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Abstract 

We applied the adapted model VSD+ to assess cropland acidification in four typical 

Chinese cropping systems (single Maize (M), Wheat-Maize (W-M), Wheat-Rice 

(W-R) and Rice-Rice (R-R)) on dominant soils in view of its potential threat to grain 

production. By considering the current situation and possible improvements in field 

(nutrient) management, five scenarios were designed: i) Business as usual (BAU); ii) 

No nitrogen (N) fertilizer increase after 2020 (N2020); iii) 100% crop residues return 

to cropland (100%RR); iv) manure N was applied to replace 30% of chemical N 

fertilizer (30%MR) and v) Integrated N2020 and 30%MR with 100%RR after 2020 

(INMR). Results illustrated that in the investigated calcareous soils, the calcium 

carbonate buffering system can keep pH at a high level for more than 150 years. In 

non-calcareous soils, a moderate to strong decline in both base saturation and pH is 

predicted for the coming decades in the BAU scenario. We predicted that 

approximately 13% of the considered croplands may suffer from Al toxicity in 2050 

following the BAU scenario. The N2020, 100%RR and 30%MR scenarios reduce the 

acidification rates by 16%, 47% and 99%, respectively, compared to BAU. INMR is 

the most effective strategy on reducing acidification and leads to no Al toxicity in 

croplands in 2050. Both improved manure and field management are required to 

manage acidification in wheat-maize cropping system. 
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1. Introduction 

Soil (water) acidification has received a lot of attention due to its negative impacts on 

the natural environment including fish dieback, nutrient imbalances in forest 

ecosystems and reduced plant species richness in natural ecosystems (Caputo et al., 

2016; De Vries et al., 2015). Besides this, it can also affect agricultural production in 

croplands (Dai et al., 2017; Li et al., 2016; Mahler and McDole, 1987). Acidification 

accelerates the loss of base cations (i.e.Ca2+, Mg2+, K+, Na+), thus leading to soil 

fertility degradation (Zhang et al., 2015). At a (very) low pH, significantly elevated 

aluminum (Al3+) and manganese (Mn2+) releases can lead to high concentrations of 

these elements in soil solution, which in turn cause root damage and yield decline (Hue 

et al., 2001; Zhou, 2015). In addition, the concentration of heavy metals, especially 

cadmium (Cd) and lead (Pb) increase dramatically at low pH (De Vries and 

McLaughlin, 2013; De Vries et al., 2007), thereby accumulating in crops and in humans 

by bioaccumulation (Mok et al., 2015).  

As the world’s most populous country, China needs enough food supply via 

agricultural production. Continued growth in agricultural nutrient inputs have doubled 

China’s grain yields both per-hectare and in total over the past decades (Liu et al., 2016; 
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Vitousek et al., 2009). This helped to achieve a food self-sufficiency rate of more than 

95% in the first decade of this century (Qi et al., 2015). However, with this great 

achievement in crop production, China has suffered from significant acidification in its 

major croplands since the 1980s, causing an averaged 0.5 pH units decline due to 

excessive N fertilizer application (Guo et al., 2010). The acidification is expected to 

accelerate in the future because of increasing N fertilizer application and decreasing N 

use efficiency. Increased soil acidification, in combination with the urbanization 

induced arable land area reduction, could threaten the future food production in China.  

Insight in future impacts of field management on soil acidification can be gained 

with a soil acidification model, under the prerequisite that it is well validated on the 

long-term effects of agricultural practices on soil acidity. Until now, soil acidification 

models have hardly been applied to agricultural soils with the exception of the adapted 

VSD+ model (Bonten et al., 2016; Posch and Reinds, 2009) which has been shown to 

be able to reconstruct soil pH changes in long-term fertilization experiments (Zeng et 

al., 2017). We thus applied this model to assess long-term impacts of various fertilizer 

and land management scenarios on soil acidification of main cropping systems in China. 

We selected the VSD+ model also because it needs a limited set of input data and its 

fast simulation time for scenario analyses (Reinds et al., 2012). 

Considering the important role of wheat, maize and rice in Chinese food supply, we 

focused the model analysis on the acidification of soil types below four typical 
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cropping systems (single maize, wheat-maize, wheat-rice and rice-rice). The extended 

VSD+ model was applied to simulate the acidification in the period 1980-2010 and 

predict acidification trends in the period 2010-2050 for different scenarios showing the 

contributions of (i) reducing fertilizer N input, (ii) replacing N fertilizer by manure and 

(iii) reducing crop residue removal. The objective of the present work is to quantify the 

relative contribution of various strategies and propose the most promising and feasible 

combination of measures to mitigate soil acidification in the future. 

2. Materials and Methods  

2.1 Model description 

  The VSD+ (very simple dynamic) model is a single-layer dynamic model that 

consists of charge and mass balances to calculate changes in pH and element 

concentrations in soil solution and thereby element outputs from the root zone. The 

model was initially developed as the dynamic extension of a steady-state mass balance 

model for critical loads calculation, to calculate the effects of deposition on soil 

acidification and predict the effects of deposition abatement on European forest soils 

(Posch and Reinds, 2009). The extended version used in cropland was included in Zeng 

et al. (2017), which further includes the phosphate (H2PO4
-) and sulfate (SO4

2-) removal 

in vegetation and soil adsorption-desorption.  

The soil solution chemistry in VSD+ depends solely on the net element input 
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(fertilizer, manure, fixation and deposition minus crop removal minus net 

immobilization) and the geochemical interactions in the soil (CO2 equilibria, 

carbonates, silicates and/or Al hydroxides and cation exchange). Soil interactions are 

either described by simple rate-limited (zero-order) reactions (uptake and base cation 

weathering) or by equilibrium reactions (carbonate and Al hydroxide dissolution and 

cation exchange). Solute transport is described by assuming complete mixing of the net 

element input in one homogeneous soil compartment with a constant density and a 

fixed depth (root zone). The annual water flux percolating from this layer is taken equal 

to the annual precipitation surplus that is assumed constant during the model runs 

(steady-state hydrology). The time step of the model is one year, so seasonal variations 

are not considered. An overview of the included rate limited and equilibrium reactions 

and used process descriptions is given in Table 1. The explicit description on those 

process descriptions can be found in Posch and Reinds (2009) and Bonten et al. (2016). 

 

Table 1. The rate limited and equilibrium reactions and related process descriptions 

included in the extended VSD+ model. (BC =Ca + Mg +K +Na) 

Reactions Element Process description Relevant 
parameter 

Rate-limited reactions    
Growth uptake N, P, S, 

BC  
Yield times N content X_upt 

N immobilization N Roth C model approach rf_min  
Nitrification N Proportional to net NH4 

input 
rf_nit 
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Denitrification N Proportional to net NO3 
input 

rf_denit 

Silicate weathering BC Zero order reaction (constant 
rate depending on soil type) 

BC_we 

Equilibrium reactions    
Dissociation of 
bicarbonate 

HCO3 CO2 equilibrium equation KCO2 

Dissociation of 
organic acids 

C Oliver model Korg 

Cation exchange H, BC, Al Gapon equation 
/Gaines-Thomas equation 

lgKAlBC, 
lgKHBC 

Dissolution of Al 
hydroxides 

Al Gibbsite equilibrium 
lgKAlox 

Adsorption-desorption P, S  Langmuir isotherm PO4admax, PO4half 
SO4admax SO4half  

 

2.2 Application methodology and data assessment 

The modelling assessment was carried out for the period 1980-2050, including 

available datasets on element inputs and crop uptake for the period 1980-2010 and 

scenarios for inputs and uptake for the period 2010-2050. The study was focused on the 

acidification of typical grain cropping systems, including single season maize (M), 

wheat-maize (W-M), wheat-rice (W-R) and rice-rice (R-R), on dominant soil types. To 

gain insight into the area of combinations of soils and cropping systems, an overlay 

was made by ArcGIS (ESRI, USA) of a digital map of land use, using the Multi-source 

Integrated Chinese Land Cover map (Ran et al., 2012), and of soil types, using the 

Harmonized World Soil Data map (HWSD version 1.1, Fischer et al., 2008). Since the 

land use map did not give information on crop types, we assumed that one cropping 



 

8 

 

system dominates in each province. The map of this cropping system distributions is 

shown in Fig. 1.  

 

Fig. 1 Distribution of the considered dominant cropping systems in China. M, R-R, 

W-M, W-R denote the single maize, rice-rice, wheat-maize and wheat-rice cropping 

systems, respectively.  

The three soil types with the largest area of croplands in each cropping system 

were then selected. Eventually, twelve combinations (four cropping systems × three 

soil types) were chosen in the assessment, which represent 54.6% of the total Chinese 

croplands, as shown in Table 2. 
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Table 2 Area of dominating soil types in percentage of total arable land 

1 The total area of arable land in China is 1.3×108 ha. Note that the area of 
non-calcareous soils below grain crops is 23.7 % and the remaining 30.9% is 
calcareous. 

Data required to run VSD+ was grouped into input fluxes, output fluxes, soil properties 

and parameters and meteorological data. The assessment of these datasets is described 

below and summarized in Table 3. Details on the derivation of the various parameters 

are given in the Supplementary material 

  

Cropping system Carbonates 
in soil 

Soil type Area 
(106 ha) 

Ratio to area of 
total arable land 
in China (%)1 

M No Phaeozem (PH) 7.8 6.0 
M No Luvisols (LV) 5.5 4.2 
M Yes Cambisols (CM-Ca) 2.6 2.0 

W-M Yes Cambisols (CM-Ca) 9.7 7.4 
W-M Yes Fluvisol (FL) 9.5 7.3 
W-M No Luvisols (LV 3.9 3.0 
W-R Yes Anthrosols (AT) 7.9 6.0 
W-R No Cambisols (CM) 6.0 4.6 
W-R Yes Fluvisol (FL) 5.0 3.9 
R-R Yes Anthrosols (AT) 5.6 4.3 
R-R No Acrisols (AC) 5.6 4.3 
R-R No Cambisols (CM) 2.1 1.6 
Total  - 70.9 54.6% 
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Table 3. List of symbols and data sources of input-output fluxes soil properties, model 

parameter and meteorological data used in VSD+ and MetHyd. 

Data used Explanation Unit Data sources 
Input fluxes   

X_dep1 Input by deposition eq m-2 yr-1 Zhu et al. 
(submitted) 2 

X_frt Input by fertilization eq m-2 yr-1 Zhu et al. 
(submitted) 

Nfix N fixation eq m-2 yr-1 Zhu et al. 
(submitted) 

BC_we Weathering rate of BC (K, Na, Ca, Mg) eq m-2 yr-1 Duan (2000) 
Output fluxes   

X_upt Yearly net removal of X from the soil 
by harvest eq m-2 yr-1 Zhu et al. 

(submitted) 
Soil properties   
Thick Thickness of the soil compartment m Root zone3 

pCO2fac CO2 pressure in the soil solution 
divided to the pressure in atmosphere - Nan et al. 

(2016) 
bulk dens Average bulk density of the soil g cm-3 HWSD4 
CEC Cation exchange capacity of the soil meq kg-1 HWSD 
Bsat_0 Initial base saturation - HWSD 
Cpool_0 Initial amount of C per unit area g m-2 HWSD 
CNrat_0 Initial C:N ratio in topsoil - DSMW5 
TempC Average (soil) temperature oC CMA6 

Theta Water content of the soil m3 m-3 MetHyd7 
percol Precipitation surplus m yr-1 MetHyd 
Model parameters 

KCO2 
Equilibrium constant for CO2 
dissociation mol2 l-2 bar-1 Default 

Korg Constant for organic anion 
dissociation mol l-1 Posch and 

Reinds (2009) 

rf_min Reduction factor of mineralization 
rates - MetHyd 

rf_nit Reduction factor of nitrification rates - MetHyd 

rf_denit Reduction factor of denitrification 
rates - MetHyd 

lgKAlBC log10 of Al-BC exchange constant - De Vries and 
Posch (2003) 

lgKHBC log10 of H-BC exchange constant - De Vries and 
Posch (2003) 

lgKAlox log10 of Al equilibrium constant - De Vries and 
Posch (2003) 

PO4admax Maximum P adsorption capacity meq kg-1 Jia (2011) 

PO4half Constant of half-saturation adsorption 
capacity of P meq l-1 Jia (2011) 
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SO4admax Maximum S adsorption capacity meq kg-1 Neglected8 

SO4half Constant of half-saturation adsorption 
capacity of S meq l-1 Neglected 

Meteorological data 
Temperature Monthly averaged temperature ℃ CMA 
Precipitation Monthly averaged Precipitation mm CMA 
Sunshine Monthly averaged sunshine hours h CMA 
Clay_ct Clay content in the soil % HWSD 
Sand_ct Clay content in the soil % HWSD 

1 denotes the ion NHx, NOy, SOx, P, K, Na, Ca, Mg, HCO3, Al and H; 2 Zhu et al. (submitted) 

gives data on both fertilizer input (using data from the National Bureau of Statistics of China; 

NBSC) and deposition (using data from a series references); 3 Root zone used in the research 

was 0.3m; 4 HWSD, Harmonized World Soil Database (version 1.1); 5 DSMW, The Digital Soil 

Map of the World; 6 CMA, China Meteorological Administration; 7 means that the data were 

derived by running the model MetHyd; 8 SO4 adsorption was neglected, i.e. SO4admax and 

SO4half were set to zero. 

 

 

 

2.3 Calculation of times to deplete calcium carbonate pools 

For calcareous soil, we only calculated the years to deplete the calcium carbonate 

pool (Poolc) due to its strong neutralizing capacity against acidification (De Vries et al., 

1989). The years of depletion were calculated as Poolc divided by the average 

acidification rate during the period 2010-2050. Poolc (keq ha-1) was calculated as: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶3 × 𝐵𝐵𝐵𝐵 × 𝑇𝑇 × 105/50 

Where CCaCO3 is the weight-percent concentration of calcium carbonate in soil 
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(weight-%); BD and T denote the soil bulk density (g cm-3) and depth of root zone (m; 

0.3 m was used in our assessment). The multiplication of 105 and the division of 50 

were needed to derive the equivalent unit "keq ha-1" on the basis of the molecular 

weight of CaCO3 and the charge 2 of Ca2+ after (potential) dissolution.  

The total acidification rate (Htot) was quantified by the net losses of BC, as: 

𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙 + 𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 

Where, BCle and BCrem denote the base cation losses from root zone by leaching and 

crop removal and BCin denotes the total base cation inputs from fertilizer, deposition 

and manure. The leaching losses of BC were derived with VSD+, accounting for both 

the net loss of BC, mainly associated with nitrate leaching due to fertilization 

(human-induced acidification) and with natural acidification (dissociation of CO2). 

2.4 Scenario design 

The expected population in China is peaking at 2030, while the food demand will 

keep growing afterwards (Jiao et al., 2016; Ma et al., 2013). The demand at 2050 is 

forecasted twice that of 2005 due to economic growth and diet transition (Tilman et al., 

2011; Valin et al., 2014). Due to the positive relationship between the N fertilizer 

application, food production and cropland acidification (Guo et al., 2010), we focus on 

predicting that acidification during the future period 2010-2050. In order to mitigate 

soil acidification in the future, several scenarios were designed including possible 

changes of fertilizer consumption, manure utilization and field management on the 
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basis of national policy. In this case, changes of major element inputs and outputs in 

croplands (i.e. fertilizer, manure and crop removal) are considered, while changes in 

deposition are neglected in future. The designed scenarios are described below. 

(I) Business as usual (BAU): 1% increase of N fertilizer application per year after 2010 

up to 2050. 

(II) No N fertilizer increase after 2020 (N2020): As with the BAU scenario, the N 

application rate is assumed to increase by 1% in the period 2010-2020 and kept 

constant afterwards in the period 2020-2050. This scenario is in line with the policy of 

no increase in fertilizer consumption after 2020 (Ministry of Agriculture of China, 

2015).  

(III) Replacement of chemical N fertilizer by Manure (30%MR): As with BAU, a 1% N 

fertilizer input increase is assumed during 2010-2050 but after 2010, 30% of the 

synthetic N fertilizer input is replaced by animal manure. This implies an enhanced BC 

input, since manure contains significant amounts of base cations.  

(IV)100% crop residues return to cropland (100%RR): In this scenario, the N fertilizer 

input is equal to BAU, but the proportion of crop residues return increases from the 

current percentage in 2010 (39.6% of wheat, 54.7% of maize and 59.3% of rice, Zhu et 

al. (submitted)) to 100% in 2020 and kept at that level afterwards. 

(V) Integrated N2020, manure replacement and crop residues return (INMR): In this 

combined scenario, the future N inputs are kept constant after 2020 (equal to N2020), 
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but 30% of the synthetic N fertilizer input is replaced by animal manure after 2010 

(30%MR) and straw return increases to 100% between 2010 and 2020 (100%RR). The 

integrated scenario INMR was designed to evaluate the combined effects of reduced N 

input by no increase in fertilizer use after 2020, increasing BC input by manure and 

reducing BC removal by crop residues on soil acidification. 

We assumed in all scenarios that the N fertilizer types used in the future are consistent 

with their use in the period 2005-2010, i.e. 14% of N as NH4HCO3, 5% as NH4Cl and 

the rest being urea (treated as NH4NO3 in terms of proton production). Crop yields 

were assumed to increase at the same trends as averaged over the period 1980-2010 in 

all scenarios, i.e. 1.68% per year for wheat, 0.86% per year for maize and 0.71% per 

year for rice (Ray et al., 2013). Note that this assumes an increase in nitrogen use 

efficiency (NUE) in the N2020 and INMR scenario. 

 

3. Results 

3.1 Element inputs and uptake  

During the period 1980-2010, the overall average N fertilizer application rate in the 

four typical cropping systems (M, W-M, W-R and R-R) increased from 8.6 keq ha-1 yr-1 

to 18.8 keq ha-1 yr-1. Assuming a 1% increase in N application rates in the future 

(2010-2050) thus leads to an average N application rate near 26.4 keq ha-1 yr-1 in 2050 
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in the BAU scenario. When applying the policy of No Increase of Fertilizer 

consumption after 2020 (N2020), the averaged N application rate would stabilize at 

20.7 keq ha-1 yr-1 in 2020 (and stay constant thereafter). Separate NHx-N and NOy-N 

inputs, calculated by subtracting NH3 emissions from N fertilizer and N manure, are 

shown in Fig. 2.  
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Fig. 2 Element inputs of NHx-N (left), NOy-N (middle) and base cations (BC, right) by 

fertilizer and manure for the five scenarios in the four cropping systems, i.e. maize (M, 

top), wheat-maize (W-M second row), wheat-rice (W-R, third row) and rice-rice (R-R, 

bottom). Note the small gap in NHx-N and NOy-N inputs between BAU and 30%MR, 

even though total N inputs are the same, because NH3 emission fractions in chemical 

fertilizer and manure differ (see Table S1 in Supplementary material). This difference 



 

17 

 

also occurs between N2020 and INMR. 

The enormous increase in chemical N fertilizer inputs boosted crop yield between 

1980 and 2010, which is reflected in an average total N uptake at 2010 (12.2 keq ha-1 

yr-1) being almost twice that in 1980 (6.9 keq ha-1 yr-1) for the four cropping systems 

(Fig. 3).  

Fig. 3 Element removal of N (left) and base cations (BC, right) for the five scenarios of 
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the considered four cropping systems. Note that total N uptake is similar in all scenarios 

while BC uptake changes with increased crop residue return.  

However, the N fertilizer use efficiency (calculated as total N uptake divided by 

chemical fertilizer N rate) declined from 1.0 to 0.8 during 1980-2010, implying an 

increased N surplus (the difference between N fertilizer input and N crop removal) and 

potential N leaching, which also drives the BC leaching from soil. 

Soil acidification, induced by base cations (BC, i.e. K+, Na+, Ca2+, Mg2+) losses from 

soil, is also caused by the net removal of base cations in grain yield and removed straw. 

There was an increased BC removal from 4.0 to 4.9 keq ha-1 yr-1 by harvesting during 

1980-2010 (Fig. 3). As a consequence, net depletion of the soil BC pool (0.3 and 0.1 

keq ha-1 yr-1 in 1980 and 2010) was found in all the four cropping systems, despite the 

inputs of base cations (BC, i.e. K+, Na+, Ca2+, Mg2+) increased from 3.7 to 4.8 keq ha-1 

yr-1 during the period. Furthermore, this depletion of soil BC pool up to 2.7 keq ha-1 yr-1 

in 2050 under the BAU and N2020 scenarios since the increased BC removal up to 6.9 

keq ha-1 yr-1 in 2050. However, the BC pool can be replenished by replacing chemical 

fertilizer by manure. The predicted BC inputs increased strongly to 13.4 keq ha-1 yr-1 in 

the 30%MR scenario for the four cropping systems in 2050 (Fig. 2). Thus, the BC pool 

shifted from a deficit in the 1980-2010 to a surplus (6.5 keq ha-1 yr-1) in 2050 under 

30%MR. In the 100%RR scenario, depletion of the soil BC pool is also reduced due to 

increasing straw return. Compared to BAU, the net removal of BC decreases from 6.9 
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keq ha-1 yr-1 to 1.4 keq ha-1 yr-1 in the year 2050 (Fig. 3). Finally, an integrated strategy 

of reducing BC removal (1.4 keq ha-1 yr-1) and increasing BC input (9.9 keq ha-1 yr-1), 

i.e. INMR, increased the BC surplus up to 8.5 keq ha-1 yr-1 in 2050. Note that INMR has 

less BC input than 30%MR, which is due to the lower N fertilizer use after 2020 

(stabilized N fertilizer use after 2020) in INMR than in 30%MR (continuous increased 

N fertilizer use) and the fixed replaced proportion of N fertilizer by manure in them.  

3.2 Times to deplete the carbonate pools of calcareous soils 

For calcareous soils, we calculated the time period until the pool of calcium 

carbonate (CaCO3) is depleted under all five scenarios (Table 4). Results showed that 

the CaCO3 pool lasts for at least 150 years in the worst situation, i.e. the combination 

rice-rice on an Anthrosol (R-R-AT), and up to more than 5000 years in the 

combination of maize on a calcareous Cambisol (M-CM-Ca). Generally, the period to 

deplete the pool of CaCO3 among cropping systems increased from R-R (197) < W-R 

(267) < W-M (653) < M (1594). The depletion time among soil types increased from 

AT (228) < FL (624) < CM-Ca (963), even though the CaCO3 pools of Fluvisols (FL) 

and Anthrosols (AT) are almost twice as high as those of calcareous Cambisols 

(CM-Ca). This is due to the stronger acidification rates in the south (W-R and R-R 

cropping systems) than in the north (M and W-M cropping systems) of China. The 

evaluation indicates, however, that the acidification of calcareous soils is not a 

pressing issue in the near future. 
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Table 4 Depletion periods per scenario for calcareous soils with typical cropping 

systems 

Cropping 
systems 

Soil 
types 

PoolC 

keq ha-1 
 Depletion years after 20102 

yr 
19801 2010  BAU N2020 100%RR 30%MR INMR 

M CM-
Ca 

4012 3842  473 513 603 920 5463 

W-M CM-
Ca 

4012 3748  229 255 264 468 443 

W-M FL 7952 7608  588 636 722 1572 1348 
W-R FL 7952 7031  236 239 267 312 319 
W-R AT 7198 6310  220 224 251 298 304 
R-R AT 7198 6095  174 174 199 215 223 

1 PoolC denotes the acid neutralizing pool by calcium carbonate that in the top 0.3m soils; 2 

calculated as the PoolC divided by the average acidification rate during the period 2010-2050. 

 

3.3 Changes in base saturation and pH of the non-calcareous soils  

In contrast to the acid-insensitive calcareous soils, non-calcareous soils showed 

obvious acidification, illustrated by a rapid decline in both soil BS (base saturation) 

and pH (Fig. 4). 
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Fig. 4 Predicted changes in soil base saturation (BS, left) aluminum release (middle) 
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and pH (right) for the six combinations of non-calcareous soils and cropping systems in 

the period 1980-2050. 

For the combination of maize on Phaeozems (M-PH), the worst acidification 

occurred under the BAU scenario, with a decline of 28% in BS during 1980-2050 and 

a corresponding decline of 0.7 pH units. Comparable trends were predicted for the 

scenarios N2020 and 100%RR. When applying the 30%MR scenario, the acidification 

was much less due to a strongly reduced BS decline. Finally, under the INMR 

scenario, we predicted an acidification recovery, i.e. soil BS and pH increased after 

2018. The combination of maize on Luvisol (M-LV) showed similar trends as M-PH, 

but a slightly stronger decline in soil BS and pH in the BAU, N2020, 30%MR and 

100%RR scenarios. For example, the decrease in soil BS and pH between 1980 and 

2050 was predicted at 0.37 and 1.0 units under BAU scenario, as compared to 0.28 

and 0.7 units for M-PH.  

By contrast to the single maize cropping system, the wheat-maize combination on 

Luvisol (W-M-LV) exhibited a much stronger acidification. A rapid exhausting of BS 

and a sharp decline of pH from 6.5 to 3.8 occurred in the period 1980-2050 under the 

BAU scenario, associated with an elevated release of Al after the year 2045. The 

predictions for the N2020 and 100%RR scenarios showed less acidification than the 

BAU scenario, reflected by significantly reduced Al release. However, 30%MR and 

INMR are the best practices to alleviate soil acidification, although BS still declined 
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to 0.64 and 0.58 in 2050, respectively.  

Similarly, W-R is also a cropping system for which we predicted a strong 

acidification, with BS changing from 0.56 in 1980 to being almost exhausted in 2050 

under the BAU scenario, accompanied by a corresponding pH decrease from 5.6 to 

3.9. The N2020 and 100%RR scenarios showed quite similar results, except for a 

lower Al release as compared to BAU. The 30%MR can effectively restrain Al release 

by keeping a relative high pH during the simulation period. However, a slight 

acidification recovery was predicted in the optimal scenario INMR after 2010. The 

soil BS and pH increased from 0.41 and 5.1 in 2010 to 0.43 and 5.2 in 2050 in INMR, 

respectively.  

Similar to W-R-CM, the predictions for the combination of R-R-CM also resulted 

in a dramatic acidification. For example, a dramatic Al released was found in the 

BAU and N2020 scenarios after 2040, associated with a pH decline below 4.5. The 

100%RR can significant reduce the Al release as compared to BAU and N2020, 

indicating an effective way to alleviate acidification. The 30%MR and INMR can 

obviously mitigate the acidification, reflected by a BS of 0.41 and 0.53 and a pH over 

5.0 in 2050. Furthermore, acidification recovery is also predicted after 2019 under 

INMR, with the soil BS and pH rising from 0.42, 5.2 to 0.53 and 5.4, respectively. 

In R-R-AC, the Al release is predicted earlier (at 2030) in the BAU, N2020 and 

100%RR scenarios, compared to R-R-CM, associated with a soil pH below 4.5. While, 
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30%MR and INMR can significantly mitigate soil acidification, keeping the BS 

greater than 0.2 and pH around 4.5. A very slow recovery is also predicted under 

INMR, with the pH increase from 4.5 in 2020 to 4.6 in 2050. 

Overall, scenarios of INMR and 30%MR are predicted to be most effective 

strategies in alleviating acidification, but acidification recovery was only predicted for 

the M, W-R and R-R cropping systems under INMR. The N2020 and 100%RR 

scenarios can only slightly reduce the acidification, reflected by similar trends of BS 

and pH decline as compared to BAU.  

4. Discussion 

4.1 Different acidification rates between soil types and cropping systems 

In this study, we assessed the acidification of typical cropping systems for the 

period 1980-2050. The averaged pH decrease for all soil-crop combinations was 0.44 

units during the period 1980-2010, which is comparable with the reported results of 

0.50 units by Guo et al. (2010) during 1980s to 2000s, which implies that the model 

results are plausible. The validity of the extended model VSD+ to simulate the pH for 

agricultural ecosystems also follows from a previous study showing a good 

comparison of model results with long-term experimental data (Zeng et al., 2017).  

Our results indicate that non-calcareous soils are sensitive to acidification, reflected 

by rapid BS and pH decreases during the period 1980-2050 (Fig. 4). By contrast, 
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calcareous soils are insensitive and the CaCO3 system can buffer the incoming acidity 

for more than 150 years in most combinations (Table 4). The reason is that the 

acid-neutralizing pool of calcareous soil by CaCO3 (4012-7952 keq ha-1, Table 4) is 

much greater than that of non-calcareous soils by exchangeable BC (286-726 keq 

ha-1), which is obtained by multiplying the CEC with the BS, bulk density and soil 

depth of 0.3 m. Our results are consistent with the results of a constant acid load of 5 

keq ha-1 yr-1 under different buffer systems by De Vries et al. (1989), and with the 

large scale pH changes across China in the period 1980-2005 (Guo et al., 2010). This 

explains why almost all acidification related research focuses on non-calcareous soils 

(e.g. (Fujii et al., 2009; Goulding, 2016; Mao et al., 2017)). 

Soil acidification is mainly driven by nitrogen (nitrate) induced base cation 

leaching, and the net removal of base cations by harvest (Duan et al., 2004; Guo et al., 

2010). The effect of acidification rates on soil pH, base saturation and ultimately Al 

release is further affected by differences in CEC and base saturation. Among 

non-calcareous soils, the acidification rates thus differed (Fig. 5), due to the 

differences in soil characteristics and cropping systems (i.e. crop type and field 

management). For example, even though similar N, BC inputs and uptake for the 

cropping system R-R occurred on Cambisols (CM) and Acrisols (AC), the rather 

comparable inputs and outputs caused different effects in terms of changes in soil pH 

and Al release at 2050. These differences were mainly due to differences in the initial 
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CEC and BS (Table S4 in Supplementary material), which determines the buffering 

capacity to acid inputs in these soils (De Vries et al., 1989). Furthermore, the 

differences in de-nitrification and the subsequent N leaching, as affected by pH and 

soil physical characteristics, also contributed to the differences (Bonten et al., 2016; 

Kim et al., 2016; Xue et al., 2016). In our simulations, soil acidification reduces 

denitrification, thus enhancing N leaching. In combination with the high BC removal 

by grains and crop residues, this explains the predicted decrease of pH values, even in 

rice–rice combinations. Such low pH values have, however, also been observed in 

field situations for rice (Zhu et al., 2016). 

 

Fig 5. Predicted average net proton production for the six combinations of soils and 

cropping systems during 1980-2010 (A) and for 2011-2050 (B) in response to the 

different scenarios. The different lowercase letters next to the bars in (B) denote the 

significant difference (P <0.05) between the combinations. 
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In addition, field management and crop types also have effects on soil acidification. 

For example, different pH decreases among four rotations were reported in a 14-year 

long-term trial in South Australia (Xu et al., 2002). The fundamental reason is that 

disturbed element input-output budgets by fertilization and vegetation removal 

influence the proton production and consumption (De Vries and Breeuwsma, 1987; 

Fujii et al., 2009). By referring to the calculation on proton production-consumption 

described by De Vries and Breeuwsma (1987), we further assessed the acidification 

rates among the 6 combinations under non-calcareous soils (Fig. 5). The results 

showed that W-M cropping system has the greatest acidification rates (3.8 keq ha-1 

yr-1), followed by the M (3.1 keq ha-1 yr-1), W-R (2.7 keq ha-1 yr-1) and R-R (2.5 keq 

ha-1 yr-1) during 1980-2010.  

In summary, the joint effects of differences in soil properties, field management and 

crop types lead to different soil acidification rates and related differences in the 

changes of BS and pH. 

4.2 Effects of different scenarios in reducing soil acidification  

Liming has been widely recommended to manage soil acidification (Goulding, 

2016; Zhu et al., 2016). However, this management approach is impractical in some 

areas due to supply shortages and high costs (Shi et al., 2017; Xu and Coventry, 2003). 

Therefore, we attempted to propose feasible strategies to mitigate the acidification 

authentically. In view of this, several scenarios of adjusted field management, also 
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considering national policy, were designed.  

Compared to BAU, the N2020 scenario, with no N fertilizer increase after 2020 was 

least effective, even though we assumed that crop growth keeps increasing at the same 

rate as in the past, implying an increase in N fertilizer use efficiency. The 100%RR 

scenario, reducing the BC removal from soils is a more effective approach in reducing 

acidification rates.  

However, the 30%MR is much more effective than the N2020 and 100%RR 

scenarios (Figs. 4 and 5). The N2020 and 100%RR only reduced the net acidification 

rates by 16 and 47% on average, by controlling N input and increasing straw return, 

whereas 30%MR significant reduced those rates by 82-111% by increasing BC inputs. 

In the 30%MR scenario, we assumed, however, that the NUE of manure is that of equal 

to fertilizer. This is based on results of long-term (15-yr) experiments on N uptake and 

NUE at four sites in China. These showed that application of mixed organic and 

inorganic N fertilizers resulted in more stable and significantly higher yields than 

application of inorganic N fertilizers alone (Duan et al., 2011). Moreover, (Li et al., 

2017) found that the yield at an experimental plot in North China was higher after 30 

years of manure N application than in case of NPK fertilization. The effects can be 

explained by the positive impact of manure application on the contents of soil organic 

carbon (SOC) and available P in the soil (Duan et al., 2011). Note, however, that when 

the NUE of manure would be less, e.g. 75% of N fertilizers (Velthof et al., 2009) 
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implying that more manure would have to applied to match the replaced N in the 

30%MR scenario to have the same yield, it would lead to an even higher reduction in 

acidification due to more BC inputs. 

Finally, the integrated INMR scenarios, including both a reduction in N inputs 

(N2020), a reduction in BC removal (100%RR) and an increase in BC inputs 

(30%MR), reduced the acidification rates by 97-164%, thus leading to recovery in 

most cases (Table 5). It should be noted that the effect of INMR was higher than the 

sum of the three strategies (N2020, 100%RR and 30%MR) in case of Maize 

(interaction effects of 20% and 25%) and lower in double cropping systems 

(interaction effects of -49% to -72%). The reason is that net BC inputs (BC input 

minus NO3
- induced BC leaching loss) are different in 30%MR and INMR, since the 

applied amount of manure is different. For example, the averaged BC input in maize 

(M) are 5.9 and 4.6 keq ha-1 yr-1 during 2010-2050, while the N induced BC leaching 

losses are 1.8 and 0.3 keq ha-1 yr-1 in the 30%MR and INMR scenarios, respectively, 

which lead to lower net BC inputs in 30%MR (4.1 keq ha-1 yr-1) than in INMR (4.3 

keq ha-1 yr-1), which explains the positive interaction (Table 5). Inversely, the net 

average BC inputs in 30%MR (12.6 keq ha-1 yr-1) are greater than in INMR (10.1 keq 

ha-1 yr-1), thus explaining the negative interaction in the wheat-maize (W-M) cropping 

system. 

Table 5 Effects of scenarios on net acid production alleviation for the typical 
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non-calcareous cropping systems 

Scenarios Effect of scenarios on the reduction in acid production rate 
in %1 

M-PH M-LV W-M-LV W-R-CM R-R-CM R-R-AC 
N2020 12 12 21 22 15 15 

30%MR 86 82 106 108 111 100 
100%RR 41 39 27 40 79 55 

INMR 164 152 97 120 132 121 
Interactions2 25 20 -58 -49 -72 -49 

1 The effects are calculated by the averaged net proton production of BAU minus that 
of the certain scenario. 2 The interactions are calculated by INMR minus the sum of 
N2020, 30%MR, 100%RR. 

The results clearly show that the fundamental mechanism of mitigation is to enlarge 

the net BC input, either by raising input or reducing the output. This also explains 

why manure application significantly slows down the soil pH decrease in some 

long-term experiments, and the weak effect of straw return on managing acidification 

(Cai, 2010; Sun et al., 2015). 

 

4.3 Threat to crop production from soil acidification in the future 

Severe acidification has occurred over the past two decades in major Chinese 

croplands, ascribed to excessive N application to improve grain production to meet 

the increased food demand for a rapid growing population (Guo et al., 2010). For 

2050, the food demand is forecasted to be twice as large as that in 2005 (Tilman et al., 

2011; Valin et al., 2014). If the 1% increase of N application is continuing in future, 

(BAU scenario), this will lead to 17.5 million ha of the considered croplands suffering 
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from Al toxicity by 2050, which is 13.2% of the total croplands of China. The N2020 

and 100%MR scenarios can retard acidification rates to some extent, but it cannot 

prevent severe acidification in the future. There are still more than 10% of the total 

croplands threatened at 2050. While 30%MR and INMR can succeed to avoid the soil 

suffering from Al toxicity before 2050. It should be noticed that even under the best 

scenario of INMR, there is still a predicted decline of soil BS and pH in the 

wheat-maize (W-M) cropping system. These results point to the necessity of 

improved manure and crop management to avoid soil acidification in the W-M 

cropping system. 

 

5. Conclusions 

By applying the extended VSD+ model on combinations of typical cropping 

systems and soil types, results indicate that acidification of non-calcareous soils may 

cause a drop of 1.1-2.5 pH units in all double cropping systems before 2050, 

associated with Al release. If the future N application rates increase at 1% without 

taking proper action, 13.2% of the total croplands will suffer from Al toxicity. The 

partial replacement of N fertilizer by N manure is a very effective strategy to manage 

soil acidification due to the addition of base cations, counteracting the loss of those 

cations. The most effective strategy is an integrated practice of no N fertilizer increase 
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after 2020, 30% of chemical N replacement by animal manure and the gradual 

increase of straw return to croplands up to 100% in 2020 (INMR). In this case, we 

predict that none of the cropland is threatened by Al toxicity before 2050, despite 

on-going acidification in wheat-maize cropping system. 
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