for GSO (n = 8 for GS100, GS67, and GS33; n = 7 for GSO).
2'The mean BW per cow per balance period was used to calculate metabolic BW.

3 GEI = Gross energy intake.

+MEI (Metabolizable energy intake) = GEI — methane production — energy in feces + urine.

> Energy retention total = MEI — heat production — energy in milk.

¢ Energy retention protein = protein gain (N x 6.25) x 23.6 kJ /g (energetic value of body protein).

7 Energy retention fat = energy retention total — energy retention protein.

8 N = nitrogen.

9N efficiency = N milk/N feed.
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Table 3.7. Milk fatty acid composition of lactating dairy cows fed different proportions of grass silage in the diet

Treatment! P-value
Fatty acid, g/100 g FA GS100 GS67 GS33 GS0 SEM Linear Quadratic
C4:0 3.22 3.30 3.44 3.53 0.108 0.033 0.967
C6:0 2.18 2.19 2.20 2.27 0.050 0.247 0.619
C8:0 1.21 1.18 1.18 1.22 0.040 0.967 0.408
C10:0 2.80 2.68 2.62 2.69 0.136 0.498 0.478
C12:0 3.37 3.17 3.07 3.19 0.193 0.404 0.426
C14:0 11.57 10.89 11.13 11.22 0.335 0.594 0.256
iso C14:0 0.09 0.08 0.08 0.09 0.005 0.260 0.011
C14:1 as-9 1.23 1.18 1.11 1.27 0.107 0.965 0.297
C15:0 1.23 1.05 0.93 0.91 0.061 < 0.001 0.221
iso C15:0 0.30 0.24 0.24 0.21 0.009 < 0.001 0.183
anteiso C15:0 0.45 0.39 0.39 0.41 0.017 0.255 0.027
C16:0 35.73 35.50 34.40 34.86 1.107 0.398 0.755
750 C16:0 0.16 0.15 0.18 0.19 0.006 < 0.001 0.057
C16:1 ¢is-9 211 1.98 1.87 1.97 0.112 0.246 0.205
C16:1 trans-9 0.19 0.20 0.22 0.23 0.012 0.012 0.825
C17:0 0.70 0.66 0.59 0.52 0.021 < 0.001 0.396
is50 C17:0 0.38 0.37 0.37 0.37 0.012 0.499 0.530
anteiso C17:0 0.41 0.40 0.40 0.42 0.018 0.776 0.292
C17:1 ¢is-9 0.29 0.30 0.28 0.26 0.014 0.036 0.378
C18:0 7.10 8.04 8.16 7.16 0.438 0.781 0.022
C18:1 ¢is-9? 17.38 18.49 19.06 17.66 1.178 0.740 0.272
C18:1 ¢s-12 0.12 0.13 0.20 0.34 0.050 < 0.001 < 0.001
C18:1 ¢s-13 0.10 0.11 0.11 0.13 0.007 0.010 0.155
C18:1 trans-9 0.11 0.12 0.14 0.19 0.009 < 0.001 0.026
C18:1 #trans-10 0.12 0.13 0.20 0.45 0.021 < 0.001 < 0.001
C18:1 trans-11 0.72 0.74 0.77 1.18 0.098 0.001 0.025
C18:1 trans-15 + 0.52 0.56 0.64 0.69 0.040 0.001 0.870
C18:1 cis-11

Total CLA3 0.38 0.35 0.37 0.64 0.059 0.004 0.012
C18:2n-6 1.35 1.37 1.55 1.65 0.085 0.003 0.553
C18:3n-3 0.54 0.44 0.38 0.23 0.073 < 0.001 0.210
C18:3n-6 0.07 0.07 0.08 0.09 0.003 0.001 0.115
C20:0 0.13 0.13 0.13 0.10 0.004 < 0.001 0.006
C20:1 cis-11 0.04 0.05 0.05 0.04 0.003 0.242 0.008
C20:2n-6 0.05 0.05 0.05 0.04 0.002 0.140 0.462
C20:3n-6 0.09 0.08 0.09 0.10 0.006 0.269 0.028
C20:4n-3 0.08 0.06 0.07 0.07 0.014 0.484 0.529
C20:4n-6 0.13 0.12 0.13 0.15 0.009 0.063 0.069
C20:5n-3 0.08 0.06 0.06 0.05 0.004 < 0.001 0.533
C22:0 0.09 0.07 0.06 0.04 0.004 < 0.001 0.104
C22:5n-3 0.09 0.09 0.09 0.09 0.006 0.685 0.536
C24:0 0.06 0.05 0.05 0.03 0.004 < 0.001 0.117
SFA* 71.20 70.59 69.62 69.43 1.232 0.238 0.876
MUFA?> 22.70 23.65 24.22 23.94 1.096 0.370 0.580
PUFA® 2.86 2.68 2.86 3.10 0.139 0.126 0.107
n-6 to n-3 ratio’ 2.16 2.58 3.22 4.83 0.210 < 0.001 0.005
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Table 3.7. Continued

! Treatment had a roughage:concentrate ratio of 80:20 (DM basis). Concentrate was similar for all diets. Roughage
consisted of (all DM basis) 100% grass silage for GS100; 67% grass silage and 33% corn silage for GS67; 33% grass
silage and 67% corn silage for GS33; 100% corn silage for GSO (n = 8 for GS100, GS67, and GS33; n = 7 for GSO).
2 C18:1 ¢5-9 represents the sum of C18:1 ¢is-9 and C18:1 #rans-12, since these two FA could not be separated in the

analysis. The portion of C18:1 #runs-12 is considered to be negligible, since this FA is always present in small
contents.

3 Total CLA consists mainly of C18:2 ¢is-9, #rans-11.

+ SFA = saturated fatty acids, sum of all SFA reported in this table.

5> MUFA = mono unsaturated fatty acids, sum of all MUFA teported in this table.

¢ PUFA = poly unsaturated fatty acids, sum of all PUFA teported in this table.

7 Ratio between the sum of C18:2n-6, C18:3n-6, C20:2n-6, C20:3n-6, and C20:4n-6 and the sum of C18:3n-3,
C20:4n-3, C20:5n-3, and C22:5n-3.

DISCUSSION
Milk production and composition

Replacing GS with CS resulted in a lower CP content in the diets and a lower CP
intake, but did not affect milk production. Law et al. (2009) observed that increasing dietary
protein content from 14.4 to 17.3% has beneficial effects on milk production for cows in
early lactation, but not for cows in late lactation. The cows in the current experiment were in
mid lactation (average 192 DIM); the effect of replacing GS with CS on milk production
in the present study (CP content of 19.2 and 16.3%, respectively) may have been different (i.c.,
lower milk production) for cows in early lactation. For the current experiment, protein intake
was sufficient because MUN decreased linearly with increasing CS inclusion but remained
within the range of MUN values commonly obsetved in practice (5.0-15.0 mg/dL) and above
a minimum value (10.0 mg/dL) considetred to indicate possible shortage of protein (Spek et al.,
2013). Milk fat content and milk fat yield did not change when GS was replaced by CS, which is
in agreement with Brask et al. (2013). A decrease in milk fat content was expected, because
an increase in starch intake coupled with a decrease in NDF intake is, in general, associated
with a decrease in milk fat content (Nielsen et al., 2006; Abrahamse et al., 2008b). However,
feeding CS- compared with GS-based diets is not always associated with a significant reduction
of milk fat content (e.g., Fitzgerald and Murphy, 1999; Kliem et al., 2008). The differences
in results can probably be ascribed to variations in chemical composition of the CS, especially
NDF and starch content; physical characteristics of the silages (i.e., particle size) may also be
important (Griinari and Bauman, 2000).

Both milk protein content and milk protein yield increased with increasing CS
proportion at the expense of GS. Other studies have also reported increases in milk protein
content when GS was replaced by CS (Abrahamse et al, 2008b; Kliem et al., 2008). An
increase in milk protein concentration may be attributed to microbial protein synthesis being
energetically more efficient on CS- rather than GS-based diets (Givens and Rulquin, 2004). In
addition, in contrast to GS, CS supplies rumen-resistant starch that is digested postruminally; this
results in glucose absorption, which is associated with an increase in milk protein concentration
likely mediated through changes in arterial insulin concentrations (Rius et al., 2010).
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Energy and nitrogen balance

Replacing GS with CS did not affect any of the energy balance parameters. The
ratio of MEI to GEI varied between 62.5 and 65.1%, which reflects the high quality of the
silages used. Replacing GS with CS resulted in a higher DMI, whereas GEI and MEI
were unaffected. This explains why milk production did not increase with the increasing
DMI. Total ER was positive, which was expected given that cows were, on average, in
midlactation. The mean N balance was 49 g/d and unaffected by dietary treatment. This
positive N balance is in line with the average N balance (39 g of N/d) reported by Spanghero
and Kowalski (1997) in a review on dairy cattle N balance trials. Replacing GS with CS
decreased N intake; this, in combination with an unaffected milk N secretion, resulted in
a greater efficiency of dietary N utilization for milk N production. This increased N
efficiency with increased starch content and decreased protein content in the diet is in
agreement with Hassanat et al. (2013) and Benchaar et al. (2014).

Milk fatty acid composition

In the present study, replacing GS with CS did not affect total concentration of
SFA, MUFA, and PUFA contents in milk fat. This is in agreement with Chilliard et al.
(2001), who indicated that PUFA content in milk of cows fed either GS or MS does not
differ to a large extent; this is also in agreement with Kliem et al. (2008), who did not find
an a difference in SFA content in the milk when replacing GS with CS.

Replacing GS with CS in the present study resulted in an increase of C18:1 #rans-
9, C18:1 #rans-10, C18:1 #rans-11, and total CLA, suggesting that rumen biohydrogenation
was less complete. During biohydrogenation in the rumen, unsaturated FA are converted to
C18:0, with an array of #rans C18:1 isomers and CLA as major intermediates. The isomer
profile formed during biohydrogenation can influence milk FA profile. Previous studies (Ferlay
et al., 2006; Nielsen et al., 2006; Chilliard et al., 2007) have reported that CS-based diets
increase milk fat CLA content compared with GS-based diets. Nielsen et al. (2006) also found
increased C18:1 #rans-10 and C18:1 #rans-11 and Kliem et al. (2008) reported an increase in C18:1
trans-10 and total #rans C18:1 FA when replacing GS with CS.

Replacing GS with CS did not affect short- and medium-chain FA contents (defined
here as straight, even-chain FA up to 16 carbon chain length) in milk fat, suggesting that de novo
synthesis of milk FA in the mammary gland was unaffected, which is in line with the results
found for acetate. Acetate is the major carbon source for de novo synthesized FA (Bauman
and Griinari, 2003) and was unaffected in the present study by replacing GS with CS. Only
C4:0 in milk fat increased linearly when CS dietary proportions increased. The presence of odd-
and branched-chain FA in milk can be used to identify shifts in the rumen microbial
population, as most of them are of bacterial origin (Kliem et al., 2008). In the present study, zs0
C15:0 concentration decreased linearly, whereas zZso C14:0 and Zo C16:0 concentrations
increased (quadratically and linearly, respectively) when GS was replaced by CS. The results for
Zso C14:0 and 750 C16:0 were unexpected, because Vlaeminck et al. (2000) reported that diets
rich in starch decrease o C14:0, 750 C15:0, and 750 C16:0 in milk fat. Shingfield et al. (2005)
observed similar shifts as Vlaeminck et al. (2006) when replacing GS with CS, except for iz
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C16:0, suggesting 750 C14:0 and zs0 C15:0 originate from rumen fibrolytic bacteria. However,
Kliem et al. (2008) reported that replacing GS with CS did not affect the proportion of iso
C14:0 and 0 C16:0 and showed a quadratic relationship for iso C15:0, with the lowest s
C15:0 content in the diet with GS only.

In the present study, C15:0, anteiso C15:0, and C17:0 decreased when GS was replaced
by CS. These results are in contrast with Vlaeminck et al. (2006), who suggested that
amylolytic bacteria contain high amounts of linear odd-chain FA and anteiso FA. Higher starch
content in the diet enhances the growth of amylolytic bacteria, potentially leading to an
increase in linear odd-chain FA and anteiso FA leaving the rumen. Thus, one might expect
that with increasing CS inclusion, milk C15:0, anteiso C15:0, C17:0, and anteiso C17:0 would
increase. The results of C15:0 and C17:0 in the present study are, however, in agreement with
Kliem et al. (2008), who found a linear decrease in milk C15:0 and C17:0 content when
replacing GS with CS, and with Dijkstra et al. (2011), who found an decrease in these linear
odd-chain FA when CHy decreased.

Methane production and ruminal VFA concentrations

Dry matter intake is a major determinant for CH4 production (Ellis et al., 2008).
Despite restricted feeding with the aim of similar DMI for all treatments, DMI increased
linearly when GS was replaced by CS, which was caused by 2 reasons. First, there was a
difference in the DM content of silages measured in a sample of both silages before the
start of the experiment (used to calculate the amounts of silage to be mixed in the total
diet fed to the cows) and the DM content of silages actually fed during the experiment
(determined after the trial was finished). Second, there was a difference in the amount of
feed refusals between the treatments (data not shown). Feed refusals were not expected, as
the cows were fed a restricted diet. Despite the linear increase in DMI in the present study,
CHy production (g/d) decreased quadratically when GS was replaced by CS. This decline in
CH4 production might be partially explained by passage rate of digesta in the gastrointestinal
tract. The rumen residence time decreases with increased feed intake, thereby reducing the
extent of the rumen fermentation and shifting digestion from the rumen to the small intestine
(Aluwong et al., 2011). If the cows in the current study were fed ad libitum, results may
have differed. According to Abrahamse et al. (2008b), DMI is higher for CS- compared
with GS- based diets, and higher DMI has been associated with a higher absolute CHy4
production (Ellis et al., 2008). When fed ad libitum, increasing the inclusion of CS in the
diet would result in a higher DMI and, therefore, may not have reduced CH4 production
(g/d). However, CHy yield (g/kg DMI or as a percent of GEI) would again be lower for the
CS- compared with the GS-based diet.

Replacing GS with CS resulted in decreased CHy emission (in g/d, g/kg of DMI,
g/kg of FPCM, and % of GEI), which is in agreement with Staetfl et al. (2012) and Brask
et al. (2013). In general, decreased CHj4 emission is associated with decreased rumen acetate
proportion and increased propionate proportion (Johnson and Johnson, 1995). In the present
study, however, acetate and propionate proportions in the rumen were unaffected when
replacing GS by CS. A decrease in acetate proportion when replacing GS with CS was
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expected because NDF intake and apparent total-tract digestibility of NDF decreased and
because acetate is a major end product of NDF fermentation (Bannink et al., 2008). In
addition, an increase in propionate proportion when replacing GS with CS was expected
because starch intake and apparent total-tract digestibility of starch increased and diets with
high starch content are often associated with increased propionate in the rumen (Ellis et al,,
2008). Overall, total VFA concentration was unaffected when replacing GS with CS, which
is consistent with the absence of difference in rumen pH. However, ruminal pH
measurements in the current study seemed high. According to Dijkstra et al. (2012), pH is
expected be around 6.2 with a VFA concentration of 100 mA. In the present study the pH
ranged between 6.72 and 6.77 with a VFA concentration of approximately 100 mAM. Although
pH seems high, in combination with the roughage-based diets used, it helps explain the
absence of an effect when replacing GS with CS on ruminal propionate proportion. According
to Bannink et al. (2008), with roughage-based diets and high rumen pH, the proportion of
starch fermented to propionic acid per unit glucose fermented is only marginally higher than
the proportion of fiber fermented to propionic acid per unit glucose fermented. Hence, with
the present high-roughage diets, no or small differences in molar proportion of propionic acid
may be expected. The increased butyrate proportion when replacing GS with CS was
unexpected. In general, fermentation of fiber favors the production of acetate and butyrate
(Johnson et al.,, 1996). However, Benchaar et al. (2014) also found an increase in butyrate
proportions and a decline in CHy production when barley silage was replaced with CS. This
increase in butyrate proportion was accompanied by a linear increase in protozoa numbers in
the rumen, which is consistent with protozoa being associated with butyrate production
(Morgavi et al.,2012).

The quadratic decrease in CH4 emission observed suggests that a critical dietary
concentration of starch is required to decrease CHj emission. A similar response in daily
CHy output (g/d) was obsetved by Mc Geough et al. (2010b) in beef cattle fed whole-crop
wheat silages with increasing grain content (P = 0.004, quadratic response), by Hassanat et al.
(2013) in dairy cattle fed diets in which alfalfa silage was replaced with CS (P < 0.01, quadratic
response), and by Benchaar et al. (2014) in dairy cattle fed diets where barley silage was
replaced with CS (P = 0.07, quadratic response).

It appears that CHy mitigation with roughage-based diets is more difficult than grain-
based diets. Mc Geough et al. (2010a) showed that increasing the starch content of roughage
can decrease CH4 production, but CH4 production of roughage-fed cattle is still considerably
higher than for concentrate-fed cattle. Opportunities to use compound feed to lower CHy4
emission from the dairy sector is limited, as milk quality is negatively affected once compound
feed exceeds approximately 50% of the diet (Beauchemin et al., 2008), and it ignores the
importance of ruminants in converting fibrous feeds, unsuitable for direct human consumption,
to the high-quality protein source milk (Gill et al., 2010). Roughages represent a major source
of ingredients in dairy cow diets and are nutritionally and economically important (Hassanat
et al., 2013). Therefore, it is important to investigate dietary strategies to mitigate CHy
emission using roughage-based diets.

CONCLUSIONS
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Our results showed that replacing GS with CS in a common roughage-based diet for
dairy cattle can be an effective strategy to decrease enteric CHy emission, without negative
consequences for milk production and milk composition, and improve N efficiency. A critical

dietary concentration of starch seems to be required to decrease CHy emission.
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CHAPTER 4

ABSTRACT

Methane (CHy) emission of dairy cows contributes significantly to the carbon
footprint of the dairy chain; therefore, a better understanding of CHj formation is urgently
needed. The present study explored the milk metabolome by gas chromatography-mass
spectrometry (milk volatile metabolites) and nuclear magnetic resonance (milk non-volatile
metabolites) to better understand the biological pathways involved in CH4 emission in dairy
cattle. Data were used from a randomized block design experiment with 32 multiparous
Holstein-Friesian cows and 4 diets. All diets had a roughage:concentrate ratio of 80:20 (DM
basis) and the roughage was grass silage (GS), corn silage (CS), or a mixture of both (67%
GS, 33% CS; 33% GS, 67% CS). Methane emission was measured in climate respiration
chambers and expressed as CHy yield (per unit of dry matter intake) and CHy intensity (per
unit of fat- and protein-corrected milk; FPCM). No volatile or non-volatile metabolite was
positively related to CHy vyield and acetone (measured as a volatile and as a non-volatile
metabolite) was negatively related to CHy yield. The volatile metabolites 1-heptanol-decanol,
3-nonanone, ethanol, and tetrahydrofuran were positively related to CHy intensity. None of
the volatile metabolites was negatively related to CHy intensity. The non-volatile metabolites
acetoacetate, creatinine, ethanol, formate, methylmalonate, and N-acetylsugar A were positively
related to CHy intensity, and uridine diphosphate (UDP)-hexose B and citrate were negatively
related to CHy intensity. Several volatile and non-volatile metabolites that were correlated
with CHj intensity also were correlated with FPCM and not significantly related to CHy
intensity anymore when FPCM was included as covariate. This suggests that changes in these
milk metabolites may be related to changes in milk yield or metabolic processes involved in milk
synthesis. The UDP-hexose B was correlated with FPCM, whereas citrate was not. Both
metabolites were still related to CHy4 intensity when FPCM was included as covariate. The
UDP-hexose B is an intermediate of lactose metabolism, and citrate is an important
intermediate of Krebs cycle—related energy processes. Therefore, the negative correlation of
UDP-hexose B and citrate with CHy intensity may reflect a decrease in metabolic activity in
the mammary gland. Our results suggest that an integrative approach including milk yield
and composition, and dietary and animal traits will help to explain the biological metabolism
of dairy cows in relation to CH4 emission.

Keywords: dairy cow, milk metabolome, enteric methane emission, energy metabolism

INTRODUCTION

Enteric methane (CHy) production in ruminants mainly occurs in the rumen and is
a natural byproduct of microbial feed fermentation and degradation, an essential process to
provide nutrients to the animal. An increase of DMI results in a higher CH4 production
because more substrate is available for rumen microbiota to degrade, but diet characteristics,
including the type of carbohydrates and fat content, can also have a large effect on CHy
production (Kirchgebner et al,, 1995). Due to the large contribution (approximately 52%) of
CH, emission to the total greenhouse gas (GHG) emissions of the dairy sector (Gerber et
al., 2013), mitigation strategies have been widely investigated (Hristov et al., 2013). Dietary
changes to influence CH4 emission are among the most direct CH4 mitigation strategies (Knapp
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et al., 2014). Their importance increases because they are also candidates for implementation
at dairy farms. According to Dijkstra et al. (2011), evaluating dietary mitigation strategies
should be based on CH4 production relative to feed intake because it avoids confounding
effects of DMI on total CH4 production (CHy4 produced per animal). However, uncertainties
in measuring DMI at farm level makes an accurate relation of CH4 to DMI difficult in
practice (Bannink et al., 2011). Others have related CH4 mitigation strategies to their effect on
the product (milk) of a dairy farm (Knapp et al., 2014).

To assess GHG emissions by the dairy chain, it is also possible to relate CHy
production per unit of milk [usually expressed per unit of ECM or per unit of fat- and
protein-corrected milk (FPCM)]. Higher production levels related to nutritional and
nonnutritional management strategies may reduce CHj4 emissions per unit of milk (FAO,
2010). Emissions per unit of animal product reflect the accuracy of management practices
on the composite of feed intake, GHG emission, and animal productivity (FAO, 2010).
Therefore, evaluating CH4 production in relation to feed intake and in relation to milk
production are complementary.

Many studies have focused on the effect of CH; mitigation strategies on milk
composition, but mainly on the macro constituents level (Mohammed et al., 2011; Hart et al,,
2015). Less attention has been paid to individual metabolites of milk, with the exception of
milk fatty acids (MFA; Odongo et al., 2007; Chilliard et al., 2009). This focus on MFA is
because of the relation between MFA and ruminal activity with respect to microbial
metabolism and type of VFA formed (Vlaeminck and Fievez, 2005). Changes in feeding can
result in clear changes in MFA, which are partly related to how feed is degraded in the
rumen (Halmemies-Beauchet-Filleau et al., 2014). Although MFA may predict CHy emission
accurately within a limited range of dietary variation (e.g., variation in lipid source only;
Chilliard et al.,, 2009), MFA cannot accurately predict the differences in CH4 emission on a
wider range of diets (Van Lingen et al.,, 2014; Williams et al., 2014).

Milk volatile metabolite and non-volatile metabolite profiles can be used to monitor
animal health, feeding regimens, and metabolism in dairy cows. Based on different feeding
regimens, indole and skatole present in the volatile fraction of milk were pointed out as
indicative of the feeding regimen of dairy cows (Toso et al., 2002; Croissant et al., 2007).
Further, Hettinga et al. (2008) used the milk volatile metabolite profile to detect and
differentiate mastitis caused by different pathogens. Also, Klein et al. (2012) indicated the
ratio of the non-volatiles glycerophosphocholine and choline as possible predictor for
developing ketosis in dairy cows and Lu et al. (2013), showed that phosphate sugars can be
related to energy balance of the cow, due to a different organization of the epithelial membrane
in relation to energy balance. These authors also showed that determining milk components
using different techniques simultaneously can be useful for a more integrated understanding of
the metabolism of cows (Klein et al.,, 2010; Lu et al., 2013).

Many fields of research analyze the same bio-matrix with different methods and
integrate the resulting information to better monitor, predict, and interpret biological
processes. Although milk volatile metabolite and non-volatile metabolite profiles have been

used to monitor digestion and metabolism in dairy cows, to the best of our knowledge these
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profiles have not been related to CHs; emission. The present study explores the milk
metabolome by gas chromatography — mass spectroscopy (GC-MS metabolomics; milk
volatile metabolites) and proton nuclear magnetic resonance H-NMR metabolomics; milk
non-volatile metabolites) to better understand the biological pathways involved in CHy

emission.

MATERIALS AND METHODS
Experimental design

Data from a completely randomized block design experiment were used with a
total of 32 multiparous lactating Holstein-Friesian cows fed 4 diets that differed in grass silage
(GS) and corn silage (CS) content. The experiment was fully described by Van Gastelen et
al. (2015). The experiment was conducted in 2012 in accordance with Dutch law and
approved by the Animal Care and Use Committee of Wageningen University & Research
(Wageningen, the Netherlands).

The 4 diets had a roughage:concentrate ratio of 80:20 based on DM content. The
composition of the concentrate was similar for all diets, whereas the roughage consisted of
100% GS, 67% GS and 33% CS, 33% GS and 67% CS, and 100% CS (ingredient as
percentage of the total amount of roughage in the diet, all DM basis). Feed intake was
restricted (95% of ad libitum DMI) to avoid confounding effects of DMI on CH4 production.
After an adaptation period of 12 d, on d 13, cows were housed in climate respiration chambers
(CRC) for a 5-d period. Cows were milked and fed twice daily. Production of CH4 was
determined in 10 min intervals during 3 full 24-h periods in the CRC. The details of the
CRC used in this experiment are extensively described by Van Gastelen et al. (2015).

Milk yield and composition

Milk yield was recorded during each milking, and a milk sample (10 mL) was collected
for analyses of fat, protein, and lactose content by mid-infrared spectroscopy by Qlip
(Zutphen, the Nethetlands). In addition, a representative milk sample (5 g/kg of milk
production) was obtained at each milking from each cow. The first milk sample was collected
on d 13 in the afternoon and the last milk sample was collected on d 17 in the morning,
when cows wete housed in the CRC. Sodium azide (0.05% wt/wt) was added to the
pooled samples of the first 4 milkings, followed by the same procedure for milking 5 to 8 in
a separate bottle. Both bottles were stored at 5°C. After the last milking, these 2 sub-samples
(milkings 1 to 4 and 5 to 8) were pooled, and stored in 10-mL aliquots at —40°C for milk

composition analyses.

Analytical procedures
Volatile metabolites. To determine the volatile metabolite profile, GC-MS
metabolomics was performed based on the method described by Hettinga et al. (2008) and
Settachaimongkon et al. (2014). Milk samples were thawed overnight in a refrigerator (7°C).
A 5-mL milk sample was preheated in 10-mL vials sealed with silicon/Teflon septa and
magnetic caps for 1 min at 60°C. Volatile metabolites were extracted from the headspace for
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5 min with a 75-pum PDMS-carboxen SPME fiber (Supelco, Bellefonte, PA) using the Triplus
autosampler (CTC Analytics Ag, Zwingen, Switzerland). The volatile metabolites were
thermally desorbed from the fiber by heating it in a Best PTV injector (Thermo-Finnigan,
San Jose, CA) with an empty liner for 5 min at 250°C. The fiber was subsequently cleaned
for 10 min at 290°C. Vials without milk (only air) were used as blank samples.

Gas chromatography separation of volatile metabolites was performed on a Trace
GC/MS (Thermo-Fisher Scientific, Waltham, MA). Volatiles wete separated on a polat Stabilwax
column of 30 m length, 0.32 mm, and 1-pm film thickness (Restek, Breda, the Netherlands).
Oven temperature was kept at 40°C for 3 min, after which it was increased to 220°C at
15°C/min, with 1 min holding at 220°C. Helium at a flow rate of 1.5 mL/min was used as
a carrier gas. Mass spectrometry analysis was performed in electron impact mode (70 eV)
in the range of 33 to 250 /3, with 2 scans/s; the mass range of 7/% 33 to 250 was used.
The ion source was kept at 225°C.

The resulting chromatograms were analyzed using the AMDIS software (NIST,
Gaithersburg, MD); data were deconvoluted to obtain pure mass spectra for improved peak
identification. Identification of volatile metabolites was based on AMDIS software referred
to NIST/EPA/NIH database (http://www.nist.gov/std/nistla.cfm) and matching mass spectra
and retention time with an in-house library based on previous milk analyses (Hettinga et
al., 2009). Fragment patterns were not specific enough to identify the chain length of 3 alkanes
and these were labeled as alkane A, B, and C. Peak integration was subsequently performed
using the XCalibur software package (Thermo-Scientific, Austin, TX). Peak area of the milk
samples was corrected for the peak area of the blank samples, resulting in a peak area in
arbitrary units that was used for statistical analyses.

Non-volatile metabolites. To determine the non-volatile metabolite profile of
the milk samples, 'H-NMR metabolomics was performed. The procedure is described in
detail by Lu et al. (2013). In short, milk samples were ultra-centrifuged to isolate milk
serum. One-dimensional nuclear Overhauser enhancement spectroscopy  (1-D-NOESY)
spectra were obtained for all milk serum samples, using a nuclear magnetic resonance
Bruker spectrometer Avance III with a 600 MHz/54 mm UltraShielded Plus magnet equipped
with a CryoPlatform cryogenic cooling system, a BCU-05 cooling unit, an ATM automatic
tuning and matching unit (Bruker, Rheinstetten, Germany). To assign milk serum
nonoverlapping metabolite resonances, comparisons were made with published literature
(Klein et al., 2010, 2012), the Human Metabolome Database version 2.0 online library
(http:/ /www.hmdb.ca), as well as internal standards. The peak area of each assignment is
relative to the calibration standard 3-trimethylsilyl-2,2,3,3-tetradeuteropropionate, resulting in

a relative peak area in arbitrary units that was used for statistical analyses.

Statistical analysis

One cow was excluded from the experiment, because of large feed residuals while
housed in the CRC, which resulted in much lower DMI compared with the last 4 d in the tie-
stall and the other cows in that block (Van Gastelen et al., 2015). In addition, the results of

GC-MS metabolomics of another cow could not be used because these results were
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considered outliers (i.e., 9 from 25 volatile metabolites were not found in the milk of this
cow, and acetone was 10 times more present in the milk of this cow compared with the
milk of other cows). Last, the results of lH-NMR metabolomics of a third cow could not
be used because the sample showed repeatedly a high background interference, which impaired
peak integration. Therefore, relations between metabolites measured with both techniques were
based on 29 samples, whereas all remaining data analyses of volatile and non-volatile
metabolites, CH4 emission, and production traits were based on 30 samples.

Data on DMI, milk production, milk composition, and MFA are described by Van
Gastelen et al. (2015). The summary statistics of the volatile metabolites and non-volatile
metabolites are presented in Supplemental Tables S4.1 and S4.2, respectively. All statistical
analyses were done using SPSS version 21 (SPSS Inc., Chicago, IL). The relations between
individual volatile metabolites or non-volatile metabolites, and CHy intensity (g/kg of FPCM)
or CHy yield (g/kg of DMI) wete established by linear regression with CHyintensity and CHy
yield as dependent variables and milk volatile or non-volatile metabolites as independent
variables. All coefficients were calculated over all diets. To evaluate the influence of FPCM on
the established relations between individual volatile metabolites or non-volatile metabolites
and CHy intensity, FPCM was included as a covariate in the linear regressions. To evaluate the
influence of diet on the established relations between individual volatile metabolites or non-
volatile metabolites, and CHa yield and intensity, dietary treatment was included as a covariate
in the linear regressions. Pearson correlation coefficients between milk (non)volatile metabolites
and milk and animal traits were determined, with a 2-tailed test for significance (P < 0.05).
Multivariate analysis of the data was done by principal component analysis in R version 3.2.3.
(R Core Team, 2013).

RESULTS AND DISCUSSION
Relation between individual metabolites and methane intensity or yield

Volatile metabolites. In the present study, a total of 25 volatile metabolites were
identified. These included ketones, aldehydes, alcohols, hydrocarbons, sulfur compounds,
esters, and terpenes. The relations between each volatile metabolite and CHy intensity (g/kg
of FPCM) and CHy yield (g/kg of DMI) are shown in Tables 4.1 and 4.2, respectively.
The volatile metabolites 1-heptanol-decanol, 3-nonanone, ethanol, and tetrahydrofuran were
positively related (P < 0.044) to CHj intensity, and none of the volatile metabolites were
negatively related to CHy intensity. None of the volatile metabolites were positively related to
CHy yield, whereas acetone was negatively related (P = 0.043) to CHj yield.

The relations between each volatile metabolite and CHj intensity including FPCM
as a covariate are shown in Table 4.1. Including FPCM as a covariate in the regression model
resulted in no relationship between the volatile metabolites and CHy4 intensity (Table 4. 1).
This suggests that the previous relations were due to a relation between the volatile metabolites
and FPCM.

Non-volatile metabolites. In the present study, 30 resonances could be assigned
either to a compound or to a member of a class of compounds (Supplemental Table S4.3).
The relations between each non-volatile metabolite and CHy intensity or CHy yield are shown
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in Tables 4.3 and 4.4, respectively. The non-volatile metabolites, acetoacetate, creatinine,
ethanol, formate, methylmalonate, and N-acetylsugar A were positively related (P <
0.030) to CHj intensity. Citrate and uridine diphosphate (UDP)-hexose B were negatively
related (P < 0.026) to CHy intensity. None of the non-volatile metabolites were positively
related to CHy yield, whereas acetone was the only non-volatile metabolite negatively related
(P = 0.046) to CHy yield.

The relations between each non-volatile metabolite and CHy intensity, including
FPCM as a covariate, are shown in Table 4.3. When including FPCM as a covariate in the
regression model, none of the non-volatile metabolites were positively related to CH4 intensity
(Table 4.3). This suggests that the relation between CHs intensity and acetoacetate,
creatinine, ethanol, formate, methyl-malonate, and N-acetylsugar A were due to the relation
between these non-volatiles metabolites and FPCM. Citrate and UDP-hexose B remained
negatively related (P < 0.026) to CHj4 intensity upon including FPCM as a covariate in the
regression model. The significant relationship with CHy intensity in the presence of FPCM
as a covariate suggests that the metabolic pathways in which these metabolites are involved
relate to CHy production in dairy cows, independent of FPCM yield. Our results suggest
that relating milk metabolites to CHy4 intensity without including FPCM as a covariate may
identify milk metabolites that are also or exclusively related to FPCM rather than CH4 emission.
This dependency seems to be true for both volatile and non-volatile metabolites, and indicates
that an increase in milk yield may reduce the concentration of some milk constituents.
Bovenhuis et al. (2015) reported similar findings showing the genetic polymorphism in the
DGATT gene related to a higher milk yield and reduced milk protein content. However, changes
in milk yield do not account for all the variation in milk composition. Hristov et al. (2015)
reported that without changes in milk yield, milk of cows with a lower CH4 production
(g/d) due to feeding of 3-nitrooxypropanol had a higher content of de novo synthesized fatty
acids. Due to the relation between rumen VFA and de novo synthesized fatty acids, the
results of Hristov et al. (2015) suggest that milk composition also depends on blood-derived
compounds and mammary gland metabolic activity (Bauman and Griinari, 2003; Jenkins and
McGuire, 2006). Taken together, these 2 processes contribute to changes in milk composition,
and in our data set it was difficult to distinguish between a dilution effect due to higher milk
yield or a higher metabolic activity related to higher milk yield. Therefore, throughout the
discussion we will consider them both.

Comparison of both techniques. Milk metabolites can be present in solution
and be measured by 'H-NMR. Upon heating, some milk metabolites can be volatized
and measured by GC-MS. Ethanol and acetone were the only compounds detected both
by '"H-NMR and GC-MS. A positive correlation was found between the (relative) areas of
ethanol (P = 0.031, R?>= 0.401; n = 29) and acetone (P < 0.001, R? = 0.684; n = 29)
measured by both methods. This is an important prerequisite for the combined analysis of
milk metabolome. In our data set, both volatile and non-volatile metabolites are generally better
correlated with CHy intensity than with CHy yield. Further, non-volatile metabolites ate also
better related to CHy intensity than volatile metabolites, and the relationship of 2 non-volatile
metabolites (UDP-hexose B and citrate) remained significant after including FPCM as a
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covariate in the regression model. The weaker relation between volatile metabolites and CHy
intensity might be due to the direct transfer of volatile compounds from diet to milk or the
interaction between volatile metabolites and rumen metabolism (Urbach, 1990; Désage et al.,
1996; Toso et al., 2002) that are not related to the ruminal pathways leading to CHjy
production.

Multivariate analysis. Principal component analysis was conducted to identify
general differences in volatile and non-volatile metabolite profiles. The extraction of 2
components explained only 46.2% of the variation of volatile metabolites and 45.0% of the
variation of non-volatile metabolites (Supplementary Figures S4.1A and S4.1B, respectively).

Further, no clear correlation was found between the groups of variables and the factors.

Changes in methane intensity may be related to the 1-carbon metabolism and energy
metabolism pathways

Formate is positively related to CHy intensity; however, when FPCM is included in
the regression model the relation is no longer significant. This may be explained by the
negative correlation between formate and FPCM (P = 0.024, data not shown). The relation
between formate and CHy intensity may therefore be explained by the milk synthesis
processes, more specifically the 1-C metabolism in postabsorption pathways. One-carbon
donors, including formate, are important in cukaryotic 1-C metabolism as they connect
parallel mitochondrial and cytosolic pathways. Activated 1-C compounds, such as formate, are
produced by the mitochondria, after which an enzymatic cascade in the cytoplasm will allow
formate to be further incorporated in 1-C metabolism (Appling, 1991; Christensen and
MacKenzie, 2006). The 1-C metabolism is a housekeeping process involving diverse
mechanisms such as biosynthesis of lipids and proteins as well as methylation reactions
(Christensen and MacKenzie, 2006). These processes are entwined with milk synthesis (Bian
et al.,, 2015) as in healthy cows, milk metabolites may be secreted into milk via transcellular
routes (McManaman and Neville, 2003). Therefore, a negative relation between formate and
FPCM might reflect a change in postabsorption 1-C metabolism, possibly in the mammary
gland.
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Acetoacetate, together with volatile 3-nonane, are ketone bodies that are positively
correlated with CHy intensity (Tables 4.3 and 4.1, respectively). The presence of ketones bodies
in milk is often used to monitor changes in energy metabolism of dairy cows (Enjalbert et al,,
2001). A higher amount of ketone bodies in blood plasma and subsequently in milk occurs when
there is a surplus of acetyl-CoA for the tricarboxylic acid (T'CA) cycle (Enjalbert et al., 2001;
Wellen and Thompson, 2012). In general, diets relatively rich in fiber that promote production
of the ketogenic VFA, acetic acid, and butyric acid in the rumen may give rise to higher levels of
ketone bodies in blood than glucogenic diets (diets relatively rich in rumen bypass starch
delivering glucose in the small intestine or rich in rapidly fermentable carbohydrates that
promote production of propionic acid in the rumen; Van Knegsel et al., 2007). Diet composition
is known to be related to CH4 production in the rumen, with fiber generally resulting in higher
CH,4 production per unit substrate degraded in comparison with starch (Ellis et al., 2008; Hristov
et al,, 2013). Hence, a positive relationship between ketone bodies in milk and CHy intensity
might be explained from the ketogenic or glucogenic nutrient supply to the rumen and its
effect on rumen fermentation. However, higher concentrations of these ketone bodies in milk
were not significantly related to CHy yield, indicating that such differences in ketogenic or
lipogenic supply to the rumen and effects on rumen fermentation do not have a role in the
observed relationships with CHy intensity. The correlation between acetoacetate, 3-nonanone,
and CHy intensity disappears when FPCM is included as a covariate in the regression model.
In fact, acetoacetate and 3-nonanone are negatively related (P = 0.022, P < 0.001, respectively,
data not shown) to FPCM. This may indicate a dilution effect of certain milk metabolites
due to a higher milk yield.

The TCA cycle in the mitochondria is of paramount significance to the metabolic
efficiency of the cell and therefore the metabolism of the cow. In the mitochondria, ATP is
produced from acetyl-CoA originating from glucose, fatty acids, lactate, pyruvate, and AA
(Hardie and Carling, 1997). The production and utilization of ATP is therefore a flexible
situation in which molecules are interconverted depending on the needs of the cell. In this
situation, molecules with a high-energy phosphate, such as phosphocreatine, have been widely
studied. Together with its precursor creatine, they form an important pool of energy in the
cell, which can be used by the mitochondria. A consequence of this metabolism is the formation
of creatinine, which is often monitored for energy status of tissues (Wyss and Kaddurah-
Daouk, 2000). In our data set, a positive correlation is present between creatinine and CHy
intensity (P = 0.007, Table 4.4) and a negative correlation between creatinine and milk yield
expressed as FPCM (P = 0.026, data not shown). Further, the positive correlation between
creatinine and CHy intensity disappears when FPCM is included as a covariate in the regression
model. Therefore, in our data set, changes in creatinine concentration in milk seem related to
changes in milk yield and, therefore, milk synthesis. This may indicate a change in the
metabolic activity fueled by the mitochondria. As discussed in this section, a negative relation
was found between milk formate, acetoacetate, 3-nonanone, ctreatinine, and milk yield,
expressed as FPCM. This supports the idea of a possible dilution effect on milk metabolites.
Further, when FPCM is included as a covariate in the regression models, the above
mentioned metabolites are no longer related to CHy intensity. An increase in CHy intensity
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resulting from a lower milk yield may therefore be associated with a lower metabolic rate,

explaining the changes in milk metabolites related to milk synthesis and energy metabolism.

Table 4.2. Linear regression between methane yield (g/kg DMI) and milk volatile metabolites (peak areal)?

Volatile metabolite? (peak area) Intercept SE Slope SE Slope P R?

1-heptanol 24.8 0.59 -1.72x106 1.000x 10 0.184 0.062
1-heptanol-decanol 23.4 1.33 9.52x107 2.000x10-¢ 0.569 0.012
1-pentanol 23.8 0.98 1.18x107 3.734x107 0.755 0.004
2-butanone 23.9 0.57 2.33x10% 5.418x10® 0.671 0.007
2-heptanone 24.1 0.49 5.11x10” 1.270x107 0.968 <0.001
3-nonanone 24.3 143 -8.54x10% 7.828%107 0.914 <0.001
Acetone 25.1 0.54 -7.53%107 3.545%10” 0.043 0.139
Alkane A 23.9 0.93 3.54x107 1.000x 10 0.799 0.002
Alkane B 24.4 1.32 -4.64x107 2.000x10-6 0.819 0.002
Alkane C 24.6 0.61 -3.53x107 3.682x107 0.346 0.032
Benzene alkane 24.4 1.31 -4.02x107 2.000%10¢ 0.827 0.002
Benzene compound 23.9 0.43 5.53%107 6.290x107 0.387 0.027
Butanoic acid 24.0 0.47 3.61x10” 8.088x10 0.659 0.007
Cyclohexane 24.7 1.16 -4.00x10¢ 7.000x10- 0.587 0.011
Dimethyl sulfone 233 0.71 3.98%x107 3.067%x107 0.205 0.057
Ethanol 232 1.04 2.13x107 2.318%107 0.366 0.029
Ethyl acetate 253 1.12 -2.44x107 2.187x107 0.273 0.043
Hexanal 24.6 0.50 -3.53%10% 2.602X108 0.186 0.062
Hexanoic acid 23.9 0.42 4.08x10* 5.071x10” 0.428 0.023
Hydrogen azide 23.4 1.18 1.41x10% 2.310x10% 0.548 0.013
Ketone A 23.9 0.48 6.62X107 8.608%107 0.449 0.021
Limonene 23.5 1.23 6.85%10¢ 1.400x10-5 0.620 0.009
Octanoic acid 239 0.43 5.25%10° 6.727%10” 0.442 0.021
Tetrahydrofuran 23.8 0.70 6.98%x10” 1.374x108 0.615 0.009

! Numbers are peak area values (arbitrary units).
2 Milk volatile metabolites ate ordered alphabetically, n = 30.
3 Parameters were extracted from the equation: CHy yield = a + b X volatile metabolite + ¢, where a is the intercept

of the regtession line, b is the slope of the regression line associated with the metabolite, and e is the error.
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Table 4.4. Linear regression between methane yield (g/kg of DMI) and milk non-volatile metabolites (relative

area!)?

NOH?_VOlaUle metabolite’ Intercept SE Slope SE Slope P R?
(relative peak area)

Acetate 25.6 1.75 -32.91 36.288 0.372 0.029
Acetoacetate 25.5 2.07 -50.55 71.864 0.488 0.017
Acetone 25.6 0.79 -43.20 20.664 0.046 0.135
Acetylcarnitine 25.1 1.99 -12.38 23.388 0.601 0.010
Betaine 27.0 1.70 -9.32 5.358 0.093 0.098
Butyrate 24.0 0.56 0.35 1.931 0.858 0.001
B-hydroxybutyrate 26.2 1.85 -37.62 32.213 0.253 0.046
Carnitine 29.2 2.67 -26.95 13.806 0.061 0.120
Choline 23.1 1.15 1.11 1.290 0.397 0.026
Citrate 25.9 2.28 -0.70 0.838 0.412 0.024
Creatine 25.7 2.28 -4.10 5.091 0.477 0.018
Creatinine 23.1 2.97 15.41 45.908 0.740 0.004
Ethanol 25.4 217 -59.55 96.318 0.541 0.013
Formate 25.9 1.77 -99.20 94.431 0.302 0.038
Galactose-1-phosphate 24.7 0.95 -83.17 115.441 0.477 0.018
Glycerophosphocholine 23.8 1.07 0.32 1.277 0.804 0.002
Hippurate 22.3 1.57 34.50 30.141 0.262 0.045
Lactate 25.1 0.99 -13.12 11.546 0.265 0.044
Lactose 30.2 7.66 -0.29 0.363 0.430 0.022
Malonate 25.8 1.81 -33.90 34.543 0.335 0.033
Methylmalonate 24.3 1.34 -6.30 34.512 0.856 0.001
N-acetylsugar A 28.7 2.54 -27.76 15.241 0.079 0.106
N-acetylsugar B 27.0 1.51 -4.75 2.411 0.059 0.122
N-acetylsugar C 23.7 0.92 1.33 3.326 0.693 0.0006
N-acetylsugar D 23.9 0.99 2.00 9.239 0.830 0.002
N-acetylsugar E 24.1 1.24 -0.79 25.834 0.976 <0.001
Orotate 23.8 1.29 5.15 22.903 0.824 0.002
Oxaloacetate 25.0 1.95 -41.34 85.567 0.633 0.008
Oxoglutarate 24.5 1.01 -8.39 29.458 0.778 0.003
Phosphocreatine 23.0 1.15 27.73 28.309 0.336 0.033
Phosphorylcholine 23.5 0.66 3.83 3.539 0.288 0.04
Proline 25.0 1.64 -10.39 18.745 0.584 0.011
Pyruvate 25.7 2.27 -18.05 25.387 0.483 0.018
Succinate 24.0 1.92 3.18 35.144 0.929 <0.001
Sugar A (detivative phosphate) 25.6 1.33 -56.85 48.672 0.253 0.046
Sugar B (derivative phosphate) 23.5 1.08 15.27 27.805 0.587 0.011
Sugar C (derivative phosphate) 23.6 0.67 17.01 20.251 0.408 0.025
Uridine diphosphate (UDP)-hexose A 24.5 0.88 -150.60 274.370 0.587 0.011
UDP-hexose B 252 1.31 -88.20 97.360 0.373 0.028
UDP-hexose C 253 2.21 -39.70 71.965 0.586 0.011
UDP-hexose D 24.4 1.15 -54.77 190.607 0.776 0.003

! Numbers ate relative peak area values in relation to the peak area of internal standard (arbitrary units).

2 Milk non-volatile metabolites are ordered alphabetically, n = 30.

3 Parameters were extracted from the equation: CHs yield = a + b X non-volatile metabolite + e, where a is the
intercept of the regression line, b is the slope of the regression line associated with the non-volatile metabolite, and

¢ is the error.
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Changes in methane intensity are related to lactose synthesis

In our data set, CHy intensity is negatively related to UDP-hexose B (P = 0.001, Table
4.3). This negative relation may be due to the fact that UDP-sugars, including UDP-hexoses,
are intermediates in lactose synthesis (Cant et al., 2002). For the production of lactose, glucose
is transported from the bloodstream into the cytosol of epithelial cells, where part of it is
converted into UDP-sugars. These are precursors of galactose that together with glucose will
form lactose (Cant et al., 2002). This may explain the positive correlation between UDP-hexose
B and lactose yield (g/d; Figure 4.1A). Milk yield is mainly controlled by the synthesis of
lactose due to the contribution of this disaccharide to the osmolality of milk (Linzell and
Peaker, 1971), and as discussed previously, an increase in milk yield (as FPCM) per animal
reduces CHy intensity. Although in our data set UDP-hexose B is positively related (P = 0.008,
data not shown) to FPCM, even when including FPCM in the regression model the UDP-
hexose B is still significantly related to CHy intensity. This suggests that the lower amount of
UDP-hexose B in milk might be related to the involvement of glucose in different metabolic
pathways in the mammary gland. The large majority of glucose that is taken up by the
epithelial cells is used in the biosynthesis of lactose (Cant et al, 2002). Glucose is also
involved in NADPH production, which is paramount in the de novo MFA synthesis, and is
required to synthesize glycerol, forming the backbone of triglycerides (Dijkstra et al., 1990).
Thus, the negative relation between UDP-hexose B and CHy intensity may be explained by

a decrease in metabolic rate in the mammary gland due to a lower milk yield.
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Figure 4.1 Scatter plots of (A) uridine diphosphate (UDP)-hexose B and lactose yield (g/d), and (B) CHa intensity
(g/kg of fat- and protein-corrected milk; FPCM) and BW (kg). The Pearson cortelation coefficient is indicated by r (n
= 30).

In our data set, milk citrate is negatively related to CHy intensity (P = 0.026, Table
4.3) and is not related to FPCM (P = 0.347, data not shown). Therefore, when including
FPCM in the regression model, citrate is still negatively related to CHy4 intensity (P = 0.025,
Table 4.3). Milk citrate is regarded as a marker for the energy metabolism in the mammary
gland because the mammary epithelium is impermeable to citrate (Linzell et al., 1976;
Faulkner and Peaker, 1982). In our study, a decrease in milk citrate and associated increase in
CH, intensity (Table 4.3) could indicate a distuption in the TCA cycle in the mammary
gland because citrate is a regulatory compound of the acetyl-CoA metabolism in the
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mitochondria (Bremer and Davis, 1974). Further, by providing NADPH, the citrate
metabolism and the TCA cycle may be indirectly involved in de novo synthesis of MFA in
the mammary gland, inducing a negative correlation between citrate and de novo synthesized
MFA (Faulkner and Peaker, 1982). In our data set, C12:0 and C14:0 were the only de novo
synthesized MIFA negatively related to milk citrate (data not shown). This may be due to the
contribution of NADPH to the elongation step during the de novo MFA synthesis. In each
elongation step, rumen-derived acetate and NADPH are needed and longer de novo MFA
require more elongation steps and therefore more NADPH; C6:0 requires 2 elongation steps
in contrast to the 5 elongation steps needed for C12:0 (Garnsworthy et al., 20006).

Together with NADPH, ecach elongation step in the de novo synthesis of MFA
requires rumen-derived acetate, which mainly originates from fermentation of complex
carbohydrates in the rumen. Decreased rates of MFA synthesis in the mammary gland induced
by dietary changes have been shown to increase citrate levels of milk (Garnsworthy et al., 2006).
Increasing the level of rapidly fermentable carbohydrates by increasing concentrate proportion
of the diet, or increasing dietary lipid content, are generally associated with reduced de novo
MFA synthesis, and such diets in general are also associated with reduced CH4 production
(Ellis et al., 2008). This may further explain the observed negative relationship between citrate
and CHy intensity in the present study.

Milk acetone relates to methane yield

Expressing CH4 emission relative to feed intake avoids confounding effects of DMI
on total CH4 production (Dijkstra et al. (2011). In our data set, acetone measured both by 'H-
NMR and GC-MS was the only metabolite negatively related to CHy yield. Acetone is a
ketone body that may be positively or negatively related to milk production. In general, milk
acetone levels of energy deficient cows increase rapidly and may indicate subclinical ketosis
(Miettinen, 1994), and subclinical ketosis may negatively affect milk production. Milk acetone
is also influenced by parity and lactation stage, and a rise in milk production was accompanied
by a rise in milk acetone levels (Heuer et al., 2001). In our study, CHy yield and acetone were
not related to milk production (expressed as FPCM; P < 0.675, data not shown), and
therefore the mechanisms explaining the relation between CHy yield and acetone are not
totally clear. In general, levels of ketone bodies including acetone are not just related to energy
balance of the cow, but also to glucose levels (Andersson, 1988). As discussed in a previous
section, glucogenic diets are generally associated with reduced CHy production. Therefore,
we assessed the effect of diet on the established relations between individual volatile
metabolites or non-volatile metabolites, and CH4 emission, by including dietary treatment as
a covariate in the linear regressions. The majority of relations were not significantly changed
(data not shown). Only hydrogen-azide became significantly related to CHy intensity (P =
0.043) and sugar A (derivative phosphate) became significantly related to CHy yield (P =
0.031). More specifically, including treatment as a covariate in the regression model did not
significantly change the relation between acetone (non-volatile) and CHy yield (P = 0.044),
but acetone (volatile) was no longer significantly related to CHy yield (P = 0.229). Our results
suggest that although acetone may help to understand changes in the physiology of the dairy
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cow associated with CHy yield, it may also be influenced by the diet.

Body weight relates to methane intensity, but not to methane yield

In the present study, body weight (BW) of cows was positively related to CHy
intensity (P = 0.012, r = 0.444; TFigure 4.1B), but was not related to CHy yield (P =
0.671, r = 0.079). The importance of BW in relation to CH4 production has been
previously acknowledge by other authors who have included BW in regression equations to
predict CHy production (Kirchgebner et al., 1995; Moraes et al., 2014). In a meta-analysis using
a Bayesian model selection procedure, Moraes et al. (2014) identified BW as a key explanatory
variable in predicting CH4 emissions, in addition to the key dietary variables energy intake,
dietary fiber, and lipid proportions. The association between BW and CH4 emission might
be explained by the relation between BW and rumen capacity (Demment and Van Soest, 1985).
A higher BW is proportional to a larger rumen capacity. When feed intake is kept constant, a
higher rumen capacity results in a lower passage rate (Demment and Van Soest, 1985),
resulting in a higher CHy4 production (Moraes et al., 2014).

Because feed intake, either as DMI or gross energy intake, are confounding factors
of BW and enteric CHy production (Ellis et al., 2008), cows in the present experiment
had a restricted feed intake, and no correlation between BW and CHy yield (P = 0.671,
r = 0.079) or BW and FPCM (P = 0.232, r = —0.221) was observed. A higher BW requires
more feed to be used for maintenance purposes, thus having less feed available for milk
production, which is expected to increase CHy intensity. However, the absence of relation
between BW and FPCM supports the idea that rumen size and passage rate may explain the
positive relation between BW and CH4 intensity.

CONCLUSIONS

The results of the present study suggest that milk is a suitable matrix to better
understand the biological pathways involved in CH4 emission. In general, milk non-volatile
metabolites have a more pronounced relationship with CH4 emission compared with milk
volatile metabolites, especially when referring to CHy intensity (g/kg of FPCM) rather than
CHy yield (g/ kg of DMI). However, relationships between several metabolites and CHy
intensity are partly dependent on milk production (as FPCM). The relations between milk
UDP-hexose B and citrate with CHy intensity (g/ kg of FPCM) remained significant when
FPCM was included as a covariate in the regression models. The UDP-hexose B is an
intermediate metabolite of lactose metabolism, whereas citrate is an important intermediate of
Krebs cycle—related energy metabolic processes. This suggests that CHy intensity may be
related to lactose synthesis and energy metabolism in the mammary gland. The negative
relation between milk acetone and CHy yield may be related to glucogenic nutrient supply,
and implies that acetone is important to monitor CHy emission related to feed intake. We
observed a positive relationship between BW and CHy intensity, which may be related to
differences in rumen capacity and rumen passage rate. Our results suggest that an integrative
approach including milk production and composition, dietary and animal traits will help
to explain the biological metabolism of dairy cows in relation to CHy4 emission.
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SUPPORTING INFORMATION

Supplementary Table S4.1. Summary statistics of milk volatile metabolites measured (peak area')

Volatile metabolite Mean SD Minimum Maximum
1-heptanol 3.88x10° 2.657%x10° 1.22x103 1.53x10¢
1-heptanol-decanol 7.75%10° 2.085x103 0.00 1.11x10¢
1-pentanol 2.46x10° 9.270x10° 9.19x10° 4.27x100
2-butanone 8.37x10° 6.378%100 2.00x100 3.13x107
2-heptanone 2.76x10° 2.729%10° 3.02x10° 1.30x107
3-nonanone 1.78%10¢ 4.428x10° 0.00 2.41x10°
Acetone 1.24x108 9.076x107 5.46x107 5.31x108
Alkane A 6.27x10° 2.515%x10° 0.00 1.20x10¢
Alkane B 6.34x10° 1.720%10° 0.00 9.16X10°
Alkane C 1.38%10¢ 9.267x10° 5.73%103 4.73x10°
Benzene alkane 6.96x103 1.905%10° 0.00 1.01x10¢
Benzene compound 4.30x10° 5.438x10° 5.95x10* 3.14x10°
Butanoic acid 3.93%107 4.272x107 6.46x10° 2.32x108
Cyclohexane 1.52x10° 4.747x10% 0.00 2.32x10°
Dimethyl sulfone 2.01x10° 1.098x10° 7.48%10° 5.52x10¢
Ethanol 4.25x10° 1.474x10° 2.62x10° 8.27%10°
Ethyl acetate 4.90x10° 1.551x10° 2.29x10° 8.44x10°
Hexanal 1.46x107 1.291X%107 2.53x10° 6.13x107
Hexanoic acid 5.19%107 6.760x107 8.46x10° 3.82x108
Hydrogen azide 4.89x107 1.491x107 0.00 7.47x107
Ketone A 3.89x10° 3.986%x10° 8.69%10* 2.21x10°
Limonene 8.68x10* 2.531x10* 4.46X10* 1.53x10°
Octanoic acid 3.86%107 5.099x107 7.70x10° 2.88%108
Tetrahydrofuran 4.48x107 2.511x107 6.72x10° 1.21x108

! Numbers ate peak area values (atbitrary units).
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Supplementary Table S4.2. Summary statistics of milk non-volatile metabolites measured (relative area')

Non-volatile metabolite Mean SD Minimum Maximum
Acetate 0.047 0.0096 0.030 0.068
Acetoacetate 0.028 0.0049 0.020 0.039
Acetone 0.035 0.0159 0.023 0.102
Acetylcarnitine 0.084 0.0150 0.057 0.125
Betaine 0.311 0.0624 0.188 0.422
Butyrate 0.225 0.1823 0.084 1.018
B-hydroxybutyrate 0.056 0.0107 0.039 0.088
Carnitine 0.192 0.0239 0.149 0.246
Choline 0.849 0.2694 0.376 10.658
Citrate 20.690 0.4151 10.931 30.378
Creatine 0.396 0.0613 0.299 0.564
Creatinine 0.064 0.0077 0.048 0.081
Ethanol 0.022 0.0036 0.015 0.030
Formate 0.018 0.0037 0.011 0.027
Galactose-1-phosphate 0.008 0.0030 0.002 0.015
Glycerophosphocholine 0.789 0.2756 0.449 1.396
Hippurate 0.051 0.0114 0.038 0.084
Lactate 0.081 0.0298 0.051 0.170
Lactose 21.063 0.9583 18.065 22.765
Malonate 0.052 0.0100 0.030 0.073
Methylmalonate 0.023 0.0097 0.013 0.064
N-acetylsugar A 0.165 0.0219 0.124 0.224
N-acetylsugar B 0.611 0.1369 0.334 0.890
N-acetylsugar C 0.257 0.1056 0.089 0.516
N-acetylsugar D 0.101 0.0381 0.039 0.197
N-acetylsugar E 0.046 0.0136 0.022 0.087
Orotate 0.054 0.0154 0.028 0.100
Oxaloacetate 0.023 0.0041 0.016 0.034
Oxoglutarate 0.053 0.0119 0.032 0.082
Phosphocreatine 0.039 0.0122 0.023 0.071
Phosphorylcholine 0.161 0.0975 0.062 0.444
Proline 0.086 0.0187 0.059 0.142
Pyruvate 0.089 0.0138 0.066 0.122
Succinate 0.054 0.0100 0.040 0.092
Sugar A (derivative phosphate) 0.027 0.0071 0.012 0.039
Sugar B (derivative phosphate) 0.037 0.0126 0.016 0.061
Sugar C (derivative phosphate) 0.029 0.0172 0.006 0.072
Uridine disphosphate (UDP)-hexose A 0.003 0.0013 0.001 0.005
UDP-hexose B 0.013 0.0036 0.003 0.019
UDP-hexose C 0.030 0.0049 0.020 0.046
UDP-hexose D 0.006 0.0019 0.003 0.010

! Numbers are relative peak area values in relation to the peak area of internal standard (arbitrary units).
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Supplementary Table S4.3. List of chemical shift values!, proton assignments?, and multiplicity® for metabolites
identified by '"H-NMR in milk samples of cows

Metabolite Chemical shift (ppm)  Assignment Multiplicity
Acetate 1.930 CH3 Singlet
Acetoacetate 2.264 CH3 Singlet
Acetone 2.230 CH3 Singlet
Acetylcarnitine 3.193 3XCH3 Singlet
Betaine 3.266 3XCH3 Singlet
Butyrate 2172 CH2 Triplet
8-hydroxybutyrate 2.330 CH2 Multiplet
Carnitine 3.496 CH2 Multiplet
Choline 3.203 3xXCH3 Singlet
Citrate 2.702 CH2 Doublet
Creatine 3.041 CH3 Singlet
Creatinine 3.060 CH3 Singlet
Ethanol 1.175 CH3 Triplet
Formate 8.457 CH Singlet
Galactose-1-phosphate 5.477 CH Doublet
Glycerophosphoholine 3.231 3xXCH3 Singlet
Hippurate 7.557 CH2 Multiplet
Lactate 1.333 CH3 Doublet
Lactose 4.459 CH Doublet
Malonate 3.114 CH2 Singlet
Methylmalonate 1.256 CH Doublet
N-acetylsugar A 2.043 CH3 Singlet
N-acetylsugar B 2.059 CH3 Singlet
N-acetylsugar C 2.069 CH3 Singlet
N-acetylsugar D 5.404 CH2 Multiplet
N-acetylsugar E 8.144 CH2 Doublet
Orotate 6.198 CH Singlet
Oxaloacetate 2.396 CH2 Singlet
Oxoglutarate 2.452 CH2 Triplet
Phosphocreatine 3.047 CH3 Singlet
Phosphorylcholine 3.222 3XCH3 Singlet
Proline 2.360 CH2 Multiplet
Pyruvate 2.377 CH3 Singlet
Succinate 2.426 2XCH2 Singlet
Sugar A (derivative phosphate) 5.192 CH Doublet
Sugar B (derivative phosphate) 5.434 CH Doublet
Sugar C (derivative phosphate) 5.517 CH Doublet
Uridine disphosphate (UDP)-hexose A 5.903 CH Doublet
UDP-hexose B 5.951 CH Doublet
UDP-hexose C 8.072 CH Doublet

! Position of the signals.
2 Type of proton(s).
3 Number of peaks corresponding to detected proton(s).
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Supplementary Figure S4.1A. PCA score plot derived from volatile metabolite profiles according to the different

treatments used.
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Supplementary Figure $4.1B. PCA score plot derived from non-volatile metabolite profiles according to the
different treatments used.
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CHAPTER 5

ABSTRACT

This study investigated the relationships between methane (CHy) emission and fatty
acids, volatile metabolites (V) and non-volatile metabolites (NV) in milk of dairy cows. Data
from an experiment with 32 multiparous dairy cows and 4 diets were used. All diets had a
roughage:concentrate ratio of 80:20 based on dry matter (DM). Roughage consisted of either
1000 g/kg DM grass silage (GS), 1000 g/kg DM maize silage (MS), or a mixture of both silages
(667 g/kg DM GS and 333 g/kg DM MS; 333 g/kg DM GS and 677 g/kg DM MS). Methane
emission was measured in climate respiration chambers and expressed as production (gram per
day), yield (gram per kg dry matter intake; DMI) and intensity (gram per kg fat- and protein-
corrected milk; FPCM). Milk was sampled during the same days and analysed for fatty acids by
gas chromatography, for V by gas chromatography-mass spectrometry, and for NV by nuclear
magnetic resonance. Several models were obtained using a stepwise selection of (1) milk fatty
acids (MFA), V, or NV alone, and (2) the combination of MFA, V and NV, based on the
minimum Akaike’s information critetion statistic. Dry matter intake was 16.8 £ 1.23 kg/d,
FPCM yield was 25.0 + 3.14 kg/d, CH4 production was 406 £ 37.0 g/d, CHy yield was 24.1
1.87 g/kg DMI, and CHy intensity was 16.4 = 1.91 g/kg FPCM. The obsetved CH4 emissions
were compared with the CH4 emissions predicted by the obtained models, based on concordance
correlation coefficient (CCC) analysis. The best models with MFA alone predicted CH4
production, yield, and intensity with a CCC of 0.80, 0.71, and 0.69, respectively. The best models
combining the three types of metabolites included MFA and NV for CH4 production and CHy4
yield, whereas for CHy4 intensity MFA, NV, and V were all included. These models predicted
CH4 production, yield, and intensity better with a higher CCC of 0.92, 0.78, and 0.93,
respectively, and with increased accuracy (C) and precision (7). The results indicate that MFA
alone have moderate to good potential to estimate CH4 emission, and furthermore that including
V (CH4 intensity only) and NV increases the CH4 emission prediction potential. This holds
particularly for the prediction model for CHy intensity.
Keywords: methane emission, dairy cow, milk fatty acid, milk volatile metabolite, milk non-

volatile metabolite

IMPLICATIONS
There is a need to quantify methane (CHy) emission of dairy cows, given the
importance of methane as a greenhouse gas. This study investigated the relationship between
CH, emission and potential biomarkers in milk, viz. fatty acids (FA), volatile metabolites (V) and
non-volatile metabolites (INV) of dairy cows. Results indicate that milk fatty acids (MFA) alone
have moderate to good potential to predict methane emission, and furthermore that the
prediction models become more accurate and precise when including V and, in particular, NV.

These models can aid in the effort to understand and mitigate CH4 emissions of dairy cows.

INTRODUCTION
Quantification of CHy4 emission of dairy cows is important to understand factors that
contribute to the variation in CH4 emission, and to identify effective mitigation strategies. Several

CH, measurement techniques have been developed, but are not suitable for precise and accurate
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large scale measurements (Hammond et al.,, 2016). Proxies (i.e., indirect traits related to CHy4
emission), such as milk composition, may be good alternatives. Milk contains a large number of
metabolites, including MFA, that may give information on rumen metabolism (Fievez et al.,
2012). Milk FA arise from two sources, viz. de novo synthesis within the mammary gland mainly
from rumen acetate and B-hydroxybutyrate, and mammary uptake of FA that originate from
intestinal absorption of dietary and microbial FA and FA from body fat mobilization (Chilliard
et al,, 2009). Common biochemical pathways between CHa, acetate and butyrate in the rumen,
and CHj4 reducing effects of dietary long chain FA (Chilliard et al., 2009), suggest a relationship
between CHj4 emission and MFA profile, and several studies have predicted CH4 emission of
dairy cows from MFA concentrations (reviewed by Van Gastelen and Dijkstra, 2016). Milk also
contains V and NV from different chemical families. Milk V have been used for tracing animal
feeding systems (e.g., Villeneuve et al., 2013), because diet composition can influence V
composition in milk, either by transferring odour-active molecules (Buchin et al., 1999) or by
interacting with rumen metabolism (Urbach, 1990). Milk NV may be related to the health status
of cows, and these metabolites are potential biomarkers for mastitis and subclinical ketosis
(Enjalbert et al., 2001; Sundekilde et al., 2013). More recently, Antunes-Fernandes et al. (2016)
investigated the relation between both milk V and NV and CH4 emission of dairy cows. They
showed that milk NV have a more pronounced relationship with CHy4 emission compared with
milk V. Based on the relations found between NV and CH4 emission, Antunes-Fernandes et al.
(2016) concluded that CHy intensity (g/kg fat- and protein-corrected milk; FPCM) may be
related to lactose synthesis and energy metabolism in the mammary gland, as reflected by the
milk NV uridine diphosphate (UDP)-hexose B and citrate. Methane yield (g/kg dry matter
intake; DMI) on the other hand, may be related to glucogenic nutrient supply, as reflected by
the milk NV acetone. Acetone is a ketone body, related to blood glucose levels, which in turn
relate to the supply of glucogenic nutrients, and glucogenic diets are generally associated with
reduced CH4 emissions (Antunes-Fernandes et al., 2016).

To the best of our knowledge, prediction models for CH4 emission of dairy cows
combining MFA and other milk metabolites have not been developed. Therefore, the objectives
of this study were (i) to develop prediction models for CH4 emission based on MFA, V or NV
alone; (ii) to develop prediction models for CH4 emission combining MFA with V and NV; (iii)
to evaluate the improvement in prediction potential upon inclusion of V and NV in the
prediction models, compared with the prediction models based on MFA alone.

MATERIALS AND METHODS

Experimental design and analyses

Data from a randomized block design experiment with 32 multiparous Holstein
Friesian cows and 4 diets were used. The experiment has been described by Van Gastelen et al.
(2015) and was conducted in accordance with Dutch law and approved by the Animal Care and
Use Committee of Wageningen University & Research (Wageningen, The Netherlands). Briefly,
diets had a roughage:concentrate ratio of 80:20 based on dry matter (DM). Roughage consisted
of either 1000 g/kg DM grass silage (GS), 1000 g/kg DM maize silage (MS), or mixtures of both
silages (667 g/kg DM GS and 333 g/kg DM MS; 333 g/kg DM GS and 333 g/kg DM MS).
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Methane emission was measured in climate respiration chambers for a 5-d period and expressed
as production (g/d), yield (g/kg DMI) and intensity (g/kg FPCM). Milk yield was recorded and
milk samples collected according to Antunes-Fernandes et al. (2016). These milk samples were
subsequently analysed for MFA composition (g/100 g FA) using gas chromatogtaphy according
to Van Gastelen et al. (2015), for V (peak area in arbitrary units) using gas chromatography-mass
spectrometry according to Antunes-Fernandes et al. (2016), and for NV (relative area in arbitrary

units) using nuclear magnetic resonance according to Antunes-Fernandes et al. (2010).

Statistical analysis

As described by Antunes-Fernandes et al. (2016), one cow was excluded because of
large feed residuals, the gas chromatography-mass spectrometry results of another cow were
considered outliers and could not be used, and the nuclear magnetic resonance results of a third
cow could not be used because of repeatedly high background interference. Therefore, a total of
29 observations were used to determine the relation between CHy4 emission and milk metabolites.

Data on DMI, CH4 emission, milk production, milk composition, and MFA are
described in Table 5.1. The PROC REG procedure (SAS Institute Inc., Cary, NC, USA, version
9.2) was used to determine the relationship between individual MFA and CH4 production, CHy4
yield, and CHy intensity. The summary statistics of the V and NV and the relation between the
individual V and NV and CH4 emission are presented by Antunes-Fernandes et al. (2016).

The PROC GLMSELECT procedure (SAS Institute Inc., Cary, NC, USA, version 9.2)
was used to develop prediction models, with CH4 emission (i.e., production, yield, and intensity)
as dependent variable, the milk metabolites (i.e., MFA, V, and NV) as independent variables, and
stepwise selection as selection procedure. Milk fat and protein content, and milk production
were also included as selection vatiables when developing overall prediction models (i.e., all types
of metabolites combined) for CH4 production and CHy yield, but not for CH4 intensity because
these parameters are part of the FPCM calculation. The significance level for a variable to enter
or stay in the model was 0.05 and 0.10, respectively. The best models were selected based on the
minimum Akaike’s information criterion statistic. Selected models were evaluated with PROC
REG procedure in terms of multicollinearity (variation inflation factor > 10), but no
multicollinearity was observed in any of the prediction models (i.e., for all prediction models, the
variation inflation factors of the variables was < 10).

The developed prediction models were evaluated with the coefficient of determination
(adjusted R?) and the concordance correlation coefficient analysis (CCC; Lin, 1989). A detailed
calculation of CCC is described by Dijkstra et al. (2016). Briefly, CCC is calculated by multiplying
r (i.e., a measure of precision) with C; (i.e., a measure of accuracy). The calculation of the C,
variable involves » (i.e., a measure of scale shift, which indicates the change in standard deviation,

if any, between predicted and observed values) and i (i.e., a measure of location shift).

82



RELATION BETWEEN MILK METABOLOME AND METHANE EMISSION

Table 5.1. Summary statistics of experimental data used for modelling (n = 29)

Item Mean SD Minimum Maximum
Dry matter intake (kg/d) 16.8 1.23 13.7 19.5
Milk production (kg/d) 23.1 3.52 17.8 30.5
FPCM* (kg/d) 25.0 3.14 19.8 31.7
Milk fat content (g/100 g milk) 4.72 0.527 3.94 6.20
Milk protein content (g/100 g milk) 3.52 0.418 2.61 4.53
Milk lactose content (g/100 g milk) 4.53 0.181 3.80 4.84
Methane production (g/d) 406 37.0 307 465
Methane yield (g/kg DMIP) 241 1.87 18.8 28.0
Methane intensity (g/kg FPCM) 16.4 1.91 13.0 20.7
Fatty acid (g/100g fatty acids)
C4:0 3.4 0.30 2.9 4.3
C6:0 2.2 0.13 2.0 2.5
C8:0 1.2 0.10 1.0 1.4
C10:0 2.7 0.34 2.0 3.4
C12:0 33 0.48 2.4 4.4
C14:0 11.3 0.78 9.6 12.6
is0 C14:0 0.09 0.014 0.06 0.12
C14:1 ¢s-9 1.22 0.272 0.84 1.95
C15:0 1.04 0.205 0.77 1.47
is0 C15:0 0.25 0.037 0.19 0.33
anteiso C15:0 0.41 0.049 0.31 0.51
C16:0 35.4 2.72 32.0 42.3
50 C16:0 0.17 0.023 0.13 0.21
C16:1 trans-9 0.21 0.034 0.14 0.27
C16:1 ¢is-9 2.0 0.30 1.5 3.0
C17:0 0.62 0.084 0.47 0.79
is0 C17:0 0.37 0.032 0.32 0.46
anteiso C17:0 0.41 0.051 0.34 0.54
C17:1 as-9 2.0 0.30 1.5 3.0
C18:0 7.5 1.03 5.0 9.3
C18:1 s-9¢ 17.8 2.76 12.3 22.0
C18:1 is-12 0.20 0.097 0.07 0.47
C18:1 as-13 0.11 0.022 0.07 0.17
C18:1 trans-6 0.22 0.079 0.12 0.42
C18:1 trans-9 0.14 0.038 0.08 0.25
C18:1 trans-10 0.22 0.144 0.10 0.65
C18:1 trans-11 0.84 0.332 0.49 2.18
C18:1 trans-15 + C18:1 ais-11 0.59 0.127 0.33 0.78
C18:2 ¢is-9, trans-11 0.44 0.199 0.25 1.29
C18:2n-6 1.46 0.251 0.89 1.92
C18:3n-3 0.39 0.125 0.14 0.66
C18:3n-6 0.08 0.012 0.06 0.11
C20:0 0.12 0.017 0.08 0.15
C20:1 cis-11 0.05 0.009 0.03 0.07
C20:2n-6 0.05 0.007 0.03 0.06
C20:3n-6 0.09 0.018 0.05 0.12
C20:4n-3 0.07 0.04 0.00 0.13
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Table 5.1. Continued

Item Mean SD Minimum Maximum
C20:4n-6 0.13 0.025 0.08 0.18
C20:5n-3 0.06 0.013 0.03 0.09
C22:0 0.06 0.02 0.00 0.10
C22:5n-6 0.09 0.015 0.07 0.12
C24:0 0.05 0.02 0.00 0.08

Data from Van Gastelen et al. (2015).

A Fat- and protein-corrected milk(kg/d) = [0.337 + 0.116 X fat (g/100 g milk) + 0.06 X protein (g/100 g milk)] x
milk yield (kg/d) (CVB, 2012).

B Dry matter intake (kg/d).

€ C18:1 cis-9 represents the sum of C18:1 ¢-9 and C18:1 #rans-12, as these 2 FA could not be separated in the analysis.
The portion of C18:1 frans-12 is considered to be negligible, as this FA is always present in small amounts.

RESULTS

Relation between individual milk fatty acids and methane emission

The relationships between individual MFA and CHy4 production, CHy yield, and CH4
intensity are shown in Table 5.2 and Supplementary Tables S5.1, §5.2, and S5.3. Short- and
medium-chain MFA (defined here as straight, even chain MFA up to 16 carbon chain length;
SMCFA) were not related to CHy emission, except for C14:1 ¢/5-9 which was positively related
to CH4 production (P = 0.03) and to CHj intensity (P = 0.04). Of the odd- and branched-chain
FA (OBCFA), anteiso FA were not related to CHy emission. No relation was found between the
zso FA and CH4 production, but z0 C15:0 tended to be positively related (P = 0.06) whereas iso
C14:0 was negatively related (P = 0.03) to CHj yield, and 750 C15:0 was positively related (P <
0.01) to CH4 intensity. Additionally, C15:0 and C17:0 were not related to CH4 production, but
C17:0 was positively related (P = 0.01) to CHy yield, and C15:0 was positively related (P = 0.03)
to CHy intensity. Negative relations were found between CHy4 emission and several C18:1, C18:2,
and C18:3 isomers in milk, with the exception of C18:3n-3 which was positively related (P =
0.05) to CHy yield. The long-chain saturated FA (SFA) C20:0, C22:0, and C24:0 were not related
to CH4 production, but positively related to CHy yield and CHy intensity (P < 0.05).

Regression analyses for methane emission

Four sets of test variables were used to develop CH4 prediction models; (1) only MFA,
(2) only V, (3) only NV, and (4) all three types of metabolites combined. In total, 11 prediction
models were obtained; three for CHy production (no model was obtained with V only), and four
for both CHy yield and CHy intensity (Table 5.3). The observed and residuals (observed minus
predicted) versus predicted CHg4 production, CHy yield, and CHjy intensity plots are shown in
Figures 5.1, 5.2, and 5.3, respectively. The results of the CCC analysis of the 11 obtained CH4
prediction models are shown in Table 5.4.
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Table 5.2. Correlations between methane production (g/d), yield (g/kg dry matter intake; DMI), and intensity
(g/kg fat- and protein-corrected milk; FPCM), and milk fatty acid concentrations

Fatty acid (g/100 g fatty acids) CHs (g/d) CHs (g/kg DMI) CHa (g/kg FPCM®)
r P - value r P - value r P - value

C4:0 -0.05 0.80 -0.09 0.65 -0.28 0.15
C6:0 0.20 0.30 0.03 0.87 -0.07 0.72
C8:0 0.30 0.11 0.08 0.70 0.10 0.60
C10:0 0.21 0.27 0.04 0.82 0.18 0.36
C12:0 0.25 0.19 0.02 0.91 0.25 0.19
C14:0 0.13 0.50 -0.06 0.74 0.20 0.30
is0 C14:0 -0.10 0.60 -0.40 0.03 0.13 0.49
C14:1 as-9 0.40 0.03 -0.09 0.63 0.39 0.04
C15:0 0.29 0.13 0.22 0.24 0.40 0.03
is0 C15:0 0.26 0.17 0.35 0.06 0.56 < 0.01
anteiso C15:0 0.05 0.78 -0.12 0.53 0.30 0.12
C16:0 0.31 0.10 0.15 0.44 0.23 0.23
is0 C16:0 -0.19 0.33 -0.29 0.12 -0.23 0.23
C16:1 trans-9 -0.16 0.41 -0.21 0.27 -0.37 0.05
C16:1 cis-9 0.07 0.73 -0.08 0.67 0.22 0.26
C17:0 0.10 0.62 0.46 0.01 0.10 0.61
is0 C17:0 -0.13 0.49 0.08 0.69 0.01 0.94
anteiso C17:0 -0.07 0.71 -0.02 0.93 -0.22 0.24
C17:1 as-9 -0.12 0.53 0.19 0.32 -0.16 0.41
C18:0 -0.11 0.57 0.27 0.15 -0.21 0.26
C18:1 ¢is-98 -0.25 0.18 0.04 0.85 -0.27 0.15
C18:1 cis-12 -0.47 < 0.01 -0.70 < 0.01 -0.33 0.08
C18:1 cis-13 -0.27 0.16 -0.31 0.11 -0.30 0.11
C18:1 trans-6 -0.34 0.07 -0.64 <0.01 -0.32 0.09
C18:1 trans-9 -0.47 0.01 -0.65 <0.01 -0.22 0.25
C18:1 trans-10 -0.48 < 0.01 -0.71 < 0.01 -0.33 0.08
C18:1 trans-11 -0.63 <0.01 -0.72 <0.01 -0.16 0.41
C18:1 trans-15 + C18:1 cis-11 -0.44 0.02 -0.32 0.09 -0.40 0.03
C18:2 ¢is-9, trans-11 -0.58 < 0.01 -0.74 < 0.01 -0.08 0.67
C18:2n-6 -0.48 < 0.01 -0.53 < 0.01 -0.31 0.11
C18:3n-3 0.09 0.62 0.36 0.05 0.28 0.15
C18:3n-6 -0.51 < 0.01 -0.63 < 0.01 -0.25 0.18
C20:0 0.15 0.45 0.58 < 0.01 0.37 0.05
C20:1 ais-11 -0.22 0.25 0.13 0.52 -0.26 0.18
C20:2n-6 -0.27 0.15 0.16 0.42 0.19 0.32
C20:3n-6 -0.41 0.03 -0.28 0.15 -0.02 0.90
C20:4n-3 0.45 0.01 0.19 0.32 0.01 0.94
C20:4n-6 -0.46 0.01 -0.52 <0.01 0.16 0.41
C20:5n-3 0.06 0.76 0.18 0.36 0.33 0.08
C22:0 0.21 0.27 0.48 < 0.01 0.52 < 0.01
C22:5n-3 -0.16 0.42 -0.15 0.43 0.42 0.02
C24:0 0.24 0.20 0.43 0.02 0.53 <0.01

A Fat- and protein-corrected milk (kg/d) = [0.337 + 0.116 X fat (g/100 g milk) + 0.06 X protein (g/100 g milk)] x
milk yield (kg/d) (CVB, 2012).

B C18:1 cis-9 represents the sum of C18:1 ¢s-9 and C18:1 frans-12, as these 2 FA could not be separated in the analysis.
The portion of C18:1 #rans-12 is considered to be negligible, as this FA is always present in small amounts.
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Table 5.4. The coefficient of determination (R?) and concordance correlation coefficient (CCC) of the prediction

models
Model Adjusted R? CCcAa » [@= vP uE
Methane production (g/d)
MFEAF 0.63 0.80 0.82 0.98 1.22 0.00
A\ n.a. n.a. n.a. n.a. n.a. n.a.
NvH 0.17 0.33 0.45 0.74 2.24 0.00
ALL 0.81 0.92 0.92 1.00 1.09 0.00
Methane yield (g/kg DM1))
MFA 0.54 0.71 0.74 0.96 1.34 -0.02
\4 0.11 0.24 0.37 0.65 2.69 -0.02
NV 0.41 0.04 0.69 0.93 1.45 0.00
ALL 0.62 0.78 0.80 0.98 1.25 0.00
Methane intensity (g/kg FPCMK)
MFA 0.47 0.69 0.73 0.95 1.37 0.00
Y 0.41 0.62 0.67 0.93 1.48 -0.02
NV 0.59 0.77 0.79 0.97 1.26 0.00
ALL 0.83 0.93 0.93 1.00 1.08 0.02

A Concordance correlation coefficient, where CCC = r X C.

B Pearson correlation coefficient; a measure of precision.

€ Bias correction factor; a measure of accuracy.

D Scale shift; change in standard deviation between predicted and observed methane emission.

E Location shift; if positive underprediction, if negative overprediction.

¥ Only milk fatty acids as selection variables; in g/100 g fatty acids.

G Only volatile metabolites as selection variables; peak area value (arbitrary unit of quantity).

" Only non-volatile metabolites as selection variable; peak area relative to calibration standard 3-trimethylsilyl-2,2,3,3-
tetradeuteropropionate.

I All metabolites combined as selection vatiables.

J Dry matter intake (kg/d).

K Fat- and protein-corrected milk (kg/d) = [0.337 + 0.116 X fat (g/100 g milk) + 0.06 X protein (g/100 g milk)] x
milk yield (kg/d) (CVB, 2012).

The adjusted R? and the CCC varied between 0.47 and 0.63, and between 0.69 and 0.80,
respectively, for the prediction models obtained using only MFA, with the prediction model for
CH,4 production performing the best. No model was obtained for CH4 production with V only.
The significance level for a variable to enter the model was 0.05, whereas the significance level
of the strongest correlation between a volatile metabolite (i.e., acetone) and CH4 production was
0.08 (results not shown). The prediction models for CHy4 yield and intensity with only V
petformed worse than MFA alone, with an adjusted R? and CCC ranging from 0.11 to 0.41, and
from 0.24 to 0.62, respectively, and the prediction model for CHy intensity performed the best.

The adjusted R? and the CCC varied between 0.17 and 0.59, and between 0.33 and 0.77,
respectively, for the prediction models obtained with NV only, with the prediction model for
CH, intensity performing the best. The prediction models for CHy yield and for CH4 production
with only NV performed worse than the prediction models with only MFA, whereas the opposite
was observed for CHy intensity. Relative to the prediction models with only V, the prediction
models with only NV performed considerably better for CH4 production, yield, and intensity.
The adjusted R? and the CCC varied between 0.62 and 0.83, and between 0.78 and 0.93,
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respectively, for the prediction models obtained combining the three types of metabolites, with
the prediction model for CHj4 intensity performing the best. Milk production, milk fat and milk
protein content were not selected in the prediction models for CHy4 production and yield. The
three prediction models using the combination of all milk metabolites performed better than the
prediction models using the three types of metabolites separately, in particular for CHy intensity.
Milk FA and NV were selected in all three models, whereas milk V were selected only in the CH4
intensity prediction model.

DISCUSSION
Relation between individual milk fatty acids and methane emission

The lack of relation between SMCFA and CHy4 emission differs from most other
studies (e.g., Chilliard et al. (2009) for CH4 production; Dijkstra et al. (2011) for CHy yield; Van
Lingen et al. (2014) for CHy intensity). The absence of a relation between SMCFA and CH4
emission in this study is in line with the absence of a positive relation between CHy4 emission
and both ruminal acetate and butyrate. Van Gastelen et al. (2015) observed a decrease in CHy
emission upon replacement of GS with MS, whereas the molar proportion of acetate was
unaffected and the molar proportions of butyrate increased; both are substrates for de novo
synthesized SMCFA (Bauman and Griinari, 2003).

The negative relation of 750 C14:0 with CHy yield was unexpected, because o FA are
generally more abundant in fibrolytic bacteria (Vlaeminck et al., 2006) and thus hypothesized to
be positively associated with CHy emission (Castro-Montoya et al., 2011). The positive relation
between Zso C15:0 and CHy yield and intensity is in agreement with this hypothesis and with
findings of Castro-Montoya et al. (2011) and Dijkstra et al. (2011). Both C15:0 and C17:0 are
hypothesized to be negatively related to CHy4 emission (Vlaeminck and Fievez, 2005), which was
also found by Castro-Montoya et al. (2011) and Rico et al. (2016). In the present study, however,
a positive association was found. Similarly, Chilliard et al. (2009) reported a positive relation
between these linear odd-chain FA and CH4 production, Van Lingen et al. (2014) found a
positive relation between C15:0 and CHy intensity, and Dijkstra et al. (2011) found a tendency
for a positive relation between C17:0 and CHy yield.

The generally negative relations between C18:1, C18:2, and C18:3 isomers in milk and
CH,4 emission, is in agreement with the findings of Chilliard et al. (2009), Dijkstra et al. (2011),
Van Lingen et al. (2014), and Rico et al. (2016). Possible explanations for these relations, such
as dietary unsaturated A, and their biohydrogenation products, have been described by Van
Gastelen and Dijkstra (2016). The positive relation between the long-chain SFA and CHy
emission (both yield and intensity) has not been reported in any other study investigating the
relation between MFA and CH4 emission (Van Gastelen and Dijkstra, 2016). The individual
relationships found in the present study, in combination with the inclusion of a long-chain SFA
in the prediction model for CHy intensity, suggest that these MFA are important in terms of CHy
prediction.

Overall, the relation between individual MFA and CH4 emission depends on the unit
in which CHy emission is expressed (i.e., production, yield, or intensity). For example, similar to
Van Lingen et al. (2014), a reduced correlation strength for C18:1 #uns-10 and C18:1 #rans-11
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with CH4 intensity compared with CH4 production and yield was observed. These MFA are
associated with milk fat depression, causing a decline in FPCM yield and, therefore, a reduction
in correlation strength (Van Lingen et al., 2014). In general, the differences found for the various
CH,4 emission units were expected when considering the discrepancies between other studies.
For example, several studies (Chilliard et al., 2009; Dijkstra et al., 2011; Mohammed et al., 2011)
found a positive relation between C8:0 and both CH4 production and yield, whereas Van Lingen
et al. (2014), Williams et al. (2014), Rico et al. (2016), and Dijkstra et al. (2016) did not find a
relation between C8:0 and both CH4 production and intensity. These discrepancies have been
reviewed in more detail by Van Gastelen and Dijkstra (2016).

Regression analyses for methane emission

The prediction model with only MFA for CHy4 production performed better than the
prediction models with only MFA for CHy yield and CHy intensity. This is evident by the higher
adjusted R? and CCC values. The higher CCC value is mainly caused by the considerably
improvement in precision (7) and only to a minor extent by the improvement in accuracy (C).
In general, the prediction potential of the CHy prediction models with MFA only appears to be
moderate, and the adjusted R? reported in this study are lower compared to Chilliard et al. (2009),
Dijkstra et al. (2011), Mohammed et al. (2011), and Rico et al. (2016), but of similar magnitude
as Van Lingen et al. (2014). This could be the result of the dietary treatments used in the present
experiment, namely replacing GS with MS, and its moderate effect on CH4 emission and MFA
composition. Van Gastelen et al. (2015) reported a reduction of 7% in CH4 production upon
completely replacing GS with MS (800 g/kg silage diets on DM basis), and Kliem et al. (2008)
reported minot changes in MFA composition upon replacing GS with MS (500 g/kg silage diets
on DM basis). This decline is, for example, much smaller than the decline reported by Chilliard
et al. (2009) who observed a reduction of 64% in CH4 production and large effects on the MFA
composition for linseed oil supplementation compared to a control diet.

The prediction potential of V appears low and considerably less promising compared
with MFA, especially for CH4 production (no prediction model could be derived) and CHy4 yield
(low adjusted R? and CCC values). Additionally, the variation in predicted CH4 yield was
considerably smaller than that in observed CHy yield, and also smaller than that in predicted CHy
yield based on only MFA, as evidenced by the large scale shift (v = 2.69). This indicates the
inability of only V to predict the range of observed CHy yield. The potential of V to predict CHy4
intensity is greater than their potential to predict CH4 production and CHj yield, which is evident
by the higher adjusted R? and CCC values and lower scale shift, and of almost the same
magnitude as the prediction potential of MFA only.

These results suggest that V have low potential to predict CH4 emission, except when
CH, emission is expressed as intensity. Antunes-Fernandes et al. (2016) already reported weak
correlations between individual V and CH4 emissions and demonstrated that 3-nonanone (i.e.,
the volatile metabolite in the prediction model for CHy intensity) is no longer associated with
CH, intensity when including FPCM as a covariate. This suggests that V hold potential to predict
CHy, intensity only, which can be explained by the relationship between the V in milk and FPCM
yield. In other words, V in the milk which originate from odour-active molecules from the diet,
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have no clear relations with the ruminal CHy4 emission metabolism, but rather are suggested to
be related to milk synthesis.

The prediction potential of NV is also low and less promising than MFA alone for CHy
production (low adjusted R? and CCC values), and the scale shift is large (» = 2.24), indicating
inability of only NV to predict the range of observed CHy4 production. Although the prediction
potential of NV for CHy4 yield is lower than that of MFA alone, the differences in CCC and »
were rather small. The prediction model for CHy intensity with only NV, however, performed
better than the prediction model with only MFA, which is evident by the higher adjusted R? and
CCC values, and the smaller scale shift. The higher CCC value is caused by the considerable
improvement in precision (7) and to a lesser extent by the improvement in accuracy (Cp). These
results suggest that NV have a good potential for predicting CHy4 intensity, which can be
explained to a significant extent by the relation between the NV in milk and FPCM yield
(Antunes-Fernandes et al., 2016).

To the best of our knowledge, the present study is the first to combine MFA with other
milk metabolites to predict CH4 emissions. The prediction potential improved when combining
all three types of metabolites. This is evident by the increased adjusted R? and CCC values,
including rand Cj, and the smaller scale shift relative to the prediction models using only MFA,
only V, and only NV. For all CH4 emission units, the prediction model combining the three
types of metabolites performed the best. Additionally, the scale shift (» < 1.25) was minor,
indicating the ability of these models to describe most of the observed variation. The improved
prediction potential when combining the three types of metabolites relative to only MFA for
both CH4 production and CHy yield, is relatively small (i.e., the increase in adjusted R? and CCC
is smaller than 0.18 and 0.12, respectively) and caused only by NV as no V were included in both
prediction models. For CHy intensity, however, combining the three types of metabolites
resulted in significant improvement of the prediction potential; the adjusted R? and CCC increase
with 0.36 and 0.24, respectively, relative to the prediction model with MFA only. This
improvement can be equally assigned to V and NV.

As illustrated, combining MFA with V (CHjy intensity only) and NV helps to improve
the prediction potential. Unfortunately, the techniques used for identifying V and NV are not
suitable for large-scale measurements. Analyses of these metabolites, however, contribute to our
understanding of factors that influence the variation in CH4 emission, and thereby give a better
understanding of the relation between milk composition and CHy4 emission. Although the
present study focussed largely on the statistical relationship between the milk metabolites and
CH,4 emissions of dairy cattle, the physiological interpretations of relationships between NV or
V and CH4 emissions are described by Antunes-Fernandes et al. (2016). It should be noted that
the area of validity of the relations that have been established in this study, is limited to roughage-
based diets varying in GS and MS content, and the robustness of the reported relationships have
not yet been evaluated within this area of validity. As shown by Dijkstra et al. (2016), quantitative
relationships between MFA and CHj yield in cattle fed grass- or grass silage-based diets differ
from those determined for other types of diets. This might also be valid for the telation between
CH, emission and both V and NV. Therefore, the promising results of this study, need to be
validated in further work.
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CONCLUSIONS

This study demonstrated for the first time that the potential to predict CH4 production,
CHy, yield, and CHy intensity in dairy cattle increased, both in terms of precision and accuracy,
when combining MFA with V and, in particular, with NV in milk. The combination of the three
metabolites also has the ability to describe more of the observed variation in CH4 emission
relative to MFA alone. The improved prediction potential was relatively small for CHg
production and CHj yield, suggesting that it may not be worthwhile to perform complex analyses
to determine the V and NV in milk in order to estimate CH4 production or CHy yield of dairy
cows. For CHy intensity, the prediction potential increased considerably when combining the
three types of metabolites compared with MFA alone. Therefore, analysing milk for these types
of metabolites may be worthwhile to estimate CHy intensity of dairy cattle.
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SUPPORTING INFORMATION

Supplementary Table S5.1. Linear regressions between methane production (g/d) and milk fatty acid

concentrations

Fatty acid (g/100 g fatty

. Intercept SE Slope SE Slope P R2
acids)
C4:0 427 79.5 -6.2 23.57 0.80 <0.01
C6:0 280 118.7 56.8 53.40 0.30 0.04
C8:0 271 82.4 111.7 67.97 0.11 0.09
C10:0 343 56.6 23.3 20.55 0.27 0.05
C12:0 344 47.0 19.1 14.30 0.19 0.06
C14:0 337 102.5 6.2 9.05 0.50 0.02
is0 C14:0 430 45.0 -274.2 516.17 0.60 0.01
C14:1 as-9 341 30.1 53.8 24.08 0.03 0.16
C15:0 351 35.4 52.7 33.26 0.13 0.09
is0 C15:0 341 46.9 258.1 184.36 0.17 0.07
anteiso C15:0 390 60.0 40.5 144.18 0.78 <0.01
C16:0 255 88.3 43 2.48 0.10 0.10
is0 C16:0 459 53.1 -305.1 306.38 0.33 0.04
C16:1 trans-9 442 432 -172.1 205.65 0.41 0.03
C16:1 ais-9 390 471 8.2 23.41 0.73 <0.01
C17:0 380 52.4 427 84.50 0.62 <0.01
is0 C17:0 464 82.5 -156.4 221.47 0.49 0.02
anteiso C17:0 428 57.2 -52.4 139.28 0.71 <0.01
C17:1 as-9 438 50.1 -114.0 178.58 0.53 0.01
C18:0 436 51.5 -4.0 6.85 0.57 0.01
C18:1 ¢is-9* 467 45.0 -3.4 2.50 0.18 0.06
C18:1 es-12 442 14.2 -181.2 65.05 <0.01 0.22
C18:1 wis-13 458 35.7 -455.4 312.13 0.16 0.07
C18:1 trans-6 442 19.9 -160.6 84.48 0.07 0.12
C18:1 trans-9 469 23.8 -449.4 163.93 0.01 0.22
C18:1 trans-10 434 11.4 -122.9 43.35 <0.01 0.23
C18:1 trans-11 466 15.1 -70.5 16.65 <0.01 0.40
C18:1 trans-15 + C18:1 ais-11 482 30.4 -128.5 50.36 0.02 0.19
C18:2 ¢is-9, trans-11 454 13.9 -108.9 29.13 <0.01 0.34
C18:2n-6 511 36.8 -71.4 24.84 <0.01 0.23
C18:3n-3 395 23.4 28.1 56.75 0.62 <0.01
C18:3n-6 529 39.7 -1611.9 517.80 <0.01 0.26
C20:0 367 51.8 325.1 420.31 0.45 0.02
C20:1 as-11 445 34.1 -854.3 733.46 0.25 0.05
C20:2n-6 478 49.2 -1535.2 1038.17 0.15 0.07
C20:3n-6 482 33.3 -843.9 362.83 0.03 0.17
C20:4n-3 376 13.0 426.9 162.50 0.01 0.20
C20:4n-6 496 34.2 -683.4 265.95 0.01 0.21
C20:5n-3 397 32.2 165.8 527.29 0.76 <0.01
C22:0 385 20.0 343.0 302.07 0.27 0.05
C22:5n-3 443 44.7 -398.6 483.07 0.42 0.02
C24:0 385 18.0 471.2 360.68 0.20 0.06

A C18:1 cis-9 represents the sum of C18:1 ¢5-9 and C18:1 #rans-12, as these 2 FA could not be separated in the analysis.
The portion of C18:1 #rans-12 is considered to be negligible, as this FA is always present in small amounts.
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Supplementary Table S5.2. Linear regressions between methane yield (g/kg DMIY) and milk fatty acid

concentrations

Fatty acid (g/100 g fatty acids) Intercept SE Slope SE Slope P R?
C4:0 25.9 4.00 -0.54 1.185 0.65 <0.01
C6:0 23.1 6.10 0.45 2.746 0.87 <0.01
C8:0 22.4 4.34 141 3.583 0.70 <0.01
C10:0 23.4 2.92 0.24 1.059 0.82 <0.01
C12:0 23.8 2.45 0.08 0.744 0.91 <0.01
C14:0 25.9 5.20 -0.15 0.459 0.74 <0.01
is0 C14:0 28.8 2.09 -54.64 23.944 0.03 0.16
C14:1 cs-9 24.9 1.65 -0.65 1.315 0.63 <0.01
C15:0 22.0 1.82 2.04 1.708 0.24 0.05
is0 C15:0 19.7 2.29 17.68 9.001 0.06 0.13
anteiso C15:0 26.0 3.00 -4.57 7.224 0.53 0.01
C16:0 20.5 4.64 0.10 0.130 0.44 0.02
is0 C16:0 28.2 2.60 -24.05 15.027 0.12 0.09
C16:1 trans-9 26.5 215 -11.50 10.262 0.27 0.04
C16:1 cs-9 25.1 2.37 -0.51 1.179 0.67 <0.01
C17:0 17.8 2.35 10.31 3.791 0.01 0.22
is0 C17:0 22.4 4.18 4.60 11.230 0.69 <0.01
anteiso C17:0 24.4 2.89 -0.64 7.037 0.93 <0.01
C17:1 cs-9 21.6 2.49 9.04 8.900 0.32 0.04
C18:0 20.4 2.51 0.50 0.340 0.15 0.08
C18:1 is-9® 23.7 2.34 0.02 0.130 0.85 <0.01
C18:1 cis-12 26.8 0.58 -13.62 2.640 <0.01 0.50
C18:1 cis-13 27.0 1.78 -26.00 15.555 0.11 0.09
C18:1 trans-6 27.5 0.82 -15.19 3.466 <0.01 0.42
C18:1 trans-9 28.6 1.02 -31.77 7.064 <0.01 0.43
C18:1 trans-10 26.1 0.46 -9.16 1.757 <0.01 0.50
C18:1 trans-11 27.5 0.68 -4.05 0.751 <0.01 0.52
C18:1 trans-15 + C18:1 cis-11 26.9 1.62 -4.68 2.681 0.09 0.10
C18:2 ¢is-9, trans-11 27.2 0.58 -6.99 1.208 <0.01 0.55
C18:20-6 29.8 1.80 -3.91 1.217 <0.01 0.28
C18:3n-3 22.0 1.10 5.38 2.680 0.05 0.13
C18:3n-6 31.6 1.82 -98.92 23.731 <0.01 0.39
C20:0 16.2 2.15 64.77 17.417 <0.01 0.34
C20:1 cis-11 23.0 1.75 24.64 37.587 0.52 0.02
C20:2n-6 221 2.54 43.86 53.744 0.42 0.02
C20:3n-6 26.7 1.77 -28.64 19.262 0.15 0.08
C20:4n-3 23.5 0.72 9.08 9.010 0.32 0.04
C20:4n-6 29.3 1.66 -39.30 14.429 <0.01 0.27
C20:5n-3 22.7 1.60 24.30 26.211 0.36 0.03
C22:0 21.7 0.90 39.23 13.633 0.01 0.23
C22:5n-3 25.9 2.25 -19.60 24.362 0.43 0.02
C24:0 22.2 0.85 41.43 16.964 0.02 0.18

A Dry matter intake (kg/d).
B C18:1 cis-9 represents the sum of C18:1 ¢5-9 and C18:1 frans-12, as these 2 FA could not be separated in the analysis.
The portion of C18:1 #rans-12 is considered to be negligible, as this FA is always present in small amounts.
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Supplementary Table S5.3. Linecar regressions between methane intensity (g/kg FPCM*) and milk fatty acid

concentrations

Fatty acid (g/100 g fatty

. Intercept SE Slope SE Slope P R?
acids)
C4:0 22.3 3.95 -1.75 1171 0.15 0.08
C6:0 18.7 6.24 -1.03 2.809 0.72 < 0.01
C8:0 14.1 4.44 1.93 3.664 0.60 0.01
C10:0 13.7 2.95 0.99 1.069 0.36 0.03
C12:0 13.2 2.43 1.00 0.738 0.19 0.06
C14:0 10.9 5.23 0.49 0.462 0.30 0.04
750 C14:0 14.8 2.32 18.78 26.558 0.49 0.02
C14:1 ¢is-9 13.1 1.56 2.74 1.247 0.04 0.15
C15:0 12.5 1.75 3.74 1.646 0.03 0.16
is0 C15:0 9.2 2.08 28.75 8.165 <0.01 0.31
anteiso C15:0 11.6 2.96 11.56 7.119 0.12 0.09
C16:0 10.6 4.67 0.16 0.132 0.23 0.05
is0 C16:0 19.7 2.72 -19.38 15.677 0.23 0.05
C16:1 trans-9 20.7 2.10 -20.77 9.990 0.05 0.14
C16:1 ais-9 13.7 2.38 1.37 1.183 0.26 0.05
C17:0 15.0 2.71 2.24 4.364 0.61 < 0.01
is0 C17:0 16.1 4.30 0.82 11.545 0.94 < 0.01
anteiso C17:0 19.8 2.89 -8.37 7.032 0.24 0.05
C17:1 as-9 18.5 2.57 -7.67 9.176 0.41 0.03
C18:0 19.4 2.62 -0.40 0.348 0.26 0.05
C18:1 cis-9® 19.8 231 -0.19 0.128 0.15 0.08
C18:1 es-12 17.7 0.79 -6.57 3.597 0.08 0.11
C18:1 eis-13 19.4 1.83 -26.28 15.965 0.11 0.09
C18:1 trans-6 18.1 1.04 -7.69 4.405 0.09 0.10
C18:1 trans-9 17.9 1.35 -10.92 9.341 0.25 0.05
C18:1 trans-10 17.4 0.63 -4.34 2.411 0.08 0.11
C18:1 trans-11 17.2 0.99 -0.91 1.096 0.41 0.03
C18:1 trans-15 + C18:1 cis-11 20.0 1.01 -6.03 2.656 0.03 0.16
C18:2 ¢is-9, trans-11 16.8 0.88 -0.79 1.847 0.67 < 0.01
C18:2n-6 19.8 2.07 -2.33 1.396 0.11 0.09
C18:3n-3 14.7 1.17 4.24 2.829 0.15 0.08
C18:3n-6 19.5 231 -41.23 30.154 0.18 0.06
C20:0 11.3 2.51 42.16 20.397 0.05 0.14
C20:1 ais-11 18.8 1.74 -51.95 37.519 0.18 0.07
C20:2n-6 13.8 2.59 55.87 54.712 0.32 0.04
C20:3n-6 16.6 1.88 -2.60 20.529 0.90 < 0.01
C20:4n-3 16.4 0.75 0.76 9.405 0.94 < 0.01
C20:4n-6 14.8 1.96 12.36 14.720 0.41 0.03
C20:5n-3 13.6 1.59 46.71 25.765 0.08 0.11
C22:0 13.7 0.90 43.02 13.659 <0.01 0.27
C22:5n-3 114 212 55.20 22.924 0.02 0.18
C24:0 14.0 0.81 53.23 16.253 < 0.01 0.28

A Fat- and protein-corrected milk (kg/d) = [0.337 + 0.116 X fat (g/100 g milk) + 0.06 X protein (g/100 g milk)] X
milk yield (kg/d) (CVB, 2012).

B C18:1 cis-9 represents the sum of C18:1 ¢5-9 and C18:1 #rans-12, as these 2 FA could not be separated in the analysis.
The portion of C18:1 #ans-12 is considered to be negligible, as this FA is always present in small amounts.
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CHAPTER 6

ABSTRACT

This study aimed to quantify the relationship between methane (CHy) emission and
fatty acids, volatile metabolites, and non-volatile metabolites in milk of dairy cows fed forage-
based diets. Data from six studies was used, including 27 dietary treatments and 123 individual
observations from lactating Holstein-Friesian cows. These dietary treatments covered a large
range of forage-based diets, with different qualities and proportions of grass silage and corn
silage. Methane emission was measured in climate respiration chambers and expressed as
production (g per day), yield (g per unit dry matter intake; DMI), and intensity (g per unit fat-
and protein-corrected milk; FPCM). Milk samples were analyzed for fatty acids by gas
chromatography, for volatile metabolites by gas chromatography-mass spectrometry, and for
non-volatile metabolites by nuclear magnetic resonance. Dty matter intake was 15.9 = 1.90 kg/d,
FPCM yield was 25.2 + 4.57 kg/d, CH4 production was 359 £ 51.1 g/d, CH4 yield was 22.6
2.31 g/kg DMI, and CH, intensity was 14.5 £ 2.59 g/kg FPCM. The results show that changes
in individual milk metabolite concentrations can be related to the ruminal CH4 production
pathways. Several of these relationships were diet driven, whereas some were partly dependent
on FPCM yield. Next, prediction models were developed and subsequently evaluated based on
root mean square error of prediction (RMSEP), concordance correlation coefficient (CCC)
analysis, and on random 10-fold cross validation. The best models with milk fatty acids (in g/100
g fatty acids; MFA) alone predicted CH4 production, yield, and intensity with a RMSEP of 34
g/d, 2.0 g/kg DMI, and 1.7 g/kg FPCM, and with a CCC of 0.67, 0.44, and 0.75, respectively.
The CHy prediction potential of both volatile metabolites alone and non-volatile metabolites
alone was low, regardless of the unit of CH4 emission, as evidenced by the low CCC values (<
0.35). The best models combining the three types of metabolites as selection variables, resulted
in the inclusion of only MFA for CH4 production and CH4 yield. For CHy intensity, MFA, volatile
metabolites, and non-volatile metabolites were included in the prediction model. This resulted
in a small improvement in predicton potential (CCC of 0.80; RMSEP of 1.5 g/kg FPCM)
relative to MFA alone. These results indicate that volatile and non-volatile metabolites in milk
contain some information to increase our understanding of enteric CHy4 production of dairy
cows, but that it is not worthwhile to determine the volatile and non-volatile metabolites in milk
in order to estimate CHy4 emission of dairy cows. We conclude that MFA have moderate potential
to predict CH4 emission of dairy cattle fed forage-based diets, and the models can aid in the
effort to understand and mitigate CH4 emissions of dairy cows.
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INTRODUCTION
Enteric methane (CHy) production is one of the main targets of greenhouse gas
mitigation practices for the dairy industry (Hristov et al., 2013). Quantification of enteric CH4
production is therefore important. Several CH4 measuring techniques have been developed, but
these are not yet suitable for large scale measurements (Hammond et al., 2016). Proxies (i.e.,
indirect traits or indicators correlated to CH4 emission) might, therefore, serve as a good

alternative.
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Milk fatty acid (MFA) concentrations have been suggested as proxy to estimate CHy
emission in dairy cattle, and many studies have evaluated this proposed relationship between
MFA concentrations and CHy4 emission (Chilliard et al., 2009; Mohammed et al., 2011; Rico et
al., 2016). However, the results of these studies are inconsistent, with some studies finding a
clear and strong relationship between MFA and CH4 emission (Chilliard et al., 2009, Rico et al.,
2016), whereas other studies conclude that MFA alone might not be suitable to develop universal
CH,4 prediction models (Mohammed et al., 2011). Recently, Castro-Montoya et al. (2017)
concluded that MFA are no reliable predictors for specific amounts of CHy4 emitted by a cow.
Furthermore, individual MFA selected in optimal models to predict CH4 emission largely differ
between studies, further hampering the applicability of MFA to predict CH4 emission in various
circumstances. Some of these inconsistencies can be explained by dietary composition and
lactation stage, both being factors that can influence the relationship between MFA and CHy
emission (Mohammed et al., 2011; Dijkstra et al., 2016; Vanrobays et al., 2016).

These findings warrant further investigation of other proxies in milk to estimate CH4
emission of dairy cattle, including volatile metabolites and non-volatile metabolites. Antunes-
Fernandes et al. (2016) and Van Gastelen et al. (2017) evaluated the relationship between CH4
emission and both volatile and non-volatile metabolites in milk to better understand the
biological pathways involved in CHy4 emission in dairy cattle as well as to determine the
prediction potential of these milk metabolites. Antunes-Fernandes et al. (2016) concluded that
CHy intensity (g/kg fat- and protein-corrected milk; FPCM) may be related to lactose synthesis
and energy metabolism in the mammary gland, as reflected by the significant relationship
between both milk non-volatile metabolites citrate and uridine diphosphate (UDP)-hexose B
and CHj intensity. Methane yield (g/kg DMI), on the other hand, may be related to glucogenic
nutrient supply, as reflected by the milk non-volatile metabolite acetone. In a recent review of
CH4 proxies, Negussie et al. (2017) concluded that no single proxy accurately predicts CH4
emission, and that combining two or more proxies is the best way forward for the prediction of
CH,4 emission. Van Gastelen et al. (2017) concluded that volatile metabolites and, in particular,
non-volatile metabolites in combination with MFA hold potential to predict CH4 emission of
dairy cows more precisely and accurately compared with MFA alone. The improved prediction
potential was relatively small (i.e., the increase in adjusted R? and CCC is <0.18 and <0.12,
respectively) for CH4 production (g/d) and CHy yield (g/kg DMI), whereas the prediction
potential for CHy intensity (g/kg FPCM) increased considerably (i.e., the adjusted R? and CCC
increased with 0.36 and 0.24, respectively).

The analysis of both Antunes-Fernandes et al. (2016) and Van Gastelen et al. (2017)
was based upon a small range of diets (i.e., four forage-based diets in which grass silage was
replaced partly or fully by corn silage) in one experiment. Therefore, the present study aims to
quantify the relationship between CH4 emission and the milk metabolome in dairy cattle fed a
range of forage-based diets with different qualities and proportions of grass silage and corn

silage.
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MATERIALS AND METHODS
Experiments and data

Data on individual cows from six experiments, all designed as randomized block
experiments, from Wageningen University & Research (Wageningen, the Netherlands) were
used. These experiments were conducted in accordance with Dutch law, and approved by the
Animal Care and Use Committee of Wageningen University & Research. Experiment 1 (Warner
et al., 2015) involved 25 Holstein-Friesian dairy cows and four grass herbage diets (forage to
concentrate ratio of 85:15 based on DM basis. The grass herbage was cut after 3 or 5 weeks of
regrowth, after receiving either a low (20 kg of nitrogen (IN)/ha) or a high (90 kg of N/ha)
fertilization rate after initial cut. Experiment 2 (Van Gastelen et al., 2015) involved 29 Holstein-
Friesian dairy cows and four diets (forage to concentrate ratio of 80:20 on DM basis). The forage
consisted of 1000 g/kg DM grass silage, 1000 g/kg DM corn silage, ot a mixtute of both silages
(667 g/kg DM grass silage and 333 g/kg DM corn silage; 333 g/kg DM grass silage and 667
g/kg DM corn silage). Experiment 3 (Watner et al., 2016) involved 52 Holstein-Friesian daitry
cows and six grass silage-based diets (forage to concentrate ratio of 80:20 on DM basis). The
gtass silage received low (65 kg of N /ha) ot high (150 kg of N/ha) N fettilization level preceding
its growth period, and there were three regrowth periods (28 days, 41 days, and 62 days of
regrowth). Experiment 4 (Warner et al., 2017) involved 55 Holstein-Friesian dairy cows and eight
grass silage based diets (grass silage, corn silage and concentrate at a ratio of 70:10:20 on DM
basis). The grass silage was cut at four growth stages (leafy, boot, early heading, and late heading)
and fed at two levels of DMI (15.5 and 16.6 kg DM/d). Expetiment 5 (Hatew et al., 20106)
involved 25 Holstein-Friesian dairy cows and four corn silage based diets with whole-plant corn
harvested at a very early (25% DM), early (28% DM), medium (32% DM), and late (40% DM)
stage of maturity, and with corn silage, concentrate and wheat straw at a ratio of 75:20:5 (DM
basis). Experiment 6 (Klop et al., 2017) involved eight Holstein-Friesian dairy cows and three
diets containing corn silage, grass silage, and concentrate at a ratio of 40:30:30 (DM basis). The
concentrate was either a basal concentrate or contained a blend of essential oils or lauric acid.
Repeated measures resulted in 32 observations.

The experimental setup of these experiments was similar. After an adaptation period
of 12 d, cows were housed individually in open circuit, indirect climate respiration chambers for
a 5 d petiod to determine CH4 emission (expressed as production in g/d, as yield in g/kg DMI,
and as intensity in g/kg FPCM). The climate respiration chambers are desctibed by van Gastelen
et al. (2015) and Heetkamp et al. (2015). Cows were milked twice daily and water was freely
available, both during the adaptation period and in the climate respiration chambers. Diets were
fed as a total mixed ration twice daily and intake was restricted to 95% of the voluntarily DMI

of the cow consuming the least within a block.

Sample collection and analysis

Milk yield was recorded and 10 mL milk samples were collected at each milking in the
climate respiration chambers. These milk samples were analyzed for fat, protein, and lactose
content, and for milk urea nitrogen as described by the respective studies. In addition, a
representative milk sample (i.e., 5 g/kg of milk production at each milking from each cow) was
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collected according to Antunes-Fernandes et al. (2016). We selected all observations from
experiment 2 (n = 29), and we randomly selected another 94 observations from the other
experiments based on complete blocks (i.e., all cows within the same block were selected;
incomplete blocks, due to observations being removed from the experiment or statistical
analysis, were excluded from the selection). The selected observations, a total of 123
observations, represented all dietary treatments without feed additives (i.e., 27 in total), and
resulted in no repeated measurements from the same cows. The representative milk samples
matching the selected observations wete subsequently analyzed for MFA composition (g/100 g
total fatty acids) using gas chromatography (GC) according to Van Gastelen et al. (2015), for
volatile metabolites (peak area in arbitrary units) using gas chromatography-mass spectrometry
(GC-MS) according to Antunes-Fernandes et al. (2016), and for non-volatile metabolites
(relative area in arbitrary units) using proton nuclear magnetic resonance (‘H-NMR) according
to Antunes-Fernandes et al. (2016).

Statistical analysis

Linear regression. The descriptive statistics of the feed intake, dietary composition, animal
performance, and CHy4 emission are presented in Table 6.1. Descriptive statistics of the MFA,
volatile metabolites, and non-volatile metabolites used for modelling are presented in
Supplementary Table S6.1. To determine the relationship between CHj4 emission (i.e.,
production, yield and intensity) and individual MFA, volatile metabolites, and non-volatile
metabolites, mixed model univariate regression procedures (PROC MIXED of SAS; SAS
Institute Inc., Cary, NC, USA, version 9.2) were applied. These included a random experiment
effect and individual MFA, volatile metabolites, and non-volatile metabolites as fixed effects.
Having the experiment effect as a random effect resulted in the equation parameter estimates to
be estimated first within study, and then averaged to obtain overall estimates. To evaluate the
influence of FPCM on the established relationships between individual MFA, volatile
metabolites or non-volatile metabolites and CH4 intensity, FPCM was included as a covariate in
the linear regressions.

Model development. The PROC GLMSELECT procedure of SAS was used to develop
multivariate models retaining the experiment effect in every step, with CHy4 emission (i.e.,
production, yield, and intensity) as the dependent variable, the milk metabolites (i.e., MFA,
volatile metabolites and non-volatiles metabolites) as independent variables, and stepwise
selection as selection procedure. The significance level for milk metabolites to enter or stay in
the model was 0.01 and 0.05, respectively. The best models were selected based on the minimum
Akaike’s information criterion statistic. Adjusted independent variable values were calculated
based on regression parameters of the final model to determine the adjusted R? corrected for
experiment effect, as described by St-Pierre (2001). The selected models were evaluated with the
PROC REG procedure in terms of multicollinearity (variation inflation factor > 10), but no

multicollinearity was observed for any of the CH4 prediction models.
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Table 6.1. Descriptive statistics of dry matter intake, dietary composition, animal characteristics, and methane
emissions (n=123) [data from Van Gastelen et al. (2015), Warner et al. (2015, 2016, 2017), Hatew et al. (2016), Klop
et al. (2017)]

Item Mean Median SD Minimum Maximum
Dry matter intake (kg/d) 15.9 15.9 1.90 10.8 19.8
Forage content diet (g/100 g DM) 80 80 3.0 70 85
Dietary characteristics (in g/kg DM, unless stated otherwise)
Dry matter (g/kg) 507 519 113.4 306 797
Ash 76 76 14.7 53 103
Crude protein 170 158 43.2 82 251
NDF 386 386 53.4 242 501
ADF 225 219 26.9 183 291
ADL 14 15 4.7 6 26
Crude fat 31 28 7.2 21 46
Starch 111 79 92.6 5 326
Sugar 95 76 66.4 21 265
GE (MJ/kg DM) 18.6 18.7 0.41 17.6 19.3
NDF to starch ratio 8.8 5.0 16.03 1.0 86.2
Lactation characteristics
Milk production (kg/d) 22.6 225 3.87 14.6 33.7
FPCM® (kg/d) 252 24.7 4.57 15.0 38.4
Milk fat content (g/100 g milk) 4.64 4.65 0.635 2.94 6.44
Milk protein content (g/100 g milk) 3.37 3.33 0.359 2.62 4.53
Milk lactose content g/100 g milk) 4.58 4.59 0.219 3.80 5.03
Urea (mg/dl) 19.6 18.8 6.79 8.4 414
Days in milk 176 191 70.9 70 403
Parity 2.6 2.0 1.29 1.0 7.0
Methane emission
Methane production (g/d) 359 358 51.1 234 469
Methane yield (g/kg DMI®) 22.6 229 2.31 17.2 28.0
Methane intensity (g/kg FPCM) 14.5 14.6 2.59 8.5 24.0

@ Fat- and protein-corrected milk (kg/d) = [0.337 + 0.116 X fat (g/100 g milk) + 0.06 X protein (g/100 g milk)] X
milk yield (kg/d) (CVB, 2012).
@ Dry matter intake (kg/d).

Model evaluation. The CHy prediction models were evaluated using two methods. Firstly,
the mean square prediction error (MSEP), calculated as

n
MSEP = Z(Oi — P)?/n,
i=1

where 7 is the total number of observations, O; is the obsetved value and P; is the predicted
value. The square root of the MSEP (RMSEP), expressed in the same unit as the observed mean
or as percentage of the observed mean, gives an estimate of the overall prediction error.
Secondly, concordance correlation coefficient analysis (CCC; Lin, 1989) was performed, where
CCC is calculated as

CCC =71 X Cp,
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where 7 is the correlation coefficient providing a measure of precision, and G, is a bias correction

factor providing a measure of accuracy. The C; variable is calculated as

2
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P w1/ v+ p?)
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where v provides a measure of scale shift, while u provides a measure of location shift, S, and

u

Sp are the observed and predicted standard deviations, and 0 and P are the observed and
predicted means.

Cross validation. We performed a random cross validation with 10 splits and 10 iterations
as recommended by Rodriguez et al. (2010) for all prediction models in order to calculate the
performance parameters of the models (i.e., root mean square error of cross validation;
RMSECYV, and the coefficient of determination of cross validation; R2CV). For each iteration,
a model was developed as described above using nine splits of the dataset, and the selected model
was subsequently evaluated as described above on the remaining part of the dataset (i.e., one
split). The cross validation performance values represent the average of the 10-fold cross

validation.

RESULTS

The relationship between individual milk metabolites and methane emission

Milk fatty acids. In the present study, 43 milk fatty acids were identified. The
relationships between each individual MFA and CH4 production, CHy yield, and CHy4 intensity
are shown in Supplementary Tables S6.2, S6.3, and S6.4, respectively. Several short- and
medium-straight even-chain MFA (SMCCFA; < 16 carbon fatty acids), some odd- and branched-
chain fatty acids (OBCFA; C13:0, C15:0, is0 C15:0, and Zs0 C17:0), and C20:4n-3 were positively
related with CHy4 production, whereas another OBCFA (i.e., C17:0), all C18:1 and C18:2 isomers,
and other long-chain fatty acids (> 16 carbon fatty acids) were negatively related to CHy
production. The SMCFA C16:0 was positively related with CHy yield, similar to some OBCFA
and several long-chain fatty acids, whereas the SMCFA C4:0, and all C18:1, C18:2, and C18:3
isomers were negatively related to CHy yield. Furthermore, many SMCFA, OBCFA, and long-
chain fatty acids were positively related to CH4 intensity, whereas mostly C18:1, C18:2, and C18:3
isomers were negatively related to CHy intensity. The relationships between each MFA and CH4
intensity including FPCM as a covariate are shown in Supplementary Table S6.4. Including
FPCM as a covariate in the regression model resulted in several changes. Many MFA remained
significantly related to CHy intensity, whereas the relationship between CHjy intensity and two
MFA (i.e., C4:0 and C22:5n-3) disappeared. In total, 8 relationships appeared or strengthened,
including C6:0, C8:0, C17:1 ¢s-9, several C18:1 isomers, and C18:2 ¢/s-9, #rans-11, that became
significantly related upon including FPCM as covariate.
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Volatile metabolites. In the present study, a total of 14 volatile metabolites were
identified, including ketones, aldehydes, organic acids, alcohols, esters, and sulfur compounds.
The relationships between each individual volatile metabolite and CH4 production, CHy yield,
and CHy intensity are shown in Supplementary Tables S6.5, S6.6, and S6.7, respectively. The
volatile metabolites 1-pentanol, acetone, and hexanal were negatively related to CH4 production,
whereas no positive relationship between volatile metabolites and CH4 production were
observed. Ethyl butanoate and two free fatty acids (butanoic and hexanoic acid) were positively
related, whereas hexanal was negatively related to CHy yield. Many volatile metabolites were
related to CHy intensity, with 2-heptanone, ethyl butanoate, and all free fatty acids being
positively related to CH4 intensity, and 1-pentanol, acetone, and dimethyl sulfone being
negatively related to CHy intensity. The relationships between each volatile metabolite and CH4
intensity including FPCM as a covariate are shown in Supplementary Table S6.7. Including
FPCM as a covariate in the regression model resulted in most volatile metabolites remaining to
be related to CHy intensity, with a few exceptions. Some relationships disappeared or weakened,
such as acetic acid ethyl ester which no longer showed a tendency to be positively related with
CHy, intensity, and the significant positive relationship of ethyl butanoate that became a tendency
upon including FPCM as covariate. Another relationship strengthened; the tendency for a
negative relationship of hexanal became significant upon including FPCM as covariate.

Non-volatile metabolites. In the present study, 41 'H-NMR resonances could be
assigned either to a non-volatile compound or to a member of a class of non-volatile compounds.
The relationships between each individual non-volatile metabolite and CHy4 production, CH4
yield, and CHy intensity are shown in Supplementary Tables S6.8, S6.9, and $6.10, respectively.
The non-volatile metabolites acetylcarnitine and UDP-hexose D were negatively related, whereas
11 non-volatile metabolites, including acetate, three N-acetylsugars, and succinate, were
positively related to CH4 production. Only one non-volatile metabolite, UDP-hexose C, was
negatively related, and no single non-volatile metabolite was positively related to CHy yield.
Similarly, with respect to CH4 intensity, only citrate was negative related. In contrast, 14 non-
volatile metabolites, including acetate, methylmalonate, and succinate were positively related to
CH,4 intensity. The relationships between each non-volatile metabolite and CHy intensity
including FPCM as a covariate are shown in Supplementary Table S6.10. Including FPCM as a
covariate in the regression model resulted in several changes. Many non-volatile metabolites
remained significantly related to CHy intensity, whereas the relationship between CHy intensity
and five non-volatile metabolites (including citrate and ethanol) disappeared. Other
relationships, however, appeared or strengthened, including acetylcarnitine and the three N-
acetylsugars C, D, and E that became significantly positively related upon including FPCM as

covariate.
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Prediction models for methane emission

Four sets of test variables were used to develop CH4 prediction models; (1) MFA alone,
(2) volatile metabolites alone, (3) non-volatile metabolites alone, and (4) all three types of
metabolites combined. In total, 11 prediction models were obtained; four for CH4 production,
three for CHy yield (no model was obtained with non-volatile metabolites only), and four for
CH,4 intensity (Table 6.2). The observed and residual (observed minus predicted) versus
predicted CHy4 production, CH4 yield, and CH4 intensity plots are shown in Figures 6.1, 6.2, and
6.3, respectively. The evaluation results (i.c., adjusted R% RMSEP, and CCC analysis) of the 11
obtained CH4 prediction models are shown in Table 6.3.

Milk fatty acids alone. The RMSEP of the MFA-based CH4 prediction models was
34 ¢ CH4/d, 2.0 g CHs4/kg DMI, and 1.7 ¢ CH4/kg FPCM, respectively. Additionally, the
adjusted R? and CCC of the MFA-based CHy prediction models ranged from 0.38 to 0.75, and
from 0.44 to 0.75, respectively, with the prediction model for CHy yield performing the worst
and the prediction model for CHy intensity performing the best. This is also evident by the lower
rand C, values for the MFA-based prediction model for CHj yield relatively to the MFA-based
prediction model for CHy intensity. Although the MFA-based prediction models for CHy4
production and CHy intensity were equally precise (i.c., both having a rvalue of 0.76), the MFA-
based prediction model for CHy intensity was more accurate (C; of 0.99 for CHy intensity and
C, of 0.88 for CH4 production). The MFA-based prediction model for CHy intensity had the
ability to describe more of the observed variation in CH4 emissions compared with MFA-based
prediction models for CH4 production and CHy yield. This is evident by the scale shift values,
with the MFA-based prediction models for CH4 production and CHy yield having a scale shift
which was clearly higher than 1 (» > 1.67), whereas the scale shift of the MFA-based prediction
for CH4 intensity was close to 1 (v = 1.14).

Volatile metabolites alone. The RMSEP of the volatile metabolite-based CHs4
prediction models was 49 ¢ CH4/d, 2.3 ¢ CH4/kg DMI, and 2.4 ¢ CH4/kg FPCM. Additionally,
the adjusted R? and CCC of the volatile metabolite-based CH4 prediction models ranged from
0.07 to 0.27, and from 0.07 to 0.29, respectively, with the prediction model for CHy yield
performing the worst and the prediction model for CH4 intensity performing the best. The
precision of these models (i.e., 7) followed the same pattern, which was not the case for the
accuracy of these models (i.e., (). The C; value was lowest for the volatile metabolite-based
prediction model for CH4 production (0.42) and highest for the volatile metabolite-based
prediction model for CHy intensity (0.73). Further, all volatile metabolite-based CH4 prediction
models had a scale shift which was clearly higher than 1 (» > 2.28), indicating the inability of
volatile metabolites alone to predict the range of observed CH4 emissions.

Non-volatile metabolites alone. No model was obtained for CHy yield with non-
volatiles metabolites alone. The significance level for a variable to enter the model was 0.01,
whereas the significance level of the strongest correlation between a non-volatile metabolite (i.e.,
UDP-hexose C) and CHy yield was 0.035. The RMSEP of the non-volatile metabolite-based CH4
prediction models was 45 ¢ CH4/d and 2.6 ¢ CH4/kg FPCM. Additionally, the adjusted R? was
0.30 and 0.20, and the CCC was 0.35 and 0.14 for the non-volatile metabolite-based prediction
models for CHy production and CHy intensity, respectively. Contrary to what was observed for
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MFA and volatile metabolites alone, the non-volatile metabolite-based prediction model for CHy4
production performed better than the non-volatile metabolite-based prediction model for CH4
intensity. Both non-volatile metabolite-based CHj4 prediction models had a scale shift which was
clearly higher than 1 (» > 2.26), indicating the inability of non-volatile metabolites alone to predict
the range of observed CH4 emissions.

All metabolites combined. When combining the three types of milk metabolites, the
RMSEDP of the CH4 prediction models was 34 ¢ CHs/d, 2.0 ¢ CHa4/kg DMI, and 1.5 ¢ CHy/kg
FPCM. Additionally, the adjusted R? and CCC of the CH4 prediction models including all three
types of metabolites ranged from 0.38 to 0.74, and from 0.44 to 0.80, respectively, with the
prediction model for CHy yield performing the worst and the prediction model for CHy intensity
performing the best. A similar pattern was observed for the precision (), accuracy (C;), and the
scale shift (») of the CHy4 prediction models combining the three types of metabolites. The
prediction models using the combination of all three types of milk metabolites performed better
than the prediction models with volatile metabolites alone and non-volatile metabolites alone.
For both CH4 production and CHy yield, only MFA were selected in the prediction models,
resulting in CHy prediction models identical to the MFA-based CH4 prediction models. For CHy4
intensity all three types of milk metabolites were selected in the prediction model; five MFA, one
volatile metabolite, and one non-volatile metabolite.

Cross validation. The results of the internal cross validation of all CHy4 prediction
models are also shown in Table 6.3. Additionally, Supplementary Table S6.11 shows the MFA,
volatile metabolites, and non-volatile metabolites that were included in the prediction models in
the cross validation, and whether or not these milk metabolites were also part of the best overall
prediction models (Table 6.2). The R?CV and the RMSECV (%) of the MFA-based CHy
prediction models ranged from 0.38 to 0.70 and from 9.2 to 13.7, respectively. Further, the R2CV
and the RMSECV (%) of the volatile metabolite-based CHj4 prediction models ranged from 0.08
to 0.29 and from 10.3 to 16.8, respectively. The R2CV was 0.32 and 0.32, and the RMSECV (%)
was 14.7 and 19.3 for the non-volatile metabolite-based prediction models for CH4 production
and CH4 intensity, respectively. For the CHy4 prediction models combining all three types of milk
metabolites, the R2CV and the RMSECV (%) ranged from 0.39 to 0.69 and from 9.2 to 13.8,

respectively.

DISCUSSION

The relationship between individual milk metabolites and methane emission

Milk fatty acids. Van Gastelen and Dijkstra (2016) reviewed studies that investigated
the predictive power of MFA composition for CHy emission. In line with this review, in the
present study several SMCFA were positively associated with CH4 emission. In general these
SMCFA remained related to CHy intensity, or the relationship appeared or strengthened, upon
including FPCM as covariate. These positive relationships are the result of the de novo synthesis
of these MFA in the mammary gland mainly from acetate and butyrate produced in the rumen
(Bauman and Griinari, 2003), which are both positively associated with CH4 emission (Ellis et
al., 2008). The main exception is C4:0. The observed negative relationship between C4:0 and
CH, emission in the present study was also observed by Dijkstra et al. (2011) and Van Lingen et
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al. (2014). The significant negative relationship between C4:0 and CH4intensity disappeared (P
> 0.10) upon including FPCM as covariate, which may indicate a dilution effect with C4:0
increasing with decreasing FPCM.

The is0 OBCFA were often positively associated with CH4 emission in the present study
and remained positively related with CHy intensity upon including FPCM as covariate, which is
in agreement with iso OBCFA being generally more abundant in fibrolytic bacteria (Vlaeminck
et al., 2000). The anteiso OBCFA are generally more abundant in amylolytic bacteria and thus
expected to be negatively associated with CH4 emission (Vlaeminck et al., 2006). This was
observed for anteiso C17:0 and CHy production, but anteiso C15:0 was positively associated with
CH,4 intensity. The latter MFA remained positively related to CHy4 intensity upon including
FPCM as covariate. A high level of ruminal propionate is associated with low CH4 production,
and propionate is a substrate for de novo synthesis of C15:0 and C17:0. Hence, both C15:0 and
C17:0 are hypothesized to be negatively associated with CH4 emissions (Vlaeminck and Fievez,
2005). In the present study, only C17:0 was negatively associated with CH4 production, whereas
C15:0 was positively associated with all units of CH4 emission and C17:0 was positively
associated with CHy yield. The reason behind the positive associations is not completely clear to
us, but they are in agreement with other studies, such as Chilliard et al. (2009), Dijkstra et al.
(2011), and Van Lingen et al. (2014), although inconsistent with the findings of Rico et al. (2016).
Additionally, it is unclear why C15:0 and C17:0 are differently related to CH4 emission, despite
their similar synthesis pathways.

The negative relationships found in the present study between C18:1, C18:2, and C18:3
isomers in milk and CH4 emissions are in general agreement with others (Van Lingen et al., 2014;
Rico et al, 2016), and can be explained by dietary unsaturated fatty acids and their
biohydrogenation products (Van Gastelen and Dijkstra, 2016). The relationship between CHy4
intensity and several C18:1 isomers as well as C18:2 ¢5-9, #rans-11 strengthened or appeared after
correcting for FPCM yield. This suggests that the relationship between these MFA and FPCM
can hamper the direct association between MFA and CHjy intensity. The associations found in
the present study between CH4 emissions and long-chain fatty acids, which derive from
absorption from the digestive tract and body fat mobilization (Bauman and Griinari, 2003), have
been reported before (i.e., Chilliard et al., 2009; Rico et al., 2016; Van Gastelen et al., 2017). The
individual relationships found in the present study between CH4 emission and the long-chain
fatty acids with more than 20 carbons were generally unaffected when including FPCM as a
covariate. Additionally, these long-chain fatty acids were also included in the CH4 prediction
models. This together suggests that these MFA are important in terms of CHy4 prediction.

Volatile metabolites. In contrast to Antunes-Fernandes et al. (20106), in the present
study, many volatile metabolites in milk were related to CH4 emission and the relationships
found between the volatile metabolites and CH4 intensity were not only the result of the
relationship between the volatile metabolites in milk and FPCM. The lack of relationships found
by Antunes-Fernandes might be the result of the limited vatiation in dietary treatments used,
which was the exchange of fiber-rich grass silage with starch-rich corn silage. As shown by
Hettinga et al. (2008), the volatile composition of milk was affected by supplementing diets with
specific byproducts (including onions and cabbage) but was not affected by variation in the
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starch to fiber content of the diet, even though the latter manipulation has an influence on
ruminal fermentation and CH4 emission (Hassanat et al., 2013; Van Gastelen et al., 2015). The
present study involved a wide variety of dietary treatments, including different qualities of
forage, which are known to effect the volatile composition of milk (Thomson et al., 2005),
ruminal fermentation, and CH4 emission (Warner et al., 2010).

In the present study, acetone was negatively related with both CH4 production and CHy
intensity. Acetone is a ketone body which can be used to identify cows with negative energy
balance and subclinical ketosis (Andersson and Emanuelson, 1985). Gravert et al. (1991)
reported that the quality of grass or maize silage was negatively related to milk acetone, and it
has been suggested that, in general, silage feeding or the content of butyric acid in silage may
affect milk acetone (Andersson and Emanuelson, 1985; Andersson and Lundstrom, 1985). This
suggests that milk acetone can be affected by the same dietary factors that can impact CHy
emissions, explaining the negative relationship found in the present study.

Kala¢ (2011) reported that the occurrence of both acids and alcohols in silage result in
the formation of various ethyl esters. There is limited information available on the transfer
efficiency of both acids and esters from silage to milk, but the dietary treatments could have
affected the relationships found. However, esters can also be formed within the mammary gland,
from esterification of short-chain alcohols and free fatty acids (Toso et al., 2002), and they can
indicate bacterial action (Hettinga et al., 2009). In the present study, both volatile esters (ethyl
acetate and ethyl butanoate) tended to be or were positively related with CHy intensity, but
including FPCM as a covariate resulted in the disappearance or weakening of these relationships.
This suggests that the positive relationships with CHy intensity were due to a relationship
between FPCM and both volatile esters.

In the present study, 1-pentanol was negatively associated with CH4 production and
CH, intensity. According to Moio et al. (1993), primary alcohols are formed by reduction of their
respective aldehyde. Consequently, 1-pentanol is formed by the reduction of pentanal, which
was not identified in the present study. Based on Villeneuve et al. (2013), it seems likely that the
content of 1-pentanol in milk reflects the content of its respective aldehyde, pentanal. Straight-
chain aldehydes, such as pentanal and hexanal, can derive from lipid degradation (Moio et al.,
1993). Dietary lipids are negatively associated with CH4 emissions (Grainger and Beauchemin,
2011), potentially explaining the negative relationships found between CH4 emission and both
1-pentanol and hexanal in the present study. Further, dimethyl sulfone was negatively associated
with CHy intensity. In the rumen, dimethyl sulfide is derived from the catabolism of sulfur amino
acids, particularly methionine (Taylor and Kiene, 1989). Dimethyl sulfide is subsequently
oxidized to dimethyl sulfone, which can be transferred to milk (Villeneuve et al.,, 2013). This
suggests that the relationship between CH4 intensity and dimethyl sulfone could be the result of
the dietary protein content, although the effect of dietary protein content on CHy4 emissions is
variable in the literature (Ellis et al., 2009, Reynolds et al., 2010).

We also identified four volatile free fatty acids (FFA) in the present study, all positively
associated with CHy yield and CH4 intensity, but not with CH4 production. The concentration
of FFA in milk is generally low and can be the result of incomplete esterification in the mammary
gland before lipid secretion (Marsili et al., 2003) or spontaneous lipolysis (Chazal et al., 1987).
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The latter study also reported higher FFA concentrations in milk from cows fully fed on good
quality grass silage compared with cows fully fed on good quality hay. Additionally, Chazal and
Chilliard (1986) observed that milk from cows fed poor quality grass silage had higher FFA levels
than milk from cows supplemented with corn silage. Moreover, Thomson et al. (2005) reported
that FFA concentrations in milk were highest in summer when the quality of the pasture declines.
This together suggests that the positive association between volatile FFA in milk and both CH4
yield and CHy intensity might be the results of dietary composition and quality, which affect
both the composition of volatile metabolites in milk and enteric CHy4 production.

Non-volatile metabolites. Similar to Antunes-Fernandes et al. (2016), non-volatile
metabolites were generally better correlated with CHy4 intensity than with CHy yield. Antunes-
Fernandes et al. (2016) reported that the positive relationship between CH4 intensity and the
non-volatile metabolites acetoacetate, creatinine, ethanol, formate, methylmalonate, and N-
acetylsugar A were due to the relationship between these non-volatile metabolites and FPCM.
This was also observed for creatinine and ethanol in the present study, as well as for the
metabolites betaine, citrate, N-acetylsugar B, and sugar A. This suggest that these metabolites
have no clear relationships with the ruminal CH4 emission metabolism, but rather are related to
changes in milk yield or metabolic processes involved in milk synthesis. In contrast to Antunes-
Fernandes et al. (2010), the three non-volatile metabolites acetoacetate, methylmalonate, and N-
acetylsugar A remained related to CHjy intensity upon including FPCM as a covariate.
Acetoacetate is a ketone body and, as described above, can be positively associated with fiber-
rich diets and subsequently ketogenic VFA (Van Knegsel et al., 2007), explaining the positive
relationship found between acetoacetate and CHg intensity. The concentration of
methylmalonate in milk has been associated with dietary composition (Bauman and Griinari,
2001). When high grain or low forage diets are fed, the ruminal production of vitamin Biz
decreases, whereas the production of propionate increases. This results in the accumulation of
methylmalonate in the liver and subsequently, by transport via the circulatory system, in elevated
methylmalonate supply to the mammary gland and increased concentration in milk (Bauman and
Griinari, 2001). High grain or low forage diets are also associated with decreased CH4 emissions,
and hence a negative relationship between methylmalonate and CHy4 emission would be
expected. In the present study, however, methylmalonate was positively related with CHy
intensity. The latter may be explained by the absence of a negative relationship between ruminal
propionate and CH4 emissions in some of the studies of which the data was used for the present
analysis (e.g., Hatew et al., 2016, Van Gastelen et al., 2015).

N-acetylsugars are intermediates of biological pathways that occur in cell cytosol (Lu
et al., 2013). N-acetylsugars C, D and E were significantly and positively related with CHy4
intensity only when including FPCM as a covariate. The results of the present study suggest that
N-acetylsugars are related to the ruminal CH4 production pathway. According to Lu et al. (2015),
a higher concentration of N-acetylsugars could indicate leakage of cellular components to milk
or higher permeability of the cell membrane in the epithelial cells in the mammary gland. Both
can subsequently be associated with the differences in the epithelial cell membrane stability. Tian
et al. (2016) found lower concentrations of N-acetylsugars in milk of cows experiencing heat
stress, and Antunes-Fernandes et al. (2016) found some N-acetylsugars tending to be negatively
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associated with CHy yield. However, it is unclear how differences in dietary composition could
have changed the epithelial cell membrane stability in the mammary gland and how this relates
to CH4 emissions, warranting more research.

Antunes-Fernandes et al. (2016) showed that citrate and UDP-hexose B were both
negatively related to CHy intensity, potentially reflecting decreased metabolic activity in the
mammary gland with increased CHy intensity as citrate is an intermediate of the Kreb-cycle
(Bremer and Davis, 1974) and UDP-hexose B is an intermediate of lactose metabolism (Cant et
al., 2002). In the present study, citrate was also negatively associated with CHy4 intensity.
However, this relationship disappeared upon inclusion of FPCM as a covariate. This suggests
that changes in milk citrate may be related to the energy metabolism of the mammary gland, as
previously suggested by Faulkner and Peaker (1982), which is not necessarily related to changes
in CHy intensity. Furthermore, UDP-hexose B was not related to CH4 intensity in the present
study, which is in disagreement with Antunes-Fernandes et al. (2016). The other UDP-hexoses
were negatively related to CH4 production (i.e., UDP-hexose D), CHy yield (i.e., UDP-hexose C)
and CHy intensity (i.e., UDP-hexose D upon including FPCM as a covariate). The negative
relationship with CH4 production is surprising, because UDP-hexoses are intermediates of
lactose synthesis (Cant et al.,, 2002), and milk yield is controlled by the synthesis of lactose.
Increased milk yield is often associated with increased feed intake and it is consistently reported
in literature that increased feed intake is positively associated with CHy4 production (Hristov et
al., 2013). Subsequently, a positive association between UDP-hexoses and CH4 production
would be expected. The negative association between UDP-hexoses and CHj yield can probably
be explained by increased feed intake and the associated decreased ruminal retention time of
starch, which may result in increased post-ruminal digestion and subsequently glucose
absorption (Rius et al., 2010) and conversion to UDP-hexoses in the mammary gland.

Acetate was positively associated with CHy4 emission, and remained related to CHy4
intensity upon including FPCM as a covariate. This is in agreement with ruminal acetate
production being positively associated with CH4 emission (Ellis et al., 2008). Furthermore,
Krause and Oetzel (2005) demonstrated that ruminal succinate is usually only found at very low
levels in the rumen, but that the concentration increased during a subacute ruminal acidosis. In
general, diets with a high starch content and a low fiber content are associated with decreased
ruminal pH and CH4 emission (Beauchemin et al., 2008). Hence, a negative relationship between
ruminal succinate and CH4 emission would be expected. However, we found a positive
relationship between succinate in milk and CHg4 emission. This suggests that succinate in milk
does probably not directly reflect ruminal succinate levels.

The decrease of acetylcarnitine in milk with increasing CH4 production and CHy4
intensity (acetylcarnitine became negative related to CHy intensity upon including FPCM as a
covariate) is in agreement with the results of the SMCFA in milk. It has been shown that
acetylcarnitine reflects the inhibition of de novo fatty acid synthesis from acetate in the mammary
gland (Erfle et al., 1970). De novo fatty acid synthesis in the mammary gland is inhibited by specific
trans unsaturated fatty acids, which are formed during ruminal biohydrogenation of dietary
unsaturated fatty acids (Bauman and Griinari, 2003). Certain dietary strategies (including low-
fiber diets and high-concentrate diets) alter the rumen environment, lowering the ruminal pH
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and subsequently increasing the #ans unsaturated fatty acids being formed from ruminal
biohydrogenation. Both dietary unsaturated fatty acids and lower ruminal pH are also associated
with reduction in CHy emission, explaining the negative relationship between acetylcarnitine and
CH,4 emission.

Hippurate was positively associated with CH4 production and intensity in the present
study. Boudonck et al. (2009) showed that the concentration of hippurate was lower in milk of
cows receiving organic diets (mainly forage-based) than in milk of cows receiving conventional
diets (mainly concentrate-based). This suggest that increased forage content in the diet, which is
accompanied by increased dietary fiber, increases hippurate content in milk. This might explain
the relationship found in the present study, because dietary forage content, as well as dietary
fiber content, is positively associated with CH4 emission (Beauchemin et al., 2008).

Overall, these results indicate that, next to MFA, both volatile and non-volatile
metabolites in milk are often associated with CHy emissions. These relationships are most likely
the result of changes in dietary composition that affect not only enteric CH4 production, but
also the profile of volatile and non-volatile metabolites in milk. This illustrates that these milk
metabolites might provide useful information increasing our understanding of CH4 emission of

dairy cows.

Prediction models for methane emission

Milk fatty acids. The prediction potential of MFA varies between studies. The
adjusted R? values for the MFA-based prediction models for both CH4 production and CHy
yield from the present study are lower than the ones reported by other studies (Chilliard et al.
2009; Dijkstra et al., 2011; Rico et al. 2016). In contrast, the adjusted R? values for the MFA-
based prediction models for CHy intensity of the present study are higher than those reported
in literature (i.c., Van Lingen et al. 2014). The scale shift results of the present study indicate that
MFA are able to describe more of the observed variation in CHy intensity than of the observed
variation in CHy4 production and CHy yield. It is known that MFA are related to ruminal CHy
production pathways (Chilliard et al., 2009; Ellis et al., 2008). The MFA can predict CHy4 intensity
better than CH4 production and CHy yield. According to Dehareng et al. (2012), this might be
due to CHy intensity taking milk yield into account, which is directly associated with enteric CHy4
production by cows and reflected by the MFA profile because of possible dilution effects. The
results of the present study indeed show that some of the MFA are associated with CH4 intensity
due to their relationship with FPCM (e.g., C4:0). However, this is not the case for all MFA that
are important for the prediction of CHy intensity (such as 750 C15:0).

Volatile metabolites. The CH, prediction potential of volatile metabolites alone
appears low and is considerably less promising compared with MFA. Although the prediction
potential of the volatile metabolites for CH4 production in this study is higher than Van Gastelen
etal. (2017) in which no model could be obtained for CHy production, the adjusted R? and CCC
values of the volatile metabolite-based prediction models for CHy yield and CHy intensity are
lower than the ones reported by Van Gastelen et al. (2017).
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MILK METABOLOME AND METHANE - METABOLIC INTERPRETATION AND PREDICTION

Similar to Van Gastelen et al. (2017), the potential of volatile metabolites to predict
CHy, intensity in the present study was greater than their potential to predict CH4 production
and CHy yield, which is evidenced by the higher adjusted R? and CCC values and lower scale
shift. However, even for CHy intensity, the large scale shift (> 2.28) shows that the variation in
predicted CH4 emissions was considerably smaller than that in observed CH4 emission. This is
illustrated in Figures 6.1, 6.2, and 6.3, and indicates the inability of volatile metabolites alone to
predict the range of observed CHj4 emissions.

Based on 1 experiment with 4 dietary treatments, Van Gastelen et al. (2107) concluded
that volatile metabolites alone hold potential to predict CHy intensity, which might be the result
of the relationship between volatile metabolites in milk and FPCM yield (Antunes-Fernandes et
al., 2016). This is not supported by the results of the present study. First, the prediction potential
of volatile metabolites for CHjy intensity is low. Second, most volatile metabolites remained
significantly related to CH4 intensity upon including FPCM as a covariate. We therefore propose
that, with a wide range of forage-based diets with a variety of quantity and quality of grass, grass
silage, and corn silage, volatile metabolites in milk hold little potential to predict CH4 emissions,
despite the relationships found between individual volatile metabolites and CH4 emissions.

Non-volatiles metabolites. The adjusted R? and CCC values reported in this study
for non-volatile metabolite-based CH4 prediction models were considerably lower than those
reported by Van Gastelen et al. (2017). Our results suggest that non-volatile metabolites in milk
have low CHjy prediction potential. For CH4 yield no model could be derived at all, which was
to be expected given the low number of relationships (i.e., significant and tendency) between
individual non-volatile metabolites and CHjy yield. The variation in the predicted CH4 emissions
was considerably smaller than that in observed CHj4 emissions, as evidenced by the large scale
shift (> 2.26). This is visualized in Figures 6.1 and 6.3, and suggests that non-volatile metabolites
lack the ability to predict the range of CH4 emissions observed.

Van Gastelen et al. (2017) concluded, based on 1 experiment with 4 dietary treatments,
that non-volatile metabolites hold potential to predict CHy4 intensity, which could largely be
explained by the relationship between the non-volatile metabolites in milk and FPCM yield as
observed by Antunes-Fernandes et al. (2016). This is not supported by the results of the present
study. We therefore propose that, with a wide range of forage-based diets with a variety of
quantity and quality of grass, grass silage, and corn silage, non-volatile metabolites in milk hold
little potential to predict CH4 emissions despite the significant relationships found between
individual non-volatile metabolites and CH4 emissions.

All metabolites combined. No single proxy accurately predicts CH4 emission, and
combinations of two or more proxies are likely to be a better solution to predict CH4 emission
(reviewed by Negussie et al., 2017). In comparison with MFA alone, combining the three types
of milk metabolites did not improve the potential to predict CHy4 production and CH4 yield. The
prediction models were actually identical to the ones obtained when selecting MFA alone. Also
in the 10-fold cross-validation, volatile and non-volatile metabolites were rarely included in the
prediction models (Supplementary Table S6.11). These results clearly show that combining MFA
with both volatile and non-volatile metabolites has no added value in terms of CHy4 production
and CHy yield prediction potential relative to MFA alone.
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Similarly, for CHy4 intensity, combining MFA with volatile and non-volatile metabolites
hardly improved prediction potential. Five MFA were included in the CH4 intensity prediction
model, of which four were identical to the MFA included in the MFA-based prediction model
for CHy4 intensity. Despite the inclusion of one volatile metabolite (2-heptanone) and one non-
volatile metabolite (acetylcarnitine) in the combined model, the adjusted R? was marginally lower
(0.74) than that of the MFA-based prediction model for CHy intensity (0.75). The CCC value of
the prediction model for CHy intensity combining the three metabolites was slightly higher than
the one reported for the MFA-based CH4 intensity prediction model (0.80 and 0.75, respectively),
which was mainly the result of increased precision (7).

In terms of the 10-fold cross validation, MFA alone and the combination of the three
types of milk metabolites performed equally well, having similar R2CV and RMSECV values.
When considering the metabolites that were included in the prediction models of the 10-fold
cross validation (Supplementary Table S6.11), it appears that the CH4 prediction models
combining the three types of milk metabolites are less robust than the MFA-based CHs
prediction models, especially for CHy intensity. Variation in the metabolites that were included
in the cross validation was smaller for the MFA alone model (12 metabolites) than for the three
types of metabolites combined (22 metabolites). Moreover, the MFA included in the best overall
MFA-based prediction model for CH4 intensity were included at least two times in the 10-fold
cross validation. Contrary, two of the metabolites in the best overall prediction model for CHy4
intensity combining the three types of milk metabolites were included only once (e,
acetylcarnitine) or not at all (i.e., C24:0) in the cross validation. The cross-validation results
motivated us to develop a second best overall prediction model for CHy intensity, but without
acetylcarnitine and C24:0. This resulted in a CHy intensity prediction model with an adjusted R?
of 0.72, a RMSEP of 1.6 g CHs/kg FPCM, a CCC of 0.78, and a scale shift of 1.23. This
illustrates that the prediction potential for CHy4 intensity hardly differed when excluding
acetylcarnitine and C24:0, which suggests that the prediction model for CH4 intensity combining
the three types of metabolites is not robust.

Overall, our results indicate that combining MFA with milk volatile metabolites and
non-volatile metabolites does not improve the CH4 prediction potential relative to MFA alone.
This is in agreement with Van Gastelen et al. (2017) for CH4 production and CHy yield. However,
Van Gastelen et al. (2017) reported a considerable improvement in the prediction potential when
combining MFA with volatile and non-volatile metabolites. The difference between this study
and Van Gastelen et al. (2017) for CHy intensity might be explained by the differences in the
dataset used by both studies. Although both studies only involved forage-based diets, the present
study involved more observations (123 vs 29, respectively) and a larger variation in dietary
treatments, CH4 emissions, DMI, and FPCM.

Our analyses suggest that the relationship between CH4 emission and both volatile and
non-volatile metabolites is largely driven by dietary composition and rumen fermentation. When
investigating this relationship within a single experiment, with a small range of dietary
treatments, these individual relationships assure sufficient prediction potential, as evidenced by
Van Gastelen et al. (2017) for CHy intensity. However, as illustrated in the present study, upon
combining data of multiple experiments that represent a wide range of dietary treatments, the
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diet driven individual relationships between CH4 emission and both volatile and non-volatile
metabolites are still present, but the prediction potential decreases considerably. This suggests
that the wider range of dietary treatments hampers the CHy4 prediction potential of volatile and
non-volatile metabolites. In contrast to volatile and non-volatile metabolites, MFA are more
directly related to the ruminal CH4 pathways (rumen microbial origin) and retain their prediction
potential despite a wider range of dietary treatments, suggesting that MFA profile represents a
more robust indicator for CHy emission of dairy cows.

It is important to note though, that this study was based upon 6 experiments with
forage-based diets only (forage varied between 70 and 85 g/100 g diet DM). Hence, the diets
represent only a relative narrow range of forage to concentrate ratios. Additionally, milk
production of the cows did not exceed 35 kg/d, and all cows wete testricted in their feed intake
to ensure similar feed intake between treatments, thus avoiding confounding effects of DMI on
CH4 production. The results of the relationships between CH4 emission and the three types of
milk metabolites might be different, when more experiments would be included, involving more
individual observations, and with more variety in dietary composition, feed intake, and milk yield.

Potential limitations aside, based on the results of the present study, it can be concluded
that MFA have the greatest potential to predict CH4 emission of dairy cows compared to milk
volatile and non-volatile metabolites. Negussie et al. (2017) assessed several existing potential
proxies for CH4 emissions of dairy cows, including proxies related to (1) feed intake and feeding
behavior, (2) rumen function, metabolites, and microbiome, (3) milk production and
composition, (4) hindgut and feces, and (5) measurements at the level of the whole animal (e.g.,
body condition score, body weight, and lactation stage). The authors of that review indicated
that the accuracy of MFA to estimate CH4 emission was moderate to high, which is considerably
higher than that of rumen-related variables, major milk components such as fat, lactose, and
protein, and most variables of the whole animal, but similarly accurate as body weight,
digestibility, and milk yield (Negussie et al., 2017). Only feed intake (both alone and in
combination with dietary composition) and milk infrared spectroscopy scored higher in terms
of accuracy to estimate CH4 emission (Negussie et al., 2017). Because it is still a major challenge
to measure feed intake in practice and because the current number of studies relating milk
infrared spectroscopy with CH4 emission is limited, MFA remain an interesting proxy for CHy

emission of dairy cows.

CONCLUSIONS

Changes in concentrations of individual milk metabolites (i.e., MFA, volatile
metabolites, and non-volatile metabolites) can be related to the ruminal CH4 production pathway.
These relationships are largely diet-driven, i.e., diet composition, intake, and passage affect both
ruminal CHy4 production and the milk metabolites. Some of the relationships between individual
milk metabolites and CHjy intensity, however, were partly dependent on milk production
(FPCM). Furthermore, the CH4 prediction potential of both volatile metabolites alone and non-
volatile metabolites alone is low, independent of the unit of CH4 emission. The CHy4 prediction
potential of MFA alone depended greatly on the unit in which CH4 emissions was expressed.
The potential was lowest for CHy yield, intermediate for CHy production, and highest for CH,4
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intensity. This study also demonstrates that, relative to MFA alone, CH4 prediction potential
does not increase when combining MFA with volatile and non-volatile metabolites, in particular
for CHy4 production and CHjy yield. Volatile and non-volatile metabolites in milk contain
information that may increase our understanding of enteric CHy4 production of dairy cows, but
it is not worthwhile to determine the volatile and non-volatile metabolites in milk in order to
estimate CH4 emission of dairy cows. Milk fatty acids have moderate potential to predict CHy4
emission of dairy cattle fed forage-based diets, and the models can aid in the effort to understand

and mitigate CHy emissions of dairy cows.

ACKNOWLEGDMENTS
The authors acknowledge the project “Low Emission Animal Feed”, which received
financial support of the Dutch Ministry of Economic Affairs (The Hague, the Netherlands),
Product Board Animal Feed (Zoetermeer, the Netherlands), and the Dutch Dairy Board
(Zoetermeer, the Netherlands).

126



MILK METABOLOME AND METHANE - METABOLIC INTERPRETATION AND PREDICTION

SUPPORTING INFORMATION

Supplementary Table S6.1. Descriptive statistics of milk fatty acids, volatile metabolites, and non-volatile
metabolites (n=123)

Item Mean Median SD Minimum Maximum
Fatty acid (g/100 g FA)

C4:0 3.5 3.5 0.30 2.5 4.3
C6:0 2.1 2.1 0.20 1.5 2.5
C8:0 1.1 1.1 0.16 0.6 1.4
C10:0 2.4 2.4 0.48 1.1 34
C12:0 2.8 2.7 0.62 1.3 4.4
C13:0 0.07 0.06 0.001 0.00 0.16
C14:0 10.3 10.4 1.29 6.7 13.2
iso C14:0 0.08 0.08 0.015 0.05 0.13
C14:1 ¢s-9 1.00 0.96 0.249 0.54 1.95
C15:0 0.97 0.97 0.159 0.53 1.47
iso C15:0 0.23 0.22 0.038 0.13 0.37
anteiso C15:0 0.41 0.40 0.062 0.28 0.62
C16:0 31.9 31.8 3.38 24.6 42.3
is0 C16:0 0.18 0.18 0.032 0.13 0.34
C16:1 trans-9 0.22 0.21 0.037 0.14 0.35
C16:1 ¢s-9 1.9 1.9 0.36 1.0 3.0
C17:0 0.66 0.66 0.100 0.47 0.95
iso C17:0 0.40 0.39 0.063 0.25 0.63
anteiso C17:0 0.43 0.42 0.059 0.32 0.01
C17:1 as-9 0.32 0.31 0.091 0.15 0.69
C18:0 9.6 9.8 1.63 5.0 13.1
C18:1 ¢is-9M 21.1 20.7 3.77 12.3 29.9
C18:1 ¢is-12 0.18 0.14 0.080 0.07 0.47
C18:1 ¢is-13 0.13 0.13 0.033 0.07 0.25
C18:1 trans-6 0.20 0.19 0.057 0.08 0.42
C18:1 trans-9 0.15 0.14 0.030 0.08 0.25
C18:1 trans-10 0.19 0.15 0.102 0.10 0.65
C18:1 trans-11 0.91 0.88 0.253 0.30 2.18
C18:1 trans-15 + 0.76 0.76 0.181 0.33 1.23
C18:1 ais-11

C18:2 ¢is-9, trans-11 0.43 0.40 0.132 0.22 1.29
C18:2n-6 1.4 1.4 0.20 0.9 2.0
C18:3n-3 0.47 0.48 0.164 0.14 0.98
C18:3n-6 0.07 0.07 0.014 0.05 0.12
C20:0 0.13 0.12 0.019 0.08 0.17
C20:1 ais-11 0.06 0.06 0.019 0.03 0.12
C20:2n-6 0.04 0.04 0.007 0.03 0.06
C20:3n-6 0.07 0.07 0.019 0.04 0.13
C20:4n-3 0.04 0.03 0.028 0.00 0.13
C20:4n-6 0.12 0.11 0.024 0.06 0.18
C20:5n-3 0.06 0.06 0.013 0.03 0.09
C22:0 0.06 0.06 0.014 0.00 0.10
C22:5n-3 0.08 0.08 0.017 0.05 0.14
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Supplementary Table $6.1. Continued

Item Mean Median SD Minimum Maximum
C24:0 0.04 0.04 0.014 0.00 0.08

Volatile metabolite (peak area®)
1-Pentanol 6.16 X 10¢ 4.14 x 10¢ 6.139 X 100 1.92 X 10 3.35 x 107
2-Butanone 8.87 x 10¢ 5.95 X 10° 9.939 x 10° 1.80 X 106 8.15 x 107
2-Heptanone 8.54 x 10¢ 5.19 x 10° 9.196 x 10° 3.02 X 103 5.77 x 107
2-Pentanone 8.49 x 100 6.73 X 100 7.188 X 100 9.71 X 105 4.02 x 107
Acetone 1.34 x 108 8.39 x 107 2.207 x 108 2.13 x 107 2.25 x 107
Benzaldehyde 4.48 x 105 3.85 % 10% 4.376 x 103 0.00 2.73 x 100
Butanoic acid 1.04 X 108 5.24 x 107 1.621 x 108 6.46 X 100 1.13 X 10°
Dimethyl sulfone 5.43 X 10° 3.17 X 100 5.602 X 100 7.48 X 105 2.81 x 107
Ethyl acetate 2.19 x 100 1.55 X 10¢ 1.904 x 106 0.00 8.44 x 100
Ethyl butanoate 1.84 x 10¢ 6.43 X 103 3.623 X 10° 0.00 2.30 X 107
Hexanal 1.84 x 107 1.06 X 107 2.084 x 107 7.59 X 10 1.13 X 108
Hexanoic acid 1.19 x 108 5.94 x 107 1.948 x 10° 8.46 x 10° 1.21 x 10°
Octanoic acid 9.96 x 107 4.64 x 107 1.626 x 108 7.71 X 100 1.05 x 10?
Pentanoic acid 9.54 X 103 5.13 X 10% 1.316 X 10¢ 5.43 X 10* 8.00 x 100

Non-volatile metabolite (relative peak area®)
Acetate 0.18 0.18 0.087 0.03 0.40
Acetoacetate 0.09 0.09 0.045 0.02 0.25
Acetone 0.06 0.06 0.039 0.02 0.43
Acetylcarnitine 0.14 0.13 0.044 0.06 0.30
Betaine 0.28 0.27 0.076 0.11 0.54
8-hydroxybutyrate 0.12 0.12 0.048 0.04 0.32
Butyrate 0.43 0.36 0.279 0.08 2.07
Carnitine 0.20 0.20 0.033 0.12 0.29
Choline 0.80 0.77 0.254 0.30 1.66
Citrate 2.6 2.6 0.51 1.7 4.8
Creatine 0.36 0.36 0.065 0.24 0.56
Creatinine 0.08 0.08 0.016 0.05 0.13
Ethanol 0.07 0.08 0.003 0.02 0.15
Formate 0.02 0.02 0.011 0.01 0.08
Galactose-1-phosphate 0.01 0.01 0.007 0.00 0.04
Glycerophosphocholine 0.82 0.77 0.256 0.43 1.55
Hippurate 0.07 0.06 0.025 0.03 0.17
Lactate 0.18 0.18 0.084 0.05 0.60
Lactose 16.0 14.6 3.28 11.4 22.8
Malonate 0.09 0.10 0.032 0.03 0.21
Methylmalonate 0.12 0.13 0.066 0.01 0.27
N-acetylsugar A 0.28 0.27 0.091 0.12 0.01
N-acetylsugar B 0.63 0.61 0.145 0.33 1.02
N-acetylsugar C 0.39 0.39 0.142 0.09 0.81
N-acetylsugar D 0.05 0.04 0.035 0.02 0.20
N-acetylsugar E 0.10 0.11 0.046 0.02 0.23
Orotate 0.06 0.05 0.017 0.02 0.14
Oxaloacetate 0.07 0.07 0.033 0.02 0.18
Oxoglutarate 0.06 0.06 0.017 0.04 0.12
Phosphocreatine 0.05 0.05 0.016 0.02 0.14
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Supplementary Table $6.1. Continued

Item Mean Median SD Minimum Maximum
Phosphorylcholine 0.15 0.13 0.091 0.06 0.62
Proline 0.12 0.12 0.036 0.06 0.31
Pyruvate 0.14 0.13 0.045 0.07 0.35
Succinate 0.07 0.06 0.021 0.04 0.16
Sugar A 0.02 0.02 0.005 0.01 0.04
Sugar B 0.03 0.03 0.012 0.01 0.06
Sugar C 0.02 0.02 0.017 0.00 0.09
UDP®-hexose A 0.00 0.00 0.001 0.00 0.01
UDP-hexose B 0.01 0.00 0.004 0.00 0.02
UDP-hexose C 0.07 0.07 0.032 0.02 0.18
UDP-hexose D 0.02 0.02 0.011 0.00 0.05

M C18:1 ¢5-9 represents the sum of C18:1 ¢s-9 and C18:1 #rans-12, as these 2 FA could not be separated in the
analysis. The portion of C18:1 #rans-12 is considered to be negligible, as this FA is always present in small amounts.
@ Peak area values (arbitrary unit of quantity).

© Peak area relative to calibration standard 3-trimethylsilyl-2,2,3,3-tetraduteropropionate (TSP).

® Uridine diphosphate.
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Supplementary Table $6.2. Linear regression between methane production (g/d) and milk fatty acid concentration
(g/100 g total fatty acids)

Fatty acid (g/100 g fatty acids) ~ Intercept SE Slope SE Slope P R?
C4:0 335 471 7.5 12.73 0.557 <0.01
C6:0 175 46.9 86.4 20.92 < 0.001 0.19
C8:0 245 32.4 103.7 26.84 < 0.001 0.17
C10:0 272 251 36.2 9.10 < 0.001 0.18
C12:0 273 24.0 30.7 7.37 < 0.001 0.21
C13:0 331 16.2 423.4 171.40 0.014 0.04
C14:0 209 37.9 14.5 3.46 < 0.001 0.21
is0 C14:0 339 24.5 276.7 241.27 0.254 0.01
C14:1 cs-9 314 20.9 48.3 15.89 0.003 0.09
C15:0 303 26.7 61.7 23.70 0.011 0.06
is0 C15:0 309 26.9 233.8 101.74 0.023 0.05
anteiso C15:0 346 29.1 36.4 60.82 0.551 <0.01
C16:0 167 39.8 6.1 1.21 < 0.001 0.25
is0 C16:0 376 28.5 -79.1 129.12 0.542 <0.01
C16:1 trans-9 427 25.6 -304.5 103.58 0.004 0.08
C16:1 cs-9 401 24.5 -21.9 11.03 0.050 0.04
C17:0 433 31.3 -110.8 44.16 0.014 0.08
is0 C17:0 463 28.4 -254.5 65.37 < 0.001 0.15
anteiso C17:0 409 30.3 -109.7 62.14 0.080 0.03
C17:1 ¢is-9 438 17.7 -245.3 43.50 < 0.001 0.28
C18:0 399 33.7 -3.8 313 0.224 0.03
C18:1 ¢is-9M 483 25.4 -5.9 1.12 < 0.001 0.28
C18:1 cis-12 402 22.8 -218.8 59.27 < 0.001 0.18
C18:1 cis-13 414 20.3 -400.7 117.94 < 0.001 0.11
C18:1 trans-6 394 22.5 -158.0 75.48 0.039 0.05
C18:1 trans-9 452 25.8 -607.4 131.89 < 0.001 0.20
C18:1 trans-10 388 19.5 -131.5 43.56 0.003 0.11
C18:1 trans-11 425 17.7 -70.4 13.44 < 0.001 0.20
C18:1 trans-15 + C18:1 ais-11 462 20.3 -132.5 20.89 < 0.001 0.18
C18:2 ¢is-9, trans-11 417 16.9 -133.6 24.89 < 0.001 0.20
C18:2n-6 501 27.0 -96.9 15.47 < 0.001 0.26
C18:3n-3 415 17.2 -116.4 28.80 < 0.001 0.21
C18:3n-6 382 28.7 -278.9 321.33 0.387 < 0.01
C20:0 329 30.7 249.1 210.51 0.239 0.01
C20:1 cis-11 419 18.7 -927.9 238.69 < 0.001 0.18
C20:2n-6 395 27.9 -792.0 556.74 0.158 0.02
C20:3n-6 353 22.0 110.4 223.66 0.623 < 0.01
C20:4n-3 348 15.7 388.9 164.08 0.019 0.08
C20:4n-6 367 241 -51.2 166.26 0.759 <0.01
C20:5n-3 376 23.6 -255.9 327.36 0.436 < 0.01
C22:0 345 20.9 299.3 261.91 0.255 0.01
C22:5n-3 407 26.2 -547.6 250.16 0.031 0.06
C24:0 346 18.5 403.6 286.62 0.162 0.02

M) C18:1 ¢5-9 represents the sum of C18:1 ¢s-9 and C18:1 #rans-12, as these 2 FA could not be separated in the
analysis. The portion of C18:1 #rans-12 is consideted to be negligible, as this FA is always present in small amounts.
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Supplementary Table $6.3. Lincar regression between methane yield (g/kg DMI®) and milk fatty acid
concentration (g/100 g total fatty acids)

Fatty acid (g/100 g fatty acids) Intercept SE Slope SE Slope P R?
C4:0 284 2.24 -1.69 0.627 0.008 0.07
C6:0 23.1 2.44 -0.28 1.111 0.800 <0.01
C8:0 21.8 1.66 0.59 1.414 0.678 <0.01
C10:0 21.4 1.27 0.46 0.479 0.344 0.01
C12:0 21.2 1.21 0.44 0.388 0.259 0.02
C13:0 22.0 0.78 1.17 8.144 0.886 <0.01
C14:0 18.9 1.96 0.34 0.181 0.062 0.05
is0 C14:0 20.1 1.10 29.15 12.057 0.017 0.05
C14:1 59 21.2 0.93 1.33 0.822 0.107 0.03
C15:0 19.0 1.22 3.66 1.188 0.003 0.08
is0 C15:0 17.5 1.17 21.94 4.885 < 0.001 0.17
anteiso C15:0 21.0 1.36 3.72 3.069 0.228 0.01
C16:0 14.2 2.01 0.26 0.062 < 0.001 0.18
750 C16:0 20.6 1.30 9.90 6.418 0.126 0.03
C16:1 trans-9 26.2 1.22 -17.14 5.147 0.001 0.10
C16:1 ¢is-9 22.3 1.14 0.09 0.562 0.877 <0.01
C17:0 19.3 1.52 4.85 2.210 0.030 0.06
is0 C17:0 24.2 1.45 -4.28 3.422 0.214 0.02
anteiso C17:0 222 1.46 0.57 3.195 0.858 <0.01
C17:1 es-9 23.0 0.91 -1.61 2.428 0.509 <0.01
C18:0 25.0 1.53 -0.26 0.151 0.089 0.04
C18:1 ¢is-9@ 25.5 1.35 -0.15 0.060 0.018 0.07
C18:1 es-12 25.7 0.87 -17.41 2.719 < 0.001 0.40
C18:1 eis-13 25.1 0.90 -19.57 5.960 0.001 0.10
C18:1 trans-6 25.1 0.91 -12.80 3.662 < 0.001 0.13
C18:1 trans-9 27.5 1.10 -34.05 6.494 < 0.001 0.24
C18:1 trans-10 24.3 0.70 -8.81 2.111 < 0.001 0.19
C18:1 trans-11 24.5 0.79 -2.22 0.728 0.003 0.08
C18:1 trans-15 + C18:1 ais-11 26.6 0.95 -5.35 1.108 < 0.001 0.22
C18:2 ¢is-9, trans-11 24.2 0.75 -4.16 1.353 0.003 0.08
C18:2n-6 28.8 1.29 -4.38 0.813 < 0.001 0.20
C18:3n-3 24.3 0.86 -3.94 1.480 0.009 0.10
C18:3n-6 254 1.29 -38.93 15.713 0.015 0.07
C20:0 18.7 1.43 29.07 10.303 0.006 0.07
C20:1 cis-11 249 0.88 -38.93 12.058 0.002 0.13
C20:2n-6 20.1 1.26 57.44 27.957 0.042 0.04
C20:3n-6 23.2 0.99 -8.99 11.238 0.425 <0.01
C20:4n-3 22.3 0.56 6.24 8.282 0.453 <0.01
C20:4n-6 22.7 1.09 -1.97 8.398 0.815 <0.01
C20:5n-3 23.3 1.07 -14.16 16.289 0.387 <0.01
C22:0 19.8 0.84 47.28 12.681 < 0.001 0.12
C22:5n-3 23.7 1.17 -15.35 12.728 0.230 0.02
C24:0 20.4 0.69 54.65 13.771 < 0.001 0.13

@ Dry matter intake (kg/d).
@ C18:1 ¢is-9 represents the sum of C18:1 ¢s-9 and C18:1 #rans-12, as these 2 FA could not be separated in the

analysis. The portion of C18:1 #rans-12 is considered to be negligible, as this FA is always present in small amounts.
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CHAPTER 6

Supplementary Table S6.5. Linear regression between methane production (g/d) and volatile metabolites (peak

area()

Volatile metabolite (peak area) Intercept SE Slope SE Slope P R?
1-Pentanol 371 14.0 -1.5 X 10 6.92 X 107 0.035 0.05
2-Butanone 368 15.7 -6.7 X 107 3.70 X 107 0.075 0.03
2-Heptanone 356 16.5 6.5 %107 4.33 X107 0.136 0.02
2-Pentanone 372 14.9 -1.1 X 10 6.21 X107 0.077 0.04
Acetone 367 14.8 -3.5x 10 1.67 x 10% 0.038 0.04
Benzaldehyde 361 15.6 2.2 x10¢ 8.40 x 10 0.791 <0.01
Butanoic acid 360 15.5 2.5x 10 2.30 X 108 0.281 0.01
Dimethyl sulfone 369 16.3 -1.2 x 106 9.18 X 107 0.188 0.03
Ethyl acetate 362 16.4 2.7 X 107 3.19 x 10¢ 0.933 <0.01
Ethyl butanoate 361 15.5 8.1 %107 1.05 x 10 0.445 <0.01
Hexanal 372 15.0 -5.4 x 107 1.76 x 107 0.003 0.08
Hexanoic acid 359 15.5 2.6 X 10® 1.89 x 10% 0.179 0.02
Octanoic acid 358 15.4 3.6 X 10® 2.29 x 108 0.116 0.02
Pentanoic acid 359 15.5 3.6 X 10¢ 2,99 x 10 0.237 0.02

() Peak area values (arbitrary unit of quantity).

Supplementary Table $6.6. Linear regression between methane yield (g/kg DMI®) and volatile metabolites (peak

area®)

Volatile metabolite (peak area)  Intercept SE Slope SE Slope P R2?
1-Pentanol 22.8 0.53 -5.54 X 10® 3.540 x 108 0.120 0.03
2-Butanone 22.5 0.54 -4.91 X 10° 1.940 x 10% 0.800 <0.01
2-Heptanone 22.2 0.58 3.16 x 108 2.230 x 108 0.160 0.02
2-Pentanone 22.7 0.56 -2.40 X 10® 3.170 x 10 0.451 <0.01
Acetone 22.7 0.50 -1.10 X 10° 8.747 x 1010 0.210 0.02
Benzaldehyde 22.8 0.55 -6.19 x 107 4.310 x 107 0.154 0.02
Butanoic acid 222 0.52 2.41 x 10° 1.200 x 10 0.043 0.04
Dimethyl sulfone 22.8 0.55 -6.15 X 10® 4.540 x 10 0.178 0.03
Ethyl acetate 221 0.52 2.16 x 107 1.496 x 107 0.152 0.04
Ethyl butanoate 222 0.53 1.56 X 107 5.250 x 108 0.004 0.08
Hexanal 22.8 0.52 -1.85 %108 9.300 x 10 0.049 0.04
Hexanoic acid 22.2 0.52 212 x10° 9.664 x 1010 0.030 0.04
Octanoic acid 223 0.52 2.32 % 10° 1.200 x 10° 0.051 0.04
Pentanoic acid 22.2 0.53 2.61 X 107 1.528 x 107 0.091 0.03

O Dry matter intake (kg/d).

@ Peak area values (arbitrary unit of quantity).
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MILK METABOLOME AND METHANE - METABOLIC INTERPRETATION AND PREDICTION

Supplementary Table S6.8. Linear regression between methane production (g/d) and non-volatile metabolites

(relative peak area®)

Non-volatile metabolite (relative Intercept SE Slope SE Slope P R?
peak area)

Acetate 332 24.3 161.2 75.97 0.036 0.13
Acetoacetate 333 227 304.2 124.15 0.016 0.12
Acetone 366 16.5 -63.9 104.16 0.541 < 0.01
Acetylcarnitine 414 18.8 -381.4 104.96 < 0.001 0.17
Betaine 356 21.0 20.3 50.76 0.691 < 0.01
B-hydroxybutyrate 340 224 176.3 110.16 0.112 0.05
Butyrate 353 17.4 20.0 13.78 0.149 0.02
Carnitine 364 28.0 -14.5 116.78 0.901 < 0.01
Choline 367 19.3 -6.8 15.04 0.652 <0.01
Citrate 371 25.8 -3.7 7.53 0.628 <0.01
Creatine 376 25.9 -39.7 58.23 0.497 < 0.01
Creatinine 358 28.0 473 285.35 0.869 < 0.01
Ethanol 353 233 111.0 212.12 0.602 < 0.01
Formate 352 19.6 388.9 402.13 0.336 0.01
Galactose-1-phosphate 368 17.8 -494.4 656.71 0.453 < 0.01
Glycerophosphocholine 352 19.5 10.9 14.59 0.458 <0.01
Hippurate 334 21.9 410.9 179.56 0.024 0.07
Lactate 349 20.4 65.6 59.83 0.275 0.02
Lactose 375 38.6 -0.8 2.21 0.702 <0.01
Malonate 342 22.6 207.7 157.19 0.189 0.03
Methylmalonate 341 22.8 157.8 101.46 0.123 0.07
N-acetylsugar A 335 23.6 93.9 55.10 0.091 0.05
N-acetylsugar B 382 22.5 -32.4 26.57 0.226 0.02
N-acetylsugar C 326 20.1 80.5 28.74 0.003 0.10
N-acetylsugar D 339 14.5 419.4 145.58 0.005 0.13
N-acetylsugar E 332 21.3 268.7 103.47 0.011 0.10
Orotate 378 20.3 -269.1 209.38 0.201 0.02
Oxaloacetate 331 23.1 447.4 170.71 0.010 0.14
Oxoglutarate 342 225 296.8 233.54 0.206 0.02
Phosphocreatine 339 19.6 440.1 232.71 0.061 0.04
Phosphorylcholine 347 15.8 91.7 39.66 0.023 0.05
Proline 344 22.2 114.4 119.75 0.230 0.02
Pyruvate 332 225 214.6 99.31 0.033 0.06
Succinate 334 223 388.7 193.22 0.047 0.05
Sugar A 355 24.0 287.5 827.68 0.729 < 0.01
Sugar B 345 16.6 610.9 325.67 0.063 0.04
Sugar C 352 14.9 466.3 214.55 0.032 0.05
UDP®-hexose A 377 20.1 -3550.8 3042.40 0.246 0.02
UDP-hexose B 374 19.9 -2000.2 1491.90 0.183 0.05
UDP-hexose C 345 21.6 224.4 169.76 0.189 0.04
UDP-hexose D 393 20.1 -1293.9 536.31 0.017 0.14

() Peak area relative to calibration standard 3-trimethylsilyl-2,2,3,3-tetraduteropropionate (TSP).
@ Uridine diphosphate.
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CHAPTER 6

Supplementary Table S6.9. Lincar regression between methane yield (g/kg DMI®) and non-volatile metabolites

(relative peak area®)

Non-volatile metabolite (relative Intercept SE Slope SE Slope P R?
peak area)

Acetate 232 0.80 -4.10 3.563 0.253 0.03
Acetoacetate 23.0 0.75 -5.95 6.171 0.337 0.02
Acetone 22.9 0.59 -6.96 5.319 0.194 0.02
Acetylcarnitine 23.5 0.90 -7.20 5.535 0.196 0.03
Betaine 22.3 0.89 0.55 2.618 0.833 <0.01
B-hydroxybutyrate 23.2 0.83 -5.61 5.494 0.309 0.02
Butyrate 22.2 0.63 0.66 0.717 0.357 <0.01
Carnitine 23.4 1.31 -4.74 6.002 0.431 <0.01
Choline 22.3 0.80 0.28 0.777 0.720 <0.01
Citrate 24.5 1.16 -0.74 0.383 0.057 0.04
Creatine 21.1 1.17 3.85 3.005 0.203 0.02
Creatinine 22.8 1.29 -3.59 14.574 0.806 <0.01
Ethanol 23.5 0.87 -13.62 9.684 0.162 0.05
Formate 23.1 0.71 -25.24 20.103 0.212 0.02
Galactose-1-phosphate 22.8 0.67 -25.30 33.078 0.446 <0.01
Glycerophosphocholine 22.3 0.82 0.22 0.754 0.766 <0.01
Hippurate 22.8 0.80 -4.64 9.231 0.616 <0.01
Lactate 23.0 0.74 -2.99 2.996 0.320 0.02
Lactose 21.9 1.74 0.03 0.105 0.744 <0.01
Malonate 23.9 0.87 -14.92 7.777 0.058 0.05
Methylmalonate 22.5 0.83 -0.59 4.893 0.904 <0.01
N-acetylsugar A 23.1 0.93 -2.26 2.787 0.419 0.01
N-acetylsugar B 22.7 1.01 -0.42 1.379 0.760 <0.01
N-acetylsugar C 22.7 0.81 -0.64 1.527 0.678 <0.01
N-acetylsugar D 22.3 0.65 2.98 7.559 0.694 <0.01
N-acetylsugar E 232 0.74 -6.88 5.291 0.196 <0.01
Orotate 22.2 0.84 4.57 10.923 0.676 <0.01
Oxaloacetate 23.0 0.76 -7.90 8.514 0.356 0.02
Oxoglutarate 222 0.96 4.26 12.129 0.726 <0.01
Phosphocreatine 22.8 0.81 -6.50 12.189 0.595 <0.01
Phosphorylcholine 22.7 0.62 -1.72 2.088 0.413 <0.01
Proline 229 0.92 -3.54 6.167 0.567 <0.01
Pyruvate 23.1 0.87 -4.25 5.146 0.411 <0.01
Succinate 229 0.88 -6.42 10.065 0.525 <0.01
Sugar A 23.0 1.10 -24.84 42.686 0.562 <0.01
Sugar B 22.6 0.70 -4.23 16.960 0.804 <0.01
Sugar C 22.5 0.57 -1.67 11.284 0.883 <0.01
UDP®-hexose A 21.8 0.88 148.02 156.250 0.345 0.01
UDP-hexose B 222 0.67 39.76 72.504 0.585 <0.01
UDP-hexose C 23.7 0.72 -17.15 8.050 0.035 0.07
UDP-hexose D 229 0.79 -17.81 26.177 0.498 0.01

@ Dry matter intake (kg/d).
@ Peak area relative to calibration standard 3-trimethylsilyl-2,2,3,3-tetraduteropropionate (TSP).
© Uridine diphosphate.
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CHAPTER 7

ABSTRACT

Complex interactions between rumen microbiota, cow genetics, and diet composition
may exist. Therefore, the effect of linseed oil, DGAT7 K232A polymorphism (DGATI), and
the interaction between linseed oil and DGATT on CHy and H, emission, energy and N
metabolism, lactation performance, ruminal fermentation, and rumen bacterial and archaeal
composition was investigated. Twenty-four lactating Holstein-Friesian cows (i.e., 12 with
DGATT KK genotype and 12 with DGAT7T AA genotype) were fed, in a cross-over design, 2
diets: a control diet (CON) and a linseed oil diet (LSO) with a difference of 22 g/kg of dry
matter (IDM) in fat content between the 2 diets. Both diets consisted of 40% corn silage, 30%
grass silage, and 30% concentrates (DM basis). Apparent digestibility, lactation performance, N
and energy balance, and CH4 emission were measured in climate respiration chambers, and
rumen fluid samples were collected using the oral stomach tube technique. No linseed oil by
DGATT interactions were observed for digestibility, milk production and composition, energy
and N balance, CH4 and H; emissions, and rumen volatile fatty acid (VFA) concentrations. The
DGAT1 KK genotype was associated with a lower proportion of poly-unsaturated fatty acids
(FA) in milk fat, and with a higher milk fat and protein content, and proportion of saturated FA
in milk fat compared with the DGAT7 AA genotype, whereas the fat- and protein-corrected
milk yield was unaffected by DGAT17. Also, DGATT did not affect nutrient digestibility, CH4 or
H; emission, ruminal fermentation or ruminal archaeal and bacterial concentrations. Rumen
bacterial and archaeal composition was also unaffected in terms of the whole community,
whereas at the genus level the relative abundances of some bacterial genera were found to be
affected by DGATT. The DGATT KK genotype was associated with a lower metabolizability
(i.e., ratio of metabolizable to gross energy intake), and with a tendency for a lower milk N
efficiency compared with the DGAT7 AA genotype. The LSO diet tended to decrease CHy
production (g/d) by 8%, and significantly decreased CHy yield (g/kg of DM intake) by 6% and
CHy intensity (g/kg of fat- and protein-corrected milk) by 11%, but did not affect Hz emission.
The LSO diet also decreased ruminal acetate molar proportion, the acetate to propionate ratio,
and the archaea to bacteria ratio, whereas ruminal propionate molar proportion and milk N
efficiency increased. Ruminal bacterial and archaeal composition tended to be affected by diet
in terms of the whole community, with several bacterial genera found to be significantly affected
by diet. These results indicate that DG.AT7 does not affect enteric CH4 emission and production
pathways, but that it does affect traits other than lactation characteristics, including
metabolizability, N efficiency, and the relative abundance of Bifidobacterium. Additionally, linseed
oil reduces CH4 emission independent of DGAT7 and affects the rumen microbiota and its
fermentative activity.

Keywords: dairy cow, enteric methane production, linseed oil, DGAT7 K232A polymorphism
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INTRODUCTION

Several dietary strategies have been proposed to mitigate enteric CH4 production,
including the use of feed additives and improving forage quality (Beauchemin et al., 2009; Martin
et al., 2010). Numerous studies have shown the potential of dietary lipid supplementation to
reduce CHy4 emission, many of which have been reviewed by Grainger and Beauchemin (2011)
and Hristov et al. (2013). To date, linseed is considered to be one of the most effective dietary
lipid sources to reduce enteric CH4 production from dairy cows (Beauchemin et al., 2009; Martin
et al,, 2010). Relatively few studies have considered the wider consequences of dietary linseed oil
on the functioning of the rumen microbial ecosystem. Veneman et al. (2015) reported no effect
of linseed oil supplementation on CH4 emission or the rumen microbiota as a whole. Martin et
al. (2016) reported significant decreases in CH4 emissions upon extruded linseed
supplementation for both corn silage-based and hay-based diets, whereas the abundance of
rumen methanogens was not affected by linseed supply in the corn silage-based or hay-based
diets.

Little is known whether host genetics can also influence the responses to dietary linseed
oil. The acyl CoA:diacylglycerol acyltransferase 1 gene, located on chromosome 14, mediates the
final step in triglyceride synthesis (Schennink et al., 2008). Many studies have investigated
associations between the K232A polymorphism of this gene (i.e., a lysine to alanine substitution
on the 23214 amino acid; DGATI) and milk production traits of daity cows. Although DGATY
has no effect on fat- and protein-corrected milk (FPCM) yield, the DGAT7 K allele is associated
with a higher fat content, protein content, and fat yield, but lower milk production and protein
and lactose yield (e.g., Banos et al, 2008; Nislund et al,, 2008; Bovenhuis et al., 2015).
Additionally, DGATT has a marked effect on milk fatty acid (MFA) composition. The DGATT
K allele is associated with a larger fraction of C16:0, and smaller fractions of C18 UFA in milk
fat (e.g., Schennink et al., 2007; Duchemin et al., 2013). Several of the MFA which have been
associated with CH4 emission (Van Gastelen and Dijkstra, 2016) are also affected by DGATY,
in particular C18 UFA in both the ¢is and #rans isomers.

The DGATT gene is expressed in the small intestine, liver, adipose tissue, and the
mammary gland (DeVita and Pinto, 2013; Muise et al., 2014). Thus, effects of DGATT on traits
other than milk production might be expected. Van Engelen, S. (Wageningen University &
Research, Wageningen, The Netherlands; unpublished data) performed a genome-wide
association study (GWAS) to determine regions of the bovine genome that are associated with
predicted CHy yield (g/kg of DMI) using the CHy4 prediction equations based on MFA profile
published by Dijkstra et al. (2011) and Van Engelen et al. (2015). The association with DGAT7
was significant in the GWAS for predicted CHy yield, suggesting that the DGAT7 K allele is
associated with higher predicted CH4 yield. The association between DGATT and CH, yield has
not been studied before and could be of statistical and biological significance. To the best of our
knowledge, no study has investigated if the genetic variation of dairy cows, namely DGATT,
affects the rumen bacterial and archaeal composition, one of the potential biological explanations
for the relation between DGATT and CHy yield. In addition, there is little information on the
association of DGATT with nutrient digestion or energy and N balance of dairy cattle.
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Therefore, the objectives of the present study were to investigate the effects of dietary
linseed oil, DGATT, and the interaction between dietaty linseed oil and DGATT on CH4 and H»
emission, energy and N metabolism, lactation performance, ruminal fermentation, and rumen

bacterial and archaeal composition of dairy cows.

MATERIALS AND METHODS

Experimental design

The experiment was conducted from January to April 2015, in accordance with Dutch
law and approved by the Animal Care and Use Committee of Wageningen University & Research
(Wageningen, The Netherlands). The experiment followed a cross-over design with 2 dietary
treatments and 24 lactating Holstein-Friesian cows (i.e., 12 cows with DGAT7 KK genotype and
12 cows with DGAT7 AA genotype; each group had 6 primiparous and 6 multiparous cows).
The 12 cows with DGAT7 KK genotype were sired by 10 bulls, and the 12 cows with DGAT7
AA genotype were sired by 9 bulls. Additionally, 1 bull sired 2 cows with DGAT7 KK genotype
and 1 cow with DGATT AA genotype. At the start of the experiment, the cows with the DGAT7
KK genotype and DGATT AA genotype were, on average, 215 £ 65 (mean £ SD) and 216 + 68
DIM and produced 23.9 + 5.66 kg/d and 26.9 + 5.87 kg milk/d, respectively. The cows wete
blocked in pairs according their DGATT genotype, parity, DIM, and milk production. Within
each block, cows were randomly allocated to a dietary treatment sequence in a cross-over design
with 2 periods: a control diet (CON) and linseed oil diet (LSO). Treatment periods lasted 17 d
and were composed of a 12 d adaptation period followed by a 5 d measurement period. There

was a 14 d wash-out period between the treatment periods of the same block of cows.

Diets, feeding, and housing

Both the CON and LSO diet consisted of 40% corn silage, 30% grass silage, and 30%
concentrates, on a DM basis. The ingredient and chemical composition of both diets are
presented in Table 7.1. Linseed oil (Linagro NV, Lichtervelde, Belgium) was added to the
concentrate of the LSO diet, substituting a part of the CON concentrate ingredients, to achieve
a difference of 22 g/kg DM in fat content between the 2 diets. To determine appatent total-tract
feed digestibility, C1203 (1.5 g/kg of concentrate DM) was included in the concentrates of both
diets as an external marker. Concentrates were produced by Research Diet Services (RDS BV,
Wijk bij Duurstede, the Netherlands) in 1 batch and hence were assumed to be of uniform
composition throughout the experiment. Diets were formulated to meet the requirements for
maintenance and milk production of the lactating dairy cows. The NEr, was calculated with the
VEM (feed unit lactation) system according to Van Es (1978), and intestinal digestible protein
and rumen degradable protein balance were calculated according to Van Duinkerken et al.
(2011).
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Table 7.1. Chemical composition (g/kg of DM, unless otherwise stated) of the TMR ingredients (gtass silage, corn
silage, concentrates; analyzed) and of the complete TMR (calculated) for the control diet (CON) and the linseed oil
(LSO) diet

Silages Concentrates TMR

Item Grass! Corn? CON? LSO* CON? LSOS¢
DM (g/kg of product) 558 318 878 890 468 469
OM 911 959 880 889 921 924
Ccp 140 83 394 301 194 184
Crude fat 33 34 33 108 34 56
Gross energy (M]/ kg of DM) 18.3 18.4 18.0 19.7 18.2 18.7
NDF 546 330 203 178 357 349
ADF 303 185 101 91 195 192
ADL 15 9 17 16 13 13
Starch 7 373 18 14 154 153
Reducing sugars 88 7 137 124 67 63
Fatty acids

C16:0 2.7 2.7 2.4 7.1 2.6 4.0

C18:0 0.26 0.44 0.48 2.9 0.40 1.1

C18:1 ais-9 0.30 3.2 3.8 17.9 2.5 6.8

C18:2n-6 2.3 8.3 6.8 19.7 6.1 9.9

C18:3n-3 8.5 1.0 1.0 354 3.2 13.5

Total fatty acids 16.2 16.1 14.4 86.8 15.6 373

I NE:L = 6.2 MJ/kg DM; intestinal digestible protein (DVE) = 64 g/kg of DM; rumen degraded protein balance
(OEB) = 11 g/kg of DM; ensiling characteristics: acetic acid = 9 g/kg of DM, lactic acid = 13 g/kg of DM,
ammonia-N = 6% of total N, and pH = 5.9.

2NE: = 7.0 MJ/kg of DM; DVE = 56 g/kg of DM; OEB = -8 g/kg of DM; ensiling characteristics: acetic acid =
11 g/kg of DM, lactic acid = 55 g/kg of DM, ammonia-N = 8% of total N, and pH = 3.7.

3 Concentrate added to the CON diet contained (g/kg of DM): soybean meal = 400, soybean meal, formaldehyde
treated = 200, rapeseed meal = 100, rapeseed meal, formaldehyde treated = 100, sugar beet pulp = 119, sugarcane
molasses = 40, CaCO;3 = 15, NaCl = 8.0, NaHCO; = 2.0, trace mineral and vitamin mix = 8.0, MgO = 7.0, and
Cr0s5 = 1.5.

+ Concentrate added to the LSO diet contained (g/kg of DM): soybean meal = 369, soybean meal, formaldehyde
treated = 184, rapeseed meal = 92, rapeseed meal, formaldehyde treated = 92, sugar beet pulp = 109, sugarcane
molasses = 37, CaCO3 = 15, NaCl = 8.0, NaHCO; = 2.0, trace mineral and vitamin mix = 8.0, MgO = 7.0, Cr20;
= 1.5, and linseed oil (Linagro NV, Lichtervelde Belgium) = 76.

5'TMR contained grass silage, 300 g/kg of DM; corn silage, 400 g/kg of DM; CON concentrate, 300 g/kg of DM.
¢'TMR contained grass silage, 300 g/kg of DM; corn silage, 400 g/kg of DM; LSO concentrate, 300 g/kg of DM.

7 Not determined.

Cows were fed and milked at 0600 and 1600 h. Just before milking, the feed refusals

were weighed and a new portion of the diet provided. The diets were fed as a TMR in 2 equal

daily portions. The concentrate was provided in meal form and manually mixed into the

roughage mixture at the time of feeding. Cows had free access to clean drinking water

throughout the experiment. Cows were fed individually and feed refusals were collected to

determine DMI throughout the experiment. Cows were fed ad libitum during the first 8 d of the

adaptation period. From d 9 onwards, feed intake was restricted per block to 95% of the ad

libitum DMI of the cow within a block consuming the lowest amount of feed duringd 5to d 8

as described previously by Van Zijderveld et al. (2011a). The cows were fed restricted amounts
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of feed to avoid confounding effects of DMI on enteric CH4 production, similar to Van
Zijderveld et al. (2011a). At all times, a minimum DMI of at least 82% of the ad libitum intake
of the cow with the greatest DMI within each block was ensured.

During the 12-d adaptation period, the cows were individually housed in tie-stalls in
order to become accustomed to the diet and restriction in movement. On d 13 (1400 h), after
the adaptation period, 4 cows (2 blocks) were individually transported to 1 of 4 identical climate
respiration chambers (CRC), located approximately 200m from the tie-stalls, for a 5-d period to
determine gaseous exchange, energy and N balance, and apparent total-tract nutrient digestibility.
A detailed description of the CRC design and gas measurements is reported by Heetkamp et al.
(2015) and Van Gastelen et al. (2015). Briefly, in each CRC (i.e., an area of 11.8 m? and a volume
of 34.5 m%) relative humidity was maintained at 65% and temperature at 16°C. The CRC were
equipped with thin walls with windows, to allow audio-visual contact in order to minimize the
effect of social isolation on cow behavior and performance. Cows were exposed to 16 h of light
per day (from 0530 to 2130 h) and housed in the CRC until d 17 (0900 h).

In addition to Van Gastelen et al. (2015), a H» analyzer (type MGA 3000 multi gas
analyzer, ADC Gas Analysis Ltd, Hoddesdon, UK) was installed in series with the Oz, CO2, and
CH, gas analyzers. The Ha concentrations were measured using an electrochemical cell technique
which has a relatively slow response time compared to the nondispersive infrared method of the
CO; and CHy gas analyzers and the paramagnetic method of the O gas analyzer. Therefore,
sampled air from the CRC was flushed through the gas analysis system for 180s before the
analyzer readout was logged. To have as many measurements as possible, inlet air was not
sampled in every sequence, but once per hour. Therefore, inlet and exhaust air of each CRC was
sampled with an average interval of 12.5 min (i.c., 4 times 12-min intervals for each CRC and 1
interval of 15 min for inlet air) instead of the 10-min interval reported by Van Gastelen et al.
(2015). Production of COa,, H», and CH4 and consumption of Oz was calculated from the
difference between inlet and exhaust gas volumes.

The ventilation rate within the CRC was 58 m3/h to ensure that the H» peak after
feeding was within the detection limit of the Hz analyzer (i.e., 0-100 ppm). Staff entered the CRC
twice daily at 0600 and 1600 h for approximately 30 min for feeding and milking. Van Gastelen
et al. (2015) did not use the gas concentration data during these feeding and milking times. The
H> concentration peak occurred directly after feeding when staff was still inside the CRC.
Therefore, we calculated the daily CH4 and H; production on 2 datasets: (1) without the gas
concentration data during feeding/milking (as was done by Van Gastelen et al. (2015), partially
missing the Hz concentration peak after feeding), and (2) with the gas concentration data during
feeding/milking (to captute the H concentration peak directly after feeding). Excluding the gas
concentration measurements during feeding/milking would have undetestimated daily H»
production by 15.2 * 6.89%. Daily productions of CH4 were unaffected when excluding these
gas measurements compared with including these gas measurements (data not shown). Thus, for
the present study it was decided to not discard the gas measurements during feeding and milking.

Gas concentrations and ventilation rates were corrected for pressure, temperature and
relative humidity to arrive at standard temperature pressure dew point volumes of inlet and
exhaust air. Once a day, calibration gasses were sampled for gas analysis instead of the inlet air,
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and the analyzed and actual values of these calibration gasses were used to correct the measured
gas concentrations from the inlet air and exhaust air of all compartments. Before the present
experiment started, CRC were checked by releasing known amounts of CO; in each
compartment and comparing these values with the data from the gas analysis system to calculate
the recovery. The recovered amounts of COz were between 99 and 101%.

Sample collection and measurements

Samples of grass silage, corn silage, and both concentrates were obtained when fresh
feed was prepared (i.e., twice weekly). These samples were subsequently pooled per treatment
petiod, subsampled and stored at -20°C pending analyses. During the 5-d petiod in the CRC,
feed residues were collected twice daily (0600 and 1600h), weighed, and stored at 4°C. At the
end of the 5-d period in the CRC, daily orts were pooled per cow, mixed, subsampled, and stored
at —20°C pending analyses.

Rumen fluid samples (~1 L) were collected 1 h before and 4 h after morning feeding
on d 12 and 4 h after morning feeding on d 17 using the oral stomach tube (OST) technique,
similar to Shen et al. (2012). Rumen fluid samples could not be collected 1 h before morning
feeding on d 17, because the cows were still housed in the CRC and the gas measurements were
priority. To collect rumen fluid with the OST method, a probe was inserted in the ventral cranial
part of the rumen via the esophagus. The probe was 190 cm long and the head of the probe
consisted of small holes allowing only rumen fluid (i.e., no fibrous content) to be collected.
Rumen fluid was collected by using a 500 mL suction pump, which was attached to the probe.
The first 500 mL of rumen fluid was discarded to limit saliva contamination of the rumen fluid
samples. Rumen pH was measured immediately after sampling using a calibrated portable
electronic pH meter (pH electrode HI99141, Hanna Instruments, IJsselstein, The Netherlands)
and 2 rumen fluid subsamples of 600 pl. each were acidified with an equal volume of ortho-
phosphoric acid, and directly stored at -20°C to stop microbial fermentation pending VFA
analysis. On d 17, 4 h after morning feeding, 100 mL of rumen fluid was sampled, directly stored
on dry ice and transferred to a -80°C freezer pending microbiota analysis.

Milk yield was recorded for each milking, both during the adaptation period in the tie-
stalls and the measurement period in the CRC. Milk from cows in the CRC was collected twice
daily at 0600 and 1600h. A milk sample (10 mL) of each milking event was collected in a tube
containing sodium azide (5 uL) for presetvation, stored no longer than 4 d at 4°C, and analyzed
for fat, protein, lactose, and urea content. Milk composition was corrected for differences in
milk yield between milking events on the same day, and the average milk composition on a daily
basis was used for data analysis. An additional milk sample (5 g/kg milk) was collected at each
milking event, pooled pet cow for the entire period in the CRC, and stored at -20°C pending
milk energy and N analyses. For MFA composition, milk samples were collected according to
Van Gastelen et al. (2015), pooled petr cow per period and stored at -20°C until analyses.

Measurements of CHy, Hz, and CO; production, and O» consumption were based on
data recorded from d 14 (0800 h) through d 17 (0800 h), whereas energy and N balance, and
apparent total-tract feed digestibility were based on manure (mixture of feces and urine) and

feces collections from d 13 (1400 h) through to d 17 (0900 h). Cows were weighed when entering
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and leaving of the CRC. The feces and urine produced during the 5-d period in the CRC were
quantitatively collected, weighed, mixed, subsampled and stored at -20°C pending analyses. In
addition, samples of condensed water (i.e., collected from the heat exchanger) and 25% sulfuric
acid solution w/w (i.e., through which the outflowing air was led to trap aetial ammonia) of each
CRC were collected, because of N volatilization in the form of ammonia due to the mixing of
feces and urine. During the 5 d in the CRC rectal grab samples (~300 g) were collected twice
daily at 0600 and 1600h and stored at —20°C. Prior to analysis, the grab samples were thawed,

pooled per cow and period, mixed, and subsampled.

Chemical analyses

Samples of feed, feed residues, manure, and rectal grab samples were thawed at room
temperature, oven-dried at 60°C, ground to pass a 1-mm screen using a Wiley mill (Peppink
100AN, Olst, The Netherlands), and analyzed by wet chemistry [i.e., ash, DM, N, starch,
reducing sugars (i.e., all carbohydrates with reducing properties and soluble in 40% ethanol),
NDF, ADF, and ADL] as described by Abrahamse et al. (2008). Bomb calorimetry (ISO 9831;
International Organization for Standardization, 1998) was used to determine gross energy (GE).
Crude protein was calculated as N X 6.25, where N was determined using the Kjeldahl method
with CuSOy as catalyst (ISO 5983; International Organization for Standardization, 2005). The N
concentrations in manure and of roughages were determined in fresh material according to Klop
et al. (2016). The FAME of the feed samples were determined as described by Khan et al. (2009)
using GC (Carlo Erba 8560 HRGC, Rodano, Italy) with a fused silica capillary column (100 m
% 0.250 mm and 0.2 um film thickness; Supelco; SP2560, St. Louis, MO) and helium as the
carrier gas. Crude fat content was analyzed according the gravimetric method NEN-ISO 1735
(ISO 1735; International Organization for Standardization, 2004) with modifications as
described by Klop et al. (2017).

Grass silage, corn silage, and concentrates were analyzed for DM, ash, N, crude fat,
starch (except for grass silage), sugars (except for corn silage), NDF, ADF, ADL, GE, and
FAME. Feed residues were analyzed for DM, ash, and crude fat. Manure samples were analyzed
for DM, N, and GE. The rectal grab samples were analyzed for DM, ash, N, crude fat, starch,
NDF, and GE. Chromium oxide was determined in the concentrates and rectal grab samples
using an atomic absorption spectrophotometer (AA240FS; Varian, Palo Alto, CA, USA) after
oxidation by wet destruction as described in detail by Pellikaan et al. (2013).

The concentration of individual VFA in the rumen fluid samples of d 12 (i.e., 1 h before
and 4 h after morning feeding) was determined using GC (Fisons HRGC Mega 2, CE
Instruments, Milan, Italy) with a split/splitless injector and helium as cartier gas as described by
Van Gastelen et al. (2015). Milk samples from individual milking events were analyzed for
proximate composition (fat, protein and lactose content) by mid-infrared spectroscopy ISO
9622; International Organization for Standardization, 1999), and for MUN using the pH
difference technique (ISO 14637; International Organization for Standardization, 2004) at Qlip
(Zutphen, The Netherlands). The MFA composition of the pooled milk samples was determined
using GC (Thermo Electron Corporation, Waltham, MA) by Qlip with a split/splitless injector
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and H> as carrier gas as described by Van Gastelen et al. (2015). The GE and N content of the

pooled milk samples were analyzed as described above.

Microbiota analysis

Rumen fluid samples taken 4 h after morning feeding on d 17 were analyzed for
bacterial and archaeal concentrations and community composition, using quatitative PCR
(qPCR) and Illumina MiSeq sequencing of PCR-amplified 16S ribosomal RNA (rRNA) gene
fragments. Total DNA was extracted from the rumen fluid samples using a protocol involving
a combination of bead beating, stool transport and recovery buffer (Roche Diagnostics
Nederland B.V, Almere, The Netherlands) and the Maxwell 16 Instrument (Promega, Leiden,
The Netherlands) as described in detail by Van Lingen et al. (2017). For absolute quantification
of bacteria and archaea, SYBR green qPCR assays were performed with sample DNA extracts
using an iCycler iQ real-time detection system (Bio-Rad Laboratories B.V., Veenendaal, The
Netherlands). The qPCR procedure, primers, cycling conditions, and standards used are
described by Van Lingen et al. (2017). For combined bacterial and archaeal composition
profiling, barcoded amplicons from the V4 region of 16S rRNA genes were generated from
sample DNA extracts using a 2-step PCR strategy (Caporaso et al., 2012; Tian et al., 2016; Van
Lingen et al., 2017). As described by Ramiro-Garcia et al. (20106), the 16S rRNA gene sequencing
data were analyzed using NG-Tax, an in-house bioinformatics pipeline. Operational taxonomic
units (OTU) were defined using an open reference approach, and taxonomy was assigned to
those OT'U using a SILVA 16S tRNA gene reference database (Quast et al., 2013). Preliminary
analysis of the samples confirmed the necessity of excluding 3 of the rumen fluid samples from
further microbial data analysis (i.e., both sequence and qPCR based analysis) due to issues

associated with salivary contamination of the samples during collection.

Statistical analysis

All parameters related to feed intake, milk production, and milk composition while
cows were housed in the CRC were averaged per cow over a 4-d period. The parameters related
to energy and N balance were expressed per kg of metabolic bodyweight (BW7) per d. All
univariate data were subjected to ANOVA in a cross-over with a 2 period X 2 treatment design
using the MIXED procedure in SAS (edition 9.2, SAS Institute Inc., Cary, NC). Treatments (i.e.,
diet and DGATT), their interaction, diet sequence, and period were considered fixed effects. The
model included block as random factor, and cow within diet X DGAT7 was considered as
subject. For all analyses, the fixed effect of CRC was initially included in the model, but was
removed because it was found to be not significant. The fixed effect of diet sequence was found
to be significant twice (i.e., MUN and C22:0) and a tendency was found once (i.e., C22:4n-6),
but diet sequence was always kept in the model. The covariance structure compound symmetry
provided best fit with the lowest overall Akaike’s information criterion values. Ruminal VFA
data were subjected to repeated measures ANOVA in order to take repeated sampling within
the same cow per treatment period into account. Similar to the above described model, this
model included treatments, their interactions, sequence, and period as fixed effects, and block

as random effects. Again, the fixed effect of diet sequence was found to be significant once (i.e.,
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total VFA concentration) and a tendency was found twice (i.e., molar proportions of acetate and
butyrate), but diet sequence was always kept in the model. For both models, pairwise
comparisons of means were tested with the Tukey-Kramer method. The Kenward-Roger option
was used to estimate the denominator degrees of freedom. All results are reported as least square
means with significance of effects declared at P < 0.05 and trends at 0.05 < P < 0.10. No multiple
testing correction was applied.

Permutational Multivariate Analysis of Variance (PERMANOVA; Anderson, 2001)
was used to assess the significance of changes in the rumen bacterial and archaeal composition
in terms of the microbiota as a whole community (with the OTU summarized to the genus level)
with respect to different factors [i.e., diet (LSO and CON), DGATT (DGAT! KK and AA
genotype), and diet X DGATT]. The PERMANOVA was applied on the Bray-Curtis distance
matrices, and Bonferroni correction for multiple testing was applied on a nominal significance
of 0.05. The Matlab Fathom toolbox (Jones, 2015) was used for calculations. The
aforementioned ANOVA analysis was also used to determine the effect of diet, DGATT, and
diet X DGATT interaction on the relative abundance of individual bacterial and archaeal genera

that were (1) consistent in all animals and (2) were > 0.05% in terms of relative abundance.
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RESULTS AND DISCUSSION

Intake and digestibility of nutrients

Nutrient intake, DMI, fatty acid (FA) intake, and apparent total-tract digestibility of
nutrients were not affected by DGAT7 polymorphism and diet X DGAT7 interaction. Feeding
the LSO diet resulted in an increased crude fat intake (P < 0.001), intake of individual FA (P <
0.001), and intake of total FA (P < 0.001) compared to the CON diet (Table 7.2). These results
are in line with the difference in chemical composition between the LSO diet and CON diet;
linseed oil increased the dietary fat content from 34 g/kg DM to 56 g/kg DM (Table 7.1). The
LSO diet (2.3% linseed oil on DM basis) increased apparent total-tract digestibility of crude fat
compared to the CON diet (P < 0.001), but the apparent total-tract digestibility of the other
nutrients was unaffected (Table 7.2). The increased crude fat digestibility of the LSO diet may
have been the result of UFA from linseed having a higher total-tract digestibility than SFA (Van
Zijderveld et al., 2011b). Several studies also reported the effect of linseed oil on apparent total-
tract digestibility of nutrients, but the results reported are variable. Similar to this study, Benchaar
et al. (2012) did not find an effect of adding increasing amounts of linseed oil to the diet [i.e.,
grass silage and corn silage; 50:50 forage:concentrate (F:C); DM basis] on apparent total-tract
digestibility of DM, OM, CP, NDF, starch and GE. Martin et al. (2008), however, observed a
decreased DM, OM, and NDF digestibility when supplementing 5.7% linseed oil to a forage rich
diet (i.e., corn silage and grass hay; 65:35 F:C; DM basis). Ueda et al. (2003) reported an increase
in OM and NDF digestibility when 3% linseed oil was added to a forage rich diet (i.e., grass hay;
65:35 F:C; DM basis), whereas the digestibility of these nutrients decreased when 3% linseed oil
was added to a concentrate rich diet (35:65 F:C; DM basis). Benchaar et al. (2015) observed a
decreased DM, OM, NDF, and GE digestibility when 4% linseed oil was added to a corn silage-
based diet (60:40 F:C; DM basis), whereas DM, OM, and GE digestibility increased and NDF
digestibility was unaffected when linseed oil was supplemented to a red clover silage-based diet
(60:40 F:C; DM basis). Taken together, these results suggest that the effect of linseed oil on
nutrient digestibility may vary with the source of forage in the basal diet, the forage to

concentrate ratio, as well as the amount of linseed oil added.

Lactation performance and milk fatty acid profile

No diet X DGATT interaction effect on milk production and milk composition was
observed. Compared with the DGAT7T AA genotype, the DGATT KK genotype was associated
with a higher milk fat and protein content (P < 0.001 and P = 0.005, respectively; Table 7.3), and
tended to have a lower milk yield and lactose yield. The FPCM yield did not differ between the
DGATT KK and DGATT AA genotype, which is consistent with a similar DMI, nutrient intake,
and gross energy intake (GEI) between the 2 DGATT7 genotypes. The major effect of DGATT
on milk production traits has been often observed, with the K allele associated with a higher
milk fat and protein content, but lower milk production than the A allele (e.g., Schennink et al.,
2007; Bovenhuis et al., 2015) which is in line with the present study. Many studies also reported
the K allele to be associated with a higher fat yield and lower protein yield, although the reduced
protein yield is not consistently reported (e.g., Nislund et al., 2008). This is not confirmed by
the results of the present study (Table 7.3). In the present study, compared with the DGATT AA
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genotype, fat yield of the DGATT KK genotype was only numerically higher (1,180 versus 1,102
g/d) and protein yield numerically lower (874 versus 900 g/d).

The LSO diet resulted in a decreased milk fat content, milk protein content, and MUN
(P < 0.045; Table 7.3). The decrease in milk protein content was also observed by Benchaar et
al. (2012, 2015) and may be the result of a dilution effect rather than a direct negative effect of
the increased dietary fat content (Schroeder et al., 2004), as the milk yield numerically increased
and protein yield was unaffected by the linseed oil. The decreased MUN content may have been
a consequence of the lower CP content of the LSO diet. In general, a decreased MUN content
is associated with an improved milk N efficiency (Spek et al., 2013), and the significantly higher
milk N efficiency with the LSO diet (27.5%) compared with the CON diet (24.6%; discussed in
section energy and nitrogen retention) diet is in line with the decrease in MUN. The decrease in milk
fat content in the present study is in agreement with Martin et al. (2008), Ferlay et al. (2013), and
Benchaar et al. (2015), but in contrast to others (e.g., Benchaar et al., 2012; Livingstone et al.,
2015). The response of milk fat content to linseed oil is the result of the balance between a
decrease in de novo FA synthesis and an increase in exogenous FA uptake and secretion by the
mammary gland (Schroeder et al., 2004). The UFA from linseed oil have been reported to inhibit
ruminal fibrolytic activity and subsequently decrease production of acetate and butyrate, which
are precursors of de novo synthesized short- and medium-chain MFA (Bauman and Griinari,
2003). Also, these dietary UFA and several #rans FA, the latter are formed from ruminal
biohydrogenation of the UFA, are potent inhibitors of de novo milk fat synthesis in the
mammary gland (Bauman et al., 2011). In turn, dietary UFA increase the content of long-chain
UFA in milk (Schroeder et al., 2004; Benchaar et al., 2012). In the present study, the inhibitory
effects of linseed oil on de novo synthesized FA is greater than the increase in long-chain FA in
milk (Table 7.4).

A diet X DGATT interaction for the individual MFA C14:0 and C15:0 was observed
(Table 7.4). Previously, Van Vuuren et al. (2013) also observed an interaction between DGATY?
and linseed oil supplementation for certain MFA, although these were different from the ones
reported in the present study, namely C18:0 and C20:1n-11. In addition, compared with the
DGATT AA genotype, the DGATT KK genotype was associated with a higher C14:1 ¢is-9,
C16:0, C16:1 ¢s-9, C22:0, C24:0, and total SFA content (P < 0.034), and a lower 750 C17:0, C18:1
¢i5-9, C18:1 ¢is-12, C18:2n-6, C18:3n-3, and total PUFA content (P < 0.030) in the milk (Table
7.4). These results are largely in agreement with data in the literature. According to Schennink et
al. (2007), Van Arendonk et al. (2009), Duchemin et al. (2013), and Bovenhuis et al. (20106) the
DGATT K allele is associated with a larger fraction of C16:0, and smaller fractions of C14:0 (also
reported by Lu et al., 2015), and C18 UFA in milk. In addition, Duchemin et al. (2013) reported
an increase in milk C14:1 ¢i5-9, C16:1 ¢/5-9, and total SFA, and a decrease in total milk UFA for
the DGATT K allele. Furthermore, according to Van Arendonk et al. (2009), Lu et al. (2015),
and Bovenhuis et al. (2016), the DGATT K allele is associated with increased contents of C15:0
and C17:0 in milk.

The LSO diet of the present study resulted in a lower content of short- and medium-
chain fatty acids (SMICFA) in the milk, with the exceptions of C4:0 and C16:1 #rans-9 (Table 7.4).
These results are generally in line with Chilliard et al. (2009), Benchaar et al. (2012), and Saliba
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et al. (2014). As previously stated, dietary UFA and several #ans FA are potent inhibitors of de
novo milk fat synthesis in the mammary gland, and the UFA from the linseed oil potentially
inhibit ruminal fibrolytic activity, thereby decreasing the precursors for SMCFA synthesis
(Bauman and Griinari, 2003). Milk SMCFA are synthesized de novo in the mammary gland
primarily from acetate, and ruminal acetate proportion was decreased upon feeding linseed oil
(discussed in section ruminal fermentation). Only MFA C4:0 does not require acetate for its
production as it can be produced directly from B-hydroxybutyrate derived from the blood
(Bernard et al., 2008).

The LSO diet resulted in lower contents of all odd- and branched-chain fatty acids
(OBCFA) in milk compared the CON diet (P < 0.004; Table 7.4). This is in line with Chilliard
et al. (2009) and, in regard to C15:0 and C17:0, also with Benchaar et al. (2012). The odd-chain
FA C15:0 and C17:0 are mainly synthesized de novo by ruminal bacteria from propionate.
However, despite the increase in propionate proportions (Table 7.7), this ruminal synthesis of
C15:0 and C17:0 may decrease when cows are fed dietary fat. This is because rumen bacteria
preferably use preformed FA available in the ruminal environment (Byers and Schelling, 1988).

The intake of C18:3n-3 increased with the LSO diet (P < 0.001; Table 7.2). This
increase is associated with an increase of C18:3n-3, as well as the biohydrogenation intermediates
(e.g., C18:1 trans-11) and end-products (i.e., C18:0) in milk upon feeding linseed oil (P < 0.001;
Table 7.4), suggesting high levels of biohydrogenation, and is in line with Benchaar et al. (2012),
Ferlay et al. (2013), and Livingstone et al. (2015). Despite the increased intake of C18:2n-6 with
the LSO diet (P < 0.001; Table 7.2), C18:2n-6 does not increase in milk upon feeding linseed oil,
which is in agreement with Ferlay et al. (2013) and Saliba et al. (2014). Milk C18:2 ¢s-9, trans-11
did increase with the LSO diet (P < 0.001; Table 7.4), suggesting high levels of biohydrogenation
of C18:2n-6 in the rumen as well as increased endogenous production of C18:2 ¢s-9, #rans-11 in
the mammary gland using C18:1 #ans-11 produced in the rumen as substrate (Griinari et al.,
2000).

In the present study, both C18:1 #rans-10 and C18:1 #rans-11 increased with the LSO
diet (P < 0.001; Table 7.4), which is consistent with Benchaat et al. (2012) and Saliba et al. (2014).
The increase in C18:1 #rans-11 content in milk may be the result of its production during the
biohydrogenation of dietary C18:2n-6 and C18:3n-3. An increase in C18:1 #rans-10 in milk is
generally associated with milk fat depression, and occurs when low fiber diets or diets
supplemented with PUFA rich plant oils are fed, resulting in a shift in rumen microbial
composition and a changed biohydrogenation pathway (Griinari and Bauman, 1999). In the
present study, milk fat content (%) decreased, but intake of NDF and starch, ruminal pH, and
milk fat yield (g/d) were unaffected with the LSO diet (Tables 7.2, 7.3, and 7.7). The increase of
C18:1 trans-11 was greater compared with C18:1 #ans-10 as the C18:1 #rans-11 to C18:1 trans-10
ratio increased with the LSO diet (i.e., 4.6 £ 0.19 for the CON diet and 6.0 + 0.46 for the LSO
diet; P = 0.009). This indicates that there was a change in the rumen biohydrogenation pathway,
potentially the result of the increased rumen UFA load (Lock, 2010) causing changes in

microbiota composition or activity, and thus changes in ruminal fermentation characteristics.
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Energy and nitrogen retention

No diet X DGATT interaction was observed for the energy balance characteristics of
the cows (Table 7.5). The ME intake (MEI) to GEI ratio was lower for the DGAT7T KK
genotype (66.8%) compared with the DGATT AA genotype (67.9%; P = 0.023). To the best of
our knowledge, the effects of DGAT7 on energy balance measured in CRC have not been
quantified previously. The energy output in milk was unaffected by DGATT in the present study,
which is in agreement with Bovenhuis et al. (2015) who only observed a difference in milk energy
output for the DGAT7 AK genotype compared with DGATT AA and KK genotypes in parity
1. Bovenhuis et al. (2015) suggested that, in view of the absence of differences in energy output
in milk, no large differences in energy balance between cows with different DGATT alleles would
be expected. In the present study, total energy retention was unaffected by DGATT (Table 7.5),
supporting the hypothesis of Bovenhuis et al. (2015). This is in agreement with Banos et al.
(2008), who reported only a small positive effect of the DGAT7 K allele on cumulative effective
energy balance estimated based on live weight and BCS.

The LSO diet resulted in a decreased energy loss in the form of CHy4 (P = 0.022; Table
7.5) and an increased MEI to GEI ratio (P = 0.006; Table 7.5). The decreasing effect of linseed
oil on energy loss in the form of CHy, together with the tendency of reduced GE digestibility,
may explain the difference in MEI to GEI ratio, because the GEI was unaffected by feeding
linseed oil (Table 7.5).

The mean N balance was not affected by diet, DGAT7, and diet X DGATT interaction
(Table 7.5). Milk N efficiency tended (P = 0.076) to be higher for the DGAT7 AA genotype
(26.6%) compared with the DGATT KK genotype (25.5%). A few studies have reported the
effect of dietary linseed oil on N balance, which have been reviewed by Hristov and Jouany
(2005). These authors indicated that the effects of fat supplementation on the N balance of cattle
are inconsistent in the literature. In the present study, the LSO diet reduced N excretion in
manure (P = 0.010; Table 7.5), which is similar to Benchaar et al. (2015) and might be the result
of the tendency observed for a lower N intake of cows fed the LSO diet. The LSO diet resulted
in a greater efficiency of dietary N utilization for milk N production (P < 0.001). This is in
contrast with Benchaar et al. (2015), who observed no effect of linseed oil supplementation on

N efficiency.
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CHAPTER 7

Gas exchange

No diet X DGATT interaction was found for Oz consumption and CO, CHy, and H»
production, and gaseous ratios (Table 7.6). None of the gas exchange characteristics were
affected by DGATT. The results indicate that DGAT7 does not affect CH4 emission of dairy
cows nor the response in CH4 emission of dairy cows to dietary linseed oil. As mentioned before,
Van Engelen, S. (Wageningen University & Research, Wageningen, The Netherlands;
unpublished data) performed a GWAS to determine regions of the bovine genome that are
associated with predicted CHy yield (g/kg DMI) using the equations published by Dijkstra et al.
(2011) and Van Engelen et al. (2015). The association with DGATT was significant in the GWAS
for predicted CHy yield, suggesting that the K allele is associated with higher predicted CHy yield.
The results of the present study suggest that the proposed relation between DGATT and CHy4
based on predicted CHy yield using MFA is not in line with actual observations on CH4 emission.
Presumably, the relationship observed by Van Engelen, S. (Wageningen University & Research,
Wageningen, The Netherlands; unpublished data) is due to the association between DGATT and
the MFA that were used to predict CHy yield. The CH4 prediction equations, used in the GWAS
by Van Engelen, S. (Wageningen University & Research, Wageningen, The Netherlands;
unpublished data), included several C18 UFA (both cis and #rans isomers), which were affected
by DGATT in the present study (Table 7.4) as well as in other studies (e.g., Schennink et al.,
2007; Duchemin et al., 2013).

The LSO diet did not affect Hz production (g/d), yield (g/kg DMI), and intensity (g/kg
FPCM), which is consistent with Veneman et al. (2015). Similarly, the unaffected O
consumption and COz production upon the LSO diet in the present study is consistent with
Livingstone et al. (2015). The LSO diet did not affect the H» to CHy ratio, but decreased the
respiration quotient (RQ; P < 0.001), CH4 emissions (i.e., g/kg DMI, g/kg FPCM, and % of
GEI; P < 0.006), and CH4 to CO; ratio (P = 0.001; Table 7.6). The RQ is lower or equal to 1.0
when only substrate oxidation occurs (Gerrits et al., 2015). However, de novo fatty acid synthesis
and ruminal anaerobic fermentation of dietary carbohydrates can result in a RQ larger than 1.0
(Gerrits et al., 2015). The decreased RQ found for the LSO diet may result from the higher
dietary fat intake and fat digestibility (Table 7.2), because fat is not fermented in the rumen
(Beauchemin et al., 2008) and an increased absorption of FA reduces the need to synthesize FA
from carbohydrates in the intermediary metabolism.

The dectrease in CH4 emissions with the LSO diet in the present study is in line with
previous studies (e.g., Martin et al., 2008; Benchaar et al., 2015). According to Grainger and
Beauchemin (2011), a 10 g/kg of DM increase in dietary fat should result in a decreased CHy4
yield by 1 g/kg of DMI in cattle. In the present study, the average increase in dietaty fat content
(22 g/kg DM) was associated with a significant dectease of 1.4 g/kg DMI in CHj yield. This is
lower than that reported by Grainger and Beauchemin (2011) in their meta-analysis, but higher
than some other studies (e.g., Veneman et al., 2015). Fat analyses of the feed residuals suggest
that the cows in the present experiment were not selecting against the concentrate supplemented
with linseed oil included in the TMR (results not shown; fat content in residual feed was not
different from the fat content in TMR offered). Benchaar et al. (2015) suggested that the forage
of the basal diets affected the extent of CH4 mitigation of linseed oil supplementation. For the
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red-clovet-based diet, an inctease in dietary fat content of 27 g/kg of DM decteased CHy yield
with 1.7 g/kg of DMI, whereas for the corn-silage-based diet, an increase in dietary fat content
of 36 g/kg of DM decreased CHy yield with 4.0 g/kg of DMI (Benchaar et al., 2015). The forages
used in the present experiment (i.e., a mixture of grass silage and corn silage) may have influenced
the extent of CHy mitigation of dietary linseed oil. In addition, the 2 diets differed in CP content
(194 and 184 g/kg of DM for CON and LSO, respectively; Table 7.1), but the effect of dietary
CP on CH4 emission is reported variable in literature. Ellis et al. (2009) found a positive
relationship between dietary CP content and CH4 emission of beef cattle, whereas Reynolds et
al. (2010) did not observe differences in CHy yield with different dietary CP contents. The 10
g/kg of DM difference in dietary CP content between the 2 diets in the present study may not
be expected to significantly affect CH4 emission, especially because the dietary CP content (i.e.,
higher than 180 g/kg of DM; Table 7.1) was above calculated requitements for the daity cows
involved. Overall, it seems likely that the basal diet may have played an important role in the

CH, mitigation effect of dietary linseed oil in the present study.

Ruminal fermentation

Three rumen fluid samples per cow within diet were collected: 1 h before and 4 h after
morning feeding on d 12, and 4 h after morning feeding on d 17. None of the ruminal
fermentation parameters significantly differed between d 12 and 17 at 4 h after morning feeding,
with the exception of ruminal pH (P < 0.001, 6.56 and 6.68, respectively). To have a balanced
design as well as the ability to distinguish between time and day effects, it was decided to use
only the samples of 1 h before and 4 h after morning feeding of d 12 for ruminal fermentation
data analysis.

Time of sampling (i.e., 1 h before feeding or 4 h after feeding) affected pH, total VFA
concentration, and VFA molar proportions (P < 0.001; Table 7.7), except for isovalerate. As
expected, ruminal pH declined after feeding and total VFA concentration was higher 4 h after
feeding compared to 1 h before feeding (data not shown). Total VFA concentration was
unaffected by diet, DGATT, and diet X DGATT interaction. The lack of an effect of the LSO
diet is in agreement with Ueda et al. (2003), Doreau et al. (2009), and Benchaar et al. (2012), and
all these results are consistent with the lack of effect of diet, DGATT, and diet X DGATT
interaction on ruminal pH in the present study.

In general, ruminal pH in the present study seems relatively high compared to the total
VFA concentration (Table 7.7). According to the prediction equation derived by Dijkstra et al.
(2012), pH should be around 6.2 with a VFA concentration of 100 mM. In the present study,
however, pH was around 6.76 with a VI'A concentration of approximately 93 mM, probably as
a result of collecting rumen fluid with the OST sampling technique. Duffield et al. (2004) and
Wang et al. (2016) reported a higher ruminal pH when sampling rumen fluid using OST
compared with rumen cannulation. Using the OST technique in the present study resulted in
collection of rumen fluid from the ventral cranial part of the rumen or the reticulum. The pH
within these regions of the reticulo-rumen is generally higher compared with other sites (e.g.,
Duffield et al., 2004; Li et al., 2009) as a result of rumination and the consequent entry of saliva.

171



CHAPTER 7

The proportions of the individual VFA were unaffected by DGAT7 and diet X DGAT7
interaction (Table 7.7). Feeding the LSO diet resulted in an increased proportion of propionate
(P = 0.010), whereas the proportion of acetate and the acetate to propionate ratio decreased
compared with the CON diet (P = 0.004 and P < 0.001, respectively). Several other studies have
also reported a shift in VA pattern towards proportionally more propionate and less acetate
when a linseed oil containing diet was fed (e.g., Benchaar et al., 2012, 2015; Ivan et al., 2013;
Martin et al., 2016), which is also consistent with the reduction of CH4 emission observed for
the LSO diet (Table 7.6). This shift in fermentation toward propionate at the expense of acetate
supports the key role of the redox state of NAD in rumen fermentation and CHy production
(Van Lingen et al.,, 2017). As discussed before, dietary linseed oil may reduce fiber degradation
in the rumen, whereas degradation of other carbohydrates (e.g., starch) remains unaffected
(Doreau and Chilliard, 1997). This results in proportionally more propionate and less acetate.
The apparent total-tract digestibility of NDF in the present study was unaffected by the LSO
diet, but a decrease in rumen fiber digestion can be partially compensated for by digestion in the
large intestine (Martin et al., 2008).

Rumen microbiota

Bacterial and archaeal concentrations. The concentration of archaea and bacterial
16S rRNA genes in the rumen were unaffected by diet, DGAT7, and diet X DGATT interaction
(Table 7.8). An absence of effect of linseed oil on archaeal concentrations is in agreement with
Veneman et al. (2015) and Martin et al. (2016). Similar to Martin et al. (2016), despite the
unaffected archaeal concentration, CH4 emission decreased with the LSO diet. The archaea to
bacteria ratio decreased (P = 0.029, Table 7.8) with the LSO diet. This reduced ratio suggests
that per unit substrate fermented by bacteria, a smaller archaeal concentration is present to form
CHa, helping to explain the observed reduction in CH4 emission when feeding the LSO diet.

Numerous studies have repeatedly failed to find a correlation between CHy4 emission
and archaeal concentration (e.g., Morgavi et al, 2010). In the present study, archaeal
concentration (logio 16S copies / mL rumen fluid) was not related to CH4 production, but was
related to CHy yield (r = 0.34, P = 0.019), and tended to be related with CHy intensity (r = 0.28,
P = 0.055) without considering effects of linseed oil and DGATT. Additionally, the archaea to
bacteria ratio was not related to CHy production, but was related to CHy yield (r = 0.43, P =
0.002) and CHj4 intensity (r = 0.48, P = 0.001) without considering effects of linseed oil and
DGATTI. For both CHy yield and CH4 intensity, the archaea to bacteria ratio provided the
strongest correlation, which is for CHy yield in agreement with Wallace et al. (2014).

Bacterial and archaeal composition. Bacteria (91.8 = 2.1% of the obtained 16S
rRNA gene sequences) were represented by 1,077 different OTU whereas the archaea (7.9 £
2.0% of the 16S rRNA sequences) were represented by 16 different OTU. In agreement with
previous studies, the total number of bacterial OTU was much higher than archaeal ones (e.g.,
Kittelman et al., 2013; Veneman et al.,, 2015). The 1,093 OTU could be summarized to 89
different genus-level phylogenetic groupings (87 for bacteria and 2 for archaea). The rumen
bacterial and archaeal community as a whole (i.e., PERMANOVA results) tended to be affected
by diet (P = 0.081), but was not affected by DGAT7 (P = 0.326) and diet X DG.ATT interaction
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(P = 0.365). We also individually analyzed the relative abundances of bacterial and archaeal
genera to examine if these were affected by diet, DGATT, and diet X DGATT interaction (Table
7.8). This was done because changes in taxa of low relative abundance can be masked when the
total rumen microbiota is analyzed as a whole.

Methanobrevibacter was the most abundant archaeal genus, which is in line with other
studies (e.g., Janssen and Kirs, 2008; Veneman et al., 2015). Both of the detected archaeal genera
in this study were unaffected by diet, DG.AT7, and diet X DGATT interaction, with the exception
of Methanobrevibacter for which a tendency for a diet X DGATT interaction was observed. The
lack of an effect of DGATT and of the interaction between DGATT and dietary linseed oil on
archaeal genera is in line with lack of an effect of these factors on CH4 emissions in the present
study (Table 7.6). The lack of an effect of linseed oil on both archaeal genera is in agreement
with Veneman et al. (2015) and consistent with the unaffected archaeal concentrations in the
present study. These results are also in agreement with Monosi et al. (2008), who demonstrated
that the long-chain FA of dietary linseed oil (such as linolenic acid) do not affect archaeal
concentrations and relative abundances.

Prevotella was the most abundant bacterial genus in the present study, which was
reported by others as well (e.g., Henderson et al., 2013; Veneman et al., 2015). The relative
abundance of Bifidobacterinm (P = 0.039) was lower for the DGATT KK genotype compared with
the DGATT AA genotype (Table 7.8). Bifidobacterium is a sugar fermenting bacteria (Trovatelli
and Matteuzzi, 1997) producing acetate. However, intake of reducing sugars (Table 7.2) as well
as the molar proportions of acetate (Table 7.7) was not affected by DGATT.

With the LSO diet, Rikenellaceae RC9 gut group and a non-assigned genus (g-NA)
within the RF76 decreased (P < 0.001 for both), whereas Saccharofermentans increased (P = 0.016;
Table 7.8). There is no cultured representative of RF76, g¢-NA, and hence the lack of knowledge
with respect to the physiology of this group makes it unclear why their relative abundance
decreased with the LSO diet. The metabolic function and role of the Rikenellaceae RC9 gut group
in the rumen microbiome remains to be defined, but Zened et al. (2013) already demonstrated
that supplementation of sunflower oil decreased its relative abundance. Saccharofermentans is a
sugar fermenting bacteria (Chen et al., 2010). The reducing sugar content and intake of the LSO
diet was lower compared with the CON diet (Tables 7.1 and 7.2), which is not consistent with
the increased relative abundance of sugar fermenting bacteria.

The PUFA present in linseed oil are believed to have a toxic effect on cellulolytic
bacteria (Nagaraja et al, 1997; Martin et al, 2010). This negative effect of linseed
supplementation on cellulolytic bacteria has not been confirmed in vivo in dairy cows by
Veneman et al (2015). Additionally, in the present study, no effect was observed on cellulolytic
genera (such as Fibrobacter, Butyrivibrio, and Rumzinococcus, P> 0.150, Table 7.8). This indicates that
dietary linseed oil at the level used in the present study does not have a toxic effect on cellulolytic
bacteria, and thus does not affect their relative abundance, and that this is therefore not the
mode of action of dietary linseed oil to decrease CH4 production. The results of the present,
however, do not reject the potential toxic effect of dietary linseed oil on the metabolic activity

of cellulolytic bacteria.
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Overall, the results indicate that several rumen bacterial genera were affected by dietary
linseed oil, which could be linked to changes in dietary composition, differences in ruminal
fermentation characteristics, and gaseous exchange. Further, several rumen bacterial genera were
affected by DGATT, but could not be linked with ruminal fermentation characteristics and
gaseous exchange because the latter 2 were not affected by DGATT. As a consequence, the
biological implications of their change appear to be limited. Despite some bacterial genera being
affected by diet, DGATT, and diet X DGATT interaction (i.e., the latter only tendencies), the
bacterial and archaeal community as a whole was not significantly affected. This is perhaps
because more than 75% of the bacterial genera analyzed were unaffected by diet, DGATT, and
diet X DGATT interaction, and because the quantities of the affected bacterial genera were

relatively small, therefore representing only a minor part of the rumen microbiota.

Implications

We acknowledge that the results of this study could have been different if the cows
would have been fed ad libitum. We restricted feed intake to ensure similar feed intake between
treatments, thus avoiding confounding effects of DMI on CHj4 production. Feed intake
restriction ranged from 82 to 95% with an average of 92 £ 0.7%, with all cows being in positive
energy balance and no difference in milk yield (25.5 £ 1.08 when fed ad libitum and 25.3 £ 1.16
when feed intake was restricted). We, therefore, consider the overall effect of restricted feeding
to be minimal. However, when considering the individual treatments, this may be different. The
LSO receiving cow was in 67% of the cases the one with the lowest ad libitum feed intake within
a block, and thus the CON receiving cow was in 67% of the cases relatively more restricted in
her feed intake. In other words, when fed ad libitum, the L.SO diet could have resulted in a lower
feed intake relatively to the CON diet. For DGATT, we did not find an association between ad
libitum feed intake and the DGAT7 KK or AA genotype.

Additionally, we acknowledge that the absence of effects of DGATT might be related
to the number of animals used in the present study. Many genetic studies used hundreds to
thousands of animals (e.g., Bovenhuis et al., 2016), whereas only 24 animals were used in the
present study. It is known that DGAT7 has major effects on milk yield and composition (such
as milk fat content and milk protein content). The present study was able to confirm the
difference in milk composition between the DGAT7 KK and AA genotype, but for milk yield
only a tendency was found. This shows that the number of animals in the present study might
have been insufficient to find all known major effects of DGAT7. For marginal effects, such as
CHy4 production which differed 8 g/d between the DGATT AA and KK genotypes (2% relative
difference), this study did not have sufficient power because of the relative small number of
animals. Furthermore, no dairy cows with the heterozygous DGAT7 AK genotype were included
in the present study. We assumed the AK genotype would be in between the homozygous
DGATT AA and KK genotypes, because there is little evidence for dominance effects of
DGATT (Bovenhuis et al., 2015). Whether this is also the case for other parameters, as measured
in the current study, remains to be investigated.

Overall, the results of the present study suggest that DG.AT7 does not affect enteric
CH4 emission and production pathways, but that it does affect traits other than lactation
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characteristics, including metabolizability, N efficiency, and the relative abundance of
Bifidobacterinm. Additionally, linseed oil reduces CHy4 emission independent of DGATT and

affects the rumen microbiota and its fermentative activity.

CONCLUSIONS

Nutrient digestibility, CH4 and H» emission, ruminal fermentation, rumen archaeal and
bacterial concentrations, and the ruminal bacterial and archaeal community as a whole were not
affected by DGATT. The major effects of DGATT on milk fat and protein content were
independent of dietary linseed oil. Also, DGATT affected other traits, including metabolizability,
N efficiency, and the relative abundance of Bifidobacterium. Upon feeding linseed oil, H, emissions
did not change, whereas CHy production (g/d) decreased with 8% (tendency only), CH4 yield
(g/kg of DMI) dectreased with 6%, and CH4 intensity (g/kg of FPCM) decteased with 11%,
independent of DGATT. In line with this, an increase in ruminal propionate proportion and a
decrease in acetate proportion as well as acetate to propionate ratio was observed, and the
archaea to bacteria ratio also decreased for the LSO diet. Linseed oil tended to affect the ruminal

bacterial composition and affected the relative abundance of several bacterial genera.
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CHAPTER 8

ABSTRACT

Several 7z vivo methane (CHy4) measurement techniques have been developed, but are
not suitable for precise and accurate large scale measurements. Hence, proxies for CH4 emissions
in dairy cattle have been proposed, including the milk fatty acid (MFA) profile. The aim of the
present study was to determine whether recently developed MEFA-based prediction equations for
CH4 emission are applicable to dairy cows with different diacylglycerol o-acyltransferase 1
(DGATI) K232A polymorphism and fed diets with and without linseed oil. Data from a cross-
over design experiment were used, encompassing two dietary treatments (i.e., a control diet and
a linseed oil diet, with a difference in dietaty fat content of 22 g/kg dry matter) and 24 lactating
Holstein-Friesian cows (i.e., 12 cows with DGAT7 KK genotype and 12 cows with DGATT AA
genotype). Enteric CHy production was measured in climate respiration chambers and MFA
analysed using gas chromatography. Observed CHy4 emissions were compared with CHy
emissions predicted by previously developed MFA-based CHy prediction equations. The results
indicate that different types of diets (i.e., with or without linseed oil), but not the DGATT K232A
polymorphism, affect the ability of previously derived prediction equations to predict CHy
emission. The concordance correlation coefficient was however smaller than or equal to 0.30 for
both dietary treatments separately, both DGATT genotypes separately, and the complete dataset.
It is therefore concluded that previously derived CH4 prediction equations can neither accurately
nor precisely predict CH4 emissions of dairy cows housed under different conditions from those
under which the prediction equations were developed.
Keywords: enteric methane production, milk fatty acid, linseed oil, DGAT7 K232

polymorphism

SHORT COMMUNICATION

Enteric methane (CHy) emission is one of the main targets of greenhouse gas
mitigation strategies for the dairy cattle sector (Knapp et al., 2014). Accurate and repeatable
measurements of CHy emission from individual dairy cows are required to evaluate emission
factors used in national inventories of greenhouse gas emissions in agriculture, to assess efficacy
of mitigation strategies, and to develop protocols for genetic selection for cows with reduced
CHj4 emission (Hammond et al., 2016). The 7z vivo CH4 measurement techniques available today
are not suitable for precise and accurate large scale measurements (Hammond et al., 2010).
Hence, proxies (i.e., indirect traits related to enteric CHy production) have been suggested,
including the milk fatty acid (MFA) profile. Recently, it has been shown that the relationship
between the MFA profile and CH4 emission can be affected by dietary composition. The
prediction equation developed on diets with a wide range of additives (Dijkstra et al., 2011)
overpredicted CH4 emission of cows fed sunflower, flax, and canola seeds (Mohammed et al.,
2011), and the prediction equations developed on a wide range of diets including a wide variety
of additives (Van Lingen et al., 2014) could not accurately predict CH4 emission of dairy cows
fed grass- or grass silage-based diets (Dijkstra et al., 2016). Castro-Montoya et al. (2017) analyzed
data from 9 experiments and concluded that MFA did not reliably predict specific amounts of
CH,4 emitted by dairy cows, whereas MFA hold a modest potential to differentiate individual
dairy cows with high or low CH4 emissions. The relationship between MFA profiles and CHy4

182



METHANE AND MILK FATTY ACIDS, EFFECT OF LINSEED OIL AND DGATI1

emission is not only affected by dietary composition, but also by lactation stage as demonstrated
by Vanrobays et al. (2016). However, little is known whether host genetics can also influence
this relationship.

The MFA profile can be affected by host genetics and dietary composition. The
diacylglycerol o-acyltransferase 1 (DGATIZ) K232A polymorphism affects not only major milk
components, such as protein and fat content, but also their composition, including the MFA
profile (e.g., Bovenhuis et al., 2016). Also feeding linseed oil, a dietary strategy to reduce enteric
CH,4 production, affects the MFA profile (e.g., Kliem et al., 2017). Therefore, the aim of the
present study was to determine whether recent MFA-based prediction equations for CHy
emission are applicable to dairy cows with different DGAT7 genotypes fed diets with and
without linseed oil.

Individual cow data from a cross-over design experiment with two dietary treatments
(i.e., a control diet and a linseed oil diet, with a difference in dietary fat content of 22 g/kg dry
matter; DM) and 24 lactating Holstein-Friesian cows (i.e., 12 cows with DGATT KK genotype
and 12 cows with DGATT AA genotype; each group had 6 primiparous and 6 multiparous cows)
were used. The experiment has been described by Van Gastelen et al. (2017a) and was in
accordance with Dutch law and approved by the Animal Care and Use Committee of
Wageningen University & Research (Wageningen, The Netherlands). Dry matter intake (DMI),
milk production and enteric CH4 production of cows were measured climate respiration
chambers described in detail by Van Gastelen et al. (2015). Daily CH4 production was expressed
in g/d, CHy yield was expressed in g/kg of DMI, and CH, intensity was expressed in g/kg of
fat- and protein-corrected milk (FPCM), where FPCM (kg/day) = [0.337 + 0.116 X milk fat
(g/100 g milk) + 0.06 X milk protein (g/100 g milk)] X milk production (kg/day). CHy4
production was 392 + 76.4 g/d, CH, yield was 22.2 + 1.73 g/kg DMI, and CHy intensity was
14.6 £ 1.93 g/kg FPCM. The MFA profile was clucidated using gas chromatography, as
desctibed by Van Gastelen et al. (2015), and expressed in g/100 g of total fatty acids.

The best MFA-based CH4 prediction equations obtained by Dijkstra et al. (2011; CHy
yield only), Van Lingen et al. (2014; CH4 yield and CHy4 intensity only), Van Gastelen et al.
(2017b), and Van Gastelen et al. (accepted) were used to predict CHy4 production, yield, and
intensity of each individual cow. Other prediction equations were also considered for evaluation,
but could not be used as these equations included specific MEFA not measured in the current
milk samples. The ability of these equations to predict CH4 emission of dairy cows with different
DGATT genotypes, fed diets with and without linseed oil, was evaluated using the root mean
square prediction error (RMSPE) and the concordance correlation coefficient (CCC), both
described in detail by Ellis et al. (2010). The results of these analyses are shown in Table 8.1 for
all data combined, in Table 8.2 for the control and linseed oil diet separately, and in Table 8.3
for the DGATT KK genotype and DGATT AA genotype separately.
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Table 8.1. The root mean square prediction error (RMSPE) and concordance correlation coefficient (CCC) results
of the MFA-based methane prediction models (complete dataset, n = 48)

RMSPE (unit)!  CCC? » Cr » “®

Methane production (g/d)

Van Gastelen et al. (2017b) 122 0.20 0.32 0.65 0.75 1.003

Van Gastelen et al. (accepted) 132 0.17 0.33 0.52 0.82 1.355
Methane yield (g/kg DMI")

Dijkstra et al. (2011) 7.8 0.11 0.47 0.24 0.36 2.308

Van Lingen et al. (2014) 2.6 0.30 0.55 0.56 1.10 1.260

Van Gastelen et al. (2017b) 2.6 0.29 0.32 0.92 0.67 0.011

Van Gastelen et al. (accepted) 6.0 0.15 0.41 0.37 0.39 1.576
Methane intensity (g/kg FPCM?)

Van Lingen et al. (2014) 3.1 0.23 0.46 0.51 1.14 1.378

Van Gastelen et al. (2017b) 2.4 0.12 0.18 0.65 1.65 -0.892

Van Gastelen et al. (accepted) 3.5 0.29 0.38 0.78 0.53 0.389

! Root mean square prediction error expressed in g/d, g/kg DMI, and g/kg FPCM for methane production, yield,
and intensity, respectively.

2 Concordance correlation coefficient, where CCC = r X Cj.

3 Pearson correlation coefficient; a measure of precision.

4 Bias correction factor; a measure of accuracy.

5 Scale shift; change in standard deviation between predicted and observed methane emission.

¢ Location shift; if positive underprediction, if negative overprediction.

7 Dry matter intake in kg/d.

8 Fat- and protein-corrected milk (kg/d) = [0.337 + 0.116 X fat (g/100 g milk) + 0.06 X protein (g/100 g milk)] X
milk yield (kg/d) (CVB, 2012).

With respect to the complete dataset (n = 48), the prediction equations did not predict
CH4 emissions satisfactorily. The RMSPE of CH, production was 122 to 132 g/d, the RMSPE
of CHy yield was 2.6 to 7.8 g/kg DMI, and the RMSPE of CHj intensity was 2.4 to 3.5 g/kg
FPCM. The CCC ranged from 0.17 to 0.20 for CH4 production, from 0.11 to 0.30 for CHy yield,
and from 0.12 to 0.29 for CHy intensity. These low CCC values were composed of consistently
low values for precision (7 < 0.55), whilst values for accuracy (C) ranged from low (0.24) to high
(0.92). Most of the CH4 prediction equations had a positive u value (i.e., location shift), indicating
a general underprediction of CHy4 emission, with the exception of the prediction equations of
Van Gastelen et al. (2017b) for CH4 yield (small bias only; consistent with high C, value) and
CHy, intensity (overprediction of CHy emission).

As discussed by Ellis et al. (2010), the variable » (i.e., scale shift) measures the relative
difference in standard deviation between predicted and observed values. The prediction equation
of Van Lingen et al. (2014) for CH4 yield and CH4 intensity had a scale shift close to 1.0, whereas
the scale shift of the prediction equation of Van Gastelen et al. (2017b) for CH4 intensity was
1.65. The latter suggests that the variation in the predicted CH4 emissions was smaller than the
variation in the observed CH4 emissions. Most of the CHy4 prediction equations, however, had a
scale shift smaller than 1.0, suggesting that the variation in the predicted CH4 emissions was
larger than the variation in the observed CH4 emissions.

184



METHANE AND MILK FATTY ACIDS, EFFECT OF LINSEED OIL AND DGATI1

Table 8.2. The root mean square prediction error (RMSPE) and concordance correlation coefficient (CCC) results of
the MFA-based methane prediction models (control diet and linseed oil diet, both n = 24)

RMSPE (unif)! ccez » Cr » #®
Control diet
Methane production (g/d)
Van Gastelen et al. (2017b) 65 0.20 0.40 0.50 3.47 0.506
Van Gastelen et al. (accepted) 74 0.26 0.54 0.49 2.53 1.072
Methane yield (g/kg DMI?)
Dijkstra et al. (2011) 3.4 0.05 0.17 0.33 1.18 2.018
Van Lingen et al. (2014) 2.1 0.16 0.35 0.46 1.98 1.363
Van Gastelen et al. (2017b) 2.0 0.11 0.24 0.45 2.24 -1.331
Van Gastelen et al. (accepted) 1.8 0.16 0.23 0.70 1.64 0.773
Methane intensity (g/kg FPCMS?)
Van Lingen et al. (2014) 2.8 0.07 0.17 0.42 2.49 1.381
Van Gastelen et al. (2017b) 2.4 0.04 0.05 0.74 1.99 -0.453
Van Gastelen et al. (accepted) 2.8 0.04 0.05 0.82 1.28 -0.615
Linseed oil diet
Methane production (g/d)
Van Gastelen et al. (2017b) 159 0.05 0.17 0.29 0.98 2.189
Van Gastelen et al. (accepted) 172 0.01 0.07 0.20 1.29 2.808
Methane yield (g/kg DMI)
Dijkstra et al. (2011) 10.5 0.02 0.43 0.06 0.84 5.696
Van Lingen et al. (2014) 3.0 0.16 0.49 0.33 1.53 1.954
Van Gastelen et al. (2017b) 3.0 -0.04 -0.05 0.76 0.80 0.760
Van Gastelen et al. (accepted) 8.2 0.01 0.14 0.11 0.77 4.100
Methane intensity (g/kg FPCM)
Van Lingen et al. (2014) 34 0.02 0.13 0.15 1.86 3.307
Van Gastelen et al. (2017b) 2.5 0.11 0.25 0.45 1.03 -1.565
Van Gastelen et al. (accepted) 4.1 -0.01 -0.04 0.34 0.57 1.873

I Root mean square prediction error expressed in g/d, g/kg DMI, and g/kg FPCM for methane production, yield, and
intensity, respectively.

2 Concordance correlation coefficient, where CCC = r X Cj.

3 Pearson correlation coefficient; a measure of precision.

4 Bias correction factor; a measure of accuracy.

5 Scale shift; change in standard deviation between predicted and observed methane emission.

¢ Location shift; if positive underprediction, if negative overprediction.

7 Dry matter intake in kg/d.

8 Fat- and protein-corrected milk (kg/d) = [0.337 + 0.116 X fat (g/100 g milk) + 0.06 X protein (g/100 g milk)] X milk
yield (kg/d) (CVB, 2012).
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Table 8.3. The root mean square prediction error (RMSPE) and concordance correlation coefficient (CCC) results of
the MFA-based methane prediction models (DGATT AA genotype and DGATT KK genotype, both n = 24)

RMSPE (unif)! ccez » C » “®
DGATT KK genotype
Methane production (g/d)
Van Gastelen et al. (2017b) 114 0.20 0.30 0.68 0.70 0.897
Van Gastelen et al. (accepted) 118 0.18 0.32 0.56 0.83 1.244
Methane yield (g/kg DMI?)
Dijkstra et al. (2011) 7.6 0.10 0.38 0.25 0.37 2.229
Van Lingen et al. (2014) 2.4 0.33 0.54 0.62 1.09 1.101
Van Gastelen et al. (2017b) 2.4 0.29 0.30 0.94 0.73 -0.167
Van Gastelen et al. (accepted) 5.2 0.15 0.35 0.43 0.42 1.378
Methane intensity (g/kg FPCMS?)
Van Lingen et al. (2014) 2.9 0.33 0.56 0.58 1.31 1.160
Van Gastelen et al. (2017b) 2.7 0.09 0.17 0.54 2.15 -1.047
Van Gastelen et al. (accepted) 35 0.38 0.45 0.84 0.57 0.252
DGATT AA genotype
Methane production (g/d)
Van Gastelen et al. (2017b) 129 0.21 0.34 0.62 0.78 1.088
Van Gastelen et al. (accepted) 145 0.18 0.36 0.49 0.83 1.443
Methane yield (g/kg DMI)
Dijkstra et al. (2011) 8.1 0.13 0.55 0.23 0.36 2.343
Van Lingen et al. (2014) 2.8 0.29 0.58 0.50 1.13 1.400
Van Gastelen et al. (2017b) 2.7 0.31 0.35 0.89 0.63 0.173
Van Gastelen et al. (accepted) 6.6 0.16 0.49 0.32 0.36 1.749
Methane intensity (g/kg FPCM)
Van Lingen et al. (2014) 33 0.15 0.36 0.43 0.97 1.634
Van Gastelen et al. (2017b) 2.1 0.17 0.22 0.76 1.29 -0.758
Van Gastelen et al. (accepted) 3.6 0.19 0.27 0.70 0.48 0.555

! Root mean square prediction error expressed in g/d, g/kg DMI, and g/kg FPCM for methane production, yield, and
intensity, respectively.

2 Concordance correlation coefficient, where CCC = r X Cj.

3 Pearson correlation coefficient; a measure of precision.

4 Bias correction factor; a measure of accuracy.

5 Scale shift; change in standard deviation between predicted and observed methane emission.

¢ Location shift; if positive underprediction, if negative overprediction.

7 Dry matter intake in kg/d.

8 Fat- and protein-corrected milk (kg/d) = [0.337 + 0.116 X fat (g/100 g milk) + 0.06 X protein (g/100 g milk)] X milk
yield (kg/d) (CVB, 2012).

Interestingly, one would most likely interpret the RMSPE results differently than the
CCC results for the control diet. As discussed in more detail below, both RMSPE and CCC
decrease for the control diet relative to the complete dataset. This is contradictive, because a
decrease in RMSPE implies an improvement of the CHy prediction (Bibby and Toutenburg,
1977), whereas a decrease in CCC implies a poorer CHy prediction (Lin, 1989). However, as
demonstrated by Ellis et al. (2010) upon evaluating iz vivo farm model for CHy prediction, when
prediction equations are unable to describe adequate amounts of the observed variation, CCC

analysis is likely the better evaluation tool. This also applies to the CHy4 prediction equations for
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the control diet, with relatively high » values (ranging from 1.18 to 3.47; Table 8.2) indicating the
inability of the CH4 prediction equations to predict the range of observed CH4 emissions.
Therefore, we will focus mainly on the CCC results.

Upon dividing the dataset into a dataset representing the control diet (n = 24) and a
dataset representing the linseed oil supplemented diet (n = 24), the equations predicting CH4
emissions performed even less satisfactorily. This is evident by the lower, and sometimes
negative, CCC values for both control and linseed oil dataset relative to the complete dataset.
For the control diet, the scale shift (#) increased considerably (i.e., ranging from 1.18 to 3.47)
relative to the complete dataset, indicating the inability of the CHy prediction equations to predict
the range of observed CH4 emissions. For the linseed oil supplemented diet, the scale shift varied
between 0.57 and 1.87, which is of similar magnitude as for the complete dataset. The larger
location shift (1) values for the linseed oil supplemented diet relative to the complete dataset,
indicates a biased (in general underpredicted) CHy prediction. Overall, these results suggest that
the dietary composition affects the capability to predict CH4 emissions of dairy cows of
previously developed MFA-based CHy prediction equations.

Dividing the dataset into a dataset representing the DGATT KK genotype (n = 24) and
into a dataset representing the DGAT7T AA genotype (n = 24), hardly affected the RMSPE and
CCC results relative to the complete dataset. This indicates that the ability to predict CHy
emissions of dairy cows of previously developed MFA-based CH4 prediction equations was not
affected by the DGAT7T K232A polymorphism.

The results suggests that dietary composition (i.e., with or without supplementation of
linseed oil) affects the prediction potential of previously derived MFA-based CH4 prediction
equations, whereas the effect of DGAT7 K232A polymorphism seems small. This may be related
to the effect of linseed oil and DGAT7T K232A polymorphism on the MFA profile. For example,
the prediction equation of Van Lingen et al. (2014) for CHj yield included Zso C16:0 (positive),
C18:1 #rans-10+11 (negative) and C18:2n-6 (negative) as explanatory variables. Van Gastelen et
al. (2017a) demonstrated that the first of these 2 MFA were substantially affected by linseed oil
supplementation. Contrary, according to Van Gastelen et al. (2017a) DGATT K232A
polymorphism only affected C18:2n-6, whereas the other two MFA were not affected. The same
patterns was observed for the prediction equation of Van Gastelen et al. (accepted), which
included C18:1 #rans-15 + C18:1 cis-11, C18:2 ¢25-9, #rans-11, and C18:3n-3 (all negatively related)
as explanatory variables for CHy4 production in g/d. Van Gastelen et al. (2017a) demonstrated
that these three MFA substantially increased upon linseed oil supplementation. Contrary to the
effect of dietary composition, only C18:3n-3 was significantly affected by the DGAT7T K232A
polymorphism, whereas the other two MFA were unaffected (Van Gastelen et al., 2017a). The
effect of linseed oil supplementation on these specific MFA might explain why the CHy
prediction potential of the MFEA-based prediction equation of Van Lingen et al. (2014) and Van
Gastelen et al. (accepted) is affected by dietary composition. The minor and no effect of DGATT
K232A polymorphism on these specific MFA might explain why the MFA-based prediction
equation of Van Lingen et al. (2014) and Van Gastelen et al. (accepted) predicted CH4 emission
equally well for the complete dataset and the datasets for the DGAT7 KK and DGATT AA
genotype separately.
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Overall, the results of this short communication indicate that dietary composition (i.e.,
with or without linseed oil), but not the DGAT7 K232A polymorphism, affect the ability of
previously derived MFA-based CH4 prediction equations to predict CH4 emission of dairy cows.
This dietary effect on the ability to predict CH4 emissions seems to be the result of diet-induced
changes in the relationship between MFA profiles and enteric CHy4 production. Hence, we
conclude that CHy4 prediction equations may not be universal and might be valid only when
applied to dairy cows housed under similar conditions as to those under which the prediction

equations were developed.
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CHAPTER 9

ABSTRACT

The objective of the present study was to compare the prediction potential of milk
Fourier-transform infrared spectroscopy (FTIR) for methane (CH4) emissions of dairy cows
with that of gas chromatography (GC)-based milk fatty acid (MFA). Data from 9 experiments
with lactating Holstein-Friesian cows with a total of 30 dietary treatments and 218 observations
were used. Methane emissions were measured for 3 consecutive days in climate respiration
chambers and expressed as production (g/d), yield (g/kg dry matter intake; DMI), and intensity
(g/kg fat- and protein-corrected milk; FPCM). Dry matter intake was 16.3 £ 2.18 kg/d, FPCM
yield was 25.9 + 5.06 kg/d, CH4 production was 366 £ 53.9 g/d, CH, yield was 22.5 + 2.10 g/kg
DMI, and CHy intensity was 14.4 + 2.58 g/kg FPCM. Milk was sampled during the same days
and analyzed by GC and by FTIR. Multivariate GC-determined MFA-based and FTIR-based
CH, prediction models were developed and, subsequently, the final CH,4 prediction models were
evaluated with root mean square error of prediction (RMSEP) and concordance correlation
cocefficient (CCC) analysis. Further, we performed a random 10-fold cross validation to calculate
the models performance parameters (e.g., the coefficient of determination of cross validation;
R2CV). The final GC-determined MFA-based CHj4 prediction models estimate CHy4 production,
yield, and intensity with a RMSEP of 35.7 g/d, 1.6 g/kg DMI, and 1.6 g/kg FPCM, and with a
CCC 0f 0.72,0.59, and 0.77, respectively. The final FTIR-based CH4 prediction models estimate
CHy production, yield, and intensity with a RMSEP of 43.2 g/d, 1.9 g/kg DMI, and 1.7 g/kg
FPCM, and with a CCC of 0.52, 0.40, and 0.72, respectively. The GC-determined MFA-based
prediction models described a greater part of the observed variation in CH4 emission than FTIR-
based models. The cross validation results indicate that all CH4 prediction models (both GC-
determined MFA-based and FTIR-based) are robust, as the difference between R? and R?CV
ranged from 0.01 to 0.07. These results indicate that GC-determined MFA have a greater
potential than FTIR spectra to estimate CH4 production, yield, and intensity. Both techniques
hold potential, but may not yet be ready to predict CH4 emission of dairy cows in practice.
Additional CH4 measurements are therefore needed to improve the accuracy and robustness of
both GC-determined MFA and FTIR spectra for CHy4 prediction.
Keywords: dairy cow, enteric methane production, milk fatty acid concentration, milk Fourier-

transform infrared spectroscopy

INTRODUCTION

Enteric methane (CHy) is produced in the gastrointestinal tract of livestock, mainly
ruminants, and comprises ~40% of global CH4 emissions (Gerber et al., 2013). Enteric CHy is
one of the main targets of mitigation strategies in the dairy cattle sector (Knapp et al., 2014).
Quantification of CHy4 emission is thus important. Several 7z vivo CH4 measurement techniques
have been developed, but are not suitable for precise and accurate large scale measurements
(Hammond et al., 2016). Cost-effective, efficient, robust, and fast CH4 measurement techniques
applicable on a large scale to estimate CH4 emission of individual dairy cows are required.
Therefore, identifying proxies (i.e., indicators or indirect traits related to CH4 emission), might
serve as a good alternative (Negussie et al., 2017).
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Milk fatty acid (MFA) profiles have been suggested as proxy to estimate CHy emission
in dairy cattle, and many studies have evaluated this proposed relationship between MFA
concentrations and CHy4 emission (e.g., Chilliard et al., 2009; Mohammed et al., 2011; Rico et al,,
2016). However, the gas chromatography (GC) procedure required to obtain the MFA profiles
is time consuming, labor intensive, and requires expensive instruments and trained personnel
(Capuano et al., 2014), and is, therefore, unsuitable for large scale measurements. Fourier-
transform infrared spectroscopy (FTIR), on the other hand, is a rapid, cost-effective, and high-
throughput technique. Currently, major milk components such as fat, protein, lactose, and urea
contents are routinely measured with FTIR by milk recording organizations. Diverse milk
phenotypes can be estimated by FTIR, as illustrated by De Marchi et al. (2014), including MFA
composition (e.g., Rutten et al., 2009; Soyeurt et al., 2011), milk protein composition (Bonfatti
et al,, 2011), technological properties of milk (DeMarchi et al., 2009), and cow health and energy
status (Van Knegsel et al., 2010; McParland et al., 2011).

Dehareng et al. (2012) and Vanlierde et al. (2015) used FTIR to predict CH4 emission
of dairy cattle. However, the CHy predictions of Dehareng et al. (2012) at different stages of
lactation were not biologically meaningful, and Vanlierde et al. (2015) demonstrated that a
lactation stage dependent CH4 prediction model was more robust and biologically more
meaningful. The CHy4 prediction potential of FTIR spectra seems moderate (reviewed by Van
Gastelen and Dijkstra, 2016), which is based on experiments only using the SFs-tracer technique
to measure CHy emission. To date, no research has assessed the CHy4 prediction potential of milk
FTIR spectra for CHy4 data obtained in climate respiration chambers and for all 3 units of CH4
emission, viz. CHy4 production (in g/d), CHy yield (in g/kg dry matter intake; DMI), and CH,4
intensity (in g/kg fat- and protein-corrected milk; FPCM). The objective of the present study
was to compare the prediction potential for CH4 production, yield, and intensity of milk FTIR
spectra with that of the GC-determined MFA profile, using CHy4 data obtained in climate

respiration chambers.

MATERIALS AND METHODS

Data collection

Data from 9 studies, designed as randomized block experiments, from Wageningen
University & Research (Wageningen, The Netherlands) were used (Table 9.1). The experiments
were conducted in accordance with Dutch law and approved by the Animal Care and Use
Committee of Wageningen University & Research. The 9 studies represented 30 dietary
treatments and 218 individual observations from lactating Holstein-Friesian cows. The dataset
included multiple observations from a small number of dairy cows (218 individual observations
from 189 unique dairy cows). We consider these particular observations as unique and not as
repeated measurements, because of the large differences in conditions between the observations
of the same dairy cows (i.e., different experiment, different dietary treatment, different parity,
and different lactation stage). The experimental setup was similar for all experiments. After an
adaptation period of 12 d, cows were housed individually in open circuit, indirect climate

respiration chambers (described by Van Gastelen et al., 2015) for a 5 d period to determine CH4

193



CHAPTER 9

emission (expressed as production, yield, and intensity). Diets were fed twice daily and intake
was restricted to 95% of the voluntarily DMI of the cow consuming the least within a block.

Cows were milked twice daily and water was freely available during the entire
experiment. While housed in the climate respiration chambers, milk yield was recorded and
representative milk samples (i.e., 5 g/kg of milk production from each cow) wete collected at
each milking according to Van Gastelen et al. (2015). These milk samples were pooled per period
and cow and subsequently analyzed for MFA composition (g/100 g FA) using GC as described
by Van Gastelen et al. (2015). The same pooled milk samples were also analyzed in the laboratory
of Qlip B.V. (Zutphen, the Netherlands) to determine the content of fat, protein, and lactose
according to regular test-day procedures using MilkoScan FT 6000 equipment with diamond
cuvettes (Foss Analytical A/S, Hillerod, Denmark) using the manufacturer supplied basic
calibration models in conformity with ISO 9622 (International Organization for Standardization,
2013). The applied reference methods were ISO 1211 (International Organization for
Standardization, 2010) for fat, ISO 8968-1 (International Organization for Standardization,
2014) for total protein, and an HPLC method based on ISO 22662 (International Organization
for Standardization, 2007) for lactose. The FTIR absorption spectra were collected, consisting
of 1060 infrared frequencies (wavenumbers) representing infrared light absorption through the
milk samples ranging from 925 to 5008 cm™.

Statistical analysis

Model development GC-determined MFA. Multivariate models were developed
using a stepwise procedure (PROC GLMSELECT of SAS; SAS Institute Inc., Cary, NC, USA,
version 9.2) with CHy emission (i.e., production, yield, and intensity) as the independent variable
and stepwise selection of only GC-determined MFA (g/100 g total fatty acids). The significance
level for a GC-determined MFA to enter or stay in the model was 0.01 and 0.05, respectively.
The final models were selected based on the minimum Akaike’s information criterion statistic.
The selected models were evaluated in PROC REG in terms of multicollinearity (variation
inflation factor > 10), but no multicollinearity was observed.

Model development FTIR. Prediction models for CH4 production, yield, and
intensity were developed only on pre-processed data of selected wavenumbers as linear
regression models using Partial Least Squares (PLS) calculated with the SIMPLS algorithm of
the PLS toolbox (Eigenvector Research Inc., Manson, WA, USA). In the PLS method,
spectroscopic data were reduced to a set of orthogonal, uncorrelated components (viz. latent
variables; LV). Selected wavenumbers (n = 218) were in the ranges 964 - 1581 cm!, 1715 — 1773
cm!, and 2814 - 2968 cml. These wavenumbers were selected because these contain valuable
information on milk composition and are thus most relevant for milk analysis (Capuano et al.,
2014). Additionally, parts of the infrared spectrum that are disturbed by high water absorption
were omitted, because these can interfere with the quantification of other major milk
components (Capuano et al., 2014). The selected wavenumbers were pre-processed by applying
the Savitzky-Golay (Savitzky and Golay,1964), first derivative with polynomial order 2 and

window width 7, and subsequently mean centered.
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Table 9.2. Desctiptive statistics of animal performance, dietary characteristics, methane emission, and the milk fatty

acid profile determined with gas chromatography (n = 218)

Variable Mean Median SD Minimum Maximum

Animal performance

Body weight 617 617 59.7 462 817
Parity 2.7 3.0 1.38 1.0 7.0
Days in milk 179 185 85.2 59 567
Milk yield (kg/d) 24.3 239 5.42 11.3 36.8
FPCM! (kg/d) 25.9 253 5.06 12.3 39.9
Milk fat content (g/100 g milk) 4.67 4.67 0.659 2.94 6.70
Milk crude protein content (g/100 g milk) 3.37 3.30 0.406 2.62 5.00
Milk anhydrous lactose content (g/100 g milk) 4.57 4.59 0.221 3.80 5.03
DMI? (kg/d) 16.3 16.1 2.18 10.8 24.5
Dietary characteristics (in g/kg DM, unless stated otherwise)
Dry matter (g/kg) 502 502 101.5 306 797
Ash 77 79 13.5 53 103
Crude protein 176 172 40.1 82 251
NDF 380 372 49.9 242 501
ADF 221 218 25.7 183 291
ADL 14 14 4.2 6 26
Crude fat 31 33 6.7 21 46
Starch 118 79 85.5 5 326
Sugar 89 70 59.0 21 265
GE (M]/kg DM) 18.6 18.6 0.41 17.6 19.3
NDF to starch ratio 8.2 4.8 15.76 1.0 86.2
Methane emission
Production (g/d) 366 365 53.9 234 535
Yield (g/ke DMI) 225 22,6 2.10 172 28.0
Intensity (g/kg FPCM) 14.4 14.4 2.58 8.5 24.8
Milk fatty acids (g/100 g fatty acids) determined with gas chromatography
C4:0 35 35 0.35 1.8 4.4
C6:0 2.1 2.2 0.21 1.5 2.6
C8:0 1.1 1.1 0.17 0.6 1.6
C10:0 25 2.4 0.53 1.1 4.1
C12:0 2.8 2.8 0.69 1.3 49
C14:0 10.4 10.5 1.39 6.7 14.1
is0 C14:0 0.08 0.08 0.017 0.04 0.13
C14:1 ¢is-9 0.99 0.97 0.238 0.47 1.95
C15:0 0.97 0.97 0.168 0.53 1.56
50 C15:0 0.23 0.23 0.041 0.13 0.37
anteiso C15:0 0.40 0.40 0.068 0.24 0.62
C16:0 31.7 31.7 3.35 24.6 42.3
50 C16:0 0.18 0.18 0.035 0.12 0.34
C16:1 trans-9 0.21 0.21 0.037 0.13 0.35
C16:1 ¢is-9 1.9 1.8 0.38 1.0 3.0
C17:0 0.65 0.64 0.099 0.44 0.96
is0 C17:0 0.40 0.39 0.060 0.25 0.63
anteiso C17:0 0.42 0.41 0.056 0.32 0.61
C17:1 as-9 0.31 0.30 0.087 0.15 0.69
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Table 9.2. Continued

Variable Mean Median SD Minimum Maximum
C18:0 9.6 9.7 1.61 5.0 15.2
C18:1 ¢is-93 21.0 20.7 3.83 123 30.5
C18:1 cis-12 0.18 0.15 0.075 0.07 0.47
C18:1 ¢s-13 0.13 0.13 0.037 0.05 0.27
C18:1 trans-6 0.20 0.19 0.051 0.06 0.42
C18:1 trans-9 0.15 0.14 0.026 0.08 0.25
C18:1 trans-10 0.19 0.16 0.091 0.00 0.65
C18:1 trans-11 0.89 0.88 0.221 0.17 2.18
C18:1 trans-15 + C18:1 ¢is-11 0.77 0.75 0.171 0.33 1.23
C18:2 ¢is-9, trans-11 0.42 0.40 0.116 0.20 1.29
C18:2n-6 1.5 1.5 0.24 0.9 2.4
C18:3n-3 0.47 0.48 0.154 0.14 0.98
C18:3n-6 0.07 0.07 0.014 0.04 0.13
C20:0 0.13 0.13 0.019 0.08 0.19
C20:1 as-11 0.06 0.06 0.022 0.00 0.12
C20:2n-6 0.04 0.04 0.007 0.02 0.07
C20:3n-6 0.07 0.07 0.019 0.03 0.13
C20:4n-3 0.03 0.03 0.026 0.00 0.13
C20:4n-6 0.11 0.11 0.024 0.05 0.18
C20:5n-3 0.06 0.06 0.013 0.03 0.09
C22:0 0.06 0.06 0.014 0.00 0.11
C22:5n-3 0.08 0.08 0.019 0.04 0.14
C24:0 0.04 0.04 0.013 0.00 0.08

! Fat- and protein-corrected milk (kg/d) = [0.337 + 0.116 X fat (g/100 g milk) + 0.06 X protein (g/100 g milk)] X
milk yield (kg/d) (CVB, 2012).

2 Dry matter intake (kg/d).

3 C18:1 ¢is-9 represents the sum of C18:1 ¢s-9 and C18:1 #rans-12, as these 2 FA could not be separated in the analysis.

The portion of C18:1 #rans-12 is considered to be negligible, as this FA is always present in small amounts.

Model evaluation. All CHy prediction models, GC-determined MFA-based and
FTIR-based, were evaluated using 2 methods. Firstly, the mean square error of prediction
(MSEP), calculated as

n
MSEP = Z(O" — P)?/n,
i=1

where 7 is the total number of observations, O; is the obsetved value and P; is the predicted

value. The square root of the MSEP (RMSEP) gives an estimate of the overall error of

prediction and is expressed as petcentage of the obsetved mean ot expressed in g/d, g/kg DMI,

and g/kg FPCM for CHy4 production, yield, and intensity, respectively. Secondly, concordance

correlation coefficient analysis (CCC; Lin, 1989) was performed, where CCC is calculated as
CCC =71 X G,

where 7 is the correlation coefficient providing a measure of precision, and C, is a bias correction

factor providing a measure of accuracy. The C; variable is calculated as
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where v provides a measure of scale shift, while yu provides a measure of location shift, S, and

U

S, are the observed and predicted standard deviations, and 0 and P are the observed and
predicted means. A CCC of 0.20 or lower indicates poor predictive ability, between 0.21 and
0.40 indicates fair predictive ability, between 0.41 and 0.60 indicates moderate predictive ability,
between 0.61 and 0.80 indicates substantial predictive ability, and between 0.81 and 1.00 indicates
accurate predictive ability (Altman, 1997). Furthermore, the predictive power of the calibration
was evaluated through the ratio of performance to deviation (RPD) statistic, which is the ratio
of the standard deviation of the original data to the standard error of cross validation (Dehareng
et al.,, 2012). The RPD values are preferably as high as possible; RPD values between 5 and 10
are adequate for quality control, process control, and potentially suitable for application
(Williams et al., 2014). Additionally, PROC CORR in SAS was used to determine the Pearson
correlation between the MFA predicted CH4 emissions and the FTIR predicted CH4 emissions.

Cross validation MFA and FTIR. In order to calculate the models performance
parameters [i.c., root mean square error of cross validation (RMSECY) and the coefficient of
determination of cross validation (R2CV)], we performed a random cross validation with 10
splits and 10 iterations as recommended by Rodriguez et al. (2010) for all MFA and FTIR-based
CH,4 prediction models. For each iteration, a model was developed as described above using 9
splits of the dataset, and the selected model was subsequently evaluated as described above on
the remaining part of the dataset (i.e., 1 split). With this approach, all observations were used for
both calibration and validation, and each observation was used for validation exactly once. The
cross validation performance values represent the average of the 10-fold cross validation.

This random 10-fold cross validation was also used for selection of the number of LV
for the FTIR-based CHy4 prediction models. The selected number of LV for the final models
was based on the suggestion by PLS toolbox and visual assessment of the graphs of the root
means square error of calculation (RMSEC) and RMSECV against the number of LV. The
number of LV before the RMSECV starts increasing or the RMSECV starts deviating
considerably from the RMSEC was the number selected.

RESULTS
The descriptive statistics of animal performance, dietary characteristics, CH4 emission,
and GC-determined MFA concentrations are presented in Table 9.2. The GC-determined MFA-
based CH4 production, yield, and intensity prediction models are shown in Table 9.3. In the final
models, considering the odd- and branched-chain fatty acids (OBCFA), CH4 production was
positively associated with C15:0 (P = 0.002), CHy yield was positively associated with zo C15:0
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and C17:0 (P < 0.003), but negatively associated with antezso C15:0 (P < 0.001), and CH4 intensity
was positively associated with both 0 C15:0 and 50 C17:0 (P < 0.001). The relation between
CH4 emissions and the C18:1, C18:2, C18:3 isomers was generally negative (P < 0.010), with the
exception of the positive association between CH4 production and C18:2n-6 (P = 0.005).
Additionally, CH4 production was negatively associated with C24:0 (P = 0.007) and positively
associated with C20:4n-3 (P = 0.002), and CHy4 intensity was positively associated with C22:5n-
3 (P < 0.001). The FTIR-based CHj4 prediction models are based on the regression between the
wavenumbers and CHy production, yield, or intensity, as illustrated in Figure 9.1. Certain
wavenumbers were not related with CH4 emissions (i.e., regression vector close to 0), whereas
other wavenumbers were clearly positively or negatively related with CHy4 emissions. Both the
strength and the direction (positive or negative) of the correlations as well as the correlated
wavenumbers differed between the different units of CHy4 emission (i.e., production, yield, and
intensity; Figure 9.1).

The evaluation results (i.e., R?, RMSEP, and CCC analysis) of the GC-determined
MFA-based and FTIR-based CH4 prediction models are shown in Table 9.4. The observed
versus predicted CHy production, yield, and intensity plots of the GC-determined MFA-based
and FTIR-based CHy prediction models are shown in Figures 9.2A and 9.3A, respectively. The
residual (i.e., obsetved - predicted) versus predicted CHy4 production, yield, and intensity plots
of the GC-determined MFA-based and FTIR-based CH4 prediction models are shown in Figures
9.2B and 9.3B, respectively. The R2, RMSEP (%), and CCC of the GC-determined MFA-based
CH,4 prediction models ranged from 0.40 to 0.62, from 7.1% to 10.9%, and from 0.59 to 0.77,
respectively (Table 9.4). The R?, RMSEP (%), and CCC of the FTIR-based CHj4 prediction
models ranged from 0.25 to 0.56, from 8.2% to 11.8%, and from 0.40 to 0.72, respectively. Based
on the CCC, for both GC-determined MFA and FTIR, the prediction model for CH4 yield had
the lowest prediction potential (moderate predicting ability for both MFA and FTIR based
models) and the prediction model for CHy intensity had the highest prediction potential
(substantial predicting ability for both MFA and FTIR based models, respectively). The MFA
and FTIR based prediction models for CH4 production had substantial and moderate predicting
ability, respectively. The variation in predicted CH4 emission was smaller than that in the
observed CHy4 emission, in particular for CHy yield, as indicated by the variable » (scale shift; the
relative difference in standard deviation between predicted and observed values). The scale shift
was greater for FTIR-based prediction models (v ranged from 1.33 to 2.00) than for GC-
determined MFA-based prediction models (v ranged from 1.26 to 1.55).

The RPD statistic, that relates the standard error of prediction to the standard deviation
of the original reference data, was smaller than 1.58 for the GC-determined MFA-based CHy
prediction models and smaller than 1.39 for the FTIR-based CH4 prediction models (Table 9.4),
suggesting unsatisfactory prediction ability. The Pearson correlations between GC-determined
MFA predicted and FTIR predicted CH4 production, CHy yield, and CH4 intensity were 0.62 (P
< 0.001), 0.51 (P < 0.001), and 0.69 (P < 0.001), respectively (Figure 9.4).

The results of the internal cross validation of all GC-determined MFA-based and
FTIR-based CH4 prediction models ate also shown in Table 9.4. The average number of GC-
determined MFA included in the GC-determined MFA internal cross validation models varied
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between 4 and 5, and the average number of LV in the FTIR internal cross validation models
varied between 4 and 6. The R2CV and the RMSECV of the GC-determined MFA-based CHy
prediction models ranged from 0.38 to 0.63 and from 8.1% to 11.6%, respectively. The R2CV
and the RMSECYV of the FTIR-based CH4 prediction models ranged from 0.19 to 0.49 and from
8.6% to 12.8%, respectively.

Table 9.3. The prediction model developed for methane production (g/d), yield (g/kg DMIY), and intensity (g/kg
FPCM?) based on milk fatty acids determined with gas chromatography

Methane emission Milk fatty acids Estimate SE P-value
Methane production (g/d) Intercept 507.9 28.66 < 0.001
C15:0 62.9 17.22 0.002
C17:1 ais-9 -240.6 32.29 0.007
C18:1 trans-10 -202.8 47.75 0.010
C18:1 trans-11 -59.3 12.70 < 0.001
C18:2n-6 48.1 14.08 0.005
C18:3n-3 -187.1 24.40 < 0.001
C20:4n-3 326.4 104.30 0.002
C24:0 -816.8 230.89 0.007
Methane yield (g/kg DMI) Intercept 22.9 1.3 < 0.001
is0 C15:0 20.9 4.2 0.003
anteiso C15:0 -9.6 2.3 < 0.001
C17:0 7.6 1.26 < 0.001
C18:1 trans-11 -2.4 0.52 < 0.001
C18:1 trans-15 + C18:1 as-11 -2.7 0.84 < 0.001
C18:3n-3 -4.4 0.81 < 0.001
Methane intensity(g/kg FPCM) Intercept 8.0 1.13 < 0.001
750 C15:0 24.8 3.66 < 0.001
i50 C17:0 10.3 2.30 < 0.001
C18:1 trans-15 + C18:1 cis-11 -6.6 0.95 < 0.001
C22:5n-3 22.7 6.61 < 0.001

! Dry matter intake (kg/d)
2 Fat- and protein-corrected milk (kg/d) = [0.337 + 0.116 X fat (g/100 g milk) + 0.06 X protein (g/100 g milk)] X
milk yield (kg/d) (CVB, 2012).
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CHAPTER 9

DISCUSSION

This is the first study evaluating and comparing the CHy prediction potential of GC-
determined MFA and milk FTIR spectra for CH4 data obtained in climate respiration chambers.
Data were obtained from dairy cattle experiments where type of forage, forage quality, and forage
to concentrate ratio were varied, without use of CHy4 mitigating additives. Our results indicate
that both GC-determined MFA-based and FTIR-based CH4 prediction models are robust, and
that both techniques can potentially be used to evaluate dietary CH4 mitigation strategies and to
breed for dairy cows with lower CH4 emissions. The GC-determined MFA-based prediction
models had a higher prediction potential than the FTIR-based models and described a larger

amount of the observed variation in CH4 emission.

GC-determined MFA-based methane prediction models

All CH4 prediction models were based on OBCFA and long chain fatty acids (> 16
carbons). No short- and medium-straight, even-chain fatty acids (< 16 carbons) were included
in any of the GC-determined MFA-based CH4 prediction models, despite the fact that these are
synthesized de novo in the mammary gland from acetate and B-hydroxybutyrate produced in the
rumen, which are both reported to be positively associated with CH4 emission (Ellis et al., 2008).
As reviewed by Van Gastelen and Dijkstra et al. (20106), these short- and medium-straight, even-
chain fatty acids were usually not included in the GC-determined MFA-based CH4 prediction
equations (n = 0) previously developed, except for C4:0 and C16:0 that were included in 1
equation each. The association of CHy4 emissions with both iso and anteiso OBCFA is in
agreement with 450 OBCFA being more abundant in fibrolytic bacteria and anteiso OBCFA being
more abundant in amylolytic bacteria (Vlaeminck et al., 2006). Both C15:0 and C17:0 were found
to be positively associated with CH4 emissions, which is in disagreement with Vlaeminck et al.
(2006) and Rico et al. (2016), but in agreement with Chilliard et al. (2009), Dijkstra et al. (2011)
and Van Lingen et al. (2014). The negative relations between C18:1, C18:2, and C18:3 isomers
in milk and CH4 emission are in agreement with several other studies (e.g., Van Lingen et al.,
2014 and Rico et al,, 2016). The associations between CHy4 emissions and long-chain fatty acids
have been reported before (i.e., Chilliard et al., 2009; Rico et al., 2016; Van Gastelen et al., 2017b),
suggesting that these GC-determined MFA are important in terms of CHjy prediction.

In general, the prediction potential of the GC-determined MIFA-based CH4 prediction
models appears to be moderate to substantial, with the CCC ranging from 0.40 to 0.77. The
observed R? values ranged from 0.40 to 0.62 and are lower than the ones reported by Dijkstra et
al. (2011) for CHy4 yield, and by Chilliard et al. (2009), Mohammed et al. (2011), and Rico et al.
(2016) for CH4 production, but of similar magnitude as Van Lingen et al. (2014) and Van
Gastelen et al. (2017b). The recent research, including the present study, on the relationship
between GC-determined MFA and CHy4 emission gives inconsistent results. Where some studies
found a clear and strong relation between GC-determined MFA and CH4 emission (e.g., Chilliard
etal., 2009, Dijkstra et al., 2011), other studies concluded that GC-determined MFA alone might
not be suitable to develop universal CHy4 prediction models (e.g., Mohammed et al., 2011), and
more recently, Castro-Montoya et al. (2017) concluded that GC-determined MFA are not reliable
predictors for specific amounts of CHs emitted by a cow based on the coefficient of
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determination of validation ranging from 0.18 to 0.41. Even the studies that do find a clear
relation between GC-determined MFA and CH4 emissions, do not describe similar prediction
models using the same GC-determined MFA. The discrepancies between these studies have
been reviewed by Van Gastelen and Dijkstra (2016). There are many factors that can influence
GC-determined MFA concentrations and therefore the relation between GC-determined MFA
and CH4 emissions (Gengler et al., 2016), such as dietary composition (e.g., Mohammed et al.,
2011 and Dijkstra et al., 2016) and lactation stage (Vanrobays et al., 2016). Moreover, it should
be noted that previous analyses were often based on data of cattle fed lipid supplements or feed
additives, whereas in the present study dietary contrasts included variation in forage to
concentrate ratio, type of forage, and forage quality only.

The difference between R2 and R2CV for the GC-determined MFA-based CHy
prediction models was small (0.07 for CHy4 production, 0.02 for CHy yield, and 0.01 for CH4
intensity; Table 9.4). These small differences indicate that all GC-determined MFA-based CH4
prediction models ate robust in terms of CH4 prediction. The GC-determined MFA-based CH4
prediction models were also assessed for robustness in terms of composition of the prediction
models. All 4 GC-determined MFA that were part of the overall prediction model for CH,4
intensity (Table 9.3) were also selected in the prediction models developed in the 10-fold cross
validation (results not shown). Three of the 4 GC-determined MFA were included in all 10
models (i.e., zs0 C15:0, iso C17:0, and C18:1 trans-15 + C18:1 vis-11), which shows the robustness
of the GC-determined MFA-based prediction model for CHy intensity in terms of composition.
In comparison, all 6 GC-determined MFA of the MFA-based prediction model for CHy yield
were selected in the 10-fold cross validation. Although only 1 GC-determined MFA of the GC-
determined MFA-based model (i.e., C18:3n-3) was included in all 10 models of the cross
validation, the other 5 GC-determined MFA were included in 6 to 8 of the 10 models. However,
of the 8 GC-determined MFA in MFA-based prediction model for CH4 production, only 5 were
also selected in the 10-fold cross validation of which 1 GC-determined MFA (i.e., C18:3n-3) was
included in all 10 models. Moreover, 3 of the GC-determined MFA in the GC-determined MFA-
based CH4 production prediction model were not selected in any of the 10 models of the cross
validation (i.e., C18:1 #rans-10, C18:2n-6, and C20:4n-3). This illustrates that the GC-determined
MF A-based prediction model for CH4 production in particular is less robust in comparison to
the GC-determined MIFA-based prediction model for CHy intensity and CHy yield.

FTIR-based methane prediction models

In general, the prediction potential of the FTIR-based CH4 prediction models appears
to be moderate to substantial, with the CCC ranging from 0.40 to 0.72 and the R? ranging from
0.25 to 0.56. From the regression vector (Figure 9.1) it appears that bands around 975 cm-!,
1,075 — 1,150 cm!, 1,450 cm!, 1,500 — 1,575 cm!, 1,750 cm!, and 2,850 — 3,000 cm™! are
important for the prediction of CH4 emissions. The latter region, and the bands around 1,175
cm! and 1,750 cm! are commonly used to quantify milk fat content (Safar et al., 1994; Dupuy
et al,, 1996; Yang and Irudayaraj, 2000). Protein is expected to have absorption peaks around
wavenumbers 1,500 to 1,700 cm-1 (Osborn and Featn, 1986; McQueen et al., 1995; Dufour et
al., 1998), with the bands around 1,500 — 1,575 cm! coinciding with the amide II band (Etzion
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et al., 2004). Additionally, the infrared region between 1,000 — 1,100 cm™! provides information
on sugar molecules (Hashimoto and Kameoka, 2008). This suggests that the bands of the FTIR
spectra which are important to determine the milk composition, such as fat and protein content,
are also important for the prediction of CHy emission. However, as illustrated by Negussie et al.
(2017), milk fat and milk protein content have low CH4 prediction potential. This is also
observed in the present study, in which milk protein and milk fat content were relatively weakly
associated with CHy4 emissions measured in the climate respiration chambers, except for CHy
intensity which is calculated using milk fat and protein content. Methane yield was correlated
with fat content (» = 0.17, P = 0.010) and tended to be related to protein content (» = 0.12, P =
0.066), whereas no significant correlations were observed for CH4 production. However, as
expected from the similarity in FTIR spectra bands, FTIR predicted CHy4 emissions were more
strongly related to milk protein content (» = 0.11, P = 0.096 for CHj4 production; » = 0.32, P <
0.001 for CHy yield; » = 0.64, P < 0.001 for CHj4 intensity) and to milk fat content (» = -0.11, P
= 0.094 for CH,4 production; » = 0.37, P < 0.001 for CHj yield; » = 0.13, P = 0.053 for CH4
intensity).

The differences between R? and R2CV for the milk FTIR-based CH4 prediction models
were 0.06 for CH4 production, 0.06 for CHy yield, and 0.07 for CH4 intensity (Table 9.4). For
CHy4 yield and intensity, these differences between R? and R?CV of FTIR-based models are
somewhat larger than for GC-determined MFA-based models, indicating that GC-determined
MFA-based models are slightly more robust. The number of studies on FTIR-based CH,4
prediction models is limited. Dehareng et al. (2012) reported FTIR-based prediction models for
both CHy4 production and CHy intensity (g/kg milk) using the SF¢-tracer technique, involving 11
lactating dairy cows and 3 dietary treatments. The prediction potentials of the FTIR-based
prediction models reported by Dehareng et al. (2012) were higher than the ones reported in the
present study, with the R? ranging from 0.77 to 0.93 and the R2CV ranging from 0.68 to 0.79.
Additionally, Vanlierde et al. (2015) developed both lactation stage independent (i.c., including
only FTIR spectra) and lactation stage dependent (i.c., including FTIR spectra and days in milk)
CH,4 prediction models using the SFs-tracer technique involving 142 lactating dairy cows fed a
wide range of diets. Vanlierde et al. (2015) reported, for the lactation stage independent CH4
prediction model (i.e., comparable to present study), a strong correlation (R? = 0.77) between
observed and predicted CHy4 production, which is also higher than that in the present study.
However, it is important to note that the previous studies developed the FTIR-based CH4
prediction models using repeated measurements on the same cow. The study of Dehareng et al.
(2012) involved 11 dairy cows, whereas the prediction models were developed using 77
observations, and the study of Vanlierde et al. (2015) involved 142 dairy cows, while the
prediction models were developed using 446 observations. In contrast, the present study
involved 218 dairy cows and the CH4 prediction models were developed using 1 observation per
cow only. The repeated measurements of Dehareng et al. (2012) and Vanlierde et al. (2015) could
have positively influenced the performance parameters of the CHy prediction models, as
repeated observations are more closely related than independent observations. This is also
evident from the evaluation of the lactation stage independent model by Vanlierde et al. (2015)
on an independent dataset, which showed a substantially decreased correlation (i.e., » = 0.09).
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Additionally, the large range of CH4 emissions measured using the SFs-tracer technique might
have contributed to the high prediction potentials found in both studies. In Dehareng et al.
(2012) CH4 production ranged from 218 to 653 g/d and CHj intensity ranged from 10.2 to 47.1
g/kg milk, and in Vanlierde et al. (2015) CH4 production ranged from approximately 180 to 950
g/d, which ate not within the range of CH4 measutements teported in literature (Appuhamy et
al., 2016).

Comparison of GC-determined MFA-based and FTIR-based methane prediction
models

For all CH4 emission units, but particulatly for CH4 production and CHy yield, GC-
determined MFA-based prediction models had a higher prediction potential than the FTIR-
based models. This is evident by the lower RMSEP values and higher R? and CCC values. The
higher CCC values are caused by the higher accuracy (C;) and, in particular, higher precision (7)
of the GC-determined MFA-based CH4 prediction models (Table 9.4). The relatively larger
differences between the GC-determined MFA-based and FTIR-based prediction models for
CH,4 production and CHj yield might be explained by GC-determined MFA being more closely
linked to the ruminal CH4 production pathways than FTIR spectra. It is known that GC-
determined MFA are related to CH4 production because of the common biochemical pathway
between CHy4 and fatty acids in the rumen (Chilliard et al., 2009; Ellis et al., 2008). As discussed
above, the FTIR spectra represent the absorbed light by vibrations at several wavelengths of
many milk components, including GC-determined MFA, urea, citrate, free fatty acids, and fat,
protein, and lactose content. The latter 3 solid major milk components have a low CHgy
prediction potential (Negussie et al., 2017) and do not seem to be directly linked with ruminal
CH4 pathways. The relatively small difference between the GC-determined MFA-based and
FTIR based prediction models for CHj4 intensity might be explained by the fact that CHy4
intensity takes milk yield into account, which is directly associated with enteric CH4 production
by cows and reflected by both the FTIR spectral data and the GC-determined MFA profile, due
to dilution effects (Dehareng et al., 2012). This is also illustrated by the somewhat stronger
correlation between GC-determined MFA predicted CH4 intensity and FTIR predicted CHy
intensity (» = 0.69), compared with the correlation between both methods for CHy4 production
(r=0.62) and CHy yield (»= 0.51).

All CH4 prediction models, both GC-determined MFA-based and FTIR-based, had a
scale shift which was different from 1 (»). This indicates that there is a change in standard
deviation between predicted and observed CHy values for all CHy4 prediction models, which is
also visualized in Figures 9.2 and 9.3 for GC-determined MFA-based and FTIR-based models,
respectively. The variation in predicted CH4 values was cleatly smaller than that in observed CH4
values for all CHy prediction models. However, the scale shift was greater for all the FTIR-based
CH,4 prediction models (» ranges from 1.33 to 2.00) than for the GC-determined MFA-based
CH, prediction models (» ranges from 1.26 to 1.55), which indicates that GC-determined MFA-
based CH4 prediction models have the ability to describe more of the observed variation in CHy
emissions compared with FTTR-based prediction models.
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The RPD values from the present study are lower than the RPD values reported by
Dechareng et al. (2012). The low RPD values from the present study (i.e., < 1.58 for the GC-
determined MFA based CHj4 prediction models and < 1.39 for the FTIR-based CH4 prediction
models), suggest that the prediction ability of these models can be regarded as poor (Williams et
al., 2014). According to Williams and Sobering (1993) a RPD value of 2.5 and above would
suggest that the model is satisfactory for screening. A narrow range in the variability of the
observations is known to negatively affect predictability of methods of interest (Manley, 2014).
Indeed, the coefficient of variation (SD relative to mean) is highest for CHy intensity (17.9%)
and the models for CH4 intensity had relatively the best RPD. The lowest coefficient of variation
is for CHy yield (9.3%) and the models for CHy yield had the smallest RPD values. Moreover,
although the respiration chamber method is generally considered to be the golden standard for
CH4 measurements (Hammond et al., 2016), its reproducibility as compared with many chemical
analyses for which the RPD statistic was originally developed, is much lower, hence reducing
prediction accuracy of the prediction methods. The RPD values would suggest that the CHy
prediction models presented in the current study, both GC-determined MFA-based and FTIR-
based, would not be able to classify dairy cows from populations with low variation in CHy4
emission into low and high CHy4 producers. More variation in the dairy population under
evaluation, such as greater variation in animal genetics, in dietaty composition, and in production
management, could potentially improve the ability of the models to predict CH4 emission
(Dehareng et al., 2012).

It is important to note though, that the present study did not take lactation stage into
account. Although lactation stage is a poor CH4 proxy when considered alone (Negussie et al.,
2017), Vanlierde et al. (2015) demonstrated that lactation stage in combination with FTIR
improved the CH4 prediction model. Vanlierde et al. (2015) developed both lactation stage-
independent and lactation stage-dependent CH4 prediction models. The average CH4 production
(g/d) predicted by both models was similar (416 £ 63 g/d). Howevert, in contrast to the lactation
stage-independent prediction model, the lactation stage-dependent prediction model showed
biologically meaningful behavior throughout lactation: an increase in CHy production (g/d) aftet
calving up to approximately 100 DIM, followed by a gradual decline towards the end of lactation
(Vanlierde et al., 2015). This effect of lactation stage could also be important for the MFA-based
CHy prediction models, because Vanrobays et al. (2016) clearly demonstrated that the
correlations between GC-determined MFA and CHj4 production in dairy cows vary according to
lactation stage. We therefore acknowledge that the CHy4 prediction models of the present study
may be improved in terms of predictive power and robustness, when combining GC-determined
MFA or FTIR with lactation stage. We were, however, not able to confirm this, because
differences in lactation stage were confounded by differences in dietary composition in the

dataset used in the present study.

Application of methane prediction models in practice
In the present study, we show that GC-determined MFA have a higher prediction
potential for CH4 emissions than FTIR spectra. However, the gas chromatography procedure
required to obtain the GC-determined MFA profile is unsuitable for routine milk recording,
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whereas the prediction of CHy4 emission using FTIR has the potential for practical high
throughput application.

Although the RPD results suggest that the GC-determined MFA-based and FTIR-
based CH4 prediction models currently have limited applicability, the CCC results demonstrated
that the models had at least moderate predictive ability. Potential practical applications for these
models include: (1) as a farm management tool, (2) to evaluate CH4 mitigation strategies, and (3)
as a tool to breed for dairy cows with lower CHg4 emissions (Cottle et al., 2011). When a dietary
strategy is applied in practice, the proxy for CH4 emission should be able to evaluate whether
CH, emission is affected by the new dietary strategy. Therefore, within each study that had at
least 2 dietary treatments, we evaluated whether the GC-determined MFA-based and FTIR-
based CH4 prediction models were able to estimate the same difference in CHy4 emission as
measured in the climate respiration chambers, by comparing CH4 emission at 2 extreme diets
(i.e., furthest apart from one another in terms of dietary composition). The results of this
evaluation are shown in Table 9.5. In general, all CH4 prediction models predicted a difference
in CHy4 emission similar to the climate respiration chambers in terms of trend (i.e., increase or
decrease). There were only a few exceptions, viz. two for the GC-determined MFA-based and
six for the FTIR-based CHy prediction models. Furthermore, the differences in CHy4 emission
between the two diets as estimated by the GC-determined MFA-based CHy prediction models
were generally more in line with the observed differences as measured in the climate respiration
chambers, than that of the FTIR-based CH4 prediction models compared with the difference
measured in climate respiration chambers. This suggests that the FTIR-based CHy prediction
models might have less accuracy relative to the GC-determined MFA-based CH4 prediction
models, both based on a single FTIR or a single GC measurement to determine the MFA profile
of a 4-day combined milk sample, to evaluate the effect of forage level and quality on CHy
emission of dairy cattle.

Breeding for reduced CH4 emission can be achieved with, for example, improved
productivity, increased longevity, or shorter calving interval (Bell et al., 2011), but also by
breeding for actual lower enteric CH4 production (Wall et al., 2010). Several studies have shown
that CH4 emissions of dairy cows have a genetic component, with heritability ranging from 0.20
to 0.30 (e.g., De Haas et al., 2011 for predicted CH4 emission based on feed intake; Lassen and
Lovendahl, 2016 for CHy4 emission measured with a portable air-sampler), indicating that
breeding for dairy cows with lower CH4 emission may be possible. Recently, Vanlierde et al.
(2016) reported that FTIR can distinguish cows with low or high daily CH4 emissions. Direct
breeding for lower enteric CHy production requires CH4 production measurements of a large
number of individual dairy cows to determine the genetic component of the CHj4 phenotype as
well as to determine the genetic correlations of CHy4 emissions with other traits. This can be
facilitated by the FTIR technique as it can be used routinely to estimate CH4 on commercial

dairy farms.

CONCLUSIONS
This study is the first to assess and compare the CH4 emission prediction potential of
both GC-determined MFA profiles and FTIR spectra based on CH4 emission data obtained in
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climate respiration chambers and for three different units of CH4 emission, viz. CH4 production,
yield, and intensity. For both GC-determined MFA and FTIR, the prediction model for CH4
yield had the lowest prediction potential and the prediction model for CHy intensity had the
highest prediction potential. For all CH4 emission units, but particularly for CH4 production and
yield, GC-determined MFA-based prediction models had a higher prediction potential than the
FTIR-based models, and GC-determined MFA-based prediction models described a greater part
of the observed variation in CH4 emission than FTIR-based models. Results indicate that the
current GC-determined MFA-based and FTIR-based CH4 prediction models have potential, but
have limited current applicability. Additional CH; measurements are needed to improve
prediction models in terms of accuracy and robustness of both GC-determined MFA and FTIR
spectra for CHy prediction.
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CHAPTER 10

INTRODUCTION

The dairy supply chain is associated with environmental costs (Baskaran et al., 2009),
with methane (CHy) emission from microbial fermentation of feed in the rumen and, to a smaller
extent, the large intestines, being both an important contributor to global greenhouse gas (GHG)
emissions and a potential loss of energy. This makes enteric CH4 emission one of the main
targets of the GHG mitigation objectives of the dairy cattle sector (Hristov et al., 2013). Diet
changes and feed additives can be effective strategies to mitigate CH4 emission (e.g., Beauchemin
et al.,, 2009; Martin et al., 2010; Hristov et al., 2013), although their effects depend on continuous
use of the diet or additive as well as an inability of the rumen microbiome to adapt to these
strategies. Breeding for reduced CH4 emission is another CHy4 mitigation strategy with a more
permanent and cumulative effect (Wall et al., 2010), as several studies have shown that CHy
emissions of dairy cows have a genetic component, with heritability ranging from 0.20 to 0.30
(e.g., De Haas et al.,, 2011; Lassen and Lovendahl, 2016). Dietary mitigation strategies together
with breeding for reduced CH4 emissions could therefore be effective in reducing the
environmental impact of the dairy supply chain.

Accurate and repeatable measurements of CHy4 emission from individual dairy cows
are required to assess the efficacy of possible mitigation strategies as well as to develop protocols
for genetic selection for cows with reduced CH4 emission (Hammond et al., 2016). Several
techniques have been developed to measure CHy4 emissions from dairy cattle, with varying
degrees of accuracy and repeatability [see Chapter 1 and Hammond et al. (2016)], but routine
individual-animal measurements on a large scale are difficult to obtain (Pickering et al., 2015).
Therefore, identifying proxies that are correlated with CHs emission but that are easy and
relatively low cost to record on a large scale, is a much-needed alternative (Negussie et al., 2017).
The research described in the present PhD thesis aimed to explore the possibility to develop a
proxy, or combine a number of potential proxies, for CH4 emission that can be measured in milk

of dairy cows.

PROXIES FOR METHANE EMISSION IN MILK

As described in Chapter 1, a proxy for CHy4 emission of dairy cows is an indicator or
indirect trait that is correlated with enteric CHy production. There are several criteria that a proxy
needs to adhere to, in order to actually be valuable, as described in Chapter 1. From a practical
point of view, a proxy should score satisfactory on the attributes simplicity, costs, invasiveness,
and throughput. Additionally, from a technical point of view, it is important that a proxy is both
accurate and precise when estimating CH4 emission. It should however be noted that, despite
the importance of precision, studies in general only focus the accuracy of the proxies for CHy
emission without considering precision (e.g., Negussie et al., 2017). Additionally, the definition
of a weak, moderate, and strong relation varies considerably in literature and some studies do
not even define the R? values to differentiate between weak, moderate, and strong relation (e.g.,
Negussie et al., 2017). Therefore, to avoid confusion, in the current chapter, a relationship is
considered to be weak when the R2 is smaller than 0.30, moderate when the R2 is between 0.30
and 0.70, and strong when the R? is larger than 0.70.
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In this thesis, four potential proxies in milk for CH4 emissions of dairy cows were
investigated: (1) milk fatty acids (MFA), (2) volatile metabolites, (3) non-volatile metabolites, and
(4) Fourier-transform infrared (FTIR) spectra. The MFA were considered to be the basis of the
PhD work described in this thesis, because previous studies (e.g., Chilliard et al., 2009; Dijkstra
et al., 2011) demonstrated that MFA hold potential to predict CH4 emission of dairy cows.
Besides MFA, milk also contains water, catbohydrates, proteins, vitamins, and minerals
(Sundekilde et al., 2011). Stage of lactation, seasonal changes, genetic variability, health status of
the cow, and nutrition have been shown to cause changes in major milk components (Walker et
al., 2004; Heck et al., 2009), non-volatile metabolites (Klein et al., 2010), and volatile metabolites
(Hettinga et al., 2008). It was therefore hypothesized that the addition of such other metabolites
in a MFA-based CH4 prediction equation would enhance its predictive power and thus would
lead to a better proxy in milk for CH4 emission of dairy cows. The CH4 prediction potential of
volatile and non-volatile metabolites in milk, both alone and in combination with MFA was
therefore investigated. However, the principal method to determine the MFA profile (i.e., gas
chromatography), the volatile metabolites (i.e., gas chromatography-mass spectroscopy), and
non-volatile metabolites (i.e., nuclear magnetic resonance) are unsuitable for routine analysis.
For MFA, this has led to the application of FTIR. Therefore, also the CHy4 prediction potential
of FTIR was investigated.

Negussie et al. (2017) reviewed MFA in terms of their attributes with respect to their
use as proxy for CH4 emission of dairy cows. According to these authors, MFA have a medium
score for simplicity because it involves gas-chromatography measurements, involves a medium
level of costs, and represents a non-invasive proxy with a medium throughput. Additionally,
Negussie et al. (2017) concluded that the level of accuracy (e.g., R?) of MFA-based proxies for
CH, emissions varied between medium and high. This is what was also found in Chapter 2, in
which the recent research that related CH4 emission with the MFA profile was reviewed. The
predictive power of MFA-based CHy proxies ranged from 0.47 (Van Lingen et al.,, 2014) to 0.95
(Chilliard et al., 2009). In Chapter 5, in which MFA-based CHy proxies were developed for dairy
cows fed roughage-based diets with varying levels of corn silage and grass silage, the adjusted R?
of the MFA-based CH4 proxies ranged from 0.47 for CHy intensity to 0.63 for CH4 production.
Additionally, the adjusted R? of the MFA-based CH4 proxies for dairy cows fed a wide range of
roughage-based diets, as described in Chapter 6, varied from 0.38 for CHy yield to 0.75 for CHy4
intensity. This pattern was also observed in Chapter 9 involving more observations and an even
wider range of roughage-based diets. The adjusted R? in the latter chapter ranged from 0.40 for
CHy yield to 0.62 for CHy intensity. The variation in accuracy with which the MFA can predict
CHj4 emission, partially results from the different units in which CHy4 emission is expressed, as
discussed in Chapter 2. Furthermore, there are many factors that can influence the relationship
between MFA and CH4 emissions (Gengler et al., 20106), such as dietary composition (e.g.,
Mohammed et al., 2011; Dijkstra et al., 2016) and lactation stage (Vanrobays et al., 20106), causing
variable results.

Negussie et al. (2017) also reviewed FTIR in terms of its attributes and according to
these authors, FTIR is simple to measure, involves a low level of costs, and represents a non-
invasive proxy with a high throughput. Additionally, Negussie et al. (2017) concluded the level
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of accuracy (e.g., R? of FTIR to directly predict CH4 emissions (i.e., not via MFA) is high. The
results presented in this thesis do, however, not support these findings. As stated in the review
(Chapter 2), the major advantages of FTIR to predict CH4 emission indeed include its simplicity
and potential practical application on a large scale. However, disadvantages include the inability
to predict important MFA for CHy prediction (as illustrated by Van Lingen et al., 2014), and the
moderate predictive power for directly estimating CHy4 emission (based on Dehareng et al., 2012
and Vanlierde et al., 2015). Also in Chapter 9, describing FTTR-based CHy proxies, the adjusted
R? ranged from 0.25 for CH4 yield to 0.56 for CH4 intensity. Thus, based on the work described
in this thesis, FTIR is a good proxy from a practical point of view, but still lacks accuracy to be
a good proxy from a technical point of view.

Negussie et al. (2017) did not review the attributes of the volatile metabolites and non-
volatile metabolites in milk. The techniques required to determine the volatile metabolites (i.e.,
gas chromatography-mass spectroscopy) and non-volatile metabolites (i.e., nuclear magnetic
resonance) in milk are not suitable for large-scale measurements and would score low in terms
of simplicity and throughput. Additionally, the costs involved are medium to high, whereas both
proxies can be considered non-invasive. It should be noted though, that rapid developments in
metabolomics may offer tests and assay methodologies on milk samples that will provide a more
practical tool for developing proxies for CHy emissions in dairy cattle in the future. However, at
present, both volatile and non-volatile metabolites would not be interesting CH4 proxies from a
practical point of view. The results of Chapters 5 indicate that including volatile metabolites
(CH4 intensity only) and non-volatile metabolites increases the CHy4 emission prediction
potential, whereas the results of Chapter 6 indicate that it is not worthwhile to further pursue
research on the ability of both volatile and non-volatile metabolites in milk to estimate CHy4
emission of dairy cows, because of low adjusted R? values relative to the MFA profile.

Overall, the results presented in this thesis indicate that, of all the 4 potential CHy
proxies in milk investigated (i.e., MFA, volatile metabolites, non-volatile metabolites, and FTIR),
the MFA profile provides, thus far, the most accurate and precise proxy for CH4 emission of
dairy cows, irrespectively of the unit in which CH4 emission is expressed. Also the FTIR spectra,
although less accurate and precise than MFA, can serve as a proxy for CH4 emission of dairy
cows, especially because of its great practical application potential and, hence, repeated
measurements. Thus both techniques, MFA and FTIR, hold potential to estimate CH4 emissions

of dairy cows.
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Textbox 3. The statistical approach used

Multivariate models were developed using a stepwise procedure (PROC
GLMSELECT of SAS) with CH4 emission [i.e., production in g/d, yield in g/kg dry matter
intake (DMI), and intensity in g/kg fat- and protein-corrected milk (FPCM)] as the
independent variable and stepwise selection of lactation characteristics. The significance
level for a variable to enter or stay in the model was 0.01 and 0.05, respectively. The final
models were selected based on the minimum Akaike’s information criterion statistic, and
subsequently evaluated in PROC REG in terms of multicollinearity (vatiation inflation
factor > 10), but no multicollinearity was obsetved. The final models were then evaluated
with the concordance correlation coefficient (CCC; Lin, 1989) analysis. The new CHy
prediction models developed in the general discussion are described in Table 10.1. The
evaluation results (i.e., R? and CCC analysis) of these new developed CHy prediction models,
as well as of the MFA- and FTIR-based prediction models from Chapter 9, are shown in
Table 10.2.

The statistics described above, follow an empirical approach. When developing a
CH,4 prediction model using a mechanistic approach, one would first determine which
specific parameters would be of interest and subsequently start modelling the processes that
occur to link the parameters of interest to CHy emission. However, in this research, the
empirical approach was used, in which all parameters were related to CHy emission. This
approach was chosen for two reasons: (1) for most MFA (e.g., short- and medium-straight
even-chain MFA, odd- and branched-chain MFA, and long chain MFA) one can
theoretically describe the processes that link these MFA to CH4 emission, but it does not
necessarily mean that these MFA are related with CH4 emission, and (2) the main interest
was to develop CH4 prediction models with the highest prediction potential, describing as
much of the variation in CH4 emission as possible. This could only be achieved using an
empirical approach.

As reported above, the significance level for a variable to enter or stay in the model
was 0.01 and 0.05 and reflect an arbitrary decision. Initially, in Chapter 5, the significance
levels of 0.05 and 0.10 were used, which represent the levels often used by others to indicate
significant relationships and tendencies. However, it was decided to adjust these levels for
two reasons: (1) developing models with more selection variables than observations
increases the chance of overfitting in the CH4 prediction model, and (2) lower significance
levels would result in more robust CHy4 prediction models. To illustrate, combining MFA
with lactation characteristics for CH4 production resulted in a model with 7 variables (Table
10.1) and an R? of 0.72 (Table 10.2). However, when applying the significance levels of 0.05
and 0.10, it resulted in a model with 10 vatiables and an R? of 0.73. Additionally, when using
no predetermined significance level for a variable to enter or stay in the model (i.e., default
of SAS is 0.15 for a variable to enter and stay in the model), it resulted in a model with 15
variables and an R? of 0.76. Thus, less strict significance levels results in more variables to
be included in the model with explaining only a limited amount of extra variation in CHy

emission.
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Table 10.2. The coefficient of determination (R?) and concordance correlation coefficient (CCC) analysis of the

prediction equations for methane emission

Ttem Adjusted R? CCC®m "2 (@S ) u®
MFA® (Chapter 9)

Methane production?) 0.54 0.72 0.75 0.96 1.34 0.00

Methane yield® 0.40 0.59 0.64 0.91 1.55 0.00

Methane intensity® 0.62 0.77 0.79 0.97 1.26 0.00
FTIR(Y spectra (Chapter 9)

Methane production 0.36 0.52 0.60 0.88 1.68 0.00

Methane yield 0.25 0.40 0.50 0.80 2.00 0.00

Methane intensity 0.56 0.72 0.75 0.96 1.33 0.00
Lactation characteristics

Methane production 0.43 0.61 0.66 0.92 1.50 -0.01

Methane yield 0.09 0.18 0.30 0.60 3.01 0.03

Methane intensity 0.33 0.50 0.58 0.87 1.73 -0.01
Milk composition

Methane production n.a.(h n.a. n.a. n.a. n.a. n.a.

Methane yield 0.05 0.12 0.23 0.49 3.78 0.02

Methane intensity 0.09 0.17 0.30 0.56 3.23 -0.04
MFA selected according to Soyeurt et al. (2011)

Methane production 0.35 0.52 0.59 0.88 1.68 0.00

Methane yield 0.20 0.35 0.46 0.76 2.16 0.00

Methane intensity 0.39 0.57 0.63 0.90 1.58 0.00
MFA selected according to Rutten et al. (2009)

Methane production 0.28 0.44 0.53 0.83 1.87 0.00

Methane yield 0.12 0.23 0.36 0.64 2.79 0.00

Methane intensity 0.24 0.39 0.49 0.79 2.03 0.00
Dietaty composition

Methane production 0.18 0.30 0.42 0.72 2.37 0.00

Methane yield 0.24 0.39 0.50 0.80 2.02 0.00

Methane intensity 0.29 0.46 0.55 0.84 1.82 0.00
Lactation characteristics combined with MFA

Methane production 0.72 0.84 0.85 0.99 1.17 -0.02

Methane yield 0.44 0.62 0.67 0.93 1.47 -0.01

Methane intensity 0.71 0.84 0.85 0.99 1.17 0.00
Dietary composition combined with MFA

Methane production('?) 0.54 0.72 0.75 0.96 1.34 0.00

Methane yield 0.39 0.58 0.64 0.91 1.56 0.00

Methane intensity 0.66 0.81 0.82 0.98 1.22 0.00
Lactation charactetistics combined with dietary composition and MFA

Methane production(?) 0.72 0.84 0.85 0.99 1.17 -0.02

Methane yield 0.48 0.66 0.70 0.94 1.42 -0.01

Methane intensity 0.70 0.83 0.84 0.99 1.19 -0.01

@ Concordance cotrelation coefficient, where CCC = r X Cj.

@ Pearson correlation coefficient; a measure of precision.

© Bias correction factor; a measure of accuracy.

@ Scale shift; change in standard deviation between predicted and observed methane emission.
®) Location shift; if positive under prediction, if negative over prediction.

© Milk fatty acids in g/100 g FA.
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Table 10.2. Continued

@ Production in g methane per day.

® Yield in g methane per kg dry matter intake.

) Intensity in g methane per kg fat- and protein-corrected milk (FPCM (kg/d) = [0.337 + 0.116 X fat (g/100 g milk)
+ 0.06 X protein (g/100 g milk)] X milk yield (kg/d); CVB, 2012).

(19 Fourier transform infrared spectra.

(1) Not applicable, because no model was obtained.

(12 Prediction model and evaluation results similar to model for methane production using only MFA (Chapter 9).
(13 Prediction model and evaluation results similar to model for methane production combing lactation characteristics
and MFA.

LACTATION CHARACTERISTICS AS PROXY FOR METHANE EMISSION

Although information on lactation characteristics of individual cows is generally easily
available because of the milk recording system, not much research is available investigating the
CHy, prediction potential of these lactation characteristics (i.e., milk yield and milk composition,
including fat, protein, and lactose content). Moraes et al. (2014) identified milk fat content as a
key explanatory variable for prediction of CH4 emissions of dairy cattle. In contrast, Van Lingen
et al. (2014) developed prediction equations for both CHy yield and CH4 intensity of dairy cattle,
and milk fat content and milk protein content were not selected in any of the prediction models.
More recently, Negussie et al. (2017) reviewed the suitability of lactation parameters as CHy
proxy of dairy cows and concluded that both milk yield and composition are simple to measure,
involve low costs, are non-invasive, and have a high throughput. Milk yield was considered to
have a medium to high accuracy in terms of CHy prediction, whereas that of major milk
components was, however, considered to be low to medium (Negussie et al., 2017). To
investigate the CHy prediction potential of only lactation characteristics and whether both MFA
and FTIR have an added value in terms of CHj4 prediction potential relative to lactation
characteristics, the same dataset as in Chapter 9 was used. The lactation characteristics include
patity, days in milk (DIM), milk yield (kg/d), milk protein content (g/100 g milk), milk fat
content (g/100 g milk), milk lactose content (g/100 g milk), milk urea content (mg/dL), and
somatic cell count [natural logarithm; LN(SCC)]. All lactation characteristics were considered
as continuous variables, with the exception of parity. Parity was considered as a class variable,
with primiparous cows as one class, cows in second lactation as a second class, and cows in third
or higher lactation as a third class. All of these lactation characteristics were used as independent
variables for CH4 production and CHy yield, but only parity, DIM, milk lactose content, milk
urea content, and LN(SCC) for CH4 intensity (other parameters were excluded because they are
part of the FPCM calculation; CVB, 2012). The statistical method applied was similar to that of
Chapter 9 and is shortly described in Textbox 3.

The CHy prediction models obtained when using only lactation characteristics as
selection parameters had an adjusted R? ranging from 0.09 to 0.43 and a CCC ranging from 0.18
to 0.61 (Table 10.2). The model for CHy yield (g/kg DMI) petformed the pootest and the model
for CHy4 production (g/d) performed the best, as evident by the lowest and highest adjusted R?
and CCC values, respectively. For both CHj yield and CHj intensity, the lactation characteristics-
based prediction models performed cleatly less satisfactory (i.e., lower adjusted R? and CCC
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values) than the MFA- and FTIR-based prediction models. This indicates that both MFA and
FTIR have a greater prediction potential for CH4 yield and CHy4 intensity than lactation
characteristics. This also holds for the MFA-based prediction model for CHy production, which
performed better than the lactation characteristics. The only exception was the lactation
characteristics-based model for CHy4 production which performed better than the FTIR-based
model for CHy4 production, as evident by the higher adjusted R? and CCC values. Additionally,
in compatison with the FTIR based model for CH4 production, the » and C, values of the
lactation based model are higher, indicating a more precise and accurate prediction of CHy
production. Moreover, the scale shift () is smaller, indicating that the lactation characteristics-
based model can describe more of the observed vatiation in CH4 production than the FTIR-
based prediction model.

Three lactation characteristics were included in the model for CH4 production, namely
DIM, milk yield, and protein content, all with a positive slope (Table 10.2). Also in the prediction
models for CHy yield and CHy intensity, DIM was included as explanatory variable. The positive
association between CH4 production and milk yield was expected. A higher milk yield is often
associated with a higher DMI (Garnsworthy et al., 2012), and a higher DMI is often associated
with a higher daily CH4 production (e.g., Hristov et al., 2013; Bell et al., 2016; Charmley et al.,
2016). Lactation stage (i.e., DIM) can also be related to CHy4 emissions from dairy cattle, based
on a rough approximation of milk yield during lactation (Garnsworthy et al., 2012). However,
milk yield increases after calving up to approximately 100 DIM, followed by a gradual decline
toward the end of lactation, whereas the positive relationship found between DIM and CHy
emission suggests that CHy emission is constantly increasing during lactation. Therefore, it seems
that the relationship between DIM and CH4 emission is a statistical rather than a biological
relationship. Additionally, milk urea content was included in the prediction models for CH4 yield
with a positive slope. No biological explanation can be given for this association, and no other
study reported a relation between CHy emission and milk urea content before.

The comparison made above is actually biased, because MFA and FTIR represent only
milk composition and no other lactation parameters (parity, DIM and milk production). To
examine whether MFA and FTIR have an added value relative to milk composition only, the
same analysis was performed again, but only using milk composition [i.e., fat, protein, lactose,
and urea content, and LN(SCC)]. Especially for FTIR this comparison is of interest, because it
will show whether the complete FTIR spectra hold more information than only the major milk
components estimated by FTIR. As illustrated in Table 10.1, no model could be obtained for
CH,4 production. The significance level for a variable to enter the model was 0.01, whereas the
significance level of the strongest correlation between a milk composition parameter [i.c.,
LN(SCC)] and CH4 production was 0.072. The milk composition-based prediction models for
CH,4 yield and CHy intensity performed worse than the MFA- and FTIR-based prediction
models, as evident by the lower adjusted R? and CCC values. The results with respect to the CHy4
prediction potential of lactation characteristics, indicate (1) that MFA have a greater CHy
prediction potential than milk composition, (2) that milk composition has a smaller CH4
prediction potential than milk composition together with parity, DIM, and milk yield, and (3)
that the complete FTIR spectrum holds more information and subsequently has a greater CHy4
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prediction potential than only milk composition estimated by FTIR. The latter might be due to
the fact that the FTIR spectrum combines the information of milk composition (i.e., major milk

components), a selection of certain MFA, and other milk composition characteristics.

MILK FATTY ACIDS — INFRARED MEASUREMENTS AND UNITS

As indicated in Chapter 2, gas chromatography was until recently the principal method
for MFA analysis. However, as gas chromatography is unsuitable for routine milk recording
(Soyeurt et al., 2011), FTIR is also often applied to quantify MFA concentrations. Several studies
investigated the potential use of FTIR to predict MFA composition of dairy cattle [e.g., Rutten
et al. (2009) and Soyeurt et al. (2011)] and confirmed that FTIR can accurately predict several
individual, particular higher abundant, MFA and groups of MFA, whereas a number of lower
abundant MFA cannot be predicted by FTIR. In line with this, Fleming et al. (2017) reported
recently that MFA appearing in negligible amounts did not predict well enough with FTIR to be
useful. According to Rutten et al. (2009), individual MFA should have an average concentration
of = 2.45 g/100 g of FA in order to be predictable with reasonable accuracy by FTIR (i.e., C4:0,
C10:0, C12:0, C14:0, C16:0, C18:0, and C18:1 ¢s-9). More recently, Soyeurt et al. (2011) reported
that C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, C16:0, C18:0, Y trans-C18:1, C18:1 ¢is-9, Y ¢is-C18:1,
and some groups of MFA can be sufficiently accurately determined by FTIR. Similar to Van
Lingen et al. (2014), the use of FTIR to estimate CHy4 emission of dairy cows by developing
prediction models with a restricted selection of MFA based on the results of Rutten et al. (2009)
and Soyeurt et al. (2011) was investigated, using the same statistical approach as described in
Textbox 3.

The prediction model for CH4 production (g/d) decreased in predictive power with a
adjusted R? = 0.54 and CCC = 0.72 when all MFA were used (Chapter 9) to an adjusted R? =
0.35 and CCC = 0.52 when the MFA accurately determined by FTIR according to Soyeurt et al.
(2011) were used, and to an adjusted R?> = 0.28 and CCC = 0.44 when the MFA accurately
determined by FTIR according to Rutten et al. (2009) were used. Similar patterns (i.c., decrease
in adjusted R? and CCC values when using a more restricted number of MFA) were observed
for CHy4 yield and CH4 intensity (Table 10.2). These results are in agreement the results of Van
Lingen et al. (2014), who also observed a decrease in predictive power when developing models
with a restricted selection of MFA. The results thus indicate that, compared with gas
chromatography, the performance of FTIR limits the potential for predicting CH4 emission of
dairy cows based on the MFA profile, because several MFA with lower concentration that appear
in various CHy prediction models published previously (e.g., Chilliard et al., 2009; Dijkstra et al.,
2011; Rico et al., 20106) are not available when the MFA profile is determined using FTIR.

An important note should also be made with respect the unit of the MFA. The work
presented in this PhD thesis focussed on the MFA profile, also called MFA proportions, which
refers to g/100 g of FA. One can imagine that when the proportion of a specific MFA increases,
the proportion of another MFA (or multiple MFA) will decrease. This is an inherent
characteristic of working with proportions. Therefore, in the previous chapters (i.e., 5, 6, and 9),
the CHy4 prediction models were checked for multicollinearity. Multicollinearity refers to a
phenomenon in which two or more of the variables in the CH4 prediction models are correlated,
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and can result in substantial changes in the predicted CHy4 emission in response to only small
changes in the variables themselves. When working with proportions, there is an increased risk
for multicollinearity. Multicollinearity was not observed in any of the developed MFA-based
CH, prediction models in Chapters 5, 6, and 9. However, to investigate if the unit in which MFA
are expressed affects the CHy prediction potential of MFA, MFA production (g MFA produced
per day) and MFA portrait (¢ MFA per kg milk) were also considered. MFA production was
calculated by dividing fat yield (g/d) with 100 and subsequently multiplying this with the MFA
proportion, assuming that 100% of milk fat content consists of fatty acids. The MFA portrait
was calculated by multiplying the milk fat content in g/kg milk with the MFA propottion and
subsequently dividing this with 100. These calculations and subsequent development of CHy
prediction models, provides an indication whether it might be better to work with a different
unit than MFA profile. The adjusted R? of the MFA production-based prediction models were
0.18 for CH4 production, 0.04 for CHy yield, and 0.16 for CH4 intensity (CCC results not shown).
These low adjusted R? values, relative to those of the MFA proportion-based CHy4 prediction
models from Chapter 9 (see also Table 10.1), indicate that the production of MFA is less suitable
for predicting CHy emission from dairy cows than MFA proportions. The adjusted R? of the
MFA portrait-based prediction models were 0.53 for CHy production, 0.39 for CHy yield, and
0.61 for CH4 intensity (CCC results not shown). These adjusted R? values are close the R? values
reported for the MFA proportions (Table 10.2). These results indicate that both MFA
proportions and portrait can better reflect the ratio between different processes occurring in the
rumen, such as biohydrogenation and VFA production, than daily MFA production.
Additionally, MFA production depends on milk yield, which has moderate potential as a proxy
for CH4 emission (Negussie et al., 2017). Thus, when developing MFA-based CHy prediction
models, it is recommended to use MFA profile (i.e., propottions in g/100 g of FA) or MFA

pottrait (i.e., in g/kg milk), but always in combination with a multicollinearity test.

COMBINATION OF PROXIES

Although the results of this thesis show that both MFA and FTIR have the ability as a
single proxy for CHy4 emission of daity cows, there may be advantages in using two or more
proxies in combination. According to Negussie et al. (2017), combining proxies might be more
appropriate because (1) the proxies may describe independent sources of variation in CHy
emissions, and (2) one proxy may allow correction for shortcomings in the way the other proxy
describes CH4 emissions. A clear example of the improvement when combining proxies is the
study of Mohammed et al. (2011), who used measurements from the rumen (i.e., VFA, pH, and
protozoa counts), feed intake (i.e., total DMI, forage DMI, and FA intake), and production
parameters (i.e., milk yield and composition) in combination with MFA to develop CH,4
prediction models. The results of that study indicate that MFA predict CH4 emission better (R?
= 0.74) compared with only rumen variables, only feed intake, and only production parameters
(R? < 0.58). However, combining MFA with feed intake and production parameters resulted in
a model R? of 0.83, and combining MFA with feed intake, production, and rumen-related
parameters resulted in a model R? of 0.90.
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Similarly, although with different selection parameters, Vanlierde et al. (2015) took
lactation stage into account when developing prediction equations, because of changing CHy
emission prediction coefficients during lactation. Vanlierde et al. (2015) developed lactation
stage-independent (i.e., including only FTIR spectra) and lactation stage-dependent (i.e.,
including FTIR and DIM to describe lactation stage) CHy4 prediction equations. The average
CHy production (g/d) predicted by both models was similar (416 * 63 g/d). However, in
contrast to the lactation stage-independent prediction equation, the lactation stage-dependent
prediction equation showed biologically meaningful CHy4 predictions throughout lactation,
namely an increase in CH4 production (g/d) after calving up to approximately 100 DIM,
followed by a gradual decline toward the end of lactation (Vanlierde et al., 2015). These results
indicate the importance of combining FTIR with lactation stage to improve the prediction of
CH,4 emission in dairy cows. As shown in Table 10.1, DIM was an important explanatory variable
in this thesis and perhaps also for Vanlierde et al. (2015). Hence, it would have been of great
value if Vanlierde et al. (2015) also developed a CH4 prediction model with only DIM to describe
lactation stage as explanatory variable, because that would give an indication whether FTIR
spectra have an added value relative to a simple measurable variable, such as DIM.

The importance of combining FTIR with lactation stage, as illustrated van Vanlierde et
al. (2015), might also be important for further development of MFA-based CH4 prediction
models. Vanrobays et al. (2016) showed that correlations between CH4 production (g/d) and
MFA vary according to the lactation stage of the cow, a fact that is still often ignored when trying
to predict CH4 emission from dairy cows from the MFA profile. Based on the results of
Mohammed et al. (2011) and Vanrobays et al. (2016), as well as the finding of Negussie et al.
(2017), it was investigated whether the combination of MFA with lactation characteristics or
dietary composition would improve the CH4 prediction potential relative to only MFA. Because
of the extreme complexity of combining FTIR spectra with other parameters, the principle of
combining proxies was only investigated in combination with MFA to see whether this concept
can improve CH4 prediction.

The same statistical approach as before was applied, which is shortly described in
Textbox 3. Three different sets of parameters were used: (1) MFA in g/100 g FA, (2) lactation
characteristics including parity, DIM, milk yield (kg/d), fat, protein, and lactose content (all in
¢/100 g milk), utea-content (mg/dL), and LN(SCC), (3) dietaty composition including DM
(g/kg), ash, NDF, ADL, ADF, fat, starch (all in g/kg DM), gross energy (M]/kg DM), and the
NDF-to-starch ratio (dimensionless). Please note that DMI was not included as variable in
combination with dietary composition, because the relation between DMI and CH4 emissions
has been described many times before (e.g., Hristov et al., 2013; Charmley et al., 2016; Rico et
al., 2016). Methane prediction models were developed using the three datasets alone, combining
the MFA dataset with either dataset 2 (lactation characteristics) or dataset 3 (dietary
composition), and combining the MFA dataset with both datasets (lactation characteristics and
dietary composition).

The CH4 prediction models using only MFA or only lactation characteristics will not
be discussed in detail, as these have already been discussed in Chapter 9 (i.e., MFA) and in an
eatlier section of the general discussion (i.e., lactation characteristics). When considering only
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the dietary composition as selection parameters, dietary fat content is included in all three CH4
prediction models (Table 10.1). The negative association between dietary fat content and CHy
emission is as expected, because fat is known to reduce CHy emissions via multiple mechanisms
as described in Chapter 7. A positive association is found between crude protein content and
CHy, yield. This is in agreement with Ellis et al. (2009), who observed a positive relationship
between dietary crude protein content and CHy4 emission of beef cattle, but contrary to Dijkstra
et al. (2011). The latter authors concluded that mitigation options aiming to reduce urinary
nitrogen excretion, such as decreased nitrogen intake (i.e., based on CP intake), may result in
elevated CH4 emission levels, suggesting a negative association. Additionally, the positive
association between ADF content and CHy yield is according to expectation that fermentation
of fiber favors the ruminal production of acetate, which increases H» availability. Furthermore,
the negative association between gross energy content and CHy intensity is most likely related to
the positive association between gross energy and milk yield. Also the negative association
between dietary starch content and CHy intensity was as expected, because the fermentation of
starch favors the ruminal production of propionate at the expense of acetate and decreases
rumen pH, which reduces H> availability and activity of rumen methanogens (Van Kessel and
Russell, 1996; Hook et al., 2011).

Interestingly, despite the expected associations found between the dietary composition
and CHj4 emissions, the CHy4 prediction potential of the dietary composition is rather limited.
Both the adjusted R? values and the CCC values of the dietary composition-based CH4 prediction
models are lower than the ones from the MFA-based CH4 prediction models (Table 10.2). Also,
dietary composition seems to have a lower CHy4 prediction potential than lactation
characteristics, with the exception of CHy yield. This was unexpected, because enteric CHy4
production is a natural by-product arising from microbial fermentation of feed within the rumen
(Beauchemin et al., 2009). Possible reasons for not finding the expected CH4 prediction potential
might be the variation in the dietary composition, which was rather limited. All diets were
roughage-based (> 700 g/kg DM) and the dietaty treatments wete limited to the roughage part
of the diet (e.g., different qualities of grass herbage, grass silage, and corn silage). To illustrate,
NDF content of the diets ranged from 242 to 501 g/kg DM and the starch content of the diets
ranged from 5 to 326 g/kg DM (see also Table 9.2 of Chapter 9). Perhaps the CHy4 prediction
potential of dietary composition would have been greater if the dataset would contain more
dietary variation, for example different levels of concentrates, facilitating a larger range in dietary
NDF and starch content. Furthermore, although the CH4 prediction models may include dietary
NDF and starch content, it does not take all characteristics of feed into account. The impact of
feed on CH4 emission, namely, is not only based on the dietary composition. According to
Beauchemin et al. (2009), the quantity of CH4 produced by an animal depends on many
interacting factors that include: carbohydrate intake, chemical composition of the carbohydrate
sources, retention time in the rumen, rate of ruminal fermentation, and rate of methanogenesis.
Another reason for the low CHy prediction potential of dietary composition, might be related to
other soutces of variation. Cows receiving the exact same dietary treatment and thus dietary
composition, showed considerable variation in CH4 emissions. For example, the control diet of
the experiment desctibed in Chapter 7 has a NDF content of 357 g/kg DM, whereas the CH4
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emission of the daity cows receiving this diet ranged from 270 to 535 g/d, from 19.5 to 25.3
g/kg DML, and from 12.9 to 22.9 g/kg FPCM. This variation can be the results of many factors,
including differences in DMI and lactation stage, hampering perhaps to find a clear relationship
between dietary composition and CHy emission. The results demonstrate that dietary
composition as such is not a satisfactory proxy for CHy emission. Perhaps the combination of
dietary composition and the absolute intake of the different dietary components might increase
the CH4 prediction potential, because Ellis et al., (2010) already demonstrated that the more
generalized CHy prediction models (i.e., based only on feed intake) performed worse than those
that attempted to take important aspects of diet composition into account.

Similarly, when combining dietary composition with MFA, the prediction potential is
almost similar or slightly higher than that of only MFA. For CH4 production, there was no
improvement observed at all, as no dietary composition parameters were selected resulting in a
model identical to only MFA. For CHy yield, the adjusted R? value decreased from 0.40 to 0.39
upon combining MFA with dietary composition, similar as for the CCC value (i.e., decreased
from 0.59 to 0.58). Only for CH, intensity a slight improvement in terms of prediction potential
was observed, with the adjusted R? value increasing from 0.62 to 0.66 and the CCC value
increasing from 0.77 to 0.81. Overall, these results indicate that, relative to MFA alone, CH4
prediction potential does not increase when combining MFA with dietary composition

In contrast though, the CH4 prediction potential increases considerably when
combining lactation characteristics with MFA, relative to MFA alone. For CH4 production, yield,
and intensity, adjusted R? values increase from 0.54 to 0.72, from 0.40 to 0.44, and from 0.62 to
0.71, respectively. Additionally, the CCC values increase from 0.72 to 0.84, from 0.59 to 0.61,
and from 0.77 to 0.84 for CH4 production, yield, and intensity, respectively. This shows that the
combination of lactation characteristics with MFA results in a more accurate and precise
prediction of CH4 emission of dairy cows. As expected, based on the previous results with
respect to dietary composition, the CHy prediction potential does not improve when combining
MFA with both lactation characteristics and dietary composition relative to the CHy prediction
potential of the combination of lactation characteristics and MFA for CHy production and CH4
intensity. For CHj4 yield, however, the adjusted R? and CCC increase, indicating a better
prediction of CHy yield when combining dietary composition with both lactation characteristics
and MFA. This makes sense, because, as indicated before, DMI is one of the most important
determining factor for CHy4 production (Hristov et al., 2013), whereas both DIM and milk yield
are the most important determining factors for CHy intensity (Garnsworthy et al., 2012). The
factors (i.e., DMI, DIM, and milk yield) are not as important for CHy yield, perhaps explaining
why the inclusion of dietary composition results in improved prediction potential only for CH4
yield.

Overall, the results of the latter analysis indicate that, as proposed by Negussie et al.
(2017), combining two proxies might have an advantage over a single proxy for CHy emissions
of dairy cows. However, the correct combination of proxies is critical. As demonstrated,
combining dietary composition with MFA does not always create synergy. A possible
explanation for this is that MFA and dietary composition desctibe the same part of the vatiation
in CH4 emission. To illustrate, dietary composition is strongly related to the MFA profile (e.g.,
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the relationship C18:1 #ans-10 and crude protein content, NDF content, fat content, and starch
content is significant; P < 0.005; data not shown) and it could, therefore, be that the variation in
the dietary composition and the variation in the MFA profile describe the same variation in CHy4
emission. This is most likely the result of the common biochemical pathway between ruminal
feed fermentation, CH4 production, and MFA composition. Combining lactation characteristics
and MFA composition did create synergy for all CHy4 units and thus resulted in a more accurate
and precise prediction of CHg4 emission as well as a better description of the observed variation
in CH4 emissions relative to MFA alone and lactation characteristics alone. The results for CHy4
intensity, in which DIM was included in the prediction model, are in agreement with the findings
of Vanrobays et al. (2016), who observed that the relationship between CH4 emission and MFA
is lactation stage dependent. It is therefore concluded that it is important to combine MFA
composition with lactation characteristics to improve the prediction of CH4 emission in dairy
cows, although the magnitude of improvement depends on the unit of CH4 emission. Similar
holds for the combination of MFA composition, lactation characteristics, and dietary
composition, which resulted in synergy for CHy yield only. This principle of synergy, although
not investigated, would most likely also apply when combining the FTIR spectra with lactation
characteristics. It should be noted though that some of the lactation parameters are actually
determined by FTIR (e.g., protein and fat content) and, as described above, FTIR spectra contain
more information of CHy emission than milk composition. Hence, the improvement of CHy
emission prediction upon combination with lactation characteristics might be less for FTIR than
for MFA, but overall also the combination of lactation characteristics and FTIR may result in a

better proxy for CHy emission in dairy cows.

ROBUSTNESS OF PROXIES FOR METHANE EMISSION

In general, previously developed CHy4 prediction models have a great CHy prediction
potential in the study in which they were developed. This, however, does not necessarily mean
that one can extrapolate previously developed MFA-based CHy prediction equations to another
situation. This was already demonstrated in Chapter 8, in which previously developed MFA-
based prediction equations [e.g., Dijkstra et al. (2011) and Van Lingen et al. (2014)] did predict
CH,4 emission of dairy cows with different DGATT genotypes or fed diets with or without linseed
oil neither accurately nor precisely. Furthermore, Mohammed et al. (2011) observed an over-
prediction in CH4 emission when comparing measured CHy emission with CH4 emission
predicted by the MFA-based equations of Chilliard et al. (2009) and Dijkstra et al. (2011).
Dijkstra et al. (2016) compared observed CHy4 emission of dairy cattle fed grass- and grass silage-
based diets with CHy4 emission predicted with the MFA-based equations developed by Van
Lingen et al. (2014). The CH4 prediction equations of Van Lingen et al. (2014) did not accurately
predict CH4 emission, indicating that the relationship between MFA and CH4 emission in dairy
cows fed grass- and grass silage-based diets differs from that of other types of diets.

To provide another, perhaps more extreme example, the observed CH4 emissions from
cows receiving nitrate, docosahexaenoic acid (DHA), or a combination of nitrate and DHA was
compared with CHy emission predicted with the MFA-based prediction models from Chapter
9. As demonstrated by Klop et al. (2016), nitrate decreased CH4 emission irrespective of the unit
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in which it was expressed, wheteas DHA did not affect CHy yield (g/kg DMI), but actually
resulted in a higher CHy4 production (g/d; likely related to a significantly higher DMI compared
with diets without DHA) and CHy intensity (g/kg FPCM; likely related to a trend of decreased
FPCM production with DHA). Additionally, nitrate and, especially, DHA affected the MFA
composition relative to the control diet, whereas the interaction between nitrate and DHA did
not affect the MFA composition considerably.

Table 10.3 shows the observed and predicted mean CHj4 emissions and the
corresponding CCC values. The MFA-based CH4 prediction equations are not able to estimate
CH4 emission of dairy cows fed nitrate, DHA, or a combination of both. For nitrate
supplemented cows, the CCC is highest for CH4 production (0.26) and close to zero for CHy
yield and intensity. The MFA-based prediction models are neither accurate (i.e., C;) nor precise
(i.e., 7), and over-predict CH4 emission as evident by the negative location shift (i.e., 1) values.
For the DHA supplemented cows, the CCC is highest for CHy intensity (0.24) and close to zero
for CHy production and yield. The MFA-based prediction models under-predicted CH4 emission
from cows receiving DHA, as evident by the relatively large positive u values. The reason for
predicted CH4 production being negative for cows fed DHA can be explained by the effects of
DHA on CH4 emission and the MFA profile. As mentioned eatrlier, Klop et al. (2016) observed
an increase in CHy production for DHA relative to the control diet. Additionally, the MFA C18:1
trans-10 and C18:1 frans-11 increased 19-fold and 4-fold, respectively, for DHA relative to the
control diet. These two MFA were included in the MFA-based prediction model for CHy4
production with a negative slope. The pronounced increase in these MFA in combination with
the negative slope resulted in negative values for CHy production. For the cows receiving a
combination of nitrate and DHA, the results show a similar trend as for the DHA supplemented
cows. The CCC is close to zero for CHy4 production and yield, and highest for CHy4 intensity
(0.56), which is also the highest CCC value found in general for this dataset. The latter is
accompanied by moderate to high values for precision and accuracy. For CHy intensity there is
a small over-prediction, whereas for CHy production and yield there is a relatively large under-
prediction. Overall, these results clearly indicate that the MFA-based CHy4 prediction models
from Chapter 9, which were developed from data obtained of dairy cows fed a wide range of
roughage-based diets without additives, are not able to predict CH4 emissions from dairy cows
fed nitrate, DHA, a combination of nitrate and DHA, and probably even feed additives in
general.

The latter example, in combination with the findings of Chapter 8, Mohammed et al.
(2011), and Dijkstra et al. (2016), shows clearly that the robustness of MFA-based CH4 emissions
is a problem. At present, several different MFA-based CH4 prediction models have been
developed for dairy cattle (e.g., Chilliard et al. 2009; Van Lingen et al., 2014; Rico et al., 2016).
However, most of these models tend to be accurate only for the production system and the
environmental conditions under which they were developed. Therefore, the greatest
shortcoming today is the lack of robustness in the applicability of MFA-based CHy prediction
models and, subsequently, attention should not only be directed to the accuracy of proxies but

also to their robustness.
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Table 10.3. The concordance correlation coefficient (CCC) results of the MFA®-based methane prediction models
from Chapter 9 applied to dairy cows supplemented with nitrate, DHA®, or a combination of nitrate and DHA
Observed CH4 Predicted

emission CH4 emission CCC® 7 (@S 20 u?

Nitrate

Methane production® 263 318 0.26 0.75 0.34 0.88 -1.96

Methane yield® 16.9 21.7 -0.02 -0.30 0.08 3.06 -4.63

Methane intensity(% 10.8 14.4 0.07 0.30 0.25 0.46 -2.33
DHA

Methane production 369 -798 -0.01 -0.56 0.01 016 11.52

Methane yield 22.4 15.0 -0.02 -0.74 0.03 0.32 7.86

Methane intensity 15.4 13.6 0.24 0.48 0.49 1.88 1.30
Nitrate + DHA

Methane production 298 -120 0.00 0.08 0.06 0.13 5.26

Methane yield 18.2 12.0 -0.02 -0.20 0.12 0.16 3.16

Methane intensity 12.6 12.9 0.56 0.60 0.93 1.25 -0.31

) Milk fatty acids in g/100 g FA.

@ Docosahexaenoic acid.

® Concordance cotrelation coefficient, where CCC = r X Cj.

® Pearson correlation coefficient; a measure of precision.

® Bias correction factor; a measure of accuracy.

© Scale shift; change in standard deviation between predicted and observed methane emission.
@ Location shift; if positive under prediction, if negative over prediction.

® Production in g methane per day.

) Yield in g methane per kg dry matter intake.

(19 Intensity in g methane per kg fat- and protein-corrected milk (FPCM = [0.337 + 0.116 X fat (g/100 g milk) +
0.06 X protein (g/100 g milk)] X milk yield (kg/d); CVB, 2012).

THE BEST WAY FORWARD

Finding a proxy for enteric CHy production of dairy cattle is not as straightforward as
expected from theory. There are indeed indicators and animal traits highly correlated with CHy4
emission (e.g., feed intake with CHy production; Negussie et al., 2017), as well as indicators and
animal traits which ate easy and relatively low cost to record on a large scale (e.g., milk yield;
Negussie et al., 2017). But finding a proxy that performs well on both statistical and practical
aspects, is a challenge. As already explained in the general introduction (Chapter 1), enteric CHy
production is influenced by many factors, including dietary factors (such as the type and the
amount of feed), animal factors (such as milk yield and genetic traits), management factors (such
as feeding frequency), and environmental factors (such as seasons and temperature) (e.g., Hristov
et al., 2013). These factors result in large variation in CH4 emission of dairy cattle, making it a
challenge to develop a universal and robust proxy for CH4 emission.

Proxies for CH4 emission can have great implications in the dairy chain, including dairy
management (e.g., evaluating CHy mitigating potential of feeding strategies) and dairy breeding
(e.g., identifying low and high CH4 emitting dairy cows). The best way forward, in my opinion,
would be to focus on CHy4 proxies that perform at least moderately well both in terms of the

practical aspect and the statistical aspect. Of course, a proxy must be accurate and precise to
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ensure unbiased estimates of CH4 emission close to the truth. But, if one would only focus on
the statistical aspect, not taking the complexity of certain techniques into account, one would
most likely be better off measuring CH4 emission rather than estimating CH4 emission. For
example, although interesting in terms of understanding CH4 production, why would there be a
focus on the rumen microbiome as CH4 proxy if it cannot be measured easily, at low cost, and
at large scale? Similarly the other way around, a CH4 proxy that can easily be measured on a large
scale, but cannot predict CHy emission with a certain accuracy and precision, would lead to
incorrect mitigation recommendations and strategies.

The results show that MFA are the most accurate and precise CHy4 proxy investigated
in this PhD work. However, its lack of robustness as demonstrated in Chapters 8 in this thesis,
as well as by Mohammed et al. (2011) and Dijkstra et al. (2016), remains a concern. Additionally,
MFA have restricted practical application, meaning that most MFA retained in the current CHy4
prediction models cannot be determined routinely because of the use of gas chromatography.
The MFA that can be determined with the use of infrared spectroscopy are however no
promising predictors for CH4 emission. Furthermore, it should be noted that MFA have only a
moderate CHy4 prediction potential with the R? ranging from 0.40 to 0.62, and Castro-Montoya
et al. (2017) recently demonstrated that MFA are not yet reliable predictors of specific amounts
of CH4 emitted by a cow, while holding a modest potential to differentiate cases of high or low
emissions. This together suggests that it might not be the best option to focus in the future on
MFA alone as a proxy for CH4 emission of dairy cows.

It is however questionable whether the FTIR spectra can serve as a more valuable CHy
proxy. The CH4 prediction potential of FTIR spectra in the research described in this thesis is
low to moderate with the R? ranging from 0.25 to 0.56. This is considerably less accurate and
precise than MFA. However, FTIR has a great potential for practical high throughput
application, facilitating repeated measurements of the same cow. As illustrated by Negussie et al.
(2017), certain proxies might be less accurate but random noise can be reduced when measuring
repeatedly. This is visualized when comparing the CH4 prediction potential of FTIR as described
in Chapter 9 with the CHy prediction potential of FTIR by Dehareng et al. (2012) and Vanlierde
et al. (2015). The latter two studies report higher R? values (> 0.77) than reported in Chapter 9
of this thesis, but developed their FTIR-based CH4 prediction models on repeated
measurements of the same cow. The study of Dehareng et al. (2012) involved 11 dairy cows,
whereas the prediction models were developed using 77 observations, and the study of Vanlierde
et al. (2015) involved 142 dairy cows, while the prediction models were developed using 446
observations. In contrast, the study described in Chapter 9 involved 218 dairy cows and the CHy
prediction models were developed using 1 observation per cow only. It is important to note
though, that not only the repeated measurements in the studies of Dehareng et al. (2012) and
Vanlierde et al. (2015), but also a much larger variation in CH4 emission in the dataset compared
to that of Chapter 9, may have resulted in the higher R? values reported by those authors (see
Chapter 9 for a more elaborate explanation). It remains therefore unclear how much more
accurate and precise the CH4 estimations of FTIR spectra can become upon repeated

measurements of the same cows.
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Furthermore, as demonstrated in Chapter 9, FTIR spectra evaluate the effect of forage
level and quality on CH4 emission of dairy cattle considerably less satisfactory than MFA. In 6
out of 18 situations (i.e., 6 studies each with 3 units of CH4 emission), FTIR spectra were not
able to predict the same trend (i.e., increase or decrease) in CHy emission between two diets as
measured by the climate respiration chambers. This was only 2 out of 18 situations for MFA.
This demonstrates that FTIR spectra do not have the power to detect differences in CHy
emission between diets which are, in terms of forage level and quality, commonly fed in practice.
Moreover, the robustness of FTIR spectra is currently unknown. Hence, it remains to be
investigated whether FTIR spectra can predict CH4 emissions of dairy cows fed additives (e.g.,
nitrate and DHA) or from dairy cows housed under different conditions from those under which
the FTIR-based prediction equations were developed.

According to Negussie et al. (2017), milk FTIR in particular, along with covariates such
as lactation stage, are a promising option for the prediction of CHy4 emission in dairy cows. The
increase in CHy prediction potential upon combining lactation characteristics with MFA in the
current Chapter, would most likely also apply when combining FTIR spectra with lactation
characteristics, such as DIM. I therefore believe that FTIR spectra, along with lactation
characteristics, is the best way forward when developing a proxy for CH4 emission of dairy cows.
The FTIR technique can be routinely measured in milk production registration for dairy herd
improvement and farm management, and can thus potentially be incorporated with regular FTTIR
analysis or perhaps even at the farm level in the farm tank milk. However, more research is
required to support these conclusions, including more observations, on farm measurements of
CH4 emission (with for example the GreenFeed system; Chapter 1), FTIR spectra, and lactation
characteristics, and independent experiments and data to test the robustness of the FTIR spectra

to predict CH4 emission of dairy cows.

GENERAL CONCLUSIONS

Although both volatile and non-volatile metabolites can be related to ruminal feed
fermentation and enteric CH4 production, these milk metabolites hold no potential to predict
CH,4 emission of dairy cows. This is both in terms of the statistical aspect, because of the low
adjusted R? and CCC values, and the practical aspect, because gas chromatography-mass
spectroscopy and nuclear magnetic resonance are complex techniques which require specialized
personnel and which are not applicable at large scale. Additionally, combining these milk
metabolites with MFA does not always improve the CHy4 prediction potential relative to MFA
alone, because an improvement was observed when using a small dataset (n = 29) with a small
range of forage-based diets but no improvement was observed when using a larger dataset (n =
123) with a larger range of forage-based diets. The MFA profile can predict enteric CHy
production more accurately and precisely than volatile and non-volatile metabolites as well as
FTIR spectra, but its lack of robustness remains a concern. The FTIR spectra have a greater
potential for practical implementation than MFA, because FTIR is currently already routinely
used in milk recording systems to predict fat, protein, lactose, and urea contents in milk, and
hence can be potentially incorporated with regular FTIR analysis or perhaps even at the farm
level in farm tank milk. However, the accuracy and precision to predict CHy emission using
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FTIR spectra needs to increase, and the capacity of the FTIR spectra to evaluate the differences
in CH4 emission between dairy cows and different types of diets needs to improve, in order to

actually be a valuable proxy for CH4 emission of dairy cows.
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Enteric methane (CHy) is produced as a result of microbial fermentation of feed
components in the gastrointestinal tract of ruminant livestock. Methane has no nutritional value
for the animal and is predominately released into the environment through eructation and breath.
Therefore, CH4 not only represents a greenhouse gas contributing to global warming, but also
an energy loss, making enteric CHy production one of the main targets of greenhouse gas
mitigation practices for the dairy industry. Obviously, reduction of CH4 emission could be
achieved by simply reducing livestock numbers. However, the global demand for dairy products
has been growing rapidly and is expected to further grow in the future. Therefore, it is critical to
minimize environmental impact to produce high-quality dairy products. The overall aim of this
PhD research was, therefore, to develop a proxy for CH4 emission that can be measured in milk
of dairy cows.

There are currently a number of potentially effective dietary CH4 mitigation practices
available for the livestock sector. The results of Chapter 3 show that replacing fiber-rich grass
silage with starch-rich corn silage in a common forage-based diet for dairy cattle offers an
effective strategy to decrease enteric CHy production without negatively affecting dairy cow
performance, although a critical level of starch in the diet seems to be needed. Little is known
whether host genetics may influence the CHy4 emission response to changes in diet. Therefore,
the interaction between host DGATT K232A polymorphism with dietary linseed oil
supplementation was evaluated in Chapter 7. The results of Chapter 7 indicate that DGATT
K232A polymorphism is associated with changes in milk composition, milk N efficiency, and
diet metabolizability, but does not affect digestibility and enteric CHy4 emission, whereas linseed
oil reduces CH4 emission independent of the DGAT7 K232A polymorphism.

Accurate and repeatable measurements of CHy emission from individual dairy cows are
required to assess the efficacy of possible mitigation strategies. There are several techniques to
estimate or measure enteric CHy production of dairy cows, including climate respiration
chambers, but none of these techniques are suitable for large scale precise and accurate
measurements. Therefore, the potential of various metabolites in milk, including milk fatty acids
(MFA), as a proxy (i.c., indicators or animal traits that are correlated with enteric CHy
production) for CH4 emission of dairy cows gained interest. Until recently, gas chromatography
was the principal method used to determine the MFA profile, but this technique is unsuitable
for routine analysis. This has led to the application of Fourier-transform infrared spectroscopy
(FTIR) for determination of the MFA profile. Chapter 2 provides an overview of the recent
research that relates MFA with CH4 emission, and discusses the opportunities and limitations of
using FTIR to estimate, indirectly via MFA or directly, CH4 emission of dairy cattle. The recent
literature on the relationship between MFA and CH4 emission gives inconsistent results. Where
some studies found a clear and strong relation, other studies consider MFA to be unreliable
predictors for CH4 emitted by dairy cows. Even the studies that do find a clear relation between
MFA and CHy emissions do not describe similar prediction models using the same MFA. These
discrepancies can be the result of many factors, including dietary composition and lactation stage.
Additionally, literature showed that the major advantages of using FTIR to predict CHy4 emission
include its simplicity and potential practical application on a large scale. Disadvantages include
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the inability to predict important MFA for the prediction of CH4 emission, and the moderate
power of FTIR to directly predict CHy4 emission. The latter was also demonstrated in Chapter 9,
in which the CHy4 prediction potential of MFA was compared with that of FTIR using data from
9 experiments (n = 218 individual cow observations) covering a broad range of roughage-based
diets. The results indicate that MFA have a greater potential than FTIR spectra to estimate CHy4
emissions, and that both techniques have potential to predict CH4 emission of dairy cows, but
also limited current applicability in practice. Much focus has been placed on the relationship
between MFA and CH4 emission, but milk also contains other metabolites;, such as volatile and
non-volatile metabolites. Currently, milk volatile metabolites have been used for tracing animal
feeding systems and milk non-volatile metabolites were shown to be related to the health status
of cows. In Chapter 4, the relationship between CH4 emission and both volatile and non-volatile
metabolites was investigated, using data and milk samples obtained in the study described in
Chapter 3. In general, the non-volatile metabolites were more closely related to CH4 emissions
than the volatile metabolites. More specifically, the results indicate that CHy intensity (g/kg fat-
and protein-corrected milk; FPCM) may be related to lactose synthesis and energy metabolism
in the mammary gland, as reflected by the milk non-volatile metabolites uridine diphosphate-
hexose B and citrate. Methane yield (g/kg dry matter intake) on the other hand, may be related
to glucogenic nutrient supply, as reflected by the milk non-volatile acetone. Based on the
metabolic interpretations of these relationships, it was hypothesized that the addition of both
volatile and non-volatile metabolites in a prediction model with only MFA would enhance its
predictive power and, thus, leads to a better proxy in milk for enteric CH4 production of dairy
cows. This was investigated in Chapter 5, again using data and milk samples described in Chapter
3. The results indicate that MFA alone have moderate to good potential to estimate CHy
emission. Furthermore, including volatile metabolites (CH4 intensity only) and non-volatile
metabolites increases the CH4 emission prediction potential.

The work presented in Chapters 3, 4 and 5, was based upon a small range of diets (i.c.,
four roughage-based diets in which grass silage was replaced partly or fully by corn silage) of
one experiment. Therefore, in Chapter 6, the relationship between CH4 emission and the milk
metabolome in dairy cattle was further quantified. Data (n = 123 individual cow observations)
were used encompassing a large of roughage-based diets, with different qualities and proportions
of grass, grass silage and corn silage. The results show that changes in individual milk metabolite
concentrations can be related to the ruminal CHy production pathways. These relationships are
most likely the result from changes in dietary composition that affect not only enteric CHy4
production, but also the profile of volatile and non-volatile metabolites in milk. Overall, the
results indicate that both volatile and non-volatile metabolites in milk might provide useful
information and increase our understanding of CHy4 emission of dairy cows. However, the
development of CHy4 prediction models revealed that both volatile and non-volatile metabolites
in milk hold little potential to predict CH4 emissions despite the significant relationships found
between individual non-volatile metabolites and CHy4 emissions. Additionally, combining MFA
with milk volatile metabolites and non-volatile metabolites does not improve the CH4 prediction
potential relative to MFA alone. Hence, it is concluded that it is not worthwhile to determine the
volatile and non-volatile metabolites in milk in order to estimate CH4 emission of dairy cows.
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Overall, in comparison with FTIR, volatile and non-volatile metabolites, the MFA are
the most accurate and precise proxy in milk for CH4 emission of dairy cows. However, most of
MFA-based models to predict CH4 emission tend to be accurate only for the production system
and the environmental conditions under which they were developed. In Chapter 8 it was
demonstrated that previously developed MFA-based prediction equations did not predict CH4
emission satisfactory of dairy cows with different DGATT genotypes or fed diets with or without
linseed oil. Therefore, the greatest shortcoming today of MFA-based CHy prediction models is
their lack of robustness. Additionally, MFA have restricted practical application, meaning that
most MFA retained in the current CHy prediction models cannot be determined routinely
because of the use of gas chromatography. The MFA that can be determined with the use of
infrared spectroscopy are however no promising predictors for CHs emission. Furthermore,
MFA have only a moderate CHy prediction potential. This together suggests that it might not be
the best option to focus in the future on MFA alone as a proxy for CH4 emission of dairy cows.

The FTIR technique has a low to moderate CH4 prediction potential. However, FTIR
has a great potential for practical high throughput application, facilitating repeated measurements
of the same cow potentially reducing random noise. Results of this thesis also demonstrated that
FTIR spectra do not have the potential to detect differences in CH4 emission between diets
which are, in terms of forage level and quality, commonly fed in practice. Moreover, the
robustness of FTIR spectra is currently unknown. Hence, it remains to be investigated whether
FTIR spectra can predict CH4 emissions from dairy cows housed under different conditions
from those under which the FTIR-based prediction equations were developed. It is therefore
concluded that the accuracy and precision to predict CHy emission using FTIR needs to increase,
and the capacity of FTIR to evaluate the differences in CH4 emission between dairy cows and
different types of diets needs to improve, in order to actually be a valuable proxy for CHy

emission of dairy cows.
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Enterisch methaan (CHg) wordt in de pens van herkauwers gevormd als gevolg van
microbiéle fermentatie van het geconsumeerde voer. Dit CHy heeft geen voedingswaarde voor
de melkkoe en wordt hoofdzakelijk uitgestoten via oprispingen en de adem. Hierdoor is
enterische CH4 emissie niet alleen de grootste bron van broeikasgassen in de melkveehouderij,
maar vertegenwoordigt het ook een vetlies van de opgenomen energie door de melkkoe.
Vanwege deze grote gevolgen is onderzoek naar strategieén om enterische CHy4 emissie van
melkkoeien te verlagen noodzakelijk. Verlaging van enterische CH4 emissie zou eenvoudig
bereikt kunnen worden door het aantal melkkoeien te verminderen. Echter, de vraag naar
voedingsproducten van dierlijke oorsprong, waaronder melk, zal naar verwachting toenemen als
gevolg van een toename van de wereldbevolking en inkomstenniveau van consumenten. Het is
daarom van belang om zuivelproducten te produceren en gelijktijdig de impact op het klimaat te
verminderen. Het overkoepelende doel van dit promoticonderzoek was daarom het ontwikkelen
van een indicator voor CH4 emissie die gemeten kan worden in de melk van melkkoeien.

Er zijn momenteel verschillende voederstrategieén beschikbaar om enterische CHy
emissie van melkkoeien te verminderen. De resultaten in Hoofdstuk 3 geven aan dat het
vervangen van vezelrijk kuilgras met zetmeelrijk snijmais in een ruwvoerrijk rantsoen een
effectieve strategie is om enterische CHy emissie te verlagen zonder dat dit negatieve gevolgen
heeft voor de productie van de koe. Echter, een minimum niveau van zetmeel in het rantsoen
blijkt noodzakelijk. Er is weinig bekend of de genetische achtergrond van een koe het CHy4
verlagende effect van voederstrategieén kan beinvloeden. Daarom is in Hoofdstuk 7 de interactie
tussen het DGATT K232A polymorfisme van de koe en de toevoeging van lijnzaadolie aan het
rantsoen onderzocht. De resultaten van Hoofdstuk 7 geven aan dat het DGATT K232A
polymorfisme geassocieerd is met veranderingen in de melksamenstelling, stikstof efficiéntie en
de metaboliseerbaarheid van het rantsoen, maar geen effect heeft op vertering en enterische CHy4
emissie, terwijl lijnzaadolie enterische CH4 emissie effectief wel verlaagt ongeacht het DGAT7
K232A polymorfisme van de koe.

Om mogelijke enterisch CHj4 verlagende strategieén te evalueren, zijn nauwkeurige
methoden nodig om enterische CH4 emissie van individuele melkkoeien te meten. Er zijn
verschillende technieken beschikbaar waarmee deze emissie van melkkoeien geschat, dan wel,
gemeten kan worden. Echter, geen van deze technieken is toepasbaar voor grootschalige en
nauwkeurige CH4 metingen in de praktijk. Vandaar dat onderzoekers zijn gaan kijken naar
verschillende metabolieten in de melk die kunnen fungeren als indicatoren voor enterische CH4
emissie van melkkoeien, zoals melkvetzuren. Een voorwaarde hiervoor is dat deze indicatoren
gerelateerd zijn aan de enterische CHy4 emissie. Melkvetzuren werden tot voor kort standaard
geanalyseerd door middel van gas chromatografie. Echter, deze technick is niet geschikt voor
routinematige analyses, wat resulteerde in de toepassing van Fourier Transform infrarood
spectroscopie (FTIR). In Hoofdstuk 2 wordt een overzicht gegeven van de literatuur waarin
melkvetzuren gerelateerd worden aan enterische CHy4 emissie van melkkoeien, waarnaast ook de
voor- en nadelen van de FTIR technieck worden besproken. Het blijkt dat de resultaten in de
literatuur over de relatie tussen melkvetzuren en enterische CHy4 emissie variabel zijn. Sommige
studies rapporteren een sterke relatie, waar andere studies juist aangeven dat melkvetzuren geen
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betrouwbare indicator zijn voor enterische CH4 emissie. Zelfs de studies die wel een sterke relatie
vinden tussen melkvetzuren en enterische CH4 emissie, beschrijven enterische CHy
voorspelformules die bestaan uit een andere set van melkvetzuren. Deze verschillen kunnen het
gevolg zijn van een aantal factoren, waaronder rantsoensamenstelling en lactatiestadium van de
koeien. Daarnaast komt in dit hoofdstuk naar voren dat de eenvoud van FTIR het grootste
voordeel van deze methode is en daatbij de mogelijke toepasbaarheid in de praktijk.
Daartegenover staat wel dat FTIR zelf een laag tot gemiddelde voorspelkracht heeft voor
enterische CH4 emissie en dat FTIR niet in staat is om melkvetzuren te voorspellen die belangrijk
zijn voor de voorspelling van enterische CH4 emissie. Dat eerste wordt ook duidelijk in
Hoofdstuk 9, waarin de voorspelkracht van melkvetzuren vergeleken wordt met de
voorspelkracht van FTIR. Hiervoor zijn data van 9 experimenten (n = 218 individuele koe
observaties) gebruikt waarin een brede range van ruwvoer-rijke rantsoenen werd gevoerd. De
resultaten geven aan dat melkvetzuren een grotere voorspelkracht voor enterische CHy4 emissie
hebben dan FTIR en hoewel beide technicken (d.w.z. melkvetzuren en FTIR) potenticel
enterische CHy4 emissie van melkkoeien kunnen voorspellen, geen van beide is momenteel
geschikt om toegepast te worden in de praktijk.

Ondanks dat er veel focus is geweest op de relatie tussen melkvetzuren en enterische
CH4 emissie, is het belangtijk te realiseren dat melk nog meer metabolieten bevat zoals o.a.
vluchtige en niet-vluchtige metabolieten. Momenteel worden vluchtige metabolieten in de melk
bijvoorbeeld gebruikt om de voederstrategieén van de koe te achterhalen en niet-vluchtige
metabolieten in de melk zijn bijvoorbeeld gerelateerd aan de gezondheid van de melkkoe. In
Hoofdstuk 4 is onderzocht of vluchtige en niet-vluchtige metabolieten in de melk ook
gerelateerd zijn aan enterische CH4 emissie, waarbij gebruik is gemaakt van de data en
melkmonsters van de studie beschreven in Hoofdstuk 3. In het algemeen blijken de niet-
vluchtige metabolieten in de melk sterker gerelateerd te zijn aan enterische CH4 emissie dan de
vluchtige metabolieten in de melk. Daarnaast bleck dat CH4 intensiteit (g CHy4 per kg vet- en
eiwit-gecorrigeerde melkproductie) gerelateerd is aan lactose synthese en energiemetabolisme in
het uier, wat naar voren kwam door de relatie tussen CHy intensiteit en de niet-vluchtige
metabolieten uridinedifosfaat hexose B en citroenzuur. Methaan opbrengst (g CHy per kg voer
opname) daarentegen is gerelateerd aan de toevoer van glycogene (d.w.z. energierijke) nutriénten,
wat naar voren kwam door de relatie tussen CHy opbrengst en de niet-vluchtige metaboliet
aceton.

Aan de hand van de hierboven beschreven relaties tussen enterische CH4 emissie en
zowel vluchtige als niet-vluchtige metabolieten in melk, werd verondersteld dat het meenemen
van zowel vluchtige als niet-vluchtige metabolieten aan CHjy voorspelformules met alleen
melkvetzuren zou leiden tot een verbetering van de voorspelkracht met dus een betere indicator
voor enterische CHy emissie van melkkoeien tot gevolg. Dit werd onderzocht in Hoofdstuk 5,
waarbij wederom data en melkmonsters van de studie beschreven in Hoofdstuk 3 werden
gebruikt. De resultaten geven aan dat melkvetzuren alleen een gemiddelde tot goede
voorspelkracht voor enterische CHy4 emissie hebben. Deze voorspelkracht werd groter wanneer
vluchtige en niet-vluchtige metabolicten toegevoegd werden, in het bijzonder bij de
voorspelformule voor CHy intensiteit.
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Het werk dat gepresenteerd is in Hoofdstukken 3, 4 en 5 is gebaseerd op een relatief
kleine diversiteit aan rantsoenen, namelijk 4 ruwvoerrijke rantsoenen waarin kuilgras gedeeltelijk
of volledig vervangen is door snijmais. Daarom is in Hoofdstuk 6 de relatie tussen enterische
CH,4 emissie en zowel vluchtige als niet-vluchtige metabolieten in de melk verder uitgezocht,
waarbij de data van 6 studies (n = 123 individuele koe observaties) zijn gebruikt die een brede
range van ruwvoer-rijke rantsoenen omvatten met verschillende kwaliteiten en hoeveelheden
gras, kuilgras en snijmais. De resultaten van dit hoofdstuk laten duidelijk zien dat zowel vluchtige
als niet-vluchtige metabolieten in melk nuttige informatie bevatten die mogelijk onze kennis
rondom enterische CH4 emissie van melkkoeien kan vergroten. Echter, bij de ontwikkeling van
voorspelformules voor enterische CHy emissie kwam naar voren dat zowel vluchtige als niet-
vluchtige metabolicten in de melk, geen tot weinig voorspelkracht hebben. Ook wordt de
voorspelkracht niet groter wanneer de vluchtige en niet-vluchtige metabolieten gecombineerd
worden met melkvetzuren ten opzichte van melkvetzuren alleen. Aan de hand van deze
bevindingen is de conclusie van Hoofdstuk 6 dat het niet de moeite waard is om vluchtige en
niet-vluchtige metabolieten in melk te analyseren voor het voorspellen van enterische CHy
emissie.

Alle resultaten die in dit proefschrift gepresenteerd zijn, laten zien dat ten opzichte van
vluchtige metabolieten, niet vluchtige metabolieten en FTIR, melkvetzuren de meest
nauwkeurige indicator in melk is voor enterische CH4 emissie van melkkoeien. Echter, veel van
de melkvetzuur-gebaseerde voorspelformules voor enterische CH4 emissie zijn alleen in staat
enterische CH4 emissie nauwkeurig te voorspellen in het productiesysteem met dezelfde
omgevingsfactoren waaronder ze ontwikkeld zijn. In Hoofdstuk 8 wordt het duidelijk dat reeds
ontwikkelde melkvetzuur—gebaseerde voorspelformules voor enterische CH4 emissie niet in staat
zijn enterische CH4 emissie goed te voorspellen voor melkkoeien met verschillende DGATT
genotypen of voor ruwvoerrijke rantsoenen met of zonder lijnzaadolie. Dit, in combinatie met
andere bevindingen in de literatuur, geeft aan dat robuustheid op dit moment de grootste
tekortkoming is van melkvetzuur—gebaseerde voorspelformules voor enterische CH4 emissie.
Daarnaast hebben melkvetzuren een beperkte praktische toepasbaarheid, aangezien veel van de
melkvetzuren in de melkvetzuur-gebaseerde voorspelformules niet routinematig bepaald kunnen
worden vanwege het gebruik van gas chromatografie. De melkvetzuren die eventueel wel met
infrarood bepaald kunnen worden, zijn echter niet van belang voor de voorspelling van
enterische CHy4 emissie. Verder is de voorspelkracht van de melkvetzuren voor enterische CHy
emissie van melkkoeien slechts gemiddeld. Dit gezamenlijk geeft aan dat het wellicht niet het
beste is om tockomstig onderzoek te richten op alleen melkvetzuren als indicator voor enterische
CH4 emissie van melkkoeien.

De voorspelkracht van FTIR voor enterische CHg4 emissie is laag tot gemiddeld. Echter,
FTIR zou relatief eenvoudig toegepast kunnen worden in de praktijk waardoor herhaalde
waarnemingen van dezelfde melkkoe mogelijk gemaakt worden met potentieel minder ruis in de
voorspelde enterische CHy4 emissie. Er is ook gebleken dat FTIR niet in staat is om verschillen
in enterische CH4 emissie tussen rantsoenen die verschillen in ruwvoerkwaliteit en ruwvoer
hoeveelheid, in kaart te brengen. Daarnaast is de robuustheid van FTIR momenteel onbekend,
wat vraagt naar onderzoek waarin bekeken wordt of FTIR in staat is enterische CH4 emissie van

247



SAMENVATTING

melkkoeien te voorspellen die onder andere omstandigheden gehuisvest worden dan de
omstandigheden waaronder de FTIR-gebaseerde CHs voorspelformules ontwikkeld zijn.
Uiteindelijk wordt geconcludeerd dat FTIR veel potentie heeft voor het voorspellen van
enterische CH4 emissie van melkkoeien, in het bijzonder omdat het een snelle goedkope
methode is. Echter, de CH4 voorspelkracht van FTIR moet beter zijn dan nu en de capaciteit
om verschillen in CH4 emissie tussen dieren en rantsoenen goed te voorspellen moet beter zijn
dan nu. Pas dan kan FTIR een waardevolle proxy zijn voor enterische CHy4 emissie van

melkkoeien.
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TH-NMR Proton nuclear magnetic resonance

ADF Acid detergent fibre

ADL Acid detergent lignin

ALL All metabolites combined as selection variables
BCS Body condition score

BHG Biohydrogenation

BW Body weight

BWo-7 Metabolic body weight

CCC Concordance correlation coefficient

Cy Bias correction factor

CHy4 Methane

CON Control diet

CO, Carbon dioxide

CRC Climate respiration chamber

Cr03 Chromium oxide

Cp Crude protein
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DHA Docosahexaenoic acid

DGATT K232A polymorphism of the acyl CoA:diacylglycerol acyltransferase 1 gene
DM Dry matter
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DMI Dry matter intake
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ER Energy retention

FA Fatty acid
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FFA Free fatty acid

FID Flame ionization detector

FPCM Fat- and protein-corrected milk

FTIR Fourier-transform infrared spectroscopy
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GE Gross energy

GEI Gross energy intake
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International conferences
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Joint Annual Meeting (JAM) of the American Dairy Science Association (ADSA)
and Ametican Society of Animal Science (ASAS), Otlando, Florida, USA

6t Greenhouse Gas and Animal Agriculture (GGAA) Conference, Melbourne
Australia

>

1st International Animal Nutrition Congress, Antalya, Turkey

Seminars and Workshops

Nutritional Management in Early Lactation, Wageningen, the Netherlands
Annual WIAS Science Day, Wageningen, the Netherlands

Annual Animal Nutrition Research (ANR) Forum, Utrecht, the Netherlands

Symposium Solutions for Climate Change and Animal Production

Presentations

Annual WIAS science day (poster)

Annual ANR Forum (oral presentation)

JAM ADSA-ASAS (oral presentation)

GGAA (2x oral presentation, 1x poster)

1st International Animal Nutrition Congress (oral presentation)

In-depth Studies (7 ECTS)

Disciplinary and Interdisciplinary conrses

Fatty acids in dairy cattle in relation to product quality and health, Ghent, Belgium
SummerSchool Ruminomics, Piacenza, Italy

Methagene workshop (Granada, Spain; Catania, Italy; Jokioinen, Finland)
Preconference workshops: SF¢ and climate respiration chambers (Melbourne,
Australia)

Methagene training school on Rumen Microbiol Ecosystem (Porto, Portugal)

Adpanced Statistic courses
Advanced statistics of Experimental Design, WIAS

Professional Skills Support Courses (6 ECTS)
Scientific Publishing
Basic IP for TIFN researchers

Year
2013
2013

2013
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2016

2012
2013, 2014
2014
2014

2013
2014
2015
2016
2016

2012
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2014, 2015, 2016
2016
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2012

2013
2013

1 One ECTS credit equals a study load of approximately 28 hours.
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Professional Skills Support Courses (continued)
Techniques for Writing and Presenting a Scientific Paper
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Writing Grant Proposals
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