Effects of the herbicide metsulfuronmethyl on a plant community, including seed germination success in the F1 generation

Gertie Arts, Bas Nelemans, Ivo Roessink, René van Wijngaarden

9th of May 2017, SETAC Annual meeting, Brussels

Background

- Current European terrestrial plant risk assessment framework is based on vegetative effects (e.g. fresh weight, shoot length, emergence);
- Sub-lethal effects on non-target terrestrial plant (NTTP) growth and reproduction need to be addressed in order to adequately protect populations of NTTP¹;
- Need for evaluation if the current risk assessment scheme for NTTP is protective of sub-lethal reproductive effects on terrestrial plants;
- Charge question 2nd SETAC NTTP workshop; are vegetative growth endpoints protective of effects on sexual reproduction?²

¹ Arts et al., 2015. Report from the 1st SETAC NTTP workshop ² Arts et al., 2017. Report from 2nd SETAC NTTP workshop

Research questions

- How does the sensitivity of reproductive endpoints differ from that of vegetative endpoints?
- Is there an effect on the next generation of herbicideexposed NTTPs?
- How do species differ in their sensitivity to the herbicide sprayed at environmentally realistic exposure rates ?
- Which knowledge, guidance and experience can be drawn from the experiment for conducting field studies and/or multispecies studies with NTTPs?

Approach

- Higher tier experiment;
- Experimentally established field strip with sown species;
- Risk assessment of the effects of spray drift of a herbicide on nontarget terrestrial plants (NTTPs);
- Field station the Sinderhoeve;
- Test item: metsulfuron-methyl;
- This herbicide limits the cell division of the affected plants.

Selection of plant species

Sown species in a mixture of perennial and annual non-crop species

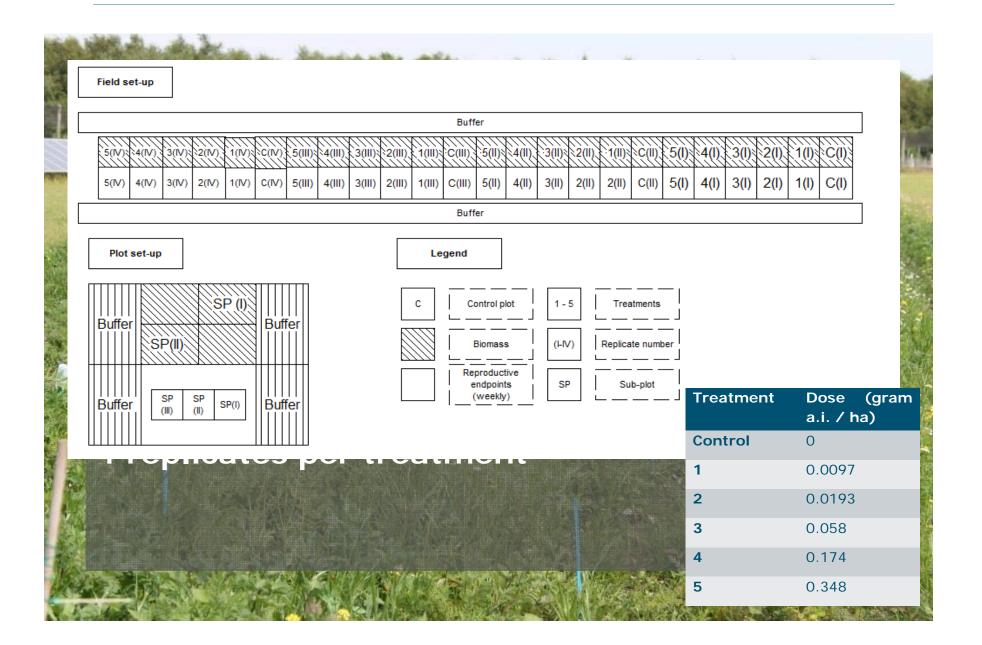
	Species	Family	Presence in field	Life cycle	AND
4	Matricaria		Х	Annual	
	recutita	Asteraceae			120
	Centaurea cyanus	Asteraceae	Х	Annual	1500
	Sinapis alba	Brassicaceae	Х	Annual	BERT.
	Phacelia		Х	Annual	Page 1
P	tanacetifolia	Boraginaceae			1996
E.	Campanula		-	Perennial	
H	persicifolia	Campanulaceae			1
X	Papaver rhoeas	Culture	-	Annual	
	Melilotus		Х	Annual/Bi	5.7
	officinalis	Fabaceae		-annual	A 27
	Consolida regalis	Ranunculaceae	-	Annual	
	Pastinaca sativa	Apiaceae	-	Perennial	245/
2	Lupinus perennis	Fabaceae	Х	Bi-annual	and and
1	Ranunculus acris	Ranunculaceae	-	Perennial	15

WAGENINGEN UNIVERSITY & RESEARCH

Herbicide

Commonly used herbicide metsulfuron-methyl $(C_{14}H_{15}N_5O_6S)$

Spray drift is considered to be most important type of off-field exposure


Exposure during juvenile stage of plants (spraying 17th of July 2015)

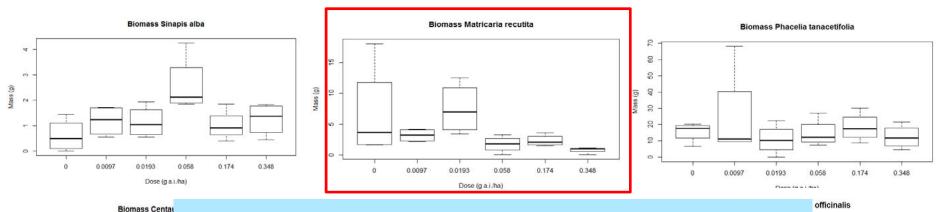
Treatment	Fraction of refer dose	ence Dose (gram a.i. / ha)
Control	-	0
1	HC₅ (50) / 6	0.0097
2	HC5 (50) / 3	0.0193
3	HC₅ (50) *	0.058
4	HC₅ (50) x 3	0.174
5	HC₅ (50) x 6	0.348

* Reference dosage, viz. the Hazardous Dosage at which 95% of the plants are potentially protected (HD_5) , available from greenhouse tests (Boutin et al., 2000).

Experimental design

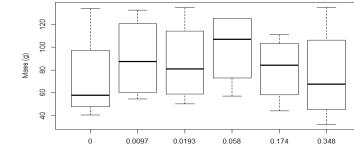
Plant endpoints

Plant Endpoints	Weekly over period of 4 months	Final sampling
Number of individuals	х	
Number of flowering individuals	х	
Plant cover estimation	х	
Fruit/seed production	х	
Total above ground plant biomass		x
Germination % of F1		Following final sampling



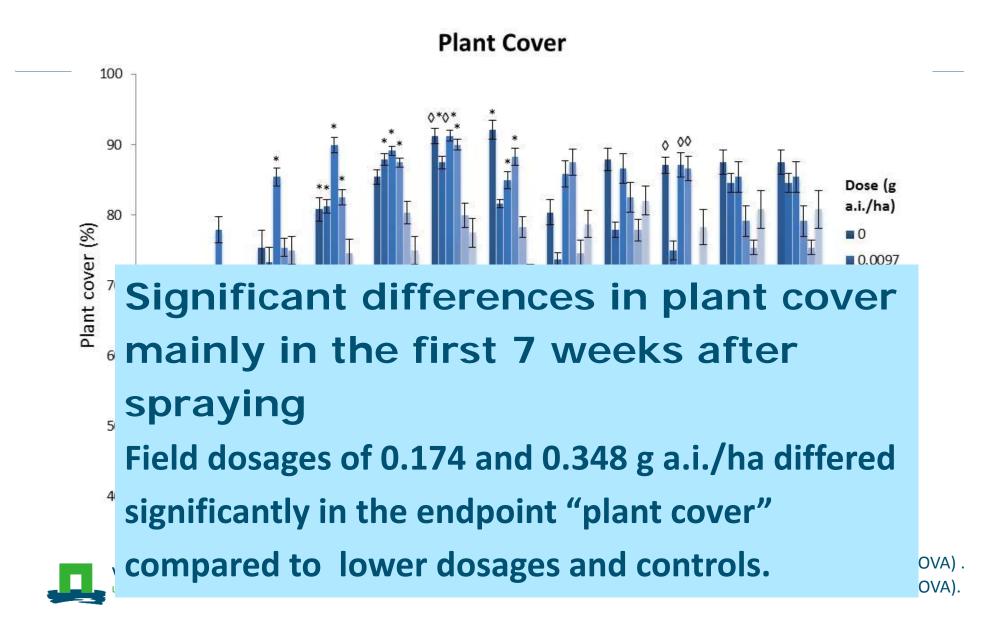
Handling of samples

Drying of plant material (biomass) in lab of UNIFARM
Extraction of seeds from fruits in lab of UNIFARM
Seed quality test in seed germination experiment in climate chamber


Results – Vegetative endpoints: biomass

(b) see (c) see (c)

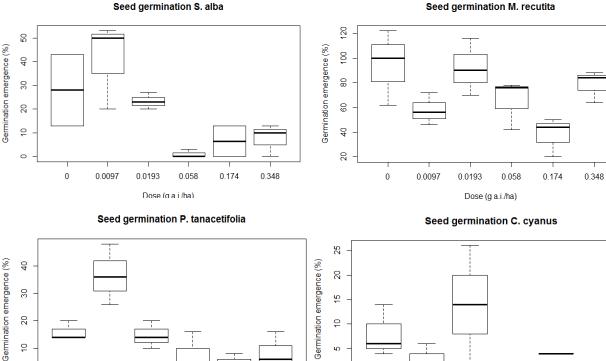
Biomass Glebionis segetum

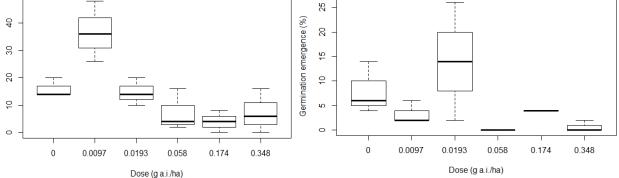


Dose (g a.i./ha)

Biomass all species

Results – Vegetative endpoints: plant cover


Results: Reproductive endpoints


- Endpoints "mass per seed" and "number of seeds per fruit" most sensitive;
- No statistically significant differences;
- Control highest values of these endpoints in comparison with the plots treated with herbicide;
- S. alba in particular showed a high sensitivity of the "mass per seed" endpoint;
- C. cyanus and M. reticutata seemed to be mainly affected in their "number of seeds per fruit".

Results: Experiment Germination

- M. recutitia had highest germination (71.1%), second S. alba (18%), third P. tanacetifolia (14.3%) and last C. cyanus (5%).
- Significant effects (p<0.05; Kruskall Wallis test) in seed emergence for 3 species.
- Hormesis seemed to occur as well

Discussion

Herbicide – NTTPs tests which contain only vegetative endpoints probably underestimate the total herbicide-effect for this compound.

Possible shift in species composition due to reproduction effects (such as reduce in seed quality-> lower seed emergence).

Tendency to a higher abundancy of grasses in plots at higher dosages

Recommendations

- Investigate all possible confounding factors (soil quality, seed bank, topography);
- Aim for equal frequencies per species;
- At least 2 years / growing seasons;
- Include plots with treatment: fertilizer + herbicide;
- Complete randomized block design;
- Intense monitoring in first weeks, less thereafter;
- Include reproductive endpoints !;
- Include species with good harvestable seeds (>0.15 mg per seed);

Conclusions / Summary

- How does the sensitivity of reproductive endpoints differ from that of vegetative endpoints? Reproductive endpoints, especially "mass per seed" and "number of seeds per fruit", seemed to be more sensitive than vegetative endpoints;
- Are there any effects on the next generation of herbicide-exposed NTTP? 3 out of 4 species (*S. alba, P. tanacetifolia* and *C. cyanus*) had significantly lower seed germination rates at herbicide dosages of 0.0193 g a.i./ha and higher;
- How do species differ in their sensitivity to the herbicide?: The plant species reacted differently. S. alba P. tanacetifolia and C. cyanus sensitive in terms of reproductive endpoints and seed germination, M. recutita sensitive in biomass.

WAGENINGEN UNIVERSITY & RESEARCH

Thank you

Any questions ??

Reserch was performed by Bas Nelemans for his Master.

Paper see Nelemans JB, van Wijngaarden RPA, Roessink I and Arts GHP (2017) Effects of the Herbicide Metsulfuron-Methyl on a Plant Community, Including Seed Germination Success in the F1 Generation. Front. Environ. Sci. 5:10. doi: 10.3389/fenvs.2017.00010