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Abstract 

Soils have an important role in providing ecosystem services to plants, animals and humans. 
Information about soils is often exchanged using soil types. In this way information about a whole set of 
soil properties can be communicated. However, soil maps using soil types often contain complex 
mapping units. Complex mapping units are map features that incorporate multiple soil types with their 
distributions and have the advantage that at small scales still all the soil information can be included. 
The problem with these complex mapping units is that it is unknown where the soil types are located in 
the mapping unit. This makes it hard to interpret these soil maps. To overcome this, complex mapping 
units are often converted to simple mapping units. The most common method is to generalise the whole 
mapping unit with the dominant soil type, allowing the loss of all the spatial variation. To prevent the 
loss of the spatial variation, a recent development uses a catena based on one covariate to 
disaggregate a complex mapping unit. However, disaggregating using one covariate or the dominant 
soil type is not ideal.  

In this study, two methods are proposed to disaggregate soil maps with complex mapping units 
based on multiple covariates. Both methods use machine learning, multiple covariates and detailed soil 
maps. Their difference is based on their usage of complex mapping units. The first method, called the 
loosely enforced method, uses the soil type distributions as a covariate for the machine in the same way 
as the other environmental covariates. This method disaggregates the mapping unit be giving each cell 
the soil type with the highest probability. The second method, called the strictly enforced method, uses 
only the environmental covariates in the machine and predicts the probability for all the soil types. An 
algorithm disaggregates each cell by using the probabilities and the distribution of the soil types.  

To explore the potential, several disaggregation models were developed, using the two 
disaggregation methods, two datasets and two learning algorithms for the machine, i.e. multinomial 
logistic regression and tree ensemble. When the disaggregation methods were validated, accuracies of 
50 till 60% could be reached. Validating the strict enforced method is more difficult as a whole area 
has to be left out of the training and the accuracies are hard to interpret. When the disaggregation 
methods are used on large areas outside training areas, especially the loosely enforced method got it 
difficult.  

The ideal option to disaggregate complex mapping units is the strict enforced method, nevertheless 
improvements have to be made to use in it in a feasible way. 
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Introduction 

Soils play a valuable role in contributing ecosystem services, like providing nutrients to plants and 
storing carbon as soil organic matter (Palm et al. 2007). An efficient way to exchange information 
about soil can be the usage of soil types. Soil types give information about a whole range of different 
soil properties and can connect this information to possible applications of the soil. Many countries in the 
world have their own soil classification system, but two classification systems are often used 
internationally: Soil Taxonomy, which is developed by the Soil Survey Staff (1999) and has at the first 
level 12 soil orders and the World Reference Base for Soil Classification (WRB), which is developed  
by the FAO as a correlation umbrella for all the different classification systems by and has at the first 
level around the 30 Reference Soil Groups (RSG) (IUSS Working Group WRB 2015). 

Soil maps based on an explanatory soil survey often contain complex mapping units. These 
complex mapping units contain several soil types and their distribution in the mapping unit. The 
advantage of using complex mapping units is that at even small scales still all the soils that occur can be 
represented. However, the soil types in one complex mapping unit can have very different properties 
and the exact spatial distribution in the unit is not known. This makes it more difficult to interpret soil 
data especially for interested people outside the field of soil science, as advanced soil knowledge of 
the area is needed to interpret the complex mapping units. Also for spatial models using soil maps as 
input, it is difficult to use complex mapping units as they can often use only 1 soil type at 1 location. 

 

 
Figure 1 The left picture shows the dominant soil types, while in the right picture every mapping unit has his own 

colour and can be seen that not only the dominant soil type occurs in a mapping unit. 
 
Well-known examples of soil maps with complex mapping units are the STATSGO2 for the United 

States, the SOTER maps for different regions around the world and at a global level the Harmonized 
World Soil Database (HWSD). The HWSD is the successor of the Soil Map of the World and its 
development started in the 1960’s and 1970’s by the FAO and UNESCO (Selcer 2015). Their goal was 
to make global soil data better available by creating a uniform soil dataset. The HWSD contains over 
15 000 soil mapping units and is freely accessible (Fao/Iiasa/Isric/Isscas/Jrc 2009). Around 20% of 
the mapping units in the HWSD contains 1 soil type and are thus simple mapping units. The other 80% 
are complex mapping units. On average, the HWSD contains 2.6 soil types per mapping unit, with a 
maximum of 10 soil types (Figure 2). 
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Figure 2 The histogram on the left shows the amount of soil types per complex mapping unit, with on average 

2.7 soil types per mapping unit. The histogram on the right shows the coverage in percentage of the dominant soil type 
in the complex mapping unit with an average of 70%.  

 
Often complex mapping units in a soil map are difficult to 

use and are converted to simple mapping units. Two methods are 
often used now: the dominant soil type method. The most common 
method is the dominant soil type method (DST). With this method 
the soil type that occurs the most in the complex mapping unit, 
called the dominant soil type, is chosen to represent the complete 
simple mapping unit with only one soil type. In this way, it 
generalises the complex mapping unit into a simple mapping unit. 
This method has the advantage that it is very easy to process 
and to understand the conversion. However, the main 
disadvantage is that it neglects the variation of soil types in a 
complex mapping unit. This may not be a large problem for 
complex mapping units with a very dominant soil type, but for 
mapping units where there is much variation the generalisation 
can cause a large error when converting to simple mapping units. 

 
Figure 3 Schematic overview of the dominant soil type method (DST) 

which generalises the simple mapping unit with the soil type that covers the 
largest part of the complex mapping unit. 

 
 
A method that is developed recently to respect the variation of soil types in complex mapping unit 

is the catena method. The catena method uses a standardized catena based on one covariate. The soil 
types are ranked, often using expert knowledge. The disaggregation is based on the catena, the 
covariate and the distribution of the complex mapping unit. The soil type that has the highest ranking in 
the catena will get the fraction of the area in the mapping unit that has the highest values for the 
covariate. This continues with the soil type ranked second getting the fraction of the mapping unit that 
has the highest values for the covariate and still left. This continues until all soil types are done and the 
product will be a complex mapping unit disaggregated into simple mapping units respecting the 
original distribution of the complex soil map. In this study S-World of Stoorvogel et al. (2017) is used 
for the catena method. S-World uses a catena based on elevation, i.e. a toposequence, and is based 
on the HWSD. 
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Figure 4 Graphical overview of disaggregating a complex mapping unit using the catena method in S-World. S-

World uses as a catena a toposequence, thus based on elevation. The toposequence is here from low to high, soil type C 
then A and as last B. Thus in complex mapping unit 1 the lowest 20% is disaggregated as B and the highest 80% as A. 
For complex mapping unit 2 this will result in the lowest 30% for B and the highest 70% for C. The result is that the 
complex mapping unit is disaggregated based on the distribution of the complex mapping unit and elevation into simple 
mapping units. Graphic from Stoorvogel et al. (2017). 

 

 
Figure 5 Schematic method of the catena method, where the disaggregation is based on one covariate, a catena and 

the distribution of the complex mapping unit. 
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An option to improve the disaggregation of complex mapping units is using multiple covariates. 
Relations between the covariates and the complex soil mapping will be used to disaggregate complex 
soil maps. However, these relations are not yet known. Therefore to relate soil properties to 
environmental properties, the scorpan formula of McBratney et al. (2003) is often used, but it is not 
explicitly defined. To approximate these relations machine learning, also known as statistical learning 
can be used. With machine learning, the relations are approximated in a training phase, where 
detailed soil maps will act as a known outcome of the disaggregation. The machine will then search for 
relations between the covariates and the detailed soil maps. The soil type distributions can be used in 
two ways, i.e. in the same way as the other covariates (the environmental covariates) or not as a 
covariate for the machine, but afterwards in combination with the probabilities of the machines.  

Using machine learning to disaggregate complex mapping units is already done on smaller scales, 
e.g. Italy by Lorenzetti et al. (2015) and Häring et al. (2012) for Bavaria. However, both groups did 
the training of the machines in the same area as they planned to disaggregate and did not try to use 
machine outside the training area. 

 
The goal of this study is to explore the use of machine learning with multiple covariates to 

disaggregate complex mapping units in soil maps and see if it is possible to use this method outside the 
areas used for the training. 
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Methods 

Several methods exist to disaggregate or generalise complex mapping units into simple mapping 
units. These methods can be differentiated from each other by their use of covariates, if they use 
multiple covariates and how they handle the soil maps with complex mapping units (Figure 6). The 
dominant soil type method uses no covariates and the catena method uses one covariate. 
Disaggregating using multiple covariates can be done in two ways. The first method is to use the 
distributions of the soil types according to the complex mapping units as covariates for the machine just 
like the other environmental covariates. The other way is to only use the environmental covariates for 
the machine and then disaggregate at the level of the mapping unit using the probabilities according to 
the machine, while respecting the distribution of the complex mapping unit. 

 
Figure 6 The four methods to convert complex mapping units into simple mapping units can first be differentiated 

based on their number of covariates they use. If no covariates are used, the method is called the dominant soil type 
method (DST). The catena method uses one covariate. When multiple covariates are used, the complex soil map can be 

used as a standard covariate, called the loosely enforced method and when it is not used as a standard covariate the 
strict enforced method.  

 
To explore the application of multiple covariates to disaggregate complex soil maps, the loosely 

enforced and strict enforced method are further examined in this study. The methods were evaluated 
for two complex soil maps and use therefore two datasets. The first dataset is DA and uses STATSGO2 
the other dataset is DB and uses the HWSD. The STATSGO2 covers United States at most places with a 
scale of 1 : 250.000. The HWSD has a global coverage at a resolution of 30 arc seconds.  

As learning algorithm for the machines, two types of functions are chosen: multinomial logistic 
regression and tree ensemble. The multinomial logistic regression is done in R in much the same way as 
Kempen et al. (2009). However, for the machines using DA, 50 out the 128 soil were used as they 
covered the 95.55% of the training dataset. The other soil types were thus not taken into account, 
because they did not have enough records. In addition, the complex soil map was not taken into 
account. For DB multinomial logistic regression were not performed yet, due to the computational load. 
A tree ensemble is an adjusted random forest algorithm. The difference between a tree ensemble and 
a random forest is that with RF the trees use all the points. A tree ensemble uses instead for every tree 
only a randomly selected fraction of the training dataset. The logistic regression and tree ensemble 
were chosen because they differ a lot, in how they handle the training and because of their relative 
simplicity and flexibility. Other more advanced algorithms, like neural networks or support vector 
machines were also an option, but they cannot handle categorical variables and have a large 
computational load, making it not feasible for this study. 

The disaggregation’s in this study could thus differ in their disaggregation method (strictly of 
loosely enforced), which soil map (STATSGO2 or HWSD), and what type of machine (tree ensemble or 
multinomial logistic regression). An overview of the disaggregation models can be seen in Table 1. 
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Table 1 List of the disaggregation models and their characteristics 

Name Disaggregation 
technique 

Algorithm Dataset Trainings 
points 

Remarks 

MLALR Loosely enforced Logistic Regression DA  100 000 No complex 
soil map as 
input 

MLATE Loosely enforced Tree Ensemble DA  400 000  
MLBTE Loosely enforced Tree Ensemble DB 1 000 000  
MSALR Strict enforced Logistic Regression DA 100 000  
MSBTE Strict enforced Tree Ensemble DB 1 000 000  
MSBLR Strict enforced Logistic Regression DB - not completed 

 

Loosely enforced disaggregation 
The loosely enforced disaggregation treats the soil map with the complex mapping units the same 

as the other covariates. This means that the distributions of the soil types are used similar like the 
environmental covariates. This approach has some similarities with digital soil mapping.  A function, i.e. 
the machine, which is based on empirical relations with the covariates, predicts a soil type classification. 
The function can have several forms and for this study, logistic regression and tree ensemble were 
chosen. The main difference with digital soil mapping is that with loosely enforced disaggregation no 
geostatistical techniques are used. 

For dataset DA two machines were trained, one using a tree ensemble (MLATE) and the other one a 
logistic regression (MLALR). The MLATE was trained with the Konstanz Information Miner (KNIME) 
(Berthold et al. 2008) and uses 400 000 trainings points. The fraction of the data that every tree got, 
called the learning fraction, was set to 10%, the minimum node size, maximum tree depth was set to 20 
and the number of tree at 100. These settings were chosen to reduce computational load and decrease 
the chance of overfitting, while still be able to achieve accurate results. The disaggregation is done by 
selecting the soil type that was predicted the most by the trees. The fraction of the trees predicting this 
soil type is called the confidence level and can be used as a proxy for the accuracy.  

The MLALR was trained using the programming language R in much the same way as Kempen et al. 
(2009) using a multinomial logistic regression. The soil type that has the highest probability will be 
predicted as the disaggregated soil type for that location.  

For the dataset DB a tree ensemble (MLBTE) was trained with 1 000 000 points. MLBTE has the 
same settings for the maximum tree depth, minimum node size, learning fraction and number of trees as 
for MLATE. In this way, they are very comparable, but use another dataset and different soil map to 
disaggregate. 

  
  

Figure 7 Schematic overview of the loosely enforce method, where a 
machine is trained with multiple covariates, detailed soil data and the complex 
mapping unit. The disaggregation is then based on the soil type with the 
highest probability according to the machine. 
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Strict enforced disaggregation 
The strict enforced disaggregation method (Figure 7) uses the machines that only will be trained 

with the environmental covariates and the detailed soil data. When the disaggregation is done the 
machine will produce probabilities for every soil type that it will occur based on the input of 
environmental covariates. With these probabilities, an algorithm will be used that combines the 
probabilities and distribution according to the complex mapping unit to disaggregate the mapping unit 
into simple ones. In this way, the original distribution according to the complex soil map will be 
respected. 

While the strict enforced disaggregation uses not the complex mapping units as a covariate for the 
machine, the machine settings are the same as for the machines for the loosely enforced 
disaggregation. This means that the MSALR is comparable with MLALR and MSBTE with MLBTE. MSBLR 
is similar to MLALR. In practice, the disaggregation is done at the level of the mapping unit, using the 
disaggregation algorithm and the calculated probabilities of the machine. With this information, the 
disaggregation algorithm will disaggregate the complex mapping unit in the following way: 

 
• For the complex mapping unit the number of grid cells is counted. 
• According to the distribution of the complex mapping unit, the rounded down amount of cells 

for soil types occurring in the unit is calculated by using the distribution fraction multiplied by 
the amount of cells in this complex mapping unit. 

• Starting with the soil type that got the most cells in the complex mapping unit, the cells with the 
highest probability for this soil type according to the machine are assigned with this soil type.  

• This continues with soil type with the second most cells in the mapping unit and then with next 
soil type until all soil types are done. 

• Because of the rounding down of the amount of cells assigned, some cells are remaining. Those 
cells get the soil type that has the highest probability for that cell 

 
 
 
 
 
 
 
 
  

Figure 8 Schematic overview of the strict enforced method, where a machine is trained with multiple covariates 
and detailed soil data. The disaggregation is then based on the complex mapping unit and the probabilities calculated 
by the machine. 
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Soil data 
To train the machine detailed soil datasets are needed to provide a “known” outcome of the 

disaggregation. With the “known” outcomes the machines can try to find links between the covariates 
and the detailed soil datasets. The detailed soil datasets are acquired from many different sources and 
from different regions around the world as can be seen in Table 2. These regions are called the 
training areas as there the training of the machine takes place. Due that, the detailed soil data was 
acquired from different sources their formats and classification system differed a lot. After they are 
pre-processed into the same format and classifications, the detailed soil datasets are combined into one 
dataset.  

 
Table 2 Outline of the soil datasets used and their format, sources and soil classification system. 

Type Coverage Dataset Format Classification 
System 

Source 

Complex World HWSD Raster WRB Fao/Iiasa/Isric/Isscas/Jrc 
2009 

Complex United States STATSGO2 Polygon Soil Taxonomy Soil Survey Staff 2016b 
Simple United States gSSURGO Raster Soil Taxonomy Soil Survey Staff 2016a 
Simple Canada National Soil 

Database 
Polygon Canadian “National Soil Database,” 

n.d. 
Simple Brazil Updated Brazilian’s 

Georeferenced Soil 
Database 

Point Brazilian Muniz et al. 2011 

Simple New Zealand FSL New Zealand 
Soil Classification 

Polygon New Zealand “FSL New Zealand Soil 
Classification,” n.d. 

Simple Flanders The soil map of the 
Flemish region 

Polygon WRB Dondeyne et al. 2014 

Simple Costa Rica Digital Soil Map of 
Costa Rica 

Point Soil Taxonomy Mata Chinchilla and 
Sandoval Chacón 2016 

 
First, the datasets require having the same classification system. This study will use the World 

Reference Base (WRB) as soil classification system (IUSS Working Group WRB 2015; IUSS Working 
Group WRB 2006). Therefore, datasets that use a different soil classification system were correlated 
using the correlation table in the Appendix. The correlation table was based on information from 
different sources (Krasilnikov et al. 2009; Soil Survey Staff 1999; Canarache, Vintila, and Munteau 
2006; Soil Classification Working Group 1998; National Cooperative Soil Survey 2009). Every 
“foreign” soil type was correlated to 1 WRB soil type. This introduces an error, because soil types do 
not correlate exactly one to another. However, only one soil type could be used, which is the one that 
correlates the most. When the source uses older variations of the WRB, e.g. WRB2006 (IUSS Working 
Group WRB 2006), it was not correlated to the latest version, namely WRB2014 (IUSS Working Group 
WRB 2015). This was done to prevent even more correlation errors. The correlation table shows then 
the most likely soil type it could be correlated in WRB. However, around half of the listed soil types 
could be correlated in another way, by for example adding or removing a qualifier. Even another 
Reference Soil Group (RSG) could be possible, especially for soil types that correlate with the group 
Chernozems, Kastanozems and Phaeozems, the group Anthrosols and Technosols and the group Alisols 
and Acrisols. 
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After the correlation, the detailed soil data are converted to a point dataset. The advantage of 
converting to a point dataset is that apart from only soil maps, soil profile datasets also can be used. 
Soil profiles are actually verified in the field instead of interpreted by the soil mapper, nevertheless 
their support is limited and they contain less information than a soil map, because of their format. To 
convert the detailed soil data to points, the detailed soil datasets that were in polygon format were 
rasterized based on majority and with a 30 arc second mask. This mask ensures that all the soil data 
and covariates used in this research will have the same raster properties. The only raster dataset used, 
i.e. gSSURGO, was also resampled based on majority to the 30 arc second mask and added to the 
rasterized polygons. The combined raster dataset is then converted by replacing every cell by a point 
in the centre of the cell. Now the datasets with soil profiles can be added to the point dataset. In this 
way, a point dataset is created with detailed soil data from around the world (Figure 8). 

 
Figure 9 Amount of points per data source that are collected in total for all the datasets after the pre-processing is 

done. 
 
The two complex soil datasets used in this study need also to have some pre-processing before 

usage. The STATSGO2 uses the Soil Taxonomy and has to be correlated to WRB using the correlation 
table in the Appendix. The format of the STATGO2 is polygon and is therefore rasterized to a 30 arc 
second raster by using the mapping unit that covers the largest part of the cell. The HWSD was 
already provided in WRB and in a 30 arc second raster and needs no correlation and resampling. 
However, for both complex soil maps the distribution of the soil types was reduced to the level of RSG 
in order to reduce the dataset size.  The information of the complex soil data were added to points 
generated with the detailed soil data. 

Two datasets were created with a selection of the points, as using all the points would be 
infeasible. Dataset DA contains 20% of the points located in 20 US states with the detailed soil data 
from the gSSURGO. The other dataset (DB) holds 1 307 494 points randomly selected from all the 
datasets used. The distribution of the points in DB can be seen in Figure 9. Costa Rica and especially 
Brazil have a very low percentage of the points in DB, because only soil profiles were available, which 
generate fewer records than soil maps. However, they are located in (climatic/pedological) regions 
that would not be covered by the other datasets and are verified in the field. Most of the detailed soil 
data are from the USA with almost ten million points located at the United States, its unincorporated 
territories and associated states. This is by the huge coverage of the gSSURGO, which genereates 
many records in the point dataset. To reduce the risk of biasing the machine, only 7% of the points in 
the USA are selected. For Flanders 80% was selected, a rather high value was selected as it was the 
only detailed soil dataset that did not have to be correlated. However, still the majority of the points in 
DB were located in the USA.   
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Figure 10 The percentage of points per data source for dataset DB. 
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Covariates 
Seventeen environmental properties were selected as covariates to resemble the scorpan factors. 

There were no covariates selected to resemble the age and spatial position. For the reason that there 
are no datasets available for soil age. The spatial position is not used as it is already incorporated in 
the other factors, like this is done by the corpt  formula of Jenny (1941).  

The soil component factor in the scorpan formula is treated differently than the other factors. This 
factor is resembled by the distributions of soil types in the complex mapping unit. This is prior soil 
information that loosely enforced disaggregation will use in the same way as the environmental 
covariates. The strict enforced disaggregation will not use the distribution of soil types as covariate for 
the machine, but uses the distributions when the disaggregation algorithm is used. 

The climate factor is resembled by eight numeric covariates that cover different aspects of 
temperature and precipitation. Mainly their mean values are used and how they vary per year, season 
and day. This data was acquired from the bioclimatic variables from WorldClim at a 30 arc second 
resolution (Hijmans et al. 2005). 

The organism or vegetation factor is assumed to be correlating with the NDVI. The NDVI is often 
used as a source to estimate biomass or plant activity (Glenn et al. 2008). The dataset is acquired from 
the ESA Climate Change Initiative - Land Cover project 2014-2017. This dataset consists out 52 images 
with the average NDVI for every week in the years 1999 until 2012. The mean of the 52 images was 
calculated and bilinear resampled from 1 kilometre grid to 30 arc second.  

For the relief factor, six numerical DEM derivatives were calculated and one categorical dataset 
was used. The numerical topographic covariates were derived from the GMTED2010 (Danielson and 
Gesch 2011) and calculated with the Geomorphometry and Gradient Metrics Toolbox (Evans, 
Cushman, and Theobald 2014). Especially the Compound Topographic Index (CTI) and landform 
curvature seem to be important as they correlate with soil depth and other soil characteristics (Gessler 
et al. 1995). The landform type is from the Sayre et al. (2014) and they characterised the whole world 
in 10 types of landform based on a landform classification of Hammond (1954) and the GMTED2010.  

Sayre et al. (2014) published also a lithology map with 16 types of lithology, which will serve as 
the covariate that approximates the factor parent material. Their source was the GLiM developed by 
Hartmann and Moosdorf (2012). 

 
Table 3 The scorpan factors used and by which covariates they are approximated and their source 

Factor Covariate Source 

Relief 

Compound Topographic Index 

Danielson and Gesch (2011); 
Evans, Cushman, and Theobald 
(2014) 

Dissection 
Heat Load Index 
Landform Curvature 
Roughness 
Surface Area Ratio 
Landform type 

Sayre et al. (2014) 
Parent material Lithology type 

Climate 

Isothermality 

Hijmans et al. (2005) 

Maximum Temperature Warmest Month 
Minimum Temperature Coldest Month 
Mean Diurnal Range 
Temperature Seasonality 
Annual Mean Temperature 
Precipitation Seasonality 
Annual Precipitation 

Organism Mean NDVI ESA Climate Change Initiative - 
Land Cover project 2014-2017 
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At the end of the pre-processing of the data, the datasets contain the soil type according to the 
detailed soil data, the distribution of the RSG’s by the complex soil maps and the covariates and are 
ready to be used. 

Validation 
Both datasets were split in a trainings set and a validation set (Table 4). The validation points were 

randomly selected and left out of the training process. The validation datasets are thus located in the 
training areas. To examine the disaggregation models when they disaggregate outside the trainings 
areas, the datasets are created with covariates and information from the complex mapping units. For 
dataset DA, Kansas was available to assess the accuracy of the machines when disaggregating outside 
the training areas. However, for dataset DB, there was no detailed soil data available outside the 
trainings areas and only the confidence levels of the machines using the tree ensemble could be used. 

 
Table 4 Comparison between the datasets DA and DB, in the number of points that could be maximum used for 

training and validation and which soil map with complex mapping units is used. 

 DA DB 
Complex soil map STATSGO2 HWSD 
Training (max) 705 329 1 000 000 
Validation 40 000 305 117 
Left out 1 180 2 377 
Total 746 509 1 307 494 
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Results 

The disaggregation methods were evaluated based on their accuracy for the validation datasets 
(Figure 11). For the strict enforced method, the accuracy is estimated by using the most probable soil 
type and thus the disaggregation algorithm is not used here.  The curves show a logarithmic trend with 
the increase of the amount of trainings points, which means that there is a theoretical maximum of the 
accuracy than can be achieved.   

 

 
Figure 11 The accuracy of the machines compared with the number of trainings points. Except for MLALR, all the 

machines seem to follow a logarithmic trend and thus will always have a theoretical maximum accuracy they could 
achieve. 

 
To evaluate the different configuration options for machines using the tree ensemble algorithm, 20 

variations of MLATE with different configurations were trained. The options that were evaluated were 
the amount trainings of trainings points (𝑛𝑛), the maximum tree depth (𝑇𝑇𝑑𝑑) and the minimum node size 
(𝐿𝐿𝑠𝑠). A logarithmic regression model was fitted to data and could approximate the accuracy with a R2 

of 0.9995. 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 0.0375ln(𝑛𝑛) +  0.0269 ln(𝑇𝑇𝑑𝑑) − 0.0287 ln(𝐿𝐿𝑠𝑠)  
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Call: 
lm(formula = Prediction_test ~ 0 + Ln.n. + Ln.Ts. + Ln.Ls., data = tree_ensemble) 
 
Residuals: 
Min         1Q     Median         3Q        Max 
-0.0170294 -0.0071663  0.0002841  0.0088910  0.0108630 
 
Coefficients: 
Estimate Std. Error t value Pr(>|t|) 
Ln.n.   0.037503   0.001589  23.606 1.96e-14 *** 
Ln.Ts.  0.026864   0.004870   5.517 3.77e-05 *** 
Ln.Ls. -0.028714   0.002158 -13.308 2.04e-10 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.009148 on 17 degrees of freedom 
Multiple R-squared:  0.9996, Adjusted R-squared:  0.9995 
F-statistic: 1.373e+04 on 3 and 17 DF,  p-value: < 2.2e-16 
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Disaggregating complex soil maps 

 

Figure 12 Close up of South West Kansas converted from the complex mapping units in STATSGO2 to simple map units, 
using DST, MLATE and MSALR. Kansas was not included in the training dataset DA and as comparison the detailed soil map 
is provided. 
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For dataset DA the validation area was Kansas, thus was not included in the training at all. Figure 
12 shows the results of the three different disaggregation methods for South West Kansas. The MLATE, 
MSALR and the dominant soil type method were compared with the detailed soil map (gSSURGO) of 
the area. Differences between the maps can be noticed immediately and the first thing that stands out 
is that MLATE and DST ignore the Vertisols completely, although there are some large patches of 
Vertisols according to the gSSURGO. However, MSALR predicts very small patches of Vertisols, but not 
at the correct place. Another noticeable thing is the strip in the south where MLATE outlines Cambisols; 
the dominant soil type method expects to be Luvisols and MSALR Fluvisols with Cambisols or Luvisols. 
Also east of this strip some differences are noticeable. There the DSM predicts close to the river 
Fluvisols followed by Calcic Chernozems and Luvic Phaeozems, while the MLATE expects a catena 
starting at the river with Phaeozems, then Regosols and Luvic Phaeozems. The MSALR predicts Fluvisols, 
followed by Luvisols and then Luvic Phaeozems. Looking at the detailed gSSURGO, the toposequence is 
as follows: Fluvisols at the riverside, surrounded by (Gleyic) Phaeozems, then Regosols with some 
patches of Cambisols and Luvic Phaeozems at the top of the toposequence.  

 
Figure 13 The accuracy of the different machines for Kansas using the dataset DA plotted against the confidence 

level of MLATE. Most of the data lies between the 0.3 and 0.8 of the confidence level. If the machines follow the 1:1 line, 
the confidence level will be a good proxy for the accuracy. 

 
When the accuracy is calculated for the whole of Kansas and plotted against the confidence level 

of MLATE, it can be seen that the MLATE follows the 1:1 line mainly in the part where a large majority 
of the cells is present, the range from 0.3 until 0.8. It shows also that MLATE performs almost the same 
as the dominant soil type method, but it must be noticed that the DST does not use the variation in the 
map units while MLATE and certainly MSALR does include. It shows also that the disaggregation 
algorithm significantly improves the disaggregation compared when only the most probable soil type is 
used.  

With the machines trained for dataset DB, Northern Europe was selected to extrapolate. The 
MSBTE used only the most probable soil type and did not use the disaggregation algorithm, as it was 
too computational heavy. The MLBTE has more variation than MSBTE; probably due it incorporated the 
HWSD. The accuracy could not be assessed, as only for Flanders, there were detailed soil maps 
available, but they were used in the training. To approximate the accuracy, the confidence level can be 
used, which is for MSBTE 0.26 and for MLBTE 0.20. This is very low and means that the disaggregation 
of Northern Europe is done with a large error and probably DST would deliver a better job. For the 
disaggregation in Figure 14, it can be seen that the confidence levels are much higher in the USA and 
Canada, than in Mexico and the other countries. As there were no trainings points located in the other 
countries this was expectable.  
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Figure 14 The results of the disaggregation of the machine MLBTE and MSBTE compared with S-World and the DST method. For all the maps, the soil types are reduced to the level of RSG. In addition, the confidence levels of the machines are plotted and a clear distinction can 

be seen between the confidence level in areas where the training took place (USA and parts of Canada) and where no data is used for the training (Mexico and the Caribbean). 
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Figure 15 The results of the disaggregation of the machine MLBTE and MSBTE compared with S-World and the DST method. For all the maps, the soil types are reduced to the level of RSG. The confidence level is also plotted with an average value of 0.26 for MLBTE and 0.20 

for MSBTE.  
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Discussion 

Developing the disaggregation methods 
One of the main problems is how to assess the methods. In this study the accuracy is used, by giving 

a 1 for an exact correct prediction and otherwise a 0. The average of all those ones and zero gives 
the accuracy. However, making such as sharp boundary between a correct prediction and an incorrect 
prediction is arguable. For example when the Reference Soil Group is predicted correctly, but not the 
qualifier, the disaggregation model came close. Another example is a disaggregation model predicting 
a RSG that is closely related, e.g. Chernozems vs Kastanozems, compared with a disaggregation model 
that predicts a very different RSG, e.g.  Chernozems vs Histosols. In this study, the accuracy is estimated 
by only using the exact correct predictions. This results that in the examples mentioned before, all 
predictions were classified as wrong, nevertheless intuitively, some of the disaggregations feel to 
perform better than the other ones. Another aspect is the disaggregation model compared with a 
human soil surveyor in the field. Some qualifiers are based on variables, e.g. base saturation, and are 
needed to be measured in a laboratory. Only then, the qualifier Eutric or Dystric can be assigned to 
the soil description, but it is not possible to do this easily at the soil pit. It is then questionable if the 
machine should perform just as well compared with more easily to measure qualifiers.   

A solution to these accuracy problems could be to not only use 1 for exactly correct and 0 for the 
other predictions, but also values in between. Rossiter et al. (2017) propose to use the taxonomic 
distance as the value to assess the accuracy. A short taxonomic distance would result to value close to 1 
and a long taxonomic distance to a value of 0. A table with taxonomic distances does not exist yet and 
has to be calculated by ourselves. To calculate the taxonomic distance Rossiter et al. (2017) use the 
square root of the divided amount of present diagnostic and environmental conditions for soil type A 
by the amount of present conditions for soil type B. However, choosing which conditions and when they 
are present is a subjective choice. Also when the data used to calculate the taxonomic distance is the 
same as is used for the training and validation of the disaggregation model, the taxonomic could be 
biased, which results serious problems when extrapolating. The table with taxonomic distances would 
also be huge as for example MLBTE could choose out of 330 soil type, leading to a table of 108 900 
values. Instead of calculating the taxonomic distances, using the presence of diagnostic and 
environmental conditions the hierarchal system of soil classification could be used. This leads to the 
problem that the WRB does not have a clear hierarchal structure and some soil types may be more 
correlated than they are according to the structure of the system (Krasilnikov et al. 2009). 

Using a validation dataset gives quite a good understanding of the quality of the disaggregation 
model. This data is not used for the training, but is located in the training area. However, for the strict 
enforced method it cannot be used, as it is a random selection of points and not whole mapping units. 
Therefore, the disaggregation algorithm cannot be applied on the validation dataset and only the most 
probable soil type can be used. To estimate the accuracy of the strict enforced method a whole area is 
needed, that has a detailed soil map and thus will be left out of the training. For DA Kansas was chosen 
to be the validation area. The disadvantage of this that only the accuracy is measured for that 
particular area with its combination of covariates for that landscape and climate. This is maybe the 
reason that the loosely enforced machine MLATE got a higher accuracy for Kansas than it has for the 
standard validation dataset. So validating in this way is very hard and difficult to interpret and will 
probably need more areas to be left out of training which results in a smaller trainings dataset, but it is 
the only way of validating the strict enforced method. 

Another aspect of the accuracy and more difficult to measure is the quality of the disaggregation 
spatially. When the complex mapping unit is disaggregated into zones with only simple mapping units, 
it is important that it follow the contours that occur in the real world. With the accuracy as calculated as 
above, this is not captured, as this only takes correct if it is on the right spot and not the shape. To 
measure this it has same the problem as the validation of the strict enforced method. It is not possible to 
use the validation set as it covers a random selection of points and not mapping units. Thus, an area is 
needed to validate. The soil type would then be neglected and the shapes of the new simple map units 
would then be compared with the real world. However, this would require quite a difficult algorithm to 
calculate the similarity. 

 
 



 21 

Besides evaluating the disaggregation methods on their accuracies, the quality of the data used as 
input is also important to achieve reliable results. The data that are used can be divided in the detailed 
soil data, the complex soil data and the covariates. The qualities of the detailed soil data are very 
important for the training of the machines, as it will be assumed the truth. However, as a rule of thumb, 
70% of a soil map is correct. This results that 30% of the trainings dataset and validation dataset is 
incorrect, while it is used as the truth. This may be to a lesser extent for the soil data from profile 
datasets as they are verified in the field by a soil surveyor, but also there errors could occur. It should 
therefore be kept in mind that the disaggregation models do not disaggregate the real world, but the 
world according to the soil maps. For the loosely enforced method, it is very important that there are 
meaningful relations between the complex soil map and the detailed soil data. Otherwise, when the 
difference in scale between the complex soil maps and detailed soil data is too large, it would be 
worthless to search for relations. This could have happen for MLBTE in North America, where the HWSD 
does not have a large degree of detail, while there are very detailed soil maps for the USA and 
Canada. This happened, because North America in the HWSD was not updated anymore after the 
completion of The Soil Map of the World in 1960 (Fao/Iiasa/Isric/Isscas/Jrc 2009). For the 
disaggregation models using DA, this is solved by using the STATSGO2, which seems to be more 
related to the detailed soil data than the HWSD. This problem is not a big issue for the strict enforced 
method, as it does not search for relations with the soil type distribution in in the trainings phase. 
However, it will use the information from the complex mapping units in the disaggregation algorithm, so 
the disaggregated results will have the same scale and detail level as the soil map with complex 
mapping units. 

For the covariates, the main problem is which variables are chosen to resemble the scorpan factors. 
There is no standard way of doing this so it will always be a more or less subjective choice if the 
covariates resemble the scorpan factors. Besides this, there are two other requirements for the 
covariates. First, they should be globally available, which ensures that if relations are found they can 
be used everywhere to extrapolate. Second is that they have at least the same detail level as the 
complex soil map, in this way the covariates can have the same resolution as the soil map with complex 
mapping units. To see whether the covariates encapsulate the real world the density distribution of the 
covariates in the trainings dataset and the real world could be overlaid to see what kind of areas are 
over- or underrepresented. Using the overlay the machine can be inspected if it will be possible biased 
to some regions, which could lead to curious disaggregation results. The amount of covariates is also a 
subjective choice. Too few variables and differences between soil regions could not be seen, but too 
many will result in hard to find relationships and a large computational load. Thus, the covariates should 
be selected on their interaction with the soil forming processes.  
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Comparing disaggregation methods 
When comparing the outcomes of the disaggregation models they can be very different. This is the 

result of the very diverse ways of disaggregating the complex mapping units and there is not one 
single method that is the ideal way of doing the disaggregation. The advantage of using the dominant 
soil type method is that it is the quickest and easiest way to convert the complex soil map in a soil map 
with simple units. There are no covariates and no detailed soil maps needed or difficult algorithms. 
Nevertheless, you lose all the variation in the complex mapping unit as you assign the whole mapping 
unit to one soil type. This is not a problem if the soil type is very dominant, but there are many places 
where this is not the case and introduces a large error. However, the error is easy to estimate, as it is 
equal to the fraction of the other soil types, when the complex soil map would be completely right. 

The catena option has the advantage that it keeps the original variation of soil types in the 
complex mapping unit and it is easy to understand the disaggregation process. The disadvantage of 
the catena method is that soil cannot be explained using one covariate and therefore very difficult to 
choose the covariate. In addition, the ranking in the standardized sequence is based on expert 
knowledge and it is questionable if soils keep themselves to the catena in all the different circumstances 
of the world.  

Using more covariates would supposedly be better. However, there is no fixed formula for the 
relations between soil types and their environments. The loosely enforced method got high accuracy 
results in the areas where it was trained or that have more or less the same landscapes and was easy 
to validate when leaving points out of the training. However, extrapolating is quite tricky as the 
accuracy drops and it does not keeps itself to the distribution of soil types according to the complex soil 
map. This can lead to strange disaggregation results and it is very difficult to trace back why the 
disaggregation is done in that way. 

The strict enforced method has fewer problems with extrapolating the disaggregation model, 
because it keeps itself to the distribution according to the complex mapping unit. This leads to a more 
pedological sound way of disaggregating soil maps with complex mapping units. The disadvantage of 
this method is that after predicting the probabilities, they have to be noted for every soil type 
alongside with the distributions of the occurring soil types according to the complex mapping units. This 
creates a huge dataset and the disaggregation algorithm will take a large computational load if not 
programmed efficiently. Another obstacle occurs when a soil type is not covered in the trainings dataset 
but occurs in an area that will be disaggregated; those areas will then get the soil type with the highest 
probability and the disaggregation would differ a little bit compared with the original distribution. 
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Conclusions  

Disaggregating complex mapping units in soil maps can thus be done in several ways. The ideal 
option seems to be he strict enforced method theoretically, but has the disadvantage that it is difficult 
to process the algorithm and cannot be easily validated. This can be solved by using the loosely 
enforced method, which can be validated and processed more easily. However, this study shows that 
when disaggregating outside the training areas some curious results can happen and should be 
carefully done. These results are possible due that the disaggregation model is possibly biased to the 
training areas and does respect the distribution of the complex soil map, which leads to different results 
compared with the distribution of the complex soil map. For the algorithms used to learn the machines, 
the machines seem perform better with a tree ensemble than with multinomial logistic regression. The 
tree ensemble can handle more trainings points, has lower computational load and achieves higher 
accuracies than the multinomial logistic regression. When in the future the large soil maps with complex 
mapping units, e.g. HWSD, would be disaggregated, the MSBTE would be the best option. 
Nevertheless, the MSBTE has to be improved by using a larger variation of trainings points from around 
the world, having a more efficiently programmed disaggregation algorithm, and more sophisticated 
computing and better way to assess the accuracy of the disaggregation results. When this would be 
achieved, soil data would be better accessible to a public outside the field of soil science, leading to a 
better understanding of soils and their values. 
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Soil Correlation table 
Classification 

system Level 1 Level 2 Level 3 WRB name WRB 
code 

Brazil Alissolos Alissolos Crómicos AlissolosCrômicosargilúvicos Cutanic Alisols ALct 
Brazil Alissolos Alissolos Crómicos AlissolosCrômicoshúmicos Alisols AL 
Brazil Alissolos Alissolos Crómicos AlissolosCrômicosórticos Alisols AL 
Brazil Alissolos Alissolos Hipocrômicos AlissolosHipocrômicosargilúvicos Cutanic Alisols ALct 
Brazil Alissolos Alissolos Hipocrômicos AlissolosHipocrômicosórticos Alisols AL 
Brazil Argissolos Argissolos Acinzentados ArgissolosAcinzentadosdistróficos Acrisols AC 
Brazil Argissolos Argissolos Acinzentados ArgissolosAcinzentadoseutróficos Lixisols LX 
Brazil Argissolos Argissolos Amarelos ArgissolosAmarelosdistróficos Acrisols AC 
Brazil Argissolos Argissolos Amarelos ArgissolosAmareloseutróficos Lixisols LX 

Brazil Argissolos Argissolos Vermelho-
Amarelos ArgissolosVermelho-Amarelosalumínicos Acrisols AC 

Brazil Argissolos Argissolos Vermelho-
Amarelos ArgissolosVermelho-Amarelosdistróficos Acrisols AC 

Brazil Argissolos Argissolos Vermelho-
Amarelos ArgissolosVermelho-Amareloseutróficos Lixisols LX 

Brazil Argissolos Argissolos Vermelhos ArgissolosVermelhosditróficos Acrisols AC 
Brazil Argissolos Argissolos Vermelhos ArgissolosVermelhoseutroférricos Acrisols AC 
Brazil Argissolos Argissolos Vermelhos ArgissolosVermelhoseutróficos Lixisols LX 
Brazil Cambissolos Cambissolos Háplicos CambissolosHáplicosalumínicos Cambisols CM 
Brazil Cambissolos Cambissolos Háplicos CambissolosHáplicoscarbonáticos Calcaric Cambisols CMca 
Brazil Cambissolos Cambissolos Háplicos CambissolosHáplicosdistroférricos Dystric Cambisols CMdy 
Brazil Cambissolos Cambissolos Háplicos CambissolosHáplicoseutroférricos Eutric Cambisols CMeu 
Brazil Cambissolos Cambissolos Háplicos CambissolosHáplicospetroférricos Plinthic Cambisols CMpl 
Brazil Cambissolos Cambissolos Háplicos CambissolosHáplicossálicos Salic Cambisols CMsz 
Brazil Cambissolos Cambissolos Háplicos CambissolosHáplicossódicos Sodic Cambisols CMso 
Brazil Cambissolos Cambissolos Háplicos CambissolosHáplicosTadistróficos Dystric Cambisols CMdy 
Brazil Cambissolos Cambissolos Háplicos CambissolosHáplicosTaeutróficos Eutric Cambisols CMeu 
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Brazil Cambissolos Cambissolos Háplicos CambissolosHáplicosTbdistróficos Dystric Cambisols CMdy 
Brazil Cambissolos Cambissolos Háplicos CambissolosHáplicosTbeutróficos Eutric Cambisols CMeu 
Brazil Cambissolos Cambissolos Hísticos CambissolosHísticosalumínicos Folic Cambisols CMfo 
Brazil Cambissolos Cambissolos Hísticos CambissolosHísticosdistróficos Folic Cambisols CMfo 
Brazil Cambissolos Cambissolos Húmicos CambissolosHúmicosalumínicos Humic Cambisols CMhu 
Brazil Cambissolos Cambissolos Húmicos CambissolosHúmicosalumnoférricos Humic Cambisols CMhu 
Brazil Cambissolos Cambissolos Húmicos CambissolosHúmicosdistroférricos Humic Cambisols CMhu 
Brazil Cambissolos Cambissolos Húmicos CambissolosHúmicosdistróficos Humic Cambisols CMhu 
Brazil Chernossolos Chernossolos Argilúvicos ChernossolosArgilúvicoscarbonáticos Luvic Calcic Chernozems CHcclv 
Brazil Chernossolos Chernossolos Argilúvicos ChernossolosArgilúvicosférricos Luvic Phaeozems PHlv 
Brazil Chernossolos Chernossolos Argilúvicos ChernossolosArgilúvicosórticos Luvic Chernozems CHlv 
Brazil Chernossolos Chernossolos Ebânicos ChernossolosEbânicoscarbonáticos Calcic Chernic Chernozems CHchcc 
Brazil Chernossolos Chernossolos Ebânicos ChernossolosEbânicosórticos Chernic Chernozems CHch 
Brazil Chernossolos Chernossolos Háplicos ChernossolosHáplicoscarbonáticos Calcic Chernozems CHcc 
Brazil Chernossolos Chernossolos Háplicos ChernossolosHáplicosférricos Phaeozems PH 
Brazil Chernossolos Chernossolos Háplicos ChernossolosHáplicosórticos Chernozems CH 
Brazil Chernossolos Chernossolos Rêndzicos ChernossolosRêndzicoslíticos Rendzic Leptosols LPrz 
Brazil Chernossolos Chernossolos Rêndzicos ChernossolosRêndzicosórticos Rendzic Phaeozems PHrz 
Brazil Chernossolos Chernossolos Rêndzicos ChernossolosRêndzicossaproliticos Rendzic Phaeozems PHrz 
Brazil Espodossolos Espodossolos Cárbicos EspodossolosCárbicoshidromórficos Albic Carbic Podzols PZcbab 
Brazil Espodossolos Espodossolos Cárbicos EspodossolosCárbicoshiperespressos Albic Carbic Podzols PZcbab 
Brazil Espodossolos Espodossolos Cárbicos EspodossolosCárbicosórticos Albic Carbic Podzols PZcbab 
Brazil Espodossolos Espodossolos Ferrilúvicos EspodossolosFerrilúvicoshidromórficos Podzols PZ 
Brazil Espodossolos Espodossolos Ferrocárbicos EspodossolosFerrocárbicoshidromórficos Gleyic Albic Podzols PZabgl 
Brazil Espodossolos Espodossolos Ferrocárbicos EspodossolosFerrocárbicoshiperespressos Albic Carbic Podzols PZcbab 
Brazil Espodossolos Espodossolos Ferrocárbicos EspodossolosFerrocárbicosórticos Albic Carbic Podzols PZcbab 
Brazil Espodossolos Espodossolos Humilúvico EspodossolosHumilúvicoshidromórficos Albic Podzols PZab 
Brazil Espodossolos Espodossolos Humilúvico EspodossolosHumilúvicosórticos Albic Podzols PZab 
Brazil Gleissolos Gleissolos Háplicos GleissolosHáplicosalumínicos Gleysols GL 
Brazil Gleissolos Gleissolos Háplicos GleissolosHáplicosTacarbonáticos Calcic Gleysols GLcc 
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Brazil Gleissolos Gleissolos Háplicos GleissolosHáplicosTadistróficos Dystric Gleysols GLdy 
Brazil Gleissolos Gleissolos Háplicos GleissolosHáplicosTaeutróficos Eutric Gleysols GLeu 
Brazil Gleissolos Gleissolos Háplicos GleissolosHáplicosTbdistróficos Dystric Gleysols GLdy 
Brazil Gleissolos Gleissolos Háplicos GleissolosHáplicosTbeutróficos Eutric Gleysols GLeu 
Brazil Gleissolos Gleissolos Melânicos GleissolosMelânicosalumínicos Umbric Gleysols GLum 
Brazil Gleissolos Gleissolos Melânicos GleissolosMelânicoscarbonáticos Calcic Mollic Gleysols GLmocc 
Brazil Gleissolos Gleissolos Melânicos GleissolosMelânicosdistróficos Umbric Gleysols GLum 
Brazil Gleissolos Gleissolos Melânicos GleissolosMelânicoseutróficos Mollic Gleysols GLmo 
Brazil Gleissolos Gleissolos Sálicos GleissolosSálicosórticos Salic Gleysols GLsz 
Brazil Gleissolos Gleissolos Sálicos GleissolosSálicossódicus Sodic Gleysols GLso 
Brazil Gleissolos Gleissolos Tiomórficos GleissolosTiomórficoshísticos Thionic Histic Gleysols GLhiti 
Brazil Gleissolos Gleissolos Tiomórficos GleissolosTiomórficoshúmicos Thionic Humic Gleysols GLhuti 
Brazil Gleissolos Gleissolos Tiomórficos GleissolosTiomórficosórticos Thionic Gleysols GLti 
Brazil Latossolos Latossolos Amarelos LatossolosAmarelosácricos Acric Ferrasols FRac 
Brazil Latossolos Latossolos Amarelos LatossolosAmarelosacriférricos Acric Ferrasols FRac 
Brazil Latossolos Latossolos Amarelos LatossolosAmareloscoesos Ferrasols FR 
Brazil Latossolos Latossolos Amarelos LatossolosAmarelosdistroférricos Ferrasols FR 
Brazil Latossolos Latossolos Amarelos LatossolosAmearelosdistróficos Ferrasols FR 
Brazil Latossolos Latossolos Amarelos LatossolosAmeareloseutróficos Ferrasols FR 
Brazil Latossolos Latossolos Brunos LatossolosBrunosácricos Acric Ferrasols FRac 
Brazil Latossolos Latossolos Brunos LatossolosBrunosalumínicos Ferrasols FR 

Brazil Latossolos Latossolos Vermelho-
Amarelos LatossolosVermelho-Amarelosácricos Acric Ferrasols FRac 

Brazil Latossolos Latossolos Vermelho-
Amarelos LatossolosVermelho-Amarelosacriférricos Acric Ferrasols FRac 

Brazil Latossolos Latossolos Vermelho-
Amarelos LatossolosVermelho-Amarelosdistroférricos Ferrasols FR 

Brazil Latossolos Latossolos Vermelho-
Amarelos LatossolosVermelho-Amarelosdistróficos Geric Ferrasols FRgr 

Brazil Latossolos Latossolos Vermelho-
Amarelos LatossolosVermelho-Amareloseutróficos Ferrasols FR 
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Brazil Latossolos Latossolos Vermelhos LatossolosVermelhosácricos Acric Ferrasols FRac 
Brazil Latossolos Latossolos Vermelhos LatossolosVermelhosacriférricos Acric Ferrasols FRac 
Brazil Latossolos Latossolos Vermelhos LatossolosVermelhosalumnoférricos Ferrasols FR 
Brazil Latossolos Latossolos Vermelhos LatossolosVermelhosdistroférricos Ferrasols FR 
Brazil Latossolos Latossolos Vermelhos LatossolosVermelhosdistróficos Ferrasols FR 
Brazil Latossolos Latossolos Vermelhos LatossolosVermelhoseutroférricos Ferrasols FR 
Brazil Latossolos Latossolos Vermelhos LatossolosVermelhoseutróficos Ferrasols FR 
Brazil Latossolos Latossolos Vermelhos LatossolosVermelhospetroférricos Plinthic Ferrasols FRpl 
Brazil Luvissolos Luvissolos Crômicos LuvissolosCrômicoscarbonáticos Calcic Luvisols LVcc 
Brazil Luvissolos Luvissolos Crômicos LuvissolosCrômicosórticos Luvisols LV 
Brazil Luvissolos Luvissolos Crômicos LuvissolosCrômicospálicos Luvisols LV 
Brazil Luvissolos Luvissolos Hipocrômicos LuvissolosHipocrômicoscarbonáticos Calcic Luvisols LVcc 
Brazil Luvissolos Luvissolos Hipocrômicos LuvissolosHipocrômicosórticos Luvisols LV 
Brazil Neossolos Neossolos Flúvicos NeossolosFlúvicoscarbonáticos Calcic Fluvisols FLcc 
Brazil Neossolos Neossolos Flúvicos NeossolosFlúvicospsamíticos Fluvisols FL 
Brazil Neossolos Neossolos Flúvicos NeossolosFlúvicossálicos Salic Fluvisols FLsz 
Brazil Neossolos Neossolos Flúvicos NeossolosFlúvicossódicos Fluvisols FL 
Brazil Neossolos Neossolos Flúvicos NeossolosFlúvicosTaeutróficos Fluvisols FL 
Brazil Neossolos Neossolos Flúvicos NeossolosFlúvicosTbdistóficos Fluvisols FL 
Brazil Neossolos Neossolos Flúvicos NeossolosFlúvicosTbeutróficos Fluvisols FL 
Brazil Neossolos Neossolos Litólicos NeossolosLitólicoscarbonáticos Calcic Leptosols LPcc 
Brazil Neossolos Neossolos Litólicos NeossolosLitólicosdistróficos Leptosols LP 
Brazil Neossolos Neossolos Litólicos NeossolosLitólicoseutróficos Leptosols LP 
Brazil Neossolos Neossolos Litólicos NeossolosLitólicoshísticos Histic Leptosols LPhi 
Brazil Neossolos Neossolos Litólicos NeossolosLitólicoshúmicos Umbric Leptosols LPum 
Brazil Neossolos Neossolos Litólicos NeossolosLitólicosPsamíticos Leptosols LP 
Brazil Neossolos Neossolos Quartzarênicos NeossolosQuartzarênicoshidromórficos Gleyic Arenosols ARgl 
Brazil Neossolos Neossolos Quartzarênicos NeossolosQuartzarênicosórticos Arenosols AR 
Brazil Neossolos Neossolos Regolíticos NeossolosRegolíticosdistróficos Regosols RG 
Brazil Neossolos Neossolos Regolíticos NeossolosRegolíticoseutróficos Regosols RG 
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Brazil Neossolos Neossolos Regolíticos NeossolosRegolíticosPsamíticos Regosols RG 
Brazil Nitossolos Nitossolos Háplicos NitossolosHáplicosalumínicos Nitisols NT 
Brazil Nitossolos Nitossolos Háplicos NitossolosHáplicosdistróficos Nitisols NT 
Brazil Nitossolos Nitossolos Háplicos NitossolosHáplicoseutróficos Nitisols NT 
Brazil Nitossolos Nitossolos Vermelhos NitossolosVermelhosdistroférricos Nitisols NT 
Brazil Nitossolos Nitossolos Vermelhos NitossolosVermelhosdistróficos Nitisols NT 
Brazil Nitossolos Nitossolos Vermelhos NitossolosVermelhoseutroférricos Nitisols NT 
Brazil Nitossolos Nitossolos Vermelhos NitossolosVermelhoseutróficos Nitisols NT 
Brazil Organossolos Organossolos Fólicos OrganossolosFólicosfíbricos Fibric Folic Histosols HSfofi 
Brazil Organossolos Organossolos Fólicos OrganossolosFólicoshêmicos Hemic Folic Histosols HSfohm 
Brazil Organossolos Organossolos Fólicos OrganossolosFólicossápricos Sapric Folic Histosols HSfosa 
Brazil Organossolos Organossolos Háplicos OrganossolosHáplicosfibricos Fibric Histosols HSfi 
Brazil Organossolos Organossolos Háplicos OrganossolosHáplicoshêmicos Hemic Histosols HShm 
Brazil Organossolos Organossolos Háplicos OrganossolosHáplicossápricos Sapric Histosols HSsa 
Brazil Organossolos Organossolos Mésicos OrganossolosMésicosfíbricos Fibric Histosols HSfi 
Brazil Organossolos Organossolos Mésicos OrganossolosMésicoshêmicos Hemic Histosols HShm 
Brazil Organossolos Organossolos Mésicos OrganossolosMésicossápricos Sapric Histosols HSsa 
Brazil Organossolos Organossolos Tiomórficos OrganossolosTiomórficosfíbricos Fibric Histosols HSfi 
Brazil Organossolos Organossolos Tiomórficos OrganossolosTiomórficoshêmicos Hemic Histosols HShm 
Brazil Organossolos Organossolos Tiomórficos OrganossolosTiomórficossápricos Sapric Histosols HSsa 
Brazil Planossolos Planossolos Háplicos PlanossolosHáplicosdistróficos Planosols PL 
Brazil Planossolos Planossolos Háplicos PlanossolosHáplicoseutróficos Planosols PL 
Brazil Planossolos Planossolos Háplicos PlanossolosHáplicossálicos Salic Planosols PLsz 
Brazil Planossolos Planossolos Hidromórficos PlanossolosHidromórficosdistróficos Gleyic Planosols PLgl 
Brazil Planossolos Planossolos Hidromórficos PlanossolosHidromórficoseutróficos Gleyic Planosols PLgl 
Brazil Planossolos Planossolos Hidromórficos PlanossolosHidromórficossálicos Salic Gleyic Planosols PLglsz 
Brazil Planossolos Planossolos Nátricos PlanossolosNátricoscarbonáticos Calcic Sodic Planosols PLsocc 
Brazil Planossolos Planossolos Nátricos PlanossolosNátricosórticos Sodic Planosols PLso 
Brazil Planossolos Planossolos Nátricos PlanossolosNátricossálicos Salic Sodic Planosols PLsosz 
Brazil Plintosolos Plintossolos Argilúvicos PlintossolosArgilúvicosalumínicos Acric Plinthosols PTac 
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Brazil Plintosolos Plintossolos Argilúvicos PlintossolosArgilúvicosdistróficos Acric Plinthosols PTac 
Brazil Plintosolos Plintossolos Argilúvicos PlintossolosArgilúvicoseutróficos Lixic Plinthosols PTlx 
Brazil Plintosolos Plintossolos Háplicos PlintossolosHáplicosdistróficos Plinthosols PT 
Brazil Plintosolos Plintossolos Háplicos PlintossolosHáplicoseutróficos Plinthosols PT 
Brazil Plintosolos Plintossolos Pétricos PlintossolosPétricosconcrecionários Lithic Plinthosols PTli 
Brazil Plintosolos Plintossolos Pétricos PlintossolosPétricoslitoplínticos Petric Plinthosols PTpt 
Brazil Vertissolos Vertissolos Cromados VertissolosCromadoscarbonáticos Calcic Vertisols VRcc 
Brazil Vertissolos Vertissolos Cromados VertissolosCromadosórticos Vertisols VR 
Brazil Vertissolos Vertissolos Cromados VertissolosCromadossálicos Salic Vertisols VRsz 
Brazil Vertissolos Vertissolos Cromados VertissolosCromadossódicos Sodic Vertisols VRso 
Brazil Vertissolos Vertissolos Ebânicos VertissolosEbânicoscarbonáticos Calcic Vertisols VRcc 
Brazil Vertissolos Vertissolos Ebânicos VertissolosEbânicosórticos Vertisols VR 
Brazil Vertissolos Vertissolos Ebânicos VertissolosEbânicossódicos Vertisols VR 
Brazil Vertissolos Vertissolos Hidromórficos VertissolosHidromórficoscarbonáticos Calcic Gleyic Vertisols VRglcc 
Brazil Vertissolos Vertissolos Hidromórficos VertissolosHidromórficosórticos Gleyic Vertisols VRgl 
Brazil Vertissolos Vertissolos Hidromórficos VertissolosHidromórficossálicos Gleyic Salic Vertisols VRszgl 
Brazil Vertissolos Vertissolos Hidromórficos VertissolosHidromórficossódicos Gleyic Vertisols VRgl 

Canada Brunisolic Dystric Brunisol  Dystric Cambisols CMdy 
Canada Brunisolic Eutric Brunisol  Eutric Cambisols CMeu 
Canada Brunisolic Melanic Brunisol  Cambisols CM 
Canada Brunisolic Sombric Brunisol  Umbric Cambisols CMum 
Canada Chernozemic Black Chernozem  Chernozems CH 
Canada Chernozemic Brown Chernozem  Aridic Kastanozems KSad 
Canada Chernozemic Dark Brown Chernozem  Haplic Kastanozems KSha 
Canada Chernozemic Dark Gray Chernozem  Greyzemic Chernozems CHgz 
Canada Cryosolic Organic Cryosol  Cryic Histosols HScy 
Canada Cryosolic Static Cryosol  Cryosols CR 
Canada Cryosolic Turbic Cryosol  Turbic Cryosols CRtu 
Canada Gleysolic Gleysol  Gleysols GL 
Canada Gleysolic Humic Gleysol  Mollic Gleysols GLmo 
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Canada Gleysolic Luvic Gleysol  Planosols PL 
Canada Luvisolic Gray Brown Luvisol  Albic Luvisols LVab 
Canada Luvisolic Gray Luvisol  Albic Luvisols LVab 
Canada Organic Fibrisol  Fibric Histosols HSfi 
Canada Organic Folisol  Folic Histosols HSfo 
Canada Organic Humisol  Hyperhumic Histosols HSjh 
Canada Organic Mesisol  Hemic Histosols HShm 
Canada Podzolic Ferro-Humic Podzol  Podzols PZ 
Canada Podzolic Humic Podzol  Humic Podzols PZhu 
Canada Podzolic Humo-Ferric Podzol  Podzols PZ 
Canada Regosolic Humic Regosol  Fluvisols FL 
Canada Regosolic Regosol  Regosols RG 
Canada Solonetzic Solod  Planosols PL 
Canada Solonetzic Solodized Solonetz  Mollic Solonetz SNmo 
Canada Solonetzic Solonetz  Mollic Solonetz SNmo 
Canada Solonetzic Vertic Solonetz  Sodic Vertisols VRso 
Canada Vertisolic Humic Vertisol  Dystric Vertisols VRdy 
Canada Vertisolic Vertisol  Vertisols VR 

NewZealand Allophanic Soils Gley Allophanic Soils  Gleyic Andosols ANgl 
NewZealand Allophanic Soils Impeded Allophanic Soils  Petroduric Andosols ANpd 
NewZealand Allophanic Soils Orthic Allophanic Soils  Andosols AN 
NewZealand Allophanic Soils Perch-gley Allophanic Soils  Stagnic Andosols ANst 
NewZealand Anthropic Soils Fill Anthropic Soils  Hortic Anthrosols ATht 
NewZealand Anthropic Soils Mixed Anthropic Soils  Plaggic Anthrosols ATpa 
NewZealand Anthropic Soils Refuse Anthropic Soils  Terric Anthrosols ATtr 
NewZealand Anthropic Soils Truncated Anthropic Soils  Regosols RG 
NewZealand Brown Soils Acid Brown Soils  Cambisols CM 
NewZealand Brown Soils Allophanic Brown Soils  Andic Cambisols CMan 
NewZealand Brown Soils Firm Brown Soils  Fragic Cambisols CMfg 
NewZealand Brown Soils Mafic Brown Soils  Cambisols CM 
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NewZealand Brown Soils Orthic Brown Soils  Cambisols CM 
NewZealand Brown Soils Oxidic Brown Soils  Ferralic Cambisols CMfl 
NewZealand Brown Soils Sandy Brown Soils  Brunic Arenosols ARbr 
NewZealand Gley Soils Acid Gley Soils  Gleysols GL 
NewZealand Gley Soils Orthic Gley Soils  Gleysols GL 
NewZealand Gley Soils Oxidic Gley Soils  Plinthic Gleysols GLpl 
NewZealand Gley Soils Recent Gley Soils  Gleyic Fluvisols FLgl 
NewZealand Gley Soils Sandy Gley Soils  Gleysols GL 
NewZealand Gley Soils Sulphuric Gley Soils  Gleysols GL 
NewZealand Granular Soils Melanic Granular Soils  Umbric Luvisols LVum 
NewZealand Granular Soils Orthic Granular Soils  Luvisols LV 
NewZealand Granular Soils Oxidic Granular Soils  Luvisols LV 
NewZealand Granular Soils Perch-gley Granular Soils  Stagnic Luvisols LVst 
NewZealand Melanic Soils Mafic Melanic Soils  Chernozems CH 
NewZealand Melanic Soils Orthic Melanic Soils  Chernozems CH 
NewZealand Melanic Soils Perch-gley Melanic Soils  Stagnic Chernozems CHst 
NewZealand Melanic Soils Rendzic Melanic Soils  Rendzic Leptosols LPrz 
NewZealand Melanic Soils Vertic Melanic Soils  Vertisols VR 
NewZealand Organic Soils Fibric Organic Soils  Fibric Histosols HSfi 
NewZealand Organic Soils Humic Organic Soils  Sapric Histosols HSsa 
NewZealand Organic Soils Litter Organic Soils  Folic Histosols HSfo 
NewZealand Organic Soils Mesic Organic Soils  Hemic Histosols HShm 
NewZealand Oxidic Soils Nodular Oxidic Soils  Ferrasols FR 
NewZealand Oxidic Soils Orthic Oxidic Soils  Ferrasols FR 
NewZealand Oxidic Soils Perch-gley Oxidic Soils  Stagnic Plinthosols PTst 
NewZealand Pallic Soils Argillic Pallic Soils  Luvic Planosols PLlv 
NewZealand Pallic Soils Duric Pallic Soils  Duric Planosols PLdu 
NewZealand Pallic Soils Fragic Pallic Soils  Fragic Planosols PLfg 
NewZealand Pallic Soils Immature Pallic Soils  Abruptic Planosols PLap 
NewZealand Pallic Soils Laminar Pallic Soils  Lamellic Planosols PLll 
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NewZealand Pallic Soils Perch-gley Pallic Soils  Stagnic Planosols PLst 
NewZealand Podzols Densipan Podzols  Albic Podzols PZab 
NewZealand Podzols Groundwater-gley Podzols  Gleyic Albic Podzols PZabgl 
NewZealand Podzols Orthic Podzols  Albic Podzols PZab 
NewZealand Podzols Pan Podzols  Albic Ortsteinic Podzols PZosab 
NewZealand Podzols Perch-gley Podzols  Stagnic Albic Podzols PZabst 
NewZealand Pumice Soils Impeded Pumice Soils  Duric Vitric Andosols ANvidu 
NewZealand Pumice Soils Orthic Pumice Soils  Vitric Andosols ANvi 
NewZealand Pumice Soils Perch-gley Pumice Soils  Stagnic Vitric Andosols ANvist 
NewZealand Raw Soils Fluvial Raw Soils  Protic Fluvisols FLpr 
NewZealand Raw Soils Gley Raw Soils  Gleysols GL 
NewZealand Raw Soils Hydrothermal Raw Soils  Regosols RG 
NewZealand Raw Soils Orthic Raw Soils  Regosols RG 
NewZealand Raw Soils Rocky Raw Soils  Leptosols LP 
NewZealand Raw Soils Sandy Raw Soils  Protic Arenosols ARpr 
NewZealand Raw Soils Tephric Raw Soils  Regosols RG 
NewZealand Recent Soils Fluvial Recent Soils  Fluvisols FL 
NewZealand Recent Soils Hydrothermal Recent Soils  Regosols RG 
NewZealand Recent Soils Orthic Recent Soils  Regosols RG 
NewZealand Recent Soils Rocky Recent Soils  Leptosols LP 
NewZealand Recent Soils Sandy Recent Soils  Arenosols AR 
NewZealand Recent Soils Tephric Recent Soils  Regosols RG 
NewZealand Semiarid Soils Aged-argillic Semiarid Soils  Luvisols LV 
NewZealand Semiarid Soils Argillic Semiarid Soils  Luvisols LV 
NewZealand Semiarid Soils Immature Semiarid Soils  Cambisols CM 
NewZealand Semiarid Soils Solonetzic Semiarid Soils  Solonetz SN 
NewZealand Ultic Soils Albic Ultic Soils  Acrisols AC 
NewZealand Ultic Soils Densipan Ultic Soils  Acrisols AC 
NewZealand Ultic Soils Perch-gley Ultic Soils  Stagnic Acrisols ACst 
NewZealand Ultic Soils Sandy Ultic Soils  Acrisols AC 
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NewZealand Ultic Soils Yellow Ultic Soils  Acrisols AC 
UnitedStates Alfisols Aqualfs Albaqualfs Albic Planosols PLab 
UnitedStates Alfisols Aqualfs Cryaqualfs Gelic Planosols PLge 
UnitedStates Alfisols Aqualfs Duraqualfs Planosols PL 
UnitedStates Alfisols Aqualfs Endoaqualfs Gleyic Luvisols LVgl 
UnitedStates Alfisols Aqualfs Epiaqualfs Haplic Stagnosols STha 
UnitedStates Alfisols Aqualfs Fragiaqualfs Fragic Planosols PLfg 
UnitedStates Alfisols Aqualfs Glossaqualfs Stagnic Albeluvisols ABst 
UnitedStates Alfisols Aqualfs Kandiaqualfs Planosols PL 
UnitedStates Alfisols Aqualfs Natraqualfs Stagnic Solonetz SNst 
UnitedStates Alfisols Aqualfs Ochraqualfs Luvisols LV 
UnitedStates Alfisols Aqualfs Plintaqualfs Plinthic Planosols PLpl 
UnitedStates Alfisols Aqualfs Umbraqualfs Umbric Planosols PLum 
UnitedStates Alfisols Aqualfs Vermaqualfs Vermic Planosols PLvm 
UnitedStates Alfisols Boralfs Cryoboralfs Albeluvisols AB 
UnitedStates Alfisols Boralfs Eutroboralfs Eutric Albeluvisols ABeu 
UnitedStates Alfisols Boralfs Paleboralfs Albeluvisols AB 
UnitedStates Alfisols Cryalfs Glossocryalfs Albeluvisols AB 
UnitedStates Alfisols Cryalfs Haplocryalfs Luvisols LV 
UnitedStates Alfisols Cryalfs Palecryalfs Albeluvisols AB 
UnitedStates Alfisols Udalfs Ferrudalfs Ferric Albeluvisols ABfr 
UnitedStates Alfisols Udalfs Fragiudalfs Fragic Luvisols LVfg 
UnitedStates Alfisols Udalfs Fraglossudalfs Fragic Albeluvisols ABfg 
UnitedStates Alfisols Udalfs Glossudalfs Albeluvisols AB 
UnitedStates Alfisols Udalfs Hapludalfs Luvisols LV 
UnitedStates Alfisols Udalfs Kandiudalfs Profondic Lixisols LXpn 
UnitedStates Alfisols Udalfs Kanhapludalfs Lixisols LX 
UnitedStates Alfisols Udalfs Natrudalfs Solonetz SN 
UnitedStates Alfisols Udalfs Paleudalfs Luvisols LV 
UnitedStates Alfisols Udalfs Rhodudalfs Rhodic Luvisols LVro 
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UnitedStates Alfisols Udalfs Tropudalfs Luvisols LV 
UnitedStates Alfisols Ustalfs Durustalfs Luvic Petric Durisols DUptlv 
UnitedStates Alfisols Ustalfs Haplustalfs Luvisols LV 
UnitedStates Alfisols Ustalfs Kandiustalfs Profondic Lixisols LXpn 
UnitedStates Alfisols Ustalfs Kanhaplustalfs Lixisols LX 
UnitedStates Alfisols Ustalfs Natrustalfs Solonetz SN 
UnitedStates Alfisols Ustalfs Paleustalfs Rhodic Profondic Luvisols LVpnro 
UnitedStates Alfisols Ustalfs Plinthustalfs Lixic Plinthosols PTlx 
UnitedStates Alfisols Ustalfs Rhodustalfs Rhodic Luvisols LVro 
UnitedStates Alfisols Xeralfs Durixeralfs Petric Luvic Durisols DUlvpt 
UnitedStates Alfisols Xeralfs Fragixeralfs Fragic Luvisols LVfg 
UnitedStates Alfisols Xeralfs Haploxeralfs Haplic Luvisols LVha 
UnitedStates Alfisols Xeralfs Natrixeralfs Solonetz SN 
UnitedStates Alfisols Xeralfs Palexeralfs Petrocalcic Luvisols LVpc 
UnitedStates Alfisols Xeralfs Plintoxeralfs Lixic Plinthosols PTlx 
UnitedStates Alfisols Xeralfs Rhodoxeralfs Rhodic Luvisols LVro 
UnitedStates Andisols Aquands Cryaquands Histic Andosols ANhi 
UnitedStates Andisols Aquands Duraquands Petroduric Histic Andosols ANhipd 
UnitedStates Andisols Aquands Endoaquands Gleyic Andosols ANgl 
UnitedStates Andisols Aquands Epiaquands Stagnic Andosols ANst 
UnitedStates Andisols Aquands Haplaquands Andosols AN 
UnitedStates Andisols Aquands Melanaquands Gleyic Melanic Andosols ANmlgl 
UnitedStates Andisols Aquands Placaquands Placic Gleyic Andosols ANglpi 
UnitedStates Andisols Aquands Vitraquands Gleyic Vitric Andosols ANvigl 
UnitedStates Andisols Cryands Duricryands Petroduric Andosols ANpd 
UnitedStates Andisols Cryands Fulvicryands Fulvic Andosols ANfu 
UnitedStates Andisols Cryands Haplocryands Andosols AN 
UnitedStates Andisols Cryands Hydrocryands Hydric Andosols ANhy 
UnitedStates Andisols Cryands Melanocryands Melanic Andosols ANml 
UnitedStates Andisols Cryands Vitricryands Vitric Andosols ANvi 
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UnitedStates Andisols Torrands Duritorrands Petroduric Andosols ANpd 
UnitedStates Andisols Torrands Haplotorrands Andosols AN 
UnitedStates Andisols Torrands Vitritorrands Vitric Andosols ANvi 
UnitedStates Andisols Udands Durudands Petroduric Andosols ANpd 
UnitedStates Andisols Udands Fulvudands Fulvic Andosols ANfu 
UnitedStates Andisols Udands Hapludands Andosols AN 
UnitedStates Andisols Udands Hydrudands Hydric Andosols ANhy 
UnitedStates Andisols Udands Melanudands Melanic Andosols ANml 
UnitedStates Andisols Udands Placudands Placic Andosols ANpi 
UnitedStates Andisols Ustands Durustands Petroduric Andosols ANpd 
UnitedStates Andisols Ustands Haplustands Andosols AN 
UnitedStates Andisols Vitrands Udivitrands Vitric Andosols ANvi 
UnitedStates Andisols Vitrands Ustivitrands Vitric Andosols ANvi 
UnitedStates Andisols Xerands Haploxerands Andosols AN 
UnitedStates Andisols Xerands Melanoxerands Melanic Andosols ANml 
UnitedStates Andisols Xerands Vitrixerands Vitric Andosols ANvi 
UnitedStates Aridisols Argids Calciargids Calcic Luvisols LVcc 
UnitedStates Aridisols Argids Duragids Duric Luvisols LVdu 
UnitedStates Aridisols Argids Gypsiargids Gypsic Luvisols LVgy 
UnitedStates Aridisols Argids Haplargids Luvisols LV 
UnitedStates Aridisols Argids Nadurargids Duric Solonetz SNdu 
UnitedStates Aridisols Argids Natrargids Solonetz SN 
UnitedStates Aridisols Argids Paleargids Profondic Luvisols LVpn 
UnitedStates Aridisols Argids Petroargids Petrocalcic Luvisols LVpc 
UnitedStates Aridisols Calcids Haplocalcids Calcisols CL 
UnitedStates Aridisols Calcids Petrocalcids Petric Calcisols CLpt 
UnitedStates Aridisols Cambids Anthracambids Irragric Anthrosols ATir 
UnitedStates Aridisols Cambids Aquicambids Gleyic Cambisols CMgl 
UnitedStates Aridisols Cambids Camborthids Cambisols CM 
UnitedStates Aridisols Cambids Haplocambids Cambisols CM 
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UnitedStates Aridisols Cambids Haploxerepts Calcic Cambisols CMcc 
UnitedStates Aridisols Cambids Petrocambids Cambisols CM 
UnitedStates Aridisols Cryids Argicryids Profondic Solonetz SNpn 
UnitedStates Aridisols Cryids Calcicryids Calcisols CL 
UnitedStates Aridisols Cryids Gypsicryids Gypsisols Gy 
UnitedStates Aridisols Cryids Haplocryids Cambisols CM 
UnitedStates Aridisols Cryids Petrocryids Petric Calcisols CLpt 
UnitedStates Aridisols Cryids Salicryids Solonchaks SC 
UnitedStates Aridisols Durids Argidurids Luvic Petric Durisols DUptlv 
UnitedStates Aridisols Durids Haplodurids Petric Durisols DUpt 
UnitedStates Aridisols Durids Natridurids Petroduric Solonetz SNpd 
UnitedStates Aridisols Gypsids Argigypsids Luvic Gypsisols Gylv 
UnitedStates Aridisols Gypsids Calcigypsids Calcic Gypsisols Gycc 
UnitedStates Aridisols Gypsids Haplogypsids Gypsisols Gy 
UnitedStates Aridisols Gypsids Natrigypsids Gypsic Solonetz SNgy 
UnitedStates Aridisols Gypsids Petrogypsids Petric Gypsisols Gypt 
UnitedStates Aridisols Orthids Calciorthids Calcisols CL 
UnitedStates Aridisols Orthids Durorthids Duric Solonchaks SCdu 
UnitedStates Aridisols Orthids Gypsiorthids Gypsic Solonchaks SCgy 
UnitedStates Aridisols Orthids Paleorthids Calcisols CL 
UnitedStates Aridisols Orthids Salorthids Solonchaks SC 
UnitedStates Aridisols Salids Aquisalids Gleyic Solonchaks SCgl 
UnitedStates Aridisols Salids Haplosalids Solonchaks SC 
UnitedStates Entisols Aquents Cryaquents Gleysols GL 
UnitedStates Entisols Aquents Endoaquents Gleysols GL 
UnitedStates Entisols Aquents Epiaquents Stagnosols ST 
UnitedStates Entisols Aquents Fluvaquents Gleyic Fluvisols FLgl 
UnitedStates Entisols Aquents Gelaquents Gelic Gleysols GLge 
UnitedStates Entisols Aquents Haplaquents Gleysols GL 
UnitedStates Entisols Aquents Hydraquents Fluvisols FL 
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UnitedStates Entisols Aquents Psammaquents Arenic Gleysols GLar 
UnitedStates Entisols Aquents Sulfaquents Thionic Gleysols GLti 
UnitedStates Entisols Aquents Tropaquents Gleysols GL 
UnitedStates Entisols Arents Arents Regosols RG 
UnitedStates Entisols Arents Torriarents Irragric Anthrosols ATir 
UnitedStates Entisols Arents Udarents Anthrosols AT 
UnitedStates Entisols Arents Ustarents Anthrosols AT 
UnitedStates Entisols Arents Xerarents Irragric Anthrosols ATir 
UnitedStates Entisols Fluvents Cryofluvents Fluvisols FL 
UnitedStates Entisols Fluvents Gelifluvents Gelic Fluvisols FLge 
UnitedStates Entisols Fluvents Torrifluvents Fluvisols FL 
UnitedStates Entisols Fluvents Tropofluvents Fluvisols FL 
UnitedStates Entisols Fluvents Udifluvents Fluvisols FL 
UnitedStates Entisols Fluvents Ustifluvents Fluvisols FL 
UnitedStates Entisols Fluvents Xerofluvents Haplic Fluvisols FLha 
UnitedStates Entisols Orthens Troporthens Regosols RG 
UnitedStates Entisols Orthents Cryorthents Regosols RG 
UnitedStates Entisols Orthents Gelorthents Gelic Regosols RGge 
UnitedStates Entisols Orthents Torriorthents Regosols RG 
UnitedStates Entisols Orthents Troporthents Regosols RG 
UnitedStates Entisols Orthents Udorthents Regosols RG 
UnitedStates Entisols Orthents Ustorthents Regosols RG 
UnitedStates Entisols Orthents Xerorthents Regosols RG 
UnitedStates Entisols Psamments Cryopsamments Arenosols AR 
UnitedStates Entisols Psamments Quartzipsamments Arenosols AR 
UnitedStates Entisols Psamments Torripsamments Arenosols AR 
UnitedStates Entisols Psamments Tropopsamments Arenosols AR 
UnitedStates Entisols Psamments Udipsamments Arenosols AR 
UnitedStates Entisols Psamments Ustipsamments Arenosols AR 
UnitedStates Entisols Psamments Xeropsamments Arenosols AR 
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UnitedStates Entisols Usterts Pelloxererts Vertisols VR 
UnitedStates Entisols Wassents Fluviwassents Subaquatic Fluvisols FLsq 
UnitedStates Entisols Wassents Frasiwassents Subaquatic Fluvisols FLsq 
UnitedStates Entisols Wassents Haplowassents Subaquatic Fluvisols FLsq 
UnitedStates Entisols Wassents Hydrowassents Subaquatic Fluvisols FLsq 
UnitedStates Entisols Wassents Psammowassents Subaquatic Fluvisols FLsq 
UnitedStates Entisols Wassents Sulfiwassents Thionic Subaquatic Fluvisols FLsqti 
UnitedStates Gelisols Histels Fibrihistels Cryic Fibric Histosols HSficy 
UnitedStates Gelisols Histels Fibristels Gelic Fibric Histosols HSfige 
UnitedStates Gelisols Histels Folistels Cryic Folic Histosols HSfocy 
UnitedStates Gelisols Histels Glacistels Cryic Glacic Histosols HSgccy 
UnitedStates Gelisols Histels Hemistels Gelic Hemic Histosols HShmge 
UnitedStates Gelisols Histels Hermistels Cryic Hemic Histosols HShmcy 
UnitedStates Gelisols Histels Sapristels Cryic Sapric Histosols HSsacy 
UnitedStates Gelisols Orthels Anhyorthels Aridic Cryosols CRad 
UnitedStates Gelisols Orthels Aquorthels Reductaquic Cryosols CRra 
UnitedStates Gelisols Orthels Argiorthels Luvic Cryosols CRlv 
UnitedStates Gelisols Orthels Haplorthels Cryosols CR 
UnitedStates Gelisols Orthels Historthels Histic Cryosols CRhi 
UnitedStates Gelisols Orthels Mollorthels Mollic Cryosols CRmo 
UnitedStates Gelisols Orthels Psammorthels Arenic Cryosols CRar 
UnitedStates Gelisols Orthels Umbrorthels Umbric Cryosols CRum 
UnitedStates Gelisols Turbels Anhyturbels Aridic Turbic Cryosols CRtuad 
UnitedStates Gelisols Turbels Aquiturbels Reductaquic Turbic Cryosols CRtura 
UnitedStates Gelisols Turbels Haploturbels Turbic Cryosols CRtu 
UnitedStates Gelisols Turbels Histoturbels Histic Turbic Cryosols CRtuhi 
UnitedStates Gelisols Turbels Molliturbels Mollic Turbic Cryosols CRtumo 
UnitedStates Gelisols Turbels Psammoturbels Arenic Turbic Cryosols CRtuar 
UnitedStates Gelisols Turbels Umbriturbels Umbric Turbic Cryosols CRtuum 
UnitedStates Histosols Fibrists Borofibrists Fibric Histosols HSfi 
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UnitedStates Histosols Fibrists Cryofibrists Fibric Histosols HSfi 
UnitedStates Histosols Fibrists Haplofibrists Fibric Histosols HSfi 
UnitedStates Histosols Fibrists Medifibrists Fibric Histosols HSfi 
UnitedStates Histosols Fibrists Sphagnofibrists Ombric Fibric Histosols HSfiom 
UnitedStates Histosols Fibrists Tropofibrists Fibric Histosols HSfi 
UnitedStates Histosols Folists Cryofolists Folic Histosols HSfo 
UnitedStates Histosols Folists Torrifolists Folic Histosols HSfo 
UnitedStates Histosols Folists Tropofolists Folic Histosols HSfo 
UnitedStates Histosols Folists Udifolists Folic Histosols HSfo 
UnitedStates Histosols Folists Ustifolists Folic Histosols HSfo 
UnitedStates Histosols Hemists Borohemists Hemic Histosols HShm 
UnitedStates Histosols Hemists Cryohemists Hemic Histosols HShm 
UnitedStates Histosols Hemists Haplohemists Hemic Histosols HShm 
UnitedStates Histosols Hemists Medihemists Hemic Histosols HShm 
UnitedStates Histosols Hemists Sulfihemists Thionic Hemic Histosols HShmti 
UnitedStates Histosols Hemists Sulfohemists Thionic Hemic Histosols HShmti 
UnitedStates Histosols Hemists Tropohemists Hemic Histosols HShm 
UnitedStates Histosols Saprists Borosaprists Sapric Histosols HSsa 
UnitedStates Histosols Saprists Cryosaprists Sapric Histosols HSsa 
UnitedStates Histosols Saprists Haplosaprists Sapric Histosols HSsa 
UnitedStates Histosols Saprists Medisaprists Sapric Histosols HSsa 
UnitedStates Histosols Saprists Sulfisaprists Thionic Sapric Histosols HSsati 
UnitedStates Histosols Saprists Sulfosaprists Thionic Sapric Histosols HSsati 
UnitedStates Histosols Wassists Frasiwassists Subaquatic Histosols HSsq 
UnitedStates Histosols Wassists Haplowassists Subaquatic Histosols HSsq 
UnitedStates Histosols Wassists Sulfiwassists Thionic Subaquatic Histosols HSsqti 
UnitedStates Inceptisols Andepts Dystrandepts Andosols AN 
UnitedStates Inceptisols Andepts Eutrandepts Andosols AN 
UnitedStates Inceptisols Andepts Hydrandepts Andosols AN 
UnitedStates Inceptisols Andepts Vitrandepts Andosols AN 
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UnitedStates Inceptisols Anthrepts Haplanthrepts Anthric Umbrisols UMak 
UnitedStates Inceptisols Anthrepts Plagganthrepts Plaggic Anthrosols ATpa 
UnitedStates Inceptisols Aquepts Andaquepts Gleyic Andosols ANgl 
UnitedStates Inceptisols Aquepts Cryaquepts Gleysols GL 
UnitedStates Inceptisols Aquepts Endoaquepts Gleysols GL 
UnitedStates Inceptisols Aquepts Epiaquepts Stagnosols ST 
UnitedStates Inceptisols Aquepts Fragaquepts Fragic Gleysols GLfg 
UnitedStates Inceptisols Aquepts Gelaquepts Gelic Gleysols GLge 
UnitedStates Inceptisols Aquepts Halaquepts Gleyic Solonchaks SCgl 
UnitedStates Inceptisols Aquepts Haplaquepts Gleysols GL 
UnitedStates Inceptisols Aquepts Humaquepts Histic Gleysols GLhi 
UnitedStates Inceptisols Aquepts Petraquepts Petroplinthic Gleysols GLpp 
UnitedStates Inceptisols Aquepts Sulfaquepts Thionic Gleysols GLti 
UnitedStates Inceptisols Aquepts Tropaquepts Gleysols GL 
UnitedStates Inceptisols Aquepts Vermaquepts Vermic Gleysols GLvm 
UnitedStates Inceptisols Cryepts Calcicryepts Calcic Cambisols CMcc 
UnitedStates Inceptisols Cryepts Cryochrepts Cambisols CM 
UnitedStates Inceptisols Cryepts Dystrocryepts Dystric Cambisols CMdy 
UnitedStates Inceptisols Cryepts Eutrocryepts Eutric Cambisols CMeu 
UnitedStates Inceptisols Cryepts Haplocryepts Cambisols CM 
UnitedStates Inceptisols Cryepts Humicryepts Humic Cambisols CMhu 
UnitedStates Inceptisols Gelepts Dystrogelepts Gelic Cambisols CMge 
UnitedStates Inceptisols Gelepts Eutrogelepts Gelic Cambisols CMge 
UnitedStates Inceptisols Gelepts Haplogelepts Gelic Cambisols CMge 
UnitedStates Inceptisols Ochrepts Durochrepts Duric Cambisols CMdu 
UnitedStates Inceptisols Ochrepts Ustochrepts Cambisols CM 
UnitedStates Inceptisols Ochrepts Xerochrepts Cambisols CM 
UnitedStates Inceptisols Tropepts Dystropepts Dystric Cambisols CMdy 
UnitedStates Inceptisols Tropepts Humitropepts Humic Cambisols CMhu 
UnitedStates Inceptisols Udepts Durudepts Petric Durisols DUpt 
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UnitedStates Inceptisols Udepts Dystrochrepts Cambisols CM 
UnitedStates Inceptisols Udepts Dystrudepts Dystric Cambisols CMdy 
UnitedStates Inceptisols Udepts Eutrochrepts Cambisols CM 
UnitedStates Inceptisols Udepts Eutrudepts Eutric Cambisols CMeu 
UnitedStates Inceptisols Udepts Fragiudepts Fragic Cambisols CMfg 
UnitedStates Inceptisols Udepts Humudepts Humic Cambisols CMhu 
UnitedStates Inceptisols Udepts Sulfudepts Thionic Cambisols CMti 
UnitedStates Inceptisols Umbrepts Cryumbrepts Umbrisols UM 
UnitedStates Inceptisols Umbrepts Fragiumbrepts Densic Umbrisols UMdn 
UnitedStates Inceptisols Umbrepts Haplumbrepts Umbrisols UM 
UnitedStates Inceptisols Umbrepts Xerumbrepts Umbrisols UM 
UnitedStates Inceptisols Ustepts Calciustepts Calcisols CL 
UnitedStates Inceptisols Ustepts Duriustepts Petric Durisols DUpt 
UnitedStates Inceptisols Ustepts Dystrustepts Dystric Cambisols CMdy 
UnitedStates Inceptisols Ustepts Haplustepts Cambisols CM 
UnitedStates Inceptisols Ustepts Humustepts Humic Cambisols CMhu 
UnitedStates Inceptisols Xerepts Calcixerepts Calcisols CL 
UnitedStates Inceptisols Xerepts Durixerepts Petric Durisols DUpt 
UnitedStates Inceptisols Xerepts Dystroxerepts Dystric Cambisols CMdy 
UnitedStates Inceptisols Xerepts Fragixerepts Fragic Cambisols CMfg 
UnitedStates Inceptisols Xerepts Humixerepts Humic Cambisols CMhu 
UnitedStates Mollisols Albolls Argialbolls Luvic Albic Phaeozems PHablv 
UnitedStates Mollisols Albolls Natrialbolls Mollic Albic Solonetz SNabmo 
UnitedStates Mollisols Aquolls Argiaquolls Luvic Gleyic Chernozems CHgllv 
UnitedStates Mollisols Aquolls Calciaquolls Gleyic Chernozems CHgl 
UnitedStates Mollisols Aquolls Cryaquolls Gleyic Chernozems CHgl 

UnitedStates Mollisols Aquolls Duraquolls Petroduric Gleyic 
Chernozems CHglpd 

UnitedStates Mollisols Aquolls Endoaquolls Gleyic Phaeozems PHgl 
UnitedStates Mollisols Aquolls Epiaquolls Stagnic Phaeozems PHst 
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UnitedStates Mollisols Aquolls Haplaquolls Gleyic Chernozems CHgl 
UnitedStates Mollisols Aquolls Natraquolls Mollic Gleyic Solonetz SNglmo 
UnitedStates Mollisols Borolls Argiborolls Luvic Kastanozems KSlv 
UnitedStates Mollisols Borolls Calciborolls Calcic Kastanozems KScc 
UnitedStates Mollisols Borolls Cryoborolls Kastanozems KS 
UnitedStates Mollisols Borolls Haploborolls Kastanozems KS 
UnitedStates Mollisols Borolls Natriborolls Mollic Solonetz SNmo 
UnitedStates Mollisols Borolls Paleborolls Luvic Kastanozems KSlv 
UnitedStates Mollisols Cryolls Argicryolls Luvic Kastanozems KSlv 
UnitedStates Mollisols Cryolls Calcicryolls Calcic Kastanozems KScc 
UnitedStates Mollisols Cryolls Duricryolls Petroduric Kastanozems KSpd 
UnitedStates Mollisols Cryolls Haplocryolls Kastanozems KS 
UnitedStates Mollisols Cryolls Natricryolls Mollic Solonetz SNmo 
UnitedStates Mollisols Cryolls Palecryolls Luvic Kastanozems KSlv 
UnitedStates Mollisols Gelolls Haplogellols Gelic Kastanozems KSge 
UnitedStates Mollisols Rendolls Cryrendolls Rendzic Leptosols LPrz 
UnitedStates Mollisols Rendolls Haprendolls Rendzic Leptosols LPrz 
UnitedStates Mollisols Rendolls Rendolls Rendzic Leptosols LPrz 
UnitedStates Mollisols Udolls Argiudolls Luvic Phaeozems PHlv 
UnitedStates Mollisols Udolls Calciudolls Calcic Phaeozems PHcc 
UnitedStates Mollisols Udolls Hapludolls Phaeozems PH 
UnitedStates Mollisols Udolls Natrudolls Mollic Solonetz SNmo 
UnitedStates Mollisols Udolls Paleudolls Profondic Luvic Phaeozems PHlvpn 
UnitedStates Mollisols Udolls Vermiudolls Vermic Chernozems CHvm 
UnitedStates Mollisols Ustolls Argiustolls Luvic Phaeozems PHlv 
UnitedStates Mollisols Ustolls Calciustolls Calcic Chernozems CHcc 
UnitedStates Mollisols Ustolls Durustolls Petroduric Chernozems CHpd 
UnitedStates Mollisols Ustolls Haplustolls Phaeozems PH 
UnitedStates Mollisols Ustolls Natrustolls Mollic Solonetz SNmo 
UnitedStates Mollisols Ustolls Paleustolls Profondic Luvic Phaeozems PHlvpn 
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UnitedStates Mollisols Ustolls Vermiustolls Vermic Chernozems CHvm 
UnitedStates Mollisols Xerolls Argixerolls Luvic Kastanozems KSlv 
UnitedStates Mollisols Xerolls Calcixerolls Calcic Kastanozems KScc 
UnitedStates Mollisols Xerolls Durixerolls Duric Kastanozems KSdu 
UnitedStates Mollisols Xerolls Haploxerolls Kastanozems KS 
UnitedStates Mollisols Xerolls Natrixerolls Mollic Solonetz SNmo 

UnitedStates Mollisols Xerolls Palexerolls Profondic Luvic 
Kastanozems KSlvpn 

UnitedStates Oxisols Aquox Acraquox Gleyic Geric Ferrasols FRgrgl 
UnitedStates Oxisols Aquox Eutraquox Eutric Gleyic Ferrasols FRgleu 
UnitedStates Oxisols Aquox Haplaquox Gleyic Ferrasols FRgl 
UnitedStates Oxisols Aquox Plinthaquox Plinthosols PT 
UnitedStates Oxisols Perox Acroperox Geric Ferrasols FRgr 
UnitedStates Oxisols Perox Eutroperox Eutric Ferrasols FReu 
UnitedStates Oxisols Perox Haploperox Ferrasols FR 
UnitedStates Oxisols Perox Kandiperox Acric Ferrasols FRac 
UnitedStates Oxisols Perox Sombriperox Sombric Ferrasols FRsb 
UnitedStates Oxisols Torrox Acrotorrox Geric Ferrasols FRgr 
UnitedStates Oxisols Torrox Eutrotorrox Eutric Ferrasols FReu 
UnitedStates Oxisols Torrox Haplotorrox Ferrasols FR 
UnitedStates Oxisols Udox Acrudoxes Geric Ferrasols FRgr 
UnitedStates Oxisols Udox Eutrudox Eutric Ferrasols FReu 
UnitedStates Oxisols Udox Hapludoxes Ferrasols FR 
UnitedStates Oxisols Udox Kandiudox Acric Ferrasols FRac 
UnitedStates Oxisols Udox Sombriudox Sombric Ferrasols FRsb 
UnitedStates Oxisols Ustox Acrustox Geric Ferrasols FRgr 
UnitedStates Oxisols Ustox Eutrustox Eutric Ferrasols FReu 
UnitedStates Oxisols Ustox Haplustox Ferrasols FR 
UnitedStates Oxisols Ustox Kandiustox Acric Ferrasols FRac 
UnitedStates Oxisols Ustox Sombriustox Sombric Ferrasols FRsb 
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UnitedStates Spodosols Aquods Alaquods Gleyic Podzols PZgl 
UnitedStates Spodosols Aquods Cryaquods Gleyic Podzols PZgl 
UnitedStates Spodosols Aquods Duraquods Densic Gleyic Podzols PZgldn 
UnitedStates Spodosols Aquods Endoaquods Gleyic Podzols PZgl 
UnitedStates Spodosols Aquods Epiaquods Stagnic Podzols PZst 
UnitedStates Spodosols Aquods Fragiaquods Fragic Gleyic Podzols PZglfg 
UnitedStates Spodosols Aquods Haplaquods Gleyic Podzols PZgl 
UnitedStates Spodosols Aquods Placaquods Gleyic Placic Podzols PZpigl 
UnitedStates Spodosols Cryods Duricryods Densic Podzols PZdn 
UnitedStates Spodosols Cryods Haplocryods Podzols PZ 
UnitedStates Spodosols Cryods Humicryods Carbic Podzols PZcb 
UnitedStates Spodosols Cryods Placocryods Placic Podzols PZpi 
UnitedStates Spodosols Gelods Haplogelods Gelic Podzols PZge 
UnitedStates Spodosols Humods Durihumods Densic Carbic Podzols PZcbdn 
UnitedStates Spodosols Humods Fragihumods Fragic Carbic Podzols PZcbfg 
UnitedStates Spodosols Humods Haplohumods Carbic Podzols PZcb 
UnitedStates Spodosols Humods Placohumods Placic Carbic Podzols PZcbpi 
UnitedStates Spodosols Orthods Alorthods Haplic Podzols PZha 
UnitedStates Spodosols Orthods Cryorthods Solonchaks SC 
UnitedStates Spodosols Orthods Durorthods Densic Podzols PZdn 
UnitedStates Spodosols Orthods Fragiorthods Fragic Podzols PZfg 
UnitedStates Spodosols Orthods Haplorthods Podzols PZ 
UnitedStates Spodosols Orthods Placorthods Placic Podzols PZpi 
UnitedStates Ultisols Aquults Albaquults Alic Planosols PLal 
UnitedStates Ultisols Aquults Endoaquults Gleyic Alisols ALgl 
UnitedStates Ultisols Aquults Epiaquults Stagnic Alisols ALst 
UnitedStates Ultisols Aquults Fragiaquults Fragic Gleyic Alisols ALglfg 
UnitedStates Ultisols Aquults Kandiaquults Profondic Gleyic Acrisols ACglpn 
UnitedStates Ultisols Aquults Kanhaplaquults Gleyic Acrisols ACgl 
UnitedStates Ultisols Aquults Ochraquults Alic Planosols PLal 



 49 

UnitedStates Ultisols Aquults Paleaquults Profondic Gleyic Alisols ALglpn 
UnitedStates Ultisols Aquults Plinthaquults Acric Plinthosols PTac 
UnitedStates Ultisols Aquults Umbraquults Umbric Gleyic Alisols ALglum 
UnitedStates Ultisols Humults Haplohumults Alisols AL 
UnitedStates Ultisols Humults Kandihumults Profondic Acrisols ACpn 
UnitedStates Ultisols Humults Kanhaplohumults Acrisols AC 
UnitedStates Ultisols Humults Palehumults Profondic Alisols ALpn 
UnitedStates Ultisols Humults Plinthohumults Acric Plinthosols PTac 
UnitedStates Ultisols Humults Sombrihumults Sombric Acrisols ACsb 
UnitedStates Ultisols Humults Tropohumults Humic Alisols ALhu 
UnitedStates Ultisols Udults Fragiudults Fragic Alisols ALfg 
UnitedStates Ultisols Udults Hapludults Alisols AL 
UnitedStates Ultisols Udults Kandiudults Profondic Acrisols ACpn 
UnitedStates Ultisols Udults Kanhapludults Acrisols AC 
UnitedStates Ultisols Udults Paleudults Profondic Alisols ALpn 
UnitedStates Ultisols Udults Plinthudults Acric Plinthosols PTac 
UnitedStates Ultisols Udults Rhodudults Rhodic Alisols ALro 
UnitedStates Ultisols Ustults Haplustults Alisols AL 
UnitedStates Ultisols Ustults Kandiustults Profondic Acrisols ACpn 
UnitedStates Ultisols Ustults Kanhaplustults Acrisols AC 
UnitedStates Ultisols Ustults Paleustults Profondic Alisols ALpn 
UnitedStates Ultisols Ustults Plinthustults Acric Plinthosols PTac 
UnitedStates Ultisols Ustults Rhodustults Rhodic Alisols ALro 
UnitedStates Ultisols Xerults Haploxerults Alisols AL 
UnitedStates Ultisols Xerults Palexerults Profondic Alisols ALpn 
UnitedStates Vertisols Aquerts Calcaquerts Calcic Gleyic Vertisols VRglcc 
UnitedStates Vertisols Aquerts Duraquerts Petroduric Gleyic Vertisols VRglpd 
UnitedStates Vertisols Aquerts Dystraquerts Dystric Gleyic Vertisols VRgldy 
UnitedStates Vertisols Aquerts Endoaquerts Gleyic Vertisols VRgl 
UnitedStates Vertisols Aquerts Epiaquerts Stagnic Vertisols VRst 
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UnitedStates Vertisols Aquerts Haplaquolls?? Gleyic Vertisols VRgl 
UnitedStates Vertisols Aquerts Natraquerts Sodic Gleyic Vertisols VRglso 
UnitedStates Vertisols Aquerts Salaquerts Gleyic Salic Vertisols VRszgl 
UnitedStates Vertisols Cryerts Haplocryerts Vertisols VR 
UnitedStates Vertisols Cryerts Humicryerts Humic Vertisols VRhu 
UnitedStates Vertisols Torrerts Calcitorrerts Calcic Vertisols VRcc 
UnitedStates Vertisols Torrerts Gypsitorrerts Gypsic Vertisols VRgy 
UnitedStates Vertisols Torrerts Haplotorrerts Vertisols VR 
UnitedStates Vertisols Torrerts Salitorrerts Salic Vertisols VRsz 
UnitedStates Vertisols Torrerts Torrerts Vertisols VR 
UnitedStates Vertisols Uderts Chromuderts Vertisols VR 
UnitedStates Vertisols Uderts Dystruderts Dystric Vertisols VRdy 
UnitedStates Vertisols Uderts Hapluderts Haplic Vertisols VRha 
UnitedStates Vertisols Uderts Pelluderts Vertisols VR 
UnitedStates Vertisols Usterts Calciusterts Calcic Vertisols VRcc 
UnitedStates Vertisols Usterts Chromusterts Vertisols VR 
UnitedStates Vertisols Usterts Dystrusterts Dystric Vertisols VRdy 
UnitedStates Vertisols Usterts Gypsusterts Gypsic Vertisols VRgy 
UnitedStates Vertisols Usterts Haplusterts Vertisols VR 
UnitedStates Vertisols Usterts Pellusterts Vertisols VR 
UnitedStates Vertisols Usterts Salusterts Salic Vertisols VRsz 
UnitedStates Vertisols Xererts Calcixererts Calcic Vertisols VRcc 
UnitedStates Vertisols Xererts Chromoxererts Vertisols VR 
UnitedStates Vertisols Xererts Durixererts Petroduric Vertisols VRpd 
UnitedStates Vertisols Xererts Haploxererts Vertisols VR 
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