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Abstract 
Milk production has a major impact on the environment and competes increasingly for scarce 
resources. As the demand for milk is expected to increase, these issues are likely to worsen. 
Benchmarking the environmental performance of dairy farming systems offers the opportunity 
to identify best farm practices and to provide guidance for reducing the environmental impact. 
Currently, benchmarking is hampered by the lack of an effective method that results in a set 
of indicators that is easily quantifiable and detects variations in environmental performance 
between farms. The aim of this thesis, therefore, was to develop a sound method to benchmark 
the environmental performance of dairy farming systems. This thesis focuses is on specialized 
dairy farming systems in Europe. 

The first challenge in benchmarking the environmental performance of dairy farming systems 
is to select a set of indicators that are relevant, measurable, valid, timely and understandable. 
Environmental indicators can be derived from various approaches, including a nutrient balance 
(NB) approach and a life cycle assessment (LCA). An NB is generally applied at farm level, 
and yields indicators that are relatively easy to quantify and communicate. We found that an 
NB at farm level can be used to benchmark dairy farming systems, if differences in on-farm 
losses are large and off-farm losses are relatively unimportant. Only if farms differ largely in 
the amount and/or type of purchased inputs, such as feed, the farm-based NB should be 
extended to a chain based NB or an LCA. An LCA, however, requires extensive data 
information, which can be difficult to collect. We, therefore, explored correlations between eight 
commonly used NB and LCA indicators with the system boundary from cradle-to-farm gate. 
We found that a set indicators, consisting of the nitrogen surplus, the phosphorus surplus, land 
use and energy use can be used as a proxy to benchmark the environmental performance of 
dairy farming systems, representing also global warming potential, acidification potential, 
freshwater eutrophication potential and marine eutrophication potential. 

The second challenge in benchmarking the environmental performance of dairy farming 
systems is to cope with data uncertainties. We therefore first evaluated the effect of epistemic 
uncertainty on benchmarking the nitrogen use efficiency of dairy systems. We found that 
ranking of farms based on this single indicator is not possible when the epistemic uncertainty 
of parameters is large and differences in N use efficiency are small. We, furthermore, identified 
the most influential parameters (e.g. input of concentrates, mineral fertilizer ) and found that 
reducing epistemic uncertainty of those parameters improved benchmarking results 
significantly. Afterwards, we demonstrated how to use fuzzy data envelopment analysis (DEA) 
to account for uncertainties of multiple indicators in benchmarking the eco-efficiency of dairy 
farming systems. With fuzzy DEA, the number of farms receiving the highest efficiency score 
was lower compared to standard DEA. In addition, fuzzy DEA identified a different set of peers 
than standard DEA. By taking uncertainty into account during the quantification processes, 
fuzzy DEA can contribute to increasing the reliability of results and prevent biased conclusions. 

Exploring correlations between environmental indicators can facilitate decision-makers to 
derive an effective set of indicators that can be used as proxies for benchmarking. In addition, 
decision-makers should acknowledge the effect of epistemic uncertainty on benchmarking 
results. When setting up reference values for penalty, for example, this value should be based 
on a range rather than a single value in order to account for epistemic uncertainty. 
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1.1 Background 

Milk and dairy products are consumed by billions of people around the world every day, 

because of their highly nutritious value to meet the need of the human body for especially 

protein and micronutrients, such as calcium, magnesium, and vitamin B12 (FAO, 2013). Milk 

production, furthermore, generates farm income, contributes to the gross domestic product of 

many countries, and contributes to food security and livelihoods of smallholders in countries 

like India, Pakistan and China (OECD,2016).  

Milk production, however, also causes pressure on the environment, by its emissions to air, 

water, and soil, that contribute to, for example, climate change, eutrophication, acidification, 

and loss of biodiversity (Thomassen and De Boer, 2005). Climate change, induced by the 

emission of greenhouse gases (GHG), is one of the main challenges of today. The global dairy 

sector, producing both milk and meat, is responsible for about 30% of the anthropogenic GHG 

emissions related to livestock production (Gerber et al., 2013). The three main GHGs from milk 

production are carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). CO2 is produced 

mainly by combustion of fossil energy during, e.g. transport or milking, and by burning and 

microbial decay of biomass related to changes in land use or crop management. CH4 is 

produced mainly during enteric fermentation and anaerobic decomposition of organic material 

in manure; and N2O is produced mainly through nitrification and denitrification during manure 

management and nitrogen fertilizer application. Besides the emission of GHGs, milk production 

results in the emission of other gases (e.g. ammonia) and substrates (e.g. nitrate or phosphate) 

leading to environmental impacts, such as acidification and eutrophication. Ammonia (NH3) 

accounts for about 85% of the acidity equivalent emissions for livestock in Europe. The 

European livestock sector is responsible for more than 80% of the total agricultural emission 

of NH3, and the dairy sector is one of the major contributors (Leip et al. 2015). In addition to 

NH3, leaching of nitrate (NO3
-) and phosphate (PO4

3-) can deteriorate the quality of freshwater 

and coastal water, which can lead to the enhancement of water eutrophication (Leip et al., 

2015). Furthermore, milk production threats biodiversity because of its impact on climate, air 
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and water pollution, land degradation and deforestation (Steinfeld et al., 2006), and it competes 

increasingly for scarce resources, such as land, water and fossil energy (De Vries and De 

Boer, 2010). As the population grows and becomes wealthier, milk production is expected to 

further increase (see Figure 1.1). Aforementioned environmental consequences related to milk 

production, therefore, are likely to amplify.  

 

Figure 1.1 Milk production in 2015 and projections for 2025 (in million tonnes) for major 

producing countries and regions (Source: OECD, 2016). 

Aforementioned benefits and environmental impacts associated with milk production vary 

largely across the world. One of the reasons for this variation is that dairy farming systems are 

heterogeneous. We find, for example, concentrate-based, high productive dairy systems in 

countries such as the Netherlands and the United States; grass-based dairy systems in 

countries such as Ireland and New Zealand; and smallholder dairy systems in countries such 

as Kenya and India. Even within one type of farming system, farms can vary largely and differ 

in biophysical factors, such as soil type and climatic conditions; in long term strategic decisions, 

such as the housing- or manure management system (Schröder et al., 2003; Nevens et al., 
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2006); in short term tactical decisions, such as choice of feed ingredients or grazing regime; 

and in day-to-day management decisions, such as culling of cows or precision feeding (Nevens 

et al., 2006). All these differences can have an impact on the environmental performance of 

the dairy farming systems. 

1.2 The conceptual framework 

Multiple environmental impacts need to be addressed for benchmarking. Benchmarking dairy 

farming systems offers the opportunity to identify best farm practices and to provide guidance 

for improving farm performance (Stokes et al., 2007).  

Benchmarking is defined by Camp et al. (1989) as “the search for those best practices that will 

lead to the superior performance” and, in this thesis, relates to the comparison of farms based 

on their environmental performance, in order to identify differences, and to deduce options to 

reduce environmental impacts. Figure 1.2 illustrates the conceptual framework for improving 

the environmental performance of dairy farming systems that was used in this thesis.  

The framework for improving the environmental performance consists of two phases and 5 

steps. It starts with the benchmarking phase, which includes three steps: (i) specify the goal 

and scope, (ii) select indicators, and (iii) assess and compare performances. The second 

phase is referred to as evaluation and improvement, and contains the remaining two steps: (iv) 

identify improvement options, and (v) implement and reflect on these options (adapted from 

van der Vorst et al. (2013) and de Olde et al. (2017)). The focus of this thesis is on the 

benchmarking phase, i.e. the first three steps in Figure 1.2. Below, I therefore describe each 

step in more detail, using this thesis’s topic: benchmarking the environmental performance of 

dairy farming systems. 
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Figure 1.2 Conceptual framework for improving the environmental performance, adjusted from 

van der Vorst et al. (2013) and de Olde et al. (2017). 

Step 1: In the first step, the goal and scope of the (benchmarking) assessment are defined, 

and the boundary of the system is determined. The goal is to reduce the environmental impact 

of dairy farming systems. The environmental impacts included (scope) are climate change, 

acidification, eutrophication, energy use and land use, being important impact categories in 

the dairy sector (Thomassen and De Boer, 2005; Yan et al., 2011). As the majority of these 

environmental impacts relate to the agricultural stage, including the production of purchased 

feed and processes on the dairy farm, the system boundary was defined from cradle-to-farm 

gate (see Figure 1.3). This system boundary includes processes involved up to the moment 

that milk leaves the farm gate, such as production of concentrates and roughage, fertilizers 

and keeping of the dairy herd (Schau and Fet, 2008). 
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Figure 1.3 System boundary to assess environmental impacts of dairy farming systems in this 

thesis. 

Step 2: The second step involves the selection of indicators to benchmark the farms. To assess 

the environmental performance of dairy farming systems, we need (a set of) environmental 

indicators. An indicator suitable for benchmarking should be relevant, measurable, valid, timely 

and understandable (Bell and Morse,1999; Lockie et al., 2002). To be more specific, relevant 

means that the indicator should be able to assess the major environmental performance of the 

farms; measurable means that the indicator can be quantified with the data that can be 

monitored and collected in a time and cost efficient way; valid means that the indicator should 

be measured both accurately and precisely. A measurement is accurate if the outcome is close 

to its true value (i.e. no bias or systemic error). A measurement is precise or has a high 

repeatability if you arrive at the same result in case you do the measurement several times; 

timely means that the indicator can provide early warning of potential environmental problems; 

understandable means that the results of the indicator can be interpreted easily by decision-

makers, such as farmers and policy makers. In addition, to prevent biased conclusions and to 

account for potential trade-offs between environmental impacts, multiple environmental 
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indicators should be considered when benchmarking dairy farming systems. We therefore are 

in need of a set of indicators instead of a single indicator (Lyytimäki and Rosenström, 2008). 

The set of indicators should be able to reflect the current environmental state of the system 

comprehensively and reliably (Lebacq et al., 2013). 

Potential environmental indicators to assess the environmental performance of dairy farming 

systems can be derived from several methods, including a nutrient balance approach, a 

material flow analysis or a life cycle assessment (Gerber et al., 2013). A description of the 

aforementioned methods are provided in the textbox below. 
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Step 3: The third step of the framework includes assessing and comparing the performance of 

systems, in this case, the environmental performance of dairy farming systems, using the 

indicators selected in step 2. To be able to compare systems, a reference value needs to be 

set. This reference value can be either a fixed value, e.g. an acceptable or desirable value, or 

a relative value, e.g. the average of the top 10% best performing systems (Diazabakana et al., 

2014). Two cautions should be made here. First, the level of data uncertainty might affect the 

validity of benchmarking results. Required data contains uncertainty due to measurement or 

A nutrient balances (NB) approach computes the difference in nutrients entering and leaving 
a system, and allows computation of environmental indicators, such as nutrient use 
efficiency (NUE). NUE generally is defined as the amount of nutrients in valuable outputs of 
a system, such as milk, over the amount of nutrients in all inputs to that system, such as 
feed or fertilizer (Nevens et al., 2006). Additionally, an NB approach yields indicators such 
as the nutrient surplus of a system expressed per hectare of on-farm agricultural area or 
per kilogram valuable outputs. An NB approach generally is applied at farm level and 
focusses on the nutrients nitrogen (N) and phosphorus (P), because these are the major 
nutrients that limit crop growth, and their losses can cause environmental problems such as 
eutrophication (Oenema et al., 2003; Gourley et al., 2012).  
 
A material flow analysis (MFA) uses the principle of mass balancing to quantify all in- and 
outflows of natural resources, energy and materials into, through and out of a given system. 
MFA can be further specified into bulk-material analysis which studies flows of bulk 
materials such as iron or plastic, and substance flow analysis which studies flows of group 
of elements such as nitrogen compounds or cadmium (Sonesson and Berlin, 2003). The 
output of MFA can help decision-makers identifying inefficient use of natural resources, 
energy and materials in the system. To gain more insight, it is often suggested to conduct 
MFA in combination with life cycle assessment to further evaluate the environmental 
impacts related to inefficiencies. 
 
A life cycle assessment (LCA) is an internationally accepted and standardized method (ISO 
14040, ISO 14041, ISO 14042, ISO 14043) that quantifies the potential environmental 
impact related to emissions of pollutants to air, water and soil, and to the use of resources 
during the entire life of a product. Over the past few years the number of LCAs on dairy 
products have increased enormously (e.g. Cederberg,  1998; Thomassen and De Boer, 
2005; Yan et al., 2011). The mostly examined impact categories are: climate change, land 
use, energy use, acidification, eutrophication and the system boundary is often defined from 
cradle-to-farm gate (on-farm processes, e.g. manure management, milk and feed 
production, and pre-farm processes, e.g. fertilizer and feed production). 
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observer errors (i.e. epistemic uncertainty), or the data can vary widely due to natural 

circumstances (e.g. impact of weather on grass yield). Second, systems should be compared 

against a desirable but achievable benchmark, e.g. best performance of a group of peers.  

Step 4: The fourth step of the framework includes identifying improvement options. 

Identification of these improvement options can emerge from exploring the differences 

between, for example, least-scoring and best-scoring systems; or from alternative systems (i.e. 

different type of production systems) that have superior performances. An example of the latter 

could be the use of legumes instead of chemical fertilizers that is common in organic farms, 

but could improve the nutrient use efficiency of conventional farms as well. Improvement 

options can include incremental changes, but also adaptation of innovations. This thesis, 

however, does not focus on this fourth step. 

Step 5: The fifth step of the framework includes implementing and reflecting on the identified 

improvement options. After a farmer has implemented the improvement option identified in 

step 4, for example, decision-makers could evaluate if the goal identified in step 1 has been 

reached. In addition, decision-makers can reflect upon the process and decisions that were 

made in all the steps to see what can be further improved in the future procedure for improving 

the environmental sustainability of the system. I do not focus on this step in this thesis. 

1.3 Knowledge gaps 

 

Most studies that address benchmarking of dairy farming systems focused on indicators of one 

environmental impact assessment method, either an NB approach (applied at the farm level) 

or LCA (applied at the (partial) chain level). Due to the simplicity of an NB approach and 

relatively low data requirement, indicators derived from this method have been used widely to 

assess the environmental performance of dairy farming systems (Oenema et al., 2001; Powell 

et al., 2010; Gourley, et al., 2012; Toma et al., 2013). In general, indicators from an NB 

approach are computed at farm level and do not include nutrient losses related to the 

production of farm inputs, such as purchased concentrates. Overlooking off-farm losses may 
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lead to biased benchmarking results. LCA can give a comprehensive evaluation of resource 

usage and emissions along the entire chain, but requires much more data. An NB approach at 

chain level that incorporates off-farm activities, therefore, might provide an opportunity to 

include off-farm processes while limiting data requirements. So far, however, no study has 

examined whether indicators derived from a chain-based NB approach can provide better 

insights than a farm-based NB when benchmarking the environmental performance of dairy 

farming systems. 

Environmental indicators derived from an NB approach, moreover, generally do not specify the 

type of losses, nor the environmental impacts associated with those losses, such as the impact 

on acidification or climate change. Contrary to the indicators from an NB approach, indicators 

from an LCA do specify the types of losses, as well as the potential associated environmental 

impacts related to those losses. However, studies suggested that collection of data required 

to perform an LCA appears difficult and time consuming (Thomassen and De Boer, 2005). For 

benchmarking purposes, however, there is a need for a set of indicators, that are measurable, 

i.e. can be quantified regularly and, thus, are based on data that are technically and financially 

feasible to collect. Furthermore, these indicators should be relevant and timely, i.e. provide 

insight into the major environmental impacts of the dairy farming systems (Bélanger et al., 

2012). Exploring correlations between various indicators can help to identify such a set of 

indicators (Lebacq et al., 2013). Previous studies have mainly focused on correlations between 

indicators within LCA and for non-dairy related products (e.g. meat, industrial materials). So 

far, no study examined correlations between environmental indicators from different 

environmental impact assessment methods within dairy production (Berger and Finkbeiner, 

2011; Laurent et al., 2012; Röös et al., 2013). Therefore, studies on exploring correlations 

between NB and LCA indicators are needed, in order to identify an effective set of indicators 

that can be used as a proxy for the environmental performance of dairy farming systems. 

Third, data collected for benchmarking dairy farming systems can by highly uncertain which 

can influence the validity of the indicators. This data uncertainty can be caused by the inherent 
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variations of the systems (i.e. natural variability), such as variation in grass productivity due to 

climate fluctuations; or by measurement errors and observational errors (i.e. epistemic 

uncertainty), such as measurement errors around the feed intake of the cows. Most studies 

that benchmark the environmental performance of dairy farming systems, however, do not 

consider the impact of data uncertainty (Schröder, 2003; Nevens, 2006; Powell, 2010). A few 

studies examined the impacts of epistemic uncertainty of nutrient flows on quantification of 

nutrient use efficiency (Mulier et al., 2003; Oenema et al., 2015) and the impacts of 

uncertainties of emission factors and natural variability of farm data on LCA results for 

assessing environmental performance of milk production (Basset-Mens et al., 2009; Chen et 

al., 2014). These studies, however, did not examine the impact of epistemic uncertainty on 

benchmarking results. Therefore, the effects of data uncertainty on benchmarking the 

performance of dairy farming systems should be explored. 

Last but not least, to reduce environmental impacts while maintaining economic viability of 

dairy farming systems, we need to improve the eco-efficiency of the system. The concept of 

eco-efficiency was introduced in 1970s as the concept of “environmental efficiency” (Freeman 

et al., 1973). Later on, it was further developed to be the ratio between the economic value 

and environmental impact added by a system (Keffer and Shimp 1999; Seppälä et al., 2005). 

Although previous studies have already taken multiple environmental and economic indicators 

into account when benchmarking dairy farming systems (Fraser and Cordina, 1999; Stokes et 

al., 2007; Iribarren et al., 2011), they did not incorporate data uncertainty of the indicators into 

their analyses. As aforementioned, data uncertainty might cause biased benchmarking results. 

We, therefore, are in need of exploring a benchmarking technique that allows multiple 

indicators to be incorporated simultaneously, while considering the uncertainty associated with 

the indicators. 

1.4  Objective and outline of the thesis 
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The objective of this thesis is to develop a sound method to benchmark the environmental 

performance of dairy farming systems. Acknowledging the variety of dairy farming systems in 

the world, this thesis focuses on specialized dairy farming systems in Europe. We defined 

specialized dairy farming systems as systems that have less than 5% non-dairy purpose 

animals, and less than 10% of their agricultural area in use for non-dairy purpose activities. 

The first challenge in benchmarking the environmental performance of dairy farming systems 

is to select a set of indicators that can be used as a proxy for the environmental performance 

of those systems. Indicators from an NB approach and LCA are often applied in such a context 

and, therefore, will be evaluated to derive this set of indicators. Indicators from an NB approach, 

however, are often quantified at farm level, which may lead to biased benchmarking results 

because of neglecting losses related to off-farm processes, such as the production of 

purchased feed. In Chapter 2, indicators derived from a chain-based NB approach (i.e. 

including all on-farm processes as well as the production of purchased feed) are compared 

with indicators derived from a farm-based NB approach to explore the importance of 

benchmarking environmental performance of dairy farming systems at chain level. 

Indicators derived from an NB approach are relatively easy to quantify, whereas the indicators 

from LCA provides more detailed insight into the type of losses and associated environmental 

impacts. In Chapter 3, we therefore, explore correlations between indicators derived from a 

NB approach and LCA, in order to identify an effective set of indicators that can be used as a 

proxy for the environmental performance of dairy farming systems. 

The second challenge in benchmarking the environmental performance of dairy farming 

systems is to cope with data uncertainties. To meet this challenge, we start with exploring the 

impact of epistemic uncertainty of input parameters on benchmarking results for a relatively 

simple indicator: nutrient use efficiency, in Chapter 4. In addition, the epistemic uncertainty of 

input parameters that explain most of the output variance are identified and reduced, to 

illustrate how this improves benchmarking results. 
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To benchmark dairy farming systems comprehensively, multiple indicators need to be taken 

into account. In Chapter 5, the set of environmental indicators derived from Chapter 3 and an 

economic indicator are applied to assess the eco-efficiency of dairy farming systems, while 

accounting for data uncertainty during the benchmarking process.  

In Chapter 6, the overall findings of this thesis are summarized and discussed. In addition, 

research implications are elaborated, and future research opportunities are pointed out. 
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Abstract 

A nutrient balance approach is often used to quantify losses of nutrients, such as nitrogen and 

phosphorus, that contribute to environmental problems such as eutrophication. A nutrient 

balance generally is computed at farm level, implying that nutrient losses related to pre-farm 

processes, such as production of purchased feed, are neglected. Using a nutrient balance at 

farm level to benchmark livestock systems or individual farms that differ in, for example, 

amount of purchased concentrates, however, may lead to biased conclusions. To determine 

whether a nutrient balance that accounts for losses during production of purchased feed (i.e. 

a chain balance from cradle-to-farm-gate) are more suited to benchmark nutrient losses of milk 

production systems or individual farms than a nutrient balance at farm level, we analysed 19 

Irish grass-based dairy farms and 13 Dutch concentrate-based dairy farms. For each farm, we 

computed nitrogen and phosphorus losses at farm and chain level (i.e. from cradle-to-farm-

gate, including losses from purchased feed production), and expressed these losses per ton 

fat-and-protein-corrected milk. An independent T-test and Wilcoxon-Mann-Whitney test were 

used to examine the difference in mean losses at farm and chain level between Irish and Dutch 

systems. Regression analysis was used to determine if the ranking of the farms changes using 

a nutrient balance at a farm or chain level. Results show that on average, Irish farms had 

higher nitrogen losses per ton milk than Dutch farms, both at farm (Irish=20; Dutch=8 in kg 

N/ton milk) and chain level (Irish=22; Dutch=11 in kg N/ton milk). Phosphorus losses per ton 

milk, on the other hand, did not differ between Irish and Dutch farms at farm (Irish=0.3; 

Dutch=0.1 in kg P/ton milk) or chain level (Irish=0.8; Dutch=1.0 in kg P/ton milk). Regression 

analysis revealed that the nutrient balance at chain level could be accurately predicted from 

the nutrient balance at farm level (R2=0.992 for N; R2=0.910 for P); whereas in case of 

phosphorus, the slope tended to differ between Irish and Dutch farms (p<0.10). Ranking 32 

farms based on the nitrogen balance at farm or chain level, therefore, showed a similar pattern, 

whereas the ranking pattern based on the phosphorus farm balance differed from the pattern 

based on the chain balance. We concluded, therefore, that to benchmark nutrient losses of 

dairy systems, a nutrient balance at farm level can be used if differences in on-farm losses 
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between systems are large, and pre-farm losses related to, e.g. production of purchased 

concentrates, are relatively unimportant. To benchmark individual farms, a nutrient balance at 

farm level can be used only if changes in pre-farm losses per unit change in on-farm losses 

are similar across farms. A chain level balance of a sample set, however, is required to verify 

these conditions. 
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2.1 Introduction 

The world population is projected to increase from about 7 billion in 2013 to about 10 billion in 

2050 (UN report, 2013). Population growth in combination with an improvement of living 

standards is expected to increase the demand for highly nutritious products, especially animal-

source food, such as milk (FAO, 2006). The Food and Agriculture Organization of the United 

Nations (FAO) predicts global consumption of meat and dairy products to increase by 82% 

between 2000 and 2050, which implies an additional production of 466 million tonnes of milk 

(Boland et al., 2013).   

Sustainable intensification of milk production may provide a possibility to meet this growing 

demand for animal-source food. Sustainable intensification implies increasing production 

levels from existing land while reducing the pressure on the environment (Garnett et al., 2014; 

Mont et al., 2014). Inefficient use of the nutrients nitrogen (N) and phosphorus (P) in agriculture 

is a main cause of environmental pressure, and might cause problems such as eutrophication, 

acidification and global warming (Volk et al., 2009; Djekic et al., 2014), but also soil degradation 

(Sutton et al., 2013).  

One common method to quantify the environmental impact of nutrient use is the nutrient 

balance (NB) approach (Oenema et al., 2003). An NB computes the difference in nutrients 

entering and leaving a system, and allows computation of environmental indicators, such as 

nutrient use efficiency (NUE).  NUE generally is defined as the amount of nutrients in valuable 

outputs of a system over the amount of nutrients in all inputs of that system (Nevens et al., 

2006). Additionally, an NB yields indicators such as the nutrient surplus of a system expressed 

per hectare of on-farm agricultural area or per kilogram valuable outputs. An NB of a dairy 

farming system generally is computed at farm level. The balance of N and P are mostly studied 

because N and P are two major nutrients that can limit crop growth and losses of N and P can 

cause environmental problems (Thomassen and De Boer, 2005; Huhtanen et al., 2011; Toma 

et al., 2013; Dolman et al., 2014). An NB approach at farm level does not incorporate detailed 
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information on material and nutrient flows within a farm, but only quantifies the inputs and 

outputs of the farm; therefore, it requires relative little data. An NB approach has been used as 

a valuable approach to provide farmers with farm-specific advice (i.e. identify best practices) 

(Oenema et al., 2001) and to benchmark environmental impacts of livestock systems (Halberg, 

1999; Bengtsson et al., 2003; Powell et al., 2010; Gourley, et al., 2012; Toma et al., 2013).  

Indicators derived from an NB approach at farm level, however, do not include nutrient losses 

related to the production of farm inputs, such as purchased concentrates. A farm-specific 

advice directed at reducing nutrient losses at the farm might affect the type and amount of 

purchased inputs, and, therefore, nutrient losses related to the production of these inputs. 

Similarly, comparing the environmental performance of contrasting farming systems based on 

a farm-based NB may lead to biased results because of differences in farm inputs. 

Concentrates-based dairy systems, for example, generally purchase large amounts of feed, 

whereas grass-based dairy systems use mainly on-farm produced feed. Comparing both 

systems using indicators derived from a farm-based NB may lead to biased conclusions in 

favour of concentrates-based dairy systems. 

An NB that incorporates off-farm activities, such as production of purchased feed, therefore, 

might be needed to make a fair comparison (Gerber et al., 2014). Although life cycle 

assessment (LCA) can give a comprehensive evaluation of resource usage and emissions 

along the entire chain, it appears difficult and time consuming to collect all data required for 

LCA indicators (Thomassen and De Boer, 2005). The objective of this paper is to examine 

whether indicators derived from a chain-based (i.e. from cradle-to-farm-gate) NB can provide 

better insights than a farm-based NB when benchmarking different dairy systems and 

individual farms. We, therefore, compared indicators from an NB at farm and chain level for 19 

grass-based dairy farms (Ireland) and 13 concentrates-based dairy farms (The Netherlands). 

2.2 Material and methods 
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2.2.1 Data 

To assess NB indicators of contrasting milk production systems, we used data of farms from 

Dairyman. Dairyman was a project in the INTERREGIVB program co-funded by the European 

Regional Development Fund, which aimed to improve regional prosperity through better 

resource utilization on 113 dairy farms in different European countries and stakeholder 

cooperation (Dairyman, 2010). The database contains detailed information on farm 

characteristics, such as production parameters (e.g. milk yield per cow, replacement rate) and 

type and amount of purchased production inputs, including the nutritional value of feed inputs.  

We identified 32 specialised dairy farms from Dairyman and determined indicators for 2010, 

i.e. 19 farms are from Ireland (grass-based) and 13 farms are from the Netherlands 

(concentrates-based; see Table 2.1). We defined specialized farms as farms that have less 

than 5% non-dairy purpose animals, and less than 10% of their agricultural area in use for non-

dairy purpose activities. As indicated in Table 2.1, Irish farms use more than 80% of their farm 

area and Dutch farms use more than 70% of their farm area to grow grass. This is in line with 

the former derogation regulation of the European nitrate directive in 2010 that prescribed that 

farms with at least 70% (NL) or 80% (IR) grassland can apply maximally 250 kg manure-N per 

ha per year instead of 170 kg manure-N per ha per year  (EU, 2010; European Communities, 

2010). In general, compared to the Irish situation, Dutch farms have a higher stocking rate, 

feed more concentrates per cow, purchase more roughages per cow, and have a higher milk 

production per cow and per ha of land. 
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Table 2.1 Farm characteristics of specialized dairy farms in Ireland (IR) and the Netherlands 

(NL) used in this study 

Characteristics* IR (n**=19) NL (n=13) 
 Mean(SD) Mean(SD) 
 
Agricultural area (ha) 
-- Grassland area 
-- Maize land area 

 
72(25.1) 
61 (22.8) 
1(2.0) 

 
53(18.1) 
42(12.7) 
11(7.6) 

Number of dairy cows*** 109(29.7) 122(32.8) 
Milk production per cow (kg cow-1 year-1) 5304(646.7) 8732(776.3) 
Milk production per ha (kg ha-1 year-1) 8341(1855.6) 20875(5675.0) 
Stocking rate (dairy cows ha-1year-1) 1(0.5) 3(0.7) 
Use purchased concentrates per cow  (kg cow-1 
year-1) 

814(180.6) 2053(249.4) 

Purchased concentrate (ton year-1) 
Purchased roughage (ton DM year-1) 
 

89(32.6) 
62(68.4) 

253(68.1) 
194(108.9) 

*According to the Wilcoxon-Mann-Whitney test, all characteristics are significantly different (P<0.05) between NL 
and IR,  
except for the number of dairy cows and live weight of the cows  
** n represent the number of farms included in this study 
*** Dutch farms only have Holstein Friesians, whereas Irish farms use different types of breed, including Holstein 
Friesian, Swedish Red, Norwegian Red, Jersey, and others.  
 

2.2.2 System boundaries 

We compared the impact of calculating an NB from cradle-to-farm-gate (chain) or at the farm 

level, as illustrated in Figure 2.1. Inputs included in the NB at farm level were concentrates, 

roughage, organic fertilizer, mineral fertilizers and atmospheric deposition for N. Outputs 

included were milk, animals, and crops. The farm itself was considered as a black box. We 

calculated net inputs or net outputs of products that were both purchased and sold, such as 

animals. In case the animals output was larger than the animal input, the difference between 

input and output was considered a net output, whereas in case the animal output was smaller 

than the animal input, the difference between in- and output was considered as a net input 

(Godinot et al., 2014). For the case of manure, we subtract manure output from the organic 

fertilizer input, so when manure output exceeds organic fertilizer input, it was shown as a 

negative net input instead of a positive net output. Calculating a net in- or output for animals, 

crops and manure does not affect the NB at farm level. At chain level, however, estimating 

nutrient losses related to production of animals and manure entering the farm is avoided. Stock 
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changes (defined as final stock of the year 2010 – initial stock of the year 2010) of the 

concentrates, roughages, animals and fertilizers were included in the computation of NB 

indicators. 
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System boundary for nutrient balance at farm level

System boundary for nutrient balance at chain level  

Figure 2.1 System boundaries for nutrient balance at farm and chain level 

At chain level, the system boundary included all relevant processes from cradle-to-farm-gate, 

i.e. all on-farm processes as well as the production of purchased feed. The chain level did not 

include processes after the farm gate (i.e. milk processing, retailing, consumer consumption 

and disposal stages), because these processes were assumed to be similar for Ireland and 

the Netherlands, and, furthermore, cannot be influenced by farmer’s decisions. Nutrient losses 

from on-farm processes were adopted from the NB at farm level. For production of purchased 

feed, we considered nutrient losses during cultivation (including 5% storage losses). Nutrient 

losses during processing of feed ingredients were assumed to be negligible (Sterk, 2014). 

Nutrient losses during production of mineral fertilizers were not included in the analysis 
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because the contribution of these losses to the total surplus was found to be minor (Godinot 

et al., 2014).  

2.2.3 Calculation of nutrient losses 

First, we computed the nutrient losses of N and P for each of the 32 dairy farms at farm level 

using the following formulas: 

Bnutrientfarm = (I1− S1 + I3 − S3 + I4 − S4 + I5 − O3 − S5 + I6) − (O1 + O2 − I2 + S2 + O4) 

Lnutrientfarm = Max(Bnutrientfarm , 0) 

Where, 𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  is the NB at farm level; I refers to the inputs of N or P via concentrates (I1), 

animals (I2), roughage (I3), mineral fertilizer (I4), organic fertilizer (I5) and atmospheric 

deposition (I6); O refers to the outputs of N and P via milk (O1), animals (O2), organic fertilizer  

(O3) and plant products (O4); and S refers to stock changes expressed in N or P of 

concentrates (S1), animals (S2), roughages (S3), mineral fertilizer (S4) and organic fertilizer 

(S5). Table 2.2 shows relevant inputs, outputs, calculation processes and references used. 

We do not consider N fixed by clover as an input because of the low prevalence of clover on 

the farms and, subsequently, a small contribution to the total N input (Gourley et al., 2007). 

Phosphorus deposition was not included either, because it was regarded as insignificant 

(Steinshamn et al., 2004).  
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Table 2.2 Nutrient inputs and outputs included in the nutrient balance at farm and chain level  

Elements  
Input: 
Purchased concentrates (I1) 

Purchased animals (I2) 

Purchased roughages1 (I3) 

Purchased mineral fertilizer (I4) 

Purchased organic fertilizer (I5) 

Atmospheric deposition2 (I6) 

N&P input for producing concentrates3 (I7) 

N&P input for producing roughages3 (I8) 

N&P input for producing by-products3 

Stock change5: 
Stock change of concentrates (S1) 

Stock change of animals (S2) 

Stock change of roughages (S3) 

Stock change of mineral fertilizer (S4) 

Stock change of organic fertilizer (S5) 

Output: 
Milk output (O1) 

Animal output (O2) 

Organic fertilizer output(O3) 

Plant output (O4) 

Off-farm plant outputs for producing concentrates 

(O5) 

Off-farm plant outputs for producing roughages (O6) 

Farm  
 

√ 

√ 

√ 

√ 

√ 

√ 

 

 
 

 

       √ 

       √ 

       √ 

       √ 

       √ 

      

       √ 

       √ 

       √ 

       √ 

Off-farm 

 

 

 
 

 

√ 

√ 

√ 

 

 

 

 

 

 
 

   √ 

    √ 

  Chain 
 

√ 

√ 

√ 

√ 

√ 

√ 

                 √ 

√ 

√ 

 
√ 

√ 

√ 

√ 

√ 

                 √ 

√ 

√ 

√ 

√ 

√ 

√ 

Calculation3 and References 

 

Q x nutrient content of concentrates (Dairyman4, 2010) 

Q  x nutrient content of animals (Raison et al., 2006) 

Q  x nutrient content of roughage (Dairyman, 2010) 

Q x nutrient content of mineral fertilizer (Dairyman, 2010) 

Q x nutrient content of organic fertilizer (Dairyman, 2010) 

Average value of relevant region (EMEP, 2007) 

Q x nutrient input for producing concentrates (Vellinga et al., 2013) 

Q x nutrient input for producing roughages (Vellinga et al., 2013) 

Assumed to be 0, because the economic allocation of by-products is 0 

 

Q x nutrient content of concentrates (Dairyman, 2010) 

Q x nutrient content of animals (Dairyman, 2010) 

Q x nutrient content of roughages (Dairyman, 2010) 

Q x nutrient content of mineral fertilizer (Dairyman, 2010) 

Q x nutrient content of organic fertilizer (Dairyman, 2010) 

 

Q  x nutrient content of milk (Dairyman, 2010) 

Q  x nutrient content of animal  (Raison et al., 2006) 

Q  x nutrient content of organic fertilizer (Dairyman, 2010) 

Q  x nutrient content of plant (Raison et al., 2006) 

Q*  x nutrient content of plant (CVB,2008) 

Q*  x nutrient content of plant (CVB,2008) 

1 We selected five most commonly used roughages in the dataset of Dairyman, i.e. grass silage, maize silage, hay, wheat straw and alfalfa. 
2 Atmosphere deposition is only applicable for nitrogen; for phosphorus the amount of deposition is small and, therefore, neglected. 
3 Q = actual quantity of product purchased, sold or stock change, obtained from Dairyman for year 2010 (in kg or numbers) 
   Q*=% of certain concentrate ingredients  e.g. soybean, rapeseed (based on the estimated feed composition from Dairyman) x consumed quantity of concentrate or roughage 
of certain farm in 2010  
4 Dairyman project collected data from farms based on farm records and by interviewing farmers. 
5 Stock change was calculated as final stock of the year 2010 - initial stock of the year 2010. Therefore it can be an inflow (if S is positive) or an outflow (if S is negative).  
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To compute nutrient losses at farm level (𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ), we took the maximum value of the NB 

(𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ) and 0. A positive P balance implies that P is lost to the environment through leaching 

and runoff, contributing to increased eutrophication of ground and surface water, and will be 

referred to as P loss. A positive N balance implies that N is lost to the environment through, 

e.g., volatilisation of ammonia or nitrous oxide, or through runoff and leaching of dissolved 

nitrate. Different losses of N are thus summed into one indicator, and will be referred to as N 

loss. For many years, there has been a supply of excessive P to the field, resulting in increased 

levels of soil P. As a result,  farmers decreased or even stopped the application of mineral 

fertilizer P. When we consider the NB on a yearly basis, in some cases this decline in P 

application led to a negative P balance. Because this negative P balance does not imply a 

loss, nutrient losses were set to zero.  

Farm nutrient losses (𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ) were expressed per ha of farm land or per ton of fat-and-

protein-corrected milk (FPCM), i.e. milk corrected to a fat percentage of 4.0% and a protein 

content of 3.3% using the following formula (Product Board Animal Feed 2008):  

FPCM (ton) = Milk (ton) x [0.337 + 0.116 x Fat (%) + 0.06 x Protein (%)] 

Nutrient losses per ha at farm level can reflect the local or regional impacts of dairy farming, 

whereas nutrient losses per unit of product provide insights into the efficiency of a production 

system (Halberg et al., 2005).To express nutrient losses per ton FPCM, 𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  were 

allocated to the various outputs based on their relative economic value (i.e. economic 

allocation). Economic allocation is a commonly used allocation method in LCA studies on 

agricultural products (de Vries and de Boer, 2010). 

Second, in order to calculate chain losses (𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎 ), we extended the farm NB by including 

off-farm NB (𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑜𝑜𝑜𝑜𝑜𝑜−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) related to cultivation of purchased feed using the following formulas: 

Bnutrientoff−farm = (I7 + I8) − (O5 + O6) 
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Lnutrientoff−farm= Max(Bnutrientoff−farm, 0) 

Lnutrientchain = Lnutrientfarm + Lnutrientoff−farm 

Where, I refers to the input of N or P required for production of consumed concentrates (I7) 

and roughage (I8) purchased by the farm and O refers to the output of N or P via harvested 

crops which are used for producing consumed concentrates (O5) and roughage (O6) that are 

purchased by the farm. 𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑜𝑜𝑜𝑜𝑜𝑜−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 represents losses during the cultivation of purchased feed 

products. To compute 𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑜𝑜𝑜𝑜𝑜𝑜−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, we took the maximum value of NB (𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑜𝑜𝑜𝑜𝑜𝑜−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) and 0. In this 

way, a negative NB is not treated as a loss. Soybean production in Argentina, for example, 

was found to have a negative N balance. Nitrogen losses, in this case, were assumed to be 

zero. Nutrient losses at the chain level (𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎 ) consist of nutrient losses on-farm (𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ) 

and nutrient losses off-farm (𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑜𝑜𝑜𝑜𝑜𝑜−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓). Similar to calculations at farm level, nutrient losses of 

a multifunctional process were allocated to the various outputs based on economic allocation. 

The economic value of by-products (e.g. fresh beet pulp) was assumed to be 0 (Vellinga et al., 

2013). 

𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎  was only expressed per ton FPCM because averaging the losses over the land area 

across the chain without detailed information on the local environmental pressure does not 

provide insights into the local or regional impact of a production system. This aspect will be 

further elaborated in the discussion section. 

2.2.4 Statistical analysis 

In order to explore whether nutrient losses at chain level provide different insights into the 

comparison between grass based (IR) and concentrate based (NL) systems than nutrient 

losses at farm level, we compared the mean difference in N and P losses between Irish and 

Dutch farms, at farm and chain level. Normality of data was checked with Shapiro-Wilk test (P 

>0.05). For normally distributed data, mean N and P losses were compared using the 
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independent T-test (P<0.05), whereas for non-normally distributed data, the Wilcoxon-Mann-

Whitney test (P<0.05) was used.  

To determine if the ranking of the individual farms across systems changes based on an NB 

at farm or chain level, we used the following linear regression model:  

Yi=β0+ β1X1+ β2 X2i+ β3 X1 * X2i+εi 

where, Yi is chain level nutrient losses per ton FPCM for farm i, X1 is a binary variable (0 for 

Irish farms, 1 for Dutch farms), X2i is farm level nutrient losses per ton FPCM for farm i, β0 is 

the intercept for Irish farms, β0 + β1 is the intercept for Dutch farms, β1 shows the difference in 

intercept between IR and NL (i.e. difference in the absolute level of  off-farm losses); β2 is the 

slope for Irish farms, β2 +β3 is the slope for Dutch farms, β3 shows the difference in slope 

between IR and NL (i.e. difference in the change in off-farm losses per unit change in on-farm 

losses). In case β3 is 0, ranking of farms based on the farm balance tend to be in line with the 

ranking based on chain balance.  

All statistical analyses in this study were performed using the software SPSS (SPSS, 2011). 

2.3 Results  

Nitrogen losses at farm and chain level 

Table 2.3 shows the mean and standard deviation of N inputs, outputs and losses of Irish and 

Dutch dairy farms. Results are expressed in kg N per ha and per ton FPCM. Major N inputs on 

Irish farms are mineral fertilizers (199.1 kg N/ha; 21.7 kg N/ton FPCM), whereas for Dutch 

farms major N inputs are concentrates (174.6 kg N/ha; 7.7 kg N/ton FPCM) and mineral 

fertilizers (117.8 kg N/ha; 5.3kg N/ton FPCM). Irish farms do not import or export any organic 

fertilizer, therefore the N input via organic fertilizer is 0. On average, the N input via organic 

fertilizer on Dutch farms is negative (-78.2 kg N/ha; -3.1 kg N/ton FPCM), which means that 

the N output of organic fertilizers (i.e. manure) exceeds the input.  
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Table 2.3 Mean and standard deviation (SD) of nitrogen (N) inputs, outputs and losses at farm 

level, of Irish and Dutch dairy farms, expressed in kg N per ha and per ton FPCM 

Indicators                                   Per ha                  Per ton FPCM 
IR(n=19) 
Mean(SD) 

NL (n=13) 
Mean(SD) 

  IR (n=19) 
Mean(SD) 

NL (n=13) 
Mean(SD) 

 

N inputs*       
Mineral fertilizer  
Organic fertilizer 
Roughage 
Concentrates  
Atmospheric deposition 
Total inputs  
 
N outputs* 
Milk  
Animal  
Plants  
Total outputs 
 
N losses 

199.1(55.9) 
0.0(0.0)   
12.4(17.1) 
40.1(18.4) 
8.1(0.8) 
259.7(64.4) 
 
 
 
46.7(10.5) 
11.4(4.5) 
0.0(0.0) 
58.1(11.9) 
 
217(61.3) 

117.8(53.7) 
-78.2(69.6) 
82.8(64.8) 
174.6(69.2) 
36.0(0.2) 
333.0(80.0) 
 
 
 
120.3(32.6) 
13.5(5.7) 
2.1(6.2) 
135.9(34.5) 
 
196(56.5) 

 21.7(5.2) 
0.0(0.0) 
1.2(1.3) 
4.4 (2.0) 
0.9(0.2) 
28.1(4.8) 
 
 
 
5.0(0.1) 
1.3(0.6) 
0.0(0.0) 
6.3(0.6) 
 
20(4.3) 

5.3(2.1) 
-3.1(2.1) 
3.7(2.4) 
7.7(1.4) 
1.7(0.5) 
15.2(2.3) 
 
 
 
5.4(0.1) 
0.6(0.2) 
0.2(0.4) 
6.2(0.4) 
 
8(1.6) 

 

* All the N inputs and outputs are net inputs and outputs, which takes consideration of stock change. Organic 
fertilizer inputs = purchased organic fertilizer - stock change - organic fertilizer outputs. Animal outputs = animal 
sold-animal input + stock change 
 

When expressed per ha, total N inputs of the Irish farms (259.7 kg N/ha) are more than 20% 

lower than the total inputs of the Dutch farms (333 kg N/ha). Milk is the main N output for both 

Irish and Dutch farms. Total N outputs of the Irish farms (58.1 kg N/ha) are less than half  the 

total outputs of the Dutch farms (135.9 kg N/ha). Farm level N losses per ha on Irish farms 

(217 kg N/ha on average) is not statistically different (p=0.34) from the N losses per ha on 

Dutch farms (196 kg N/ha). When expressed per ton FPCM, total N inputs of the Irish farms 

(28.1 kg N/ton FPCM) are almost twice as high as of the Dutch farms (15.2 kg N/ton FPCM). 

Total N outputs, however, are about the same for both farms (6.3 kg N/ton FPCM for the Irish 

and 6.2 kg N/ton FPCM for the Dutch farms). When expressed per ton FPCM, N losses are 

significantly higher on Irish farms than on Dutch farms at both farm and chain level (Table 2.4). 

 

 

 



 Chapter 2│Nutrient balance farm level versus chain level  

 

33 
 

Table 2.4 Mean, standard deviation (SD) and mean difference significance level (p) of nitrogen 

(N) losses at farm and chain level of the Irish and Dutch dairy farms, expressed per ton FPCM. 

Indicators* Per ton FPCM 
IR 
Mean(SD) 

NL 
Mean(SD) 

Mean 
difference (p) 

N losses (kg 
N) 

   

On-farm 
Off-farm 

20(4.3) 
2(0.9) 

8(1.6) 
3(0.5) 

12(0.00) 
1(0.00) 

Chain  22(4.5) 11(1.4) 11(0.00) 
*According to the results of Shapiro-Wilk test for normality, all indicators related to  
nitrogen for both Irish farms and Dutch farms are normally distributed (P>0.05). 
 

Production of concentrate ingredients contributed most to the N losses from off-farm activities 

in case of both Irish (76%) and Dutch farms (79%). For Irish farms, cultivation of wheat straw 

and grass silage contributed most to N losses related to production of roughage, while 

cultivation of cereals and other concentrates (i.e. the average of soybean meal, rapeseed meal 

and cereal) contributed most to N losses related to production of concentrates. For Dutch 

farms, cultivation of maize silage and grass silage were the main contributors to the losses 

related to roughage production, and cultivation of rapeseed meal and cereal to the losses of 

concentrate production. 

Irish farms (2 kg N/ton FPCM), therefore, have a lower off-farm N loss than Dutch farms (3 kg 

N/ton FPCM), because Dutch farms rely more on purchased feed products to produce milk 

than Irish farms. Table 2.5 shows that off-farm N losses per ton FPCM are lower for Irish farms 

than for Dutch farms (β1 =2.83, p <0.001), but the change in off-farm losses per unit change in 

on-farm losses is similar on both type of farms (β3 =-0.17, p =0.15). As a result, adding the off-

farm losses to the on-farm losses does not change the order of the farms when ranking them 

based on N losses. Figure 2.2 shows the ranking of the farm based on N losses at either farm 

and chain level. Farms are ranked based on N losses at farm level. Results show a clear 

cluster of Irish farms and Dutch farms, i.e. all the Dutch farms are ranking ahead of Irish farms. 

Furthermore, the ranking of the 32 farms based on the N losses at either farm or chain level 

showed a similar pattern. 
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Table 2.5 Results for regression of nitrogen losses at farm level on nitrogen losses at chain 

level. 
 

 Value Significance (p-value) 
R2 0.99 ─ 
β0 0.89 0.21 
β1 2.83 0.02 
β2 1.31 0.00 
β3 -0.17 0.15 
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Figure 2.2 Comparison of  farm rankings based on nitrogen (N) losses at farm level with N losses at chain level for 32 specialised dairy farms in 

the Netherlands (NL) and Ireland (IR). Farms are ranked by increasing N losses at farm level. 
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Phosphorus losses at farm and chain level 

Table 2.6 shows mean and standard deviation of P inputs and outputs of Irish and Dutch dairy 

farms. Results are expressed in kg P per ha and per ton FPCM. Major P inputs for Irish farms 

are concentrates (7.4 kg P/ha; 0.8 kg P/ton FPCM) and mineral fertilizers (3.2 kg P/ha; 0.4 kg 

P/ton FPCM), whereas for Dutch farms, major P inputs are concentrates (25.5 kg P/ha; 1.1 kg 

P/ton FPCM) and roughages (12.4 kg P/ha; 0.5 kg P/ton FPCM). For IR farms, P inputs of 

organic fertilizer is 0, where for NL farms the average P inputs of organic fertilizer is negative 

(-13.3 kg P/ha; -0.5 kg P/ton FPCM). When expressed per ha, total inputs of the Irish farms 

(13.0 kg P/ha) are about half the inputs of the Dutch farms (25.4 kg P/ha). The same accounts 

for P outputs (i.e. 11.6 kg P/ha for IR and 23.4 kg P/ha for NL). P losses per ha, however, are 

similar on both farm types (3.6 kg P/ha for IR and 3.5 kg P/ha for NL). When expressed per 

ton FPCM, both inputs and outputs of the Irish farms (1.4 kg P/ton FPCM; 1.3 kg P/ton FPCM) 

are higher than the inputs and outputs of the Dutch farms (1.2 kg P/ton FPCM; 1.1 kg P/ton 

FPCM). 

Table 2.6 Mean and standard deviation (SD) of phosphorus (P) inputs, outputs and losses of 

Irish and Dutch dairy farms, expresses in kg P per ha and per ton FPCM 
 

Indicators                                   Per ha                  Per ton FPCM 
               IR (n=19) 
               Mean(SD) 

NL (n=13) 
Mean(SD) 

  IR (n=19) 
Mean(SD) 

NL (n=13) 
Mean(SD) 

 

P inputs*       
Mineral fertilizer  
Organic fertilizer 
Roughage 
Concentrates  
Total inputs  
 
P outputs* 
Milk  
Animal  
Plants  
Total outputs 
 
P losses 

               3.2(3.1) 
               0.0(0.0) 
               2.4(3.1) 
               7.4(3.3) 
               13.0(6.8) 
 
 
             
              8.3(1.9) 
              3.3(1.3) 
              0.0(0.0) 
              11.6(2.4) 
 
              3.6(4.8) 

0.8(1.2) 
-13.3(11.5) 
12.4(10.0) 
25.5(10.0) 
25.4(8.6) 
 
 
 
19.1(5.2) 
3.9(1.7) 
0.4(1.1) 
23.4(6.0) 
 
3.5(4.1) 

 0.4(0.4) 
0.0(0.0) 
0.2(0.2) 
0.8(0.4) 
1.4(0.7) 
 
 
 
0.9(0.0) 
0.4 (0.2) 
0.0(0.0) 
1.3(1.1) 
 
0.3(0.4) 

0.0 (0.1) 
-0.5(0.4) 
0.5(0.4) 
1.1(0.2) 
1.2(0.3) 
 
 
 
0.9(0.0) 
0.2(0.1) 
0.0(0.1) 
1.1(0.1) 
 
0.1(0.2) 

 

* All the P inputs and outputs are net inputs and outputs, which takes consideration of stock change. Organic 
fertilizer inputs = purchased organic fertilizer - stock change - organic fertilizer outputs. Animal outputs=animal sold-
animal input + stock change. Due to lack of data on atmospheric deposition and small contribution to the total P 
input, in this study, we assume 0 atmospheric deposition for both IR and NL. 
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When expressed per ton FPCM, P losses at farm level did not differ between Irish farms (0.3 

kg P/ton FPCM) and Dutch farms (0.1 kg P/ton FPCM) (Table 2.7). Although the off-farm P 

losses were lower on Irish farms (0.6 kg P/ton FPCM) than on Dutch farms (0.9 kg P/ton 

FPCM),  P losses at chain level did not differ significantly between the two farm types (Table 

2.7). P losses per ton FPCM are  low both at farm and chain level. Some farms even have a P 

balance of 0 (Figure 2.3). This relates to the fact that in Ireland and the Netherlands, many 

soils are P-saturated, resulting in a situation where farmers rely on P that is stored in the soil 

during previous years. As a result, P input levels are low (i.e., changes in soil P are not 

accounted for), resulting in a P balance that is negative or close to zero.  

Table 2.7 Mean, standard deviation (SD) and mean difference significance level (p) of 

phosphorus (P) losses at farm and chain level of the Irish and Dutch dairy farms, expressed 

per ton FPCM 

Indicators* Per ton FPCM 
IR 
Mean (SD) 

NL 
Mean (SD) 

Mean 
difference (p) 

P losses (kg 
P) 

   

On-farm 
Off-farm 

0.3(0.4) 
0.6(0.3) 

0.1(0.2) 
0.9(0.2) 

0.2(0.57) 
0.3(0.00) 

Chain 0.8(0.6) 1.0(0.3) 0.2(0.36) 
* Indicators related to phosphorus at the chain levels are normally distributed (P>0.05), however, at the farm level, 
they are not normally distributed  (P<0.05). Off-farm P losses per ton FPCM for both IR and NL are normally 
distributed. 
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Figure 2.3 Comparison of farm rankings  based on phosphorus (P) losses at farm level with P losses at chain level for 32 specialised dairy 

farms in the Netherlands (NL) and Ireland (IR). Farms are ranked by increasing P losses at farm level. 
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Table 2.8 shows results of the linear regression analysis. Off-farm P losses are higher for 

Dutch farms than for Irish farms (β1=0.31, p<0.001). In general, the change in off-farm losses 

per unit change in on-farm losses tends to be higher on Dutch farms than on Irish farms 

(β3=0.49, p=0.10). As a result, the ranking pattern based on P losses at farm level differed 

from the ranking pattern based on P losses at chain level (Figure 2.3). The change in off-farm 

losses per unit differences in P losses between farm and chain level were more pronounced 

on Dutch farms than on Irish farms because Dutch farms rely more on purchased feed 

products. 

Table 2.8 Results for regression of phosphorus losses at farm level on nitrogen losses at chain 

level. 
 

 Value Significance (p-value) 
R2 0.91 ─ 
β0 0.38 0.00 
β1 0.31 0.00 
β2 1.31 0.00 
β3 0.49 0.10 

 

2.4 Discussion 

Comparison of results with other studies 

The 19 Irish dairy farms used in this study were included  also in the study of Mihailescu et al. 

(2014), which studied 21 Irish dairy farms in total. When comparing farm area, stocking rate 

and milk yield per cow, the Irish farms used in this study scored close to, but slightly above the 

national average of dairy farms in Ireland (Mihailescu et al., 2014). The 13 Dutch farms we 

used in this study were included also in the study of Oenema et al. (2012), which studied 16 

Dutch dairy farms in total. According to Oenema et al. (2012), these Dutch dairy farms also 

had, on average, a higher production intensity and milk yield per cow when compared to the 

national average.  

The farm N balances calculated in this study (mean: IR=217.3 kg N/ha, NL=196.5 kg N/ha) are 

within the range reported in literature  (values range from 155 kg N/ha to 295 kg N/ha) (Nevens 
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et al., 2006; Treacy et al., 2008; Beukes et al., 2012; Mihailescu et al., 2014). Mihailescu et al. 

(2014), studying dairy farms in Ireland, found an average surplus of 142 kg N/ha at farm level 

for 2009, a surplus of 207 kg N/ha for 2010, and a surplus of 176 kg N/ha for 2011. According 

to Mihailescu et al. (2014), the average N surplus per ha was higher in 2010 compared with 

2009 and 2011 because in 2010 the stocking rate was higher, as well as the amount of 

purchased fertilizer. The latter resulted from a lower mean temperature between March and 

May in 2010 compared to the other two years, reducing grass growth rate and increasing the 

use of fertilizers. Because our objective was to examine indicators derived from a chain-based 

NB to benchmark contrasting dairy systems, rather than to investigate Irish farms’ average 

performances, the high surpluses in 2010 did not influence our final conclusions. The farm P 

balances calculated in this study (mean: IR=3.6 kg P/ha, NL=3.5 kg P/ha) are also within the 

range found in literature (value range from -7 kg P/ha to 133 kg P/ha) (Spears et al., 2003; 

Gourley et al., 2012; Buckley et al., 2013). 

The chain level NB is similar to the concept of N footprint (i.e. accounting all the losses along 

the chain). Leip et al. (2013), for example, calculated the N footprint of 12 main food categories 

and found that the N footprint of dairy products from cows, sheep and goats ranged from 10 to 

45 kg N per ton of product.  

Justification of assumptions  

In order to compute an NB at farm level, several assumptions have to be made. The first 

assumption relates to the output of manure. Some studies suggest to exclude manure as an 

output when assessing the NUE of a farm, because manure is not an end-product for human 

use (Simon et al., 2000, Godinot et al., 2014). On the contrary, Spears et al. (2003) did include 

manure as an output when computing an NB at farm level, because manure was valued as a 

fertilizer. In this study, manure output was subtracted from the input of organic fertilizer. This 

method has recently been suggested by Godinot et al. (2014), who calculated the NUE of dairy 

farms at farm and chain level. When the output of manure exceeds the input of organic 
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fertilizer, it is considered as a negative net input instead of a positive net output. In case of 

calculating the NUE of a farm, manure is not valued the same as milk and meat, but it is valued 

for its fertilizer capacity similar to fertilizer inputs. In case of calculating the nutrient losses of a 

farm, however, subtracting the output of manure from the input does not affect the outcome. 

In other words, manure is not considered to be a loss and therefore valued the same as milk 

and meat. The advantage of subtracting the output of manure from the input is that losses 

during production of manure entering the farm, or during processing of manure leaving the 

farm, do not have to be considered when calculating the NB at chain level. The second 

assumption relates to changes in soil N and P stocks. Godinot et al. (2014) pointed out that 

soil N stock variation needs to be taken into account when computing an NB. They argue that 

excluding this variation may result in reduced soil fertility (i.e. N uptake by crops exceeds the 

N fertilizer input), or in overestimating N losses (i.e. part of the N surplus might be stored in the 

soil). In this study, however, we excluded changes in N soil stock, which implies we assumed 

that farms reached an equilibrium state of soil organic matter. This assumption has been used 

previously with the objective of simplifying the calculation processes (e.g. Powell et al., 2010; 

Oenema et al.,, 2012; Mihailescu et al.,, 2014). Collecting data on changes in soil organic 

matter content is difficult and time consuming, or requires detailed modelling techniques. 

Because, the objective of this paper was to investigate whether a chain level NB provides a 

valuable approach to benchmark systems, and methods to account for changes in soil organic 

matter seem unfeasible for the purpose of benchmarking due to the lack of data on soil 

processes across the world, we did not include changes in soil organic matter. The third 

assumption relates to the exclusion of N losses from energy usage. We excluded N losses 

related to energy usage because Godinot et al., (2014) included N losses related to the 

combustion of diesel in their NB and concluded that the contribution was small.  

To calculate the NB at chain level, we excluded nutrient losses during production of fertilizers 

from our analysis, because the contribution of these losses to the total losses was found to be 

minor. We calculated, for instance, N losses during fertilizer production for the farm with the 
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highest fertilizer input, and found a loss of 0.4 kg N/ton FPCM, whereas the total loss of this 

farm was found the be 21.1kg N/ton FPCM. Including this loss, therefore, will not significantly 

affect the overall NB of the farm.  

Nutrient losses at chain level were expressed per ton FPCM, while nutrient losses at farm level 

were expressed per ton FPCM and per ha of land. Nutrient losses per unit of product are a 

measure for the efficiency of production, whereas nutrient losses per ha of land are a measure 

for the potential local impact of a farm (or another system). Nutrient losses at chain level, 

therefore, cannot be expressed per ha, because purchased feed ingredients are produced at 

different locations and different countries. Computing one average value for nutrient losses per 

ha, therefore, would be misleading because it enables compensation of poor results for one of 

the ingredients by another, and does not provide insight into the local impact of any of the 

(crop) farms under study. In addition, without site specific knowledge on the local ecosystems 

that are exposed to the pollutants, it’s not possible to quantify the local impacts accurately 

(Potting and Hauschild, 2006). We suggest, therefore, to use indicators at different hierarchical 

levels: a product-based indicator, such as an N loss along the chain which provides insight into 

the efficiency of production, and a region-based indicator, such as an N loss per ha at regional 

level, which provides insight into the local impact of production.    

Interpretation of nutrient balance  

Gerber et al. (2014) pointed out that the limitation of an NB approach is that the farm or system 

is considered as a black box and internal flows are not analysed. Despite this limitation, 

however, an NB can still be a valuable approach to benchmark farms rather than to diagnose 

detailed problems existing in the farming practice (Powell et al., 2010; Gourley, et al., 2012; 

Toma et al., 2013). Although a positive NB at farm level does not imply actual losses, it still 

provides insights in the potential losses in the future (Halberg, 1999, cited in Steinshamn et 

al., 2004). A positive N balance was defined as an N loss, potentially contributing to 

environmental pollution through e.g., the emission of nitrous oxide, the volatilisation of 
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ammonia and nitrogen oxide, and through runoff and leaching of dissolved nitrate (Gourley et 

al., 2012). A negative N balance means that the soil is depleted. Altieri and Pengue (2006), for 

example, indicated that intensive soybean cultivation in Latin America resulted in severe 

depletion of soil nutrients and reduced soil fertility. Our results also show a negative N balance 

for soybeans produced in Argentina (i.e. 33% of the soybeans in our study were assumed to 

come from Argentina). Because a negative N balance is not as a loss, we assumed the loss is 

0 in this situation. 

Interpretation of a P balance can be difficult, because P can be stored and immobilised in the 

soil, and can remain stored in the soil over a long time. This means that to a certain extent, P 

is variously available to plants independent on the year of application (Buckley, et al., 2013). 

A positive P balance does not necessarily mean an immediate loss to the environment, 

because soils with a low P-status can build P-reserves up to an optimum level (Bomans et al., 

2005). Only in the case that a P surplus leads to soil P levels above agronomic levels, the P 

surplus can pose a risk of P losses in surface water (Sharpley, 1995, as cited in Gourley et al., 

2012). The same principle can be applied for negative P balances. Several Irish and Dutch 

farms show a negative P balance at farm level. This negative P balance was not considered 

to be a loss, but set to zero. In Ireland and the Netherlands, soils are commonly P-saturated. 

As a result, farmers reduce or stop applying mineral P fertilizer on the field. If we only look at 

the farm balance on a yearly basis, the P balance of such a farm can be negative,  but it does 

not imply a P deficit (Humphreys et al., 2009; Buckley et al., 2012). However, negative P 

balance may not be a problem on short-term, but it can cause problems if soil P is already 

below adequate agronomic levels on the long-term (Steinshamn et al., 2004; Gourley et al., 

2012). Soil-tests that can monitor P levels need to be performed regularly to maintain an 

adequate P status of the soil.  

The value of a nutrient balance at chain level  
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When comparing dairy production systems, a farm level NB might lead to biased results, 

because differences in nutrient losses related to off-farm production processes are not taking 

into account. We compared N losses per ton FPCM of Irish and Dutch farms at farm and chain 

level, and demonstrated that Dutch farms are more efficient than Irish farms at both levels. The 

differences in on-farm N losses per ton FPCM between Irish and Dutch farms are so big, that 

the relatively small differences in off-farm nutrient losses do not alter the conclusions drawn at 

farm level (Table 2.4). Furthermore, because the change in off-farm losses per unit change in 

on-farm losses was similar for both farm types, ranking of farms based on N losses at farm 

level was similar to ranking based on N losses at chain level. We conclude, therefore, that in 

our dataset, N losses at farm level can be used to benchmark N efficiency of farms. When 

comparing P losses per ton FPCM of Irish and Dutch farms, we found that Irish farms are not 

different from Dutch farms at both levels. Ranking of farms based on P losses at farm level, 

however, appeared different from ranking based on P losses at chain level. This difference in 

ranking resulted from the relatively high importance of off-farm losses compared to on-farm 

losses, and from the fact that the change in off-farm losses per unit change in on-farm losses 

differed between farms. Our results show that in general, farms (e.g. farms with a high input 

of, e.g., feed) that are relatively efficient at farm level could be less efficient at chain level, and 

vice versa. To benchmark P efficiency of farms, therefore, an NB at chain level is required as 

an NB at farm level could lead to biased conclusions.  

2.5 Conclusion 

Although the importance of computing nutrient losses at the chain level has been addressed 

before,  to the best knowledge of the authors, this study is the first to use farm data to quantify 

and compare nutrient losses at farm and chain level, in order to determine the relevance of a 

chain approach to benchmark milk production systems. We concluded that to benchmark 

systems, a nutrient balance at farm level can be used if differences in on-farm losses between 

systems are large, and off-farm losses are relatively unimportant. To benchmark individual 

farms, a nutrient balance at farm level can be used if changes in off-farm losses per unit change 
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in on-farm losses are similar across farms. A chain level balance of a sample set, however, is 

required to verify these conditions. Results of this study can be used to inform decision makers 

about the level of analysis that is required to benchmark nutrient losses of farming systems. 
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Abstract 

Dairy production across the world contributes to environmental impacts such as eutrophication, 

acidification, loss of biodiversity, and use of resources, such as land, fossil energy and water. 

Benchmarking the environmental performance of farms can help to reduce these 

environmental impacts and improve resource use efficiency. Indicators to quantify and 

benchmark environmental performances are generally derived from a nutrient balance (NB) or 

a life cycle assessment (LCA). An NB is relatively easy to quantify, whereas an LCA provides 

more detailed insight into the type of losses and  associated environmental impacts. In this 

study, we explored correlations between NB and LCA indicators, in order to identify an effective 

set of indicators that can be used as a proxy for benchmarking the environmental performance 

of dairy farms. We selected 55 specialised dairy farms from western European countries and 

determined their environmental performance based on eight commonly used NB and LCA 

indicators from cradle-to-farm gate. Indicators included N surplus, P surplus, land use, fossil 

energy use, global warming potential (GWP), acidification potential (AP), freshwater 

eutrophication potential (FEP) and marine eutrophication potential (MEP) for 2010. All 

indicators are expressed per kg of fat-and-protein-corrected milk. Pearson and Spearman 

Rho’s correlation analyses were performed to determine the correlations between the 

indicators. Subsequently, multiple regression and canonical correlation analyses were 

performed to select the set of indicators to be used as a proxy. Results show that the set of 

selected indicator, including N surplus, P surplus, energy use and land use, is strongly 

correlated with the eliminated set of indicators, including FEP (r = 0.95), MEP (r = 0.91), GWP 

(r =0. 83) and AP (r = 0.79). The canonical correlation between the two sets is high as well 

(r=0.97). Therefore, N surplus, P surplus, energy use and land use can be used as a proxy to 

benchmark the environmental performance of dairy farms, also representing GWP, AP, FEP 

and MEP. The set of selected indicators can be monitored and collected in a time and cost-

effective way, and can be interpreted easily by decision makers. Other important 

environmental impacts, such as biodiversity and water use, however, should not be 

overlooked. 
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3.1 Introduction 

Dairy products are important protein sources in human diets. Around 57% of the protein 

content of an average European diet consists of livestock products, of which about one third 

is milk-derived (FAOSTAT, 2013). The global demand for milk products is expected to increase 

further due to population growth, rising incomes and on-going urbanization (FAO, 2006). 

Dairy production, however, has a major impact on the environment. The global dairy sector, 

producing both milk and meat, for example, is responsible for about 30% of the anthropogenic 

greenhouse gas (GHG) emissions from livestock (Gerber et al., 2013). Dairy production across 

the world is shown to contribute also to eutrophication, acidification, loss of biodiversity, and 

use of resources, such as land, fossil energy and water (De Vries and De Boer, 2010). The 

European livestock sector, for example, is responsible for more than 80% of the total emission 

of ammonia in the European union, and the dairy sector is one of the major contributors 

(Eurostat, 2015). Production of one kg of milk, furthermore, requires about 2.3 to 5.3 MJ of 

fossil energy (Upton et al., 2015). 

At present, several environmental indicators are adopted to quantify and benchmark the 

environmental performance of dairy production systems, and to gain insight into potential 

improvement strategies. These environmental indicators are generally derived from a nutrient 

balance approach or a life cycle assessment (Oenema et al., 2003; Thomassen and De Boer, 

2005; Yan et al., 2011).  

A nutrient balance (NB) computes the difference in nutrients entering and leaving a system 

(Oenema et al., 2003), and allows computation of environmental indicators, such as nutrient 

use efficiency or nutrient loss per ha of land. An NB generally focusses on the nutrients 

nitrogen (N) and phosphorus (P), because these are the major nutrients that limit crop growth, 

and their losses can cause environmental problems (Oenema et al., 2003; Gourley et al., 

2012). An NB of a dairy production system generally is computed at farm level. Indicators 

derived from an NB at farm level, however, do not include nutrient losses related to the 
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production of farm inputs, such as purchased concentrates. Mu et al. (2016) demonstrated that 

an NB at chain level (i.e. cradle-to-farm gate) should be used to benchmark nutrient losses of 

dairy systems when differences in on-farm losses between systems are small, and pre-farm 

losses related to e.g. production of purchased concentrates, are relatively important.  

Although environmental indicators derived from an NB appear to be useful to gain insight into 

the nutrient losses to the environment, generally they do not specify the type of losses, nor the 

environmental impact associated with those losses, such as the impact on acidification or 

climate change. Furthermore, a NB neglects certain environmental impact categories, such as 

the use of natural resources like fossil energy or land (Thomassen and De Boer, 2005).  

Life cycle assessment (LCA) is an internationally accepted and standardized method (ISO 

14040, ISO 14041, ISO 14042, ISO 14043) that quantifies the potential environmental impact 

related to emissions of pollutants to air, water and soil, and the use of resources during the 

entire life of a product. Thus, contrary to an NB approach, an LCA specifies the type of losses, 

as well as the associated environmental impact. Over the past few years the number of LCAs 

on dairy products have increased enormously (e.g. Cederberg, C. 1998; Thomassen and De 

Boer, 2005; Yan et al., 2011). However, studies suggested that collection of data required to 

perform an LCA appears difficult and is more time consuming than, for example, performing 

an NB (Thomassen and De Boer, 2005).  

To benchmark the environmental performance of large groups of dairy production systems, 

there is a  need for  a set of sustainability indicators that does not require an excessive amount 

of data, and provides insights into the wider environmental impact of a system (Bélanger et al., 

2012). Exploring correlations between various indicators can help to identify such a set of 

indicators (Lebacq et al. , 2013). Previous studies have mainly focused on correlations 

between indicators within LCA (Berger and Finkbeiner, 2011; Laurent et al., 2012; Röös et al., 

2013). Berger and Finkbeiner (2011), for example, analysed correlation between several  

environmental indicators derived from an LCA on a hundred different materials (i.e. grouped 
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into four categories 1) ore, metal, alloys; 2) monomers and polymers; 3) organic intermediates; 

4) inorganic intermediates). They concluded that to compare the environmental performance 

of these materials, the number of indicators can be reduced because of strong correlations 

between several of the resource-oriented indicators. Laurent et al. (2012) analysed 

correlations between the carbon footprint and thirteen other LCA impact categories of about 

4000 different products and concluded that solely relying on the carbon footprint as 

environmental indicator could result in overlooking other important environmental impacts. 

Röös et al. (2013), however demonstrated that the carbon footprint generally can act as an 

indicator for acidification and eutrophication potential of different types of meat (i.e., pork, 

chicken and beef). Results are explained by the importance of nitrogen losses, contributing to 

both eutrophic and acidifying substances as well as to greenhouse gas emissions in the form 

of nitrous oxide.  

So far, no study examined correlations between environmental indicators within dairy 

production, or included indicators derived from an NB. The purpose of our study, therefore, is 

to explore correlations between NB and LCA indicators, in order to identify an effective set of 

indicators that can be used as a proxy for the environmental performance of dairy systems. 

Such a set of indicators can be used, for example, to benchmark dairy farms.  

3.2 Material and methods 

3.2.1 Data 

To identify an effective set of indicators to benchmark the environmental performance of dairy 

farms, we used farm data from Dairyman. Dairyman was a project in the INTERREGIVB 

program co-funded by the European Regional Development Fund that aimed to improve 

regional prosperity through better resource utilization on 113 dairy farms and stakeholder 

cooperation (Dairyman, 2010). 

When exploring correlations between environmental indicators, we should avoid using data 

from  contrasting production systems, because systematic differences in environmental 
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impacts between systems bias the correlation analysis. We therefore selected 55 specialised 

dairy farms from Dairyman and determined their environmental performance using different 

indicators for 2010. We defined specialised farms as farms that have less than 5% non-dairy 

purpose animals, and less than 10% of their agricultural area in use for non-dairy purpose 

activities. The amount of energy, land and fertilizers used for non-dairy purposes was based 

on farmers’ estimate and excluded from the data set. These 55 dairy farms are from different 

countries and regions (i.e. Netherlands, Ireland, Belgium (Flanders, Wallonia), France 

(Brittany), Germany (Baden, Württemberg) and Luxembourg) and differ in farm characteristics 

(Table 3.1).  

Table 3.1 General characteristics of the 55 dairy farms 

Country (#) Farm area 
(ha) 

Dairy cows 
(#) 

Milk production  
(kg cow-1 year-1) 

Concentrate 
 (kg cow-1 year-1) 

Belgium (15) 61(16.0) 82(23.8) 8053(1473.7) 1547(797.8) 

France (2) 72(1.4) 77(21.7) 7192(794.7) 765.5(538.1) 

Germany (4) 154(74.3) 102(17.4) 8866(1396.9) 2139(824.9) 

Ireland (19) 77(28.3) 109(29.7) 5304(646.7) 841(180.6) 

Luxembourg (1) 78(N.A.) 49(N.A.) 4826(N.A.) 710(N.A.) 

Netherlands (14) 60(24.1) 126(35.1) 8705(752.5) 2066(245.0) 

N.A. = not applicable 

3.2.2 System boundaries 

Figure 3.1 illustrates the system boundaries for the NB and LCA approach. For both 

approaches, system boundaries are from cradle-to-farm gate. For the NB, we included all on-

farm activities as well as the production of purchased feed products, but production of other 

farm inputs were excluded because their contribution to nutrient losses was assumed to be 

negligible (Mu et al., 2016). In case of LCA, we considered on-farm processes, e.g. manure 

management, milk and feed production, and off-farm processes, e.g. fertilizer and feed 

production. Pesticides and water usage were not considered due to lack of data. Capital goods 

(buildings and machinery) were also excluded because their contribution to the environmental 

impact of dairy production is assumed to be low (Cederberg, 1998). 
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System boundary for nutrient balance
System boundary for life cycle assessment  

Figure 3.1 System boundaries 

3.2.3 Nutrient balance 

In this study, we used the method of Mu et al. (2016) to estimate N and P surpluses at chain 

level for each of the 55 specialised dairy farms. We first determined a NB at farm level, which 

equals the difference in nutrients entering and leaving the farm. Computation of a farm level 

NB requires data about the quantity and nutrient content of farm inputs and outputs, and data 

on stock changes of e.g. concentrates, roughages, animals and fertilizers on the farm. We 

calculated net inputs or net outputs of products that were both purchased and sold, such as 

animals. For the case of manure, we subtract manure outputs from the fertilizer input.. The 

chain level NB was subsequently calculated by summing up the NB at farm level and the NB 

related to production of purchased feed products. Unlike at farm level, nutrient surplus at chain 

level cannot be expressed per ha, because purchased feed ingredients are produced at 
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different locations and different countries. Computing one average value for nutrient surplus 

per ha, therefore, would be misleading because it enables compensation of poor results for 

one of the ingredients by another, and does not provide insight into the local impact of any of 

the (crop) farms under study. The NB for N and P, therefore were expressed per ton of fat-

and-protein-corrected milk (FPCM), i.e. milk that is corrected to a fat content of 4.0% and a 

protein content of 3.3% using the formula: FPCM (ton) = Milk (ton) x [0.337 + 0.116 x Fat (%) 

+ 0.06 x Protein (%)] (Product Board Animal Feed 2008)). Nutrient surpluses were allocated 

to milk and meat based on the relative economic value (i.e. economic allocation).  

3.2.4  Life cycle assessment 

This LCA study focussed on the use of scarce recourses land and energy, and on the emission 

of pollutants methane (CH4), nitrous oxide (N2O), carbon dioxide (CO2), ammonia (NH3), mono-

nitrogen oxides (NOx), sulphur dioxide (SO2), nitrate (NO3
-) and phosphate (PO4

3-). The impact 

categories considered were land use, fossil energy use, climate change, acidification, 

freshwater eutrophication, and marine eutrophication (Table 3.2). 

Inventory analysis 

Land use related to on-farm processes was based on farm data (Dairyman, 2010), whereas 

energy use related to on-farm processes was based on farm data (Dairyman, 2010) and fixed 

factors from Dairyman (2010, based on Gac et al., 2010). The following fixed factors were used 

to assess energy use related to milking and on-farm crop production: electricity use during 

milking (65 kWh per 1000 litre of milk),  electricity use for crop production (37 kWh per ha), 

and diesel use for crop production (128 litre per ha). In addition, diesel use for forage and 

pasture production was dependent on the area of maize silage (77 litre per ha for areas with < 

5% maize silage; 94 litre per ha for areas with 5-25% maize silage; and 128 litre per ha for 

areas with > 25% maize silage) (Dairyman, 2010; based on Gac et al., 2010). 

On-farm CH4 emissions relate to enteric fermentation and manure management. In this study, 

CH4 emissions were based on IPCC (2006) Tier 2. Enteric CH4 was assumed to equal 6.5% 
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of the average gross energy (GE) intake of the dairy herd. GE intake was estimated based on 

farm data and dependent on energy requirements for growth, maintenance, activity, and milk 

production. Emissions of CH4 from manure management were based on the volatile solid 

excretion rate of the dairy herd, and type of manure system. Volatile solid excretion was 

estimated based on the GE intake and an assumed feed digestibility of 75% for dairy cows, 

and 65% for young stock (IPCC, 2006). CH4 per kg volatile solid excreta was calculated by 

multiplying the maximum amount of 0.36 kg CH4/kg (dairy cow) or 0.12 kg CH4/kg (young 

stock) with a system specific conversion factor (i.e., 19% for manure in pit storage, 2% for solid 

manure, 1% for manure excreted on pasture). 

On-farm N2O emissions occur via direct and indirect pathways. Direct N2O emissions result 

from manure management and N application to the field, whereas indirect N2O emissions 

results from volatilization of NH3, NOx, and leaching of NO3
- (IPCC, 2006). Direct N2O 

emissions from manure storage were based on the N excretion multiplied by a management 

specific emission factor (i.e.,  0.002 kg N2O-N per kg N for manure in pit storage, and 0.005 kg 

N2O-N per kg N for solid manure; IPCC, 2006). N excretion was based on N intake (i.e., 

calculated from the dry matter intake and N content of the diet) and the amount of N retained 

by the dairy herd for milk production and growth. Direct N2O emissions from N application via 

manure, synthetic fertilizer, and crop residues, and all indirect N2O emissions were based on 

IPCC Tier 1 (IPCC, 2006).  

On-farm NH3 emissions relate to manure management and N application to the field, and were 

based on the Tier 2 approach of the European Environmental Agency (EEA) air pollutant 

emission inventory guidebook (EEA, 2013). Emissions from manure management were 

estimated based on the total ammonia nitrogen (TAN) content of manure, which was assumed 

to be 60% of the total N excretion. Emission factors in kg NH3-N per kg TAN were 0.2 for slurry 

and 0.19 for solid manure in stables; 0.20 for slurry and 0.27 for solid manure in storage; 0.55 

for slurry and 0.79 for solid manure after application; and 0.10 (dairy cows) and 0.06 (young 
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stock) for manure excreted during grazing. Emissions of NH3 related to the application of 

synthetic fertilizer were based on fertilizer specific emission factors (EEA, 2013). 

On-farm emissions of NOx and SO2 related to the combustion of diesel were based on Eco-

invent (2010). 

Due to lack of detailed soil information, we estimated leaching of NO3
- and PO4

3- based on the 

N and P balance of the farm. This approach is often applied in environmental impact 

assessment studies (Van Middelaar et al., 2013), but could lead to an overestimation of 

leaching because, potential nutrient build-up in soils is neglected. Leaching of NO3
- was 

calculated by subtracting NH3-N, N2O-N and NOx-N from the total N surplus of the farm, 

whereas for PO4
3-, the total P surplus was assumed to leach off. Phosphate fixation in the soil 

was assumed to be negligible in this study because we do not have detailed soil information.  

Uwizeye et al.(2016), however, showed that P saturation can vary a lot across EU soils. We, 

therefore, may have overestimated phosphate leaching on some of the farms. 

Off-farm processes contributing to use of resources and emissions of pollutants are the 

production and transportation of purchased feed (e.g. concentrates, roughages, by-products), 

the production and transportation of fertilizers and pesticides, and the production and 

transportation of energy sources. Impacts related to production and transportation of 

purchased feed were based on Feedprint (2015), whereas impacts related to production of 

synthetic fertilizers and energy sources were based on Eco-invent (2010). Production and 

transportation of pesticides, and transportation of fertilizers and energy sources were not 

included. The contribution of these processes was assumed to be minor.   

Impact assessment  

Resources and emissions were classified by the following impact categories: land use, fossil 

energy use, climate change, acidification, freshwater eutrophication and marine 

eutrophication.  Climate change relates to the emission of greenhouse gases, including CO2, 

CH4 and N2O. Acidification of terrestrial and aquatic ecosystems relates to the emission of 
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acidifying gases, including SO2, NH3 and NOx (i.e., NO and NO2). Eutrophication of terrestrial 

and aquatic ecosystems relates to leaching of eutrophic substrates, including NO3
- and PO4

3-, 

and to the emission of eutrophic gases, including  NH3 and NOx. We distinguish between 

freshwater and marine eutrophication, as suggested by ReCiPe (2008), and assumed that N 

is the limiting nutrient in costal water, and P in marine water.  

The characterisation factors for the different pollutants per impact categories are listed in Table 

3.2. The functional unit is one ton of FPCM. Economic allocation was used to allocate the 

environmental impact between the different outputs in case of a multifunctional process, i.e. 

impacts were allocated based on the relative economic value of the outputs. 

Table 3.2  Contributing elements and characterisation factors for selected impact categories 

Impact category Unit Contributing 

elements 

Characterization 

factors 

References 

Land use m2 Land 

occupation 

 Guinee et al. 

(2002) 

Energy use MJ Energy   

Climate change Kg CO2-eq CO2 

CH4 (biogenic) 

CH4 (fossil) 

N2O 

1 

28 

30  

265 

IPCC (2013) 

Acidification Kg SO2-eq SO2 

NH3 

NOx 

1 

2.45 

0.56 

Recipe (2008) 

Freshwater 

eutrophication 

Kg P-eq P 

PO4
3- 

1 

0.33 

Recipe (2008) 

Marine 

eutrophication 

Kg N-eq N 

NH3 

NOx 

NO3
- 

1 

0.092 

0.039 

0.23 

Recipe (2008) 

 

3.2.5  Statistical analysis 
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First, Pearson and Spearman correlations were calculated between eight indicators at the 

chain level, i.e. N surplus, P surplus, land use, fossil energy use, global warming potential 

(GWP), acidification potential (AP), freshwater eutrophication potential (FEP) and marine 

eutrophication potential (MEP), all expressed per kg FPCM. These correlations offer a first 

impression of the strength of relationships for pairs of indicators. Spearman rank correlations 

were added as a simple check upon the presence of outlying, influential data.  

Second, we applied multiple regression analyses to explore the relationships between each 

indicator and remaining other indicators. In this second step, indicators that strongly relate to 

other indicators will be omitted from consideration and a sub-set of indicators will remain that 

can be used as proxies.  In separate multiple regression analyses, in turn each of the eight 

indicator was regressed on the other seven indicators. The proportion of variance, the so-

called coefficient of determination R2, which equals the square of the multiple correlation 

coefficient, was stored. Indicators were ranked based on their associated R2 values. If the 

indicator with the highest rank had an R2 larger than 0.64, this indicator was eliminated, 

because it can be predicted well by the other indicators. Threshold value 0.64 was chosen 

because it corresponds to a multiple correlation of 0.8, which is considered to be high (Cohen, 

1998). Subsequently, the procedure was repeated for the remaining seven indicators, 

regressing each indicator in turn upon the other six indicators. Again, the indicator, now among 

the seven remaining indicators, with the highest R2 value was eliminated when the associated 

R2 exceeded 0.64. This procedure was repeated until none of the remaining indicators was 

associated with an R2 above 0.64. The remaining indicators are the set of indicators to be used 

as proxies.  

Finally, we investigated canonical correlation between the set of all eliminated indicators and 

the set of remaining indicators to test if the set of remaining indicators can be used as a proxy 

for the eliminated indicators. This selection procedure does not take into account any practical 

considerations, e.g. some indicators being more easily observed than others. Referring to the 

set of selected indicators as the optimal set, an alternative set of indicators associated with 
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multiple and canonical correlations similar to those of the optimal set can be considered for 

use as proxies as well, when some of the indicators in this alternative set are more appealing 

from a practical point of view. In this respect the optimal set is considered to be a standard for 

comparison with other alternative sub-sets. All calculations were performed with SPSS (SPSS, 

2011). 

3.3 Results 

3.3.1 Nutrient balance 

Indicators derived from the NB are presented in Table 3.3. On average, nutrient surplus at 

chain level are 14.4 g N/kg FPCM, and 1.3 g P/kg FPCM. An important part of the nutrient 

surplus relate to on-farm processes; 84% in case of N and 41% in case of P. Variation in 

nutrient surplus among farms is large and mainly relate to variation in on-farm nutrient surplus. 

Results are in line with results found in  literature (Gourley et al., 2012; Buckley et al., 2013; 

Leip et al., 2013; Mu et al., 2016). 

Table 3.3 Indicators derived from the nutrient balance 

Indicator Unit Mean SD Minimum Maximum 

 
N surplus 

     

On-farm  g N x kg FPCM-1 12.2 5.3 3.5 25.0 
Off-farm g N x kg FPCM-1 2.3 1.3 0.4 6.2 
Total 
 

g N x kg FPCM-1 14.4 5.2 4.9 27.0 

P surplus      

On-farm  g P x kg FPCM-1 0.5 0.7 0.0 3.0 
Off-farm g P x kg FPCM-1 0.8 0.4 0.1 1.9 
Total g P x kg FPCM-1 1.3 0.9 0.1 4.9 

 
 

3.3.2 Life cycle assessment 

Indicators derived from the LCA are presented in Table 3.4. Producing one kg FPCM requires 

on average 1.3 m2 land and 2.8 MJ energy, and results in a  GWP of 1.2 kg CO2-eq, an AP of 
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26.1 g SO2-eq, a FEP of 1.1 g P-eq and a MEP of 8.1 g N-eq. On-farm activities have a larger 

impact on land use, GWP, AP and MEP compared to off-farm activities. Off-farm activates, 

however, use more energy than on-farm activities. The results of our study are in line with 

results found in literature (de Boer, 2003; Cederberg and Flysjö, 2004; O’Brien et al., 2012; 

Upton et al., 2013).  

Table 3.4 Indicators derived from the LCA 

Indicator Unit Mean SD Minimum Maximum 

Land use m2 x kg FPCM-1     

  On-farm  0.8 0.4 0.3 2.3 
  Off-farm  0.4 0.2 0.1 1.3 
  Total 
 

 1.3 0.4 0.7 2.8 

Energy use MJ x kg FPCM-1     

  On-farm  0.5 0.1 0.2 1.0 
  Off-farm  2.4 0.8 1.4 4.7 
  Total 
 

 2.8 0.8 1.8 5.1 

GWP1 kg CO2 eq x kg FPCM-1     

On-farm  1.0 0.2 0.7 1.5 

Off-farm  0.2 0.1 0.0 0.5 

Total  1.2 0.2 0.8 1.8 

AP1 g SO2 eq x kg FPCM-1     

  On-farm  22.5 6.1 7.2 38.2 
  Off-farm  3.6 1.4 1.1 8.5 
  Total 
 

 26.1 6.2 10.3 42.4 

FEP1 g P eq x kg FPCM-1     

  On-farm  0.6 0.7 0.0 3.1 
  Off-farm  0.6 0.3 0.1 1.9 
  Total 
 

 1.1 0.9 0.1 5.0 

MEP1 g N eq x kg FPCM-1  
 

 
 
 

 
 
 

 
 
 

On-farm  5.3 3.8 0.7 16.1 
Off-farm  2.8 1.2 0.7 6.9 
Total  8.1 4.0 1.7 19.4 

1. GWP (global warming potential), AP (acidification potential), FEP (freshwater eutrophication 

potential), MEP (marine eutrophication potential) 



                                                                   Chapter 3│Selection of indicators for benchmarking 

65 
 

3.3.3 Statistical analysis  

Correlations are presented in Table 3.5. A strong correlation was found between N surplus 

and MEP (r=0.92), and between P surplus and FEP (r=0.93). Furthermore, strong or marked 

correlation were found  between GWP  and  AP (r=0.81), GWP and N surplus (r=0.68), 

between GWP and energy use (r=0.78), and  GWP and land use (r=0.61), between energy 

use and land use (r=0.69) and energy use and AP (r=0.72), and between AP and  N surplus 

(r=0.64).  

Table 3.5 Pearson correlation coefficient matrix of the environmental indicators *** 

 N 

surplus 

P surplus Land use Energy 

use 

GWP1 AP1 FEP1 MEP1 

N surplus - 0.30* 0.24 0.59** 0.68** 0.64** 0.36** 0.92** 

P surplus  - 0.24 0.21 0.15 0.45 0.93** 0.31* 

Land use   - 0.69** 0.61** 0.54** 0.41** 0.20 

Energy use    - 0.78** 0.72** 0.37** 0.50** 

GWP1     - 0.81** 0.28* 0.51** 

AP1      - 0.19 0.42** 

FEP1       - 0.41** 

MEP1        - 
1. GWP (global warming potential), AP (acidification potential), FEP (freshwater eutrophication 

potential), MEP (marine eutrophication potential) 

* Correlation is significant at the 0.01 level (2-tailed) 

** Correlation is significant at the 0.05 level (2-tailed) 

*** The results of the Pearson correlation are in line with the results of Spearman Rho’s correlation, we 

therefore only presented the results of the Pearson correlation coefficients here. 

Through repeated use of multiple regression analysis a set of indicators was selected i.e. MEP, 

P surplus, land use, and AP that can be used as a proxy to benchmark environmental 

performance. The multiple correlations between the set of indicators to be used as a proxy and 

each of the eliminated indicators are shown in Table 3.6. The set of indicators to be used as a 

proxy has a strong correlation with N surplus (r=0.96), FEP (r=0.95), GWP (r=0.84), and energy 
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use (r=0.82). The canonical correlation between the set of indicators selected as proxies and 

the set of eliminated indicators is also high (r=0.98; Table 3.6).  

Table 3.6 Multiple correlations between the set of indicators to be used as a proxy to 

benchmark environmental performance i.e., P surplus, land use, acidification potential, marine 

eutrophication potential and each of the eliminated indicators, and the canonical correlation 

between both sets.  

Eliminated indicators Correlation coefficient* 
 

Multiple correlations 
 

N surplus 0.96 

FEP1 0.95 

GWP1 0.84 

Energy use 0.82 
 

Canonical correlation  

N surplus, FEP1, GWP1, energy use 0.98 
1 FEP (freshwater eutrophication potential), GWP (global warming potential) 

* All correlation coefficients are significant at the 0.05 level (2-tailed) 

The set of indicators selected to be used as a proxy to benchmark the environmental 

performance of dairy farms contains four indicators of which two (MEP and AP) require more 

data and complex calculation methods than the other two (P surplus and land use). Since MEP 

is highly correlated with N surplus, and energy use is also correlated with AP, we further 

explored the possibility to substitute MEP with N surplus, and substitute AP with energy use, 

which can reduce data requirements and simplify computations. The multiple correlations 

between this new set of indicators, i.e. N surplus, P surplus, land use, energy use, and each 

of the eliminated indicators, i.e. MEP, FEP, GWP, AP, and the canonical correlation between 

the two sets are presented in Table 3.7. The alternative set of indicators to be used as a proxy 

are also strongly correlated with the eliminated indicators FEP (r=0.95), MEP (r=0.91), GWP 

(r=0.83) and AP (r=0.79). The canonical correlation between the two sets is high as well 

(r=0.97). Therefore, the alternative set of indicators does not differ much from the set of 

indicators that was initially selected (Table 3.6). We, therefore, recommend that N surplus, P 
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surplus, land use and energy use will be used as proxies to benchmark the environmental 

performance of dairy farms. 

Table 3.7 Multiple correlations between the new set of indicators to be used as a proxy to 

benchmark environmental performance (i.e. N surplus, P surplus,  land use, energy use) and 

each of the eliminated indicators, and the canonical correlation between both sets.   

Eliminated indicator Correlation coefficient* 
 

Multiple correlation 
 

FEP1 0.95 

MEP1 0.91 

GWP1 0.83 

AP1 0.79 
 

Canonical correlation  

FEP, MEP, GWP, AP 0.97 
1 FEP (freshwater eutrophication potential), MEP (marine eutrophication potential), GWP (global 

warming potential), AP (acidification potential) 

* All correlation coefficients are significant at the 0.05 level (2-taiiled) 

3.4 Discussion 

In recent years, the key question in the field of sustainability assessment of livestock production 

systems has shifted from “how do we develop an indicator?” to “which indicators can we use?”, 

highlighting the importance of indicator selection (Bockstaller et al., 2008; Lebacq et al., 2013).  

Selecting an effective set of indicators will depend on factors, such as the intended purpose 

and the target group. Complex indicators that require extensive information and expert 

knowledge to provide sound environmental performance evaluations are generally not suitable 

for benchmarking purposes (Bélanger et al., 2012). In the case of benchmarking, indicators 

should be simple, measureable, accessible, relevant and timely (Lockie et al., 2002). To be 

more specific, an effective set of indicators to benchmark dairy systems are defined as 

indicators that are able to assess the major environmental performance of the farms, and able 

to provide early warning of potential environmental  problems; meanwhile, this set of indicators 

needs to be monitored and collected in a time and cost efficient way, and to be interpreted 
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easily by decision makers. Benchmarking results should be comprehensible and easily 

applicable by decision makers, such as farmers and policy makers; they should provide insight 

into the environmental hotspots of the production systems and guide strategic (e.g. change in 

production system) or operational (e.g. change in feeding strategy) decisions to reduce 

negative environmental impacts of dairy farming. However, it should be noted that by using a 

selected set of indicators, there are risks that environmental impacts that are not represented 

by the selected set are overlooked in the benchmarking process. 

In this study, N surplus, P surplus, land use and energy use were identified as the effective set 

of indicators to benchmark environmental performance of dairy farms and represent also MEP, 

FEP, AP and GWP. MEP logically can be represented by N surplus, because leaching of NO3
- 

is the major contributing element to MEP and is highly correlated with N surplus. The same 

holds for FEP, which is caused by leaching of PO4
3- and, therefore, can be predicted by P 

surplus. Meanwhile, AP can be represented by N surplus and energy use because N surplus 

include emissions of NH3 and NOx, and production and combustion of energy sources 

contribute to the emission of SO2, NOx , which are all elements contributing to AP.  GWP can 

be represented by N surplus and energy use because N surplus include the emission of N2O, 

and production and combustion of energy sources contribute to the emission of CO2. The 

GWP, however, is determined not only by the emissions of N2O and CO2, but also by the 

emission of CH4, mainly related to enteric fermentation, and contributing about 50% to the total 

GWP of milk.  

Due to the simplicity of the method for quantifying some of the emissions, variation in 

environmental impacts between farms was limited for some indicators. Variation in CH4 per 

unit of milk, for example, was determined mainly by milk production levels (as were the other 

indicators) and not so much by differences in dietary composition of the herd or other feed 

characteristics. As a result, correlations between GWP and N surplus and energy use were 

quite high, even though enteric CH4 is not related to N surplus and energy use. If information 

on, e.g., diet composition would be available, we could assess CH4 emissions with a more 
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detailed approach (e.g. Tier 3), which could have affected the selection of the final set of 

indicators. The methods that were used in this study, however, are widely accepted and 

generally used in current research and practices.   

This study used data from specialised dairy farms to identify a set of indicators to benchmark 

the environmental performance of farms. We deliberately selected specialized farms only to 

avoid bias in our correlation analysis resulting from systematic differences in environmental 

impacts between contrasting systems (i.e. mixed crop-livestock systems versus specialized 

systems). Plotting the environmental impacts demonstrated the absence of systematic 

differences between countries or systems. Based on current methodologies, we expect that 

the reduced set of indicators can also be used to benchmark environmental performance of 

other types of dairy systems, because like we explained previously, the mechanism behind the 

relationships of the indicators is irrelevant of the type of dairy system; N surplus and P surplus 

can be used as good proxies for estimating  e.g. leaching of NO3
- and  PO4

3-  that contribute to 

MEP and FEP, and the combination of  N surplus and energy use can be used as a proxy for 

estimating NH3, NOx, SO2, N2O and CO2, which contribute to AP and GWP. However, with 

more advanced methodology,  e.g. to estimate emissions of CH4 related to enteric 

fermentation, we might end up with a different set of indicators. Future research, however, 

would be required to verify this hypothesis. 

Unlike some indicators in LCA that are difficult to quantify, our set of indicators are technically 

and financially feasible to be collected on a regular basis because of the transparency in the 

usage of the input parameters. Indicators are also relatively easy to communicate with farmers 

and policy makers, which facilitates identification of improvement options. For example, if the 

N surplus on a specific farm is relatively high, the farmer can easily oversee which N inputs 

contribute most (Thomassen and De Boer, 2005). The reduced set of indicators can represent 

the full set of indicators included in this study. One indicator is not regarded to be more 

important than the others because they all represent different environmental impacts. The 

importance of the indicators may differ between farms or regions, and could depend on the 
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decision of stakeholders or policy makers. The indicators we examined in this study do not 

provide detailed information on the local impacts of the emissions. Eutrophication potential, for 

example, was based on generic impact factors because local specific impact factors are not 

available at the global level. In addition, it should be noted that the selected set of indicators 

only represents the limited set of indicators that was included in this study. Impact on 

biodiversity and water use, for example, were not assessed. Further research is required to 

assess correlations between a larger set of indicators.  

3.5 Conclusion 

The objective of this study was to identify an effective set of indicators that can be used to 

benchmark the environmental performance of dairy systems. N surplus, P surplus, energy use 

and land use were selected to represent a broader set of indicators also including global 

warming potential, acidification potential, freshwater eutrophication potential and marine 

eutrophication potential. This effective set of indicators can be used to benchmark farms on 

some major environmental impacts, and they can be monitored and collected in a time and 

cost-effective way, and can be interpreted easily by  decision makers. Other important 

environmental impacts, such as biodiversity and water use, however, should not be 

overlooked.  
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Abstract 

The nutrient use efficiency (NUE) of a system, generally computed as the amount of nutrients 

in valuable outputs over the amount of nutrients in all inputs, is commonly used to benchmark 

the environmental performance of dairy farms. Benchmarking the NUE of farms, however, may 

lead to biased conclusions because of differences in major decisive characteristics between 

farms, such as soil type and production intensity, and because of epistemic uncertainty of input 

parameters caused by errors in measurement devices or observations. This study aimed to 

benchmark the nitrogen use efficiency (NUEN; calculated as N output per unit of N input) of 

farm clusters with similar characteristics while including epistemic uncertainty, using Monte 

Carlo simulation. Subsequently, the uncertainty of the parameters explaining most of the 

output variance was reduced to examine if this would improve benchmarking results. Farms in 

cluster 1 (n=15) were located on sandy soils and farms in cluster 2 (n=17) on loamy soils. 

Cluster 1 farms were more intensive in terms of milk production per hectare and per cow, had 

less grazing hours, and fed more concentrates compared to farms in cluster 2. The mean 

NUEN of farm in cluster 1 was 43%, while in cluster 2 it was 26%. Input parameters that 

explained most of the output variance differed between clusters. For cluster 1, input of feed 

and output of roughage were most important, whereas for cluster 2, the input of mineral 

fertilizer (or fixation) was most important. For both clusters, the output of milk was relatively 

important. Including the epistemic uncertainty of input parameters showed that only 37% of 

the farms in cluster 1 (out of 105 mutual comparisons) differed significantly in terms of their 

NUEN, whereas in cluster 2 this was 82% (out of 120 comparisons). Therefore, benchmarking 

NUEN of farms in cluster 1 was no longer possible, whereas farms in cluster 2 could still be 

ranked when uncertainty was included. After reducing the uncertainties of the most important 

parameters, 72% of the farms in cluster 1 differed significantly in terms of their NUEN, and in 

cluster 2 this was 87%. Results indicate that reducing epistemic uncertainty of input 

parameters can significantly improve benchmarking results. The method presented in this 

study, therefore, can be used to draw more reliable conclusions regarding benchmarking the 

NUE of farms, and to identify the parameters that require more precision to do so. 
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4.1 Introduction 

Nitrogen (N) is an essential nutrient for milk production. The input of N into European milk 

production systems has increased in the past decades, mainly via purchase of fertilizer and 

feed, but also via atmospheric deposition and biological fixation (Powell et al., 2010). These 

increased N inputs have also increased N losses to the environment, via leaching of nitrate 

(NO3
-) and emissions of N-gases, such as nitrous oxide (N2O) and ammonia (NH3). These N 

losses contribute to environmental problems, such as eutrophication, acidification and global 

warming (Whitehead., 1995; Smith et al., 1999). To tackle this problem, the European Union 

introduced legislation, such as the Nitrates Directive (EU, 2006), which set limits on N 

application per hectare to reduce NO3
- leaching.  

There has been on-going studies and discussions on how to reduce N losses of dairy farms in 

Europe (e.g. Aarts et al., 1992, Schröder et al., 2003, Nevens et al., 2006, Phuong et al., 2013; 

Mihailescu et al., 2015). Calculating the nutrient balance at farm level is the most commonly 

used approach to evaluate these losses. In the Netherlands, for example, dairy farms are 

obliged to quantify their annual nitrogen and phosphorus balance from 2016 onwards 

(Veeteelt, 2015). A nutrient balance reflects the difference in nutrients entering and leaving a 

system, and allows computation of environmental indicators, such as the nutrient use efficiency 

(NUE) or the nutrient surplus per ha of a farming system (Spears et al., 2003). NUE generally 

is computed as the amount of nutrients in valuable outputs of a system over the amount of 

nutrients in all inputs of that system (Nevens et al., 2006).  

Due to the simplicity of the method and relatively low data requirement, the nutrient balance 

has been used as a tool to benchmark the environmental performance of farms (Oenema et 

al., 2003, Schröder et al., 2003). Benchmarking is defined by Camp et al (1989) as “the search 

for those best practices that will lead to the superior performance” and, in this study, relates to 

the comparison of farms based on their environmental performance in order to identify 

differences and potentially, improvement options. Benchmarking farms based on, for example, 
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their NUE, however, may lead to biased conclusions because of two reasons. First, as pointed 

out by Schröder et al. (2003), comparing the NUE of farms is justified only if they have similar 

major decisive characteristics. These characteristics can be based on: (unmanageable) 

physical factors, such as soil type and climatic conditions (Roberts, 2008; Powell, et al., 2010); 

and long term strategic decisions, such as the degree of self-sufficiency (e.g. grass-based 

versus concentrate-based), production intensity, or manure management system (Nevens et 

al., 2006). Other characteristics that have an influence of the NUE of a farm include short term 

tactical decisions, such as choice of the feed crop, or grazing regime; operational decisions 

(i.e., day to day decisions); and other management skills of the farmer, such as the capacity 

to reduce losses (e.g. losses of feed, nutrients, milk or cows (culling)) (Nevens et al., 2006). 

Benchmarking NUE of farms should be based on differences in short term strategic and tactical 

decision-making, rather than differences in physical factors and long term decisions. Second, 

comparing NUE of farms may be affected by epistemic uncertainty of input data, caused by 

errors in measurement devices or errors around observations. Epistemic uncertainty can arise 

from e.g. errors in practically determining the N fixation by clover, measurement errors around 

the feed intake of the cows or estimations around the N-content of the animals (Oenema et al., 

2015). Increasing knowledge or better measurements can reduce epistemic uncertainty 

(Walker et al., 2003; Groen, 2016). 

Previous studies focused on examining the epistemic uncertainties of nutrient flows by looking 

into e.g. quantity of nutrient inputs (Mulier et al., 2003; Gourley et al., 2012; Oenema et al., 

2015). However, they did not examine the impact of epistemic uncertainties on benchmarking 

results, nor did they benchmark farms with similar decisive farm characteristics.  

The objectives of this study were to benchmark the nutrient losses by comparing nitrogen use 

efficiency (NUEN) of farms with similar decisive characteristics while including epistemic 

uncertainty, and to examine which input parameters explain most uncertainty of NUEN results. 

In addition, the epistemic uncertainties of input parameters that explain most of the output 

variance were reduced, to illustrate how this will improve benchmarking results. 
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4.2 Materials and methods 

4.2.1 Case study: European specialized dairy farms 

We used data of specialized dairy farms from Dairyman. Dairyman was a project directed at 

improving regional prosperity through better resource utilization on 113 dairy farms in different 

European countries (Dairyman, 2010). From the 113 farms, 32 specialized dairy farms were 

selected. Specialized dairy farms were defined as farms that have less than 5% non-dairy 

purpose animals, and less than 10% of their agricultural area in use for non-dairy purpose 

activities. These 32 dairy farms were located in different countries and regions (i.e. 

Netherlands (7), Ireland (13), Belgium (Flanders 8, Wallonia 2), Germany (1) and 

Luxembourg(1)). Selected dairy farms differed in soil types (i.e. sandy soil, loam soil), milk 

production (i.e. milk production per cow and per ha), grazing hours per year, and feed import 

(i.e. kg concentrate usage per cow per year; Table 4.1). Whereas data on soil type, milk 

production and feed import were based on measured farm data, data on grazing hours per 

year were based on estimations by the farmers. Farm data from the year 2010 were used as 

baseline values to determine all N-flows.  

Table 4.1 Characteristics of the 32 European specialized dairy farms used in this study. 

Characteristics Unit          Mean Minimum Maximum 

Agricultural area ha 65 25 270 

Herd size  number of dairy cows 90 37 384 

Milk production kg milk cow-1 year-1 7689 5700 9853 

Milk production kg milk ha-1 year-1 12598 3448 26300 

Grazing hours hour year-1 2857 0 5146 

Concentrate usage kg cow-1 year-1 1215 317 2459 

 

4.2.2 Defining homogenous farm clusters 

To enable benchmarking of NUEN of farms with similar characteristics, farms were sorted into 

homogenous groups (i.e. typologies) based on their characteristics (Table 4.1). For this 
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purpose, we used a two-step cluster analysis, because it allows using both continuous and 

categorical variables as clustering criteria (Chiu et al., 2001). To perform a cluster analysis 

with n criteria, a sample size of 2n farms is required (Formann, 1984). Since our sample size 

included 32 farms, we selected 5 criteria for the cluster analysis, namely grazing hours, soil 

type, concentrate per cow per year, milk production per cow per year and milk production per 

ha (De Vries et al., 2015, Daatselaar et al., 2015). The analysis was performed in the statistical 

software package IBM SPSS statistics 22 (SPSS, 2015). 

4.2.3 System boundary and model assumptions of calculating NUEN 

The NUEN was quantified at farm level, implying that only on-farm flows and losses were 

considered. The N-flows through a dairy farm included in this study are visualized in Figure 

4.1. Inputs of N include N in mineral fertilizers, manure, animals, concentrates, roughages, 

biological N fixation and atmospheric N deposition. Outputs of N include N in animals, milk, 

manure and roughage. Stock changes (defined as final stock minus initial stock) of the mineral 

fertilizers, manure, animals, concentrates and roughages were taken into consideration during 

the computation processes. Manure output was subtracted from the total fertilizer input (i.e. 

through mineral fertilizer and manure). If the total manure output of the farm exceeded its total 

fertilizer input, excessive manure was treated as a loss. The internal N-flow from crop 

production to feed storage was based on the energy requirements of the herd, minus feed 

input and stock changes of feed. The calculation rules are specified in the supplementary 

material. Losses of N from manure storage were based on storage type (i.e. slurry, solid) and 

the baseline values of manure N in all calculations(EEA, 2013).   
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Figure 4.1 N-flows on a dairy farm to assess nutrient use efficiency; the production processes 

are given by the solid boxes, the N-flows are given by the arrows. A detailed description of the 

input parameters can be found in Table 4.2.  

4.2.4 Matrix based calculation for on-farm NUEN 

We used the matrix-based approach developed by Suh and Yee (2011) to quantify the N-

efficiency of the 32 dairy farms. This approach was used to describe the herd and crop balance 

(Figure 4.1) in one equation, which facilitates the global sensitivity analysis to examine 

epistemic uncertainty. A matrix-based approach allows for the presence of loops and parallel 

components, as is often the case on dairy farms (e.g. manure is used for the production of 

feed crops, which are consequently fed to the animals, producing manure). This approach 

requires a detailed insight into the nutrient flows within the farm. 

The difference between the matrix-based approach to assess the farm N-balance and the  

common nutrient balance approach is that in case of the matrix-based approach the internal 

flows are considered (e.g. the flows between manure storage and crop production, or crop 

production and feed storage), just as in a substance flow analysis. In the common nutrient 

balance, the farm is considered as a black box (e.g. Oenema et al.,2015 and Mu et al., 2015). 

For more details, see the supplementary material. 
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In the matrix-based approach, the internal N-flows in Figure 4.1 are described by the V and U-

matrix, where the V-matrix describes how much kg N is supplied to each production process. 

The U-matrix describes how much kg N is used  by each production process (Suh and Yee, 

2011). The N-flows are corrected for the stock changes (s) on the farms. Combined, they are 

quantified in a matrix A for each (intermediate) process. T refers to the transpose. The vector 

(b) gives the amount of nutrients extracted (r) to produce 1 unit of final product, which, in this 

case, is determined by the valuable outputs of the farm:  

𝐛𝐛 = 𝐫𝐫�𝐕𝐕T − 𝐔𝐔 + 𝐬𝐬��−1 = 𝐫𝐫𝐀𝐀−𝟏𝟏     (1) 

 

In our case, the four elements in b represent the production processes of Figure 4.1 (animal 

husbandry, manure storage, crop production, feed storage). The nitrogen use efficiency 

(NUEN) for the production process of the animal husbandry is quantified by:  

 

 NUEN = 1 𝑏𝑏husbandry⁄       (2) 

 

A detailed example of this procedure can be found in the supplementary material of Suh and 

Yee (2011). 

4.2.5 Quantifying the effect of epistemic uncertainty on benchmarking 

To quantify the effect of epistemic uncertainties of the input parameters on the benchmarking 

of farms based on their NUEN, the distribution functions of the parameters need to be defined 

first. Subsequently, the input uncertainties are propagated through the NUEN model.  

Defining distribution functions 

Each parameter in the NUEN model was considered as an uncertain parameter, only the N-

flow from crop production to feed storage and the N losses during manure storage were fixed. 

The N-flow from crop production was fixed, because it was based on the energy requirements 

of the herd. The N losses during manure storage were fixed, because they were based on 
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storage specific emission factors. All input parameters are assumed to be normally distributed. 

Fixation was assumed to be truncated normally distributed to avoid drawing negative numbers. 

The coefficient of variation (CV= σ/μ) described the epistemic uncertainty of the parameters 

and was based on Oenema et al. (2015) (Table 4.2). Based on the equation for the CV, the 

standard deviation was calculated per farm, because each farm had a different (i.e. farm 

specific) mean.  

Quantifying the effect of epistemic uncertainty on benchmarking 

The propagation of the uncertainties of the input parameters through the NUEN model 

(equation 1) was done using Monte Carlo simulation and was performed for all farms in each 

cluster. The code for performing the uncertainty and global sensitivity analysis is available at: 

http://evelynegroen.github.io. From each distribution function (Table 4.1) a random value was 

drawn, and used to calculate the NUEN. The output uncertainty was given by the variance:  

var(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) =
1

𝑛𝑛 − 1
��𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁���������2
𝑛𝑛

𝑖𝑖=1

 

Where the mean is given by: 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁�������� = 1
𝑛𝑛
∑ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 , for a sample size of n=5000. We performed 

a discernibility analysis (Heijungs & Kleijn, 2001) to determine if the input uncertainties had an 

effect on benchmarking. To determine if there was a significant difference between farms the 

farms within a cluster were pairwise compared for the results for each Monte Carlo run. This 

means that we counted how many times the NUEN of one farm was better than another farm, 

expressed as a frequency. A significance level of 5% was chosen (Heijungs & Kleijn, 2001; 

Henriksson et al. 2015). This means, for example, that if farm A has a lower NUEN than farm 

B in 630 out of 1000 runs, difference in NUEN of the two farms was considered as not significant 

(63%>2.5%). But, if farm A had a lower NUEN than farm C in 24 out of 1000 runs, than farm C 

was considered as significantly better than farm A (2.4%<2.5%).  

4.2.6 Explaining output uncertainty for different farm typologies 
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To identify which input parameter contributed most to the output uncertainty within a specific 

farm cluster, a global sensitivity analysis was performed by calculating the squared 

standardized regression coefficients (Sj) as a measure for the sensitivity index (Saltelli et al., 

2008; Groen, 2016): 

𝑆𝑆𝑗𝑗 =
var(𝑝𝑝𝑗𝑗)

var(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)
(𝑏𝑏𝑗𝑗)2 

Where var�𝑝𝑝𝑗𝑗� gives the variance of each input parameter (𝑝𝑝𝑗𝑗) based on Table 4.2 and 𝑏𝑏𝑗𝑗 is 

equal to the regression coefficient.  

Table 4.2 Description of the parameters and their epistemic uncertainty given by the relative 

uncertainty (CV), which was taken from Oenema et al. (2015). 

Process Type Parameter  CV (%) Remark 
Crop 
production  

Resource 
input 

N-fixation  
(kg N) 

Grassland area (ha) 5.0  
Legume yield (kg/ha) 10  
N-fixation (kg N/kg 
legume) 

30  

Deposition  
(kg N) 

Farm area (ha) 5.0  
N-deposition (kg N/ha) 17  

Mineral 
fertilizer  
(kg N) 

Mineral fertilizer (kg) 2.5  
N-content mineral fertilizer 
(kg N/kg) 

2.5  

Stock change 
mineral 
fertilizer  
(kg N) 

Stock change mineral 
fertilizer (kg) 

7.5  

N-content stock change 
mineral fertilizer (kg N/kg) 

2.5  

Export Roughage  
(kg N) 

Roughage (kg) 7.5  
N-content roughage (kg 
N/kg) 

7.5  

Losses N-losses crops 
(kg N) 

n.a. n.a Function 

Feed 
storage  

Resource 
input 

Roughage  
(kg N) 

Roughage (kg) 7.5  
N-content roughage (kg 
N/kg) 

7.5  

Stock change 
roughage  
(kg N) 

n.a. 17 GEPI 

Fertilizer 
storage  

Resource 
input 

Manure (kg N) Manure (kg) 5.0  
N-content manure (kg 
N/kg) 

7.5  

Stock change 
manure (kg N) 

n.a. 22 GEP 

Losses N emissions 
from manure 
storage (kg N) 

n.a.  Fixed 

Animals (kg N) Number of animals (-) 2.0  
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Milk and 
animal 
production  

Resource 
inputs 

Life-weight per animal (kg)  n.a. 
N-content per animal  
(kg N/kg) 

5.0  

Stock change 
animals (kg N) 

n.a. 5.68 GEP 

Concentrates 
(kg N) 

Concentrates (kg) 2.5  
N-content concentrates  
(kg N/kg) 

2.5  

Stock change 
concentrates 
(kg N) 

n.a. 11 GEP 

Final use Milk (kg N) Milk (kg) 1.0  
N-content milk (kg N/kg) 2.0  

Animals  
(kg N) 

Number of animals (-) 2.0  
Life-weight per animal (kg)  n.a. 
N-content animal (kg N/kg) 5.0  

Export Manure (kg N) Manure (kg) 5.0  
N-content manure (kg 
N/kg) 

7.5  

IGEP: Gaussian error propagation is used to determine the CV of parameters when there is a lack of 
information to separate the N-content from the items in the stock change and therefore only the kg N of 
stock change is available (e.g., roughage can include different items with different N contents). Details 
on the method can be found in (Heijungs and Lenzen, 2014). 

 

4.3 Results  

4.3.1 Farm clusters 

Two homogeneous groups of farms, i.e. farm clusters, were derived from the cluster analysis. 

Farms in the first group, further referred to as farms in cluster 1, are located on sandy soils 

and relatively intensive in terms of milk production per cow and per hectare (Table 4.3). The 

number of grazing hours is low, whereas the amount of purchased concentrates per cow per 

year is high relative to the farms in the other cluster. Farms in cluster 2 are located on loam 

soils, and are less intensive when compared to farms in cluster 1. The number of grazing hours 

is higher, whereas the amount of concentrates per cow per year is lower than on farms in 

cluster 1. The average NUEN of farms in cluster 1 is 43%, and for farms in cluster 2 this is 26%. 

The difference in NUEN between the two clusters result from a combination of all 5 

characteristics that specify the group of farms in each cluster (Table 4.3).  
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Table 4.3 Results of the cluster analysis, showing the farm characteristics for 15 farms in 

cluster 1 and 17 farms in cluster 2, given by the mean (standard deviation) of each 

characteristic or a categorical characteristic per cluster.  

Characteristics1 Unit Cluster 1 Cluster 2 

Soil type n.a. Sandy Loam 

Milk production  kg milk cow-1 year-1 8519 (854) 6956 (878) 

Milk production  kg milk cow-1 ha-1 15970 (5108) 9623 (3792) 

Grazing hours  hours cow-1 year-1 1115 (1099) 4393 (1175) 

Concentrate use kg cow-1year-1 1719 (499) 770 (207) 

NUEN % 43 (10) 26 (12) 
1 Characteristics of these two clusters are significantly different (p<0.05). The order of importance of the 

characteristics in determining the final clusters are: grazing hours > concentrate use > milk production 

per cow > soil type > milk production per ha. 

 

4.3.2 The effect of epistemic uncertainties on benchmarking  

For each farm, the input uncertainties of Table 4.2 were propagated through the NUEN model 

(equation 1 and 2). For each farm in both clusters, a median and a variance were derived 

(Figure 4.2, cluster 1; Figure 4.3, cluster 2).  Results show that each cluster has one outlier: 

farm 1 in cluster 1 and farm 2 in cluster 2. For farm 1 in cluster 1, the output of manure exceeds 

the input of fertilizer. Because we subtracted manure output from fertilizer inputs, the input of 

fertilizer was set to 0. This leads to the high NUEN of this farm. Farm 2 in cluster 2 is an organic 

farm with only grassland and no cropland. The imported feed inputs are low, and there is no 

input of synthetic fertilizer. Due to the low N inputs and high N outputs of the farm, it has a high 

NUEN. 
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Figure 4.2 Box plot of NUEN for the 15 farms in cluster 1. The horizontal line in each box gives 

the median, the box gives the 25-75% interval, and the plusses are realizations that appear 

outside the 10-90% interval. 

The results of the discernibility analysis for cluster 1 can be found in Table 4.4. For example, 

farm 5 had a lower NUEN than farm 1, and a higher NUEN than the other farms, except when 

compared to farm 8 and farm 14. In case of farm 6, only 52% of the Monte Carlo runs show a 

higher NUEN than farm 3, meaning their performance is almost indistinguishable taking the 

epistemic uncertainties of the input parameters into account.  

For farm 1, approximately 4% of the Monte Carlo runs resulted in a negative value for N losses 

of crop production. This is explained by the importance of deposition as an N input on this 

farm, and the large uncertainty of this parameter (CV=17%; Table 4.2). The negative values, 

therefore, are more likely related to the uncertainty of deposition, than to display a realistic 

model outcome. The drawings from the Monte Carlo simulation that included a negative value 

for N losses of crop production, therefore, were removed from the analysis. 

Applying the 5% significance level, results show that farm 1 is most efficient when taking the 

epistemic uncertainty of the input parameters into account, followed by farm 5, which is only 



Chapter 4│The effect of epistemic uncertainty 

88 
 

not significantly better than farm 8 and 14. The two least efficient farms are farm 3 and 6. The 

NUEN of the other farms turned out to be very similar (Table 4.4).    

Table 4.4 Results of discernibility analysis for cluster 1 based on pairwise comparing Monte 

Carlo runs between farms. The column and row numbers 1 to 15 represent the 15 farms. The 

percentages show how often a farm (row) has a higher NUEN than another farm (column). 

When α-value of 0.05 is applied, values between 2.5% and 97.5% indicate that the NUEN of 

the farms are no longer considered as significantly different. The significant different farms are 

given by the bold-printed percentages. 

% 1* 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1*  100 100 100 100 100 100 100 100 100 100 100 100 100 100 
2 0  100 5 0 100 25 5 78 47 52 19 54 7 89 
3 0 0  0 0 48 0 0 0 0 0 0 0 0 0 
4 0 95 100  2 100 85 43 99 92 88 70 97 42 100 
5 0 100 100 98  100 100 95 100 100 99 98 100 91 100 
6 0 0 52 0 0  0 0 0 0 0 0 0 0 0 
7 0 75 100 15 0 100  13 93 69 71 37 79 16 97 
8 0 95 100 57 5 100 87  99 93 90 73 97 49 100 
9 0 22 100 1 0 100 7 1  22 31 6 24 1 67 

10 0 53 100 8 0 100 31 7 78  55 23 57 9 88 
11 0 48 100 12 1 100 29 10 69 45  23 50 11 81 
12 0 81 100 30 2 100 63 27 94 77 77  84 28 97 
13 0 46 100 3 0 100 21 3 76 43 50 16  5 88 
14 0 93 100 58 9 100 84 51 99 91 89 72 95  99 
15 0 11 100 0 0 100 3 0 33 12 19 3 12 1  

* Approximately 4% of the Monte Carlo runs were excluded from the analysis due to unrealistic model 

outcomes. 
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Figure 4.3 Box plot of NUEN for the 17 farms in cluster 2.  The horizontal line in each box gives 

the median, the box gives the 25-75% interval, and the plusses are realizations that appear 

outside the 10-90% interval. 

The results of the discernibility analysis for cluster 2 are found in Table 4.5. For farm 2, 

approximately 46% of the Monte Carlo runs resulted in a negative value for N losses of crop 

production. This is explained by the importance of N fixation on this farm, in combination with 

a relatively large uncertainty of this parameter (CV=30%). Because we analysed quite 

intensive and productive farms, these outcomes are more likely to result from the high CV than 

to display a realistic situation. Similar to farm 1 in cluster 1, negative values were assumed to 

display an unrealistic model outcome. Because of the high percentage of unrealistic model 

outcomes, it was decided to remove farm 2 from further analysis. The large number of 

unrealistic model outcomes illustrates the need to reduce CVs by improving measurements on 

farms. 

Applying the 5% significance level, results show that farm 1 is most efficient (only not 

significantly higher than farm 10 and 17). Of the 120 farm comparisons, 17% is significantly 
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different (Table 4.5). Contrary to the first cluster, including the epistemic uncertainties still 

allowed for some kind of ranking, although most farms overlapped with at least two other farms.  

Table 4.5 Results of discernibility analysis for cluster 2 based on pairwise comparing Monte 

Carlo runs between farms. The column and row numbers 1 to 17 represent the 16 farms*. The 

percentages show how often a farm (row) has a higher NUEN than another farm (column). 

When α-value of 0.05 is applied, values between 2.5% and 97.5% indicate that the NUEN of 

the farms are no longer considered as significantly different. The significant different farms are 

given by the bold-printed percentages.  

% 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
1  100 100 100 100 100 100 100 95 100 100 100 100 100 99 62 
3 0  0 12 0 14 0 14 0 82 0 92 1 0 0 0 
4 0 100  100 31 100 99 100 0 100 98 100 100 57 4 0 
5 0 88 0  0 59 0 59 0 100 0 100 2 0 0 0 
6 0 100 69 100  100 100 100 0 100 100 100 100 76 9 0 
7 0 86 0 41 0  0 49 0 100 0 100 1 0 0 0 
8 0 100 1 100 0 100  100 0 100 45 100 93 2 0 0 
9 0 86 0 41 0 51 0  0 100 0 100 1 0 0 0 

10 5 100 100 100 100 100 100 100  100 100 100 100 100 90 8 
11 0 18 0 0 0 0 0 0 0  0 83 0 0 0 0 
12 0 100 2 100 0 100 55 100 0 100  100 94 2 0 0 
13 0 8 0 0 0 0 0 0 0 17 0  0 0 0 0 
14 0 99 0 98 0 99 7 99 0 100 6 100  0 0 0 
15 0 100 43 100 24 100 99 100 0 100 98 100 100  2 0 
16 1 100 96 100 91 100 100 100 11 100 100 100 100 98  1 
17 37 100 100 100 100 100 100 100 92 100 100 100 100 100 99  

* Approximately 46% of the Monte Carlo runs were excluded from the analysis due to 

unrealistic model outcomes of farm 2, therefore, this farm was excluded from further analysis. 

 

4.3.3. Explaining the output variance 

The global sensitivity analyses shows how much of the output variance can be explained by 

the variance of the individual input parameters. The results of the global sensitivity analysis 

can be found in Figure 4.4 (cluster 1) and Figure 4.5 (cluster 2). 
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Parameter (%) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Input animals  0  0       0       0     0 
Input concentrates 30 1 29 8 4 39 30 15 16 10 4 3 9 16 8 
Input roughage 0  17 0 3  0 49 25 51 20 2 28 22 30 
Input min. fertilizer 10 8 14 11 7 15 16  3 1 0 20 7 2 7 
Input manure  2        1 0   1  
Deposition 21 4 4 7 3 6 7 15 7 9 13 16 30 9 7 
Fixation         0  52   1  
SC animal 0 0 0 0 0 0 0  0 0 0 0 0 0 0 
SC concentrates    0 0  0  0 0 0 0 0 0 0 
SC roughage         0 1 2 1 1 4 2 
SC min. fertilizer         0 1  31  0  
SC. manure         2 2 1  3 3 2 
Output animal 1 0 5 1 0 4 1 1 2 1 1 1 2 1 1 
Output milk 13 3 29 8 5 35 20 16 13 11 6 5 16 10 11 
Output roughage 4 81 0 63 77       19 3   
Output manure 35 0 4    26  29 12 2  2 30 33 
Explained 
variance n/a 100 100 99 99 100 100 97 99 100 100 100 100 100 100 

 

Figure 4.4 Sensitivity indices (𝑆𝑆𝑗𝑗 ) for each input parameter, explaining how much each 

parameter contributes to the output variance for each farm in cluster 1: the darker a cell, the 

higher the contribution. SC: stock change. An empty cell means that these parameters were 

zero for that farm; 0% means that this parameter contributed 0% to the output variance; n/a 

not applicable, approximately 4% of the Monte Carlo runs were excluded from the analysis 

due to unrealistic model outcomes, therefore the partial variances were not considered 

independent and could not be added. 

Results show that in case of cluster 1, the input of concentrates, roughage, mineral fertilizer, 

and deposition, and the output of milk, roughage, and manure explain most of the output 

variance. Input of animals and manure, stock change of each of the inputs, and output of 

animals did not show up as important explanatory parameters in any of the farms, except for 

stock change of mineral fertilizer for farm 12. Further analysis showed that both the quantity 

as well as the N content of each parameter is approximately equally important in terms of their 

contribution to the output variance.   
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Parameter (%) 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
Input animals  0          12    0 
Input concentrates 0 0 0 2 4 2 2 2 0 3 2 0 1 13 0 0 
Input roughage  3 0 8 0 0 0 0 1 1  1 0 2  6 
Input min. fertilizer  1 70 45 54 44 66 61 12 55 57 45 60 38 59  
Input manure 3 8               
Deposition 9 3 2 1 5 2 1 1 1 1 3 1 3 5 1 14 
Fixation 82 78              68 
SC animal 0 0 0 2 0 1 0 0 0 0 1 1 0 0 0 0 
SC concentrates                0 
SC roughage                1 
SC min. fertilizer      13   10 0   0  15  
SC. manure                 
Output animal 1 2 10 21 12 13 6 11 1 15 14 25 23 13 2 1 
Output milk 2 5 17 21 25 27 25 24 2 22 21 15 14 28 8 1 
Output roughage         73      11 8 
Explained variance 97 99 99 100 100 100 100 98 100 99 97 100 100 99 97 99 
 

Figure 4.5 Sensitivity indices (𝑆𝑆𝑗𝑗 ) for each input parameter, explaining how much each 

parameter contributes to the output variance for each farm in cluster 2: the darker a cell, the 

higher the contribution. SC: stock change. An empty cell means that these parameters were 

to zero for that farm; 0% means that this parameter contributed 0% to the output variance. 

Output of manure is not included because none of the farms in cluster 2 exported manure. 

Farm 2 was excluded from the global sensitivity analysis. 

Figure 4.5 shows that in case of cluster 2, for most of the farms the input of mineral fertilizer 

and the output of milk and animals explain most of the output variance. For a few farms, the 

most important parameter in terms of contribution to the output variance is fixation (input); 

while for one farm, this is the output of roughage. Input of concentrates, roughage and manure 

and stock change of animals did not show up as important explanatory parameters in any of 

the farms in cluster 2. 

4.3.4 Effect of decreasing uncertainty on benchmarking 

To analyse if decreasing epistemic uncertainty can improve benchmarking, we reduced the 

uncertainty of the most important input parameters and reran the discernibility analysis. For 

cluster 1, the input uncertainty was reduced to 1% for: input of concentrates, roughage, mineral 

fertilizer, deposition and the output of milk, roughage, and manure (Figure 4.4). For cluster 2, 
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the input uncertainty was reduced to 1% for: input of mineral fertilizer, and the output of milk 

and animals (Figure 4.5). Table 4.6 shows how many pairwise comparisons were made in both 

cluster, and how many were significantly different, before and after reducing input uncertainty. 

Results show that reducing the uncertainty of the most important input parameters based on 

the global sensitivity analysis, improved the ability to find significant differences between the 

NUEN of the farms in both clusters. Benchmarking, therefore, can be improved when input 

uncertainties are reduced, especially for the farms in the first cluster.  

Table 4.6 Effect of decreasing the input uncertainties of the most important parameters to 1%, 

for both clusters.    

 Cluster 1 Cluster 2  

Total number of pairwise comparisons 105 120 

Significantly different farms before reducing input uncertainty  39 (37%) 99 (83%) 

Significantly different farms after reducing input uncertainty  76 (72%) 104 (87%) 

   

4.4 Discussion  

This study builds on, and extends the principles regarding epistemic uncertainty of nitrogen 

flows on dairy farms presented by Oenema et al. (2015). Although we used the same 

coefficients of variations of input parameters, results of our study and Oenema et al. (2015) 

show important differences. Based on our analysis, input of concentrates and roughage, and 

output of milk and roughage explain most of the output variance in cluster 1. Input of mineral 

fertilizer and fixation, and output of animals and milk explain most of the output variance in 

cluster 2. Oenema et al. (2015), however, concluded that N fixation, atmospheric deposition 

and stock changes of roughage and manure explain most of the output variance when 

determining the N surplus of dairy farms. Differences between our study and Oenema et al. 

(2015) can be explained by two reasons. First, the characteristics of the farms were different. 

In general, Oenema et al. (2015) included farms with a lower input of feed, but a higher stock 

change of roughage, and a higher N input through fixation compared to the farms in our study. 

Uncertainties related to stock changes of feed are higher than uncertainties related to input of 
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feed, whereas uncertainties related to N fixation is highest among all N flows. Second, Oenema 

et al. (2015) used a different approach to determine N intake during grazing. In our study, N 

intake from grazing and on-farm roughage production was fixed based on feed requirements 

and the baseline values of input of purchased feed (see supplementary materials). Oenema et 

al. (2015) changed the N-intake from grazing with a change in roughage and concentrate 

intake, which consequently influenced the importance of feed parameters. The contribution of 

the input of feed to the output variance was therefore found to be lower in Oenema et al. (2015) 

than in our study.  

Dairy farms in Europe show different decisive characteristics. For example, most farms in the 

Netherlands have a high stocking density because land resources are limited. The main N 

inputs on these farms are through purchased concentrates and roughages. In Ireland, 

however, most farms are grass-based extensive farms. The main N inputs on these farms are 

through purchased mineral fertilizer and N fixation. Comparing NUE of Dutch and Irish farms 

can lead to biased conclusions because of inherent differences between systems. Clustering 

of farms into groups with similar decisive characteristics, therefore, is a prerequisite for 

benchmarking the NUE of farms and facilitates the identification of major parameters. When 

comparing results of the global sensitivity analysis between the two farm clusters, for example, 

input of feed and output of roughage show up to be most important in case of cluster 1, 

whereas the input of mineral fertilizer (or fixation) is most important in case of cluster 2. Results 

show that the importance of parameters can vary between farm types (clusters). Methods to 

improve benchmarking of farms, therefore, should account for differences in decisive 

characteristics. The method presented in this study, can contribute to more solid conclusions 

regarding the performance of farms in terms of their NUE.  

In this study, we used a matrix-based approach to assess NUE. The advantage of this 

approach is that it facilitates the uncertainty and sensitivity analysis. All input parameters are 

sampled at the same time, and are subsequently used to calculate the internal flows for each 

Monte Carlo run. Another advantage of the matrix-based approach is that it is easy to extend 



                                                                                       Chapter 4│The effect of epistemic uncertainty 

95 
 

the system boundary beyond the farm: production of crops can be easily incorporated as 

additional production flows. 

Several methodological limitations could have affected the results of this study. The first 

limitation is the choice of the parameter distribution function and, in link to our choice of 

Gaussian distribution, of CV values. A Gaussian or normal distribution represents a 

symmetrical uncertainty range which seems correct in case of (most) measurement errors. 

Future studies, however, could use parameter specific distribution functions to improve the 

impact assessment. The CVs we used were based on Oenema et al. (2015), focussing on 

Dutch pilot commercial farms only. Farms in our study are from different countries in Europe. 

Results of the uncertainty and global sensitivity analysis might have been different if country 

specific coefficients of variation were applied, but such information was not available. In 

addition, we used farm data from the year 2010, which might not hold for any year. However, 

since a similar measurement error over years can be expected, we do not expect a big change 

in the CVs, but mainly in the mean values of the N-flows on the farms. In general, it takes quite 

a big change in the CV to influence the result of the sensitivity analysis as seen in Figure 4.4 

and 4.5. In addition, only drastically decreasing the CVs of the most important parameters (e.g. 

from 30% to 1%) influenced the number of significantly different farms (mainly in the first 

cluster; Table 4.6). Differences in the CVs because of yearly variations, therefore, are not 

expected to influence the results. Nevertheless, the methodological procedure that was 

presented in this study can be used to assess the impact of epistemic uncertainty on different 

farms and based on different CVs. Results show that to benchmark the NUE of farms, 

epistemic uncertainty of input parameters has to be reduced.  

Secondly, changes in soil N-stock were not considered in this study due to data limitations. 

Assessing changes in soil N stock at the farm level is difficult but can significantly improve 

interpretation of nutrient balance results (Godinot et al., 2014). 
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Thirdly, uncertainty related to on-farm crop and grass production was not included in the 

model, because this was estimated based on the energy requirements of the dairy herd and 

the energy in purchased feed and stock changes of feed. Incorporating uncertainty of crop 

production would increase the uncertainty of the model output. This would mainly affect the 

farms relying more heavily on on-farm produced roughage, such as the farms in cluster 2. 

Considering that input of mineral fertilizer or fixation and output of N via milk an animals are 

the main explanatory factors of the uncertainty around the NUE of these farms, we do not 

expect that the additional uncertainty of on-farm crop (grass) production would influence the 

results much.  

Fourthly, to prevent purchase-resale bias (Godinot et al., 2014), the output of roughage was 

subtracted from the input of roughage, and the output of manure was subtracted from the input 

of fertilizers. As a result, exported manure is valued for its fertilizer capacity similar to 

(synthetic) fertilizer inputs. The disadvantage of the approach is that the output of manure 

results in an artificial reduction of fertilizer input, while an actual reduction should form the 

basis for ecological intensification and an improved NUE. The importance of manure output 

and the impact of these methodological choices should be addressed when benchmarking the 

NUE of dairy farms.  

Fifthly, clustering of farms was based on 5 characteristics reflecting physical and long term 

strategic decisions. In practice, farming systems are much more complex than we considered 

in our study. Including other (unmanageable) factors that affect NUE could influence the 

clustering of farms and hence, the benchmarking of those farms. Nevertheless, this study is a 

first step towards improving benchmarking farms based on their NUE. Results emphasize the 

need to benchmark NUE by comparing farms with similar decisive characteristics, and that the 

importance of parameters that contribute to the uncertainty of the NUE results differ among 

farm types.  
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Sixthly, this study focused on NUEN at farm level. Nitrogen losses related to the production of 

purchased feed and fertilizers were not considered. It should be kept in mind that, as a result, 

the NUE of a farm increases with a decrease in self-sufficiency. This approach, therefore, can 

contribute to biased conclusions and problem swapping, when on-farm nutrient losses related 

to feed production are reduced at the expense of off-farm losses. Furthermore, NUE provides 

insight into the efficiency of production rather than into the environmental impact related to 

nutrient losses. To gain insight into the impact of losses, information on nutrient losses per 

hectare should be combined with site specific knowledge of local eco-systems. In addition to 

this, it should be noted that the results of this study are limited to benchmarking the NUEN of 

specialized dairy farms in Europe. For another indicator or another set of farms, the impact of 

uncertainty on benchmarking the environmental performance of dairy production could be 

different. 

Reducing epistemic uncertainty and benchmarking NUE of farms with similar decisive 

characteristics can contribute to the identification of improvement options. Based on the 

variability between farms within a cluster, farm specific management options can be identified. 

Evaluating the (causes of) variability between farms within a farm cluster, therefore, can be a 

next step for further improving the NUE of farms.  

4.5 Conclusion 

Benchmarking the NUE of dairy farms requires an approach that accounts for differences in 

major decisive characteristics among farms, and for the impact of epistemic uncertainties of 

input parameters. The parameters that are most important in terms of epistemic uncertainty 

(i.e., explain most of the output variance), however, can vary among farm types. Clustering 

farms based on their main characteristics and understanding and reducing the impact of 

epistemic uncertainty of major parameters can significantly improve benchmarking results. The 

method presented in this study, therefore, can contribute to more solid conclusions regarding 

the performance of farms in terms of their nutrient use efficiency. 
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Supplementary material  

S1. Example of nutrient balances using a matrix-based approach 

Figure S.1 shows a nutrient balance of a dairy farm. The total input of N (in kg) is by the dark 

grey boxes, the light grey boxes give the output. The uptake from the stock change of 

concentrates (C) is subtracted from the total input of concentrates, because it is considered as 

an input to the farm. The addition to the stock of animals (A) is considered as a useful output 

of the farm, and is therefore added to the output of animals. The amount of produced manure 

that is exported is subtracted from the input of fertilizers (i.e., mineral fertilizer and manure). 

Hence, manure export is considered to offset a farm’s fertilizer input. However, if export of 

manure exceeded the input of fertilizer, it was considered as a loss. The nutrient use efficiency 

of nitrogen (NUEN) on this farm is equal to 44%.  

Feed storage

Crop production Animal husbandry

Manure storage

154 (R)

Losses

Losses

926 (D) 5589 (M) + 
627 (A) + 91 (A)

Nutrient Balance
A: Animal
C: Concentres
D: Deposition
F: Fixation
M: Milk 
MA: Manure
MF: Mineral fertilizer
R: Roughage 

Total input: 14461

Total output: 6307

NUEN: 44%

9903 (C) - 319(C) 

7397 (MF) - 3600 (MA)

Figure S.1. Nutrient balance of a dairy farm (kg N). The total input of N (in kg) is by the dark 

grey boxes, the light grey boxes give the output.  

Figure S.2 shows the same farm, with similar assumptions as described above, but in this case 

the NUEN is quantified using a matrix-based approach as described by Suh and Yee (2011). 

When the same assumptions are applied, the matrix-based approach results in the same 

efficiency of 44%. However, a difference is that the efficiency of the production processes (i.e. 

crop production, feed storage, animal husbandry and fertilizer storage), are given with respect 
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to the whole farm, not of the individual processes, in case of the matrix-based approach. For 

example, the efficiencies of feed storage and animal husbandry are 100%, when looking at the 

individual processes, because there are no losses. The matrix-based NUEN however, 

incorporates the losses that occurred elsewhere on the farm in the efficiency of the individual 

production processes. For example, the efficiency of feed storage equals 28%, which is 

determined by the efficiency of the previous processes, such as crop production, and input of 

roughage. The efficiency of animal husbandry equals the efficiency of the farming system 

(44%), because it comprises the efficiency of all former processes.  

Feed storage

Crop production Animal husbandry

Manure storage

154 (R)

Losses926 (D) 5589 (M) + 
627 (A) + 91(A)

9903 (C) - 319 (C) 

7397 (MF) – 3600 (MA)

Matrix-based Nutrient Balance
A: Animal
C: Concentres
D: Deposition
F: Fixation
M: Milk 
MA: Manure
MF: Mineral fertilizer
R: Roughage 

Resource input: 14461

Final use: 6307

NUEN: 44%

66%

100%

77%

100%28%

28%

44%

22%

32%

Losses  

Figure S.2. Nutrient balance of a dairy farm, in kg N. The total input of N (in kg) is by the dark 

grey boxes, the light grey boxes give the output. The efficiencies in the bottom right corner 

display the efficiencies quantified with the matrix based nutrient balance, the efficiencies in the 

bottom left corner display the efficiencies quantified looking only at the in- and outputs of that 

specific production system. If an efficiency of 100% is give, it means that there are no losses 

at that process. The efficiency of 32% in the top left corner (animal husbandry) displays the 

efficiency when the export of manure is considered as a loss.  

 

Figure S.3 shows for the same farm, what happens if the export of manure is no longer 

subtracted from the input of fertilizer, but considered as an individual export of the farm. In that 

case, for the matrix based nutrient balance, there are now two efficiencies, one describing the 

useful output we considered earlier (milk and animal) and one describing the production of 

manure.  
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Matrix-based Nutrient Balance
A: Animal
C: Concentres
D: Deposition
F: Fixation
M: Milk 
MA: Manure
MF: Mineral fertilizer
R: Roughage 

Final use: 6307

NUEN, husbandry: 61%

Export: 3600

NUEN, manure: 47%

Feed storage

Crop production Animal husbandry

Manure storage

154 (R)

Losses

Losses

926 (D) 5589 (M) + 
627 (A) + 91(A)

9903 (C) - 319 (C) 

7397 (MF)
66%

100%

77%

100%44%

44%

61%

47%3600 (MA)

 

 

Figure S.3. Nutrient balance of a dairy farm, in kg N, when export of manure is considered as 

an output. The total input of N (in kg) is by the dark grey boxes, the light grey boxes give the 

output. The efficiencies in the bottom right corner display the efficiencies quantified with the 

matrix based nutrient balance, the efficiencies in the bottom left corner display the efficiencies 

quantified looking only at the in- and outputs of that specific production system. If an efficiency 

of 100% is given, it means that there are no losses at that process. 

 

In this paper, we always subtracted manure from the input of fertilizer, including both mineral 

fertilizer and manure. However, some farms exported roughage. Based on the same principles 

as described above (i.e., considering the export of manure as an output), export of roughage 

was considered as an output. This resulted in a slightly different NUEN than what would have 

been calculated using the normal nutrient balance approach, but differences were minor (1-

2%).  

 

S2. Calculating on-farm grass and crop production 

On-farm grass and crop production is estimated based on the energy requirement of the herd, 

minus energy contained in purchased feed and stock change of the feed. 

Step 1: The amount of consumed concentrates, consumed purchased roughage and 

consumed purchased by-products are determined based on farm data regarding the input and 

stock changes of these feed products. Data were obtained from Dairyman  (2010).  
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Step 2: The energy content in consumed concentrates, consumed purchased roughage and 

consumed purchased by-products based on CVB (2008) are multiplied with the amount of 

each feed product to determine energy intake from purchased feed and stock changes of the 

feed. 

Step 3: The total energy requirement of the dairy herd is calculated based on the energy 

required for milk production (dairy cows), maintenance, grazing, growth (young stock and 

heifers) and pregnancy according to CVB (2008).  

Step 4: Energy from on-farm grass (crop) production is derived from subtracting energy of 

consumed concentrates, energy of consumed purchased roughage, energy of consumed 

purchased by-products from the total energy requirement of the dairy herd. 

Step 5: Based on the hectares of crop and grassland on the farm, an average grass (crop) 

yield per ha, and the energy content of the grass (crop) products, the relative share of each of 

the grass (crop) products produced on the farm is determined. In this step, we also included 

harvest losses. 

Step 6: On-farm grass and crop production is determined by multiplying the relative share of 

each grass (crop) product produced on the farm (Step 5) with the energy requirements to be 

fulfilled by on-farm grass (crop) production (Step 4). 
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Table S.1. Meaning of the input parameters (x) in Table S.2 and S.3. The bold-printed item 

x_loss_3 is a function of the other input parameter in the NUE model. 

 Input Stock change Losses Output 

1a. Animal x_in_1 x_stock_1 n.a. x_out_1a 

1b. Milk    x_out_1b 

2. Concentrates x_in_2 x_stock_2 n.a.  

3. Roughage x_in_3 x_stock_3 x_loss_3 x_out_3 

4. Mineral fertilizer x_in_4 x_stock_4   

5. Organic fertilizer x_in_5 x_stock_5 x_loss_5 x_out_5 

6. Deposition x_in_6  n.a.  

7. Fixation x_in_7  n.a.  

 

Table S.2. Calculation rules for the intermediate flow. The bold-printed items are functions of 

other parameters. 

Intermediate flows: Function: 

Flow from crop production to 
feed storage 

x_int_A = Fixed 

Flow from feed storage to 
animal husbandry 

x_int_B = x_int_A+ x_in_3 - x_stock_3  

Flow from animal husbandry to 
manure storage 

x_int_C = x_int_B + x_in_1 - x_stock_1 - x_out_1b 
- x_out_1a + x_in_2 - x_stock_2 

Flow from manure storage to 
crop production 

x_int_D = x_int_C + x_in_ 5 - x_loss_5 - x_out_5 - 
x_stock_5 

 
  

Losses manure storage x_loss_3 = x_int_D + x_in_6 + x_in_7 - x_int_A - 
x_out_3 + x_in_4 - x_stock_4 

 

Table S.3. These equations can be used to make sure that the mass balances hold for each 

process.  

Mass balances In: Out: Losses 

Fertilizer storage 
balance 

x_int_C + x_in_5 x_int_D + x_out_5 + 
x_stock_5 

x_loss_5 

Crop or soil balance x_int_D + x_in_6 + x_in_7 + 
x_in_4 - x_stock_4 

x_int_A + x_out_3 x_loss_3 

Feed storage 
balance 

x_int_A + x_in_3 x_int_B + x_stock_3 n.a. 

Animal husbandry or 
herd balance 

x_int_B + x_in_1 + x_in_2 - 
x_stock_2 

x_int_C + x_out_1b + 
x_out_1a + x_stock_1 

n.a. 

 



Chapter 4│The effect of epistemic uncertainty 

104 
 

4.6 References 

Aarts, H.F.M., Biewinga, E.E., Van Keulen, H., 1992. Dairy farming systems based on 
efficient nutrient management. Neth. J. Agric. Sci. 40, 285–299. 
 
Camp, R.C.. 1989. Benchmarking: The Search for Industry Best Practices that Lead to 
Superior Performance, ASQC Quality Press, Milwaukee, WI. 
 
Chiu T., Fang D., Chen J., Wang Y., Jeris C., 2001. A robust and scalable clustering 
algorithm for mixed type attributes in large database environment. In: Proceedings of the 7th 
ACM SIGKDD international conference in knowledge discovery and data mining, Association 
for Computing Machinery, San Francisco, CA, 263–268. 
 
Daatselaar, C.H., Reijs, J.R., Oenema, J., Doomewaard, G.J., Aarts, H.F., 2015. Variation in 
nutrient use efficiencies on Dutch dairy farms. J. Sci. Food Agric. 95,15. 
 
Dairyman, 2010. http://www.interregdairyman.eu/en/dairyman.htm Last access on 14-
01-2016. 
 
European Environment Agency (EEA), 2013. EMEP/EEA Air Pollutant Emission Inventory 
Guidebook. http://www.eea.europa.eu/publications/emep-eea-guidebook-2013 
 
European Union (EU), 2006. (Good Agricultural Practice for Protection of Waters) 
Regulations. S.I. No. 378 of 2006. Government Publications Office, Stationery Office. 
 
Formann, A.K., 1984. Die Latent-Class-Analyse: Einführung in die Theorie und Anwendung. 
Beltz, Weinheim. 
 
Godinot, O., Carof, M., Vertes, F., Leterme, P., 2014. SyNE: An improved indicator to assess 
nitrogen efficiency of farming systems. Agric. Syst. 127, 41-52. 
 
Gourley, C.J.P., Aarons, S.R., Powell, J.M., 2012. Nitrogen use efficiency and manure 
management practices in contrasting dairy production systems. Agric. Ecosyst. Environ, 147, 
73–81. 
 
Groen, E.A., Bokkers, E.A.M. Heijung, R. and de Boer, I.J.M. (2016). Methods for Global 
Sensitivity Analysis in Life Cycle Assessment. Int. J. Life. Cycle. Assess. 
doi:10.1007/s11367-016-1217-3 
 
Heijungs, R., Kleijn, R., 2001. Numerical approach towards life cycle interpretation. Int. J. 
Life. Cycle. Assess. 6, 141 – 148. 
 
Heijungs, R., Lenzen, M., 2014. Error propagation methods for LCA—a comparison. Int J Life 
Cycle Assess. 19,1445–1461. 
 
Henriksson, P.J.G., Heijungs, R., Dao, H.M., Phan, L.T., de Snoo, G.R., Guinee, J.B., 2015 
Product Carbon Footprints and Their Uncertainties in Comparative Decision Contexts. PLoS 
One.1-11. 
 
Mihailescu, E., Ryan, W., Murphy, P.N.C., Casey, I.A., Humphreys, J., 2015. Economic 
impacts of nitrogen and phosphorus efficiency on nineteen intensive grass-based dairy farms 
in the South of Ireland. Agric. Syst. 132, 121–132. 
 

http://www.interregdairyman.eu/en/dairyman.htm
http://www.eea.europa.eu/publications/emep-eea-guidebook-2013


                                                                                       Chapter 4│The effect of epistemic uncertainty 

105 
 

Mu, W., van Middelaar, C. E., Bloemhof, J. M., Oenema, J., de Boer, I. J. M., 2016. Nutrient 
balance at chain level: a valuable approach to benchmark nutrient losses of milk production 
systems. J. Clean. Prod. 112, 2419-2428. 
 
Mulier, A. , Hofman, G. , Baecke, E. , Carlier, L. , De Brabander, D. , De Groote, G. , 2003. A 
methodology for the calculation of farm level nitrogen and phosphorus balances in Flemish 
agriculture. Eur. J. Agron, 20, 45–51. 
 
Nevens, F., Verbruggen, I. , Reheul, D., Hofman, G., 2006. Farm gate nitrogen surpluses 
and nitrogen use efficiency of specialized dairy farms in Flanders: Evolution and future goals. 
Agric. Syst. 88, 142–155. 
 
Oenema, J., Burgers, S., van Keulen, H., van Ittersum, M., 2015. Stochastic uncertainty and 
sensitivities of nitrogen flows on dairy farms in The Netherlands. Agric. Syst. 137, 126-138. 
 
Oenema, O., Kros, H., deVries, W., 2003. Approaches and uncertainties in nutrient budgets: 
implications for nutrient management and environmental policies. Eur. J. Agric. 20, 3–16. 
 
Phuong, H.N., Friggens, N.C., de Boer, I.J.M., Schmidely, P., 2013. Factors affecting energy 
and nitrogen efficiency of dairy cows: A meta-analysis. J. Dairy Sci. 96, 7245–7259. 
 
Powell, J.M., Gourley, C.J.P., Rotz, C.A., Weaver, D.M., 2010. Nitrogen use efficiency: A 
potential performance indicator and policy tool for dairy farms. Environ. Sci. Policy. 13, 217-
228 
 
Roberts, T.L., 2008. Improving nutrient use efficiency. Turk. J. Agric. For. 32, 177–182. 
 
Ryan, W.,  Hennessy, D.,  Murphy, J.J., Boland, T.M.,  Shalloo. L., 2011. A model of nitrogen 
efficiency in contrasting grass-based dairy systems. J. Dairy Sci. 94, 1032–1044. 
 
Saltelli, A., Ratto, M., Andres, T., Corporation, E., 2008. Global sensitivity analysis: the 
primer. Wiley Online Library. 
 
Schröder, J.J., Aarts, H.F.M., Ten Berge, H.F.M.,  Van Keulen, H., Neeteson, J.J., 2003. An 
evaluation of whole-farm nitrogen balances and related indices for efficient nitrogen use. Eur. 
J. Agron. 20,33–44. 
 
Smith, V.H.,  Tilman, G.D., Nekola, J.C., 1999. Eutrophication: impacts of excess nutrient 
inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 100, 179–196.  
 
Spears, R.A.,  Kohn, R.A., Young, A.J., 2003. Whole-farm nitrogen balance on western dairy 
farms. J. Dairy Sci. 86, 4178–4186. 
 
SPSS, 2015. Statistical Package for Social Sciences. SPSS Software Package 22.0 for 
Microsoft Windows, Chicago, Illinois, USA. 
 
Suh, S. and Yee, S., 2011. Phosphorus use-efficiency of agriculture and food system in the 
US. Chemosphere. 84, 806-813. 
 
Veeteelt,2015.<http://veeteelt.nl/nieuws/kringloopwijzer-2016-verplicht-voor-alle 
melkveebedrijven> Last accessed on 02-11-2015. 
 
de Vries, W., Kros, J., Dolman, M.A., Vellinga, Th.V., de Boer, H.C., de Boer, I.J.M., 
Sonneveld, M.P.W., Bouma, J., 2015. Environmental impacts of innovative dairy farming 

http://veeteelt.nl/nieuws/kringloopwijzer-2016-verplicht-voor-alle%20melkveebedrijven
http://veeteelt.nl/nieuws/kringloopwijzer-2016-verplicht-voor-alle%20melkveebedrijven


Chapter 4│The effect of epistemic uncertainty 

106 
 

systems aiming at improved internal nutrient cycling: a multi-scale assessment. Sci. Total 
Environ. 536, 432-442. 
 
Walker, W.E., Harremoës, P., Rotmans, J., van der Sluijs, J.P., van Asselt M.B.A., Janssen, 
P., Krayer von Krauss, M.P., 2003. Defining Uncertainty: A Conceptual Basis for Uncertainty 
Management in Model-Based Decision Support. Integr. Assess. 4, 5–17. 
 
Whitehead, D.C., 1995. Volatilization of ammonia. In: Whitehead, D.C., ed. Grassland 
nitrogen. Wallingford, CAB International. 152-179. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 Chapter 5│Fuzzy data envelopment analysis  

107 
 

Chapter 5 

Assessing the impact of uncertainty on benchmarking the eco-efficiency of dairy 

farming using fuzzy data envelopment analysis 

 

W. Mu1,2, A.Kanellopoulos2, C.E. van Middelaar1, D. Stilmant3, J.M. Bloemhof2 

1 Animal Production Systems group,  Wageningen University, P.O. Box 338, 6700 AH 

Wageningen, the Netherlands 

2 Operations Research and Logistics group, Wageningen University, P.O. Box 8130, 

6700 EW Wageningen, the Netherlands 

3 Farming Systems, Territory and Information Technologies Unit, Walloon Agricultural 

Research Centre, 100 rue du Serpont, 6800 Libramont, Belgium 

 

 

This Chapter is submitted to Journal of Cleaner Production 

 

 

 

 

 

 

 

 

 



Chapter 5│Fuzzy data envelopment analysis  
 

108 
 

Abstract 

Data envelopment  analysis (DEA) has been used to assess the eco-efficiency of dairy farming 

by taking into account multiple economic and environmental indicators. A limitation of standard 

DEA is that indicators are assumed to be deterministic and uncertainty is not taken into 

account. In practice, however, data used to calculate the economic and environmental 

performance of dairy farms, contain high levels of uncertainty. Neglecting uncertainty could 

cause biased benchmarking results and lead to wrong conclusions. Compared to the standard 

DEA, the advantage of fuzzy DEA is that it allows all parameters to be a range  (i.e. minimum 

and maximum threshold values) instead of a single crisp number and by this we could allow 

uncertainties associated with the model parameters to be considered. The objective of this 

study is therefore to demonstrate how fuzzy DEA can be used to evaluate the eco-efficiency 

of dairy farming accounting explicitly for multiple indicators and corresponding uncertainty. In 

this study, we used fuzzy DEA to evaluate the eco-efficiency of 55 specialized dairy farms from 

different regions across Western Europe. We used N surplus, P surplus, land use, energy use 

as the environmental indicators and gross margin as the economic indicator. We first applied 

the standard DEA model on the aforementioned indicators to derive the eco-efficiency scores. 

Afterwards, we applied fuzzy DEA to explore the effect of uncertainty. We found that fuzzy 

DEA identified less efficient farms compared to the standard DEA. Fuzzy DEA provides 

different ranking results compared to the ranking results based on standard DEA. Same 

findings can be held when comparing other outputs of fuzzy DEA with the standard DEA . With 

fuzzy DEA, we found improvement percentage for each model input parameters are defined 

as ranges rather than a crisp value.  In addition, fuzzy DEA identified different set peers and 

the importance of the peers are also different when compared to the peers of the standard 

DEA. All the aforementioned findings showed the importance of taking uncertainty into 

consideration in the benchmarking process, and how fuzzy DEA can be used to do so. With 

fuzzy DEA, we can identify the farms whose eco-efficiency performances are sensitive to the 

uncertainty of the inputs and outputs. Moreover, we demonstrated the type of outputs and 

managerial insights resulting from fuzzy DEA, and how they can be used by decision makers 
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to benchmark farm practices and improve the eco-efficiency of dairy production systems. The 

decision makers therefore should use the outcome of fuzzy DEA, which is more robust and 

reliable because uncertainty has been taken into account during the quantification processes. 
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5.1. Introduction 

Global milk production has increased during the last decades, from 500 million tonnes in 1983 

to 769 million tonnes in 2013 (FAO, 2016). With the ongoing urbanisation and improving living 

standards, the demand for dairy products is continuously expanding (Gerosa and Skoet, 2012). 

To meet the growing demand, world milk production is expected to grow further to 831 million 

tonnes in 2017 (FAO, 2017).  

This increase of milk production can contribute to resource (e.g. land, energy) scarcity and 

various environmental problems such as climate change, acidification and eutrophication (Mu 

et al., 2016). As a result, the dairy sector is challenged to increase its eco-efficiency, which 

means, minimizing environmental impacts, while maintaining economic viability (Dolman et al., 

2014). To meet this challenge, benchmarking individual farms based on their eco-efficiency 

can be valuable to identify best farm practices and to provide guidance for improving farm 

performance (Stokes et al., 2007). 

To benchmark farms based on their eco-efficiency, a set of economic and environmental 

indicators must be selected and quantified. For measuring economic performance, indicators 

such as income, gross margin, and production cost are often used (van Middelaar et al., 2011; 

Iribarren et al., 2011; Lebacq et al., 2015). For measuring environmental performance, 

indicators like nitrogen and phosphorus surpluses, global warming potential, acidification 

potential, eutrophication potential, land use and energy use have been proposed (Mu et al., 

2016). To prevent biased conclusions (Fraser and Cordina, 1999; Stokes et al., 2007; Iribarren 

et al., 2011) and to account for potential trade-offs between environmental problems, multiple 

indicators need to be taken into account when quantifying the eco-efficiency of dairy farming. 

Data envelopment analysis (DEA) has been used to evaluate the eco-efficiency of agricultural 

systems accounting for multiple environmental and economic indicators simultaneously 

(Picazo-Tadeo et al., 2011, Iribarren et al., 2011). Eco-efficient practices are identified and 

used as a benchmark for current inefficient practices (Egilmez et al., 2016). A limitation of 
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standard DEA is that indicators are assumed to be deterministic and uncertainty is not taken 

into account (Stokes et al., 2007; Shortall et al., 2013). In practice, however, dairy systems 

involve complex production processes and some factors can be difficult to measure in a precise 

way (e.g. manure production, grass yield). Data used to calculate the economic and 

environmental performance of dairy farms, therefore, can contain high levels of uncertainty 

(Sefeedpari et al., 2012; Mugera, 2013). To avoid biased conclusions, it is important to take 

uncertainty into consideration when benchmarking the eco-efficiency of dairy farms (Mu et al., 

2017). To the best of our knowledge, previous studies that used DEA to benchmark the eco-

efficiency of dairy farms did not account for those uncertainties. As an alternative to standard 

DEA, Emrouznejad et al., (2014) suggest fuzzy DEA as a prominent tool to deal with the 

uncertainty of input and output data. Fuzzy DEA, therefore, could be a valuable approach to 

account for uncertainties when benchmarking the eco-efficiency of dairy farming. 

The objectives of this study are to assess the impact of uncertainty on benchmarking the eco-

efficiency of dairy farming, and to demonstrate how fuzzy DEA can be used to account for the 

uncertainty of multiple indicators. In section 5.2, theories on eco-efficiency, DEA and fuzzy 

DEA are introduced. Section 5.3 shows how fuzzy DEA can be used to quantify and benchmark 

the eco-efficiency of dairy farming while accounting for uncertainty based on a case study. The 

results of the case study are reported in section 5.4. In section 5.5, discussions on the 

important findings and conclusions of the study are provided. 

5.2 Theory  

5.2.1 Eco-efficiency of dairy farming based on a single environmental indicator 

The concept of eco-efficiency was introduced in 1970s as the concept of “environmental 

efficiency” (Freeman et al., 1973). Later on, it was further developed to be the ratio between 

the economic value and environmental impact added by a system (Keffer and Shimp 1999; 

Seppälä et al., 2005; Zhang et al., 2008). Eco-efficiency has been widely quantified in the field 

of agriculture and food (Meul et al., 2007; van Middelaar et al., 2011; Müllera et al., 2015). 
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Net profit and gross value added are often used to quantify the economic dimension of eco-

efficiency, while in case of the environmental dimension, indicators vary across studies. To 

quantify the environmental performance of dairy systems, the nutrient balance (NB) approach 

and life cycle assessment (LCA) are two commonly used methods (Oenema et al., 2003; de 

Boer, 2003; Basset-Mens et al., 2009). An NB quantifies the difference between nutrient flows 

entering and leaving a system, and is often used to determine losses of important nutrients, 

such as nitrogen (N) and phosphorus (P) (Mu et al., 2016). Based on an NB approach, 

indicators such as the nutrient use efficiency or the nutrient surplus (i.e., per hectare or per 

unit of product) of a system can be quantified. LCA is an internationally accepted and 

standardized method (ISO 14040, ISO 14041, ISO 14042, ISO 14043) that quantifies potential 

environmental impacts caused by the emission of pollutants and the use of resources during 

the entire life cycle of a product. Examples of LCA indicators are global warming potential, 

acidification potential, eutrophication potential, land use and energy use (Mu et al., 2016). 

Generally, studies determine the eco-efficiency of a farm based on an individual environmental 

indicator (e.g. Basset-Mens et al., 2009; van Middelaar et al., 2011; Thanawong et al., 2014). 

Using one environmental indicator, however, might result in biased conclusions. For instance, 

a farm with low N surplus might have high energy use. Multiple environmental indicators  are 

therefore needed to be taken into account when quantifying the eco-efficiency of dairy farming. 

5.2.2 Quantifying eco-efficiency of dairy farming based on multiple environmental indicators 

using DEA 

Data envelopment analysis (DEA) is a non-parametric approach which was originally 

developed by Charnes et al. (1978) to derive the efficiency score of a decision making unit 

(DMU), e.g. a dairy farm, by taking into consideration multiple indicators simultaneously.  

To shortly explain the main principle of DEA, we use an illustrative two dimensional example, 

presented in Figure 5.1. We assume that a set of 5 dairy farms (A,B,C,D,E) are evaluated with 

respect to their N surplus and gross margin. Each farm is compared with all other farms based 
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on the gross margin produced per unit of N surplus. In this example, farm B has the highest 

gross margin per unit of N surplus and consequently it can be considered to be efficient. The 

line that crosses the origin as well as point B has a slope equal to the maximum amount of 

gross margin per unit of N surplus and is called the efficient frontier. In this example, we 

assume that the capacity of a farm to produce gross margin is independent of the production 

scale and the size of the operation. In other words, we assume a constant returns to scale 

(CRS), and the aforementioned frontier is the CRS eco-efficient frontier. All farms that are 

located on the frontier get an efficiency score of 1, while all other farms receive a non-negative 

efficiency score lower than 1, which is dependent on the distance to the efficient frontier. To 

increase its eco-efficiency, farm E, for example, has to move to point E1 by increasing its gross 

margin (output orientation) without increasing its N surplus, or it has to move to point E2 by 

decreasing its N surplus (input orientation) without decreasing its gross margin.   

 

Figure 5.1 Illustrative example of Data Envelopment Analysis 

In practice, the level of eco-efficiency of a DMU, in this case the gross margin per unit of N 

surplus, might depend on the scale of production (Spillman, 1923). The first units of fertilizer 

inputs, for example, might be more effective in producing outputs than the last ones. A variable 

returns to scale (VRS) DEA model takes into account the scale of production by assigning 
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efficiency scores based on a VRS frontier (Figure 5.1). Given the VRS efficient frontier of 

Figure 5.1, farms A, B and C are efficient. Farm D is weakly efficient which means that although 

it has an efficiency score of 1, it can still be improved by moving towards farm C. In the case 

of an output orientation VRS DEA model, farm E can increase its efficiency by moving to point 

E3, using farm B and C as benchmarks. This means that management practices of farm E3 will 

be based on a linear combination of the practices of farms B and C. In case of input orientation, 

farm E can increase its efficiency by moving to point E4 using Farm A and B as benchmarks.  

To generalize the aforementioned 2-dimensional example to a multi-dimensional example, we 

provide the mathematical formulation of the input oriented standard  DEA model (1)-(6), which 

is used to evaluate the efficiency score of each farm with the efficiency score of all other farms 

in the sample. 

𝑀𝑀𝑀𝑀𝑀𝑀 𝜃𝜃 − 𝜀𝜀(�𝑠𝑠𝑖𝑖− +
𝑚𝑚

𝑖𝑖=1

�𝑠𝑠𝑟𝑟+
𝑠𝑠

𝑟𝑟=1

) 
(1) 

𝑠𝑠. 𝑡𝑡.  �𝜆𝜆𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑖𝑖− = 𝜃𝜃𝑥𝑥𝑖𝑖0   𝑖𝑖 = 1, … ,𝑚𝑚                
𝑛𝑛

𝑗𝑗=1

 
(2) 

         �𝑦𝑦𝑟𝑟𝑟𝑟𝜆𝜆𝑗𝑗 − 𝑠𝑠𝑟𝑟+ = 𝑦𝑦𝑟𝑟0     𝑟𝑟 = 1, … , 𝑠𝑠
𝑛𝑛

𝑗𝑗=1

 
(3) 

         �𝜆𝜆𝑗𝑗 = 1                         𝑗𝑗 = 1, … ,𝑛𝑛
𝑛𝑛

𝑗𝑗=1

 
(4) 

         𝜆𝜆𝑗𝑗 ≥ 0                               𝑗𝑗 = 1, … , 𝑛𝑛 (5) 

         𝑠𝑠𝑖𝑖−, 𝑠𝑠𝑟𝑟+  ≥ 0 (6) 

 

Where θ is the efficiency score of the evaluated farm, ε is a very small positive number, 𝑠𝑠𝑖𝑖− is 

the slack of input i and represents input excess,  𝑠𝑠𝑟𝑟+ is the slack of output r and represents 

output shortfall. The slacks are used to avoid weak efficiencies. Assume that we have n DMUs 

noted as DMUj (j=1,2,...,n), then xij (i=1,2,...,m) represents the ith input (i.e. less-is-better 
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indicator) for jth DMU and yrj (r=1,2,...,s) represent the rth output (i.e. more-is-better indicator) 

for jth DMU. The fundamental principle of this DEA model is to let each DMU select the most 

favourable weights (i.e. λj) that can minimize the distance to the eco-efficiency frontier and 

derive the efficiency score 𝜃𝜃. The constraint ∑ 𝜆𝜆𝑗𝑗 = 1 𝑛𝑛
𝑗𝑗=1 imposes VRS, such that the scale of 

production is taken into account and farms are only compared to other farms of a similar size. 

Input orientation means inputs are minimized while the output is fixed. The standard DEA 

Model  is solved with a two-phase method as described in Banker et al. (1984). We can apply 

this model to each DMU to derive its efficiency scores. A DMU is only efficient when 𝜃𝜃 = 1 and 

𝑠𝑠𝑖𝑖−, 𝑠𝑠𝑟𝑟+ = 0. 

DEA has been used to assess the eco-efficiency of dairy farms by taking into account multiple 

economic and environmental indicators (De Koeijer et al., 2002; Ramilan et al., 2011). De 

Koeijer et al., (2002) applied DEA to evaluate the economic and environmental performance 

of arable farms in the Netherlands. Nitrogen surplus per ha and application of herbicides per 

ha were used as the main environmental indicators. Ramilan et al. (2011) assessed the 

economic and environmental efficiency of 210 dairy farms in New Zealand. In this study, 

nitrogen discharge per ha was used as environmental indicator. Results showed that farms 

that are economically efficient can still improve their environmental performance.  

Several studies showed that standard DEA is very sensitive to (measurement) errors and that 

small changes in data can alter the efficiency results significantly (Stokes et al., 2007, Shortall 

etl., 2013). Because of the high uncertainty related to the data used to calculate the 

environmental performance of dairy systems fuzzy DEA can be used.  

Fuzzy DEA has been proposed in industrial engineering, banking, and agricultural economics 

as an alternative variant of standard DEA, as it takes into account the uncertainty of model 

parameters (Srinivasa Raju and Nagesh Kumar, 2013; Emrouznejad et al., 2014; Egilmez et 

al., 2016; Wanke et al., 2016). So far, fuzzy DEA has not been used to evaluate the eco-

efficiency of dairy systems. 
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5.2.3  Accounting uncertainty in benchmarking eco-efficiency of dairy farming by using fuzzy 

DEA 

Accurate model inputs and outputs are vital for successful implementation of DEA. In practice, 

however, data can be imprecise which can lead to biased conclusions. A standard DEA model 

assumes that data are crisp, which means that data is assumed to be without error and 

uncertainties are not taken into account. Fuzzy DEA has been proposed as an alternative to 

standard DEA, when data is imprecise and vague. Figure 5.2 provides a two dimensional 

example to explain the main principle of fuzzy DEA. 

 

Figure 5.2 Fuzzy data envelopment analysis example 

We assume that a set of four dairy farms is evaluated with respect to their N surplus and gross 

margin. Unlike the crisp (i.e. singe-valued) inputs and outputs of the standard DEA, in fuzzy 

DEA, inputs and outputs are ranges that are defined by the upper and lower bounds of the 

observed values (Figure 5.2). The dots represent the observed values of farm A, B, C and D, 

whereas the error bars represent the uncertainty range. The optimistic scenario, i.e., the 

scenario in which the farms have the highest efficiency, is based on the outcome representing 

the lowest inputs and highest outputs based on the uncertainty ranges.  In Figure 5.2, A1, B1, 

C1 and D1 represent the optimistic scenario, while A2, B2, C2 and D2 represent the pessimistic 

scenario. Suppose farm D is the farm being evaluated. In this case, the lower bound of its 
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efficiency is represented by the situation in which farm D has the lowest efficiency (gross 

margin per kg of N surplus) (D2) and the other farms have the highest efficiency (A1, B1, C1). 

In this case, A1, B1 and C1 define the new frontier, and farm D is not efficient. Unlike single-

valued efficiency scores derived from standard DEA, fuzzy DEA provides a range of efficiency 

scores per farm. 

The only difference in the general structure of the fuzzy DEA model compared to the standard 

DEA model  is that inputs and outputs of the DMUs become fuzzy (i.e. 𝑥𝑥�𝑖𝑖𝑖𝑖 and 𝑦𝑦�𝑟𝑟𝑟𝑟 represent 

fuzzy inputs and outputs). 

To solve the fuzzy DEA model, we followed the method proposed by Kao and Liu (2000). This 

method using α-cuts, is based on Zadeh’s extension principle to transform the fuzzy DEA 

model to a series of standard crisp DEA models. The basic principle is to specify the fuzzy 

inputs and outputs in bounded ranges. Mugera (2013) pointed out that triangular fuzzy number 

are commonly used because they can be specified by the decision maker, so the inputs and 

outputs of DMUs can be defined as triangular fuzzy numbers. Let 𝑥𝑥�𝑖𝑖𝑖𝑖 = (𝑥𝑥𝑖𝑖𝑖𝑖𝑚𝑚,𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙 , 𝑥𝑥𝑖𝑖𝑖𝑖𝑢𝑢) and 𝑦𝑦�𝑟𝑟𝑟𝑟 =

(𝑦𝑦𝑟𝑟𝑟𝑟𝑚𝑚,𝑦𝑦𝑟𝑟𝑟𝑟𝑙𝑙 ,𝑦𝑦𝑟𝑟𝑟𝑟𝑢𝑢 ), So that fuzzy data 𝑥𝑥�𝑖𝑖𝑖𝑖 and 𝑦𝑦�𝑖𝑖𝑖𝑖 are specified with centre (𝑥𝑥𝑖𝑖𝑖𝑖𝑚𝑚,𝑦𝑦𝑟𝑟𝑟𝑟𝑚𝑚), which can be 

the measured data, and the left (𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙 ,𝑦𝑦𝑟𝑟𝑟𝑟𝑙𝑙 ) and right (𝑥𝑥𝑖𝑖𝑖𝑖𝑢𝑢 ,𝑦𝑦𝑟𝑟𝑟𝑟𝑢𝑢 ) spread of the measured data. 

To transfer the fuzzy numbers to crisp numbers, the α-cuts approach was applied. Using α-

cuts, the fuzzy data (uncertainty range) can be represented by different level of confidence 

intervals. In this way, the α-cuts, representing the level of confidence, can form sets of movable 

boundaries (Kao and Liu, 2000). Figure 5.3 provides an example to illustrate the principle of 

fuzzy numbers and α-cuts. On the horizontal axis, we see that we have measured data 𝑥𝑥𝑖𝑖𝑖𝑖 
𝑚𝑚 

with a bounded uncertainty range specified as [𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙 , 𝑥𝑥𝑟𝑟𝑟𝑟𝑢𝑢 ].  The vertical axis indicates the level of 

α-cuts. α=1 indicates that there is no uncertainty, so the measured data is accurate. α=0 takes 

the whole fuzzy range into consideration. Uncertainty is increased by moving α from 1 to 0 

(Figure 5.3). 
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Figure 5.3 Illustration of α-cuts 

At a given α-cut level (0≤ 𝛼𝛼 ≤1), the lower bound and upper bound of the fuzzy number 

(𝑥𝑥�𝑖𝑖𝑖𝑖,𝑦𝑦�𝑟𝑟𝑟𝑟) can be quantified as: 

(𝑥𝑥𝑖𝑖𝑖𝑖)𝛼𝛼 = �(𝑥𝑥𝑖𝑖𝑖𝑖)𝛼𝛼𝐿𝐿 , (𝑥𝑥𝑖𝑖𝑖𝑖)𝛼𝛼𝑈𝑈 �= ��𝑥𝑥𝑖𝑖𝑖𝑖𝑚𝑚 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙 �𝛼𝛼 + 𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙 , 𝑥𝑥𝑖𝑖𝑖𝑖𝑢𝑢 − ( 𝑥𝑥𝑖𝑖𝑖𝑖𝑢𝑢 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑚𝑚)𝛼𝛼� (7) 

(𝑦𝑦𝑟𝑟𝑟𝑟)𝛼𝛼 = �(𝑦𝑦𝑟𝑟𝑟𝑟)𝛼𝛼𝐿𝐿 , (𝑦𝑦𝑟𝑟𝑟𝑟)𝛼𝛼𝑈𝑈 � = ��𝑦𝑦𝑟𝑟𝑟𝑟𝑚𝑚 − 𝑦𝑦𝑟𝑟𝑟𝑟𝑙𝑙 �𝛼𝛼 + 𝑦𝑦𝑟𝑟𝑟𝑟𝑙𝑙 , 𝑦𝑦𝑟𝑟𝑟𝑟𝑢𝑢 − ( 𝑦𝑦𝑟𝑟𝑟𝑟𝑢𝑢 − 𝑦𝑦𝑟𝑟𝑟𝑟𝑚𝑚)𝛼𝛼 � (8) 

 

The lower and upper bound of the efficiency scores can be derived at a specified α level. 

According to Kao and Liu (2000), to find the lowest efficiency of DMU0 compared to other 

DMUs, the output of DMU0 and the input of all other DMUs should be set to their lowest values 

and the input of DMU0 and the output of all other DMUs should be set to their highest values. 

This can be formulated mathematically as the fuzzy DEA model (9-14).  

𝑀𝑀𝑀𝑀𝑀𝑀 𝜃𝜃 − 𝜀𝜀(�𝑠𝑠𝑖𝑖− +
𝑚𝑚

𝑖𝑖=1

�𝑠𝑠𝑟𝑟+
𝑠𝑠

𝑟𝑟=1

) 
(9) 

𝑠𝑠. 𝑡𝑡.  � 𝜆𝜆𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿 + 𝜆𝜆𝑗𝑗0𝑥𝑥𝑖𝑖0𝛼𝛼
𝑈𝑈 + 𝑠𝑠𝑖𝑖− = 𝜃𝜃𝜃𝜃𝑖𝑖0𝛼𝛼𝑈𝑈    𝑖𝑖 = 1, … ,𝑚𝑚

𝑛𝑛

𝑗𝑗=1
𝑗𝑗≠𝑗𝑗0

   
(10) 

� 𝜆𝜆𝑗𝑗𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑈𝑈 + 𝜆𝜆𝑗𝑗0𝑦𝑦𝑟𝑟0𝛼𝛼
𝐿𝐿 − 𝑠𝑠𝑟𝑟+ = 𝑦𝑦𝑟𝑟0𝛼𝛼𝐿𝐿             𝑟𝑟 = 1, … , 𝑠𝑠

𝑛𝑛

𝑗𝑗=1
𝑗𝑗≠𝑗𝑗0

 
(11) 
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�𝜆𝜆𝑗𝑗 = 1                                                          𝑗𝑗 = 1, … ,𝑛𝑛
𝑛𝑛

𝑗𝑗=1

 
(12) 

𝜆𝜆𝑗𝑗 ≥ 0                                                               𝑗𝑗 = 1, … ,𝑛𝑛 (13) 

𝑠𝑠𝑖𝑖−, 𝑠𝑠𝑟𝑟+  ≥ 0 (14) 

 

The same principle can be applied to find the highest efficiency of DMU0. By solving the fuzzy 

DEA model, we can derive an efficiency range at each level of α. The efficiency derived at α=1 

is the same as the one derived by standard DEA. The efficiency range derived at α=0 means 

that the efficiency will never exceed the upper limit of the range or fall below the lower limit of 

the range. 

5.2.4 Ranking method and eco-efficiency score 

Fuzzy DEA produces efficiency scores as ranges at different α-cut levels. The scores might be 

difficult to interpret by decision makers, especially when the uncertainty level is unknown and 

too many α cuts are included. To facilitate the interpretation, the ranges at different α-cut levels 

need to be composed into crisp values. Chen and Klein, (1997) provide a solution to derive 

ranking indexes (𝐼𝐼𝑗𝑗) by using equation (15): 

𝐼𝐼𝑗𝑗 =
∑ (�𝜃𝜃𝑗𝑗�∝𝑘𝑘

𝑈𝑈 −𝑐𝑐)𝑛𝑛
𝑘𝑘=0

�∑ ��𝜃𝜃𝑗𝑗�∝𝑘𝑘
𝑈𝑈 −𝑐𝑐�−∑ (�𝜃𝜃𝑗𝑗�∝𝑘𝑘

𝐿𝐿 −𝑑𝑑)𝑛𝑛
𝑗𝑗=0

𝑛𝑛
𝑗𝑗=0 �

,   𝑛𝑛 → ∞                                                                             (15) 

Where 𝜃𝜃𝑗𝑗 is the efficiency score for DMU j, U and L represent the upper and lower bound of 

the efficiency ranges respectively;  𝑐𝑐 = min
𝑗𝑗,𝑘𝑘

�(�𝜃𝜃𝑗𝑗𝑗𝑗�∝𝑘𝑘
𝐿𝐿 )�, which is the lowest efficiency score 

among the lower bounds of the efficiency ranges at all α cuts, 𝑑𝑑 = max
𝑗𝑗,𝑘𝑘

�(�𝜃𝜃𝑗𝑗𝑗𝑗�∝𝑘𝑘
𝑈𝑈 )�, which is 

the largest efficiency score among the upper bounds of the efficiency ranges at all α cuts; and 

n is the number of α cuts.  

5.3  Case study 
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5.3.1 Data description 

In this study, we used fuzzy DEA to evaluate the eco-efficiency of 55 specialized dairy farms 

from different regions across Western Europe. Table 5.1 provides the description of the farm 

characteristics. 

Table 5.1 Descriptive statistics of important farm characteristics  

Characteristics Unit Mean SD Minimum Maximum 

Farm area ha 73.6 36.8 35.8 264.8 

Dairy cows number 103.3 33.3 49 194 

Milk production kg cow-1year-1 7993.3 1144.6 5700 10742 

Milk fat content % 4.2 0.2 3.7 4.8 

Milk protein content % 3.5 0.1 3.1 3.7 

Concentrate fed kg cow-1year-1 1434.8 726.2 317 3445 

 

We used total gross margin as the economic indicator, defined as revenue minus total variable 

cost. Environmental indicators have been calculated based on a life cycle assessment 

approach, including all processes from cradle to farm gate, and using farm data from 2010 

(Dairyman, 2010; Mu et al., 2017). A detailed description of the calculation methods can be 

found in Mu et al. (2017). Environmental indicators included were N surplus, P surplus, land 

use, energy use, all expressed per kg of fat-and-protein corrected milk (FPCM) and based on 

economic allocation. Descriptive statistics of the economic and environmental indicators are 

presented in Table 5.2.  
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Table 5.2 Descriptive statistics of the economic and environmental indicators 

Indicator1 Unit Mean SD Minimum Maximum 

Gross margin euro × kg FPCM-1 0.2 0.1 0.1 0.4 

N surplus g N × kg FPCM-1 14.4 5.2 4.9 27.0 

P surplus g P × kg FPCM-1 1.3 0.9 0.1 4.9 

Land use m2 × kg FPCM-1 1.3 0.4 0.7 2.8 

Energy use MJ × kg FPCM-1 2.8 0.8 1.8 5.1 

1 The system boundary for all environmental indicators is from cradle-to-farm gate 

5.3.2 Set up of calculations 

According to Pérez Urdiales et al. (2016), reducing environmental impacts while maintaining 

economic return is of major interest to farmers and policymakers because the profit margins 

as well as environmental policies become tighter over time. We therefore applied input oriented 

DEA models. 

The environmental indicators are defined as “less is better” indicators and the economic 

indicator is defined as “more is better” indicator. First, we applied the VRS DEA model on the 

set of indicators as mentioned in Table 5.2 to derive the eco-efficiency score for each farm. 

Second, we applied the fuzzy DEA model  to explore the effect of uncertainty. To determine 

the fuzzy lower and upper bound of the range of each indicator we assumed -20% and +20% 

of the observed level respectively. Preferably, the upper and lower bound are based on actual 

uncertainty values, but data requirements are high and limit the inclusion of such values. We 

used α-cuts to convert the fuzzy DEA model into the corresponding crisp model. We took into 

account the whole fuzzy range assuming 11 α-cuts with values that range from 0 to 1 and with 

pre-specified intervals of 0.1 (i.e. α=1, 0.9, 0.8,...,0.1,0), so the uncertainty range of each 

indicator can vary from 0-20%. By solving the crisp model, we derived a lower and upper bound 

of the efficiency score at each α-cut level. Third, two scenarios were defined to explore different 

levels of uncertainty by using different combinations of the α-cuts. In the first scenario, we 
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assumed low uncertainty and we included α-cut levels of 0.9, 0.8, and 0.7. In the second 

scenario, we assumed high uncertainty and we included α-cut levels of 0.1, 0.2, and 0.3. Then 

we used the method proposed by Chen and Klein (1997) to aggregate the efficiency scores at 

each α-cut into one single value (i.e. CK index) for each farm. The CK index can be used as 

the eco-efficiency score for benchmarking farms.  

The ranking of farms based on the eco-efficiency scores for each of the two scenarios was 

compared with the ranking based on standard DEA. Subsequently, the improvement potential 

per farm based on standard DEA was compared with the improvement potential based on 

fuzzy DEA. In addition, standard DEA and fuzzy DEA were compared with regard to the 

number of times a farm was selected as a peer (i.e., a benchmark). The importance of peers 

were calculated by considering the frequency of a farm to be a peer for inefficient farms and 

the weight of the peer (i.e. the corresponding λi variables of model 10-12).   

All the computations were made in Excel 2010, Xpress IVE and IBM SPSS statistics 22. 

5.4 Results 

At an α-cut level of 1 (i.e. equivalent to standard DEA), nine eco-efficient farms were identified. 

The higher the uncertainty level, the less farms were qualified as being eco-efficient. At α=0.9, 

six farms had an eco-efficiency score of 1 at both the lower and upper bound, at α=0.8, four 

farms had this score, and at α=0.7 three farms had this score. The same three farms kept this 

score at both the lower and upper bound until α=0.4. Only one farm had an efficiency score of 

1 at both the lower and upper bound across all α-cuts levels, which means that this farm is 

most efficient in all situation, regardless the uncertainty. An overview of the fuzzy DEA results 

with 11 α cuts can be found in the Appendix. 

Figure 5.4 shows how the uncertainty of model parameters can affect the eco-efficiency 

scores. The left and right figures show the efficiency scores derived from fuzzy DEA at α=0.9 

and α=0 respectively. Farms that do not have an efficiency score of 1, have an efficiency range 

instead of one single score. For low levels of uncertainty (i.e. α=0.9), it’s still possible to 
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compare farms and identify differences in eco-efficiency scores. However, in high uncertainty 

levels (α=0), it becomes more difficult to identify differences in the eco-efficiency scores among 

the farms. Results show that ignoring uncertainty can lead to biased conclusions when 

benchmarking farms based on their eco-efficiency, i.e. farms that are identified as efficient 

might not be efficient and vice versa, when results are uncertain because of measurement 

errors or temporal variability. 
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   Figure 5.4 Eco-efficiency scores derived with fuzzy DEA at α=0.9 (left figure) and α=0 (right figure) 
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Figure 5.5 shows the ranking results of the low and high uncertainty scenarios based on fuzzy 

DEA compared to standard DEA. The farms located on the 1-1 line have the same ranking 

based on their eco-efficiency score with both fuzzy and standard DEA. The more the farm 

deviates from the 1-1 line, the more different the ranking based on the eco-efficiency score is. 

Compared to standard DEA which identified 9 eco-efficient farms, fuzzy DEA identified 3 

(scenario 1) or 1 (scenario 2) eco-efficient farms. Figure 5.5 illustrates that compared to 

standard DEA, fuzzy DEA does not change the ranking results when uncertainty levels are low 

(scenario 1), but at higher levels of uncertainty (scenario 2), ranking results can change 

considerably.
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Figure 5.5 Comparison of the ranking of farms based on their eco-efficiency score by using standard DEA  or fuzzy DEA (i.e. CK index) for 

scenario 1 (low  uncertainty) and scenario 2 (high uncertainty). 
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Figure 5.6 Total scope for improvement (%) of the 55 farms for different economic and 

environmental indicators calculated with standard DEA, and fuzzy DEA based on scenario 1 

(low  uncertainty) and scenario 2 (high uncertainty). 

Figure 5.6 shows the total scope for improvement (%) if all 55 farms move to an efficiency 

score of 1. Results are expressed per environmental indicator for standard DEA and fuzzy 

DEA based on a low and a high level of uncertainty. Based on standard DEA, the improvement 

potential is represented by a single (crisp) value; based on fuzzy DEA, the improvement 

potential is represented by a range, which is defined by the lower and upper bound of the fuzzy 

efficiency frontier. Results of the high uncertainty scenario show that the actual improvement 

potential might be very different from the improvement potential calculated with standard DEA, 

in case indicators contain uncertainty.  
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Table 5.3 lists the identified peers and the importance of these peers for standard DEA and 

fuzzy DEA based on a low and a high level of uncertainty. Standard DEA resulted in a different 

set of peers than fuzzy DEA. The most important peers (i.e. farm 5, 12, 15, 33, 42) are the 

same for both standard  and fuzzy DEA, but the relative importance of the peers varied 

between the two methods. The importance of peers (%) is calculated based on the frequency 

of a farm being a peer,  and the weight of the peer (i.e. the corresponding λi variables of model 

10-12). For example, the importance of peer farm 12 is higher based on standard DEA (10.7%) 

than based on fuzzy DEA (low uncertianty 9.0%, high uncertianty 10.3%). Correct identification 

of peers and their importance is relevant because the practices of peers are of first importance 

to improve the practices of other (less eco-efficient) farms. Based on detailed farm information, 

we can explore why certain farms are popular peers and provide specific managerial insights 

that will improve the overall eco-efficiency of the region. 
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Table 5.3 Importance of the peer farms under standard DEA and fuzzy DEA on scenario 1 (low  

uncertainty) and scenario 2 (high uncertainty). 

Peer farm Standard DEA Fuzzy DEA 

(scenario 1) 

Fuzzy DEA 

(scenario 2) 

P(5) 9.4% 9.3% 5.6% 

P(12) 10.7% 9.0% 10.3% 

P(15) 12.1% 12.6% 10.6% 

P(16) - 0.8% 0.8% 

P(22) - 0.9% 0.9% 

P(24) 3.5% 2.7% 1.5% 

P(26) - - 0.4% 

P(28) - - 0.5% 

P(33) 45.4% 45.4% 56.1% 

P(42) 15.7% 17.0% 12.7% 

P(46) - - 0.3% 

P(50) 0.5% 0.5% 0.2% 

P(55) 2.9% 1.9% - 

 

Farm 33, for example, is the peer farm with the highest weight. This farm is a pasture based 

Irish dairy farm with a low input of fertilizer and feed. Milk production levels are relatively high 

(i.e., 7910 kg per cow per year), resulting a relatively high gross margin. Compared to 

concentrate-based farms, this farm has a low level of farm inputs. Compared to other pasture-

based farms, the amount of concentrates per cow is relatively high, and so is the level of milk 

production per cow. Farm 33 can serve as an example for other farms that aim to increase 

their eco-efficiency. 

5.5 Discussion and Conclusions 
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We explored the potential of fuzzy DEA to derive eco-efficiency scores and benchmark dairy 

farms. DEA-based benchmarking methods enable assessment of multiple economic and 

environmental indicators simultaneously. Dairy production involves complex production 

processes, and some indicators are difficult to measure, such as manure production or grass 

yields. This can cause imprecise estimations of the input and output parameters, which could 

lead to biased results. Therefore, accounting for uncertainty is important. Compared to 

standard DEA, which is deterministic and does not enable to account for uncertainty, fuzzy 

DEA has the advantage that it allows uncertainty to be included by expressing all parameters 

as ranges instead of single crisp numbers. Our findings are in line with literature that applied 

fuzzy DEA to account for data uncertainty in efficiency evaluation problems. In general, fuzzy 

DEA results in a lower number of efficient farms compared to standard DEA (Kao and Liu, 

2005; Mugera, 2013; Egilmez et al., 2016). Based on a 20% uncertainty range, fuzzy DEA 

provided a different ranking of farms based on their eco-efficiency performance compared to 

the ranking of those farms based on standard DEA. In addition, the improvement percentage 

for each model input parameters is defined as a range rather than a crisp value when using 

fuzzy instead of standard DEA. Finally, fuzzy DEA resulted in a different set of peers compared 

to the peers identified with standard DEA. All the aforementioned findings show that decision 

makers should be aware that standard DEA can result in misleading and inaccurate 

conclusions when data used to calculate the indicators contain uncertainty (Sefeedpari et al., 

2012). By taking uncertainty into account during the quantification processes, fuzzy DEA can 

contribute to increasing the reliable of results and prevent biased conclusions (Mugera, 2013; 

Egilmez et al., 2016). 

In this study we focussed mainly on demonstrating the importance of accounting for uncertainty 

when benchmarking farms based on their eco-efficiency by means of DEA. We demonstrated 

how fuzzy DEA can be used to do so, and provided insight in the type of outputs and how they 

can be used for benchmarking dairy farms. We used farms from different regions with different 

bio-physical and social-economic conditions. This implies that given our dataset not all farms 
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are fully comparable and it is not always possible to identify farm specific improvement options 

based on farm comparison. However, the purpose of the study was not to conduct in-depth 

farm analysis and provide farm-specific advices after farm comparison, but rather to provide a 

numerical example to demonstrate the importance of taking uncertainty into consideration in 

the process of benchmarking, and to show what kind of results can be produced with fuzzy 

DEA. To identify farm specific improvement options, a more homogenous set of farms is 

required.  

In this study we assumed an uncertainty range of 20% for all indicators and for all farms. With 

different α-cut scenarios, we were able to perform the sensitivity analysis within the 20% fuzzy 

ranges. To improve interpretation of results, sample specific uncertainty ranges of all the input 

and output data are required.  

This study demonstrated how fuzzy DEA can be used to evaluate the eco-efficiency of dairy 

farming, accounting explicitly for multiple indicators and corresponding uncertainty. We 

showed the importance of taking uncertainty into consideration in the benchmarking process, 

and how fuzzy DEA can be used to do so. With fuzzy DEA, we can identify the farms whose 

eco-efficiency performances are sensitive to the uncertainty of the inputs and outputs. 

Moreover, we demonstrated the type of outputs and managerial insights resulting from fuzzy 

DEA, and how they can be used by decision makers to benchmark farm practices and improve 

the eco-efficiency of dairy production systems.  
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Appendix 

Table. An overview of the fuzzy DEA results with 11 α cuts 
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α=1 α=0.9 α=0.8 α=0.7 α=0.6 α=0.5 α=0.4 α=0.3 α=0.2 α=0.1 α=0
Farm code L U L U L U L U L U L U L U L U L U L U L U
BF05 0.965128 0.965128 0.90487 1 0.848655 1 0.796158 1 0.747085 1 0.701171 1 0.658174 1 0.617874 1 0.580072 1 0.544585 1 0.511246 1
BF06 0.774583 0.774583 0.731607 0.820406 0.691253 0.869323 0.658248 0.921974 0.632312 0.979403 0.60732 1 0.58322 1 0.559965 1 0.537513 1 0.515822 1 0.494853 1
BF07 0.756353 0.756353 0.713417 0.802295 0.673154 0.853388 0.635357 0.910264 0.599836 0.971453 0.566421 1 0.534956 1 0.512789 1 0.492228 1 0.472364 1 0.453162 1
BF08 0.726927 0.726927 0.680593 0.776698 0.637414 0.83022 0.597134 0.889441 0.560372 0.95578 0.527095 1 0.496087 1 0.467454 1 0.440507 1 0.415124 1 0.391195 1
BF09 1 1 0.994346 1 0.931774 1 0.87338 1 0.82191 1 0.774857 1 0.730619 1 0.688991 1 0.649783 1 0.612823 1 0.577954 1
BF11 0.711545 0.711545 0.662263 0.764692 0.616522 0.822064 0.57403 0.884062 0.535756 0.951132 0.501211 1 0.468943 1 0.439627 1 0.412866 1 0.387737 1 0.364122 1
BF12 0.848311 0.848311 0.793466 0.907264 0.742393 0.970703 0.694784 1 0.650363 1 0.608881 1 0.57011 1 0.533844 1 0.499895 1 0.468093 1 0.43828 1
BF13 0.679229 0.679229 0.635191 0.726572 0.594187 0.777525 0.55597 0.862298 0.520318 0.988863 0.48703 1 0.455921 1 0.426828 1 0.399619 1 0.374258 1 0.35048 1
BW10 0.768945 0.768945 0.726407 0.814294 0.690214 0.863355 0.663083 0.917021 0.636957 0.974558 0.611781 1 0.587504 1 0.564078 1 0.541461 1 0.51961 1 0.498488 1
BW11 0.453157 0.453157 0.435386 0.471653 0.418299 0.49092 0.401856 0.511007 0.386022 0.531967 0.370765 0.553858 0.356052 0.577141 0.341855 0.611981 0.328148 0.651687 0.314906 0.694672 0.302105 0.741159
BW12 0.606906 0.606906 0.567759 0.648982 0.531299 0.694254 0.497308 0.743021 0.46559 0.795614 0.435966 0.852405 0.408275 0.913811 0.38237 0.982939 0.358116 1 0.335393 1 0.314088 1
BW14 1 1 1 1 0.992168 1 0.953168 1 0.915612 1 0.879422 1 0.844524 1 0.810851 1 0.778339 1 0.746929 1 0.716566 1
BW16 0.643043 0.643043 0.603431 0.685521 0.56645 0.731122 0.53189 0.780135 0.499561 0.832879 0.46929 0.889713 0.440921 0.951037 0.415391 1 0.398074 1 0.38201 1 0.366481 1
BW17 0.529026 0.529026 0.497866 0.562366 0.47147 0.598074 0.452938 0.636646 0.435092 0.678319 0.417894 0.723154 0.401311 0.771457 0.38531 0.823572 0.36986 0.879887 0.354935 0.940836 0.340506 1
BW18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
FB01 1 1 1 1 1 1 0.999251 1 0.959879 1 0.921939 1 0.885355 1 0.850053 1 0.815969 1 0.783041 1 0.75121 1
FB10 0.834249 0.834249 0.798283 0.884795 0.766953 0.938822 0.736806 0.997841 0.707775 1 0.6798 1 0.652823 1 0.626794 1 0.601662 1 0.577382 1 0.553911 1
GE06 0.861693 0.861693 0.737414 0.998891 0.62488 1 0.553944 1 0.51823 1 0.484972 1 0.453897 1 0.424839 1 0.397647 1 0.372183 1 0.348321 1
GE09 0.656529 0.656529 0.613873 0.702391 0.574161 0.751754 0.537151 0.805377 0.502629 0.866262 0.4704 0.932195 0.440285 1 0.412123 1 0.385769 1 0.361088 1 0.337958 1
GE10 0.698814 0.698814 0.67141 0.727337 0.645059 0.765363 0.619703 0.810313 0.595286 0.85836 0.571757 0.909789 0.549068 0.964917 0.527176 1 0.506038 1 0.485617 1 0.465876 1
GE11 0.893599 0.893599 0.814334 0.979933 0.741522 1 0.674609 1 0.619872 1 0.575944 1 0.535099 1 0.497097 1 0.461719 1 0.428765 1 0.398055 1
IR01 0.994568 0.994568 0.955565 1 0.918062 1 0.881975 1 0.847224 1 0.813737 1 0.781446 1 0.750288 1 0.720204 1 0.69114 1 0.663045 1
IR02 0.783967 0.783967 0.737229 0.834 0.69352 0.887621 0.652599 0.945158 0.614251 1 0.578278 1 0.544501 1 0.512758 1 0.4829 1 0.454792 1 0.42831 1
IR03 1 1 0.986687 1 0.947963 1 0.9107 1 0.874817 1 0.84024 1 0.806897 1 0.774724 1 0.74366 1 0.71365 1 0.68464 1
IR04 0.961904 0.961904 0.914281 1 0.878399 1 0.84387 1 0.810621 1 0.778581 1 0.747685 1 0.717873 1 0.689089 1 0.66128 1 0.634399 1
IR05 0.958274 0.958274 0.89777 1 0.841358 1 0.788708 1 0.739522 1 0.693651 1 0.650845 1 0.610738 1 0.573129 1 0.539245 1 0.514033 1
IR06 0.60704 0.60704 0.575839 0.642367 0.553239 0.680046 0.531492 0.720284 0.510551 0.763313 0.490371 0.809388 0.470912 0.858797 0.452135 0.91186 0.434007 0.969636 0.416492 1 0.399562 1
IR07 0.865341 0.865341 0.831406 0.900661 0.798776 0.937452 0.767378 0.97581 0.737142 1 0.708006 1 0.679911 1 0.652801 1 0.626626 1 0.601338 1 0.576894 1
IR08 0.710314 0.710314 0.670151 0.753183 0.63248 0.803884 0.597108 0.860746 0.563858 0.92209 0.532573 0.98835 0.503789 1 0.483444 1 0.464059 1 0.445332 1 0.427229 1
IR09 0.976048 0.976048 0.920255 1 0.868214 1 0.821653 1 0.789279 1 0.758082 1 0.728 1 0.698972 1 0.670946 1 0.64387 1 0.617697 1
IR10 0.382588 0.382588 0.360684 0.405984 0.340279 0.432038 0.321474 0.460576 0.307404 0.491265 0.295253 0.524311 0.283537 0.559943 0.272232 0.598419 0.261316 0.64003 0.250771 0.685102 0.240577 0.734005
IR11 0.992993 0.992993 0.954052 1 0.916609 1 0.880579 1 0.845883 1 0.812449 1 0.780209 1 0.7491 1 0.719064 1 0.690046 1 0.661996 1
IR12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.984389 1 0.944664 1 0.906263 1
IR13 0.718898 0.718898 0.674046 0.767025 0.632201 0.818725 0.593123 0.874326 0.556592 0.934198 0.522411 0.99875 0.4904 1 0.462116 1 0.435804 1 0.417589 1 0.400614 1
IR14 0.856907 0.856907 0.806781 0.910511 0.759855 0.967903 0.715877 1 0.674619 1 0.635874 1 0.599473 1 0.573047 1 0.55007 1 0.527872 1 0.506414 1
IR15 0.703276 0.703276 0.657765 0.752199 0.615384 0.804848 0.575881 0.861568 0.539025 0.922749 0.504609 1 0.472444 1 0.442358 1 0.414197 1 0.387817 1 0.363993 1
IR16 0.609736 0.609736 0.585825 0.634623 0.562833 0.660548 0.540709 0.687575 0.519405 0.715777 0.498875 0.751361 0.479078 0.799977 0.459976 0.852674 0.441533 0.909548 0.423715 0.973459 0.406491 1
IR17 0.837413 0.837413 0.788865 0.889305 0.743394 0.944835 0.700757 1 0.660738 1 0.623137 1 0.588754 1 0.557609 1 0.528142 1 0.500239 1 0.475284 1
IR18 0.745358 0.745358 0.716128 0.77578 0.688022 0.807471 0.660978 0.84051 0.634934 0.874985 0.609838 0.910993 0.585638 0.948637 0.562287 0.988032 0.539742 1 0.51796 1 0.496905 1
IR20 0.82262 0.82262 0.790361 0.856197 0.759342 0.891172 0.729493 0.927636 0.700751 0.965685 0.673053 1 0.646344 1 0.620573 1 0.59569 1 0.571651 1 0.548413 1
LU02 0.919592 0.919592 0.883529 0.957126 0.848854 0.996224 0.815487 1 0.783356 1 0.752393 1 0.722536 1 0.693727 1 0.665911 1 0.639038 1 0.613061 1
NL01 1 1 1 1 1 1 1 1 1 1 1 1 0.946187 1 0.87094 1 0.801244 1 0.736671 1 0.676827 1
NL03 0.460778 0.460778 0.432911 0.490632 0.40687 0.522651 0.38251 0.557033 0.359699 0.594 0.338319 0.633798 0.318852 0.676702 0.301799 0.723022 0.289698 0.773107 0.278008 0.827347 0.266706 0.886187
NL04 0.767313 0.767313 0.71679 0.821671 0.669782 0.880214 0.626005 0.943337 0.585198 1 0.547128 1 0.511583 1 0.478368 1 0.447309 1 0.418245 1 0.39103 1
NL05 0.584388 0.584388 0.547606 0.623873 0.513306 0.666308 0.481288 0.711965 0.452842 0.761148 0.426781 0.814199 0.402287 0.871497 0.379245 0.933471 0.357549 1 0.337653 1 0.319679 1
NL06 0.86091 0.86091 0.803976 0.922177 0.751015 0.991741 0.701705 1 0.655751 1 0.612889 1 0.572878 1 0.535501 1 0.500558 1 0.467868 1 0.437267 1
NL07 0.607878 0.607878 0.550931 0.67002 0.501424 0.737864 0.461865 0.832318 0.429194 0.964802 0.399183 1 0.372429 1 0.347468 1 0.324166 1 0.302396 1 0.282047 1
NL08 0.729394 0.729394 0.684232 0.777835 0.642082 0.829852 0.602702 0.885773 0.565875 0.945967 0.532745 1 0.501743 1 0.473333 1 0.451113 1 0.432909 1 0.415311 1
NL09 0.613511 0.613511 0.587464 0.649211 0.564408 0.687633 0.542223 0.730939 0.520858 0.777398 0.500271 0.827309 0.480419 0.881003 0.461264 0.938852 0.442769 1 0.424901 1 0.407628 1
NL10 1 1 1 1 0.764382 1 0.694063 1 0.629463 1 0.570104 1 0.515714 1 0.472363 1 0.438719 1 0.40868 1 0.380629 1
NL11 0.840579 0.840579 0.787495 0.897573 0.738002 0.958834 0.691811 1 0.648659 1 0.60831 1 0.570549 1 0.535179 1 0.502024 1 0.470921 1 0.441722 1
NL12 0.69467 0.69467 0.649812 0.742886 0.608035 0.794769 0.56909 0.850658 0.532751 0.910937 0.498813 0.97603 0.467092 1 0.437418 1 0.409638 1 0.383612 1 0.359213 1
NL13 0.779101 0.779101 0.707228 0.858559 0.641299 0.996589 0.580803 1 0.525277 1 0.474303 1 0.428438 1 0.388184 1 0.358343 1 0.332683 1 0.30878 1
NL15 0.625976 0.625976 0.585877 0.66906 0.548517 0.715402 0.515691 0.765304 0.485584 0.819105 0.457331 0.877183 0.430794 0.93996 0.405845 1 0.382368 1 0.360259 1 0.339421 1
NL16 1 1 0.929768 1 0.844024 1 0.765314 1 0.693041 1 0.628021 1 0.583235 1 0.541577 1 0.502806 1 0.466702 1 0.43502 1
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6.1 Introduction 

Benchmarking dairy farming systems offers the option to identify best farm practices and to 

provide guidance for improving farm performance (Stokes et al., 2007; Dolman et al., 2014). 

Currently, benchmarking is hampered by the lack of an effective method that results in a set 

of indicators that is easily quantifiable and detects variations in environmental performance 

between farms. The aim of this thesis, therefore, was to develop a sound method to benchmark 

the environmental performance of dairy farming systems.  

Benchmarking consists of three steps (see Figure 6.1). In the first step, the goal and scope of 

the (benchmarking) assessment are defined, and the boundary of the system is determined. 

The overall goal of benchmarking the environmental performance of dairy farming systems is 

to reduce their impact on the environment. The environmental impacts included throughout 

this thesis (scope) are climate change, acidification, eutrophication, energy use and land use. 

The system boundary is defined from cradle-to-farm-gate, implying that we included the main 

processes up to the moment milk leaves the farm-gate. The second step involves the selection 

of indicators to benchmark the dairy farming systems. In this step, we explored the value of 

environmental indicators derived from different methods (Chapter 2 and 3) and selected a set 

of indicators that can explain variations in environmental performance between dairy farming 

systems (Chapter 3). The third step is to assess and compare this performance. In this step, 

we investigated the importance of benchmarking farms with peers (Chapter 2, 4 and 5) and 

the impact of epistemic uncertainty of data on benchmarking results (Chapter 4 and 5). 

In this chapter we discuss the overall findings of this thesis. In addition, research implications 

are elaborated, and future research opportunities are pointed out. This chapter is organised as 

follows. Section 2 discusses the value of different environmental indicators based on the 

results of this thesis. Section 3 discusses the issues linked to the selection of a set of indicators 

that can explain variations in environmental performance between dairy farming systems. 

Section 4 discusses the reasons why it is important to benchmark with peers. Section 5 
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discusses findings with regard to the impact of epistemic uncertainty of data on benchmarking 

results. In section 6, potential future research areas are pointed out, whereas in section 7 main 

conclusions are presented. 

 

Figure 6.1. The conceptual framework for improving the environmental performance of dairy 

farming systems, adjusted from van der Vorst et al. (2013) and de Olde et al. (2017), and 

issues addressed in this thesis. 

6.2 Value of different environmental indicators 

An indicator suitable for benchmarking should be relevant, measurable, valid, timely and 

understandable (Bell and Morse,1999; Lockie et al., 2002). In the past decades, various 

indicators have been developed to assess the environmental performance of dairy farming 

systems. These indicators are derived from different methods, such as a nutrient balance (NB) 

approach or a life cycle assessment (LCA), and can examine different environmental impacts 

(e.g. climate change, biodiversity) at different levels (e.g. farm, chain) (Gerber et al., 2013).  

When the benchmarking purpose is to raise the awareness of decision-makers on nutrient 

(mis)use and nutrient use (in)efficiency, indicators from an NB approach can be adopted, 
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because they are easy to quantify (i.e. measurable) and easy to explain to decision-makers 

(i.e. understandable) (Oenema et al., 2003; Halberg et al., 2005; Gourley et al., 2012). For 

example, the Dutch policy instrument Annual Nutrient Cycling Assessment (ANCA, in Dutch: 

Kringloopwijzer) has been developed and introduced to monitor and stimulate improvement in 

nitrogen (N) and phosphorus (P) use efficiency on dairy farms (Daatselaar et al., 2015). 

Another example is the EU Nitrogen Expert Panel (2015), who suggests to interpret N use 

efficiency in relation to productivity (N output) and N surplus ((N input – N output)/ha) to 

improve N use efficiency in the food chain.  

Indicators from an NB approach, however, are often quantified at farm level and do not take 

into account the nutrient losses occurring during off-farm processes, such as the production of 

purchased feed, which can lead to biased benchmarking results. Chapter 2, for example, 

shows that the ranking of farms based on NB indicators at farm level can differ from the ranking 

based on NB indicators at chain level. This means that farms that are relatively efficient at farm 

level can be less efficient at chain level, and vice versa. When off-farm nutrient losses are 

relatively more important compared to on-farm losses (i.e. farms heavily rely on purchased 

feed), and when changes in off-farm losses per unit change in on-farm losses differ between 

farms (i.e. farms differ in management), chain-based NB indicators are recommended. As a 

first step, decision-makers are advised to start with a farm-based NB. For regions where dairy 

farms are relatively self-sufficient in terms of feed, such as in New Zealand and Ireland, a farm-

based NB can be used for benchmarking their nutrient losses. Also for farms with a similar 

amount of purchased feed per cow per year and a similar feed composition, a farm-based NB 

can be used for benchmarking. Only if farms differ largely in the amount and/or type of 

purchased feed, the farm-based NB should be extended to a chain-based NB. Nevertheless, 

when exploring improvement options, the whole chain should be taken into account. In 

addition, decision-makers should be aware of the disadvantage of indicators from an NB 

approach. An NB approach does not specify the type of losses and their associated 
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environmental impacts (e.g. acidification potential) and neglects certain environmental impact 

categories, such as energy use or biodiversity loss (Thomassen and De Boer, 2005).   

Contrary to an NB approach, an LCA does specify the types of losses, as well as the potential 

associated environmental impacts related to those losses. An LCA, moreover, can address 

more environmental impacts than an NB, such as fossil energy depletion, water deprivation or 

biodiversity loss. Studies, however, suggest that collection of data required to perform an LCA 

appears difficult and time consuming (Thomassen and De Boer, 2005). The global warming 

potential per kg of milk, for example, also known as carbon footprint, is an LCA indicator that 

assesses the potential impact on climate change related to the production of one kg of milk, 

by summing emissions of greenhouse gases (i.e. CO2, CH4 and N2O) along the production 

chain. Over the past few years, the number of LCA studies on milk production have increased 

enormously (e.g. Cederberg, 1998; Thomassen and De Boer, 2005; Yan et al., 2011). 

Environmental impacts, such as climate change, acidification, eutrophication, land use and 

energy use, are often examined in these LCA studies. Environmental problems, such as 

human and eco-toxicity, water deprivation and biodiversity loss, are less examined for two 

reasons. First, human and eco-toxicity, for example, are often not quantified because accurate 

data about pesticides or heavy metal use are lacking (Yan et al., 2011). Similarly, knowledge 

about water use (i.e. rain water and irrigation water) during crop cultivation across the world is 

often unknown, which hampers computation of a water footprint. Assessing the impact of 

livestock production on biodiversity loss is complex, as diversity needs to be considered at the 

level of genetics, species and ecosystem. There is currently no method that can provide a 

common unit to address the aforementioned three levels, across the production chain and the 

complexity within each level (Atkinson et al., 2000; Yan et al., 2011).  

In most LCA studies of milk, the system boundary is defined from cradle-to-farm gate (de Boer, 

2003). This boundary is generally justified because the agricultural stages of the milk 

production chain, including the production of feed and keeping of dairy cows and young stock 

explain the majority of the environmental impacts (De Vries and de Boer, 2010; Djekic et al., 
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2014).  In this thesis, we also defined the system boundary from cradle-to-farm-gate, so post-

farm stages, such as milk processing, product storage, retail or final consumption, were 

excluded. The contribution of post-farm-gate stages to processing of milk into, for example, 

yoghurt or cheese is relatively small for most impacts, except for energy use, where the 

contribution of post-farm stages can be quite substantial. Van Middelaar et al. (2011), for 

example, found that the post-farm stages cheese-making, storage, packaging and retail in total 

contributed about 10% to GHG emissions, 2% to land use, but 31% to energy use. 

Benchmarking of diversity of processes used in post-farm stages of milk, therefore, is 

especially important in terms of energy use. 

Despite the relatively low contribution of post-farm stages to, for example, climate change or 

land use, it should be kept in mind that improving the efficiency of conversion of milk into milk 

products, such as cheese or yoghurt, could significantly reduce the environmental impact of 

those products (Flysjö 2012; Djekic et al., 2014).  

We have chosen to benchmark dairy farming systems based on product-based indicators, i.e. 

indicators that determine the environmental impact per kg product. Using product-based 

indicators is justifiable for so-called global environmental problems, such as climate change, 

fossil energy depletion or fossil phosphorus depletion (De Boer, 2003). Emissions of acidifying 

gases or eutrophying substrates, however, also have a strong impact on the local environment. 

For these environmental impacts, decision-makers should not only rely on product-based 

indicators, but also explore the regional impact of farming systems. They should, for example, 

assess the impact of all farms and their distribution in a region to examine if there are regional 

differences in farm density and the tolerance of the local ecosystem to the environmental 

emissions. To prevent a too high environmental impact in a specific region, the government 

could introduce regulations, such as total production volume restrictions or maximum number 

of animals per ha.  
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6.3 Selection of a set of indicators that can explain variations in environmental 

performance of farming systems 

In recent years, the carbon footprint has been used as ‘the indicator’ for assessing the 

environmental impact of dairy products by stakeholders, such as FrieslandCampina in the 

Netherlands and Arla Foods in Denmark and Sweden (Oenema, 2013). In addition, a large 

number of scientific studies have focussed on reducing greenhouse gas (GHG) emissions per 

unit of milk only (Casey and Holden, 2005; Flysjö, 2011; Thoma et al., 2013; Finnegan et al., 

2015). One the one hand, climate change is considered to be a very important environmental 

challenge to the planet (Steffen et al., 2015). On the other hand, policy-makers and industries 

relying on the carbon footprint as the sole environmental indicator run a risk of overlooking 

other environmental issues, such as human and eco-toxicity, acidification, and water 

deprivation (Laurent et al., 2012). 

A single indicator cannot reflect the complexity of environmental impacts related to a product 

or product system (Berger and Finkbeiner, 2011). A set of indicators, therefore, is needed to 

have a correct measurement of the environmental performance of that system (Lyytimäki and 

Rosenström, 2008). Exploring correlations between various indicators from different 

assessment methods can help to reduce unnecessary indicators, and to identify this set of 

indicators (Lebacq et al., 2013). Previous studies have mainly focused on correlations between 

LCA indicators (Berger and Finkbeiner, 2011; Laurent et al., 2012; Röös et al., 2013), while no 

study examined correlations between environmental indicators from different methods within 

dairy production. We, therefore, explored correlations between NB and LCA indicators to 

identify an effective set of indicators that can be used as a proxy for benchmarking the 

environmental performance of dairy farming systems (see Chapter 3). All the indicators are 

computed with the system boundary from cradle-to-farm-gate. Results show that a set of 

indicators, consisting of N surplus, P surplus, land use and energy use, can be used as a proxy 

to benchmark the environmental performance of dairy farming systems, and to represent 

global warming potential (GWP), acidification potential, freshwater eutrophication potential, 
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and marine eutrophication potential. The selection of this set of indicators, however, could have 

been influenced by the calculation methods that were used. Data availability influenced the 

methods chosen to quantify some of the emissions, and, therefore, also influenced the 

determined variations in environmental impacts between farms. Calculations on enteric CH4 

emissions, for example, were based on guidelines of the Intergovernmental Panel on Climate 

Change, or IPCC (IPCC, 2006). These guidelines are often used to assess GHG emissions of 

the dairy sector. The IPCC classifies the methodological approach into three tiers based on 

the quantity of information needed and the degree of analytical complexity (IPCC, 2006). 

Although Tier 3 methods are most accurate, they generally require extensive farm specific 

information. Tier 2 methods are less accurate, but they are most commonly adopted when 

comparing results across regions and farming systems, because of their relatively lower data 

requirement. In this study, enteric CH4 emissions were estimated based on IPCC (2006) Tier 

2. We found that the variation in CH4 emission per liter of milk between farms was small, which 

related to the fact that emissions were assumed equal to 6.5% of the gross energy intake of 

the dairy herd. Gross energy intake of the herd was estimated based on farm-specific data 

about herd composition and milk production, and generic data on energy requirements for 

growth, maintenance, activity, and milk production, and on digestibility of the feed. The effect 

of differences in dietary composition of the herd on CH4 emission, therefore, was not included 

in the calculation method. As a result, differences in enteric CH4 emissions among farms  

reflected differences in efficiency of milk production only,  and GWP did not end in the final 

selected set of indicators, because of high correlations between GWP and N surplus and 

energy use. If information on, e.g., dietary composition would be available, CH4 emission per 

liter of milk could have been assessed with a more detailed approach (e.g. Tier 3), and GWP 

might have ended up in the final set of indicators. When information on the exact feed 

composition is not available, as is common in practice, however, differences between CH4 

emission mainly relate to differences in efficiency of milk production, which are captured also 

by other indicators, such as energy use.  
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N surplus, P surplus, land use and energy use are a good set of indicators to start 

benchmarking dairy farming systems across the world. This set of indicators can be monitored 

and collected in a time and cost-effective way (i.e. measurable). In addition, these indicators 

can be interpreted easily by decision-makers (i.e. understandable), and their application can 

contribute to the consistency and comparability of results across regions and farming systems. 

However, the selected set of indicators cannot provide information on other important 

environmental impacts, such as biodiversity and water use. The work in Chapter 3, therefore, 

can be seen as a first attempt to derive a set of indicator to benchmark dairy farming systems. 

In the future, the same principle can be applied to derive a set of indicators that can provide a 

more comprehensive assessment of the environmental performance of dairy farming systems.  

6.4 The importance of benchmarking with peers 

When benchmarking the environmental performance of farms, we should acknowledge that 

differences in performances between farms might result from unmanageable factors, such as 

differences in, for example, soil type or climate. It is, therefore, important to compare farms 

with so-called peers, i.e. farms that are comparable in terms of characteristics, such as size, 

intensity and site-specific circumstances (de Snoo, 2006; Dolman et al., 2014). Dairy farms in 

Europe are heterogeneous in management. Most farms in the Netherlands, for example, have 

a high stocking density and in addition to on-farm produced feed, substantive amounts of 

concentrates are purchased. Most farms in Ireland, however, are grass-based extensive farms. 

Their main input consists of purchased mineral fertilizer. Benchmarking Dutch and Irish farms 

based on their environmental performance can lead to biased conclusions, because of inherent 

differences between systems. In Chapter 4, we therefore clustered farms based on 5 

characteristics (i.e. grazing hours, soil type, concentrates per cow per year, milk production 

per cow per year and milk production per ha) before benchmarking the nutrient use efficiency 

of these farms. By doing so, farms are compared with their peers, allowing identification of 

specific improvement options based on incremental changes in, for example, feed composition 

or manure management. A discussion about the environmental performances of contrasting 
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farms, such as large-scale conventional farms, organic farms and pure-graze dairy farming 

systems, could contribute to the development of so-called system innovations, such as a 

complete new farm design. The “Rondeel” in the Netherlands, for example, is a new housing 

design for laying hens that was developed by egg farmers together with poultry scientist, 

retailers, animal welfare leaders and consumer representatives (van Niekerk and Reuvekamp, 

2011). Evaluation and comparison of existing systems has been an important step in the 

development of the Rondeel (van Niekerk and Reuvekamp, 2011). 

6.5 The impact of epistemic uncertainties of data on benchmarking results 

Milk production involves complex production processes, so epistemic uncertainty can arise 

from measurement errors, such as errors in determining the N fixation by clover, errors in feed 

intake estimates of cows or  errors in estimates of  manure composition (Oenema et al., 2015). 

Data used to calculate the environment performance of dairy farming systems, therefore, can 

contain high levels of epistemic uncertainty (Sefeedpari et al., 2012; Mugera, 2013). Most 

studies that assess the environmental performance of dairy farming systems do not cope with 

data uncertainty (Schröder, 2003; Nevens, 2006; Powell, 2010). A few studies did incorporate 

data uncertainty, but they did not examine the impact of epistemic uncertainty on 

benchmarking results (Mulier et al., 2003; Basset-Mens et al., 2009; Chen et al., 2014; 

Oenema et al., 2015). In Chapter 4, we benchmarked the N use efficiency of farms and found 

that ranking of farms is not possible when the epistemic uncertainty of parameters is large and 

differences in N use efficiency are small. When benchmarking farms, it is therefore important 

to account for epistemic uncertainty in order to avoid biased benchmarking results. 

We furthermore identified which parameters explained most of the variance in N use efficiency, 

and subsequently reduced the uncertainty of these parameters to examine if this would 

improve our benchmarking results. We found that the most influential parameters differed per 

system. For the concentrate-based system, input of concentrates and roughage and output of 

roughage were most important; whereas for the grass-based system, the input of mineral 
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fertiliser was most important. Results showed that when epistemic uncertainty of the most 

influential input parameters are reduced to 1%, a rather optimistic scenario for some of the 

parameters, benchmarking results can be improved significantly. When benchmarking farming 

systems and implementing policy instruments (e.g. ANCA), decision-makers should be aware 

of those influential input parameters. They can draw more reliable conclusions on the 

performance of the farms by measuring those parameters more precisely.  

To benchmark the environmental performance of dairy farming systems, we need to account 

for data uncertainty of multiple indicators. In Chapter 5, therefore, we demonstrated how to 

use fuzzy data envelopment analysis (DEA) to incorporate uncertainties of multiple indicators 

to benchmark dairy farming systems. In this chapter, we also included an economic indicator, 

because it is important for farms to stay economically viable while improving their 

environmental performance. Based on the ratio between the economic value and the 

environmental impact added by a system, its eco-efficiency can be defined (Keffer and Shimp 

1999; Seppälä et al., 2005). In this case, the eco-efficiency was based on N surplus, P surplus, 

land use, energy use and gross margin. Compared to standard DEA, which is deterministic 

and does not enable to account for uncertainty, fuzzy DEA does take uncertainty into account 

by expressing all parameters as ranges instead of single crisp numbers (Emrouznejad et al., 

2014; Egilmez et al., 2016). We assumed an uncertainty range of -20% to +20% of the 

observed level per indicator to determine the lower and upper bound of each indicator. By 

increasing the uncertainty of the parameters stepwise from the lowest (no uncertainty) up to 

the highest (20% uncertainty) level, fuzzy DEA provides benchmarking results for different 

levels of uncertainty. This enables decision-makers, for example, to choose the proper 

uncertainty level to draw conclusions. Based on the highest level of uncertainty, ranking of 

farms based on their eco-efficiency differed from ranking of farms based on the lowest level of 

uncertainty. In addition, the set of peers differed (i.e., the farms that could serve as an example 

for others), and the level of improvement potential per parameter per farm was represented by 

a range, rather than by a single value. Aforementioned findings show that decision-makers 
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should be aware that standard DEA can result in misleading and inaccurate conclusions when 

data used to calculate the indicators contain uncertainty. By taking uncertainty into account 

during the quantification processes, fuzzy DEA can contribute to increasing the reliability of 

results and prevent biased conclusions. Based on the findings of Chapter 3 and 4, we can 

conclude that benchmarking farms based on indicators calculated from parameters that 

contain epistemic uncertainty can be misleading and inaccurate. When benchmarking farms, 

especially as a policy instruments (e.g. ANCA), therefore, decision-makers should 

acknowledge the effect of epistemic uncertainty. Instead of using a single value as the 

reference value for giving a penalty, for example, this reference value should be based on a 

range of values that accounts for the epistemic uncertainty of input parameters. 

6.6 Future research 

In this research, we mainly focused on product-based indicators. However, we did not 

incorporate competition for natural resources, such as land, between humans and animals. By 

grazing on marginal land, i.e. land that is less suitable or even unsuitable for crop production 

because of rainfall, temperature or poor terrain limitations, dairy cows can convert inaccessible 

nutrients to human edible products (Eisler et al., 2014; van Zanten et al., 2016). Overlooking 

competition for land between humans and animals might lead to biased conclusions. For 

example, in our study we found concentrate-based systems being more efficient than grass-

based systems. In case of cows grazing on marginal land, however, the grass-based systems 

are preferred over concentrate-based systems in terms of land use efficiency, when accounting 

for competition for land between humans and animals. Future studies, therefore, are 

suggested to consider the suitability of land for growing crops that can be consumed directly 

by humans in order to account for the competition for land between humans and animals (Van 

Zanten et al., 2016).  

In addition, this thesis focused on European specialised dairy farming systems, where an 

important function of dairy cattle is to produce marketable products, like milk and meat. In many 
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other dairy farming systems, however, cattle fulfil multiple functions. In smallholder dairy 

systems, cattle often are kept not only to produce milk and meat, but also to produce fertilizer 

and draught power to sustain crop production. Cattle, furthermore, can have an insurance and 

financing function in these systems. Grazing ruminants, moreover, can contribute to non-

provisioning ecosystem services, such as preservation and enhancement of biodiversity or 

preservation of the landscape (Ripoll-Bosch et al., 2013; Weiler et al., 2014). Due to this multi-

functionality, not all systems can be analysed in the same way as the specialised systems 

included in this study (Weiler et al., 2014). Neglecting the multi-functionality of cattle in, e.g. 

smallholder systems, will result in an overestimation of the impacts per unit of product 

produced (Weiler et al., 2014). Future researches, therefore, are suggested to take into 

account of multi-functionality in the benchmarking processes for non-specialised dairy 

systems. 

Finally, this thesis mainly focused on environmental performance of dairy farming systems. 

However, the importance of the social and economic performance of those systems should not 

be neglected. There are potential trade-offs between environmental indicators, and social or 

economic indicators, such as trade-offs between the carbon footprint of a product and animal 

welfare indicators, or between biodiversity impacts and net farm income (Steffan-Dewenter et 

al., 2007). Future studies are suggested to explore the correlation between environmental, 

social or economic indicators. 

6.7 Conclusions 

This thesis contributes to the development of a sound method to benchmark the environmental 

performance of dairy farming systems by investigating ways to identify an effective set of 

indicators and to handle the effect of data uncertainty on benchmarking  results. 

• To benchmark dairy farming systems, a nutrient balance (NB) at farm level can be used 

if differences in on-farm losses between systems are large, and off-farm losses are 

relatively unimportant. To benchmark individual farms, an NB at farm level can be used 
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if changes in off-farm losses per unit change in on-farm losses are similar across farms. 

A chain level nutrient balance of a sample set, however, is required to verify these 

conditions.  

• Data availability is a major challenge for benchmarking. Exploring correlations between 

environmental indicators from different environmental impact assessment methods can 

facilitate decision-makers to derive an effective set of indicators that can be used as 

proxies for benchmarking purposes. 

• Nitrogen surplus, phosphorous surplus, energy use and land use along the chain can 

be used to represent a broader set of indicators, including also global warming potential, 

acidification potential, freshwater eutrophication potential and marine eutrophication 

potential. This set of indicators can be used to benchmark farms on some major 

environmental impacts, and they can be monitored and collected in a time and cost-

effective way, and can be interpreted easily by decision-makers. More detailed methods 

to assess the global warming potential of systems could increase the importance of this 

indicator. Other important environmental impacts, such as biodiversity and water use, 

however, should not be overlooked.  

• Epistemic uncertainty of data leads to unreliable benchmarking results and sometimes 

makes benchmarking impossible. Identifying and reducing the epistemic uncertainty of 

major parameters can significantly improve benchmarking results. The parameters that 

are most important in terms of epistemic uncertainty (i.e., explain most of the output 

variance), however, can vary among dairy farming systems. For the concentrate-based 

systems in the Netherlands, for example, input of concentrates and roughage and output 

of roughage were the most important parameters in terms of epistemic uncertainty. 

• Decision-makers should acknowledge the effect of epistemic uncertainty to avoid biased 

conclusion. When setting up reference values for penalty, for example, this value should 

be based on a range rather than a single value in order to account for epistemic 

uncertainty. 
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• Using product-based indicators is justifiable for so-called global environmental impacts, 

such as climate change, fossil energy or fossil phosphorus depletion. In case of 

environmental impacts with a local importance, such as eutrophication and acidification, 

however, decision-makers should not only rely on product-based indicators. To prevent 

a too high environmental impact in a specific region, decision-makers could introduce 

regulations, such as total production volume restrictions or maximum number of animals 

per ha.  

• Future researches on benchmarking farming systems are suggested to consider the 

suitability of land for growing crops that can be consumed directly by humans in order 

to account for the competition for land between humans and animals. Moreover, future 

researches should account for multi-functionality when benchmarking non-specialised 

dairy systems, and explore correlation between environmental, social or economic 

indicators. 
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Summary 

Milk production causes pressure on the environment by its emissions to air, water, and soil, 

that contribute to, for example, climate change, eutrophication, acidification, and loss of 

biodiversity. Furthermore, milk production competes increasingly for scarce resources, such 

as land, water and fossil energy. As the population grows and becomes wealthier, milk 

production is expected to increase further. Aforementioned environmental consequences 

related to milk production, therefore, are likely to amplify.  

Benchmarking dairy farming systems offers the opportunity to identify best farm practices 

and to provide guidance for improving farm performance. Currently, benchmarking is 

hampered by the lack of an effective method that results in a set of indicators that is easily 

quantifiable and detects variations in environmental performance between farms. The aim of 

this thesis, therefore, was to develop a sound method to benchmark the environmental 

performance of dairy farming systems. 

The first challenge in benchmarking the environmental performance of dairy farming systems 

is to select a set of indicators that are relevant, measurable, valid, timely and understandable. 

Environmental indicators can be derived from various approaches, including a nutrient 

balance (NB) approach and a life cycle assessment (LCA). An NB is generally applied at 

farm level, and yields indicators that are relatively easy to quantify and communicate. In 

Chapter 2, we tested whether an NB at chain level (i.e. including on-farm processes and the 

production of purchased feed) is more suited to benchmark nutrient losses of milk production 

systems or individual farms than an NB at farm level. Results showed that to benchmark 

dairy farming systems, an NB at farm level can be used if differences in on-farm losses 

between systems are large, and off-farm losses are relatively unimportant. To benchmark 

individual farms, an NB at farm level can be used if changes in off-farm losses per unit 

change in on-farm losses are similar across farms. A chain level balance of a sample set, 

however, is required to verify these conditions. As a first step, decision-makers are advised 
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to start with a farm-based NB. For regions where dairy farms are relatively self-sufficient in 

terms of feed, such as in New Zealand and Ireland, a farm-based NB can be used for 

benchmarking nutrient losses. Also for farms with a similar amount of purchased feed per 

cow per year and a similar feed composition, a farm-based NB can be used. Only if farms 

differ largely in the amount and/or type of purchased feed, the farm-based NB should be 

extended to a chain-based NB.  

Environmental indicators derived from an NB approach, however, generally do not specify 

the type of losses, nor the environmental impacts associated with those losses, such as the 

impact on climate change or acidification. In addition, an NB approach neglects certain 

environmental impact categories (e.g. energy use). Contrary to the indicators from an NB 

approach, indicators from an LCA do specify the types of losses, as well as the potential 

associated environmental impacts related to those losses. However, LCA requires extensive 

data information which can be difficult to collect. In Chapter 3, correlations between eight 

commonly used NB and LCA indicators were explored to identify an effective set of indicators 

that can be used as a proxy for benchmarking the environmental performance of dairy 

farming systems. Indicators included were nitrogen (N) surplus, phosphorous (P) surplus, 

land use, fossil energy use, global warming potential (GWP), acidification potential (AP), 

freshwater eutrophication potential (FEP) and marine eutrophication potential (MEP). All the 

indicators are computed with the system boundary from cradle-to-farm gate. Based on 

multiple regression analysis and canonical correlation analysis, we found that a set of 

indicators, consisting of N surplus, P surplus, land use and energy use, can be used as a 

proxy to benchmark the environmental performance of dairy farms, and represent also MEP, 

FEP, AP and GWP. N surplus, P surplus, land use and energy use are a good set of 

indicators to start benchmarking dairy farming systems across the world, because they can 

be monitored and collected in a time and cost-effective way, and can be interpreted easily by 

decision-makers. More detailed methods to assess the GWP of systems, however, could 
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increase the importance of this indicator. Other important environmental impacts, such as 

biodiversity and water use, however, should not be overlooked. 

The second challenge in benchmarking the environmental performance of dairy farming 

systems is to cope with data uncertainties. Milk production involves complex production 

processes, and data used to calculate the environment performance of dairy farming 

systems can contain high levels of epistemic uncertainty. Epistemic uncertainty can arise, for 

example, from measurement errors in N fixation by clover, errors in feed intake estimates of 

cows, or errors in estimates of manure composition. In Chapter 4, we  evaluated the effect of 

epistemic uncertainty on benchmarking  the N use efficiency of dairy systems. Results 

showed that ranking of farms based on this single indicator is not possible when the 

epistemic uncertainty of parameters is large and differences in N use efficiency are small. 

We, furthermore,  found that the most influential parameters differed per system. For 

concentrate-based systems, input of concentrates and roughage and output of roughage 

were most important, whereas for grass-based systems, the input of mineral fertiliser was 

most important. Reducing epistemic uncertainty of the most influential input parameters 

improved benchmarking results significantly. It was concluded that to avoid biased 

benchmarking results, it is important to account for epistemic uncertainty.   

To benchmark the environmental performance of dairy farming systems, we need to account 

for data uncertainty of multiple indicators. In Chapter 5, therefore, we demonstrated how to 

use fuzzy data envelopment analysis (DEA) to incorporate uncertainties of multiple indicators 

to benchmark dairy farming systems. In this chapter, we also included an economic indicator, 

because it is important for farms to stay economically viable while improving their 

environmental performance. Based on the ratio between the economic value and the 

environmental impact added by a system, its eco-efficiency can be defined. In this case, the 

eco-efficiency was based on N surplus, P surplus, land use, energy use and gross margin. 

Compared to standard DEA, which is deterministic and does not enable to account for 

uncertainty, fuzzy DEA does take uncertainty into account by expressing all parameters as 
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ranges instead of single crisp numbers. We assumed an uncertainty range of -20% to +20% 

of the observed level per indicator to determine the lower and upper bound of each indicator. 

By increasing the uncertainty of the parameters stepwise from the lowest (no uncertainty) up 

to the highest (20% uncertainty) level, fuzzy DEA provides benchmarking results for different 

levels of uncertainty. This enables decision-makers, for example, to choose the proper 

uncertainty level to draw conclusions. Based on the highest level of uncertainty, ranking of 

farms based on their eco-efficiency differed from ranking of farms based on the lowest level 

of uncertainty. In addition, the set of peers differed (i.e., the farms that could serve as an 

example for others), and the level of improvement potential per parameter per farm was 

represented by a range, rather than by a single value. Aforementioned findings show that 

decision-makers should be aware that standard DEA can result in misleading and inaccurate 

conclusions when data used to calculate the indicators contain uncertainty. By taking 

uncertainty into account during the quantification processes, fuzzy DEA can contribute to 

increasing the reliability of results and prevent biased conclusions. 

In Chapter 6, challenges for developing a sound method to benchmark the environmental 

performance of dairy farming systems are discussed. The discussion revealed that data 

availability is a major challenge for benchmarking. Exploring correlations between 

environmental indicators from different environmental impact assessment methods, therefore, 

can facilitate decision-makers to derive an effective set of indicators that can be used as 

proxies for benchmarking. In addition, decision-makers should acknowledge the effect of 

epistemic uncertainty on benchmarking results. They should identify and reduce the 

epistemic uncertainty of major parameters to improve the accuracy of the benchmarking 

results. Moreover, when setting up reference values for penalty, for example, this value 

should be based on a range rather than a single value in order to account for epistemic 

uncertainty. 

Chapter 6 also provides some future research opportunities. This thesis focused mainly on 

product-based indicators. However, caution should be made in case of environmental 
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impacts with a local importance, such as eutrophication and acidification. To prevent a too 

high environmental impact in a specific region, decision-makers could introduce regulations, 

such as total production volume restrictions or maximum number of animals per ha. 

Furthermore, we did not incorporate competition for natural resources, such as land, 

between humans and animals. Overlooking food-feed competition might lead to biased 

conclusions. For example, in our study we found concentrate-based systems being more 

efficient than grass-based systems. In case of cows grazing on marginal land, however, the 

grass-based systems are preferred over concentrate-based systems in terms of land use 

efficiency, when accounting for food-feed competition. Future studies, therefore, are 

suggested to consider the suitability of land for growing crops that can be consumed directly 

by humans in order to account for the competition for land between humans and animals. In 

addition, this thesis focused on European specialised dairy farming systems only. In many 

other dairy farming systems, however, cattle fulfil multiple functions. Due to this multi-

functionality, not all systems can be analysed in the same way as the specialised systems 

included in this study. Neglecting the multi-functionality of cattle in, e.g. smallholder systems, 

will result in an overestimation of the impacts per unit of product produced. Future 

researches, therefore, are suggested to take into account of multi-functionality when 

benchmarking non-specialised dairy systems. Moreover, this thesis mainly focused on 

environmental performance of dairy farming systems. However, the importance of social and 

economic performance should not be neglected. There are potential trade-offs between 

environmental indicators and social or economic indicators. For example, trade-off between 

the GWP of a product and animal welfare indicators, or between biodiversity impacts and net 

farm income. Future studies, therefore are suggested to explore correlations between 

environmental, social and economic indicators. 
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