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1 Introduction

The Large Aperture Scintillometer (LAS) has been developed in the 1970’s (Wang et al., 1978). It has been
applied to measure a number of atmospheric surface layer quantities, most notably the structure function
parameter of the refractive index, Cn2 (Ochs and Wang, 1978), the wind speed across the scintillometer
path (Ochs et al., 1976) and the inner scale of turbulence (Hill and Ochs, 1978; Hartogensis et al., 2002).
The present paper will deal with the derivation of the sensible heat flux from LAS data (Wesely, 1976b;
de Bruin et al., 1995; Meijninger et al., 2002b; Kohsiek et al., 2002).

The LAS consists of a transmitter and a receiver which are separated by a distance L, the path length.
The transmitter and and receiver have finite aperture diameters (Dt and Dt) which are ’large’ (the meaning
of the word large will become clear in the course of this paper). The radiation emitted by the transmitter is
scattered by the turbulent medium between the transmitter and the receiver. The receiver collects both the
undisturbed beam of the transmitter and the scattered radiation (see figure 1.1). It is the fluctuation of the
scattered light that carries information about the turbulent field along the scintillometer path.

The aim of this paper is to show and clarify the theory and assumptions that underly the derivation of
sensible heat flux from LAS measurements. The link between LAS data and the sensible heat flux consists
of three steps, which will be the subject of subsequent sections:

• From the signal of the LAS the structure function parameter of the refractive index can be inferred,
which is shown in section 2.4). Since that section heavily relies on turbulence theory, it is preceded
by a section that deals with the statistical description of a turbulent field. Both vector and scalar
fields are dealt with (section 2).
• The structure parameter of the refractive index –obtained in the first step– can be related to the struc-

ture function parameter of temperature. Section 3 deals with the properties of air that cause variations
in the refractive index and shows the relationship between the structure function parameters of the
refractive index and temperature.
• Finally, the structure function parameter of temperature can be related to the sensible heat flux

through similarity relationships. This step is discussed in 4.
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path length

transmitter receiver

Figure 1.1: The LAS consists of a transmitter and a receiver, a given distance apart (path length). The radiation
produced by the transmitter is scattered by the turbulent medium between transmitter and receiver. The
receiver collects both the undisturbed beam of the transmitter and the scattered radiation.

2



3

All discussions are centred around the LAS as it is built and used by the Meteorology and Air Quality
Group of Wageningen University. Thus this paper is not intended to be a full review of all aspects of
scintillometry.



2 Statistical description of
a turbulent field

2.1 Statistical tools
Since turbulent flows are not reproducible in detail, they can be described in a statistical sense only. In this
section the statistical properties used in this report will be discussed1. Some of the statistical properties are
defined in terms of the deviation of a random variable (say u), u′. This deviation is defined by the Reynolds
decomposition:

u = u + u′ , (2.1)

where u is a mean value and u′ is the deviation from that mean. In the sequel it will be assumed that u is
the ensemble average (see Monin and Yaglom (1971) for the general requirements for this average).

The random variable u(rrr) can be described with the statistical moments Buu...u where rrr is a point in four-
dimensional space (space and time). In general, the k-th order moments are the mean values of products of
k values of the field (Monin and Yaglom, 1971):

Buu...u(rrr1, rrr2, . . . , rrrk) = u′(rrr1)u′(rrr2) . . . u′(rrrk) (2.2)

In most applications it is assumed that the random variables under consideration are strongly stationary
2 in all directions rrrl − rrrm where l and m can be any combination with l,m < k. This implies that statistical
quantities are independent of position on lines or planes through rrr1 . . .rrrk. When this requirement is too
strict one can revert to the assumption of stationary increments: the difference u(rrr1) − u(rrr2) is assumed to
be —at least weakly— stationary (see Strohbehn (1968) for an example of the advantage of the structure
function over the correlation function). This implies that the difference u(rrr1) − u(rrr2) is determined mainly
by inhomogeneities with a scale less than |rrr1 − rrr2|

The structure of such random field with stationary increments can be described with the structure func-
tion (Tatarskii, 1961):

Duu...u(rrr1, rrr2) = (u(rrr1) − u(rrr2)) (u(rrr1) − u(rrr2)) . . . (u(rrr1) − u(rrr2)) . (2.3)

The order of the structure function is determined by the number of increments used in the multiplication.
In the present application only the second order structure function will be used:

Duu(rrr1, rrr2) = (u(rrr1) − u(rrr2)) (u(rrr1) − u(rrr2)) .

Since the increments are stationary, the dependence on rrr1 and rrr2 can be replaced by a dependence on the
distance rrr = |rrr1 − rrr2| only

Duu(rrr1, rrr2) = Duu(rrr) .

1Only statistical properties of one variable will be discussed
2A random variable is weakly stationary in a given direction if the ensemble mean and the auto-covariance function are independent

of position in that direction. Strong stationarity implies that all statistical quantities are independent of position in the stationary
direction (see Bendat and Piersol (1986))
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In the case of a random field with stationary increments, homogeneity and isotropy can be assumed to
apply locally only. See Kolmogorov (1941b) for a definition of local homogeneity and isotropy.

To conclude this section, the link between the structure function and two other statistical quantities will
be given (under the assumption of isotropy for the sake of simplicity). The link between the second order
structure function Duu and the second order moment Buu can only be shown for a strictly homogeneous
random field (since Buu only makes sense under homogeneous conditions). Then:

Duu(r) = 2 (Buu(0) − Buu(r)) (2.4)

The structure function can also be expressed in terms of the three-dimensional spectral density3
Φuu(κ) as

(Tatarskii, 1961):

Duu(r) = 8π
∫ ∞

0

(

1 − sin κr
κr

)

Φuu(κ)κ2dκ , (2.5)

where κ is the magnitude of the wave number. For this expression only local homogeneity (and isotropy)
has to be assumed.

2.2 Structure function of a turbulent velocity field
2.2.1 Structure function of an arbitrary velocity field
The structure function of a vector field uuu is a second order tensor with components Duiu j in a Cartesian
coordinate system:

Duiu j (rrr) = (ui(rrr1) − ui(rrr2))(u j(rrr1) − u j(rrr2)) , (2.6)

where ui is the velocity component in the i-direction. The separation vector rrr has components ri. Two
components of Duiu j have special significance:

• Longitudinal structure function D‖uiui
if rrr ‖ ui;

• Transverse structure function D⊥uiui
if rrr ⊥ ui;

In the case of local isotropy, it can be derived Kolmogorov (1941b) that Duiu j has the following form:

Duiu j (sss) =
(

D‖uu(s) − D⊥uu(s)
)

nin j + D⊥uu(s)δi j , (2.7)

where ni are the components of the unit vector nnn parallel to rrr and δi j is the Kronecker delta (equalling 1 for
i = j and zero otherwise). When —additionally— the flow can be assumed to be incompressible, an extra
condition on Duiu j (rrr) can be imposed:

∂Duiu j

∂ri
= 0 . (2.8)

Combination of (2.7) and (2.8) leads to:

D⊥uu =
1
2r

d
dr

(r2D‖uu) , (2.9)

so that Duiu j can be expressed in either D‖uu or D⊥uu.

3Here a three-dimensional spectral density, denoted by Φxx is the three-dimensional Fourier transform of a three-dimensional
covariance function. A one-dimensional spectral density (Fxx) is the one-dimensional Fourier transform of a one-dimensional covari-
ance function (which may be one-dimensional due to isotropy). Φxx and Fxx are related by Φxx = − 1

2πκ
∂Fxx
∂κ

. For more details see
Strohbehn (1968)
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2.2.2 Structure function of a turbulent velocity field
The structure function of a turbulent velocity field has a number of features that will be described in this
section. In this analysis two length scales play a role:

• The inner-scale l0, which is the length scale of the smallest eddies (those for which the Reynolds
number Rel0 = v0l0/ν equals 1). l0 can be related to the dissipation rate as:

l0 = (ν3/ε)1/4 . (2.10)

• The outer scale L0 which is related to the size of the flow domain.

According to the two similarity hypotheses of Kolmogorov (1941b) the following statements can be made
about the structure functions:

•1If the separation r = |rrr| is small compared to the outer scale (r � L0), then the structure function is
determined by the kinematic viscosity ν and the average energy dissipation ε.
•2If, additionally the separation r is large compared to the inner-scale l0(i.e. r is within the inertial

subrange) then the structure function is uniquely determined by the energy dissipation ε .

For the case where r � l0 it can be assumed that the velocity increments are a smooth function of r
(expansion of ui(r1) − ui(r2) in a power series, retaining only the first term: ui(r1) − ui(r2) ∼ αr, with α a
constant) and thus D⊥uu ∼ r2 (Kolmogorov, 1941a). Dimensional arguments then lead to the following forms
for the structure function (where the values of constant of proportionality is specific to the longitudinal
structure function):

D‖uu(r) =
1

15
ε

ν
r2 l0 � r , (2.11a)

D‖uu(r) = Cε2/3r2/3 l0 � r � L0 , (2.11b)

The transverse structure function can be derived from (2.11) using the incompressibily relationship (2.9).
One could use the expressions (2.11a) and (2.11b) to define the inner scale l0 as the value of r where

the two expressions for D‖uu(r) intersect. This leads to :

l0 =
4
√

(15Cν)3/ε . (2.12)

With this definition of l0 (which equals (2.10) provided C = 1/15) (2.11) can be rewritten as:

D‖uu(r) = Cu2ε2/3l1/40

(

r
l0

)2

l0 � r , (2.13a)

D‖uu(r) = Cu2 r2/3 l0 � r � L0 , (2.13b)

where Cu2 =
1

15ν l3/40 ε1/3 4 .

2.3 Structure function for a scalar
In order to derive the structure functions for a scalar quantity (say θ), the inhomogeneities in that scalar
have to be quantified. Tatarskii (1961) does this on the basis of dimensional arguments in the following
way.

The largest inhomogeneities in the distribution of θ are caused by the largest scales of the turbulent
field with length scale larger than L0. At these large scales the scalar fluctuation is produced at a rate
N. These large scale fluctuations break up in fluctuations with a smaller spatial scale, until the size of the
fluctuations is such that they are dissipated (at a rate N). Since the turbulent velocity field is anisotropic

4With respect to the notation of the structure function parameter (and especially cross-structure function parameter) some confu-
sion exists. In the present paper, the index of C shows to which variables the structure function parameter refers: e.g. CTT or CT 2

is the temperature structure function parameter and CTq is the temperature-humidity cross-structure function parameter. . A more
commonly used notation is C2

T , CTq and C2
q.
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at scales L � L0, the scalar fluctuations will be anisotropic as well. However, the fluctuations at smaller
scales can be considered isotropic. The difference θ(rrr1) − θ(rrr2) is mainly determined by fluctuations at
scales which are less than |rrr1 − rrr2|, so that for |rrr1 − rrr2| � L0 the field θ(rrr) is a locally isotropic random
field.

Parallel to the two hypotheses of Kolmogorov (1941b) with respect to a locally isotropic velocity field
two hypotheses can be stated for the scalar fluctuations (see Obukhov (1949); Corrsin (1951)).

•1If the separation r = |rrr| is small compared to the outer scale (r � L0), then the structure function Dθ

is determined by the molecular diffusion coefficient D and the average scalar fluctuation dissipation
N.
•2If, additionally the separation r is large compared to the inner-scale l0(i.e. r is within the inertial

subrange) then the structure function is uniquely determined by the scalar fluctuation dissipation N

At scales less than the inner scale l0 the difference (θ(rrr1) − θ(rrr2)) will be a smooth function of r so that
Dθ2 ∼ r2 (see section 2.2.2).

On the basis of dimensional arguments and more detailed considerations the following forms for the
structure function can be derived:

Dθ2 (r) =
1
3

N
D

r2 r � l0 , (2.14a)

Dθ2 (r) = a2 N

ε1/3
r2/3 l0 � r � L0 . (2.14b)

The inner scale l0 can be defined as value of r where (2.14a) and (2.14b) intersect. This leads to l0 =
4
√

27a6D3/ε (note that this l0 is not necessarily equal to that derived for the velocity field (2.10) or (2.12)).
Equation (2.14) can now be rewritten as:

Dθ2 (r) = Cθ2 l2/30

(

r
l0

)2

r � l0 , (2.15a)

Dθ2 (r) = Cθ2 r2/3 l0 � r � L0 , (2.15b)

where Cθ2 = a2Nε−1/3. Cθ2 is called the structure function parameter or structure function parameter for
scalar θ.

2.4 Cn2 derived from Large Aperture Scintillometer data
The Large Aperture Scintillometer (LAS) can be used to measure the structure parameter of the refractive
index n, Cn2 , which can in turn be linked to the structure function parameter for temperature, CT 2 . In
the forthcoming sections the link between the signal of the LAS and Cn2 will be shown, whereas the link
between Cn2 and CT 2 will be the subject of section 3.

In this section a mathematical description of the signal at the detector of the LAS is contructed. The
first step is the description of the log-amplitude variance resulting when a spherical wave pased through a
random medium. Both the cases of weak and strong scattering are considered (subsections 2.5) and 2.5.1).
In section 2.6 the relationship between the signal of the LAS (log-intensity variance) and Cn2 is derived,
making use of the reltionships derived in section 2.5. It will appear that one of the assumptions made in the
derivations in this section is that the refractive index variations have a Kolmogorov-type spatial spectrum.
The consequences of this assumption will be dealt with in section 2.7. Finally, section 2.8 will summarize
the assumptions made in the derivation of the relationship between the signal of the LAS and the Cn2 .

2.5 Log-amplitude flucuations in a spherical wave
Log-amplitude flucuations in a spherical wave: first order theory
Since the light source of a LAS can be interpreted as a collection of point sources, the propagation of a
spherical wave through a random medium needs to be analysed (rather than that of a plane wave)5

5Whether a source can be considered a point source depends on the ratio between the diameter of the source and the diameter of
the optically most active eddies (of which the diameter depends on the distance from both the transmitter and the receiver). If the
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Tatarskii (1961) derives the log-intensity fluctuations (χ2) in a spherical wave due to the passage of
that wave through a medium with random refractive index fluctuations. The full derivation will not be
reproduced here, but the main steps will be shown, with emphasis on the assumptions made. Comments on
the validity of the derivation and on the necessity of assumptions made in it are given by Strohbehn (1968).
Lee and Harp (1969) present a different approach in which refractive index inhomogeneities are interpreted
as transmission gratings. Their derivation will not be shown here, but some of their results will be alluded
to.

Tatarskii starts with a scalar wave equation6 for a wave u in an inhomogeneous medium. From the
start he assumes that the wave under consideration is short, i.e. the inhomogeneities are much larger than
the wavelength (l0 � λ)7. Strohbehn (1968) shows that this assumption is mainly needed to ensure that
small-angle scattering can be assumed.

In order to be able to use less stringent conditions on the magnitude of amplitude and phase fluctuations,
he turns to a propagation equation for the logarithm of the wave, ψ = ln u, so that the real part of ψ is the
logarithm of the amplitude and imaginary part is its phase. Then ψ is decomposed into a unperturbed part
and a perturbation: ψ = ψ0 + ψ1 and the refractive index is decomposed as n = 1 + n1. A differential
equation for ψ1 results which is valid provided |n1| � 1 and the variations of ψ1 over distances of the order
of λ are small. The solution of the differential equation is

ψ1(rrr) =
k2

2πu0(rrr)

∫

V
n1(rrr′)u0(rrr′)

eik|rrr−rrr′ |

|rrr − rrr′|dV ′ , (2.16)

where V is the volume containing refractive index inhomogeneities and k is the wavenumber of the elec-
tromagnetic radiation (= 2π/λ).

Then Tatarskii applies (2.16) to a spherical wave of the form u0(rrr) = Qeikr/r. A consequence of the
assumption that λ/l0 � 1 is that light is scattered in the forward direction in a very narrow cone with
an aperture angle of the order λ/l0 (see van de Hulst (1981): scattering by large particles). Then, any
substantial contribution to the the integral in (2.16) is restricted to a cone with its vertex at the observation
point and an aperture angle of θ ∼ λ/l0. Inside this narrow cone the radius r can be approximated as
r ≈ x + (y2

+ z2)/2x and the spherical wave can approximated accordingly as

u0(rrr) ≈ Q
x

exp
(

ik(x + (y2
+ z2)/2x)

)

Lee and Harp (1969) show that the assumption λ/l0 � 1 is too restrictive. For λ/l0 ≥ 1 the scattered
radiation does not propagate more than a few wavelengths and consequently does not cause any interference
at the detector. In the region that λ/l0 = 1 to λ/l0 � 1 wide-angle scattering occurs. According to Lee
and Harp (1969) this can safely be ignored for two reasons. First, a finite receiving aperture will result in a
limited cone from which scattered light is collected (as opposed to an infinitely small aperture which would
collect radiation from half a hemisphere). Secondly, if λ ∼ l0 the optically most active inhomogeneities
will generally be larger than l0 (for realistic path lengths) and thus the contribution of eddies of size l0 will
be neglectable (see the discussion on page on page 10 on the size of the optically most active eddies).

The next step is to express both the field of refractive index fluctuations and the fluctuations of the spher-
ical wave in stochastic Fourier-Stieltjes integrals8. Analysis of (2.16) yields the relationship between the
random complex amplitudes found in the Fourier-Stieltjes integrals of n (dν(κ2, κ3, x)) andψ1 (dφ(κ2, κ3, x)).
Subsequently, the spectral amplitude of the log-amplitude fluctuation (da(κ2, κ3, x)) is found from dφ9:

da(κ2, κ3, x) = −k
∫ L

0
dx sin













−
L(L − x)(κ2

2 + κ
2
3)

2kx













dν(κ2
L
x
, κ3

L
x
, x) (2.17)

Equation (2.17) shows that variations in the log-amplitude with wave number κ are caused by refractive
index fluctuations with wave numbers L

x κ. Thus the inhomogeneities in n at position x are magnified by

largest eddies are (much) larger than the source of radiation, the latter can be assumed to be a point source.
6This excludes polarization effects.
7This is a trivial assumption at optical wave lengths but poses a severe restriction in the case of milimeter or centimeter waves.
8As an example the Fourier-Stieltjes integral for the refractive index is given: n1(x, y, z) =

! ∞
−∞ exp (i(κ2y + κ3z)) dν(κ2, κ3, x)

9da(κ2, κ3, x) = 1
2 (dφ(κ2, κ3, x) + dφ∗(−κ2,−κ3, x))
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a factor L/x. The argument of the sine in (2.17) (i.e. L(L − x)κ2/2kx) is equal to πΛ2/l′2, where Λ is a
kind of localized radius of the first Fresnel zone (i.e.

√
λ(L − x) ) and l′ is the size of inhomogeneities

in n at the position x in the path that cause fluctuations of size l at x = L. Furthermore, the product
ν(κ2, κ3, x1)ν∗(κ′2, κ

′
3, x2) can be expressed in the two-dimensional spectrum Fn(κ2, κ3, |x1 − x2|) 10.

The variance of the log-amplitude at x = L and y = z = 0 is derived from da as

χ2(L, 0, 0) =
$ ∞

−∞
da(κ2, κ3, L)da∗(κ′2, κ

′
3, L) . (2.18)

Combination of (2.17) and (2.18) yields a complicated six-fold integral. One simplification can be made
if the turbulence is assumed to be isotropic, since then one can proceed in polar coordinates in the (κ2, κ3)
plane (getting rid of two integrations). Another assumption is that the two-dimensional spectrum Fn(κ, |x1−
x2|) is unequal to zero for κ|x1 − x2| ≤ 1 only (in order to further simplify one of the integrals). The final
result is the following expression for the variance of the log-amplitude variation:

χ2 = 4π2k2L
∫ ∞

0
Φnn(κ)dκ

∫ κ

0
sin2

(

Lκ′(κ − κ′)
2k

)

dκ′ . (2.19)

Although this expression for χ2 has been derived under the assumption of isotropy, Tatarskii (1961) shows
that it can be applied in situations of local isotropy as well. Equation (2.19) is equivalent to the expression
quoted by Wang et al. (1978) (using the substitution x = Lκ′/κ):

χ2 = 4π2k2
∫ L

0
dx

∫ ∞

0
dκκΦnn(κ) sin2

(

κ2x(L − x)
2Lk

)

. (2.20)

From the latter equation it is clear that χ2 at x = L is the combined result of the three-dimensional spectrum
of the n-fluctuations and a function that depends on the position in the path, the wave number of the
turbulence and the wave number of the light used. The argument of the sine in (2.20) equals πΛ2/lκ , i.e. π
times the square of the ratio between the localized radius of the first Fresnel zone (see on the current page)
and the size of the turbulent eddy under consideratio (lκ).

Recalling that the structure function Dnn and the spectral density Φnn are related (see equation (2.5)),
(2.20) can be rewritten as:

χ2 =

∫ L

0
dxCn2 (x)W(x) , (2.21)

where W(x) is a weighting function:

W(x) = 4π2k2
∫ ∞

0
dκκΦnn(κ) sin2

(

κ2 x(L − x)
2Lk

)

, (2.22)

and Cn2 is the structure function parameter of the refractive index, which may be –smoothly– dependent on
x since only local isotropy is assumed in the derivation. The function W(x) depends on the exact form of
the spectral density (Φnn) and on the ratio πΛ2/lκ. Tatarskii shows that for the situation where

√
λL � l0

the weighting function W(x) is proportional to L3 and to an integral of the spectral density Φnn, and is
independent of the optical wave number. On the other hand, for

√
λL � l0 he shows that W(x) ∼ k7/6L11/6,

if a Kolmogorov spectrum is assumed: Φnn(κ) ∼ κ−11/3. The dependence of the weighting function upon the

position in the path then becomes W(x) ∼
(

x
L (1 − x

L )
)5/6

. Carrying out the integration, yields the following

expression for χ2 (Wang et al., 1978):

χ2 = 0.124k7/6L11/6Cn2 , (2.23)

10It should be noted that the field of χ is not statistically homogeneous in the plane x = L, at which the current analysis is looking,
but on the sphere r = L
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Figure 2.1: Value of the integrand in (2.22) as a function of the size of the inhomogeneities l. The eddy size l has
been normalized by the diameter of the first Fresnel zone and the maximum of the weighting function has
been normalized to 1. The curve given is for both u = 0.5 and u = 0.05. The maximum of the weighting
function for u = 0.5 is located at l/

√
λL ≈ 0.9.

where Cn2 is a path averaged value of Cn2 , weighted with the weighting function (2.22). With the use of the
weighting function (2.22) the scale of the optically most active inhomogeneities can be deduced (assuming
a form for Φnn(κ)). To do this, the maximum of

κΦnn(κ) sin2

(

κ2u(1 − u)F2

4π

)

has to be found, where u is the relative position in the path x/L and F is the size of the first Fresnel zone
(
√
λL). The first (and highest) maximum of this function occurs at κ2u(1 − u)F2/4π ≈ 1, so that the

length-scale of the most effective eddies is l =
√
πu(1 − u)F. Thus the optically most active eddies are of

the order of the diameter of the first Fresnel zone in the center of the path and decrease in size towards the
transmitter and the receiver. Figure 2.1 shows the value of the integrand in (2.22) as a function of the size of
the inhomogeneity: l = 2π/κ. It can be seen that for l/F > 1 the integrand decreases only gradually. This
would suggest that large inhomogeneities make a significant contribution to the log-amplitude variance.
However, in order to judge the real contribution of eddies of a given size, the integrand should be studied
as it appears in (2.22), i.e. as a function of κ (or l−1, rather than l. This is shown in figure 2.2.

2.5.1 Log-intensity fluctuations in a spherical wave in strong turbulence
The expressions shown in the previous section where derived for first-order scattering, i.e. a scattered wave
arriving at the detector is assumed to have been scattered only once. In strong turbulence χ2 becomes
saturated: an increase of Cn2 no longer results in an increase of χ2 and the proportionality between the two
is lost. Saturation occurs at χ2 ≈ 0.3 (Clifford et al., 1974). Thus for a given optical wave length and a
given range of Cn2 saturation poses a limit on the path length L.

Clifford et al. (1974) explain the lack of increase of χ2 with Cn2 as follows. A given inhomogeneity
in n at position x causes an intensity fluctuation at the detector. The inhomogeneity is interpreted as a
lens that focuses light on a screen at x = L (but note that the detector at x = L is a point-detector. In
strong turbulence the wave front that illuminates the inhomogeneity at x is no longer spherical, since it was
distorted by previous inhomogeneities.

Irregularities in the wave front with a scale less than the size of the lens will result in a pattern at the
screen at x = L that is a smeared version of the pattern which would appear in the case of a pure spherical
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Figure 2.2: Contribution of different eddy sizes to the integrand in (2.22). The eddy size is given as F/l in order that
the curve represents the contribution of a given size to the total log-amplitude variance. The maximum
of the weighting function has been normalized to 1. The curve given is for u = 0.5. The maximum of the
weighting function for u = 0.5 is located at

√
λL/l ≈ 1.1.

wave11 The smearing of the image at the position of the detector will result in a decrease of the variance of
the log amplitude. Besides, the small scale distortions of the wave front have a time scale which is shorter
than that of the Fresnel-zone-sized eddy under consideration. Thus the spot at the screen at x = L will
change in detail continuously. Irregularities in the wave front with a scale larger than the n-inhomogeneity
will result in a tilt of the wave and subsequent displacement (but not distortion) of the spot on the screen.
Clifford et al. suggest that the effect of extra scattering between the lens under consideration and the
receiver is identical to the effect of scattering between transmitter and lens.

Clifford et al. (1974) derive an expression for the log-amplitude variance12 resulting from the passage
of a spherical wave through a strongly turbulent field of refractive index fluctuations. The main steps in the
derivation can be summarized as follows:

a. The starting point is an expression for the irradiance profile at a given position due to an aperture at
another position that is illuminated by a random optical field.

b. Each Fourier component of the refractive index field is interpreted as a physical aperture that is
illuminated by a turbulence-distorted optical field and that transmits this field through a turbulent
medium to a screen at x = L.

c. The log-amplitude fluctuations at x = L are assumed to be described by a convolution of the co-
variance of the log-amplitude fluctuations resulting from first order scattering and the irradiance
profile function referred to under point a. In the spatial frequency domain this convolution can be
replaced by a multiplication of the first order log-amplitude spectrum with a spectral filter function
(the two-dimensional Fourier transform of the function referred to under a).

d. In order to eliminate the effect of tilting and retain only the smearing effect a low wavenumber cut-
off is used for the filter function mentioned under c. This cut-off is assumed to be proportional to the
wave number of the n-inhomogeneity (i.e. the lens) under consideration.

11The smearing of the image can be understood as follows. The spot at the screen at x = L is composed of contributions originating
from all point of the lens (i.e. the n-inhomogeneity). At the lens the irregularities in the wave front can be interpreted as uncertainties
–or errors– in the exact position of the point source. This uncertainty results in an uncertainty in the position at the screen of each
contribution to the spot.

12In fact they derive an expression for the covariance function in the plane x = L, but this spatial information is not relevant for the
present discussion. Here the covariance at zero lag will be used, i.e. the variance.
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e. The turbulence is assumed to be homogeneous and isotropic along the entire path.

The resulting expression for the log-amplitude variance at x = L is:

χ2 = 2.94σ2
χ,0

∫ 1

0
du (u(1 − u))5/6

∫ ∞

0
g(u, y)dy , (2.24)

where

g(u, y) = y−11/6 sin2(y) exp
(

−σ2
χ,0 (u(1 − u))5/6 f (y)

)

,

f (y) = 7.02y5/6
∫ ∞

0.7y
dξξ−8/3 (1 − J0(ξ)) ,

y =
κ2u(1 − u)L

2k
=
κ2u(1 − u)F2

4π
,

where F is the diameter of the first Fresnel zone and σ2
χ,0 is the log-amplitude variance resulting from

first order theory (i.e. (2.23)). The difference between the above expression for χ2 and the first order
approximation (2.23) is an exponential term, involving σ2

χ,0. This term reduces to 1 for low turbulence
situations (i.e. low Cn2 ). Clifford et al. claim that (2.24) reduces asymptotically to the first-order result for
σ2
χ,0 ≤ 0.3. However, numerical evaluation of the integrals shows that forσ2

χ,0 = 0.3 the difference between
(2.24) and (2.23) is still of the order of 15%.

The structure of equation (2.24) can be interpreted as follows. The term in the inner integral describes
the contributions of the different wave numbers to the log-intensity variance. The term in the outer integral
(including the inner integral) describe the contribution of n-variations at a given position in the path to the
total log-intensity variance. It is this outer integral which is often called the weighting function.

2.6 The Large Aperture Scintillometer
Wang et al. (1978) observe two problems in the application of scintillometers for the estimation of the
structure function parameter of n:

• The linear relationship between χ2 and Cn2 is valid only for very weak turbulence (as shown in the
previous section). In strong turbulence the χ2 becomes saturated: an increase of Cn2 no longer results
in an increase of χ2 and the proportionality between the two is lost. Thus for a given optical wave
length and a given range of Cn2 saturation poses a limit on the path length L.

• For short path lengths the weighting function (and thus the relationship between χ2 and Cn2 will
depend on the exact shape of the spectrum Φnn at high wave numbers. This in turn depends on the
micro-scale l0 which is —in general— unknown.

Ochs et al. (1976) conclude that both problems can be circumvented by using a scintillometer that does
not observe the Fresnel-zone-sized eddies. Such scintillometer is one with a transmitter and receiver that
are both spatially incoherent and have a diameter that is larger than the first Fresnel zone. The spatial inco-
herence is needed in order to prevent small eddies near the transmitter from causing intensity fluctuations
at the receiver with a size of the order of the receiver. This so-called large aperture scintillometer (LAS)
will be sensitive to refractive index inhomogeneities with a size of the order of the transmitter and receiver
aperture diameter (see below). Provided that this is larger than the inner scale, the calibration of the LAS
will not depend on the exact shape of the spectrum Φnn at high wave numbers.

In the forthcoming sections first an expression for the log-amplitude variance as measured by the LAS
will be derived. Subsequently, the conditions to prevent saturation will be discussed. And finally, the
relationship between χ2 and Cn2 for the LAS will be shown.

2.6.1 The log-amplitude variance for the LAS
The expression for the log-amplitude fluctuations at the receiver of a LAS is essentially a small modification
of the expression for the scintillometer with infinitely small transmitter and receiver diameters. In (2.24)
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Figure 2.3: An eddy with size l, at position u casts a shadow with diameter l/u on the receiver, which has a diameter
Dr. The shadow on the transmitter is l/(1 − u) in size.

the function g(u, y) has to be replaced by g′(u, y), which equals:

g′(u, y) = g(u, y)















2J1(
√

y/yr)
√

y/yr















2 













2J1(
√

y/yt)
√

y/yt















2

= g(u, y)A, (2.25)

where

yr =
1 − u

u
1
α2

rπ
,

yt =
u

1 − u
1

α2
t π

,

y as defined below equation (2.24), and αt and αr are the diameters of the transmitter and receiver, expressed
in Fresnel zone diameters. The physical interpretation of the terms

√

y/yt and
√

y/yr can be found by use
of the definitions of y, yr and yt:

√

y/yr =

√

1
4
κ2u2α2

r Lλ =
1
2
κuDr , (2.26a)

√

y/yt =

√

1
4
κ2(1 − u)2α2

t Lλ =
1
2
κ(1 − u)Dt , (2.26b)

where Dr and Dt are the —physical— diameters of receiver and transmitter, respectively. In the sequel
both diameters are assumed to be equal. An eddy with wave number 1

2κ has a size of π/κ. Consider this
eddy to be located at the relative position between transmitter and receiver u. When illuminated from the
transmitter with a spherical wave it will cast a shadow with a diameter π/(κu) at the receiver. Thus

√

y/yr is
π times the ratio between the diameter of the receiver and the diameter of the shadow of an eddy with wave
number κ at position u. Analogously,

√

y/yt is π times the ratio between the transmitter diameter and the
image at the transmitter of an eddy with wave number κ, located at u and illuminated by a point source at
the receiver. Thus, for a given transmitter or receiver diameter, and a given position in the path,

√

y/yt and
√

y/yr are inversely proportional to the size of the n-inhomogeneity under consideration (see figure 2.3).
The next step is to consider the dependence of the factor A in (2.25) on y, yr and yt. The function

(2J1(x)/x)2 equals 1 for x = 0, decreases towards 0 for x . 3.8 (say xmax), and oscillates between zero and
a quickly decreasing upper value for x > 3.8 (the second maximum is of the order of 0.02). Physically, this
implies that the factor in A involving y/yr is non-zero only for eddies that cast a shadow on the receiver
that is of the order of, or much larger than, the receiver13. In the same way the part of A involving y/yt is

13Remember that
√

y/yr is π times the ratio between the transmitter diameter and the eddy size



14

non-zero only for eddies that cast large shadows on the transmitter. An eddy that is close to the transmitter
will cast a large shadow on the receiver, but a small shadow on the transmitter. Consequently, the two
factors that make up A are each others mirror images around u = 0.5. A is unequal to zero for eddies with a
size equal to or larger than the aperture diameter, since only for these eddies the shadows on both receiver
and transmitter are larger than the aperture diameter.

2.6.2 Prevention of saturation
Thus it has been shown that a large aperture scintillometer is not sensitive to eddies with a size smaller
than the aperture diameter (as was qualitatively required in order to prevent saturation). In order to make
a quantitative statement on the occurrence or absence of saturation the behaviour of the function g′(u, y)
needs to be explored. In terms of this function, saturation can be prevented in two ways:

a. The argument of the exponential function is small (i.e. F(y) is small given that σ2
χ,0 may be large).

b. The factor A is small for those values of y for which σ2
χ,0 and F(y) are not small.

In order to judge the condition mentioned under a, some knowledge of the function F(y) is needed. F(y)
has two limiting forms, viz. 7.9y5/6 for y < 1 and 7.9y−5/6 for y > 1 (Wang et al., 1978), so that F(y) is
small for y � 1 and y � 1. Thus condition b needs to take care of the intermediate region of where y
is of the order of 1. Above it has been shown that the factor A is non-zero only for eddies that are large
relative to the scintillometer aperture diameter (i.e. have a low wave number). This shuts off the region
√

y/yt,r � xmax. Now it depends on the variables that constitute yt and yr whether this will shut off the

region where y ≈ 1. There are two options to eliminatre the influence of σ2
χ,0 on χ2 in this region.

a. The upper limit of the relevant region of integration in the inner integral in (2.24), ymax, is much less
than one;

b. The upper limit of integration, ymax is of the order of one, but the decrease of the factor A cancels the
influence of the exponential term in g(u, y).

The maximum value of y, ymax, corresponding to xmax is (recalling the definitions of yr and yt, and taking
αt = αr):

ymax = min

(

x2
max

1 − u
u

1
α2π

, x2
max

u
1 − u

1
α2π

)

(2.27)

The minimum of the factors involving u is 1 or less, so that ymax is at most x2
maxπ

−1α−2. In order for ymax

to be much less than 1 (situation a), α � xmax

√
π−1 ≈ 2.1. However, if this ymax < 1 rather than ymax � 1

situation b is applicable and condition a and b need to be taken into account simultaneously. For this
analysis it is convenient that (2J1(x)/x)2 can be approximated as exp(− 1

4 x2) for x < 1. Thus the product of
A and the exponential term in g(u, y) becomes:

exp

(

−σ2
χ,0(u(1 − u))5/6F(y) − 1

4

(

y
yt
+

y
yr

))

.

In order for σ2
χ,0 to have negligible influence on the value of this exponential term it should be required

that:

σ2
χ,0(u(1 − u))5/6F(y)�1

4

(

y
yt
+

y
yr

)

�1
4
α2π

κ2L
2k

(

(1 − u)2
+ u2

)

Setting (u(1−u)) to 0.25 (its maximum, worst case, value), u2
+ (1−u)2 to 0.5 (its minimum), and replacing

F(y) by its approximation for y < 1 (see above), the following inequality results:

1
4
σ2
χ,07.9y5/6 � 1

4
yπα2 .
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Since y < 1, the difference between y and y5/6 is small, so that finally:

α � 1.6
√

σ2
χ,0 , (2.28)

which is qualitatively equivalent to, but more stringent than, the limit given by Wang et al. (1978): α >

0.98(σ2
χ,0)3/5.

Relationship between χ2 and Cn2

If the diameter of the LAS is sufficiently large in order to prevent saturation, the expression for the log-
amplitude variance is:

χ2 = 2.94σ2
χ,0

∫ 1

0
du (u(1 − u))5/6

∫ ∞

0
dyy−11/6 sin2 y














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




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



2 


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2J1(
√

y/yt)
√

y/yt















2

, (2.29)

Above it has been shown that the upper limit of the relevant region of integration in the inner integral
in (2.29), ymax, is proportional to α−2 (i.e. ymax = βα

−2, see equation (2.27)). Furthermore, ymax < 1 and
for the relevant region of integration it was ensured that the exponential term was approximately equal to
1. Thus the double integral in (2.29) can be simplified as follows:

∫ 1

0
du(u(1 − u))5/6

∫ ∞

0
dyg′(u, y) ≈

∫ 1

0
du(u(1 − u))5/6

∫ βα−2

0
dyg(u, y)

=

∫ 1

0
du(u(1 − u))5/6

∫ βα−2

0
dyy−11/6 sin2 y (2.30)

For small y, sin y can be approximated as y, so the double integral becomes:

∫ 1

0
du(u(1 − u))5/6

∫ βα−2

0
y1/6dy =

∫ 1

0
du

∫ βα−2

0
(u(1 − u))5/6

(

κ2u(1 − u)F2

4π

)1/6

dy

Changing the integration variable to x = κ2F2/4π the integrals can be evaluated:

∫ 1

0
du

∫ βα−2/u(1−u)

0
(u(1 − u))x1/6dx =

6
7

∫ 1

0

∣

∣

∣u(1 − u)x7/6
∣

∣

∣

βα−2/u(1−u)

0
du

=
6
7
β7/6α−7/3

∫ 1

0
(u(1 − u))1/6du

=
6
7
β7/6α−7/3

∣

∣

∣

∣

∣

6
7

u7/6 − 6
8

u8/6
∣

∣

∣

∣

∣

1

0

=
6
7

(

6
7
− 6

8

)

β7/6α−7/3

The value of β can be found from comparison of the latter expression with a numerical evaluation of the
full integral (the double integral in (2.29)). β turns out to be 0.808 approximately and the value only
depends on the ratio between the diameters of transmitter and receiver (which are assumed to be equal
here). Combination of the latter expression for the double integral with (2.29) gives together with expansion
of σχ,0 (equation (2.23)), and conversion of the normalized aperture diameter α to a physical diameter
D = α

√
λL:

χ2 = 2.94σ2
χ,0

6
7

(

6
7
− 6

8

)

β7/6α−7/3

= 0.211σ2
χ,0α

−7/3

= 0.0261k7/6L11/6α−7/3Cn2

= 0.0261(2π)7/6D−7/3L3Cn2
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Figure 2.4: Dependence of double integral Ag(u, y) in equation (2.25) on diameter of receiver and transmitter, α

(= D/
√

Lλ). For small diameters the integral is no longer proportional to α−7/3. Left: Ag(u, y) as a
function of α. Right: a compensated plot of Ag(u, y), i.e. α7/3Ag(u, y) as a function of α.

This finally leads to the expression for χ2:

χ2 = 0.223D−7/3L3Cn2 (2.31)

This is in accordance with the expression found by Wang et al. (1978). It should be noted here that
proportionality of the double integral in (2.29) to α−7/3 is valid only for sufficiently large α. This is shown
in figure 2.4. The cause of this deviation is that if α is not sufficiently large, the integration in (2.30) is
carried out over a range of y where the assumption sin y = y no longer holds .

The relative contribution of n-variations at different positions in the path to the total log-intensity vari-
ance at the detector is shown in figure 2.5. It is clear that α > 2 (α = D/F) in order for the calibration of
the LAS to be independent of the beam diameter (see also Hill and Ochs, 1978)

2.6.3 Relationship between Cn2 and the signal of the LAS
The LAS uses a square law detector and thus measures the intensity of the radiation, I, rather than the
amplitude, A. The intensity of electromagnetic radiation is proportional to the amplitude squared (Jenkins
and White, 1976):

I ∼ A2 ,

and consequently the log-intensity, log I is proportional to the 2 times the log amplitude χ and the the
variance of log I is equal to 4 times the log amplitude variance:

(log I)′ = 4χ2 . (2.32)

Thus equation (2.31) becomes:

(log I)′ = 0.892D−7/3L3Cn2 , (2.33)

which can be inverted to obtain Cn2 as a function of the LAS output:

Cn2 = 1.12D7/3L−3(log I)′ , (2.34)

2.6.4 The scale of n-inhomogeneities causing the intensity fluctuations
In section 2.5 it was observed that for infinitely small transmitter and receiver diameters the size of the
optically most active inhomogeneities is of the order of the diameter of the first Fresnel zone (in the centre
of the path). The log-amplitude variance is mainly produced by eddies ranging in size from 0.5 to 5 times
F.
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Figure 2.5: Relative contribution of n-variations at different positions in path to the log-intensity variance at the de-
tector. The weighting functions have been multiplied with α7/3 in order to compensate for the dependence
of the χ2-Cn2 relationship on D (see (2.31)). The maximum of the weighting function for α → ∞ has
been used to normalize the weighting functions.

In order to determine the size of the most active inhomogeneities in case of the LAS the integrand of
the inner integral in (2.29) needs to be examined (note that dy ∼ κdκ). In section 2.6.1 it was observed that
the effect of the factor A (the term involving the diameters of transmitter and receiver, see equation (2.25))
is to filter out log-amplitude fluctuations that are due to inhomogeneities that are smaller than the aperture
diameter of the LAS. Thus as long as the aperture diameter is larger than the diameter of the first Fresnel
zone (α > 1) the strongest amplitude fluctuations (due to inhomogeneities of size F, see section 2.5, on
page 10) are filtered out. Consequently, the lower limit of the size of optically active inhomogeneities,
as well as the size of the most active ones is determined by the aperture diameter. (the first zero of A in
terms of y is proportional to α−2 and l ∼ κ−1 ∼

√

y−1). If α < 1 the peak in κg(u, y) determines the size
of the optically most active eddies (which have a size l ∼ F). For inhomogeneities that are larger than the
aperture diameter the function A equals 1 and the contribution of the eddies to the log-amplitude variance
is determined by the function g(u, y). The interplay between the functions A and g(u, y) is shown in figure
2.6.

Figure 2.7(a) shows the value of the integrand in (2.29) as a function of the size of the inhomogeneity
that causes the amplitude fluctuation. The optically most active inhomogeneities have a size of 1.4 times
D. For smaller eddies the contribution to the log-amplitude variances falls off rapidly. The larger eddies on
the other hand show significant contributions for sizes up to 10 D and larger.

As commented on in section 2.5, a plot of the integrand versus the size of the inhomogeneity does
not give a correct indication of the relative importance of the given eddy size in producing log-amplitude
variations at the detector, since the integrand is stated in terms of κ (or y ∼ κ2). Therefore figure 2.7(b) gives
the integrand versus D/l (∼ Dκ). From this figure it is clear that all inhomogeneities with sizes > 1.4D
give a contribution to χ2 that is of the same order as all inhomogeneities with l < 1.4D.

2.7 The effect of deviations from a Kolmogorov spectrum
Up to this point the spectral density function of n has been assumed to be described by a Kolmogorov-
type spectrum throughout the range of wave numbers describing n-inhomogeneities that cause relevant
log-amplitude fluctuations. This spectral density function is Φnn(κ) ∼ κ−11/3. However, in section 2.3 it
was observed that the spectral density function of a turbulent field is described by Φnn(κ) ∼ κ−11/3 for
l0 � κ � L0 only.
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Figure 2.6: Illustration of the effect of finite apertures on the scale of optically active refractive index inhomo-
geneities. Plotted is the integrand of (2.24): κg′(u, y) (g(u, y) is replaced by g′(u, y) since the finite aperture
is considered; in terms of wave numbers the integrand is κg′(u, y), since dy = κdκ). Also shown are the
constituent parts of the integrand: κg(u, y) and A. It is assumed that no saturation occurs: the exponential
term (2.24) is set to 1. The factor A does depend on the aperture and the position of its first zero is
proportional to α. Left: weighting function for α = 0.2 (a small aperture), right: α = 2 (corresponding
to L ≈ 5000m when λ = 0.93µm and D = 0.15m). For both figures u was set to 0.5, and the graph was
normalized to have a maximum value of 1.
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Figure 2.7: The integrand in (2.29) The eddy size l has been normalized by the aperture diameter and the maximum
of the weighting function has been normalized to 1. The curve given is for u = 0.5 and α = 5 but the
shape of the curve is rather insensitive to both u and α (for α > 1). Graph (a) shows the integrand as a
function of l/D (the maximum is located at l/D ≈ 1.4). Graph (b): integrand as a function of D/l.
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2.7.1 The effect of the inner scale
In the framework of scintillometry mainly two ways are used to describe the high wave number part of the
spectral density:

• The Tatarski spectrum (Tatarski (1967), cited by Strohbehn (1968)) in which the damping of fluctu-
ations at high wave numbers is described with an exponential :

Φnn(κ) = 0.033Cn2κ−11/3 exp(−κ2/κ2
m) , (2.35)

where κm = 5.92/l0.
• For scalars with a Prandtl number less than 1, the spectral density function exhibits a ’bump’ in the

so-called convective-viscous region (velocity fluctuations are affected by viscosity, whereas scalar
fluctuations are still unaffected by molecular diffusion). In this region the spectral density has a
κ−3 dependency14. Hill (1978a) shows a number of models that describe this bump. The simplest
model for the one-dimensional spectrum Fnn can be converted to a three-dimensional spectrum (with
Φnn(κ) = − 1

2πκ
∂
∂κ

Fnn(κ), under the constraint that in the inertial subrange the spectrum equals the
Tatarski spectrum):

Φnn(κ) = − 0.033
3
10

Cn2κ−11/3 exp

(

−A(
3
2

y4/3
+ y2)

)

[

−5
3

(1 + y2/3) +
2
3

y2/3 − 2Ay(1 + y2/3)(y1/3
+ y)

] (2.36)

with y = κ
κd

Q3/2, A ≡ βQ−2Pr−1, κd = 2π/l0, β is the Obukhov-Corrsin constant (≈ 0.55 − 0.72,
see Hill (1978a)), and Q is a free parameter, Pr is the Prandtl number and χ is the dissipation of
the scalar variance. Note that the ’bump’ spectrum includes the exponential decrease at high wave
numbers that is characteristic of the Tatarski spectrum. One deficiency of (2.36) is that the bump is
too wide and the spectrum does not collapse to a Kolmogorov spectrum quickly enough when κ → 0.
• The second model presented by Hill is:

Φnn(κ) =0.033Cn2β

(

κ∗

κd

)−5/3 (

− 1
2πκ

∂Fnn(κ)
∂κ

)

with:

Fnn =

(

κ

κ∗

)−4/3
(2 cosh(az∗))1/3a

exp















−2β

(

κ∗

κd

)4/3

Pr−1
∫ z∗

−∞
exp(5w/3) (2 cosh(aw))1/3a dw















(2.37)

where κ∗ is a transitional wavenumber (wavenumber where one-dimensional spectrum on log-log
plot has slope − 4

3 ), z∗ ≡ ln κ
κ∗

, and a and κ∗

κd
need to be determined from experiment (here the values

1.7 and 0.073 will be used).
• The fourth model spectrum presented by Hill (the third spectrum not being dealt with here) can be

described with the following differential equation:

d
dκ

H(κ)
d
dκ
Φnn =

2
Pr
κ4
Φnn(κ)

14Hill (1978a) deals with scalar spectra, in particular with the temperature spectrum. In the optical wavelength range under
consideration (around 0.93 µm), the refractive index mainly depends on temperature and to a lesser extent on humidity (see section
3). Since the Schmidt number for humidity is close to the Prandtl number for heat, the results based on temperature spectra will be
valid for the refractive index as well, in good approximation (see Hill, 1978b). Therefore, in the sequel Φnn will be used, where in
principle the spectral density of a single scalar should have been used.
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Figure 2.8: Dependence of weighting function on micro scale (using Tatarski’s spectrum ((2.35)). The weighting
functions have been normalized such that the maximum of the weighting function at infinitely small l0 is
1. Furthermore, F = 0.03m and D = 0.15m (i.e. α = 5). The lines for l0/F = 0.1 and 0.05 coincide.

with:

H(κ) =
3
11
β−1η−4/3κ14/3

[

(

κ

κ†

)2b

+ 1

]−1/(3b)

(2.38)

where κ† = 0.072/η, η is the Kolmogorov micro scale and b = 1.9. This fourth model spectrum fits
experimental spectra best (see Hill, 1978a).

Figure 2.8 shows the effect of the the micro scale (described with the Tatarski spectrum) on the path
weighting function (compare to figure 2.5). It can be seen that for micro scales of the order of about 1/50
of the beam diameter there is no effect of the micro scale on the weighting function. In order to explore
this dependence of the calibration of the LAS on the beam diameter, figure 2.9 shows the dependence of
the calibration factor of the LAS (i.e. the integral of the weighting function over 0 < u < 1) for various
ratios of l0/D and various assumed shapes of the refractive index spectrum. One can see that indeed for
l0/D > 0.02 the relative calibration factor deviates from 1. However, where the Tatarski spectrum predicts
a monotone decrease of the calibration factor with increasing l0, the Hill spectra suggest a small decrease,
followed by a large –local– increase of the calibration factor with increasing l0.

Hill and Ochs (1978) already studied the effect of the ’bump’ in the temperature spectrum (and conse-
quently in the refractive index spectrum) on the validity of the calibration of the LAS (i.e. equation (2.29)).
They conclude that the aperture diameter should be at least 30 times l0 in order for the calibration to be
independent of l0. This can be translated into a condition of α = D/F: α > 30l0/F. If the aperture diameter
is about four times l0 (i.e. too small) the overestimation of Cn2 is at its maximum and is of the order of 35
%.

2.7.2 The effect of the outer scale
The shape of the spectral density function at low wave numbers depends on the flow geometry and the
mechanisms of turbulence production. Therefore this region of the spectrum does not have a universal
shape. One approximation that is often used is (a variant of) the Von Karman spectrum (Strohbehn, 1968):

Φnn(κ) = α
(

1 + κ2L2
0

)−11/6
exp(κ2/κ2

m) , (2.39)

where α = σ2
nL3

0π
−3/2
Γ( 11

6 )/Γ( 1
3 ) and it has been assumed that κmL0 � 1. The correction for high wave

numbers from the Tatarski-spectrum has been included as well. In order for the values of the model
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Figure 2.9: Dependence of the calibration of the LAS on the micro scale (using the Tatarski spectrum (2.35) and
Hill’s spectra (2.36), (2.37) and (2.38)). For this plot α = 5 and F = 0.0305m. The calibration factor has
been normalized such that the calibration for infinitely small l0 equals 1. Note that Hill’s spectrum from
equation (2.38) fits the experimental spectra best.

spectrum in (2.39) to be equal to those of the Tatarski spectrum (2.35), one needs to assume a relationship
between the variance of n and the structure function parameter Cn2 (Strohbehn, 1968):

Cn2 ≈ 1.9σ2
nL0

−2/3 . (2.40)

In figure 2.10 one can see that for the outer scale L0 to have negligible influence on the calibration of the
LAS, the beam diameter should at least be ten times the macro length scale. This is in line with the claim
of Hill and Ochs (1978) that the outer scale should be much larger than three times the aperture diameter.
For surface layer turbulence the outer scale could be estimated as the distance to the surface. So given a
beam diameter of 0.15 m, the minimum height of the beam above the ground should be 1.5 m.

2.8 Summary of the assumptions
In the derivations in the previous sections a number of assumptions has been made. Some of the assump-
tions made in the derivation of the log amplitude variance for the infinitely small transmitter and receiver
(section 2.5) are overridden by less restrictive assumptions when the scattering theory is applied to the
LAS. Here only the restrictions applicable to the LAS will be listed.

The assumptions needed to arrive at equation (2.34) are:

• Variations in the refractive index must much less than 1: n = 1 + n1 with n1 � 1 ( on page 8).
• The inner scale l0 must be much larger than the wave length of the radiation used: l0 � λ ( 2.5 on

page 8), but Lee and Harp (1969) have shown that this restriction may be irrelevant.
• The turbulent field is locally isotropic ( on page 9).
• One has to assume a Kolmogorov type spectrum (Φnn(κ) ∼ κ−11/3) for the wave number of the inho-

mogeneities that result in intensity fluctuations at the detector. This implies that these relevant wave
numbers must correspond to sizes between the outer scale L0 and the inner scale l0 (see section 2.5).
For infinitely small transmitters and receivers the most active inhomogeneities (near the centre of the
path) are of the order of the diameter of the first Fresnel zone (

√
λL, see on page 9). For the LAS

the size of the relevant inhomogeneities is of the order of the aperture diameter (see page 2.6.4 on
page 17). Thus in that case the aperture diameter must be in between the inner scale and the outer
scale. This implies that D should be 30 to 50 times the inner scale (inner scale, see 2.7.1) and the
outer scale should be more than ten times larger than the aperture diameter (see section 2.7.2).
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Figure 2.10: Dependence of the calibration of the LAS on the outer scale using the Strohbehn spectrum (2.39). For
this plot α = 5 and F = 0.0305m. The calibration factor has been normalized such that the calibration
for infinitely large L0 equals 1.

• The aperture diameter must be sufficiently large to prevent saturation effects: α � 1.6
√

σ2
χ,0 (sec-

tion 2.6.2 on page 15).
• The diameter of the aperture of the LAS must be much larger than the diameter of the first Fresnel

zone (at least twice): D �
√
λL (see section 2.6.2 on page 16)



3 CT 2 derived from Cn2

In order to relate the structure function parameter of the refractive index, Cnn to the the structure function
parameter of certain air properties (notably temperature and water vapour content), it is necessary to first
explore the dependence of the refractive index on the given properties of the air. Then expressions are
sought for the fluctuations of n as a function of the fluctuations of the state variables. In turn these ex-
pressions are used to relate the various structure function parameters. Here, the focus is on scintillometers
operating in the near-infrared part of the spectrum. But scintillometers operating at other wavelengths have
been used as well, most notably radio-wave scintillometers (Kohsiek and Herben, 1983; Meijninger et al.,
2002a). At radio-wave wavelengths, the refractive index is mainly determined by water vapour content,
making radio-wave scintillometers appropriate for the direct estimation of evaporation.

3.1 Dependence of the refractive index on wavelength and air
properties

The refractive index of a gas depends on the composition of the gas, and it’s state variables: pressure and
temperature. Given the fact that in air under atmospheric conditions water vapour is by far the most variable
constituent of air, the composition of air can be described in terms of dry air and water vapour. Therefore
in general the refractive index can be written as:

n = n(λ, p, T, q) , (3.1)

where p is the atmospheric pressure (in Pa), T is the absolute temperature (in K) and q is the specific hu-
midity (in kgkg−1). Thus for a given wavelength the refractive index depends on p, T and q (or equivalently
the water vapour pressure e). The functional dependence of n on the state variables can be derived from
the Lorenz-Lorentz law (see e.g. Jenkins and White (1976) and McCartney (1976)) according to which

n2 − 1
n2 + 2

= (n − 1)
n + 1
n2 + 2

∼ ρ . (3.2)

When n is close to unity, the factor n+1
n2+2 is nearly constant. When furthermore a reference condition is

defined (indicated by a subscript 0, e.g. n0) the Lorenz-Lorentz law can be rewritten as:

n − 1 =
ρ

ρ0
(n0 − 1) (3.3)

Feynman et al. (1989) gives a theoretical relationship for n which state that for a substance with n close to
1:

n − 1 ∼
∑

k

Nk

ω2
k − ω2

, (3.4)

where ωk is the resonant frequency of an electron in an atom, Nk is the number of electrons with a given
resonant frequency and the summation is over all types of electrons in the substance (see Feynman et al.
(1989) for a more precise explanation) 1.

1From the theoretical model for n it appears that it is the number density of electrons with a given resonant frequency that
determines the refractive index rather than the mass density of each species. But this difference is obfuscated in the various empirical
relationships for the refractive index.
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Absorbing the reference variables in (3.3) in a constant A, using the ideal gas law and splitting the
mixture in the k constituting species this can be rewritten as 2:

n − 1 =
1

RT

∑

k

Ak Mk pk , (3.5)

where R is the universal gas constant, Mk is the molar mass of species k and pk is the partial pressure of
species k.

The wavelength dependence of the refractive index is then restricted to the wavelength dependence of
the constant A (and thus n0). A number of empirical expressions for the refractive index of air as a function
of wavelength (and pressure, temperature and humidity content) are known which have the general form:

n − 1 = m1(λ)
p
T
+ m2(λ)

e
T
, (3.6)

where p is the total air pressure (the partial pressure for dry air is p − e; the term containing e that would
appear in (3.5) for the species ’dry air’ has been absorbed in the second term). In the sequel, m1 and m2

will have units of KPa−1.
The relationships from Barrell and Sears (as can be found for instance in List (1971) or Friehe et al.

(1975)) for the wavelength range corresponding to visible light, 283K < T < 303K and 960hPa < p <

1067hPa are:

m1(λ) =
(

0.774701 · 10−6
+ 4.38728 · 10−9λ−2

+ 0.36738 · 10−9λ−4
)

f (p, T ) (3.7a)

m2(λ) = −0.12785 · 10−6(1 − 0.0109λ−2) (3.7b)

with f (p, T ) = 1 + (40.03 − 0.118T ) · 10−9 p. The term with λ−4 in the numerator is not in line with the
theoretical model for n (see (3.4) and recall that λ ∼ ω−1).

Owens (1967) (cited in Andreas (1988) gives, for 0.36µm < λ < 3µm:

m1(λ) = 0.237134 · 10−6
+

68.39397 · 10−6

130 − λ−2
+

0.45473 · 10−6

38.9 − λ−2
(3.8a)

m2(λ) = −m1(λ) + 0.648731 · 10−6
+ 0.0058058 · 10−6λ−2 − 0.071150 · 10−9λ−4

+ 0.008851 · 10−9λ−6

(3.8b)

In Hill et al. (1980) the following relationship can be found (they cite Goody (1965)):

m1(λ) =

(

0.18282 · 10−6
+

83.833 · 10−6

146 − λ−2
+

0.7258 · 10−6

41 − λ−2

)

f (p, T ) (3.9a)

m2(λ) = −0.12766 · 10−6(1 − 0.0109λ−2) (3.9b)

with f (p, T ) = 1 + (40.03− 0.118T ) · 10−9 p. The relationships given in (3.8) and (3.9) are in line with the
theoretical relationships (3.4). Equation (3.9) seems to be a mixture of (3.7) and (3.8).

In figure 3.1 the different expressions for m1 and m2 are compared. It appears that for the wavelength
used in the LAS of Wageningen University (i.e. 0.94 µm) the values for m1 and m2 are equal within less
than 2 %.

Given the observation that the resonant frequencies of electrons occurring in air correspond to ultravi-
olet light (i.e. frequencies much higher than that of visible light), in (3.4) ω2 is negligible with respect to
ω2

k . Thus the wavelength dependence of the refractive index for visible light is only very weak.

3.2 Fluctuations in the refractive index due to fluctuations in
state variables

In the previous section an experession was given for n as a function of the state variables p and T , compo-
sition e and a wavelength dependence through m1 and m2: equation (3.6).

2The factor A = n0−1
ρ0

is different per species. From the considerations in Feynman et al. (1989) it can be seen that n − 1 of a
mixture is the sum of contributions of te species. Furthermore, it should be noted that the effect of absorption on the refractive index,
i.e. anomalous refraction, is not dealt with here (see e.g. Hill et al. (1980)).
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Figure 3.1: The wavelength dependence of the different expressions for m1(λ) and m2(λ) (equations (3.7), (3.8) and
(3.9)) is shown for a range of wavelength in the visible and near infrared range (the wavelength used in
the LAS of Wageningen University is 0.94 µm. The pressure and temperature dependence in (3.7a) and
(3.9a) has been neglected.

Since we are dealing with a turbulent medium it is customary to decompose the variables into an en-
semble mean and a fluctuating part:

n = n + n′ (3.10a)

p = p + p′ (3.10b)

e = e + e′ (3.10c)

T = T + T ′ (3.10d)

To first order in the fluctuations, the fluctuation in n can be written in terms of the fluctuations and mean
values of p, e and T , using the fractional change in n as a function of these variables:

n′ =
∂n
∂p

p′ +
∂n
∂e

e′ +
∂n
∂T

T ′ (3.11)

where the derivatives are evaluated at the reference values of p, e and T , viz. p, e and T . With (3.6) and
omitting those terms with derivatives that are zero in (3.11), the latter can be written as:

n′ = m1
p
T

p′

p
− m1

p
T

T ′

T
+ m2

e
T

e′

e
− m2

e
T

T ′

T
, (3.12)

or:

n′ = Ap
p′

p
+ Ae

e′

e
+ AT

T ′

T
, (3.13)

where Ax = x ∂n
∂x (x is either p, e or T ):

Ap = p
∂n
∂p
= m1

p

T
(3.14a)

Ae = e
∂n
∂e
= m2

e

T
(3.14b)

AT = T
∂n
∂T
= −m1

p

T
− m2

e

T
(3.14c)

Thus the coefficients Ap, Ae and AT do depend on the wavelength of the light under consideration –through
m1 and m2 as well as on the state and composition of the air.
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Up to this point the partial pressure of water vapour has been used to specify the concentration of water
vapour. But alternative parameters are used as well, in particular the water vapour density, ρv and the
specific humidity, q.

With the use of the gas law it can easily be deduced that the influence of water vapour on the refractive
index is m2Rvρv, which leads to

Aρv = m2Rvρv , (3.15)

where Rv is the specific gas constant for water vapour. For specific humidity the procedure is less straight-
forward. The second term in (3.6) (we will call it nw although strictly speaking the first term also carries
some water vapour influence) can be written as:

nw = m2Rvρq = m2
Rv

R
p
T

q . (3.16)

Now nw not only depends on the amount of water vapour and the temperature, but on the pressure as well.
The water vapour dependency is present in two places: directly in q and indirectly in R. The fractional
change of nw as a function of the different variables becomes now:

nw
′
=
∂nw

∂p
p′ +

∂nw

∂q
q′ +

∂nw

∂T
T ′

= nw
p′

p
+ nw

q′

q
− nw

R
∂R
∂q

q′ − nw
T ′

T
, (3.17)

which leads to the following expression for Aq:

Aq = qm2
Rv

R
p

T

(

1 − 1
R
∂R
∂q

)

. (3.18)

The second term between parentheses can be evaluated as follows:

1
R
∂R
∂q
= M

∂ 1
M

∂q

=

(

q
Mv
+

1 − q
Md

)−1 (

1
Mv
− 1

Md

)

=

(

q
Md

Mv
+ (1 − q)

)−1 (

Md

Mv
− 1

)

(3.19)

where M, Mv and Md are the molar masses of moist air, water vapour and dry air respectively. Here use
has been made of the fact that 1

M =
q

Mv
+

1−q
Md

. The complete expression for Aq becomes:

Aq = qm2
Md

Mv

p

T

(

q
Md

Mv
+ (1 − q)

)−2 (

Md

Mv
− 1

)

(3.20)

If the moisture content dependence of M is to be neglected, the latter becomes equal to:

Aq ≈ qm2
Md

Mv

p

T

(

Md

Mv
− 1

)

(3.21)

The error in Aq due to negligence of the water vapour dependence of R ranges from nil when q = 0 to 3.5%
when q = 0.03kgkg−1 (the dependence of the error on q is nearly linear).

The next step is to evaluate the relative importance of the successive terms in (3.13). To this end a table
has been compiled containing representative values for x, x′ and Ax (for x is p, e and T ) under atmospheric
conditions (see table 3.1).

From this table a number of conclusions can be drawn. At the given wavelength, the effect of tem-
perature fluctuations on the refractive index is by far the most important. It is two orders of magnitude
larger than the effect of humidity fluctuations. In turn, the effect of pressure fluctuations is more than two
orders of magnitude smaller than the humidity effect. This leads to the customary assumption that the ef-
fect of pressure fluctuations on the refractive index can be safely ignored, except for rare cases where both
temperature and humidity fluctuations are very small. The effect of temperature fluctuations and humidity
fluctuations on the structure parameter of the refractive index will be dealt with in the next section.
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turbulent variable x

variable unit mean turbulent fluctuation relative fluctuation Ax Ax
x′

x

p Pa 105 0.01 10−7 0.26 · 10−3 26 · 10−12

q kgkg−1 10−2 10−4 10−2 −0.67 · 10−6 −6.7 · 10−9

T K 300 1 3 · 10−3 −0.26 · 10−3 −0.78 · 10−6

Table 3.1: Representative value for the mean value and fluctuation of p, e and T , as well as the corresponding value
for A. For the evaluation of m1 and m2 the relationships in (3.9) have been used with a wavelength of
940 nm, which corresponds to the wavelength of the LED used in the LAS of the Meteorology and Air
Quality group of Wageningen University. This results in the following values: m1 = 0.780 · 10−6KPa−1

(at the given precision inclusion of the correction factor f (p,T ) with T = 288K and p = 105Pa does not
influence the result) and m 2 = −0.126 · 10−6KPa−1. The relative fluctuation x ′/x is given as an estimate
for
√

Cxx/x. The value for p′ has been estimated from the assumption p′ ∼ ρu′2 with u′ ≈ 0.1ms−1.

3.3 The relationship between Cn2 and CT 2, CTq and Cq2

The analysis presented in the section is part of Moene (2003)
In order to find the relationship between the structure function parameter of the refractive index on one

hand, and the structure function parameters of state variables on the other hand, we revert to the definition
of the structure function for a homogeneous flow (see (2.4)). For separations r within the inertial subrange
this becomes:

Dnn(r) = 2 (Bnn(0) − Bnn(r))

= 2
(

n′n′ − n′(x)n′(x + r)
)

= Cn2 r2/3 (3.22)

Inserting the approximation for n as a function of p, e and T (3.6) into (3.22) we obtain:

1
2

Cn2 r2/3
=

(

Ap
p′

p
+ Aq

q′

q
+ AT

T ′

T

)2

−
(

Ap
p′(x)

p
+ Aq

q′(x)
q
+ AT

T ′(x)

T

) (

Ap
p′(x + r)

p
+ Aq

q′(x + r)
q

+ AT
T ′(x + r)

T

)

(3.23)

Evaluation of all products finally leads to:

Cn2 =
ApAp

pp
Cpp +

AqAq

qq
Cq2 +

AT AT

TT
CT 2 + 2

ApAq

pq
Cpq + 2

ApAT

pT
CpT + 2

AqAT

qT
CqT (3.24)

As was shown in the previous section, the effect of pressure fluctuations can be ignored in most cases.
Therefore the terms in (3.24) containing Cpp, CpT and Cpq will be ignored from this point onwards. Thus
only the terms containing either T or q are retained.

Usually, little information is available on the cross-structure parameter CTq and on Cqq. Therefore it is
customary to eliminate CTq and Cqq with the use of some other information on the relationship between
T and q fluctuations, viz. the Bowen ratio β and the correlation coefficient between T and q. Wesely and
Alcaraz (1973) just pose a relationship –without derivation– between CT 2 and Cn2 involving the Bowen
ratio. Wesely (1976a) gives a derivation for the relationship between CT 2 and Cn2 and uses the relationship
√

CT 2/Cq2 = w′T ′/w′q′ to introduce the Bowen ratio. Kohsiek (1982) shows that indeed a close relationship

between
√

CT 2/Cq2 and w′T ′/w′q′ exists (albeit with considerable scatter, which is obscured by the use of a
double log-plot: figure 14 in Kohsiek (1982)). Another important point to note is that in the present context
the correlation between T and q is needed at the scales that are seen by the scintillometer, i.e. scales that
are of the order of the beam diameter and that should be located in the inertial subrange (see section 2.6.4).
There is evidence that the correlation coefficient in the inertial subrange is rather constant with frequency
and nearly equal to the correlation coefficient integrated over the entire spectrum, i.e. T ′q′/(σTσq) (see
Kohsiek (1984)).
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In the sequel a slightly different and more clear derivation will be given for the elimination of CTq and
Cq2 from (3.24).

First the expression for the structure function parameter in the inertial subrange will be rewritten. To
that end the cross-correlation function RTq is estimated from the auto-correlation functions of T and q as
well as the correlation coefficient RTq(0):

RTq(r) ≈ RTq(0)
√

RTT (r)Rqq(r) . (3.25)

This approximation will be valid as long as the spatial structures of T and q are similar (in terms of mi-
cro scale and macro scale). In fact, the correlation coefficient between T and q in the inertial subrange is
assumed to be constant and equal to the correlation coefficient integrated over the entire spectrum. This
assumption is supported to some extent by the results of Wyngaard et al. (1978) who show that the Tq-
cospectrum has an inertial subrange behaviour similar to that of the T -spectrum and q-spectrum. Equation
(3.25) also corresponds to the relationship CTq = RK

Tq

√

CT 2Cq2 (where RK
T Q is the inertial subrange correla-

tion coefficient between T and q) given by Kohsiek (1982), which was derived based on assumptions about
the similarity relationships for CT 2 , CTq and Cq2 .

Given the approximation in (3.25), the expressions for the structure functions parameters CTq and Cq2

(no approximation involved) become:

1
2

CTqr2/3 ≈ RTq(0)
(

1 −
√

RTT (r)Rqq(r)
)

σTσq (3.26a)

1
2

Cq2 r2/3
=

(

1 − Rqq(r)
)

σ2
q (3.26b)

where σT is the standard deviation of T and RTq(r) is the correlation coefficient between T and q on
locations separated by a distance r. With the aid of these expressions CTq and Cq2 can be expressed in
terms of CT 2 , the ratio σq/σT and the correlation coefficient RTq:

CTq ≈ CT 2 RTq(0)
1 −

√

RTT (r)Rqq(r)

1 − RTT (r)

σq

σT
(3.27a)

Cq2 = CT 2

1 − Rqq(r)

1 − RTT (r)

(

σq

σT

)2

. (3.27b)

Provided that the spatial structures of T and q in the inertial subrange are identical (i.e. Rqq(r) equals
RTT (r))3, (3.27b) can be simplified to:

CTq ≈ CT 2 RTq(0)
σq

σT
(3.28a)

Cq2 ≈ CT 2

(

σq

σT

)2

(3.28b)

Now (3.24) can be simplified and expressed as a relationship between Cn2 and CT 2 :

Cn2 =
AT AT

TT
CT 2















1 + 2
Aq

q
T
AT

RTq(0)
σq

σT
+

AqAq

qq
TT

AT AT

(

σq

σT

)2












(3.29)

Thus in principle one could derive CT 2 from Cn2 with only mean values and variances of T and q as well
as the correlation coefficient RTq(0) as additional data. In order to compare this result with the commonly
used expression which contains the Bowen ratio, the ratio σq/σT needs to be linked to the Bowen ratio.
The latter is given by:

β =
H

LvE
=

cp

Lv

w′T ′

w′q′
, (3.30)

3Note that this does not necessarily imply RTq(0) = 1.
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Figure 3.2: Correction factor in (3.32), i.e.
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. The inset shows the details around β = 0.

where H is the sensible heat flux, E is the evapotranspiration, Lv is the latent heat of vaporation, cp is
the specific heat at constant pressure and w is the vertical velocity. (3.30) can be rewritten, without any
assumptions as:

β =
cp

Lv

σT

σq

Rwq

RwT
. (3.31)

Thus if the assumption that Rwq equals RwT is made, the Bowen ratio can be linked directly to the ratio of
the standard deviations of temperature and specific humidity. It is very important to note that Rwq = RwT

does not necessarily imply RTq = 14. Under the assumption that Rwq = RwT expression (3.31) will always
give a positive Bowen ratio, which is consistent with the assumption. However, if the fluxes of water vapour
and heat would go in opposite directions, Rwq = −RwT . Therefore the absolute value of β needs to be used
when Rwq/RwT is set to unity.

From this point it is possible to express Cn2 in terms of CT 2 and the Bowen ratio:

Cn2 =
AT AT

TT
CT 2















1 + 2
Aq

q
T
AT

RTq(0)
cp

Lv
|β|−1
+

AqAq

qq
TT

AT AT

(

cp

Lv

)2

|β|−2















(3.32)

Figure 3.2 shows the magnitude of the correction factor as a function of the Bowen ratio and for various
values for RTq. When the additional assumption is made that |RTq| = 1, and when the information about
the sign of RTq is taken from the sign of β (i.e. |β| is replaced by β), (3.32) can be written as:

Cn2 =
AT AT

TT
CT 2













1 +
Aq

q
T
AT

cp

Lv
β−1













2

(3.33)

The factor in front of β−1 is, for the atmospheric conditions used in table 3.1 equal to 0.031, which is
consistent with the value quoted by Wesely (1976a). But it is important to keep in mind that this factor
does depend on the atmospheric conditions.

In Moene (2003) the various assumptions used in the derivation above are confronted with experimental
data. Furthermore, the effect of those approximations on the various estimates of CT 2 from Cn2 (equations
(3.29), (3.32), and (3.33)) are given.

4Of course, the other way around the relationship is clear: if RTq = 1, then Rwq = RwT (see de Bruin et al., 1993; Hill, 1989).
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3.4 Summary of the assumptions
The purpose of the present section was to find the relationship between the structure function parameter of
the refractive index, Cn2 and the structure function parameter of temperature, CT 2 . Along the way a number
of assumptions has been made, which will be summarized here.

• In order simplify the Lorenz-Lorentz law it was assumed that the refractive index is close to unity,
which is a fair assumption for air.
• The assumption that n − 1 � 1 has also been used in the various empirical relationships that link

n − 1 for air to the wavelength of the light under consideration and the variables that describe the
state of the air. For some of these empirical relationships it is unclear for which range of atmospheric
conditions they hold.
• Dependence of n − 1 on the composition of air is neglected, except for the dependence on water

vapour content.
• The dependence of fluctuations of n on fluctuations in the state variables and the water vapour content

is described using the fractional change of ∂n
∂x where x is one of the variables. This description is valid

to first order in the fluctuations.
• If the water vapour dependence of M is neglected in the computation of Aq (see 3.2 on page 26), this

can give an error in Aq between 0 and 3.5 %, when q ranges from 0 to 0.03kg · kg−1.
• The relative fluctuations (for variable x: x′/x) in the pressure are assumed to be about five orders

smaller than the relative fluctuations in temperature and specific humidity (see table 3.1).
• In the elimination of CTq and Cq2 from Cn2 it has been assumed that the spatial structure of the

temperature and humidity fields are identical in the inertial subrange (i.e. RTT (r) = Rqq(r)).
• In order to express Cn2 in terms of CT 2 , the Bowen ratio and RTq it has been assumed that |RwT | =
|Rwq|, but it was not necessary to assume RTq = 1.
• To eliminate the dependence of Cn2 on RTq some assumption with respect to RTq needs to be made

(for instance that RTq = 1).



4 Sensible heat flux H
derived from CT 2

The final step in the application of the scintillometer in the determination of the sensible heat flux is the
link between H and CT 2 . This link is derived from Monin-Obukhov similarity relationships for CT 2 (section
4.1). Since in the similarity relationships not only H and CT 2 occur, additional data are needed to obtain H
from CT 2 (section 4.2). Finally, section 4.3 gives an overview of all data that are needed to derive H from
the actual output of the scintillometer, i.e. the log intensity variance, σ2

ln(I).

4.1 Similarity relationships for CT 2

In order to derive the surface sensible heat flux from CT 2 a relationship between the two is needed. This
relationship can be found in the surface layer similarity relationship for CT 2 . Using Monin-Obukhov simi-
larity (MOS) this can generally be stated as:

CT 2 (z − d)2/3

θ2
∗

= ΦTT

(

z − d
LMO

)

, (4.1)

with:

θ∗ =
H

u∗ρcp
(4.2)

u∗ =
√

τ0

ρ

LMO =
g

T

θ∗

u2
∗

(4.3)

where z is the height above the ground and d is the zero plane displacement height, θ∗ is the MOS tem-
perature scale, u∗ is the friction velocity, τ0 is the surface shear stress, LMO is the Obukhov length, g is
the gravitational acceleration and T is the mean ambient temperature (in K !). In fact, (4.1) describes the
stability dependence of CT 2 . Several expressions for ΦTT can be found in literature. As with most MOS
similarity relationships, the relationships are split into separate expressions for for stable ( z−d

LMO
> 0) and

unstable ( z−d
LMO

< 0) conditions. Table 4.1 and 4.2 give an overview of the different relationships for unstable
and stable conditions, respectively. Graphs of the respective expressions are given in figures 4.1 and 4.2.

In figure 4.1 it can be seen that the various expressions for f
(

z−d
LMO

)

for unstable conditions correspond to
within roughly 20%, except for the expressions by Hill et al. (1992) and Thiermann and Grassl (1992). For
stable conditions (figure 4.2) the expressions correspond to within about 25%, except for that of de Bruin
et al. (1993). Recently, Hoedjes et al. (2002) studied the similarity relationships for the structure parameters
under stable conditions during daytime (conditions of strong evaporation).

4.2 Combination of similarity relationships for CT 2 with other
data to obtain H

In order to derive a sensible heat flux from (4.1), one also needs u∗. This can either be measured directly, or
be obtained —using similarity relationships— from mean wind speed measurements (either at two heights,

31
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formula coefficients reference

cTT1

(

1 − cTT2
z−d
LMO

)−2/3
cTT1 = 4.9, cTT2 = 7 Wyngaard et al. (1971)

cTT1

(

1 − cTT2
z−d
LMO

)−2/3
cTT1 = 4.9, cTT2 = 7 Wyngaard (1973)

cTT1

(

1 − cTT2
z−d
LMO

)−2/3
cTT1 = 4.9, cTT2 = 6.1 Andreas (1988) a

(

1 + cTT1( z−d
LMO
+ cTT3) + cTT2( z−d

LMO
+ cTT3)10

)−2
cTT1 = 0.45, cTT2 =

0.01, cTT3 = 1.5
Wesely (1976b)

cTT1

(

1 − cTT2
z−d
LMO

)−2/3
cTT1 = 4.9, cTT2 = 9 de Bruin et al. (1993)

cTT1

(

1 + cTT2| z−d
LMO
|
)−2/3

cTT1 = 8.1, cTT2 = 15 Hill et al. (1992) b

4k−2/3β1

(

1 − cTT2
z−d
LMO
+ cTT3

(

z−d
LMO

)2
)−1/3

β1 = 0.86, cTT2 = 7,
cTT3 = 75

Thiermann and Grassl
(1992) c

aadjustment of Wyngaard (1973) reflecting the change of Von Karman constant from 0.35 to 0.4
badjustment of Wyngaard et al. (1971) to better fit near-neutral data
cβ1 is the Obukhov-Corrsin constant, k is the Von Karman constant

Table 4.1: Overview of similarity relationships ΦTT

(

z−d
LMO

)

= CT 2θ−2
∗ (z − d)2/3 for unstable conditions.

formula coefficients reference

csTT1

(

1 + csTT2
z−d
LMO

)

csTT1 = 4.9, csTT2 =

2.75
Wyngaard et al. (1971)

csTT1

(

1 + csTT2

(

z−d
LMO

)2/3
)

csTT1 = 4.9, csTT2 = 2.4 Wyngaard (1973)

csTT1

(

1 + csTT2

(

z−d
LMO

)2/3
)

csTT1 = 4.9, csTT2 = 2.2 Andreas (1988) a

csTT1

(

1 + csTT2
z−d
LMO

)

csTT1 = 4.9, csTT2 = 0 de Bruin et al. (1993)

4k−2/3β1

(

1 + cTT2
z−d
LMO
+ cTT3

(

z−d
LMO

)2
)1/3

β1 = 0.86, cTT2 = 7,
cTT3 = 20

Thiermann and Grassl
(1992) b

aadjustment of Wyngaard (1973) reflecting the change of Von Karman constant from 0.35 to 0.4
bβ1 is the Obukhov-Corrsin constant, k is the Von Karman constant

Table 4.2: Overview of similarity relationships ΦTT

(

z−d
LMO

)

= CT 2θ−2
∗ (z − d)2/3 for stable conditions.

Thiermann and Grassl (1992)
Hill et al. (1992)

de Bruin et al. (1993)
Wesely (1976b)
Andreas (1988)

Wyngaard et al. (1971)
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Figure 4.1: Comparison of various similarity functions ΦTT

(

z−d
LMO

)

= CT 2θ−2
∗ (z − d)2/3 for unstable conditions. See

table 4.1 for the expressions used.
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Thiermann and Grassl (1992)
de Bruin et al. (1993)
Andreas (1988)
Wyngaard (1973)
Wyngaard et al. (1971)
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Figure 4.2: Comparison of various similarity functions ΦTT

(

z−d
LMO

)

= CT 2θ−2
∗ (z− d)2/3 for stable conditions. See table

4.2 for the expressions used.

or in combination with and estimate for the roughness length):

u∗ =
k(u2 − u1)

ln
(

z2−d
z1−d

)

−Ψm

(

z2−d
LMO

)

+ Ψm

(

z1−d
LMO

) (4.4)

with:

Ψm

(

z − d
LMO

)

=

∫ z−d
LMO

0

(

1 − φm(ζ)
ζ

)

dζ , (4.5)

where φm

(

z−d
LMO

)

is the flux profile relationship for momentum (φm =
k(z−d)

u∗
∂u
∂z ). In (4.4) u1 can be taken

as zero, if z1 is replaced by the roughness length, i.e. z0 + d. The sensible heat flux can be determined
iteratively from the combination of (4.1), (4.2), (4.3) and (4.4).

For unstable situations various authors have looked at the free convection limit of (4.1) (i.e. − z−d
LMO
→

∞). For those expressions for ΦTT

(

z−d
LMO

)

that have the form ΦTT

(

z−d
LMO

)

= cTT1

(

1 − cTT2
z−d
LMO

)−2/3
this leads

to the following explicit expression for H (see also de Bruin et al. (1995)):

H = ρcpc−3/4
TT1 c1/2

TT2k1/2(z − d)

(

g

T

)1/2

C3/4
T 2

= ρcpb(z − d)

(

g

T

)1/2

C3/4
T 2 (4.6)

Equation (4.6) provides a way to compute the sensible heat flux without the need for an estimate for u∗ and
without the need for an iterative procedure. In practice it appears that the free convection approximation is
valid already at relatively modest values of z−d)

LMO
. de Bruin et al. (1995) show that the difference between

the full set of equations for H and the free convection approximation is less than 10% if − z−d
LMO

> 0.5. It is
important to note that a large z/LMO can not only be obtained through a small L, but also through a large
z, i.e. when the LAS is installed at a considerable height. From (4.6) it can be seen that for a given heat
flux, CT 2 (and consequently Cn2 ) decreases with height. This suggests that saturation (see (2.6.2) in section
2.6.2) can be prevented by installing the LAS at a sufficient height (which gas the additional advantage that
free convection conditions are more easily obtained.
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de Bruin et al. (1993) provide an explicit approximation to compute the sensible heat flux for the entire
unstable range. From (4.1) a general proportionality can be inferred between H on one hand, and

√
CT 2

and some velocity scale on the other hand:

H ∼
√

CT 2 u′∗ , (4.7)

where u′∗ is an undefined velocity scale. de Bruin et al. approximate u′∗ with an interpolation between
the neutral friction velocity (that can be derived from the logarithmic wind profile) and a free convection
velocity scale. This leads to:

H = ρcp

√

CT 2 (z − d)2/3

cTT1

(

u1/p
∗n + u1/p

c

)p
, (4.8)

with:

u∗n =
ku(zu)

ln((zu − d)/z0)
(4.9)

uc =

(

√

CT 2 (z − d)2/3 kg(z − d)

T

cTT2

cTT1

)1/2

, (4.10)

where zu and zT are the heights where u and CT 2 are measured, respectively. The value of the exponent p
does depend on zu, zT and z0, but typical values are between 2 and 2.5.

4.3 Data required to compute the sensible heat flux
In this section the data requirements for the calculation of the sensible heat flux from LAS data will be
dealt with.

Table 4.3 summarizes all variables and parameters needed to derive the sensible heat flux from the
primary output of a scintillometer, i.e. the log-intensity variance. A number of the variables listed are
not very crucial in the determination of the sensible heat flux, in the sense that H is not very sensitive to
them. This holds in particular for T , q, p. For a given situation these variables can usually safely be treated
as parameters. The information about the relationship between humidity fluctuations and temperature
fluctuations (RTq in combination with either β or σT

σq
) could be replaced by a fixed value if it is assumed that

the state of the surface in terms of energy partitioning between H and LvE does not change significantly.
However, it is important to note that for Bowen ratios less than 0.5 to 1 the correction term should not be
neglected. The influence either u∗ or u diminishes as soon as a state of free convection is reached.

The parameters listed in 4.3 can be divided into three categories:

a. Parameters that are directly related to the LAS, i.e. D and λ. These will be known quite accurately.

b. Parameters that are related to the installation of LAS, i.e. zT and L (and d). In practice, these two
parameters cause significant problems in their determination, whereas they are at the same time of
prime importance in the accurate calculation of H (see (2.34) and (4.6) according to which H ∼ L−9/4

and H ∼ (z − d). Especially over undulating terrain the determination of the correct zT is non-trivial.

c. Parameters that are related to the estimation of u∗, i.e. zu, z0 (and d). For situations approaching
the free convection limit the influence of these parameters vanishes. Note that situations of free
convection are easily obtained in the case that zT is large.
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type quantity symbol needed for

variable log intensity variance σ2
ln(I) Cn2

mean absolute temperature T AT , Aq, in similarity rela-
tionships (in g

T
)

mean specific humidity q Aq

mean atmospheric pressure p AT , Aq

friction velocity u∗ z−d
LMO

and θ∗
mean wind speed u for u∗ (if no direct measure-

ment of u∗ available)
ratio of standard deviations of
temperature and humidity

σT
σq

link between Cn2 and CT 2

Bowen ratio β link between Cn2 and CT 2 (if
σT
σq

not available)
correlation coefficient between
temperature and humidity

RTq link between Cn2 and CT 2

parameter displacement height d in similarity relationships
roughness length z0 for u∗ (if no direct measure-

ment of u∗ available)
height of wind speed measure-
ment

zu for u∗ (if no direct measure-
ment of u∗ available)

path height z in similarity relationships
path length L for Cn2

beam diameter D for Cn2

wavelength of light λ for Cn2

Table 4.3: Variables and parameters that are needed in principle to derive the sensible heat flux from LAS data. The
sensitivity of H to a large number these variables is small, and the variables can be treated as parameters
with a fixed estimated value.



5 Conclusion and
discussion

In the present paper it has been discussed in which way the output of a Large Aperture Scintillometer (LAS)
can be used to determine the sensible heat flux. The link between the output of the scintillometer, i.e. the
variance of the log-amplitude of the optical signal, and the sensible heat flux consists of a number of steps:

a. The structure function parameter of the refractive index Cn2 can be linked to the log-amplitude vari-
ance through a number of assumptions with respect to the spectrum of the turbulence along the
scintillometer path. Also some requirements with respect to the relationship between wave length,
path length and beam diameter do exist.

b. The next step is to relate the structure function parameter of the refractive index to the structure
function parameter of temperature. To this end one needs on one hand information about the mean
state of the atmosphere along the path of the scintillometer. On the other hand knowledge is required
about the relative magnitude of temperature and humidity fluctuations, as well as on their mutual
correlation. The latter information will in general not be available.

c. Finally, the Monin-Obukhov similarity relationship for CT 2 is used to express the sensible heat flux
–in most cases implicitly– in terms of CT 2 .

The steps b and c contain the weakest links in the estimation of H from scintillometer data.
The correction for the influence of water vapour fluctuations on the relationship between Cn2 and CT 2

consists of information about the ratio between the magnitude of temperature and humidity fluctuations,
σT /σq, and the correlation coefficient between temperature and humidity fluctuations, RTq. Under sta-
tionary and horizontally homogeneous conditions 1 the picture is relatively simple. Either σT /σq (or
equivalently the Bowen ratio) is large in which case the the correction for the influence of water vapour
fluctuations on the relationship between Cn2 and CT 2 is small (see figure 3.2). Under these conditions the
value of |RTq| is irrelevant and might be below one (e.g. due to entrainment effects, see de Bruin et al.
(1999)). On the other hand, the Bowen ratio might be low and the correction may be significant (up to
50 %). But in those cases the correlation coefficient RTq will be close to one in general. In the situation
that non-stationarity or inhomogeneity plays a role, since in that case RTq can take any value (see de Bruin
et al. (1999)). It is important to note that in the derivation of the water vapour correction no use is made
of assumptions concerning similarity relationships. With respect to the water vapour fluctuations one issue
has not been touched upon, viz. the influence of absorption of radiation by water vapour which may also
give rise to fluctuations in the intensity measured at the receiver (see e.g. Nieveen et al. (1998)).

The second weak link in the determination of the sensible heat flux from scintillometer data are the
similarity relationships used. First there is considerable scatter in the similarity relationships themselves.
For unstable conditions these differences may give a difference in flux (assuming free convection condi-
tions) of nearly 20% between the highest and the lowest. Furthermore, the similarity relationships may
not be valid under all conditions. In principle they have been derived for conditions that are stationary and
horizontally homogeneous. There is some evidence that also over inhomogeneous terrain the the sensible
heat flux given by the LAS is representative for the areally averaged flux (Wouter Meijninger, personal
communication).

1For these conditions, Monin-Obukhov Similarity (MOS) is supposed to be valid. But Hill (1989) shows that MOS implies that
|RTq| = 1.
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The main conclusion of this paper is that the scintillation method is a powerful method to measure the
sensible heat flux, but there are a large number of pitfalls that can easily be circumvented if given sufficient
attention. On the other hand there are some difficulties that should receive more attention and that can
not be circumvented always (viz. the influence of water vapour fluctuations and the validity of similarity
relationships).
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