
 



Propositions 

 

1. Cultivated chrysanthemum should be reclassified as autopolyploid.  
(this thesis) 
 

2. Many deteriorative processes occurring after harvest of plant produce 
should not be classified as senescence.  
(this thesis) 

 
3. The biggest threat of genome modifying techniques is a second diversity 

bottleneck in agriculture. 
 

4. Convergence of subcultures catalyses the invention of new ways to express 
identity. 
 

5. Preconception on gender-related behaviour is the largest threat to gender 
inequality. 

 
6. Only in nations that are tolerant towards other cultures and discourage 

ethnocentrism there can be world-leading scientific progress. 
 

7. The competitive advantages of not sharing data or knowledge are highly 
overestimated. 
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The first stock market crash in history was a herald for the beginning of a flourishing trade in 

ornamental plants and their diversity. This crash took place in the 1630s in the Netherlands and is 

commonly known as ‘tulipomania’. It was caused by highly speculative trade in tulip bulbs. At its peak, 

bulbs were sold for high prices even though their flower traits had not yet been characterized. When 

these traits turned out disappointing, resell prices dropped far below the value of futures and the trade 

crashed. Since the start of tulip bulb trading in the 1600s, breeding and trade of ornamental plants has 

been a major economic activity. What used to be a domain of mainly elite hobbyists for centuries, grew 

out to a billion-euro business bringing colour to the homes of millions. Today, the ornamental industry 

plays a substantial part in the global economy and is driven by innovation.  

Many ornamentals are clonally propagated. This means that plant material is propagated by division of 

plant parts and not seeds, which results in exact clones of the mother plant. In the top 10 cut flowers 

sold at the main flower auction in the Netherlands, Flora Holland (Flora Holland, 2015), only one 

(Eustoma) is propagated through seeds. The nine others, including chrysanthemum, are propagated 

through cuttings, bulbs, or tubers (Table 1.1). In ornamentals, polyploidy and clonal propagation often 

go hand in hand (Table 1.1). This also applies to food crops: most major clonally propagated food crops 

are also polyploid (e.g. potato, sweet potato, yam and plantain). Polyploidy can be very useful when it 

comes to generating phenotypic diversity, but the study of inheritance becomes severely more 

complicated.  

Breeding of ornamentals aims to combine the best traits in a genotype with high ornamental value. 

However, ornamentals are only valuable if they can reach the homes of consumers. Therefore, in a 

successful cultivar, ornamental value should be combined with at least an acceptable postharvest 

performance. Further improving postharvest performance can result in a profoundly more sustainable 

distribution of flowers. This is because products that are less perishable make logistic systems more 

flexible, and harvested flowers therefore have a smaller chance to end up as waste. Therefore, 

postharvest performance is of major interest for ornamental breeding. However, measuring 

performance during the postharvest phase is complex. Postharvest performance is affected by quality 

parameters that are often difficult to quantify. In addition, there is generally a large effect of the growth 

environment on the phenotype and often various postharvest problems play a role (Figure 1.1).  

Box 1. A short history of cultivated chrysanthemum 

Chrysanthemum has a rich and long history of cultivation in Asia. The Chinese poems 

written by Tao Yuanming, who lived from 365 to 427, are the earliest written accounts of 

chrysanthemums as an ornamental plant (Spaargaren, 2015). Only while the Age of 

Discovery was at its full pace, in 1789 the first chrysanthemum plants rooted in European 

soil. Pierre-Louis Blancard brought chrysanthemums with him to France from China. More 

than 50 years later, in 1846, Robert Fortune brought cut flower type accessions from Japan, 

kick-starting the breeding for chrysanthemums as cut flower in Europe.  

 



General introduction 

 
 

9 
 

Table 1.1. Top 10 of cut-flowers according to turnover that passed the Flora Holland auction in 2015 (Flora Holland, 

2015).  

Cut flower 
Scientific 

name 

Turnover 

(million 

euro) 

Main mode of 

propagation 

Ploidy level 

of 

commercial 

cultivars 

Rose Rosa x hybrida 735 Grafting 4x 

Chrysanthemum 

(spray) 

Chrysanthemum 

x morifolium 
300 Cuttings 6x 

Tulip 
Tulipa species 

and hybrids 
295 Bulbs 2x-4x* 

Lilium 
Lilium species 

and hybrids 
159 Bulbs 2x-4x† 

Gerbera 
Gerbera x 

hybrida 
138 Tissue culture 2x 

Chrysanthemum 

(disbud) 

Chrysanthemum 

x morifolium 
63 Cuttings 6x 

Cymbidium 
Cymbidium 

species 
58 Plant division 2x-4x 

Eustoma 
Eustoma 

grandiflorum 
52 Seeds 2x 

Freesia Freesia refracta 52 Bulbs 4x 

Hydrangea 
Hydrangea 

macrophylla 
45 Cuttings 2x 

*Most cultivars are diploid 
†Most cultivars are triploid 
 

DNA-informed breeding (Peace, 2017) can greatly improve breeding efficiency of traits that are difficult 

to measure. It is based on the co-segregation of DNA-markers and traits. Many important traits like 

postharvest performance cannot be assessed at seedling stage, and can only be measured after 

multiple rounds of propagation. By using a DNA-marker that is linked to a trait, these traits can 

nevertheless be assessed early in the breeding program. To discover such marker-trait associations, 

detailed knowledge on the inheritance of markers and traits is required. However, complex inheritance 

patterns in polyploids hamper the identification and localization of associated DNA-markers.   

Of the top 10 ornamentals (Table 1.1), chrysanthemum is amongst the genetically most complex. It is a 

hexaploid that usually carries 54 chromosomes (2n = 6x = 54; Dowrick, 1953), it is strictly outcrossing 

and the mode of inheritance has been under discussion (Klie et al., 2014). The research area of 

chrysanthemum genetics is slowly becoming more elaborated with the tools developed in the recent era 

of DNA-based genetic analysis. A first genetic linkage map of DNA markers has been published (Zhang 

et al., 2010), and quantitative trait loci (QTL) were characterized (Klie et al., 2016; Zhang et al., 2013, 

2011a). However, due to its genetic complexity, progress in chrysanthemum is slow compared to other 

ornamentals like rose (Debener and Mattiesch, 1999; Vukosavljev et al., 2016), lilium (Abe et al., 2002; 
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Shahin et al., 2011) and tulip (Tang et al., 2015). This lag is mainly caused by absence of high-quality 

datasets, knowledge on the mode of inheritance and methods that can work with hexaploidy. The 

generation of large genotyping datasets and understanding inheritance in hexaploid chrysanthemum 

enables the development of such methods. These are essential steps for the way towards DNA-

informed breeding.  

 

Figure 1.1. Different symptoms of a reduced postharvest quality in chrysanthemum: leaf yellowing and browning (A), 

disk floret degreening (B), flower wilting (C) and micro-organism infection of the vase water (D).  

1.1 Phenotyping for postharvest performance 
Postharvest performance is a major selection criterion for ornamentals. Assessing it can be done by 

mimicking the practical treatments of harvest, storage and vase life. However, this can only be done 

late in the breeding program, it needs space and resources, and it needs skilled labour to judge plants 

consistently on their quality. Most importantly, postharvest performance within a genotype can be 

highly variable. Therefore, improving phenotyping could strongly improve selection efficiency and 

enable DNA-informed breeding for postharvest performance.  

1.1.1 Complexity of postharvest performance 

Postharvest performance involves many different disorders that cause a reduced quality (Figure 1.1), 

which makes it a complex trait. In chrysanthemum, symptoms of those disorders would be e.g. 

dehydration symptoms (Van Ieperen et al., 2001; Van Meeteren and Van Gelder, 1999), leaf yellowing 

(Doi et al., 2003; Narumi et al., 2005; Reyes-Arribas et al., 2001), flower senescence or wilting (Bartoli 

et al., 1997, 1995), disk floret degreening and micro-organism infection of vase water (Put, 1990). 

Traits like postharvest performance can be described as heterogeneous, which means it has multiple 

underlying traits (Thornton-Wells et al., 2006). Many traits that are important for crop improvement fall 

within this definition; other examples are yield, taste, and tolerance against extreme environments, like 

heat, cold, drought and salinity. Such traits have in common that they are often strongly affected by the 

environment, and their phenotypes are difficult to predict from genotypic information. 

The strong environmental effect on heterogeneous traits results in a low heritability. A reason is that 

different sub-traits can respond differently to specific environments. An example is postharvest 

performance in chrysanthemum; the sub-trait rehydration ability during vase life is affected by water 

availability during growth (Van Meeteren et al., 2005), but also by cut-height of the flower stem (Van 
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Meeteren and Van Gelder, 1999), and even the source of vase water (Van Meeteren et al., 2000). This 

is only one example of one sub-trait of postharvest performance. If any of this range of factors is not 

controlled in an experiment, this can have a profound effect on the phenotype, and therefore a large 

part of the phenotypic variability will be affected by environmental variability.  

Heterogeneous traits are often challenging to phenotype, and phenotypic values are difficult to predict 

from genotypic information. This is because different sub-traits are likely regulated by several genetic 

loci. A good example are the sub-traits of the heterogeneous trait taste. In fruits, taste composes of a 

range of chemical attributes like sweetness, sourness and aroma (Klee, 2010; Stevens, 1986). 

Identification of loci associated with these attributes as sub-traits separately can be successful, but the 

main trait taste is build up out of hundreds of loci (Causse et al., 2001; Fulton et al., 2002; Paris et al., 

2008; Saliba-Colombani et al., 2001). Thus, for the main trait less phenotypic variation can be explained 

per locus, and many loci explaining a small amount of variation will not be detected. Breeding for the 

sub-traits separately on the other hand is likely to be more successful. 

1.1.2 Improving selection for heterogeneous traits 

In order to investigate inheritance of heterogeneous traits with low heritability, a first step would be to 

reduce phenotypic variance within genotypes. One way to do this, is to control each known 

environmental factor. However, in most cases only a few factors are known to affect the trait. In 

addition, breeding has in general the aim to develop varieties that perform well in a range of 

environments. By selection in a highly-regulated environment, the performance of developed varieties 

in slightly different environments will be ignored. A more logical strategy to investigate inheritance of 

heterogeneous traits is to break up the trait of interest in its multiple underlying traits, and investigate 

those individually, similar to the examples on fruit taste. As less different processes are involved, 

probably less environmental factors will play a role. Those sub-traits will also be regulated by fewer loci, 

and therefore likely inherit in a less complex manner.  

In order to divide heterogeneous traits into measurable sub-traits, knowledge is needed on the 

underlying processes that shape the phenotype. If those are known, one can test for genotypic 

differences in those processes, and with that find important determinants for which genetic variation 

exists. In addition to the examples of taste, successful examples come from research on another 

heterogeneous trait: salt tolerance. Underlying processes that are important to be able to gain 

acceptable yields under saline conditions are related to homeostasis of sodium and potassium ions (Yeo 

et al., 1990). Selection on yield or plant growth under saline conditions is restricted by low heritability 

and little explained phenotypic variation by the genotype (Flowers, 2004). However, identification of loci 

associated with different sub-traits related to ion homeostasis, has been much more successful (Lin et 

al., 2004; Munns et al., 2012; Thomson et al., 2010). It is therefore important to understand a 

heterogeneous trait physiologically to dissect a heterogeneous trait and enable selection.  

Like salt tolerance, postharvest performance in cut-flowers is heterogeneous. Therefore, selection 

should be on lower-level traits individually. Such strategies have been proven useful for breeding for 

postharvest performance in several cut-flower species. In gerbera, selection on specific vase-life 

determining symptoms was proposed to be more effective than selection for vase life as a single trait 

(Wernett et al., 1996). In rose and carnation, variation in ethylene production and response have been 

used to aid selection for postharvest performance (Macnish et al., 2010; Onozaki et al., 2001). In rose, 

stomatal functioning has been used as a sub-trait of leaf wilting for QTL-mapping (Carvalho et al., 

2015). In chrysanthemum, dimensions of xylem vessels were proposed as potential selection criteria for 

vulnerability to dehydration during vase life (Nijsse, 2001). After weeks of storage however, disk floret 

degreening (Figure 1.1B) is the most frequently occurring vase life-ending symptom in the current 

Dutch breeding germplasm of single (daisy-type) chrysanthemums (Figure 1.2). It also occurs (although 

less frequently) after shorter storage periods, and similar symptoms are found in other flower types 

(not shown). It is therefore a promising sub-trait of postharvest performance. Understanding the 



Chapter 1 

 

12 
 

physiology and inheritance of disk floret degreeening can have a large impact on chrysanthemum 

postharvest performance as a whole. 

 

Figure 1.2. Pie chart of the distribution of the main symptom for ending vase life in single (daisy-type) flowers after 
three weeks of storage. Data is obtained from 3355 vase life tests performed at Deliflor chrysanten B.V for breeding 
purposes.   

1.2 Towards DNA-informed breeding in chrysanthemum 
In addition to precise phenotyping, DNA-informed breeding requires information on associations 

between DNA polymorphisms and the trait of interest. To reach this, three main steps need to be 

taken: discovery of polymorphic loci, localization of those loci in the form of a genetic linkage map and 

identification of loci associated with phenotypes of interest. The fact that chrysanthemum is an 

outcrossing and highly heterozygous hexaploid complicates polymorphism discovery and scoring, but 

also mapping of polymorphic loci and traits. In addition, analysis of inheritance is strongly influenced by 

the mode of inheritance; chromosomal pairing may occur only within sub-genomes or between all 

homologous chromosomes. In the following paragraphs, I describe the state-of-art, and what is needed 

to take the steps from DNA-polymorphism discovery to identification of genetic loci in hexaploid 

chrysanthemum in order to enable DNA-informed breeding.  
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1.2.1 Polymorphism discovery and dosage scoring 

In order to acquire a genome-wide representation in the form of genetic linkage map, each of the 54 

chromosomes per individual should be saturated with markers for genetic polymorphisms. Currently, 

single-nucleotide polymorphism (SNP) assays are frequently used to characterize such polymorphisms. 

Very large numbers can be discovered with use of next generation sequencing approaches, and 

accurately assessing them is possible in a high throughput by the use of genotyping arrays (e.g. 

Koning-Boucoiran et al., 2015; Li et al., 2014a; Vos et al., 2015). 

SNP loci are generally bi-allelic, meaning that two possible alleles are characterized per locus. Unlike 

diploids, polymorphisms in polyploids have a genomic dosage. Possible genotypes for one SNP in a 

diploid are AA, AB and BB. In speaking, these are homozygous A, heterozygous, and homozygous B. 

For a hexaploid, possible SNP genotypes are AAAAAA, AAAAAB, AAAABB, AAABBB, AABBBB, ABBBBB 

and BBBBBB. Considering the B-allele, those genotypes have dosages ranging from 0 to 6 respectively. 

Box 2. Definitions  

Locus: A position on a chromosome (i.e. a set of homologous chromosomes). 

Allele: A variant of a locus. 

Polymorphism: Occurrence of two or more alleles at one locus (based on: 

Cavalli-Sforza and Bodmer, 1971). 

(Genetic or DNA) marker: A single piece of DNA or a set of pieces of DNA 

that mark one or more specific alleles and can be detected through a single 

assay. 

Heterozygosity: The state of an individual in which a locus carries at least two 

alleles. 

Homozygosity: The state of an individual in which a locus carries only one 

single allele in the number of copies equal to the ploidy level.  

Homologous chromosomes: chromosomes that can recombine and harbour 

the same loci in a generally same order of arrangement.  

Polyploidy: a feature of organisms that have more than one pair of 

homologous chromosomes for each chromosome set. 

Autopolyploidy: Polyploidy that originated from a whole genome multiplication 

within one species 

Allopolyploidy: Polyploidy that originated from the combination of multiple sets 

of chromosomes from different species  

Homoelogous chromosome: chromosomes that do not recombine but do 

harbour the same loci in generally the same order of arrangement. Homoelogous 

chromosomes usually originate from different species. 

Polysomic inheritance: The mode of inheritance that is caused by random 

pairing during meiosis of homologues within a set. Usually (but not exclusively) a 

feature of autopolyploids. 

Disomic inheritance: The mode of inheritance that is caused by preferential 

pairing during meiosis of homologue pairs within a set. Usually (but not 

exclusively) a feature of allopolyploids. 
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In speaking, they are addressed ranging from nulliplex B to hexaplex B (Table 1.2). These dosages are 

important to quantify for two main reasons. First, they have implications for segregation of an allele in 

the offspring. A SNP-allele for which one parent carries a dosage of 1 (simplex) and the other a dosage 

of 0 (nulliplex), later referred to as 1x0 marker, would be expected to segregate in a 1:1 ratio for the 

dosages 1 and 0. In a 2x0 situation, there would be a segregation of 1:3:1 (for the dosages 0, 1 and 2, 

assuming polysomic inheritance). Higher dosage combinations even have more complex segregation 

patters (The 3x3 situation would segregate as 1:18:99:164:99:18:1). Second, allele dosage can affect 

the phenotype. A duplex dosage of an allele might have a stronger phenotype than a simplex dosage 

(Hackett et al., 2014; Rosyara et al., 2016). It has therefore, next to linkage, important implications for 

identification and analysis of trait loci. 

Table 1.2. Allele dosage scores in polyploids and their nomenclature. In this thesis, dosages are represented by 
numbers.  

Genotype Dosage Spoken Abbreviation 

AAAAAA 0 Nulliplex N 

AAAAAB 1 Simplex S 

AAAABB 2 Duplex D 

AAABBB 3 Triplex T 

AABBBB 4 Quadruplex Q 

ABBBBB 5 Pentaplex P 

BBBBBB 6 Hexaplex H 

 

Assays to characterize SNP markers, like genotyping arrays or KASP assays, enable dosage scoring of 

detected SNPs. Genotyping arrays provide possibilities for massive throughput of SNP markers. Those 

assays are based on fluorescence of two probes; one for each SNP allele. The ratio between the 

fluorescence of these probes gives information on the allele dosage. The number of possible clusters 

correspond to the number of possible dosage scores. In a diploid, this number is three, in a tetraploid 

five, and in a hexaploid seven (Table 1.2; Figure 1.3). Separation of such clusters highly depends on 

the quality of the SNP and the assay. To build a high-throughput polymorphism detection platform, 

SNPs would need to be discovered from sequencing data, but this comes with several challenges. The 

first challenge is the large range of dosage scores, which complicates prediction of dosage out of 

sequence data. Second, in the case of chrysanthemum, there is no reference genome sequence, so SNP 

discovery is based on a de novo sequence assembly. Such an assembly from a hexaploid is most likely 

imperfect. Therefore, pseudo-assemblies of gene families, separated haplotype assemblies and chimeric 

assemblies will occur frequently and should be taken into account during SNP discovery. Lastly, similar 

to other polyploids like potato (Uitdewilligen et al., 2013), high SNP densities would be expected in 

chrysanthemum. SNPs neighbouring the SNP of interest can interfere with the assay, and should be 

dealt with during assay design. These three reasons indicate that successful SNP marker discovery and 

design of SNP assays in hexaploid chrysanthemum needs elaborate selection methods. 
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Figure 1.3. An example of output of a single SNP genotyping assay that could detect all seven different dosages in a 
hexaploid. Each dot represents an individual genotype. Dots with the same colour have the same dosage ranging from 

0 to 6.  

1.2.2 The mode of inheritance 

A major issue for genetic analysis in polyploid crops is the mode of inheritance. Inheritance in polyploids 

comes in two modes: disomic and polysomic inheritance (Figure 1.4), but a mix of these is also possible 

(Allendorf and Danzmann, 1997; Bourke et al., 2017; Leal-Bertioli et al., 2015; Stebbins, 1947; Stift et 

al., 2008). The mode of inheritance has important implications for allelic segregation, recombination 

and with that; genetic analysis. In chrysanthemum, the mode of inheritance has been under discussion 

(Klie et al., 2014). Literature on this topic provides two types of analysis to draw conclusions on the 

type of inheritance: cytological imaging and segregation analysis.  

Cytological imaging points to presence of polysomic inheritance. In polyploids, chromosomes can pair in 

bivalents, which is similar to diploids, or in multivalents, in which multiple homologous chromosomes 

pair in a single structure. With cytological imaging of metaphase I, the type of pairing of homologous 

chromosomes can be visualized. Presence of multivalents indicate polysomic inheritance. However, 

absence does not indicate disomic inheritance, because bivalents do not necessarily represent two 

specific chromosomes on every meiotic event, and can therefore result from random pairing of 

chromosomes (Stebbins, 1940). In chrysanthemum, multivalents are rare (Chen et al., 2009; Dowrick, 

1953; Roxas et al., 1995). However, bivalent formation seems to be genetically regulated. Colchicine 

doubled diploid Chrysanthemum boreale pollen mother cells had much lower frequencies of multivalents 

than would be expected based on chance from these completely homologous chromosomes (Watanabe, 

1983). Existence of genetic regulation of multivalent formation has been demonstrated in an 

autotetraploid wheat species (Avivi, 1976). The frequently observed bivalents therefore do not provide 

evidence for disomic inheritance, but existence of multivalents do indicate polysomic inheritance in at 

least some regions. 
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Figure 1.4. Graphical representation of disomic inheritance and hexasomic inheritance. Chromosomes represented by 
the same letter and colour can pair during meiosis I.  

Conforming the cytological observations, studies on allelic segregation provide mainly evidence for 

polysomic inheritance in chrysanthemum. Conclusive evidence is based on segregation of flower colour 

(Langton, 1989), segregation of multi-allelic SSR-markers (Klie et al., 2014; Park et al., 2015) and 

absence of repulsion linkage between 1x0 markers (Klie et al., 2014). Despite the fact that these 

studies show clear hexasomic inheritance for the investigated loci, they are limited to these loci, and 

therefore do not exclude preferential pairing at other locations in the genome. Some indications for 

disomic segregation in chrysanthemum are based on segregation of multi-dose (dosage higher than 

one) dominant alleles (De Backer, 2012; De Jong and Rademaker, 1986; Klie et al., 2014). Markers that 

have a dosage of two (duplex) in one parent and zero (nulliplex) segregate in a 3:1 ratio with disomic 

inheritance and in a 4:1 ratio with hexasomic inheritance. There are reports of deviations from a 4:1 

ratio towards a 3:1 ratio in some loci, indicating disomic inheritance (De Jong and Rademaker, 1986; 

Klie et al., 2014; Park et al., 2015). However, such analyses become inaccurate with small population 

sizes.  

Most findings point to polysomic inheritance in chrysanthemum, but existence of disomic inheritance is 

not excluded. Remarkably, many recent publications treating this topic consider chrysanthemum as 

(segmental) disomic (Anderson, 2007; Klie et al., 2014; Li et al., 2011; Zhang et al., 2011a, 2014). To 

find conclusive evidence on the entire genome, a genome-wide approach is necessary. This will require 

the scoring of a large number of DNA polymorphisms on a large population in order to investigate 

expected segregation that fit disomic or hexasomic inheritance.  

1.2.3 Linkage map construction 

The information on allele dosage and the mode of inheritance enable the study of inheritance of alleles 

of polymorphic loci and their associated traits. Information on the dependence of alleles and trait 

segregation can be stored in a genetic linkage map, which provides an extensive and integrated 

representation of genetic linkage between alleles, loci and traits. The construction of a linkage map is 

based on estimating recombination frequency between alleles of adjacent polymorphic loci that are 

represented by genetic markers. Alleles of polymorphic loci that are close together on the same physical 

chromosome occur more frequently together in an offspring than would be expected from random 

segregation. A genotype in which the two alleles do not appear together, is called a recombinant. By 

calculating recombination frequency, one can estimate linkage between two polymorphic loci.  

Because of the seven possible genomic dosages and recombination between six homologous 

chromosomes, genetic linkage analysis in polysomic hexaploids is more complex than for diploids. The 

study of hexaploid genetics is most advanced in sweet potato. Recent published maps are constructed 

with 1x0 and 1x1 markers, and identification of homologous chromosomes is based on linkages to 
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multi-dose markers (Cervantes-Flores et al., 2008; Zhao et al., 2013) or by aligning the homologue 

maps to a reference genome (Shirasawa et al., 2017). Fully integrating these homologue specific maps 

into linkage maps per chromosome is useful for further genetic analysis. First, it enables identification of 

trait loci that carry multiple alleles (Hackett et al., 2013). Second, linkage maps can be compared, which 

would otherwise not be possible because alleles are interchanged between homologues by crossing 

over. One way to integrate and order homologue maps, is to estimate linkage between simple 

segregating markers in repulsion. However, in hexaploids, this would require very large populations (n 

> 450; Wu et al., 1992). Another method to construct an integrated map is to estimate linkages 

between higher dose markers. These linkages can form bridges between homologous chromosomes 

and integrate the linkage map. However, such a method has not been applied in hexaploids before, but 

has been applied in tetraploids (Bourke et al., 2017; Hackett et al., 2013, 1998; Luo et al., 2001; 

McCallum et al., 2016). Hexaploids lag behind tetraploids mainly because high-quality datasets with a 

large number of multi-dose markers have not yet been described, and methods to analyse such data 

are not available.  

1.2.4 QTL mapping  

Analysis of quantitative trait loci (QTL) aims to locate regions on the genome that are linked to 

quantitative traits. For DNA-informed breeding, the locations of quantitative traits are used to identify 

associated DNA-polymorphisms. The results of a QTL analysis also shed light on the genetic 

architecture; it gives information on the number of loci involved, from which parent the alleles 

segregate and whether there are interactions between alleles. Currently, QTL analysis in hexaploids is 

limited to per-marker statistical tests or to the use of diploid models on simple segregating markers 

located on homologue specific maps (Chang et al., 2009; Shirasawa et al., 2017; Zhang et al., 2013, 

2011a; Zhao et al., 2013). These analyses do often not represent the actual situation, as they only 

carry information on one allele at a time (Figure 1.5).   

Estimation of presence or absence of each possible allele at a locus enables multi-allelic QTL analysis. 

Hackett et al. (2013) proposed a method to reconstruct the allelic combinations per locus for tetraploids 

using bi-allelic SNP markers. With this method, inheritance of each parental allele in each F1 individual 

can be inferred at each marker position (A situation approaching Figure 1.5B). For QTL analysis, a 

model is fitted over those genotype probabilities to test for explained variance of a phenotype. 

Recently, a similar but more elaborate and robust method has been published (Zheng et al., 2016). 

Bourke (2014) describes a simpler method to directly estimate these haplotype probabilities based on 

estimated recombination frequency. This method is ploidy independent and could therefore be applied 

to hexaploids. The improvement of QTL analysis in tetraploids (Hackett et al., 2014) indicates potential 

of the use of haplotype probabilities in polyploids. However, such methods have not yet been applied to 

hexaploids with polysomic inheritance.  
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Figure 1.5. Example of a cross of two parents with each six different alleles (A), and an example of an F1 progeny (B), 
and the information on the segregation based on simple segregating markers (C). Considering single simple 

segregating markers, one can only characterize absence or presence in the F1 offspring. However, the actual situation 
is much more complex. On that same locus there are five other alleles that all could have specific effect on the 

phenotype. Genotype probability models try to reconstruct the actual situation by estimating absence and presence for 
each allele per locus that is approaching (B).  

1.3 Scope of this thesis 
The development of tools that enable DNA-informed breeding in hexaploid chrysanthemum comes with 

significant hurdles, among which SNP discovery, the unclear mode of inheritance, construction of an 

integrated linkage map and reconstruction of parental haplotypes in the progeny. One of the most 

important traits in chrysanthemum, postharvest performance, is a heterogeneous trait that needs to be 

broken down into sub-traits before DNA-informed breeding can be used to improve it. To fill these 

knowledge gaps, this thesis reaches two main objectives: 

1. Understanding and dissecting some important characteristics of postharvest performance in 

order to develop precise phenotyping methods. 

2. Understanding inheritance and performing genetic analysis in hexaploid chrysanthemum in 

order to pave the way towards DNA-informed breeding. 

These two objectives are addressed in the chapters that follow the introduction. Chapter 2 and 3 

describe the first objective of postharvest performance, chapter 4 and 5 the second objective on genetic 

analysis. In chapter 6 the two objectives come together in amongst others a QTL analysis for 

postharvest performance. A more detailed outline can be found below: 

- Chapter 2: Disk floret degreening is an important sub-trait of postharvest performance for 

long-stored chrysanthemum flowers. To understand the physiological processes underlying 

genotypic differences in disk floret degreening, in this chapter we investigate the metabolome 

of disk florets in different states of carbohydrate starvation and degreening. This shows that 

disk floret degreening is related to carbohydrate starvation, but complex interactions between 

carbohydrate content and cultivar-specific responses define genotypic differences.  

- Chapter 3: To genetically dissect the trait postharvest performance and its sub-trait disk 

floret degreening, we investigate inheritance of disk floret degreening and carbohydrate 

content in a large bi-parental population. We phenotype disk floret degreening with a method 

that uses detached capitula, which is cheap, fast and is highly correlated with disk floret 

degreening as observed during vase life after long storage of the flowers.   
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- Chapter 4: To perform genetic analysis in chrysanthemum, one needs to discover and assay 

DNA polymorphisms. In this chapter, we describe the development of a high-throughput 

genotyping platform for hexaploid chrysanthemum. The genotyping platform is validated in a 

genotype panel and multiple bi-parental populations. By analysis of the resulting genotypic 

data we deliver compelling evidence for hexasomic inheritance in chrysanthemum. 

- Chapter 5: Software to perform genetic linkage analysis in hexaploids with polysomic 

inheritance was not available at the start of this thesis. We developed methods to perform 

such analyses. In this chapter, we present a software package that provides every step from 

SNP marker dosage data to an integrated genetic linkage map.   

- Chapter 6: All aspects of the thesis come together in this chapter. We describe the 

construction of an integrated genetic linkage map from the data described in chapter 4. The 

map and phenotypic data described in chapter 3 is used to perform multi-allelic QTL analyses 

on four traits, among which disk floret degreening. 

- Chapter 7: The general discussion is used to evaluate the obtained progress described in the 

experimental chapters in the broader context of breeding for complex traits in ornamentals 

and polyploid crops. 
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Abstract 
Selecting chrysanthemum cultivars with long storability and vase life is a major challenge for breeders. 

The rate of degreening of disk florets during the postharvest phase is an important determinant of vase 

life. There is large genotypic variation in susceptibility to disk floret degreening. Our aim was to 

understand these genotypic differences at the physiological level. Carbohydrate starvation seemed to 

play a role, since application of sugars prevented degreening and degreening only occurred if florets 

had a long-term low carbohydrate content. In order to find out which metabolic processes could explain 

genotypic differences, we used 1H Nuclear Magnetic Resonance (NMR) spectroscopy profiling, High 

Performance Anion Exchange Chromatography (HPAEC) and respiration measurements to compare 

metabolic responses of three genotypes to carbohydrate starvation. HPAEC and NMR measurements 

showed that carbohydrate content could not fully explain genotypic differences. A genotype with 

intermediate sensitivity to degreening showed similar carbohydrate content compared to an insensitive 

one. However, respiration rate declined faster under carbohydrate starvation in a sensitive and 

intermediate sensitive genotype compared to an insensitive genotype, suggesting a more abrupt 

constraint on the mitochondrial electron transport chain and with that oxidative stress. Changes in the 

metabolic profile under carbohydrate starvation were diverse and revealed candidate processes 

associated with disk floret degreening. Camphor content increased and correlated positively with 

degreening insensitivity. Phenylpropanoids and flavonoids also increased upon carbohydrate starvation 

and the response was genotype specific. We propose the upregulation of the phenylpropanoid 

metabolism as important source of nitrogen in the form of harmful ammonia during carbohydrate 

starvation. Our results provide a framework to identify processes associated with genotypic differences 

in the response to carbohydrate starvation and susceptibility to floret degreening. 

2.1 Introduction 
The environment to which plants and their products are exposed during post-harvest life is often quite 

different from their original growth environment in terms of light, temperature, and availability of 

nutrients. During production in greenhouses, light intensity and temperature are optimized for fast 

growth and high yields, whereas the environment during post-harvest storage and transport is aimed at 

keeping the quality and appearance of the flower product as it was at harvest. Light deprivation often 

means absence of photosynthesis and therefore no de novo production of carbohydrates. However, 

respiration continues in the dark, especially in products that are harvested in a developmental stage 

characterized by fast growth and high respiration rate, like flowers and sprouts. Eventually, this leads to 

a state of carbohydrate starvation, which is often detrimental for plant quality, since carbohydrates are 

the main source for respiration in plants (Plaxton and Podestá, 2007). Carbohydrate starvation leads to 

oxidative stress (Couée et al., 2006; Morkunas et al., 2003), which eventually results in programmed 

cell death (Tiwari et al., 2002). The exact process leading from carbohydrate starvation to cell death 

remains largely unknown.   

Chrysanthemum (Chrysanthemum x morifolium) is an economically important cut flower, known for a 

relatively high postharvest performance compared to other cut flower species. However, after dry, dark, 

and cold storage during two weeks or more, some genotypes show quick degreening of disk florets, and 

eventually turn from green to yellow to brown, thereby losing market value. Yellowing is most likely due 

to loss of chlorophyll, while browning is likely the result of enzymatic oxidation of phenolic compounds 

into brown polymers, as is the case in many browning processes in plants (Ke and Saltveit, 1988; 

Pourcel et al., 2007). In unstressed cells, this oxidation is prevented by differential subcellular 

compartmentalization, but enzymes and substrates come together if membranes are leaky (Pourcel et 

al., 2007). Membrane damage can occur upon physical damage as in potato bruising (Bachem et al., 

1994), during senescence (Thompson et al., 1998), or induced by stress, like carbohydrate starvation 

(Aubert et al., 1996). 

Feeding flower stems with carbohydrates often increases vase life (Ichimura et al., 2005; Yakimova et 

al., 1996). In addition, feeding florets with sugars prevents degreening in broccoli (Brassica oleracea 
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var italica) and Arabidopsis thaliana (Irving and Joyce, 1995; Trivellini et al., 2012). Finally, feeding 

chrysanthemum flower stems with sugars also reduces degreening (Van Geest et al., unpublished 

results). These results indicate that carbohydrate metabolism is very relevant for postharvest 

performance, specifically for problems related to degreening. There are large genotypic differences in 

sensitivity to degreening in chrysanthemum. Under the assumption that carbohydrate content plays a 

role in degreening sensitivity, these genotypes respond differently to a low availability of carbohydrates. 

Knowledge about genotypic variation in the response to carbohydrate starvation is generally absent. 

However, it has large potential to aid breeding for postharvest performance.  

1H Nuclear Magnetic Resonance (NMR) allows simultaneous quantitation of both primary and secondary 

plant metabolites (Kim et al., 2010a), and therefore can be used to investigate a wide range of 

phenomena at the metabolomic level. Characterization of the carbon starved metabolome using 1H NMR 

of Arabidopsis thaliana cell cultures (Kim et al., 2007) and 31P-NMR of Acer pseudoplatanus cell cultures 

(Aubert et al., 1996), demonstrated marked increases of free amino acids, malic acid and 

phosphorylcholine. These observed metabolic changes are typical for carbohydrate starvation, but their 

amplitude or occurrence might differ strongly between genotypes that differ for sensitivity to 

carbohydrate starvation. 

In order to investigate the genotypic differences in the metabolic response to carbohydrate starvation, 

we used a metabolome-wide approach to detect compounds that quantitatively vary during 

carbohydrate starvation. By constructing metabolomic profiles of disk florets using 1H-NMR and High 

Performance Anion Exchange Chromatography (HPAEC) at different time points in three 

chrysanthemum genotypes during carbohydrate starvation and feeding, we identified genotype specific 

and general metabolites associated with starvation. This paper discusses the differential metabolic 

response to carbohydrate starvation between genotypes, and proposes hypotheses that explain how a 

genotype can affect the tolerance to starvation of carbohydrates by altering its metabolome. 

2.2 Materials and methods 

2.2.1 Plant material and pre- and postharvest conditions 

Three chrysanthemum genotypes were obtained from Deliflor chrysanten B.V. (Maasdijk, the 

Netherlands): DB39287, which is a single (daisy-like) white type and sensitive to degreening of the disk 

florets after long storage (S),  DB32030, a single purple type which is medium sensitive to degreening 

(MS), and DB36451, a single white type which is insensitive to degreening (I). Sensitivity was previously 

assessed by Deliflor Chrysanten B.V. (Maasdijk, the Netherlands) in commercial vase life tests. Plants 

were grown in a greenhouse in Maasdijk, the Netherlands using commercial growing practices. For 

initial respiration measurements, plants were grown from April to June 2014, harvested from large fields 

in the same greenhouse. For respiration measurements over time, plants were grown from August to 

November 2014 in a randomized block design. For both experiments, flowers were transported to 

Wageningen (the Netherlands) on the same day. For NMR, HPAEC and protein measurements, plants 

grown from July to September 2013 were used. Plots were planted in a randomized block design with 

five blocks representing five replicates. For each time point, one stem was harvested per plot. For all 

experiments, harvest took place in the morning, and stems were transported dry in cardboard boxes to 

Wageningen, the Netherlands. Except for respiration measurements, the combination of the disk florets 

of the upper three capitula of a flower stem was considered as one biological replicate. For all 

treatments, per stem the upper three capitula were cut in an angle of approximately 45°, and ray 

florets were removed. Disk florets sampled at day 0 were frozen in liquid nitrogen upon arrival at the 

lab. The cut ends of the three capitula were placed in a 35 mL pot containing 25 mg L-1 sodium 

dichloroisocyanurate (DICA) in demineralized water as bactericidal compound for the carbohydrate 

starvation treatment, or the same amount of DICA with 50 mM sucrose for the sugar feeding treatment. 

Solutions were replaced on every day on which sampling was performed. Pots with capitula were placed 

in a dark temperature controlled cabinet at 20 ± 1 °C. Air humidity was buffered using a 2 L saturated 

sodium chloride solution in the cabinet resulting in a relative humidity of approximately 75%. Samples 
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of disk florets were taken at 0, 5, 10 and 14 days after harvest. When sampled, florets were flash 

frozen in liquid nitrogen and stored at -80 °C until freeze-drying.  

2.2.2 Colour measurements 

To determine the change in degreening of disk florets over time, pictures of capitula were taken in a 

standardized light environment created by fluorescent light scattered by a Perspex plate bent in a half 

cylinder. A Hitachi HV-C20 video camera with a Tamron SP 35-80 mm objective was used for imaging. 

The average intensity of red and green of the disk florets was quantified using ImageJ (Schneider et al., 

2012), using a custom-made macro. 

2.2.3 Respiration measurements 

Nine capitula were placed in three 35 mL pots (three per pot) containing 25 mg L-1 DICA per biological 

replicate. For initial respiration measurements, flowers were stored dry at 4°C overnight before excising 

the capitula and respiration measurements. For measurements over time, capitula were excised upon 

arrival in Wageningen, and placed in the 35 mL pots. Respiration measurements took place the next 

day. For respiration measurements, three 35 mL pots were placed in an airtight 1 L jar at 20 ± 2 °C. A 

1 L jar was considered as biological replicate. Jars carried a septum and contained 40 mL saturated 

sodium chloride solution to buffer air humidity during the respiration measurement. Three jars per 

genotype were used. Jars were closed after one hour of temperature acclimation. After closure, 3 mL of 

air were withdrawn every 30 minutes for three hours. Oxygen concentration of the air sample was 

measured using a Dansensor CheckMate 3 headspace gas analyser (Dansensor A/S, Ringsted, 

Denmark). Dry weight was measured after respiration rate measurements by weighing samples after 

oven-drying at 80 °C overnight. The respiration rate was calculated using the slope of the regression 

between time and oxygen concentration corrected by total dry weight of all capitula per jar. In order to 

obtain reliable constant respiration estimates, only regression lines with an R2 higher than 99 % were 

considered. 

2.2.4 Carbohydrate analysis 

Carbohydrates were extracted from a 10-20 mg freeze-dried sample with 5 mL of 80% ethanol for 20 

minutes at 80 °C. After extraction, tubes were centrifuged at 8,800 g. One millilitre of supernatant was 

vacuum dried using a vacuum centrifuge (Savant SpeedVac SPD2010, Thermo Fisher Inc., Waltham, MA 

USA) at 45 °C and 5.1 mbar for 150 minutes and re-eluted in demineralized water using an ultrasonic 

water bath (Branson 2200, Branson Ultrasonics, Danbury, CT, USA) at 50 Hz. The remaining pellet was 

stored in ethanol at -20 °C for determination of starch concentration. Glucose, fructose and sucrose 

were quantified from the ethanol extract using High Performance Anion Exchange Chromatography with 

Pulsed Amperometric Detection (HPAEC-PAD; Dionex ICS5000, Thermo Fisher Inc.), equipped with a 

CarboPac1 column (250 x 2 mm) eluted with 100 mM NaOH. Fructans were quantified as described by 

Verspreet et al. (2012) with some modifications. Of the extract, 150 µL were hydrolyzed with 150 µL 

120 mM HCl for 90 minutes at 70 °C. Fructans were quantified and average degree of polymerization 

(DP) was determined by comparing the glucose, fructose and sucrose concentration of the hydrolysed 

with non-hydrolysed extract as described by Verspreet et al. (2012). All fructans were present in the 

80% ethanol extract since no detectable fructose or glucose was found after hydrolysis of water 

extracts of the remaining pellet after ethanol extraction. For starch quantitation, the pellet was washed 

three times with 80% ethanol. The pellet was vacuum dried, resuspended in 2 mL 1 g L-1 thermostable 

α-amylase (SERVA Electrophoresis GmbH, Heidelberg, Germany) and incubated for 30 minutes at 90 °C. 

After that, 1 mL of 0.5 g L-1 amyloglucosidase from Aspergillus niger (Sigma 10115, Sigma, St Louis, 

MO, USA) in 50 mM citrate buffer (pH = 4.6) was added and tubes were incubated at 60 °C for 15 

minutes. Tubes were centrifuged at 8,800 g and glucose and fructose were quantified as described 

above.  



Metabolomics 

 

25 
 

2.2.5 Protein measurement 

Proteins were extracted in an ice-cold ultrasonic water bath (Branson 2200, Branson Ultrasonics, 

Danbury, CT, USA; 50 Hz) for 15 minutes from 12-20 mg freeze-dried tissue with 1 mL 100 mM Tris-HCl 

(pH = 7.6), 10 mM MgSO4, 10 mM dithiothreitol and 0.1% Triton-X 100 in demineralized water (Eason 

et al., 1997) in a 2 mL microcentrifuge tube. After extraction, tubes were centrifuged at 12,000 g. Of 

the supernatant, 500 µL were centrifuged at the same speed. Hundred microliters were added to 3 mL 

Bradford reagent (Bradford, 1976). Absorption was measured at 466 and 594 nm (Varian Cary 4000 

UV-VIS Spectrophotometer, Agilent Technologies Inc., Santa Clara, CA, USA). Protein was quantified as 

described by Zor and Selinger (1996) using bovine serum albumin standard series. 

2.2.6 1H-NMR profiling 

Freeze-dried samples were transferred to a 2 mL-micro tube to which 1 mL of the mixture of CH3OH-d4 

and 90 mM KH2PO4 in D2O (1:1) containing 0.05% (w/w) TMSP (trimethyl silyl propionic acid sodium 

salt, w/v) was added. The mixture was vortexed at room temperature for 30 s, ultrasonicated for 1 min, 

and centrifuged at 30000 rpm at 4 oC for 20 minutes. Of the supernatant, 300 µL were taken into a 3 

mm-NMR tube for NMR analysis.   

1H NMR spectra, 2D J-resolved spectra as well as 1H-1H homonuclear and inverse detected 1H-13C 

correlation experiments were recorded at 25 oC on a Bruker 600MHz DMX NMR spectrometer (600.13 

MHz proton frequency) equipped with TCI cryoprobe and Z-gradient system. CD3OD was used for 

internal lock purposes. The parameters followed previous literature (Kim et al., 2010b) with some 

modifications. For 1H NMR spectra a total of 32768 data points were recorded covering a spectral 

window of 9615 Hz. Sixty-four scans of a standard one-pulse sequence with 30o flip angle for excitation 

and pre-saturation during 2.0 s relaxation delay with an effective field of γB1 = 50 Hz for suppression of 

the residual H2O signal was employed. An exponential window function with a line-broadening factor of 

0.3 Hz was applied prior to Fourier transformation. The resulting spectra were manually phased and 

baseline corrected.  

2.2.7 Data analysis 

The 1H NMR spectra were automatically reduced to ASCII files using AMIX (v. 3.7, Bruker Biospin). 

Spectral intensities were scaled to TMSP and reduced to integrated regions of equal width (0.04 ppm 

for 1H NMR spectra; further referred to as ‘bin’), corresponding to the region of δ 0.3 – δ 10.00.  The 

region of δ 4.7 - δ 5.0 and δ 3.28 - δ 3.34 were excluded from the analysis because of the residual 

signal of H2O and CH3OH-d4, respectively. Missing values were imputed by half of the minimum value 

recorded for that bin. Intensities of NMR profiling and concentrations from HPAEC analysis were 

normalized by sample dry weight corrected for carbohydrate content (see Discussion):  

Equation 1:    𝑐𝑑𝑤𝑗 = 𝑑𝑤𝑗 − 𝑐𝑗 

Equation 2:   𝑥̅𝑖𝑗 =  
𝑥𝑖𝑗

𝑐𝑑𝑤𝑗
  

Where x is a datapoint in the ith variable and jth sample, dw represents the dry weight, c carbohydrate 

content and cdw carbohydrate corrected dry weight. Variables (including compounds measured with 

HPAEC) were selected that showed significant change in time in any treatment-genotype combination 

using a Kruskal-Wallis test with p-value cut-off of 0.01. This left 122 variables out of 250. A correlation 

matrix using Pearson correlation was calculated, and metabolites were clustered using Euclidian 

distance. Principal component analysis (PCA; Mardia et al., 1979) was performed with the prcomp 

function from the stats package in R (R Core Team, 2014). Default values were used, except for the 

argument ‘scale.’, which was set to TRUE, resulting in unit variance scaling prior to PCA. For the 

respiration measurements, significant differences were identified using a one-way analysis of variance 

followed by a Tukey’s honest significant difference test. Linear relations between variables were tested 

using a simple linear model. 
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2.3 Results 

2.3.1 Colour and carbohydrate metabolism 

We tested whether isolated flower heads in water showed the same degreening compared to 

commercial vase life trials as executed by Deliflor Chrysanten B.V. Our system revealed the expected 

genotypic differences (Figure 2.1). The increase in red/green (R/G) intensity represented visually 

observable degreening in the disk florets (Figure 2.2). Significant increase in R/G occurred at day 10 in 

the sensitive genotype, and at day 14 in the MS genotype. It did not occur during the experiment 

(stopped after 14 days) in the insensitive genotype. Application of sugar to the medium in which the 

flower heads were kept prevented degreening in all genotypes and facilitated development of disk 

florets towards maturation (Figure 2.1). 

 

Figure 2.1. Appearance of flower heads of three genotypes before and at the end of two treatments. First column: 

sensitive (S), second column: medium sensitive (MS) and third column: insensitive (I) genotype. -SUC: carbohydrate 
starvation, +SUC: treatment with 50 mM sucrose.  

 

Figure 2.2. Average intensity of red divided by average intensity of green over time of disk florets with (closed 

symbols) or without (open symbols) 50 mM sucrose feeding for three genotypes: sensitive (S; triangles), medium 
sensitive (MS; squares) and insensitive (I; circles). Error bars represent standard errors of the mean, n=5.  

Carbohydrates provided a significant part of the total dry weight, and carbohydrate content varied 

strongly during sucrose feeding and carbohydrate starvation (Figure 2.3A). Therefore, we normalized 

measured variables by the carbohydrate corrected dry weight (Equation 1 and 2; Additional file 2.1). 
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Sucrose feeding increased carbohydrate corrected dry weight, whereas during starvation carbohydrate 

corrected dry weight remained stable initially, and eventually declined. 

Sucrose feeding resulted in an altered carbohydrate content and distribution between mono-, oligo-, 

and polysaccharides. This distribution was also highly dependent on genotype. The relative amount of 

fructans was much higher in the MS genotype compared to the S and I genotypes. The S genotype 

contained 73% less carbohydrates at harvest compared to the other genotypes (Figure 2.3). Starch was 

not very abundant; it made up at most 5% of total carbohydrates and declined quickly within the first 

five days irrespective of sucrose treatment. Sucrose, glucose, and fructose (Figure 2.3B, C and D 

respectively) content decreased only upon carbohydrate starvation. The decrease in glucose was faster 

than that of fructose. Fructose and glucose increased strongly with addition of sucrose, whereas 

sucrose increased slightly. Similar to the effect of sucrose on starch content, sucrose treatment only 

slightly increased fructan content. Protein loss only occurred after major losses of carbohydrates, and 

occurred concomitantly with degreening (Additional file 2.2). 
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Figure 2.3. Disk floret total soluble carbohydrate (A), sucrose (B), glucose (C), fructose (D), starch (E) and fructan (F) 

content over time as measured by HPAEC of disk florets with (closed symbols) or without (open symbols) 50 mM 
sucrose feeding for three genotypes: sensitive (S; triangles), medium sensitive (MS; squares) and insensitive (I; 
circles). Error bars represent standard error of the mean, n=5.   

 

Despite having a similar carbohydrate content, respiration rate was highest in the MS genotype and 

lowest in the I genotype at harvest (Additional file 2.3). Respiration rate decreased during the 

carbohydrate starvation and increased if sucrose was fed (Additional file 2.4A). Within genotype there 

was a strongly significant correlation between carbohydrate content and respiration rate in the S and 

MS genotype (p<0.001) and a weak but significant (p=0.02) correlation in the I genotype (Additional 

file 2.4B). The MS and S genotype had a much stronger decrease in respiration rate with lower 

carbohydrate contents compared to the I genotype.  
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2.3.2 Multivariate analysis of the metabolic response 

Carbohydrate starvation drastically changed the disk floret metabolome. All carbohydrates measured 

with HPAEC changed significantly over time for at least one genotype-treatment combination according 

to a Kruskal-Wallis test at p=0.01 (Figure 2.4). NMR spectral intensities were binned in integrated 

regions of 0.04 ppm. From these bins, 116 out of 253 changed significantly over time. Under sugar 

feeding the metabolome remained rather stable, with eleven, twelve, and one bin for the I, S and MS 

genotype respectively changing significantly over time (not shown). Most bins that changed over time 

changed only in the carbohydrate starvation treatment.  

1D and 2D based NMR allowed identification of 21 compounds (Table 2.1). Based on correlation in 

samples, we identified two main groups of metabolites using Euclidian distance (Figure 2.4). The first, 

group A, contained the carbohydrates, in which the soluble carbohydrates were highly correlated with 

each other. A larger second group, group B, generally correlated negatively with group A. Group B was 

metabolically diverse. It contained most identified amino acids, some organic acids, and molecules 

containing aromatic rings among which flavonoids, phenylpropanoids, and aromatic amino acids. Of the 

identified compounds, the strongest negative correlation with group A was found for asparagine (Figure 

2.4).  
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Table 2.1. Identified compounds using NMR and HPAEC-PAD 

Metabolite 
Chemical shift 
(NMR) 

Retention time 
(HPAEC-PAD) 
minutes 

Significant 
change?* 

    

Polysaccharides†   

Starch - - yes 

Fructans - - yes 
    

Sugars    

Glucose  δ 5.20 5.067 yes 

Sucrose δ 5.40 10.033 yes 

Fructose  δ 4.08 5.65 yes 
    

Amino acids   
Valine  δ 1.04 - yes 

GABA  δ 3.04 - no 

Glutamine δ 2.44 - yes 

Arginine  δ 1.72 - yes 

Threonine  δ 1.32 - yes 

Adenine δ 8.20 - no 

Asparagine  δ 2.84 - yes 

Alanine δ 1.48 - yes 
    

Small organic acids   
Citric acid δ 2.72 - yes 

Formic acid  δ 8.48 - yes 
    

Phenylpropanoids   
Chlorogenic acid  δ 6.36 - yes 

3,5-Dicaffeoyl 
quinic acid  

δ 6.48 - yes 

    

Flavonoids   
Luteolin-7-O-
glycoside  

δ 7.44 - yes 

Apigenin-7-O-
glycoside  

δ 7.92 - no 

Vitexin analogues δ 8.00 - yes 
    

Other    
Choline  δ 3.20 - no 

myo-Inositol  δ 3.64 - yes 

Camphor δ 0.96 - yes 

*Significant change over time in at least one treatment-genotype combination according to a Kruskal-
Wallis test at p=0.01 
†See ‘Materials and Methods’ for quantitation method 
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Figure 2.4. Heatmap of Pearson correlation matrix of 128 variables; 122 variables derived from NMR spectroscopy and 

six variables derived from HPAEC that significantly changed normalized intensity over time in at least one genotype in 
one of the treatments according to a Kruskal-Wallis test at p=0.01. The order of compounds is based on clustering by 

Euclidian distance and indicated by the dendrograms. On the vertical colour bar, chemical shift of the bins are depicted 
as colour, the rows with compounds measured with HPAEC are shown in red. On the horizontal axis, two distinct 
groups are depicted, and 22 compounds identified with HPAEC and/or NMR are indicated (blue lines). 

We conducted a principal component analysis (PCA) in order to visualize maximum variation between 

samples and identify compounds that explain this variation. The first three components explained 67% 

of the variation. The score plot (Figure 2.5) of the two components explaining most variation separated 

carbohydrate starvation from sugar feeding at the first component, with low carbohydrate content on 

the right, and high carbohydrate content on the left side. This separation was also characterized by high 

amounts of asparagine and an unidentified compound characterized by a bin at δ 7.32 for sugar-starved 

samples. The second component separated mainly genotypes. Bins characterizing luteolin-7-O-
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glycoside, chlorogenic acid and bins at δ 2.12 and δ 2.48, which likely characterize glutamine content, 

had large influence on this separation. These compounds were particularly high in the MS genotype. 

They were low in the sensitive genotype and intermediate in the insensitive genotype. Separation 

between genotypes was explained in the opposite direction by a bin at δ 0.84 and threonine, which 

were high in the S genotype, low in the MS and intermediate in the I genotype.  

      

     

Figure 2.5. PCA score plots (left) and loading plots (right), of principal component 1 and 2 (upper) and component 1 

and 3 (lower). Genotypes: Insensitive (○ ), medium sensitive (□) and sensitive (). Numbers at symbols in score 

plots represent day after harvest and their colours represent treatments, which are: directly after harvest (blue), sugar 
feeding (red) and carbohydrate starvation (black). The colour of the symbols represents the measured colour of the 

disk florets going from green to brown. In the loading plots, the identified compounds, and five compounds with 
largest absolute loading along each component were plotted. The colour of the arrows corresponds to the colour of 

the groups depicted in Figure 2.4, where grey represents group A and orange group B. 

In the PCA score plot with the first and third component (Figure 2.5), degreened sugar starved disk 

florets from both the sensitive and MS genotype clustered together. Degreening only occurred if 

carbohydrates were low, in combination with presence or absence of compounds explaining variation 

along the third component. Degreened and brown flower heads were low in camphor. 3,5-dicaffeyol 

quinic acid and peaks within the bin at δ 4.44, which was too small for identification, were high in 

degreening tissue. 

Four identified amino acids quantified with NMR explaining major variation in the PCA score plots were 

selected for further inquiry (Figure 2.6). Arginine, asparagine, and valine (Figure 2.6A, B and C 

respectively) increased in the first days of carbohydrate starvation and their concentration remained 

constant with sugar feeding. Threonine specifically increased only under carbohydrate starvation in the 

S genotype, whereas arginine did not change much at carbohydrate starvation in the S genotype 

(Figure 2.6D). 
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Figure 2.6. The normalized bin intensity of arginine (A), asparagine (B), valine (C) and threonine (D) in disk florets 
with (closed symbols) or without (open symbols) 50 mM sucrose feeding for three genotypes: sensitive (S; triangles), 

medium sensitive (MS; squares) and insensitive (I; circles). Error bars represent standard error of the mean, n=5.  

The phenolic compounds chlorogenic acid, 3,5-dicaffeoyl quinic acid and luteolin-7-O-glycoside 

generally increased upon carbohydrate starvation (Figure 2.4; Figure 2.7A B and C respectively). They 

are substrates for polyphenol oxidases and peroxidases, and therefore precursors of brown polymers. 

The MS genotype showed a stronger increase in chlorogenic acid  and 3,5-dicaffeyol quinic acid upon 

carbohydrate starvation compared to the other two genotypes (Figure 2.7A and B). At harvest, it had 

much higher levels of luteolin-7-O-glycoside (Figure 2.7C), but the compound did not increase upon 

carbohydrate starvation, whereas it did for other genotypes. The terpenoid camphor was associated 

with remaining green at carbohydrate starvation (Figure 2.5). It increased in the MS and I genotype, 

but not in the S genotype. At harvest, it was most abundant in the I and MS genotype but increased 

more strongly in the I genotype compared to the MS genotype during carbohydrate starvation (Figure 

2.7D). 
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Figure 2.7. Normalized bin intensity of chlorogenic acid (A), 3,5-dicaffeoyl quinic acid (B) luteolin-7-O-glycoside (C) 
and camphor (D) in disk florets with (closed symbols) or without (open symbols) 50 mM sucrose feeding for three 

genotypes: sensitive (S; triangles), medium sensitive (MS; squares) and insensitive (I; circles). Error bars represent 
standard error of the mean, n=5.  

2.4 Discussion 
Although different from commercial vase life trials, our method revealed the same degreening and 

genotypic differences in susceptibility. By isolating capitula, we could investigate disk floret degreening 

on a simplified level, without effects of metabolite transport from other parts of the plant. In this 

section, we bring observations in a broader context, by first defining the type of stress we presume to 

play a role, than by discussing genotypic differences in carbohydrate metabolism and its effect on 

susceptibility to degreening, and last by discussing the genotype specific and common responses to 

carbohydrate starvation. 

2.4.1 Sugar feeding effects on appearance 

It is very likely that degreening of disk florets is the result of carbohydrate starvation. Application of 50 

mM sucrose to isolated flower heads prevented degreening entirely. Other types of soluble sugar like 

glucose and fructose could also prevent degreening, but not the non-metabolisable sugar analog myo-

inositol (not shown). This process is similar to broccoli (Brassica oleracea var. italica) and Arabidopsis 

thaliana, where sucrose feeding strongly reduces sepal yellowing (Irving and Joyce, 1995; Trivellini et 

al., 2012). 

Despite the fact that similar processes occur during carbohydrate starvation, dark-induced deterioration 

and senescence, there are also substantial differences. These differences are present in crucial 

pathways related to amongst others amino acid metabolism, lipid catabolism, and flavonoid biosynthesis 

(Buchanan-Wollaston et al., 2005; Trivellini et al., 2012; van der Graaff et al., 2006). The word 

‘senescence’ is derived from the Latin senex, which means ‘aged’ or ‘matured’, and is defined as ‘the 
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growth phase in a plant or plant part (as a leaf) from full maturity to death’ (Merriam-Webster Online, 

2015). Since disk florets are far from reaching full maturation when degreening occurs, it can best be 

described and treated as a stress-induced deterioration. This concept should also apply to other 

instances of premature deterioration of plant organs. 

2.4.2 Normalization by carbohydrate corrected dry weight 

Soluble sugars made up a very large part of the dry weight in chrysanthemum disk florets. At harvest, 

up to 10.4% of the dry weight consisted of carbohydrates. Under carbohydrate starvation, it is evident 

that most of these carbohydrates disappear. Normalization by dry weight would result in a substantial 

artificial increase of other metabolites. Other researchers have solved this issue by expressing a 

compound per organ, such as per flower (Eason et al., 1997) or per root tip (Brouquisse et al., 1992). 

This approach does not solve the problem if multiple genotypes are used. As demonstrated in our 

results, there can be major genotypic differences in carbohydrate content at harvest. In addition, organ 

size may differ between genotypes, making it impossible to compare genotypes if corrected by organ. 

In order to enable comparison between genotypes and time points, we attempted to correct for the 

change in dry weight over time by subtracting the total carbohydrate weight from the dry weight. Other 

metabolites change and will have effect on the dry weight as well, but their contribution to total dry 

weight is probably negligible compared to the effect of carbohydrates.  

2.4.3 Polysaccharide breakdown is independent of carbohydrate content 

In contrast to starch, fructans form by far the most abundant polysaccharides in chrysanthemum disk 

florets. They make up 24 to 40% of the total amount of carbohydrates. This is different from whole 

inflorescences, where starch is the most abundant polysaccharide (Trusty and Miller, 1991). Fructans 

are ubiquitous in the plant kingdom, including the agricultural relevant Liliaceae, Poaceae and 

Asteraceae (Hendry, 1993). They seem to be an important source of monosaccharides in the form of 

fructose during the first days of carbohydrate starvation, since during fructan breakdown in the first five 

days, fructose content remained stable, whereas glucose content decreased strongly. 

Breakdown of polysaccharides in disk florets was independent of carbohydrate content. Fructans are 

synthesized from sucrose by sucrose:sucrose 1-fructosyltransferase and fructan:fructan 1-

fructosyltransferase (Ritsema and Smeekens, 2003). Starch is synthesized from glucose through ADP-

glucose by starch synthase (Preiss, 2009). Although sucrose and glucose concentrations increased upon 

sucrose feeding, disk florets were unable to synthesize polysaccharides. Fructans are water-soluble and 

can be synthesized elsewhere in the plant. Chrysanthemum stems have high fructan concentrations 

(Adachi et al., 1999), and could therefore be the source of fructans in the disk florets. Developing 

flowers often show breakdown of polysaccharides (Bieleski, 1993; van Doorn and Van Meeteren, 2003; 

Vergauwen et al., 2000). Fructan and starch breakdown in disk florets could therefore be part of a 

developmental process. Since we kept flower heads in the dark, polysaccharide breakdown might also 

be induced by light deprivation. However, light did not have a positive effect on starch content during 

the post-harvest phase in lettuce (Zhan et al., 2013).  

2.4.4 Genotypic differences in carbohydrate metabolism 

Carbohydrate content could only partly explain genotypic differences in degreening susceptibility. 

Despite this, our results show that occurrence of degreening within genotypes is clearly related to 

absence of carbohydrates. Although the S genotype showed by far the lowest carbohydrate content at 

harvest, the total carbohydrate content between the MS and I genotype was not different during 

carbohydrate starvation. The MS genotype even had a higher carbohydrate content in many cases, 

despite having a higher respiration rate at harvest. Since carbohydrate starvation likely causes 

degreening, the MS and I genotype probably have a different response to low carbohydrate content. 

This difference in response is also indicated by a different response in respiration rate to carbohydrate 

starvation. Whereas respiration rate is strongly reduced upon carbohydrate starvation in the MS 

genotype, respiration rate of the I genotype is much less reduced. This more abrupt reduction in 
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respiration rate in the MS genotype might be an indication of an earlier constraint on the mitochondrial 

electron transport chain (mtETC). Carbohydrate starvation leads to reduced ADP contents (Brouquisse 

et al., 1991), which will impair ATP synthase (Gout et al., 2014). Blockage of ATP synthase will lead to 

over reduction of the mtETC and therefore oxidative stress (Vanlerberghe, 2013). As indicated by the 

stronger reduction in respiration rate, the MS and S genotypes might have earlier blockage of the 

mtETC leading to oxidative stress, resulting in cell damage (Rhoads et al., 2006) and earlier degreening. 

Differences in ADP availability, alternative oxidase activity or other protective mechanisms might cause 

these differences.  

2.4.5 Protein is degraded when degreening starts  

As soon as degreening occurred, disk florets lost proteins. Protein degradation often occurs concomitant 

to loss of quality in stored fresh produce (Collier, 1997; Downs et al., 1997; King et al., 1990) and in 

sugar starved tissue (Aubert et al., 1996; Brouquisse et al., 1992; Devaux et al., 2003). Proteins, next 

to lipids, can provide energy as substrate during carbohydrate starvation (reviewed by Araújo et al., 

2011). It seems that protein breakdown only occurs if carbohydrate content is low for five days or 

more, since significant protein breakdown was only observable at day 14 in the MS and I genotype and 

at day 10 in the S genotype, whereas carbohydrates were already very low at day 10 and 5 

respectively. Loss of protein could connect carbohydrate starvation to degreening. Proteins are 

indispensable for cell survival. If a significant part of viable processes is lost due to breakdown of 

proteins in essential enzymatic steps, it is inevitable that cells lose membrane integrity and eventually 

die. However, at formation of the brown polyphenols, proteins can be incorporated in the complex 

polymeric structure and become insoluble (Stevens and Davelaar, 1996). In addition, a decline of 

protein content was mainly observed when degreening occurs, and not before. It is therefore more 

likely that the protein loss is an effect of the reduction of membrane integrity and not a cause.   

2.4.6 Metabolic response to carbohydrate starvation is diverse  

Treatment duration and sugar feeding affected a large part of the metabolome of chrysanthemum disk 

florets. In total, 116 out of 253 bins changed significantly over time for at least one of the genotype-

treatment combinations, showing that the response to carbohydrate content is very diverse. Most of the 

metabolites having a change in concentration over time changed only significantly in the sucrose 

starvation treatment. The response to carbohydrate starvation was therefore more drastic than the 

response to sucrose feeding.  

2.4.6.1 Phenolic compounds and flavonoids 

Oxidation of flavonoids and phenylpropanoids most likely caused browning at the last step of the 

degreening process. They are oxidized if they come in contact with polyphenol oxidases (PPO) and 

peroxidases upon membrane damage (Ke and Saltveit, 1988; Pourcel et al., 2007). Membrane damage 

most likely occurs at late stages of carbohydrate starvation. Chlorogenic acid, 3,5-dicaffeoyl quinic acid 

and luteolin-7-O-glycoside increase early during carbohydrate starvation, and therefore most likely 

before membrane damage occurs. This means that carbohydrate starvation not only results in increased 

access of PPO to its substrates, but also to an earlier increase in synthesis of those substrates. 

Varying classes of phenylpropanoids increase during different kinds of stress (Dixon and Paiva, 1995). 

Genes involved in flavonoid biosynthesis are strongly upregulated during sugar starvation in A. thaliana, 

and the type of response differs substantially from leaf senescence (Buchanan-Wollaston et al., 2005). 

Some genes of the flavonoid biosynthesis pathway are specifically regulated by the sugar starvation 

signalling pathway (Baena-González et al., 2007). Among those is flavanone 3-hydroxylase, which 

catalyses the synthesis of flavonols from flavanones. This suggests a specific role for flavonoids during 

carbohydrate starvation. Since flavonoids are potent anti-oxidants (Agati et al., 2012), this role could be 

in the protection against oxidative stress. Luteolin-7-O-glycoside increased in the I and MS genotype 

during carbohydrate starvation, whereas apigenin-7-O-glycoside did not change significantly, resulting 

in an increased ratio between luteolin and apigenin. This increased ratio is also observed during UV-B 
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light stress (Markham et al., 1998), and was suggested to result in larger anti-oxidative capacity (Agati 

et al., 2012). However, the reaction in which luteolin is synthesized from apigenin is catalysed by 

flavonoid 3’-hydroxylase, which is specifically upregulated during leaf senescence and not carbohydrate 

starvation (Buchanan-Wollaston et al., 2005). Our observed increase in luteolin might therefore result 

from an alternative pathway, but it is more likely that flavonoid 3’-hydroxylase activity increases during 

carbohydrate starvation in chrysanthemum disk florets as opposed to the sugar-starved Arabidopsis cell 

cultures as investigated by Buchanan-Wollaston et al. (2005).  

Phenylpropanoid and flavonoid content was genotype dependent, but did not correspond to browning 

sensitivity. However, since they are important precursors of the brown polymers, their quantity might 

be important for the intensity of browning that occurs after the loss of green colour. This would suggest 

the MS genotype would have a higher browning intensity compared to the S and I genotype. We did 

not measure browning intensity in this study, but visual observations of commercial vase life trials seem 

to substantiate this statement (results not shown).  

2.4.6.2 Amino acid and nitrogen metabolism 

If changed, the amino acids arginine, asparagine and valine increased over time during carbohydrate 

starvation. In maize root tips, there is a strong increase of amino acids at 24 to 48 hours of 

carbohydrate starvation and cell damage became irreversible when amino acid levels declined back to 

the initial level (Brouquisse et al., 1992). This dramatic transient change was not present in our 

material, and a decline in amino acid level was only observed in the S genotype for valine and slightly 

for asparagine. The type of tissue probably causes the difference in timing of these events between 

chrysanthemum disk florets and maize root tips; root tips have most likely much lower carbohydrate 

reserves compared to disk florets and are therefore much earlier exhausted of carbohydrates. Since 

there was no decrease in measured amino acid levels in the MS and I genotype, they probably did not 

reach the threshold at which cell damage becomes irreversible during the experiment, but the S 

genotype might.  

Arginine and asparagine have a relatively high ratio between nitrogen and carbon. It is suggested they 

function as scavengers for toxic ammonium (Brouquisse et al., 1992). The use of protein as alternative 

substrate for respiration is generally suggested as main cause for the ammonium increase during 

carbohydrate starvation (Brouquisse et al., 1992; Devaux et al., 2003; Gary et al., 2003; Gaufichon et 

al., 2010). However, higher activity of the key enzyme in phenylpropanoid metabolism, phenylalanine 

ammonia lyase (PAL), would also result in production of ammonium. Despite a strong increase in 

asparagine, protein content did not decrease at the first days of carbohydrate starvation. However, 

compounds synthesized through the phenylpropanoid pathway increased in the first days of 

carbohydrate starvation. Therefore, upregulation of the phenylpropanoid metabolism through higher 

activity of PAL might be responsible for release of ammonium and therefore increase in asparagine and 

arginine at the cost of carbon. This would suggest that upregulation of the phenylpropanoid metabolism 

is more important for the alteration of nitrogen metabolism during carbohydrate starvation than protein 

breakdown, especially during early stages of starvation. These hypotheses and their relations are 

visualized in Figure 2.8. 



Chapter 2 

 

38 
 

 

Figure 2.8. Concept map of ammonium metabolism during carbohydrate starvation. Arrow size represents relative 
flow, the dotted arrow represents a relation of which significance is unknown. PAL: phenylalanine ammonia lyase; C: 
carbon. Protein can serve as carbon source during carbohydrate starvation, and thereby releases ammonium. 

Ammonium is scavenged by synthesizing high C:N amino acids like arginine and asparagine, resulting in a net 
synthesis of free carbon. However, protein breakdown is only significant late during carbohydrate starvation. A second 

source of ammonium is PAL, which catalyses a rate limiting step for phenylpropanoid biosynthesis. This process leads 
to net loss of free carbon. 

2.4.6.3 Possible roles for camphor  

Camphor was the main compound that could explain genotypic differences in the response to 

carbohydrate starvation in terms of degreening. It is a terpenoid and occurs in several specific plant 

families. It is the main component in essential oils extracted from flower heads of several species in the 

chrysanthemum genus, like Chrysanthemum indicum (Shunying et al., 2005) and Chrysanthemum 

coronarium (Alvarez-Castellanos et al., 2001; Basta et al., 2007).  

The I genotype showed the strongest increase in camphor upon carbohydrate starvation and largest 

absolute concentration. However, these differences only explained genotypic differences under 

carbohydrate starvation; the camphor content at harvest did not correspond to susceptibility to 

degreening. How camphor could play a role in preventing degreening remains unknown. It might be 

easily oxidized and therefore serve as an anti-oxidant under starvation stress.  

Chrysanthemum essential oils have antifungal and antibacterial activity (Alvarez-Castellanos et al., 

2001; Kim et al., 2003; Shunying et al., 2005). The antibacterial activity can be specifically addressed to 

camphor (Lee et al., 2011). The increase of camphor in carbohydrate starved disk florets might be the 

result of an abiotic stress-induced pathogen defence mechanism, like drought stress-induced increase 

of defence metabolites in tomato (English-Loeb et al., 1997). Our observed increase in 

phenylpropanoids likely also adds to this pathogen defence (Dixon et al., 2002). These types of 

responses could be very relevant for postharvest quality, since large amounts of fresh produce are 

being lost because of infection of microorganisms. 

2.5 Conclusions 
Carbohydrate metabolism plays an important role in postharvest performance. Our results show that 

carbohydrate starvation increases the level of secondary metabolites with biologically and agriculturally 

relevant functions. Among those are camphor, phenylpropanoids, and flavonoids. Genotypes respond 

differently in primary and secondary metabolism to carbohydrate starvation. Understanding this 

differential response between genotypes on a physiological level helps to identify processes causative 
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for genotypic differences in their response to carbohydrate starvation and susceptibility to degreening. 

This paper poses hypotheses for causative relations between metabolic events and degreening 

susceptibility. We are currently testing these hypotheses in a broader set of genotypes. Once causative 

processes are identified, QTL mapping based on specific phenotypes (at the gene expression, 

metabolomic, and phenomic level) together with characterization of causative allelic variation based on 

candidate genes become much more feasible.  
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2.7 Additional files 
Additional file 2.1. Carbohydrate corrected dry weight of all disk florets in one flower. Error bars represent standard 

error of the mean, n=5. Three genotypes were used: a sensitive (S; triangles), medium sensitive (MS; squares) and 
insensitive (I; circles). Flower heads were fed with 50 mM sucrose (closed symbols) or not fed (open symbols). 

Additional file 2.2. Protein change over time as relative from initial (A). Inlay: protein content of the three different 
genotypes at day 0. Error bars represent standard error of the mean, n=5. (B) Protein content versus relative hue 

angle. Flower heads were fed with 50 mM sucrose (closed symbols) or not fed (open symbols). Three genotypes were 
used: a sensitive (S; triangles), medium sensitive (MS; squares) and insensitive (I; circles). 

Additional file 2.3. Respiration rate one day after harvest. Error bars represent standard error of the mean, n=3. S: 
sensitive; MS: medium sensitive; I: insensitive to degreening. 

Additional file 2.4. Respiration rate after harvest over time (A) and plotted against soluble sugar content (B). Flower 
heads were fed with 50 mM sucrose for 24 hours starting from day 1 and 3 (grey) or not fed (open symbols). Three 

genotypes were used: a sensitive (S; triangles), medium sensitive (MS; squares) and insensitive (I; circles). Lines in 
(B) are regression lines as a result of fitting a simple linear model on the three genotypes separately, resulting in an 
R2 of 53.2, 59.9 and 28.8% for the S, MS and I genotypes respectively. Error bars in (A) represent standard error of 

the mean (n=3). 
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Abstract 
Breeding for postharvest performance in ornamentals is challenging, since many different deteriorative 

processes determine vase life. In order to improve postharvest performance by breeding, selection 

should take place on these processes separately. To define processes that are important for 

chrysanthemum postharvest performance, vase life was assessed after two weeks of cold storage in a 

set of 44 chrysanthemum cultivars. Since disk floret degreening was the most frequent reason for 

ending vase life, we further investigated this trait in a large bi-parental population (n=381). To quantify 

disk floret degreening in this large number of genotypes, we developed a high-throughput phenotyping 

method. The method consists of the quantification of loss of green colour as expressed by an increase 

of intensity of red divided by the intensity of green (R/G) in dark-held detached capitula. R/G increases 

when disk florets lose green colour. The increase in R/G correlated significantly with the number of days 

until disk floret degreening occurred during vase life. This was the case for the 44-cultivar cultivar panel 

(Pearson’s correlation coefficient (ρ) of -0.70; p<0.0001) as well as in a subset of the bi-parental 

population (n=145; ρ=-0.67; p<0.0001). R/G increase segregated in a quantitative manner in the full 

bi-parental population, and had a moderately high heritability of 0.73. Carbohydrate content after 

harvest was measured in a smaller subset of the bi-parental population (n=55). The R/G increase 

correlated with carbohydrate content (ρ=-0.56; p<0.0001). Since carbohydrate content did not explain 

all variation in degreening sensitivity, we discuss different possible mechanisms to cope with 

carbohydrate starvation and avoid degreening. In conclusion, disk floret degreening is an important 

postharvest trait in chrysanthemum, and it is related to carbohydrate starvation. The quantitative 

segregation suggests involvement of multiple alleles, probably at multiple loci. The moderately high 

heritability makes it a suitable trait for QTL mapping, which we will commence in the near future. 

3.1 Introduction 
In many crop plants, and specifically ornamental crops, breeding for postharvest quality is challenging. 

A reason for this, is that vase life and shelf life terminating symptoms vary within a crop (Fanourakis et 

al., 2013; Ferrante et al., 2015; Rico et al., 2007) implying that many different unrelated processes can 

explain genotypic variation. In addition, a wide range of pre- and postharvest environmental variation 

can interact with the time to occurrence and severity of these symptoms (Fanourakis et al., 2013). The 

interaction between genotype and environment is therefore an important factor to take into account 

while investigating postharvest performance. 

Breeding aims to maximize the number of favourable alleles in a certain germplasm or genotype. 

Timing of occurrence and extent of different postharvest-related deteriorative processes is generally 

encoded by a broad set of alleles and loci (Carvalho et al., 2015; Moreno et al., 2008; Zhang et al., 

2007). This large variation strongly impairs the development of breeding tools that allow estimation of 

the phenotype from a genotype. The overall postharvest performance of a certain crop should therefore 

be divided in specific parameters that can be measured reliably and are potentially encoded by a limited 

set of alleles. Genotypic improvement should take place at the level of these parameters. There are 

successful examples of breeding for specific mechanisms to increase postharvest performance in cut 

flowers. An example is described by Onozaki et al. (2001) in which the authors could improve carnation 

vase life by specifically selecting against ethylene sensitivity. Another is described by Carvalho et al. 

(2015) in which the authors successfully located QTLs explaining vase life by assessing the stomatal 

control in rose using detached leaves. 

During the postharvest phase, plants and their harvested products are often kept in low light 

environments or even in the dark. Production of carbohydrates is therefore strongly impaired while 

respiration continues, eventually leading to a state where carbohydrates are limiting. This results in 

senescence-like processes, for example loss of proteins (King et al., 1990) and chlorophyll (Buchanan-

Wollaston et al., 2005; Trivellini et al., 2012), DNA fragmentation (Devaux et al., 2003), ammonium 

accumulation (Devaux et al., 2003; King et al., 1990), and eventually cell death. Reducing carbohydrate 

starvation or its symptoms has large potential to improve postharvest performance, as these processes 
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lead to unwanted colour changes and eventually increased susceptibility to necrotrophic 

microorganisms.  

Variation in postharvest quality of cut chrysanthemum has been related to several different problems: 

leaf yellowing (Satoh et al., 2008), leaf wilting (van Doorn and Cruz, 2000; van Meeteren, 1992), flower 

wilting (Adachi et al., 2000), and disk floret degreening (chapter 2). In order to define specific 

measurable parameters that explain vase life after storage in chrysanthemum, we assessed vase life of 

a genotype panel for a broad range of vase life terminating symptoms. Following two weeks of cold 

storage, disk floret degreening was the most frequently occurring vase life terminating symptom; 

therefore we developed a method to rapidly measure sensitivity for disk floret degreening derived from 

the Arabidopsis Infloresence Degreening Assay (AIDA; Jibran et al., 2015; Trivellini et al., 2012). In the 

previous chapter (chapter 2), in which we studied three genotypes, we suggest that carbohydrate 

content might play a role in explaining genotypic differences in disk floret degreening, but that it is not 

the only factor. In this study, we analysed a much larger set of genotypes as well as a bi-parental 

population to investigate the roles of initiation of senescence and carbohydrate metabolism in 

degreening sensitivity.  

3.2 Materials and methods 

3.2.1 Plant materials 

This study describes two groups of genotypes: a cultivar panel and a bi-parental population. The 

cultivar/breeding line panel consisted of 44 genotypes with single (daisy-like) white flowers. The bi-

parental population consisted of offspring of a bi-parental cross between Deliflor breeding lines 

DB36451 and DB39287 (Deliflor chrysanten B.V. Maasdijk, the Netherlands). This population consisted 

of 405 offspring of which for 381 offspring we could get enough plant material for measurements 

(Figure 3.1). The parents were part of the cultivar panel. Plants were maintained and propagated 

vegetatively. Cuttings were rooted during two weeks and after that planted in a greenhouse in 

Maasdijk, the Netherlands (latitude: 51.959311; longitude: 4.214427). Harvest took place when a field 

consisting of plants of the same genotype reached commercial maturity. Plants growing at the border of 

a field were not used.  

3.2.2 Cultivar panel 

From the 44 members of the panel, 19 genotypes were grown in three replicates in a randomized 

design and the remaining 25 genotypes were grown in one replicate (Table 3.1). A replicate consisted 

of a field ranging from 20 to 100 plants, depending on the availability of cuttings. Of those, up to six 

stems were used for experiments (see below). Plants were grown from November 2015 to January 

2016 in 16 hour photoperiods for 14 days and after that in 12 hour photoperiods to induce flowering.  
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Table 3.1. Genotypes used in the cultivar panel. 

Name Breeder Replicates 

Astun Deliflor Chrysanten B.V. 3 

Bacardi Dümmen Orange 3 

Breeding lines* Deliflor Chrysanten B.V. 1-3 

Chic Royal Van Zanten 3 

Delilah white Deliflor Chrysanten B.V. 3 

Gletsjer United Selections 1 

Goethe Deliflor Chrysanten B.V. 3 

Major White Dekker Chrysanten B.V. 3 

Neva Deliflor Chrysanten B.V. 3 

Pinot Blanc Dümmen Orange 3 

*Breeding lines represent 35 genotypes used in the breeding programme of Deliflor chrysanten B.V. 

They have no name, only a number. Of those, 11 genotypes were grown in three replicates, the rest in 

one replicate. 

3.2.3 Bi-parental population 

The offspring and parents were grown in a randomized block design with three replicates in three 

different seasons: summer (May to July 2015), late summer (August to October 2015), and autumn 

(September to November 2015). For the parents, three fields per flower trial were planted. Depending 

on the viability of the mother plants, fields consisted of 10 to 50 plants. Of those, up to six stems were 

used for experiments (see below). Plants were grown in 12, 12 and 14 days of 18, 21 and 21 hours 

photoperiods for the summer, late summer and autumn replicates, respectively. After that, they were 

grown in 11 and 12 hours photoperiods (depending on the season) to induce flowering. Since resources 

for carbohydrate measurements and vase life tests were limiting, we used a subset of 55 genotypes 

(including parents) for the carbohydrate measurements (here after referred to as ‘subset55’) and a 

subset of 145 offspring genotypes (including parents) for the vase life tests (here after referred to as 

‘subset145’; Figure 3.1). Subset55 was completely included in the subset145, and vase life of subset55 

was assessed in triplicate. The remaining genotypes in subset145 were measured once or in two 

replicates. All offspring plants in subset55 and subset145 were harvest-ripe on the same day as the 

parents.  
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Figure 3.1. A schematic overview of used plant material. The x represents a cross between genotypes DB36451 and 
DB39287. The numbers in the circles describe the number of genotypes in the population and subsets. Circle size is 

relative to the number of genotypes. The parents (DB36451 and DB39287) are included in all populations. 

3.2.4 Vase life tests 

After harvest, five flower stems per replicate field were cut to 75 cm, wrapped in an unperforated 

plastic sleeve, and stored in a cardboard box at 4°C for 14 days. After this storage period, stems were 

trimmed to 65 cm. In order to normalize for water balance, the cultivar panel was placed on water at 

4°C for three hours. For the bi-parental population our experiment focused on disk floret degreening 

only. As disk floret degreening is not related to water balance (van Geest et al., 2015), water balance 

was not normalized for the bi-parental population. For the vase life tests, stems were placed in a vase 

with 1L of tap water and 25 mg L-1 DICA at 20±1 °C, 60±10% air humidity and 12 h photoperiods at 

6.5 µmol m-2 s-1 provided by Philips Coolwhite TL 84 lamps. During vase life testing, flower stems were 

assessed based on the quality parameters depicted in Table 3.2. Vase life was considered ended if the 

quality threshold of one of the vase life terminating symptoms was reached. For the cultivar panel, the 

number of days were recorded until quality dropped below the threshold for each problem separately 

until at least one for each of the flower-, stem- and leaf quality thresholds were reached. For the bi-

parental population, only the number of days until disk floret degreening was reached was recorded. 

3.2.5 Colour measurements of detached capitula 

If chlorophyll and its precursors are lost, the intensity of green decreases and that of red increases 

(Schouten et al., 2002). This results in an increase in R/G and this measure was used to quantify loss of 

green colour in disk florets. For estimating degreening sensitivity, we adapted the AIDA method as 

described by Trivellini et al. (2012). With the AIDA method, penduncle ends of detached Arabidopsis 

inflorescences are placed in a medium contained by a microtiter plate, and degreening is assessed by 

eye or by chlorophyll quantification. We adapted this assay to fit the size and shape of chrysanthemum 

inflorescences and added a method to quantify degreening using colour measurements. After harvest, 

the ray florets were removed from the third capitulum as counted from the top and it was cut off 

leaving approximately 5 cm of the peduncle. As sepals were very large for some genotypes, for all 

genotypes sepals were cut off to prevent covering the disk florets. Capitula stem ends were placed in 

25 mg L-1 dichlorisocyanurate (DICA) to prevent microbial growth. The detached capitula were kept in 

the dark at 20±1 °C and 60±10% air humidity for 14 days. Pictures were taken every working day 
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(Monday to Friday) in a standardized light environment using a Canon EOS 1000D camera. The 

red/green (R/G) values were measured as earlier described in chapter 2. Intensity of red and green of 

the disk florets was analyzed using ImageJ (Schneider et al., 2012) using the “RGB Stack” function, 

followed by measurement of the greyscale intensity.  

3.2.6 Relative electrolyte leakage 

Relative electrolyte leakage was measured to quantify the presence of senescence-like processes in the 

form of ammonium efflux and/or membrane disintegration (Rolny et al., 2011). This was done after the 

last colour measurement of the capitula at day 14 from the plants of the bi-parental population grown 

in summer. Disk florets were removed and placed on a sieve in a 175 mL plastic pot, in order to easily 

separate them from the water for measurements. Disk florets were washed for 20 minutes with 20 mL 

demineralized water by stirring. After that, the disk florets were rinsed again with 20 mL demineralized 

water and incubated in 20 mL demineralized water for two hours at 20°C. After this two-hour 

incubation, EC was measured of the solution (EC2h), after which the solution including disk florets was 

heated in a microwave at 600 watts for two minutes to break down all membranes. After heating, the 

water and disk florets were left to cool down at 20°C for three hours and EC was measured again 

(ECtotal). Relative electrolyte leakage was expressed as percentage, and calculated as EC2h/ECtotal*100%.  

Table 3.2. Vase life terminating symptoms and their quality thresholds. These quality thresholds are based on the 
appearance of a bunch of five flower stems placed in one vase.  

Symptom Quality threshold 

Disk floret degreening 
More than 50% of the capitula of at least three stems show 
degreening of the disk florets 

Leaf browning 
More than 50% of the leaves of at least three stems show 
browning 

Leaf wilting 
More than 50% of the leaves of at least three stems show 
wilted leaves 

Bud browning 
More than 50% of the flower buds of at least three stems 
show browning 

Leaf yellowing 
More than 50% of the leaves of at least three stems show 
yellow leaves 

Ray floret browning 
More than 50% of the capitula of at least three stems show 
browning of the ray florets 

Ray floret wilting 
More than 50% of the capitula of at least three stems show 
wilting of the ray florets 

Stem wilting More than three stems show wilting of the stem 

Stem blackening More than three stems show blackening of the stem 

Multiple reasons More than three stems shows at least one of the above 

Bacterial infection vase 
water 

Vase water is highly turbid 
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3.2.7 Carbohydrate measurements 

Disk florets of the third capitulum (counted from the top) of one flowering stem per field were sampled 

at harvest. For the plants grown in summer, carbohydrates were measured using an ethanol-based 

extraction as described in chapter 2, of which the fructan quantification method is based on (Verspreet 

et al., 2012). Since the ethanol-based method is time and resource consuming, and because solubility 

of sugars in 80% ethanol might not be optimal (Raessler, 2011), we used a less resource intensive 

water-based extraction protocol for the late summer- and autumn-grown plants. In this method, 

enzymes are used to specifically break down polysaccharides like starch and fructans enzymatically. 

Fructans were hydrolyzed based on the AOAC method 999.03 (Megazyme Fructan Assay Procedure, 

Megazyme, Bray, Ireland). Disk florets were lyophilized, ground into fine powder and a subsample was 

weighed accurately between 12 and 20 mg. Two mL of 100 mg L-1 thermostable α-amylase (Rohalase; 

SERVA Electrophoresis GmbH, Heidelberg, Germany) was added and samples were incubated at 90°C 

for 30 minutes to extract sugars and hydrolyse alpha-linked polysaccharides. After that, 2 mL enzyme 

mixture was added, containing 2000 units L-1 fructanase mixture (purified powder, Megazyme, Bray, 

Ireland), 1 g L-1 bovine serum albumin (BSA), 0.5 g L-1 amyloglucosidase from Aspergillus niger (Sigma 

10115, Sigma, St Louis, MO, USA)  in a 200 mM acetate buffer at pH=4.6. The extract was incubated at 

60°C for 30 minutes. After extraction and hydrolysis, it was centrifuged at 35,000 x G. The supernatant 

was diluted 10x and fructose and glucose concentration were measured using HPAEC-PAD as described 

in chapter 2. Successful enzymatic hydrolysis of fructans and starch was tested using internal standards 

of inulin and starch in a representative test sample. To check for compatibility between ethanol and 

water extraction, we measured total carbohydrate content of a set of 24 samples originating from 24 

different genotypes with both methods, and found a correlation with an R2 of 95% between the two 

methods, showing that results of both methods are comparable with the order among genotypes. 

However, absolute values could not be compared between methods, since the water-based method had 

a 15±2% higher yield compared to the ethanol method. This was probably due to the higher solubility 

of sugars in water compared to 80% ethanol (Raessler, 2011). 

3.2.8 Statistical analysis 

Data analysis was performed using R version 3.1.0 (R Core Team, 2014). The three planting dates of 

the bi-parental population were considered as blocks, and phenotypic data were corrected accordingly. 

Model fitting was conducted using the “lm” function in R. R2 and p-values calculated using the summary 

function, and correlation coefficient (ρ) was calculated using the “cor” function. Broad sense heritability 

(h2) was calculated using h2=genotypic variance/total variance (Acquaah, 2007). Variances were 

estimated by an analysis of variance (ANOVA) of the effect of genotype on the trait.   

3.3 Results 

3.3.1 Postharvest performance of the cultivar panel 

Vase life was defined as the number of days until the quality threshold of one of the vase life 

terminating symptoms (Table 3.2) was reached. Variation in vase life of the cultivar set ranged from 4 

to 17 days (Figure 3.2). The reasons for ending vase life were diverse, but disk floret degreening was 

the most frequent first vase life problem, with 43 % of the genotypes reaching the quality threshold of 

disk floret degreening first. 
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Figure 3.2. Average vase life of the cultivar panel following 14 days storage at 4°C. Vase life was assessed of bunches 
of five flower stems. Genotypes measured in three replicate bunches are indicated with an asterisk (*). Error bars 

indicate their standard error. Names of the parents of the bi-parental population are depicted in red. The colour 
represents the symptom for which average days until occurrence of that symptom was minimal. The inlay shows the 

frequency of genotypes per first occurring vase life terminating symptom. 

For each replicate, disk floret colour was measured of detached capitula after harvest during 14 days. 

Colour is represented as the intensity of red divided by the intensity of green (R/G) of the disk florets. 

Genotypes that were most sensitive to degreening started to show loss of green colour (higher R/G 

ratios) after six to seven days (Figure 3.3). R/G values of insensitive genotypes hardly increased during 

the measuring period of 14 days. Green colour loss of detached capitula expressed as the R/G increase 

over 14 days correlated highly significantly with the time until disk floret degreening of flowering stems 

in the vase life test dropped below the quality threshold as specified in Table 3.2 (Figure 3.4 A). From 

the tested genotypes, two extremes (Figure 3.3; Figure 3.5A) were chosen as parents to generate a bi-

parental population segregating for disk floret degreening.   

  

Figure 3.3. Red over green (R/G) values of detached capitula over time of the three replicates of the sensitive parent 

(DB39287; dotted), three replicates of the insensitive parent (DB36451; dashed) and members of the cultivar panel 
(grey).  
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Figure 3.4. Correlation between R/G increase over 14 days of detached capitula  and time to disk floret degreening 

during vase life for the cultivar panel (A) and population subset145 (B). Vase life was measured after 14 d dark 
storage (4°C) of flowering stems. The black triangles represent the sensitive parent of the bi-parental population, the 

black circles represent the insensitive parent. The open circles represent genotypes measured with one replicate, 
closed grey symbols represent genotypes measured with two replicates and closed grey symbols with black outlines 

represent genotypes measured with three replicates in the vase life tests. The regression line represents the fitted 
model: y=-15.24x+16.36 with an R2 of 49.4%, a correlation coefficient (ρ) of -0.70 and p-value<0.0001 for (A) and 
y=-26.0x+21.3 with an R2 of 44.8%, a ρ of -0.67 and p<0.0001 for (B). 

3.3.2 Segregation for degreening sensitivity 

The population was phenotyped three times for disk floret degreening using the method of detached 

capitula. Senescence-like processes co-occurred with loss of green colour as indicated by the correlation 

between R/G increase and relative electrolyte leakage (Figure 3.6; p<0.0001). The growing season had 

a significant effect on both R/G increase and time to disk floret degreening during vase life (Figure 3.7). 

Towards the time of year with less light availability, disk florets are more susceptible to degreening. In 

addition, carbohydrate content was affected by season. Carbohydrate content of the disk florets of 

summer-grown plants were measured using the ethanol-based method and carbohydrate content of 

late summer and autumn-grown plants were measured using the water based method (see Materials 

and Methods). As absolute values between the methods were different, these could not be compared. 

However the difference between late summer grown and autumn grown plants was highly significant 

(p<0.0001; not shown), with a higher carbohydrate content for disk florets of plants grown in late 

summer compared to plants grown in autumn. Season corrected averages of R/G increase segregated 

in a quantitative manner in the bi-parental population approaching a normal distribution (Figure 3.5B).  
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Figure 3.5. Histograms of mean R/G increase of capitula after 14 days in darkness for the cultivar panel (A) and full bi-
parental population (B). The R/G values of the bi-parental population were season corrected. The means of the 
parents are indicated with an arrow (insensitive: left; sensitive: right).  

         

Figure 3.6. Relation between R/G increase of capitula of the full population and relative electrolyte leakage of disk 
florets (REL) after 14 days of darkness. Open grey circles represent offspring, filled grey circles those offspring for 

which carbohydrate content was assessed, black triangles the sensitive parent, and black circles the insensitive parent. 
The regression line represents the fitted model: y=90.56x2+26.87x+10.03 with an R2 of 53.4% and p<0.0001.  
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Figure 3.7. Average R/G increase (left) and on time to disk floret degreening during vase life (right) of the population 
per season. Barplots indicate the average of all tested genotypes per season. Letters indicate significant differences at 

p=0.05 in a paired t-test between all three pairs of seasons.   

Also for the progeny of the population, the R/G increase of detached capitula correlated (p <0.0001) 

with time to disk floret degreening during vase life tests of flowering stems following 14 days of storage 

(Figure 3.4 B). Carbohydrate content at harvest significantly explained variation in days to disk floret 

degreening by a simple linear regression model (p=0.002; not shown) and R/G increase (Figure 3.8; 

p<0.0001). Residuals increase with higher fitted R/G values (inlay Figure 3.8). Therefore, at low 

carbohydrate content less variation of R/G increase is explained. Genotypes with high carbohydrate 

content showed low susceptibility to disk floret degreening. However, low carbohydrate genotypes were 

not susceptible in all cases. 

 

Figure 3.8. The relation between carbohydrate concentration of the disk florets at harvest and R/G increase after 14 
days of darkness. Members of subset55 are depicted by open circles, the sensitive parent is represented by the black 

triangle, the insensitive parent by the black circle. Error bars represent standard errors, with n=3. The regression line 
represents the fitted model: y=-0.00194x+0.456 with an R2 of 31.0%, a correlation coefficient (ρ) of -0.56  and 
p<0.0001. The inlay depicts the residuals versus fitted values of this model, with the line representing the floating 

average of the residuals. 

3.3.3 Heritability of disk floret degreening 

In order to estimate selection efficiency of measured traits, we calculated broad-sense heritability 

(Table 3.3). This is the fraction of variation explained by genotype compared to the total variation. The 

higher this fraction, the more successful one can select for that trait in breeding. Heritability of days to 
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disk floret degreening during vase life of flowering stems was clearly lower compared to R/G increase of 

detached capitula in this subset. When considering the entire population, heritability was even higher. 

Carbohydrate content was most explained by genotype, with a heritability of 0.755.  

Table 3.3. Heritability parameters of the measured variables of subset55 and the full population.  

Variable Unit n† 
Mid-parent 

value 
Grand 
mean‡ 

Heritability 

Days to disk floret 
degreening during vase 

lifea 

days 55 16.2 13.1±5.64 0.59 

R/G increase of subset55* - 55 0.325 
0.280 

±0.120 
0.688 

R/G increase - 381 0.325 0.326±0.128 0.734 

Carbohydrate content of 

subset55a 

g kg-

1 
55 72.7 89.6±34.2 0.755 

*subset55: a subset of 55 genotypes out of the entire population that was harvest ripe at the same day 
as the parents (including parents; see Materials and Methods). 
†number of genotypes 
‡Mean±standard deviation 

3.4 Discussion 
Vase life in chrysanthemum can end because of a broad range of different visual symptoms of 

deterioration. We assessed vase life after a period of dark storage for 14 days at 4°C of the flowering 

stems of a set of genotypes. For twelve of these symptoms, each occurred at least once in the 44 single 

white genotypes we tested. However, disk floret degreening occurred most frequently supporting our 

focus to improve chrysanthemum postharvest performance by investigating this problem.  

To investigate genotypic effects on disk floret degreening, we developed a method to screen a large 

number of plants efficiently in terms of time and costs. The quantification of degreening sensitivity 

expressed as R/G increase of dark-held detached capitula took much less climate room space. In 

addition, it also took less time compared to a standard vase life test after two weeks of cool storage, 

since results are available 14 days after harvest, whereas it takes up to five weeks with a standard vase 

life test (two weeks of storage included). As seen from the correlation analyses, R/G increase of 

detached capitula is a good estimator for disk floret degreening during vase life. The presence of stem, 

leaves, and ray florets apparently do not play a major part in explaining genotypic differences in disk 

floret degreening of flowering stems after storage. This shows that the status of the capitulum at 

harvest determines for a large part the postharvest performance. The use of detached capitula to 

estimate a genotypes’ sensitivity to degreening during vase life after storage is therefore justified. 

3.4.1 Degreening and carbohydrate metabolism 

During postharvest dark-storage, plants and fresh produce often suffer from carbohydrate starvation. 

Carbohydrate starvation initiates a general catabolic state resulting in degreening concomitantly with 

senescence-like processes (Buchanan-Wollaston et al., 2005; Trivellini et al., 2012), eventually entirely 

devaluating crop quality. Postharvest treatments, pre-harvest growth conditions and genotype can 

reduce carbohydrate starvation during the postharvest phase. Postharvest treatments like sugar feeding 

often have a positive effect on vase life in general (Ichimura et al., 2005; Yakimova et al., 1996), and 

can prevent disk floret degreening (chapter 2). Disk floret degreening was more severe and occurred 

earlier if plants were grown during seasons with lower light intensities. As this co-occurred with lower 

carbohydrate content of the disk florets at harvest, this is probably the result of lower carbohydrate 

availability during these growth conditions. The carbohydrate measurements of disk florets at harvest 

show that large variation exists in carbohydrate content of disk florets between genotypes: up to a 

factor four difference. As carbohydrate content correlates with R/G increase, the genotype can have a 
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large effect on the severity of carbohydrate starvation and with that degreening sensitivity. Taken 

together, we show that variation in carbohydrate content, either varied by growth conditions, treatment 

or genotype, reduces disk floret degreening, underpinning the major role of carbohydrate starvation in 

disk floret degreening.  

3.4.2 Disk floret degreening and the stay-green concept 

Genetic variants with delayed loss of chlorophyll are generally referred to as stay-green phenotypes. 

Based on the co-occurrence of sensescence-like processes, they can be classified into functional and 

cosmetic stay-greens (Thomas and Howarth, 2000; Thomas and Ougham, 2014). Cosmetic stay-greens 

are genetic variants of which only the chlorophyll breakdown is hampered, whereas normal senescence 

processes continue. As degreening co-occurred with electrolyte leakage, at first sight it seems that the 

stay-green genotypes are not cosmetic. However, the increase in electrolyte leakage is likely an 

indication of ammonium efflux (Rolny et al., 2011), caused by chloroplastic protein breakdown and/or 

production of phenolic compounds out of aromatic amino acids (chapter 2). As retention of chlorophyll 

also leads to retention of thylakoid membrane associated proteins (Horie et al., 2009), increased 

electrolyte leakage would co-occur with chlorophyll breakdown and not necessarily with senescence. It 

is therefore unclear whether the genotypes with delayed degreening have a reduced chlorophyll 

catabolism or have general delayed senescence. 

3.4.3 Possible mechanisms explaining genotypic differences 

The correlation between R/G increase and carbohydrate content is significant, but a lot of variation 

exists around the regression line, especially at low carbohydrate content. This suggests that 

carbohydrate content at harvest is not the only factor affecting sensitivity to degreening. In addition, in 

three not directly related (more than third degree) genotypes presented in chapter 2, genotypic 

differences in carbohydrate content could not explain all differences in susceptibility. Apparently, having 

low carbohydrate content at harvest enhances susceptibility to degreening, but it is not necessary to be 

sensitive. Therefore, there seem to be two types of degreening insensitivity in the bi-parental 

population: carbohydrate dependent and independent. Carbohydrate independent insensitivity seems to 

be more interesting, since carbohydrates are generally limiting during growth. If these carbohydrates 

are not necessary for maintaining product quality after harvest, the crop can invest them elsewhere.  

3.4.3.1 Genotypic variation in carbohydrate content 

Genotypic variation in carbohydrate content in the disk florets could be caused by limiting factors in 

both sink and source strength during growth. Sink strength is defined as the competitive ability of an 

organ to attract assimilates (Marcelis, 1996). Genotypic variation in carbohydrate content of organs can 

be linked to variation in sink strength (Murray et al., 2008), and specifically to genes related to 

regulation of sink strength (Calviño et al., 2008; Nägele et al., 2010). Allelic variation in genes 

responsible for establishing sink strength could regulate carbohydrate content in disk florets, and 

breeding for higher sink strength in disk florets is therefore an option to reduce disk floret degreening. 

However, increasing source strength might be more profitable, since there would be no trade-off for 

other organs that would receive less carbohydrate if disk florets would receive more. The source 

strength could vary between genotypes because of genotypic variation in photosynthetic capacity, 

biomass conversion rate and plant architecture (Flood et al., 2011). A higher source strength usually 

results in formation of more dry matter partitioning towards the sinks, by the formation of more sink 

organs (Marcelis, 1996). Assuming the sink strength between the parents are comparable, source 

strength could indeed explain the differences between the parents, since the insensitive parent carries 

more capitula (15.2 ± 1.6) compared to the sensitive parent (10.4 ± 1.3) with similar flower size (van 

Geest, van Meeteren, Post, Visser and Arens, not published). This suggests that the sensitive parents’ 

source is more limiting and therefore produces less capitula with less carbohydrate.  

1.1.1 Genotypic variation in degreening independent of carbohydrate content 

Variation in degreening sensitivity that is independent of carbohydrate status can be related to a wide 
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range of processes, ranging from aberrant signaling to variation of timing or extent of specific 

senescence-like processes. Since these processes are part of complex interactive networks between 

transcriptional regulation, hormones and reactive oxygen species (ROS) signaling, there are numerous 

possibilities for genetic variants with improved stay-green traits under stress (Thomas and Ougham, 

2014).  

Genotypic differences in transcriptional regulation of chlorophyll catabolism or carbohydrate signaling 

might play an important role in degreening sensitivity. As stated above, it is unclear whether the entire 

senescence process or only chlorophyll catabolism is delayed. Chrysanthemum phenotypes with delayed 

chlorophyll catabolism could be caused by variants of genes that result in stay-green phenotypes in 

Arabidopsis, like chlorophyll b reductases (NYC1 (Horie et al., 2009; Jibran et al., 2015) or  NYC1-like 

(Horie et al., 2009)) or photosystem II associated STAY-GREEN (Sakuraba et al., 2012). Phenotypes 

with differential transcriptional regulation of overall senescence on the other hand, might be related to 

gene variants that have roles in carbohydrate signaling. Carbohydrate signaling is proposed to be 

regulated by the interplay between TOR (Target of rapamycin) and SnRK1 (SNF1-related kinase1) and 

their subunits (Smeekens et al., 2010). They regulate a wide range of senescence-associated processes 

including mitochondrial electron transport, glycolysis, amino acid metabolism, autophagy, 

photosynthesis and protein degradation (Baena-González et al., 2007; Díaz-Troya et al., 2008).  

Genetic variants related to protection against oxidative stress could also play a role in delayed 

degreening at carbohydrate starvation. In chapter 2, we suggest that a more abrupt reduction of 

respiration rate could explain genotypic differences in sensitivity of degreening independent of 

carbohydrate content. This reduction in respiration rate could both be a cause or a symptom of 

oxidative stress. During oxidative stress, the mitochondrial electron transport chain could become 

overreduced, and this would result in a reduction in respiration rate. However, a too strong reduction in 

respiration rate as caused by e.g. active regulation of ATP synthase directly or indirectly by 

carbohydrate signaling could eventually also lead to oxidative stress (Vanlerberghe, 2013). Genotypes 

with improved protection against oxidative stress or alternative ROS signaling might therefore be less 

sensitive to carbohydrate starvation.  

3.4.4 Heritability and selection for postharvest performance 

As genotypic improvement through selection is more efficient with highly heritable traits, we compared 

heritability values between the measured parameters. Days to disk floret degreening during vase life 

had lowest heritability, indicating that a large part of the phenotypic variation is caused by uncontrolled 

environmental variation and measurement errors. Carbohydrate content was most heritable, and is 

therefore suitable to increase through selection. However, it explains only a small part of the number of 

days until disk floret degreening during vase life. As heritability values of R/G measurements were only 

slightly lower, selection at the level of R/G measurements seems to be most efficient to improve 

postharvest performance in terms of susceptibility to disk floret degreening, since it has higher 

heritability compared to days to degreening during vase life, and the measurement takes much less 

resources.  

3.5 Conclusions 
Although also relevant for crops and plants in nature, genotypic variation in sensitivity to carbohydrate 

limiting environments is a relatively unexplored research area. Finding alleles that explain this variation 

can allow us to identify plant strategies to cope with unfavorable light limiting conditions. In order to 

understand genetics of degreening of chrysanthemum disk florets after carbohydrate starvation, we 

developed a high-throughput phenotyping method. The moderately high heritability of sensitivity to disk 

floret degreening makes it suitable for mapping of quantitative trait loci (QTL). Since at least two 

processes regulate sensitivity to degreening, QTL mapping probably will result in multiple loci. More 

knowledge on the processes, specifically on sensitivity to carbohydrate starvation, will further aid 
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selection of phenotypes that can maximize the use of carbohydrates under carbohydrate-limiting 

conditions. 
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Abstract 
Cultivated chrysanthemum is an outcrossing hexaploid (2n = 6x = 54) with a disputed mode of 

inheritance. In this chapter, we present a SNP selection pipeline that was used to design an Affymetrix 

Axiom® array with 183k SNPs from RNA-seq data (1). With this array, we genotyped four bi-parental 

populations (with sizes of 405, 53, 76 and 37 offspring plants respectively), and a cultivar panel of 63 

genotypes. Further, we present a method for dosage scoring in hexaploids from signal intensities of the 

array based on mixture models (2) and validation of selection steps in the SNP selection pipeline (3). 

The resulting genotypic data is used to draw conclusions on the mode of inheritance in chrysanthemum 

(4), and to make an inference on allelic expression bias (5). With use of the mixture model approach, 

we successfully called the dosage of 73,936 out of 183,130 SNPs (40.4%) that segregated in any of the 

bi-parental populations. To investigate the mode of inheritance, we analysed markers that segregated 

in the large bi-parental population (n = 405). Analysis of segregation of duplex x nulliplex SNPs resulted 

in evidence for genome-wide hexasomic inheritance. This evidence was substantiated by the absence of 

strong linkage between markers in repulsion, which indicated absence of full disomic inheritance. We 

present the success rate of SNP discovery out of RNA-seq data as affected by different selection steps, 

among which SNP coverage over genotypes and use of different types of sequence read mapping 

software. Genomic dosage highly correlated with relative allele coverage from the RNA-seq data, 

indicating that most alleles are expressed according to their genomic dosage. The large population, 

genotyped with a very large number of markers, is a unique framework for extensive genetic analyses 

in hexaploid chrysanthemum. As starting point, we show conclusive evidence for genome-wide 

hexasomic inheritance.  

4.1 Introduction 
The ability to genotype large numbers of polymorphisms is of major importance for breeding and 

genetic analysis. Costs for detection and genotyping of a large number of polymorphisms are still 

decreasing, and therefore become available to an increasing number of agriculturally important plant 

species, including polyploids. Genetic analysis in polyploids is less straightforward compared to diploids. 

An example is cultivated chrysanthemum, which is an outcrossing hexaploid (2n = 6x = 54) and has 

been classified as a segmental allopolyploid (Klie et al., 2014).  

Polymorphism detection in species without a reference genome is restricted to methods using a reduced 

representation of the genome, like restriction enzyme based selection methods (e.g. RADseq or GBS 

(Baird et al., 2008; Elshire et al., 2011)), bait capture (Saintenac et al., 2011; Uitdewilligen et al., 2013) 

or RNA sequencing (RNA-seq; e.g. (Koning-Boucoiran et al., 2015; S. Wang et al., 2014)). RNA-seq is 

particularly useful for polymorphism detection for multiple reasons. First, discovered polymorphisms are 

in genic regions. Therefore, they have a high chance to represent or to be close to polymorphisms 

causative for an investigated phenotype. Secondly, lower SNP densities are expected in expressed 

sequences, which is an advantage in highly heterozygous polyploid species, as polymorphisms in 

flanking regions interact with marker assays. Thirdly, markers are in regions with transcribed genes, 

which generally have high recombination rates (Choi and Henderson, 2015), and discovered markers 

are therefore particularly useful for linkage mapping. Lastly, RNA-seq gives a representation of the 

transcriptome that helps building resources useful for other analyses.   

A disadvantage of the use of RNA-seq is possible discordance between the expression of an allele and 

the allele’s dosage in genomic DNA. Expression of certain alleles might even be completely absent. This 

feature is also referred to as allelic expression bias, and specifically occurs in allopolyploids (Chen, 

2007). In hexaploid wheat for example, most expressed genes present in all subgenomes show 

expression bias towards one of the subgenomes, and expression is lost in at least one of the 

subgenomes for most genes (Leach et al., 2014). Another challenge for the use of RNA-seq for 

polymorphism detection is the de novo assembly of raw reads. Multiple splice variants in the 

transcriptome can represent one gene locus, which makes reconstruction of a locus on the genome 

challenging. For outcrossing polyploids like chrysanthemum, high heterozygosity (Osborn et al., 2003; 
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Uitdewilligen et al., 2013) is another challenge. Large variation between alleles makes it difficult to 

distinguish alleles from homologous genes. This will result in false polymorphism calls if gene 

homologues are assembled together in one contig or in the inability to detect polymorphisms if alleles 

are assembled into different contigs (Shahin et al., 2012).  

High throughput genotyping of SNP polymorphisms using SNP assays is common in diploids (Chagné et 

al., 2012; Ganal et al., 2011). Several applications in the allopolyploids wheat and strawberry and in the 

tetraploids potato and rose have been published (Bassil et al., 2015; Koning-Boucoiran et al., 2015; Vos 

et al., 2015; S. Wang et al., 2014). SNP assays like Illumina Infinium, Affymetrix Axiom and LGC KASP 

provide signal intensities for each of the two allelic probes based on fluorescence. Allele dosage can be 

deduced from clusters, which can be visualised by plotting the two allelic signal intensities against each 

other. For diploid SNPs, including subgenome specific SNPs in polyploids with disomic inheritance, three 

clusters are expected: two homozygous and one heterozygous. SNPs in polyploids with polysomic 

inheritance, and SNPs polymorphic in more than one subgenome in disomic polyploids, show at 

maximum five clusters for tetraploids and seven for hexaploids. The assignment of a dosage to such 

clusters can be challenging, as clusters are often shifted (Voorrips et al., 2011), and resolution of the 

assay might not suffice (Grandke et al., 2016). High heterozygosity aggravates these issues, as 

undetected adjacent polymorphisms can influence a SNP assay.  

The mode of inheritance has large implications for genetic analysis in polyploid organisms. In general, 

the mode of inheritance relates to the origin of ploidy of the organism: whether it is allopolyploid or 

autopolyploid. Disomic inheritance is usually a feature of allopolyploids and polysomic inheritance of 

autopolyploids. Ramsey and Schemske (1998) defined allopolyploids as polyploid organisms that have 

originated from interspecific hybridization in which genomes of the progenitors are retained, and 

autopolyploids as organisms originated from within a single species, often as a result of unreduced 

gametes. Since these definitions address origin, but not the mode of inheritance, allopolyploids not 

necessarily have disomic inheritance, and autopolyploids do not necessarily have full polysomic 

inheritance (Doyle and Sherman-Broyles, 2016; Ramsey and Schemske, 2002). Also intermediate modes 

of inheritance exist in several polyploid organisms (Allendorf and Danzmann, 1997; Leal-Bertioli et al., 

2015; Nguepjop et al., 2016; Stift et al., 2008). As the most widely used definitions of allopolyploidy 

and autopolyploidy are on the origin, and not on the mode of inheritance, in this paper we only aim to 

separate disomic from polysomic inheritance. 

The mode of inheritance in chrysanthemum has been under discussion (De Backer, 2012; Klie et al., 

2014). Cultivated chrysanthemum is generally assumed to have originated from multiple species, which 

would make it an allopolyploid (Anderson, 2007; Dai et al., 2005). However, evidence is scarce. Despite 

the presumed allopolyploidy, there is evidence for polysomic inheritance in chrysanthemum. Cytological 

studies of cultivated chrysanthemum report presence of multivalents during meiosis, although most 

chromosomes pair as bivalents (Chen et al., 2009; Roxas et al., 1995). Multivalents will lead to 

recombination between all pairing homologous chromosomes and therefore indicate polysomic 

inheritance. The relatively high number of bivalents is not necessarily an indication of prevalence for 

disomic inheritance, as bivalents could represent a pairing event between any of the homologues 

chromosomes (Stebbins, 1940), and bivalent formation is known to be under genetic control in 

chrysanthemum (Watanabe, 1983).  

In addition to cytological observations, hexasomic inheritance is also suggested by the analysis of 

segregation of molecular markers. Two studies showed that alleles from a single multi-allelic SSR 

marker have independent assortment, which is only possible with hexasomic inheritance (Klie et al., 

2014; Park et al., 2015). Another strong line of evidence for polysomic inheritance is from the earlier 

work of Langton (Langton, 1989) on the inheritance of a flower colour trait regulated by a single 

dominant allele. In the study, a self-compatible simplex (dosage of one) individual is selfed, and duplex 

(dosage of two) progeny is crossed with nulliplex (dosage of zero) genotypes. In the resulting 

populations, the trait segregates in ratios as expected from hexasomic inheritance, whereas no 



Chapter 4 

 

60 
 

segregation would be expected if inheritance was disomic. These results provide strong evidence for 

hexasomic inheritance. The observations on SSR markers and flower colour are based on a few loci; 

other locations on the genome might show disomic inheritance. In order to acquire a genome-wide 

overview of the mode of inheritance, segregation analysis of a large number of markers distributed over 

the entire genome is required.  

Multi-allelic SSR markers are scarce, and self-compatibility is difficult to obtain in chrysanthemum. 

However, analysis of segregation of high numbers of SNP markers in large outcrossing F1 populations 

can also provide evidence for the mode of inheritance. One of such analyses involves segregation of 

markers that are duplex in one parent and nulliplex in the other. If inheritance is disomic and the 

duplex alleles are on the same subgenome, all progeny will be simplex (one). Existence of these non-

segregating duplex x nulliplex (2x0) markers therefore indicates disomic inheritance. If the two alleles 

are on different subgenomes, disomic inheritance will lead to a 1:2:1 segregation of the dosages 0, 1 

and 2. Hexasomic inheritance will lead to 1:3:1 segregation in all cases. Studies that analysed 

deviations from those types of segregation, in general found duplex markers both fitting hexasomic 

inheritance as well as disomic inheritance (De Backer, 2012; De Jong and Rademaker, 1986; Klie et al., 

2014; Park et al., 2015). Particularly in small populations genotyped with dominant markers, these tests 

are not powerful, because the segregation distributions (3:1 versus 4:1) are close to each other. 

Testing for segregation of a large number of markers in a large population with co-dominant markers, 

probably leads to less ambiguous conclusions.  

A third method for estimation of the mode of inheritance is analysis of repulsion linkage (Wu et al., 

1992). Estimates of recombination frequencies (r) between markers in repulsion that approach zero 

point to disomic inheritance. In the case of hexasomic inheritance, pairing should be random with all 

pairs of homologues chromosomes. In that case, the minimum r of markers in repulsion should be 0.4 

(Qu and Hancock, 2001). In chrysanthemum, earlier analysis of repulsion linkage pointed towards 

hexasomic inheritance (Klie et al., 2014). 

In this paper, we present a SNP selection pipeline for chrysanthemum from RNA-seq data (1), a method 

for dosage scoring in hexaploids from bi-allelic probe fluorescence (2) and validation of selection steps 

in the SNP selection pipeline (3). The resulting genotypic data is used to draw conclusions on the mode 

of inheritance in chrysanthemum (4) and allelic expression bias (5). 

4.2 Methods 

4.2.1 Plant materials  

A panel of thirteen genotypes was selected for RNA-seq (Additional file 4.1). We aimed to represent an 

as broad as possible genetic variation in cut chrysanthemums. Selection was based on flower type, 

growth habit and absence of less than third degree relationships. The genotypes genotyped with the 

Axiom array consisted of a bi-parental population of 405 progeny of which the parents were included in 

the RNA-seq panel (POP1), three bi-parental populations consisting of 53 (POP2), 76 (POP3) and 37 

(POP4) progeny respectively (Table 4.1), and a cultivar panel consisting of 63 genotypes.  

Table 4.1. Overview of parents used for the bi-parental populations.  

 
female parent male parent size 

POP1 DB36451* DB39287* 405 

POP2 DB41234* DB40360 53 

POP3 DB9656* DB9541* 76 

POP4 DB32141 DB39287* 37 

* Also in the RNA-seq panel 
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4.2.2 Sample preparation RNA-seq 

Plants were grown according to commercial growing standards in a greenhouse in Maasdijk, the 

Netherlands. Short photoperiods of 11 hour followed longer photoperiods of 14 hours to induce 

flowering. To get coverage for different transcriptomes, and therefore more different transcripts, 

samples were taken from five different combinations of environments, time points and tissues 

(Additional file 4.7). Samples were ground and approximately 100 mg was used for a 1 mL Trizol 

extraction according to the manufacturers’ protocol (ThermoFisher Scientific, Waltham, MA, USA). After 

extraction, RNA concentration was estimated using a Nanodrop spectrophotometer (ThermoFisher 

Scientific, Waltham, MA, USA), and RNA integrity was checked by electrophoresis on a 1.5% agarose 

gel. Samples were pooled per cultivar in equal ratios. After that, RNA’s were cleaned up using a Qiagen 

RNeasy column according to manufacturers’ protocol (Qiagen, Venlo, the Netherlands).  

4.2.3 RNA Sequencing 

Library preparation and sequencing was carried out by GenomeScan B.V. (Leiden, the Netherlands). 

Library preparation was done using the strand-specific NEBNext Ultra Directional RNA Library Prep kit 

for Illumina sequencing (New England Biolabs, Ipswich, MA, USA). In short, messenger RNA was 

isolated from total RNA using oligo-dT magnetic beads. Then, mRNA was fragmented and reverse 

transcribed into cDNA. The cDNA was ligated to sequencing adapters and amplified using PCR. 

Fragment size selection was between 400 and 900 basepairs. Clustering and DNA sequencing was 

performed using the Illumina cBot and HiSeq 2500 (Illumina, San Diego, CA, USA) according to 

manufacturers’ protocols, resulting in paired-end reads with a length of 126 basepairs at both ends. 

4.2.4 Quality filtering, assembly and mapping 

Trimmomatic (Bolger et al., 2014) (v0.33) was used for quality trimming and filtering. Adapter 

sequences were removed using the ILLUMINACLIP option. Because of lower sequence quality in the 

leading and trailing ends of the reads, three basepairs were trimmed off at both ends using the 

LEADING and TRAILING options. Low quality regions were trimmed off using the SLIDINGWINDOW 

option with a window of four basepairs and a minimum quality of 15. Read pairs were discarded if less 

than 70 bp remained in one or both reads.  

The two parents of POP1 were assembled separately. Trinity (Haas et al., 2013) version 2.0.6 was used 

for assembly using a minimum k-mer coverage of 2. Other settings were set at default values. Based on 

different quality criteria as described in the results section, the assembly of the female parent was 

selected as reference transcriptome. To reduce contig redundancy, the transcriptome was clustered 

using uclust (Edgar, 2010) at 99% similarity. Samples were mapped to the reference transcriptome 

using Bowtie2 (Langmead and Salzberg, 2012)  and bwa-mem (Li and Durbin, 2010). For Bowtie2 

(v2.1.0) the --very-sensitive option used and the options -3 and -5 were set to 5 in order to reduce the 

effect of error-prone read ends on the mapping. For bwa-mem (v 0.7.12), default options were used 

except for setting the –M option for Picard compatibility. Read duplicates were marked using Picard 

(http://broadinstitute.github.io/picard/), and duplicates and reads with a map quality smaller than 2 

were removed using samtools (Li et al., 2009).  

4.2.5 SNP calling and filtering 

Our aim was to identify both SNPs that can be used for a wide range of chrysanthemum genotypes and 

to identify SNPs for linkage mapping in POP1 specifically. To achieve this, we aligned reads of all 13 

cultivars (ALL) and reads originating from only the two parents of POP1 (PAR) separately. In addition, 

we wanted to include SNPs that were called with two different types of mapping software (bowtie2 and 

bwa-mem). Therefore, four alignment files were created: the reads of the ALL set aligned with bowtie2 

and bwa-mem and the reads of the PAR set aligned with bowtie2 and bwa-mem (Additional file 4.8). 

SNPs were called using QualitySNP (Nijveen et al., 2013) from these four files separately. To reduce the 

number of false positives and rare SNPs, the option minimalNumberOfReadsPerAlleleP was set to 0.08 

for the ALL call and 0.04 for the PAR call. The flanks were set at 35 bp and maxNumberOfSNPsInFlanks 
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was set to 1. A list with SNP flanking sequences of 35 bp at both sides was exported using the 

QualitySNP GUI.  

We continued with SNP filtering by use of custom made R (R Core Team, 2014) (v3.1) scripts. All SNPs 

called from one type of mapping software were combined. From the “variations” output file of 

QualitySNP, the number of reads for each SNP allele was extracted. SNP-cultivar combinations with a 

total coverage greater than twelve were used to estimate the zygosity of the cultivars; whether it was 

homozygous or heterozygous. For each SNP in each genotype the relative coverage of the minor allele 

was calculated as the fraction of the coverage of the minor allele compared to the total coverage. 

Genotypes with a relative allele coverage smaller than 0.005 or greater than 0.995 were assigned 

homozygous and heterozygous otherwise. To select against ambiguous SNP calls, the assigned zygosity 

(heterozygous or homozygous) were used to filter out groups of SNPs that had the same flanking 

sequences, originated from different contigs, and showed different zygosities in any of the cultivars.  

We selected against SNPs that were detected as heterozygous in all genotypes, as they have a large 

chance of being false positives, or subgenome defining. False positive SNPs can originate from mapping 

reads originating from two or more recently duplicated genes to one locus, and would appear as a 

heterozygous SNP in all genotypes (Figure 4.1A). Subgenome specific SNPs that are homozygous within 

the subgenome would also appear heterozygous in all genotypes (Figure 4.1B). In both cases, these 

SNPs are not interesting for linkage mapping, QTL analysis and association studies, as they will not 

segregate in a population. In order to select against them, only markers were kept that gave at least 

one heterozygous and one homozygous called genotype in the panel. We did not use this selection for 

SNPs originating from the alignments of PAR set since SNPs heterozygous in both parents are very 

informative for linkage mapping, and we did not want to deplete our dataset for these SNP types.  

 

Figure 4.1. Examples of false positive SNPs against which was selected. In (A) two recently duplicated loci have SNPs 

between each other but not within. In (B) a SNP that is homozygous and specific for a subgenome. In both situations, 

all genotypes appear to be heterozygous and SNPs will not segregate in a population.  

After selection against SNPs heterozygous in all genotypes, flanking sequences including the reference 

SNP allele were aligned to the reference transcriptome using BLAST with an e-value cut-off of 1e-5. 

Contigs assembled by Trinity are classified into different hierarchical categories (Haas et al., 2013). 

Markers with a hit in different groups of contigs as separated by the highest hierarchical category 

(component) or without a 100% hit including the reference allele were discarded. After that, SNPs 

selected from the two types of alignment software were taken together, and duplicates were removed. 

Further filtering by the Affymetrix bioinformatics team resulted in a set of 183,130 SNPs of which 

34,068 could be tiled from both directions.  

4.2.6 Genotyping with Axiom array 

An Axiom genotyping array was designed by Affymetrix. We expected resolution to be an issue for high 

confidence dosage estimation (Grandke et al., 2016), since for a hexaploid a maximum of seven 
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genotype clusters can be expected instead of the regular three in a diploid and five in a tetraploid. 

Therefore, each probe was tiled four times instead of the regular two times. Genotyping was performed 

by Cigene (Ås, Norway). The Affymetrix bioinformatics team postprocessed raw signals of each of the 

four probe replicates into normalized signal intensities per probe.  

4.2.7 Dosage scoring and quality filtering 

Marker dosage was called from ratios of signal intensities of the genotyping array using a modified 

version of fitTetra (Voorrips et al., 2011), that allowed dosage scoring in other ploidy levels than 

tetraploid. We refer to it as fitPoly. The option p.threshold was set to 0.97. After running fitPoly, a 

composite quality score was calculated based on conflicts between segregation and parental dosage 

(allowing for both hexasomic and disomic inheritance), conflicts between scores assigned to replicate 

samples of the parents, missing parental scores and number of missing values. A threshold for this 

composite score was determined upon visual inspection of the signal intensities and scored dosages per 

marker. All markers below this threshold were filtered out. Probes of markers that were tiled from both 

sides were compared. Probes from one SNP locus with less than 4% different dosage scores were 

merged into one marker. Others were kept in the dataset as separate markers.  

Two individuals of POP1 with more than 5% unexpected dosages based on parental dosages were 

removed. Then, marker dosages were converted to their most fundamental form, as described by 

Bourke et al. (Bourke et al., 2016). After that, markers and individuals with more than 10% missing 

values were removed. Markers were considered duplicates if all their non-missing dosages were equal. 

Duplicate markers were grouped and the marker with the least missing values was kept in the dataset 

as representative. Skewedness of simplex x nulliplex (1x0) markers was quantified using the probability 

of a Χ2 test assuming a 1:1 segregation. Probabilities were corrected for multiple testing (referred to as 

q-values) and markers with q < 0.01 were removed. After filtering, the dataset consisted of two parents 

and 398 F1 progeny genotyped with 28,485 markers.  

After analysis of segregation of markers in POP1, it became clear that preferential pairing was absent. 

We re-ran the pipeline without filtering for duplicate markers on all bi-parental populations assuming 

hexasomic inheritance. In this case we also supplied fitPoly with information on the population each 

sample belonged to (four F1 populations, their parents, or the cultivar panel), which allowed fitPoly to 

use the expected segregation ratios to improve model fitting (Zych et al, submitted). To investigate 

repulsion linkage in POP3, and to investigate the marker distribution of POP1 compared to the first run, 

we repeated the post fitPoly processing of markers to those populations as described for the first run. 

4.2.8 Pedigree simulation 

In order to estimate the expected distribution of repulsion linkages with known modes of inheritance, 

we simulated F1 populations of 400 individuals each. We used PedigreeSim V2.0 (Voorrips and 

Maliepaard, 2012) with 900 simplex x nulliplex (1x0) markers randomly placed on each of the 9 

chromosomes. All chromosomes had a length of 100 cM, the centromeres were positioned at 50 cM. 

Hexasomic and disomic inheritance were simulated by setting the prefPairing parameter at 0 and 1 

respectively for each chromosome. For each of these situations one F1 population was simulated. 

4.2.9 Linkage analysis and statistics 

Recombination frequency and LOD were calculated as described in Van Ooijen and Jansen (2013). 

Statistical analysis, other calculations and plotting were performed with R (R Core Team, 2014). Venn 

diagrams were plotted with the R package VennDiagram (Chen and Boutros, 2011). Multiple testing 

correction was performed with the R package qvalue (Dabney and Storey, 2014).  

4.3 Results 

4.3.1 RNA sequencing, assembly, and alignment 

RNA-seq resulted in an average of 100.4 M reads for the deep-sequenced parents of the large 

population (405 individuals, POP1) and on average 70.4 M reads for the 11 other sequenced cultivars 



Chapter 4 

 

64 
 

(Additional file 4.1). Sequence assembly resulted in 270,186 contigs for the female parent and 275,397 

contigs for the male parent (Additional file 4.2). Clustering with uclust (Edgar, 2010) at 99% similarity 

reduced the number of contigs to 227,213 and 231,634 respectively. As the average contig length in 

the female parent was longer and total number of contigs was lower, the assembly of the female parent 

was considered as higher quality and therefore used as reference transcriptome. Mapping reads of all 

cultivars to this assembly using bwa-mem resulted in an average alignment rate of 88.6±0.9%, for 

bowtie2 this was 81.6±0.7%.  

4.3.2 SNP filtering 

In total 183,130 SNPs were included in the array. Of these, 106,844 originated from  discovery in the 

full panel (ALL call). The other 76,286 SNPs were identified using data from only the parents of POP1 

(PAR call), which were selected using less stringent filtering. Most SNPs (65.8%) could be identified 

from the alignment files of both mappers (Additional file 4.3).  

4.3.3 Mode of inheritance in POP1 

The first run of the SNP dosage scoring pipeline was performed to investigate segregation in POP1. 

Signal intensities of other genotypes were used to correctly estimate dosage. In the first run of the 

pipeline, we estimated dosage of 28,485 markers that were unique and segregated in POP1 (Figure 

4.2). In the second run of the pipeline, we assumed hexasomic inheritance. The number of scored non-

duplicate markers segregating in POP1 was very similar in this run (Additional file 4.4). Most of the 

markers had a dosage of 0 (nulliplex) in one parent and 1 (simplex) in the other. The paternal parent 

seemed to be more heterozygous compared to the maternal parent considering the higher number of 

nulliplex x simplex (0x1) markers and nulliplex x duplex (0x2) markers in this parent.  

 

Figure 4.2. Distribution of marker types in POP1 after the first run of the pipeline (see Methods). Marker types are 

depicted as “dosage maternal parent” x “dosage paternal parent”. Total number of markers: 28,485. 

In order to investigate the mode of inheritance in POP1, we tested the segregation of all 2,597 2x0 

markers. None of the 2x0 markers showed only simplex scores in the offspring. The markers were 

subsequently tested for goodness of fit to a 1:2:1 segregation as expected from disomic inheritance, or 

1:3:1 segregation as expected from hexasomic inheritance. We used multiple testing corrected p-

values, q-values, which resulted from a Χ2 test of deviations from the two expected segregations. In 

general, Χ2 tests having hexasomic segregation as null hypothesis had higher q-values compared to 

disomic segregation (Figure 4.3A), suggesting better fits to hexasomic segregation. For 1,938 out of 

2,597 SNPs (74.6%) hexasomic inheritance was not rejected at q=0.01. For 323 SNPs (12.4%) disomic 

inheritance was not rejected, of which 153 were also not rejected for hexasomic inheretance. For 489 

SNPs (18.8%) both segregation types were rejected, indicating skewed segregation or SNP scoring 

errors. On average, the frequencies in each genotypic class of all 2x0 markers, were more similar to 

hexasomic inheritance than to disomic inheritance (Figure 4.3B).  
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Figure 4.3. Histogram of q-values of all 2x0 markers tested for deviations of disomic and hexasomic segregation using 

a X2 test (A). Inlay: venn diagram of 2x0 markers that did not reject disomic inheritance (red) and hexasomic 
inheritance (green) at q = 0.01 (dotted grey line in histogram). Total number of markers: 2,597; markers that were 

rejected for both types: 489.  Barplot of expected genotype frequencies assuming disomic and hexasomic inheritance, 
and observed average frequency per class (B). Error bars indicate standard deviations. 

To compare linkages in coupling and repulsion, we calculated r between all 1x0 markers of POP1 and 

POP3. For both POP1 and POP3, very large numbers of marker combinations were linked within a 

Haldane’s distance of 8 cM (r<0.074), whereas none were linked in repulsion at that distance (Table 

4.2). The minimum recombination frequency from all linkages in repulsion was 0.15 and 0.08 for POP1 

and POP3 respectively. We compared the distribution of r for repulsion and coupling linkages from POP1 

to two simulated datasets (Figure 4.4). The simulated datasets differed in preferential pairing; in the 

first dataset, we imposed full hexasomic inheritance, so random pairing of homologues and in the 

second full preferential pairing, so disomic inheritance (Figure 4.4B and C). In POP1, the distribution of 

r for linkages in repulsion tended towards higher values of r which is comparable to the simulated 

dataset in which we imposed hexasomic inheritance (Figure 4.4A).  
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Figure 4.4. Distribution of recombination frequency between simplex x nulliplex markers in repulsion (purple) or in 

coupling phase (yellow) in POP1 (A), and in a simulated dataset where inheritance was completely hexasomic (B) and 

completely disomic (C).  

Table 4.2. Statistics of comparison of repulsion and coupling linkages of markers segregating in POP1 and POP3 

   
Minimum 

recombination 
frequency (r) 

Linkages within 8 
cM† (r < 0.074) 

Population Size* 
1x0 

markers 
Coupling‡ Repulsion Coupling Repulsion 

POP1 398 15,433 0 0.15 606,566 0 

POP3 72 6,461 0 0.08 46,822 0 

*After quality filtering of individuals (see methods section) 
†Haldane’s distance 
‡Estimated phase: coupling or repulsion. Recombination frequency in repulsion was calculated as for 
disomic inheritance. 
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4.3.4 Genotyping array validation 

We re-ran the SNP dosage scoring pipeline to estimate dosage for all genotyped individuals, which was 

different from the first run, in which we only aimed to estimate dosage for POP1. For this second run, 

hexasomic inheritance was assumed and the information on the distinction of the F1 populations and 

cultivar panel was used. In total, 73,936 markers (40.4%) could be called by fitPoly and had a missing 

value rate lower than 20%; those SNPs were considered as successfully discovered. Of those, 62,679 

segregated as expected assuming hexasomic inheritance from the parental genotypes in at least one of 

the mapping populations and had a missing value rate lower than 10% (Additional file 4.5). These 

markers are suitable for genetic analyses that need high quality marker data, like linkage mapping.  

In total 34,068 SNPs were tiled from both sides and therefore represented by two markers. Of those, 

17,170 could be scored and segregated as expected in POP1 from at least one side. The two sides can 

be treated as two different marker assays, and we compared the results per SNP. For 55% (9,438) of 

those SNPs only one of both sides showed clear clustering (Additional file 4.6). Of the SNPs for which 

both probes showed clear clustering (7,549; 45%), 1.1% (183; 0.6% of total) did not correspond to 

each other. 

Markers that were called from both the bowtie2 and bwa-mem alignment had a higher success rate 

than markers that were called with either one of the two types of mapping software alone (Figure 4.5). 

Markers called with bowtie2 had a slightly higher success rate than those called with bwa-mem.  

 

Figure 4.5. Percentage of segregating SNPs per class in which a SNP was discovered using alignment files of either 

type of mapping software, or one of the two specifically. 

SNPs with a coverage higher than 100 as averaged over all thirteen sequenced genotypes had a 

substantially higher success rate compared to SNPs with lower average coverage (Figure 4.6A). In the 

ALL call, we selected only SNPs that were homozygous in at least one genotype. We assumed this 

would have a positive effect on the success rate. In the PAR call however, also SNPs were allowed that 

were heterozygous in both parental genotypes assessed. The comparison of the three groups (both 

heterozygous, only mother heterozygous or only father heterozygous) within the PAR call showed a 

clear positive effect on the success rate if one of the parents was heterozygous and the other 

homozygous (Figure 4.6B).  
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Figure 4.6. Success rate versus the average SNP coverage in the RNA-seq data per coverage interval (A). Success rate 

of SNPs from the PAR call versus the estimated genotype (heterozygous: het, or homozygous: hom) of the two 

parents of POP1 (B). The number of markers per class are written in white in the bars.  

4.3.5 Allelic expression 

For the SNPs that segregated as would be expected from the parental dosages in POP1, we compared 

the genomic dosage of the parents of POP1 with the relative allele coverage in the parents from the 

RNA-seq data (Figure 4.7). The average relative coverage per SNP allele per sequenced genotype 

matched the expected dosages. Distribution of relative coverage was more dispersed than expected 

from a binomial distribution, while the difference in dispersion between the binomial distribution and 

observed distribution was similar over dosages.  

 

Figure 4.7. The density of relative coverage of RNA-seq data in each SNP class as genotyped by the Axiom array based 

on genomic DNA. Total number of analysed SNPs: 52,052. Solid lines represent the observed density and dashed lines 

represent expected density based on a binomial distribution. The figure represents data that originates from the 

parents of POP1. SNPs were filtered based on correspondence between parental dosages and observed segregation 

ratios and had a relative dosage greater than twelve.  

4.4 Discussion 

4.4.1 SNP filtering from RNA-seq data 

Transcriptome assembly from short-read RNA-seq data of a heterozygous polyploid organism comes 

with challenges. One of those arises when trying to separate alleles from gene homologues (Shahin et 
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al., 2012). In sequence data from genomic DNA, unexpected variation in coverage and unexpected 

numbers of alleles per locus can be used to identify wrongly assembled contigs (McKinney et al., 2017). 

However, variation in coverage cannot be used with RNA-seq data, since expression varies strongly 

between genes. Detection of an unexpected number of alleles is difficult in a hexaploid, as the number 

of alleles per locus can vary between two and six. By selection against SNPs that are heterozygous in all 

genotyped cultivars, we tried to select against SNPs that were detected on an assembly of transcripts 

originating from two homologues loci. This seemed to have been successful, as SNPs from the PAR call 

that were heterozygous in both genotypes had a much lower success rate compared to SNPs from the 

same call for which one of the two parental genotypes was homozygous. The lower success rate of 

SNPs that are heterozygous in both parents of the PAR call could also be due to the higher chance of 

complex segregation ratios. For example, a duplex x duplex (2x2) SNP, would have an expected 

segregation ratio of 1:6:11:6:1 resulting in five clusters for the dosages 0, 1, 2, 3 and 4 respectively. 

Markers with more than two clusters have a higher chance of missing values or wrongly assigned 

dosages, as more clusters usually have a higher chance to overlap each other. 

The use of two different types of mapping software resulted in three sets of SNPs: SNPs only identified 

with either bowtie2 or bwa-mem, and SNPs identified with both mappers. As there is some level of 

independence between the two SNP calls from both alignments, it would be expected that SNPs 

discovered with both mappers have a higher success rate (Clevenger et al., 2015). This was indeed the 

case, SNPs identified with both mappers had a much higher success rate (58% versus <35%).  

4.4.2 Allelic expression 

From the segregating SNP markers in our dataset, SNP allele read counts in the transcriptome 

conformed to their dosage estimated from the array data. Chrysanthemum therefore deviates from the 

allopolyploids wheat, cotton and camelina that show subgenome-specific expression patterns in a large 

number of expressed genes (Adams et al., 2003; Kagale et al., 2014; Leach et al., 2014; Zhang et al., 

2015). In autopolyploids on the other hand, expression patterns are generally conform genomic dosage 

(Albertin et al., 2005; Church and Spaulding, 2009), like we observed in chrysanthemum. 

Variation of relative allele coverage in the chrysanthemum read data was larger than would be expected 

from a binomial distribution. The source of this extra variation could be both biological and technical. 

The biological reason would be allelic expression imbalance of some loci, which is also common in 

diploids (Bell et al., 2013; Heap et al., 2009; Vogelstein et al., 2002). A technical reason could be allelic 

bias, caused by higher chance of alignment of reads that exactly match the reference allele compared 

to the alternative allele or scoring errors, but this should have been visible as deviations from expected 

relative dosages in our distributions.  

4.4.3 The mode of inheritance 

Our dataset gives evidence of complete or near-complete hexasomic inheritance in chrysanthemum. A 

first indication is the absence of non-segregating 2x0 markers. Presence of those type of markers would 

indicate disomic inheritance. Analysis of the segregation ratios of the 2,597 segregating 2x0 markers 

pointed towards hexasomic segregation. Only 6.5% of 2x0 markers were rejected for hexasomic 

segregation and not rejected for disomic segregation. It is likely that a large number of the markers 

fitting only disomic segregation had genotyping errors or skewed segregation, as the number of 

markers not fitting any of the two types (18.8%) was much higher. 

Conforming to the analysis of 2x0 markers, comparison of linkages between 1x0 markers in coupling 

and repulsion phase also pointed towards absence of disomic inheritance in two populations (POP1 and 

POP3). There were no linkages in repulsion with a distance smaller than 8 cM, while a very large 

number of marker combinations in coupling were linked within this distance (606,566 and 46,822 for 

POP1 and POP3 respectively). This is contrary from what would be expected from disomic inheritance, 

since with disomic inheritance, the ratio between the number of linkages in coupling and in repulsion 

would be 1:1 (Wu et al., 1992), irrespective of the threshold of r. We did find linkages between markers 
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in repulsion in which r was lower than 0.4, the minimum expected recombination frequency in repulsion 

for full hexasomic inheritance (Qu and Hancock, 2001). In the simulated dataset in which we imposed 

full hexasomic inheritance, we also found linkages with r below the threshold. However, there were 

fewer, and minimum r was higher (0.29 compared to 0.15 and 0.08 for POP1 and POP3 respectively). 

The lower minimum recombination frequency in the real datasets could be caused by incomplete 

disomic inheritance (Qu and Hancock, 2001). However, genotyping errors or commonly occurring lethal 

allelic combinations leading to segregation distortions (Liu et al., 2010; Manrique-Carpintero et al., 

2016) are also plausible reasons, and were not taken into account in the simulation.  

Our conclusions deviate from the most recent and elaborate paper on the mode of inheritance in 

chrysanthemum authored by Klie et al (Klie et al., 2014). We conclude that inheritance in 

chrysanthemum is completely or nearly completely hexasomic, whereas Klie and colleagues conclude 

chrysanthemum to be a segmental allopolyploid (in which allopolyploidy is used in the context of mode 

of inheritance, so disomic). However, the analysis of segregation and repulsion linkage as reported by 

Klie et al. do not contradict our results. These authors also conclude that their results point to 

hexasomic inheritance. Despite this, they base their final conclusion on earlier suggestions of disomic 

inheritance that were wrongly based on observations of prevalence of bivalents during meiosis (Chen et 

al., 2009; Li et al., 2011). As reviewed in the background section, the observation of a predominance of 

bivalents is not an indication of disomic inheritance, as homologues can still pair with any other 

homologous chromosomes in a bivalent (Stebbins, 1940), and prevalence of formation of bivalents 

seems to be under genetic control in chrysanthemum (Watanabe, 1983). Based on earlier work done on 

the mode of inheritance of chrysanthemum that resulted in conclusive evidence (Klie et al., 2014; 

Langton, 1989; Park et al., 2015), and our results on two bi-parental populations, we suggest to classify 

cultivated chrysanthemum as a polyploid with hexasomic inheritance.  

4.5 Conclusions 
We present an application of the use of next generation sequencing and high-throughput genotyping in 

hexaploid chrysanthemum. Development of these resources opens up many possibilities for plant 

improvement at the level of the genome. As a first step, we were able to find conclusive evidence for 

near-complete hexasomic inheritance on a genome-wide scale. With these resources and the 

information on the mode of inheritance we will now be able to progress in the development of genomic 

tools for plant improvement in chrysanthemum, like linkage mapping and mapping of traits.  
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Additional file 4.3. Venn diagram of the number of SNP markers called with bowtie2 and bwa-mem. 

Additional file 4.4. Distribution of marker types in POP1 after the second run of the pipeline (see Methods). Marker 
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Abstract 
New software tools are needed if we are to realise all the opportunities offered by modern genotyping 

platforms for genetic research and breeding in polyploid crops. Up to now, genetic analyses have often 

been performed using tools designed primarily for diploid species, which ignores the greater complexity 

of polyploid genetics. In this article we present polymapR, an R package for performing linkage analysis 

and integrated map construction from segregating bi-parental mapping populations in outcrossing 

autopolyploid species. This package can currently handle tetraploid and hexaploid marker datasets, and 

can thus be applied to a wide range of crops such as potato (Solanum tuberosum), rose (Rosa hybrida), 

leek (Allium ampeloprasum), alfalfa (Medicago sativa), blueberry (Vaccinium corymbosum), 

chrysanthemum (Chrysanthemum x morifolium), sweet potato (Ipomoea batatas) or kiwifruit (Actinidia 

deliciosa) for breeding and research purposes. It can detect and estimate the strength of preferential 

chromosome pairing, which can lead to differences in the expected segregation patterns of markers and 

ultimately introduce bias in the maps produced. This bias currently can be corrected for at the tetraploid 

level only. The polymapR package has been tested and validated on a number of F1 populations of 

potato, rose and chrysanthemum, using dosage-scored single nucleotide polymorphism (SNP) markers. 

With mapped marker numbers ranging from just under 7000 SNPs in potato to over 30,000 SNPs in 

chrysanthemum, the polymapR package can handle the sorts of high-density marker datasets that are 

currently being produced. 

5.1 Introduction 
In recent years there has been an acceleration of progress in the understanding of the genetics 

underlying important traits in autopolyploid plant species. This has been to a large extent due to 

developments in high-density genotyping platforms using single nucleotide polymorphism (SNP) 

markers which have found increasing application in polyploids. For example, high-density SNP arrays 

have been developed in potato (Felcher et al., 2012; Vos et al., 2015), rose (Koning-Boucoiran et al., 

2015), alfalfa (Li et al., 2014) and chrysanthemum (this thesis, chapter 4), enhancing the scope for 

genetic studies in these species. 

In polyploid species, as opposed to diploids, co-dominantly scored markers can possess multiple classes 

in the heterozygous condition, usually termed marker “dosage”. For example, in a tetraploid there are 

five possible dosage classes of a bi-allelic SNP marker, namely nulliplex (AAAA) with a dosage 0, 

simplex (AAAB) with dosage 1, duplex (AABB) with dosage 2, triplex (ABBB) with dosage 3 and 

quadruplex (BBBB) with dosage 4. In a hexaploid, the number of dosage classes at a bi-allelic locus 

rises to seven. Various software have been developed to convert the signal from e.g. SNP arrays into 

these discrete dosage calls for polyploids, such as fitTetra (Voorrips et al., 2011), SuperMASSA (Serang 

et al., 2012) or ClusterCall (Schmitz Carley et al., 2017). Marker dosages have been shown to be useful 

for a variety of purposes, including linkage map construction (Bourke et al., 2017, 2016; Hackett et al., 

2013; Vukosavljev et al., 2016), genome-wide association studies (Lindqvist et al., 2014; Rosyara et al., 

2016), determination of identity-by-descent (IBD) probabilities (Hackett et al., 2013; Zheng et al., 

2016), pedigree analysis (Endelman et al., 2017), population genetics (Vos et al., 2015), estimation of 

linkage disequilibrium decay (Vos et al., 2017) and quantitative trait locus (QTL) analysis in bi-parental 

populations (Hackett et al., 2014; Massa et al., 2015; Rak et al., 2017). 

Genetic linkage maps have been traditionally used for both exploratory trait mapping (often termed QTL 

analysis) and the subsequent fine mapping of traits, as well as assisting genome assembly efforts by 

guiding the integration and orientation of contigs. High-density linkage maps may also improve our 

understanding of the chromosomal composition and genetics of polyploid species, uncovering such 

phenomena as double reduction (Bourke et al., 2015) or partially-preferential chromosome pairing 

(Bourke et al., 2017). In many polyploid species which lack reference genome sequences, linkage maps 

are also a (vital) first genomic description of that species. 
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Despite the importance of both linkage maps and polyploid crops, there are still relatively few software 

tools available for polyploid linkage map construction. Allopolyploid species showing disomic inheritance 

can be treated (genetically-speaking) as diploids, although it remains challenging to incorporate 

markers which are not sub-genome specific to bridge between these maps, as described for the case of 

allo-octoploid strawberry (van Dijk et al., 2014, 2012). With the remaining sub-genome specific 

markers, the full range of diploid mapping software is available. However, in the case of polyploid 

species which do not exhibit disomic inheritance (autopolyploids and segmental allopolyploids), the 

options available to the research community are limited. 

Probably the most well-known autopolyploid mapping software is TetraploidMap (Hackett et al., 2007; 

Hackett and Luo, 2003), which has been used in numerous linkage analyses and QTL studies in 

autotetraploid species such as potato, alfalfa, rose and blueberry (e.g. Bradshaw et al., 2008; Gar et al., 

2011; McCallum et al., 2016; Robins et al., 2008) since its release. Recently, its successor 

TetraploidSNPMap (TSNPM; Hackett et al., 2017) has been released to accommodate high-density 

marker data from SNP arrays, performing linkage mapping, IBD probability estimation and QTL analysis 

all within a single software module. However, despite its broad range of applications, it can only handle 

autotetraploid datasets and works exclusively on the Windows platform. Linkage studies in species 

exhibiting strong preferential chromosomal pairing or at different ploidy levels are currently not possible 

using this software. 

An alternative polyploid mapping software is the PERGOLA package in R (Grandke et al., 2017). 

However, this software has been developed for use with F2 or backcross populations from homozygous 

parents only. In many cases, either due to inbreeding depression or the difficulties imposed by 

polysomic inheritance, developing inbred lines in autopolyploids is not possible or practical, and F1 

populations from two heterozygous parents are used instead (a development based upon the two-way 

pseudo-testcross strategy (Grattapaglia and Sederoff, 1994), where only 1:1 segregating markers of 

such a cross were used). 

In short, there is currently no software which can perform linkage mapping at various ploidy levels 

under a variety of inheritance models for outcrossing species using dosage-scored SNP marker data. 

Here we present polymapR, an R package for linkage mapping in outcrossing polyploid species which 

can generate linkage maps for polysomic tetraploids and hexaploids, accommodating either fully 

tetrasomic or mixed meiotic pairing behaviour (segmental allopolyploidy) at the tetraploid level. Its 

modularity will facilitate extensions to other ploidy levels (e.g. triploid populations from tetraploid and 

diploid parents) as well as its adaptation to other marker genotyping technologies in the future.  

5.2 Description 
The polymapR package consists of four parts – data inspection, linkage analysis, linkage group 

assignment and marker ordering, which are detailed below. A description of the functions within 

polymapR is described in the vignette which accompanies the package, going through all the steps in a 

typical mapping project. For consistency and simplicity, all examples mentioned here describe a 

tetraploid cross. 

5.2.1 Data inspection, filtering and preparation for linkage analysis 

The input data for polymapR is dosage-scored SNP marker data, which can be generated from a 

number of packages such as fitTetra (Voorrips et al., 2011), fitPoly (in preparation, Voorrips et al.) or 

ClusterCall (Schmitz Carley et al., 2017). Both fitTetra and ClusterCall are limited to tetraploid data 

whereas fitPoly can work over multiple ploidy levels. Regardless of how it is generated, the input 

dosage-scored marker data should consist of a column of marker dosages for the mother, one for the 

father followed by a column for each of the offspring of the F1 cross. Checks for marker skewness and 

shifted markers (when dosage scores are shifted by a fixed amount, which may occur in polyploid 

datasets but can be identified by discordance between parental and offspring scores) have been 
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incorporated in polymapR from a suite of tools developed for the fitTetra package (Voorrips et al., 

2011).  

After skewness checking, the first step in data preparation is the conversion of marker dosages to their 

simplest form, such that the sum of the parental dosage scores is minimised (Bourke et al., 2016). 

There are two possible conversions – a relabelling of the reference and alternative allele in both 

parents, or a single-parent relabelling if the other parent is homozygous. For example in tetraploids, a 

triplex x simplex (3 x 1, ie. having a maternal dosage of three and a paternal dosage of 1) marker may 

be converted to a 1 x 3 marker but not a 1 x 1 marker. Conversely, 3 x 0, 3 x 4 and 1 x 4 markers may 

all be converted to 1 x 0 due to the homozygosity of parent 2. Marker conversions are performed to 

reduce the number of marker segregation classes for the linkage analysis (which is directed according 

to the parental dosages), but have no effect on the pairwise results. In a tetraploid there are nine 

fundamental segregation types (Bourke et al., 2016), rising to nineteen for a hexaploid (chapter 6). 

Identifiable double reduction scores are preserved during conversion (e.g. a dosage of 0 from a 3 x 0 

marker becomes a dosage of 2 in its converted form as a 1 x 0 marker), allowing an investigation of 

double reduction post-mapping. Any impossible scores (like a dosage of 3 or 4 from a 1 x 0 marker) are 

made missing. After mapping has been completed, the user has the option to return to the original 

marker coding in the phased map output files, to minimise mix-ups when tracking specific alleles (e.g. 

in a subsequent QTL analysis). 

High-quality data facilitates the generation of high-quality maps. One indication of poor data quality is a 

high proportion of missing values. The user may choose to screen out markers or individuals with more 

than a desired rate of missing values (by default up to 10% is tolerated) or duplicate individuals (which 

may indicate possible mix-ups in genotype labelling) which can be identified through a pairwise 

correlation plot. Identical markers, which often occur in high-density marker datasets with limited 

population sizes, can be identified and reduced to one representative marker for the mapping steps, 

and reintegrated later. A principal component analysis (PCA) can also be performed and visualised, 

which may highlight some unwanted structure in the population (for example due to pollination from an 

unknown external pollen parent or from self-pollination) or outlying individuals. In such cases, PCA plots 

using markers which are homozygous for one of the parents only may provide additional information 

(see for example Vukosavljev et al. (2016)). 

5.2.2 Linkage analysis   

5.2.2.1 Linkage analysis under a polysomic model 

In autopolyploid species with polysomic inheritance, it is possible to model meiotic pairing structures as 

random bivalents or multivalents. In practice, both pairing structures tend to occur, with a relatively low 

frequency of multivalents in stable autopolyploids (Bomblies et al., 2016; Santos et al., 2003). The main 

consequence of multivalent formation from a genetic perspective is the phenomenon of double 

reduction, where two segments of a particular homologue can end up in the same gamete and become 

transmitted together to F1 offspring. In previous studies it has been demonstrated that multivalents and 

double reduction introduce a small bias in the estimation of recombination frequency under a random 

bivalent model, but that this bias can safely be ignored if the rate of quadrivalent pairing is low (Bourke 

et al., 2016, 2015). Estimating the rate of multivalents can be achieved by a study of double reduction 

products (Bourke et al., 2015) or by predicting the meiotic pairing structures (Zheng et al., 2016), but is 

not necessary in practice. 

Under a random bivalent model, there are three possible bivalent pairing conformations in a tetraploid. 

This rises to fifteen in a hexaploid. In general, for any even ploidy p = 2n there are 𝑐 =
(2𝑛)!

(2𝑛).𝑛!
 possible 

bivalent pairing conformations to be considered. Given any pair of marker loci, we model the unknown 

recombination frequency between them as r and consider the contribution of recombinant homologues 

with a within-bivalent probability of 
1

2
𝑟 and non-recombinant homologues with a within-bivalent 
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probability of  
1

2
(1 − 𝑟). In cases where recombinants and non-recombinations cannot be distinguished, 

both are assigned an equal probability of  
1

2
. Assuming the pairing is random, the probability of any 

particular pairing configuration is 
1

𝑐
 (in the case of preferential pairing, we introduce a preferential 

pairing factor to model deviations from randomness here). 

The expected frequency of each offspring class 𝑛𝑖𝑗 (0 ≤ 𝑖, 𝑗 ≤ 2𝑛) is first summed over all c bivalent 

conformations: 

𝐸(𝑛𝑖𝑗) = ∑
1

𝑐

𝑐

𝑘=1

𝑓𝑘(𝑟, 1 − 𝑟)  

where 𝑓𝑘(𝑟, 1 − 𝑟) denotes a function of 𝑟 and 1 − 𝑟, dependant on the marker combination considered. 

Given these expected frequencies, we relate them to the observed counts of individuals in each class 

𝑂(𝑛𝑖𝑗) to yield the likelihood function ℒ(𝑟): 

ℒ(𝑟) ∝  ∏ 𝐸(𝑛𝑖𝑗)
𝑂(𝑛𝑖𝑗)

2𝑛

𝑖,𝑗=0

 

The likelihood equation results from equating the first derivative of the log of the likelihood function 

with zero: 

∑ (𝑂(𝑛𝑖𝑗) . ∑
1

𝑐

𝑐

𝑘=1

𝑑

𝑑𝑟
ln (𝑓(𝑟, 1 − 𝑟))) = 0

2𝑛

𝑖,𝑗=0

 

In cases where no analytical solution exists, we use Brent’s algorithm (Brent, 1973) to numerically 

maximise the log likelihood function in the bounded interval 0 ≤ 𝑟 < 0.5. For any pair of markers there 

are a number of possible phases between these markers to consider, which describe the physical 

linkage between marker alleles. In the case of a pair of 2 x 0 markers, these phases are termed 

“coupling”, “mixed” and “repulsion” (Figure 5.1A). As the phase between markers is initially unknown, 

we must compute expressions for each of the possible phases, and select the most likely one as the 

phase for which 0 ≤ 𝑟 < 0.5 which maximises the log of the likelihood (Hackett et al., 2013). In the 

case of pairs of 1 x 1 markers in a tetraploid it was found that the phase which minimises r performs 

only marginally better (Bourke et al., 2016), but this is the only exception we have so far discovered. 
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Figure 5.1. Example of phase considerations in a tetraploid. The three phases considered for a pair of 2 x 0 markers 
(A), from left to right, “coupling”, “mixed” and “repulsion”. In the case of preferential pairing between homologues 1-2 

and 3-4 (B), we must consider two separate types of coupling phase, either coupling within preferential bivalents (left) 
or coupling between preferential bivalents (right). In the extreme case of an allotetraploid, this distinction could also 

be termed “subgenome-specific” versus “subgenome-straddling”. In both scenarios, we follow the procedure outlined 
in the text to derive the likelihood function with parameters r and ρ. 

Finally, we also compute the logarithm of odds (LOD) score, which is approximately related to the 

inverse of the standard deviation of the estimate. The LOD score provides a useful measure of the 

confidence in the estimate and is used for both marker clustering and marker ordering, where they (or 

their square) provide the weighting structure for the weighted metric multidimensional scaling approach 

we have adopted (Preedy and Hackett, 2016). 

𝐿𝑂𝐷 = 𝑙𝑜𝑔10 (
ℒ(𝑟 =  𝑟̂)

ℒ(𝑟 =  0.5)
) 

where 𝑟̂ is the maximum likelihood estimate of r. 

5.2.2.2 Linkage analysis in the presence of preferential chromosomal pairing 

In certain polyploid species it is possible that the meiotic pairing is neither fully random nor fully 

partitioned into exclusively-pairing subgenomes, a situation described as segmental allopolyploidy 

(Stebbins, 1947). Regardless of the underlying mechanism, the result of preferential pairing is that both 

the segregation ratios and the co-inheritance of marker alleles are affected. In the example of a 2 x 0 

marker introduced earlier, the expected segregation ratio in a polysomic autotetraploid is 1 : 4 : 1 

between offspring dosage classes 0, 1 and 2. With increasing preferential pairing, this ratio will 

approach 1:2:1 in the case of subgenome-straddling markers (i.e. with segregating alleles on both sub-

genomes, exampled in Figure 5.1B right) and will approach non-segregation in the case of subgenome-

specific markers (i.e. with segregating alleles on a single sub-genome, Figure 5.1B left). 

In order to model this behaviour, we introduce a preferential pairing parameter ρ, such that (in the case 

of a tetraploid) the probability of the pairing configuration 1-2 / 3-4 is 
1

3
+ 𝜌 and the probability of 

pairing configurations 1-3 / 2-4 and 1-4 / 2-4 is 
1

3
−

𝜌

2
. Although this appears to be non-symmetric, the 

labelling of homologues is arbitrary and merely a convenience for the derivation of the likelihood 

formulae. Attempting to model preferential pairing at higher ploidy levels introduces further 

complications; Zhu et al. (2016) have proposed a solution for hexaploids by introducing three 

preferential pairing parameters θ1, θ2 and θ3 to model deviations in bivalent configurations 1-2, 3-4 and 

5-6 respectively, with all other configurations having a probability of 
1

15
− 

1

12
(𝜃1 + 𝜃2 + 𝜃3). A general 
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pairing model for hexaploids was also proposed by Sybenga (1995) who parametrised the number of 

bivalents, quadrivalents and hexavalents as well as chiasma frequencies of chromosome arms. In our 

software, we have not (yet) attempted to model segmental allohexaploidy, and confine our attention to 

the tetraploid level for now. 

In contrast to alternative approaches, we do not simultaneously estimate ρ and r, which can lead to an 

over-estimation of the preferential pairing parameter (Wu et al., 2002) – although this may offer the 

advantage of modelling variable preferential pairing rates along the chromosome rather than a single 

fixed estimate. Instead, we estimate the chromosome-wide strength of preferential pairing after map 

construction and thereafter correct the pairwise recombination frequency estimates to revise the maps. 

The details of this approach have been described elsewhere (Bourke et al., 2017). A robust method of 

preferential pairing detection and estimation is to use inheritance probability estimates such as those 

provided by TetraOrigin (Zheng et al., 2016); in polymapR we offer a simpler approach which uses 

closely-linked repulsion marker pairs to test for deviations from random pairing and simultaneously 

estimate the strength of this deviation (Bourke et al., 2017): 

𝜌 =  
2(𝑛00 + 𝑛11) − 4(𝑛01 + 𝑛01) 

3(𝑛00 + 𝑛01 + 𝑛10 + 𝑛11)
 

 

where 𝑛01 is the number of offspring with a dosage “0” at marker A and “1” at marker B etc. 

Given a parent- and chromosome-specific estimate for the preferential pairing factor ρ, we modify the 

expression for the expected frequency of individuals in marker class 𝑛𝑖𝑗 of a tetraploid as follows: 

𝐸(𝑛𝑖𝑗) = (
1

3
+ 𝜌) 𝑓1(𝑟, 1 − 𝑟) + (

1

3
−

𝜌

2
) 𝑓2(𝑟, 1 − 𝑟) + (

1

3
−

𝜌

2
) 𝑓3(𝑟, 1 − 𝑟)  

Due to the lack of symmetry in this equation, we must carefully consider all possible conformations 

within each phase, an example of which is shown in Figure 5.1B. The key consideration is to distinguish 

between subgenome-specific and subgenome-straddling markers – once all possibilities have been 

identified the rest of the analysis is straightforward. In some phases combinations in a tetraploid there 

are up to four distinct conformations to be considered. The procedure for estimating r and LOD remain 

otherwise the same as described previously for the case of random bivalents. The inclusion of 

preferential pairing imposes an extra computational burden, as each phase can lead to up to four sub-

phase conformations, all of which are calculated prior to selection of the most likely phase and its 

associated r and LOD score.  

Finally, in both the case of random and preferential pairing, linkage calculations can be run in parallel 

(using the packages doParallel and doSNOW (Revolution Analytics and Weston, 2014a, 2014b)) on any 

Windows or Unix-like multi-core desktop computer (by setting the ncores argument greater than 1), 

resulting in significant time-savings. The procedure only calculates as many pairwise comparisons as 

needed, by first splitting the marker data into chromosomal clusters before performing a complete 

pairwise linkage analysis. In this way, even high-density marker datasets with tens of thousands of 

markers can be processed in a few hours. 

5.2.3 Linkage group assignment 

In diploid studies, the term linkage group is generally understood to be loosely synonymous with the 

term chromosome, albeit without explicitly stating that a collection of markers which show mutual 

linkage are in fact on the same chromosome. In an autopolyploid there are two, possibly three levels of 

linkage groups to be recognised – homologue groups, parent-specific groups and integrated 

chromosomal groups. We generally ignore parent-specific groups, as the other two grouping levels are 

sufficient to describe the precise conformation of a marker in relation to others, allowing us to define 

chromosome-scale haplotypes of parental markers. Thus for the assignment of markers we focus on 

chromosomal and homologue groups. 
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The first step in linkage group assignment is to cluster the 1x0 linkage data, for which we currently use 

the R package igraph (Csardi and Nepusz, 2006). Clustering is performed using the pairwise linkage 

LOD scores as thresholds for edges in an undirected graph with markers as nodes; the LOD for 

independence can alternatively be used if desired, which is reported to be more robust against the 

effects of skewed marker data (Van Ooijen and Jansen, 2013). In practice with well-filtered datasets 

both should deliver similar results. Markers (nodes) can be connected to a cluster by a single significant 

linkage over the LOD threshold used. 

A number of visual aids are provided to assist in clustering (Figure 5.2). In general, clustering should be 

performed over a suitable range of LOD thresholds (e.g. from LOD 3 to 10) in order to inform the 

choice of LOD score to partition the data into both homologues and chromosomes (Figure 5.2A, B). If 

chromosome and homologue clusters cannot be readily identified using 1x0 markers alone (due to the 

confounding of true repulsion-phase linkages between homologues and false linkages to other 

chromosomes), the strategy adopted is to separate out coupling-phase homologue clusters and re-

connect these into chromosomal clusters using another marker type (Figure 5.2C). 2x0 or 1x1 markers 

are preferred because of their relatively high information content and because they are generally 

expected to be present in sufficient numbers for this task. Occasionally, this approach may cause the 

fragmentation of certain homologues, leading to a greater number of clusters than expected. Various 

possibilities to merge these fragments are provided (Figure 5.2D, E, F). 
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Figure 5.2 Example visualisations produced by polymapR to facilitate linkage group identification and marker 
clustering. (A) As LOD score is increased, the number of 1x0 clusters increases, as does the number of single-marker 

clusters (unlinked markers). For a given ploidy and chromosome base number, the expected number of (homologue) 
clusters is also shown. (B) Alternative representation of 5.2A, akin to JoinMap’s grouping tree (but not an interactive 

plot), which shows the splitting of each cluster as the LOD score is increased. In this example, five chromosomal 
clusters are identified at LOD 3.5, which split into four homologue clusters between LOD 4.5 and 7. In some situations, 

at the higher LOD values needed to split clusters into homologue clusters, other homologue clusters may fragment and 
thus may need to be merged. (C) Using linkage to other marker segregation types such as 2x0 markers, homologue 
clusters can be associated into chromosomal clusters, if this was not achieved using 1x0 data alone. Here, five 

chromosomes are represented. (D) If homologue fragments occur, cross-homologue phase information can help 
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determine which fragments to merge (Bourke et al., 2017). Here, homologues 4 and 5 show only coupling-phase 

linkage and should therefore be joined as a single homologue. (E) Alternative approach to merge fragments showing 
network of linkages over a range of LOD scores. Here, four homologues were successfully identified and merged 

directly. (F) Alternative representation of 5.2E, showing these connections in a circular format instead. 

Following the definition of the chromosome and homologue structure using the 1x0 markers, all other 

marker classes are assigned to both homologues and chromosomes using their linkage to these 

markers. This constitutes the final phase assignment of all marker types (as distinct from the pairwise 

phases that are also determined in the linkage analysis but which, for the most part, are not directly 

used). For example, a 1x1 marker may show significant linkage (user-determined, but with a default 

value LOD > 3) to a large number of 1x0 markers on homologue 1 of chromosome 1 in parent 1, as 

well as a large number of 0x1 markers on homologue 2 of chromosome 2 in parent 2. This marker is 

then phased as 1000x0100, and the chromosome numbering in parent 2 is relabelled to be consistent 

with that of parent 1. 

5.2.4 Marker ordering  

One of the challenges of marker ordering and map construction in autopolyploid species using marker 

dosages is the variable accuracy of recombination frequency estimates which must be integrated 

somehow. Ordering algorithms which only use unweighted recombination frequency estimates are 

unlikely to find an optimal map order, as there is no distinction between equal estimates of r from 

situations with vastly different information contents and variances. A thorough description of this issue 

is provided in Preedy and Hackett (2016). Within the polymapR package, marker ordering can be 

achieved in two ways – either using the weighted regression algorithm as originally proposed by Piet 

Stam (Stam, 1993) or to use the multi-dimensional scaling algorithm as implemented in the MDSmap 

package (Preedy and Hackett, 2016). The weighted regression algorithm has been programmed in R 

and is available as an option within the polymapR package. Given the computation efficiency of the 

MDS algorithm, in almost all circumstances this will be the preferred choice. Identical markers that were 

originally set aside can be added back to the final maps after marker ordering is complete. 

5.3 Results and Discussion 

5.3.1 Software output – final linkage maps 

The final output of the polymapR package is phased integrated map information. Maps can either be 

generated per homologue or per chromosome (or indeed per parent), facilitating the definition of 

haplotypes within a population. A record is kept in a log file of any markers that were removed during 

the procedure, either at the early data pre-processing stage or later in the marker clustering or ordering 

steps, as well as logging the exact function calls that generated each step, improving project 

reproducibility and later reporting. Visualisations are provided throughout the mapping procedure, 

facilitating the diagnosis of issues as well as summarising the results. An example of an integrated map 

with five chromosomes, generated using the sample data provided with the package, is shown in Figure 

5.3. The polymapR package also generates input files for TetraOrigin (Zheng et al., 2016) which can 

calculate IBD probabilities for tetraploid datasets, useful for QTL analysis.  
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Figure 5.3. Example map output visualisation showing five integrated chromosomes generated using the sample 
tetraploid dataset provided with polymapR. The colours in the legend depicts the dosage of the parents for the 

mapped markers (‘dosage parent 1’ x ‘dosage parent 2’). 

5.3.2 Application of polymapR to real datasets 

Developmental versions of the polymapR package have already been used for linkage map construction 

in various polyploid crops such as potato (Bourke et al., 2016), rose (Bourke et al., 2017) and 

chrysanthemum (chapter 6). In all of these studies, high-density marker datasets were generated using 

SNP arrays. Marker dosage genotypes for the tetraploid species were scored with fitTetra (Voorrips et 

al., 2011), while the chrysanthemum genotypes were scored using fitPoly. The high-density integrated 

linkage maps from these studies have been used in subsequent applications such as QTL analysis. In 

the case of potato, the linkage map was shown to be consistent with the physical sequence as well as 

with previously-published genetic maps (Bourke et al., 2016). In rose, a high degree of co-linearity was 

demonstrated between the linkage map positions and their syntenic positions on the Fragaria vesca 

genome assembly (Bourke et al., 2017). For chrysanthemum, the maps showed local concordance with 

the high density linkage map of Lactuca sativa (this thesis chapter 6). The maps produced covered 

almost all expected homologues and identified all expected chromosomes (12 in the case of potato, 

seven in rose and nine in chrysanthemum) and represent the highest-density polyploid linkage maps 

published in these species to date.  

5.3.3 Comparison with other polyploid mapping software 

As described in the introduction, there is currently a limited number of options for linkage mapping in 

autopolyploid species. We compared the performance and applicability of polymapR with two currently-

available software options, namely TetraploidSNPMap (TSNPM) and PERGOLA. 

5.3.3.1 TetraploidSNPMap (TSNPM) 

TSNPM is a highly-developed piece of software for Windows with a graphical user interface which uses 

optimised routines for initial marker clustering and offers interactive cluster plots for assignment of 

linkage groups. It goes beyond linkage map construction to compute IBD probabilities and perform QTL 

interval mapping as well. Given that polymapR uses the same assumption of random bivalent pairing as 

is used in TSNPM and the same ordering algorithm (MDSmap (Preedy and Hackett, 2016)), we did not 

expect much difference in the map output or computational time between polymapR and TSNPM for 

autotetraploid datasets.  
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The only clear differences are in the maximum number of markers that can be mapped, the initial 

clustering of 1x0 markers and the procedure for assigning parental marker phase. In TSNPM the current 

marker limit is 8000 SNPs, in line with the size of the SolCAP 8303 potato SNP array (Felcher et al., 

2012). The polymapR package sets no limit on the number of markers in a dataset, but does bin 

identical markers to prevent needless calculations. Regarding the initial clustering, polymapR uses the 

LOD for linkage (the LOD for independence can also be used), whereas TSNPM initially uses a simple 

matching coefficient as a proxy for the recombination frequency, which is likely to be computationally 

more efficient. 

Marker phasing in polymapR is automatic, by selecting phase based on the counts of significant linkages 

to 1x0 homologue clusters and ignoring any spurious linkages that go against the general trend. On the 

other hand, phase assignment often requires manual intervention in the TSNPM pipeline, since a fully-

phased map file is required as input for IBD probability determination and subsequent QTL analysis. In 

the absence of coupling linkages (or either coupling or repulsion linkage in the case of duplex markers) 

polymapR cannot automatically assign a marker to a homologue; when a marker cannot be fully phased 

in correspondence to its parental dosage (which determines the expected number of homologues it 

should be linked to) the marker is omitted from the output phased map file, although retaining its 

position on the integrated map file. The user can, if desired, investigate the phase assignment further 

and attempt to determine its most likely phase manually. However, this manual intervention is not 

required on a per-marker basis (which would be a serious hindrance with high-density marker 

datasets). Robust automatic tetraploid phasing from marker dosage data and integrated map positions 

can also be achieved post-mapping using external software such as TetraOrigin (Zheng et al., 2016). It 

is also worth pointing out that high-density marker datasets contain many more markers than are 

needed for the accurate phasing of F1 populations (as opposed to parental phasing), and therefore 

small omissions of fully-phased markers is in practice not likely to be a serious issue.  

Furthermore, the generation of homologue maps is straightforward in polymapR, which can be useful in 

identifying problematic markers or regions when homologue and integrated maps are compared. The 

main difference between TSNPM and polymapR is that polymapR can handle autotetraploid and 

autohexaploid as well as segmental allotetraploid data, whereas TSNPM is currently confined to 

autotetraploid data. polymapR is also cross-platform given that it is written in R. 

5.3.3.2 PERGOLA 

The PERGOLA package in R has been developed for F2 or backcross populations from an initial cross 

between homozygous parents. Such a situation is highly unusual for most polysomic polyploids; to our 

knowledge, none of the polysomic polyploid crops (potato, rose, leek, alfalfa, chrysanthemum, sugar 

cane etc.) are bred through inbreds. This has two important reasons. First, many polysomic polyploids 

suffer from severe inbreeding depression. Second, inbreeding requires many more generations before 

homozygosity is reached compared to a diploid or disomic polyploid. In a polysomic hexaploid for 

example, it would take 25 generations of selfing an F1 individual before 90% homozygosity is reached. 

The applicability of the PERGOLA software to real populations in polysomic polyploids is therefore 

limited. 

Despite the highly-unusual type of population, we simulated a small F2 dataset of a selfed F1 

individuals randomly chosen from a cross of two inbred parental lines using PedigreeSim (Voorrips and 

Maliepaard, 2012), leading to a marker dataset of 500 duplex x duplex markers over 5 chromosomes. 

The calculation of recombination frequencies took a mere 3.54 seconds in PERGOLA, in comparison to 

28 minutes using polymapR (on a single core; using 6 cores this step took 8 minutes). However, for 

polymapR this particular marker combination is the most complex, with nine possible phase 

combinations in the parents to be separately calculated per marker pair, and with extremely 

complicated likelihood functions for each phase (all 25 dosage combinations are possible in a tetraploid, 

from n00 to n44). It is therefore a somewhat unfair comparison, as PERGOLA labours under no such 

“generalist” difficulties. Phase considerations are trivial and therefore ignored by PERGOLA because of 
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their simplistic population assumptions. If such populations could be generated, PERGOLA would 

produce excellent map orders (in our simulation, all five chromosomes were identified, with near perfect 

marker order in each, although the map lengths were inflated – from 200 cM using the Kosambi 

mapping function to 400 cM using Haldane’s (when 100 cM was expected). polymapR also produced 

near-perfect maps with map-lengths of approximately 90 cM using Haldane’s mapping function). 

polymapR can handle data from both cross-pollinating and inbred populations whereas PERGOLA 

cannot, but given the performance difference, PERGOLA would appear to be the software of choice for 

inbred polyploid populations, should they be developed. 

5.3.4 Concluding remarks 

The development and release of polymapR comes at a time when there is increasing need for tools to 

perform genetic analysis in polyploid crops. Understanding the genetic control of important biological 

traits in polyploid species will have a large impact on plant breeding (or in the case of certain polyploid 

fish such as rainbow trout or Atlantic salmon, animal breeding as well), facilitating the adoption of 

genomics-driven breeding decisions such as marker-assisted selection or genomic prediction into 

breeding programs. For these advances to take place, high-density and accurate maps showing the 

relative position of markers on chromosomal groups are needed – which is precisely what polymapR 

delivers. Over the coming years it is predicted that polyploid genotyping will move towards multi-SNP 

sequence-based haplotypes, which polymapR will in time be adapted for. 

5.4 Availability of software 
The software, a vignette (manual) and test data set are provided as additional file with this thesis 

(Additional file 5.1). 
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Abstract 
Construction and use of linkage maps is challenging in hexaploids with polysomic inheritance. Full map 

integration requires calculations of recombination frequency between markers with complex segregation 

types. In addition, detection of QTL in hexaploids requires information on all six alleles at one locus for 

each individual. We describe a method that we used to construct a fully integrated linkage map for 

chrysanthemum (Chrysanthemum x morifolium, 2n = 6x = 54). A bi-parental F1 population of 406 

individuals was genotyped with an 183,000 SNP genotyping array. The resulting linkage map consisted 

of 30,312 segregating SNP markers of all possible marker dosage types, representing nine chromosomal 

linkage groups and 107 out of 108 expected homologues. Synteny with lettuce (Lactuca sativa) showed 

local colinearity. Overall, it was high enough to number the chrysanthemum chromosomal linkage 

groups according to those in lettuce. We used the integrated and phased linkage map to reconstruct 

inheritance of parental haplotypes in the F1 population. Estimated probabilities for the parental 

haplotypes were used for multi-allelic QTL analyses on four traits with different underlying genetic 

architectures. This resulted in the identification of major QTL that were affected by multiple alleles 

having a differential effect on the phenotype. The presented linkage map sets a standard for future 

genetic mapping analyses in chrysanthemum and closely related species. Moreover, the described 

methods are a major step forward for linkage mapping and QTL analysis in hexaploids with polysomic 

inheritance.  

6.1 Introduction 
A linkage map is a starting point for localization of genomic regions that are associated with 

agriculturally important traits. This makes it an important tool for DNA-informed breeding (Peace, 

2017). For polyploids, DNA-informed breeding has lagged behind compared to diploids, because 

genotyping co-dominant markers and linkage map construction in polyploids requires specialized 

methods. Such methods need to be able to handle multi-dose markers. As opposed to diploids, 

polyploids have multiple conformations of heterozygous genotypes; a hexaploid can have five different 

heterozygous genotypes ranging from a dosage of one to a dosage of five. Together with the two 

homozygous conformations, this adds up to seven different dosage scores.  

Many linkage maps of polyploids are constructed with single-dose (present/absent) markers using 

methods developed for diploids. Those kinds of maps are limited to representing only individual 

homologues. Integration of separate maps of homologous chromosomes is needed for transferability of 

results between mapping studies and mapping of traits with a complex genetic architecture. In an 

integrated map, all markers are located relative to each other, resulting in one representation of the 

positions of all mapped loci, irrespective of the phase of their alleles. This enables comparisons of 

linkage maps based on different populations. Map integration requires estimation of linkage between 

single-dose markers in repulsion or linkage between higher dose markers. Estimation of linkage of 

markers in repulsion is different from diploids and can only be done with very low confidence, especially 

in a hexaploid (Wu et al., 1992). Segregation ratios of higher dose markers are fairly complex, and 

calculation of recombination frequency needs specific statistical methods (Hackett et al., 1998). Because 

of the complicated nature of recombination frequency estimation between higher dose markers, 

dedicated software is required.  

In an outcrossing species, the number of alleles that can affect a trait in a single individual is the same 

as the ploidy level (Figure 1.5A). For QTL detection in an outcrossing full-sib population without any 

prior knowledge on the involved alleles, all twelve possible alleles that can be inherited from the parents 

should therefore be taken into account (Figure 1.5B). With use of the positions of markers on a non-

integrated linkage map of homologues, only information on the presence or absence of one out of 

twelve parental alleles is available (Figure 1.5C). If the other eleven alleles are ignored, any QTL that 

does not have underlying alleles with major effect on the trait will be missed. Multi-allelic QTL mapping 

needs therefore information of all alleles per locus.  
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Most progress in linkage mapping in an outcrossing hexaploid with polysomic inheritance has been 

reported in sweet potato (Ipomoea batatas). In this species, several non-integrated maps have been 

published (Cervantes-Flores et al., 2008; Chang et al., 2009; Kriegner et al., 2003; Monden et al., 2015; 

Shirasawa et al., 2017; Ukoskit and Thompson, 1997), with two publications reporting information on 

homologous chromosomes without actually integrating the maps. This information is based on duplex x 

nulliplex (2x0) and triplex x nulliplex (3x0) markers (Cervantes-Flores et al., 2008; Ukoskit and 

Thompson, 1997) or based on alignment to a reference genome (Shirasawa et al., 2017). Similar to 

sweet potato, chrysanthemum is an outcrossing hexaploid with polysomic inheritance. Reported 

methods for linkage map construction (Zhang et al., 2011a, 2010) and QTL analysis (Zhang et al., 

2013, 2012a, 2012b) for chrysanthemum have been limited to methods developed for diploids, and 

constructed maps are therefore not integrated. 

In a hexaploid, an integrated linkage map is most preferably constructed by estimation of linkage with 

higher dose markers. Those multi-dose markers can connect homologous chromosomes within parents 

and between parents and can therefore be used to integrate them. For tetraploids, methods to estimate 

linkage between higher dose dominant markers have been developed (Hackett et al., 1998), and 

applied to construct integrated linkage maps (Luo et al., 2001; McCallum et al., 2016; Meyer et al., 

1998). Later, these methods have been extended and applied to bi-allelic SNP markers (Bourke et al., 

2017, 2016; Hackett et al., 2013). Such methods would need to be extended to hexaploids in order to 

generate integrated linkage maps with use of higher dose markers. 

An integrated linkage map can be used to reconstruct inheritance of parental haplotypes to approach a 

representation as in the example in Figure 1.5B. The two alleles of bi-allelic SNPs can be in linkage 

disequilibrium with multiple haplotypes, each having a different effect on the phenotype. Such 

haplotypes can be identified based on the configuration of neighbouring alleles. Methods for 

reconstruction of haplotype inheritance by estimating probabilities of identity-by-descent (IBD) in 

tetraploid bi-parental populations have been developed (Bourke, 2014; Hackett et al., 2013; Zheng et 

al., 2016). Although all methods are theoretically extendible to hexaploids, the method developed by 

Bourke (2014) is ploidy-level independent and is therefore directly applicable to hexaploids. 

In this paper, we describe the construction of an integrated linkage map from all possible marker 

dosage types in hexaploid chrysanthemum. We are setting the standard for transferability of results by 

chromosomal linkage group numbering based on synteny with lettuce (Lactuca sativa) and by 

generating a core set of SNP markers that can be used to anchor future maps. With the integrated 

linkage map, we reconstruct haplotypes based on parental origins using a relatively simple procedure. 

We demonstrate the usefulness for QTL mapping for four traits for which information of all twelve 

segregating alleles was taken into account.  

6.2 Materials and methods 

6.2.1 Plant material and phenotyping  

We analysed the segregation of SNP markers in a bi-parental population that consisted of 406 

individuals originating from a cross between DB36451 (P1) and DB39287 (P2), two daisy-type, white 

chrysanthemum cultivars. Phenotyping took place in the same experiment as described in chapter 3. In 

short, the offspring and parents were grown in three randomized blocks in each of three seasons: 

summer (May to July 2015), late summer (August to October 2015), and autumn (September to 

November 2015). A replicate consisted of a field containing 10 to 50 plants. Plants were grown in 12, 

12 and 14 days of 18, 21 and 21 h photoperiods for the summer, late summer and autumn, 

respectively. To induce flowering, they were subsequently grown in 12 h photoperiods for the plants 

grown in summer and late summer and in 11 h photoperiods for the plants grown in autumn. Flower 

colour was recorded based on visual observation. If flowers were completely white, they were scored as 

0, if they were slightly pink as a 1, and pink flowers were scored as 2. Flowering time was recorded as 

the number of days (at short photoperiod) needed to reach commercial maturity for at least 50% of the 
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plants grown in a single field. The number of ray florets was counted from the third flower head from 

the top of one flower stem for each replicate. The phenotypic scores obtained for disk floret degreening 

are described in chapter 3. Heritability was calculated by dividing the estimated genotypic variance by 

phenotypic variance. Variances were estimated using an analysis of variance (ANOVA) with trial and 

genotype as fixed effects.  

6.2.2 Mitotic chromosome counting 

For mitotic metaphase chromosome analysis, ± 1 cm long roots were collected from DB36451 (P1) and 

DB39287 (P2) and incubated in eppendorf tubes in ice water for 24 hr and then fixed in ethanol–acetic 

acid (3:1) solution for 12–24 hr. Roots were stored in fixative at -20°C until use. For chromosome 

preparations, the root tips were washed 4 times 5 min in enzyme buffer (0.01 M citric acid-sodium 

citrate, pH 4.8) and incubated in an enzyme mixture containing 1% (w/v) pectolyase Y23, 1 % (w/v) 

cellulase RS at 37°C for about 1.5 h. Squash preparations were made in a drop of 45% acetic acid and 

frozen in liquid nitrogen. The cover slips were removed by using a razor blade. The slides were then 

dehydrated in absolute ethanol, air dried and stained with 1 µg/ml 4,6-diamidino-2-phenylindole (DAPI, 

Sigma) in Vectashield (Vector Laboratories). Images of fluorescently stained chromosomes were 

acquired using a Canon digital camera attached to an Axiophot microscope with an appropriate filter 

and then processed using software (Axio Vision 4.2). For each genotype, the total number of 

chromosomes was determined for 5-10 metaphases. 

6.2.3 Genotyping and marker quality filtering 

Genotyping was performed with a 183k Affymetrix SNP array, as described in chapter 4. In short, the 

array was designed based on RNA-seq data of 13 cultivars, including both parents of the population. A 

reference transcriptome was assembled based on the reads originating from DB36451 (the female 

parent of the population), and reads of all 13 other cultivars were aligned against this assembly. From 

these alignment files SNPs were called, while retaining information from which transcript contig they 

originated.  

Dosage scoring from array output was largely performed as described in chapter 4. Because genomic 

dosage was highly correlated with the number of reads per allele from our sequence data (chapter 4), 

we estimated dosage per SNP of the parents a-priori based on the sequence data, and used this 

information for SNP calling (Zych et al., in preparation). This resulted in 67,916 SNP markers with 

expected segregation in the population based on parental dosages. Similar to the description provided 

in chapter 4, we removed non-segregating markers, markers with >5% missing values, individuals with 

>10% missing values and skewed markers (p<0.001 based on a Χ2-test assuming polysomic 

inheritance). We defined non-unique markers as markers for which all non-missing dosage scores were 

equal. Groups of non-unique markers were represented by a single marker with the least missing 

values. This representative marker was used in further mapping steps with all other unique markers. 

After ordering, the other markers in the represented group were assigned to the same position as the 

representative marker. 

6.2.4 Linkage map construction 

The linkage map was constructed with the functions developed for the polymapR R package (chapter 

5). Below, the steps are elaborated in more detail. To calculate recombination frequency (r) and LOD 

scores of marker pairs, the method as described by Bourke et al. (2016) was modified for hexaploids, 

i.e. using the assumption of completely random bivalent pairing. Initially, marker dosages were 

converted to their most fundamental form as previously described (Bourke et al., 2016), resulting in 

nineteen separate marker segregation types (Additional file 6.1). For all possible marker combinations 

(Additional file 6.2), functions for pairwise estimation of r were then derived. In a hexaploid species, 

fifteen bivalent pairing scenarios are possible, in comparison to three for a tetraploid. For each 

combination of marker types, there are multiple phases possible depending on the conformation of the 

markers within one or both parents. All possible phase combinations were calculated for each marker 



Linkage map 

 

91 
 

pair (i.e. all phases having a distinct likelihood function), since the phasing of marker pairs is unknown 

before mapping. The recombination frequency (and associated LOD) was selected among those 

estimates of r in the range 0 ≤ r < 0.5 which maximised the log of the likelihood function (Hackett et 

al., 2013). The accuracy of recombination frequency estimation and phase assignment was checked 

using a small simulated hexaploid dataset generated in PedigreeSim (Voorrips and Maliepaard, 2012), 

which showed a high degree of concordance between the true and expected results for most marker 

combinations. In cases where the accuracy of the estimate was lower, the LOD score reflected this 

(being loosely related to the inverse of the variance of the estimate). Overall, for each marker type 

combination (Additional file 6.2) a total of 104 linkage functions were derived in Mathematica 10.0 

(Wolfram Research, 2015) and converted to R language (R Core Team, 2014) for the linkage analysis.  

To construct backbone clusters that would represent homologues, simplex x nulliplex (1x0) markers 

were clustered at a LOD score of 10. To identify chromosomal linkage groups (CLG), multi-dose 

markers can be used to provide bridge linkages between pairs of 1x0 markers, therefore associating 

clusters into CLG. Abundant multi-dose markers provide the most information, among those are 

uniparental duplex x nulliplex (2x0) markers (Bourke et al., 2017) or bi-parental markers, like simplex x 

simplex (1x1) markers. In our case, the use of 1x1 markers showed the clearest associations between 

1x0 clusters, and these marker types were therefore used to indentify CLG. Unlinked markers in clusters 

smaller than five markers were not used in further mapping steps. Linkage information of the bi-

parental 1x1 markers were used to assign consensus numbering to the linkage groups between 

parents. After construction of this backbone clustering, all other marker types were assigned and 

phased to a CLG and homologue based on linkages with 1x0 markers with a LOD score greater than 

five. To complete information on all pairwise linkages, for each marker combination within a linkage 

group, recombination frequency and LOD were calculated with the derived functions. The markers were 

ordered using MDSmap (Preedy and Hackett, 2016), with parameter settings as suggested by the 

authors: we used Haldane’s mapping function, two dimensions for the principal curves, and LOD2 as 

weights. We did not observe any notable change on the map ordering between two and three principal 

curve dimensions, and we therefore chose to use the most simple setting of two dimensions. After the 

first round, problematic markers were removed based on visual inspection of the principal curves and 

the difference in distance between nearest neighbouring markers as estimated from recombination 

frequency and the distance on the map. This difference is represented by the nearest neighbour fit 

(Preedy and Hackett, 2016) and markers exceeding a value of four were considered problematic and 

thus removed. This was repeated if the next round resulted in a reduction of the total nearest 

neighbour fit. From the integrated map, all marker alleles were assigned to a homologue. This 

assignment was based on coupling linkages with 1x0 markers that formed the backbone clustering. If 

there were at least five coupling linkages with 1x0 markers at LOD greater than 5, alleles were assigned 

to a homologue. If the number of marker alleles was not equal to the number of assigned homologues, 

the marker was not included in the phased map.  

As SNP markers were discovered from an RNA-seq derived transcriptome assembly, each marker is 

associated with a transcript contig sequence. This information was used to investigate the quality of the 

map. Markers of the type 1x0 that originated from the same transcript contig should have a distance of 

0 cM on the integrated map (assuming the contig was assembled correctly). For each homologue 

combination and for each linkage group, an overall deviation was quantified by calculating the root 

mean square error (RMSE) of these differences on the integrated map for all mapped 1x0 markers 

originating from the same transcript contig.  

To enable alignment of any future linkage maps in chrysanthemum by gene sequences, markers were 

identified that originated from contigs representing characterized genes. For this, mapped markers were 

aligned to all proteins from the UniProt database from Chrysanthemum x morifolium (taxonomy ID 

41568) using BLASTX (Altschul et al., 1997). Hits were filtered for alignment lengths greater than 100 
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and more than 95% identity. A subset of markers originating from these filtered transcript contigs 

spread over all linkage groups was selected to form a reference linkage map. 

6.2.5 Synteny with lettuce 

To investigate the synteny of the integrated linkage map with lettuce (Lactuca sativa), mapped 

transcript contigs were aligned to the mapped unigenes of lettuce as available from the Lettuce SFP 

Chip Project website (http://chiplett.ucdavis.edu, accessed February 20th 2017; Truco et al., 2013) 

using BLAST (Altschul et al., 1997). Unique hits with an e-value smaller than 1E-100 were used to 

assess synteny. Chrysanthemum CLG were renumbered based on the number of alignment hits with the 

lettuce linkage groups. 

6.2.6 IBD probabilities 

In order to estimate presence of parental haplotypes in the offspring, we calculated IBD probabilities as 

described in Bourke (2014). Based on the phased map and linkage information, IBD probabilities per 

marker locus were calculated for each member of the F1 population in two steps. The information was 

stored in a three-dimensional array for each linkage group, with marker, offspring individuals and 

homologue on the x, y, and z dimensions. In the first step, only fully informative dosage scores were 

used to fill the IBD probability array. This means that any scores in the progeny that were larger than 

zero and smaller than the sum of the parental dosage scores were considered as non-informative (e.g. 

for a 1x1 marker, progeny with a dosage of 0 or a dosage of 2 were considered informative, and with a 

dosage of 1 non-informative). Progeny dosage scores of zero indicate absence of all homologues to 

which the marker alleles were linked. Progeny scores that equal the sum of the parental dosages 

indicate presence of all homologues. Genotypes of which the marker alleles were absent were given an 

IBD probability of zero for those homologues, and genotypes of which all marker alleles were present 

were assigned a probability of one. Probabilities which could not be estimated were given a starting 

probability of 0.5. In the second step, inter-marker distance was used to estimate the IBD probabilities 

of adjacent markers.  

If Pj = 1: 

𝑃𝑖 = 𝑃𝑗 − 𝑟𝑖𝑗 

If Pj = 0: 

𝑃𝑖 = 𝑃𝑗 + 𝑟𝑖𝑗 

where i and j indicate two markers, P the IBD probability and r recombination frequency as calculated 

using the reverse Haldane’s function from estimated distance on the integrated map. Because in most 

cases Pi can be estimated based on linkage with multiple informative markers, Pi  was updated if the 

estimated P was lower than previously estimated (if Pj = 0), or if P was higher than before the current 

estimate (if Pj = 1) – i.e. more extreme probabilities were favoured. After assignment of IBD 

probabilities, the sum of IBD probabilities per parent was normalized to three (as three alleles are 

inherited from each parent). For each homologue in each F1 individual, a cubic spline was fitted over 

IBD probabilities versus position to calculate IBD probability interpolations over 1 cM intervals. 

Genotype information content (GIC) for interval k at homologue h for n individuals was calculated with 

the following formula: 

𝐺𝐼𝐶ℎ𝑘 =  1 − 
2

𝑛
∑ | 𝑃𝑖 − ⌊𝑃𝑖⌉ |

𝑛

𝑖=1

 

where  

⌊𝑃𝑖⌉ = 0,       0 ≤  𝑃𝑖 ≤ 0.5, 

⌊𝑃𝑖⌉ = 1,      0.5 < 𝑃𝑖 ≤ 1 
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This results in a score for GIC ranging from 0 to 1, where 0 represents a locus with little information, 

and 1 with complete information.  

6.2.7 QTL mapping 

QTL analysis was performed on block-corrected mean phenotypic values using an IBD probability 

model, as described before for tetraploids (Bourke, 2014). An additive model modified from 

Kempthorne (1957) as suggested by Hackett et al. (2013; 2014) was modified to the hexaploid level: 

𝑌 =  𝜇 + 𝛼2𝑋2 + 𝛼3𝑋3 + 𝛼4𝑋4 + 𝛼5𝑋5 + 𝛼6𝑋6 + 𝛼8𝑋8 + 𝛼9𝑋9 + 𝛼10𝑋10 + 𝛼11𝑋11 + 𝛼12𝑋12 

where αi and Xi are the main effects and indicator variables for allele i, respectively. The parameters 

representing homologue 1 and homologue 7 were taken as the reference classes and were therefore 

omitted from the model as in all cases three alleles are inherited per parent. To calculate the 

significance threshold for detecting significant QTL, a thousand permutations were run with randomly 

permuted phenotypes (Churchill and Doerge, 1994), taking the 5th percentile of the (ordered) minimum 

p-values from each genome-scan analysis as an approximate significance threshold. The used 

significance threshold was the 5th percentile of the minimum p-values of each permutation. To identify 

homologues affecting the trait, the IBD model was re-run for each allele separately.  

6.3 Results 

6.3.1 Linkage map 

After removal of markers that were non-segregating, had distorted segregation or had more than 5% 

missing values, 30,532 markers remained in the dataset. Of those, 21,345 had unique dosage scores 

acroos the progeny (Figure 6.1). Because markers with identical dosage scores in each individual (non-

unique markers) will map to the exact same position, they were reduced to a single, unique, marker for 

calculation of linkage and ordering. The others were added to the linkage map after map construction 

with only unique markers. 

 

Figure 6.1. Distribution of 19 different marker types segregating in the bi-parental population. Total number of 

markers: 30,532, of which 21,345 were unique. The non-unique markers had duplicate dosage scores across the 
population. The labels on the x-axis represent marker segregation types such as simples x nulliplex (1x0) etc. (“dosage 
parent 1” x “dosage parent 2”). 

Simplex x nulliplex and nulliplex x simplex (1x0 and 0x1) markers were used to construct backbone 

clusters that represent homologues. This resulted in 54 clusters for P1 and 53 clusters for P2 each 

containing five or more markers. Identification of CLG (chromosomal linkage groups) with simplex x 

simplex (1x1) resulted in a network of nine CLG representing all homologue clusters of both parents. 

Chromosome counting showed that both parents had 2n=54 chromosomes (Additional file 6.3), the 

expected euploid chromosome number. Out of the 108 expected homologues (54 per parent), 107 were 
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identified (Additional file 6.4). All other marker types were subsequently assigned to a CLG based on 

linkage with 1x0 and 0x1 markers. In total, 21,159 unique markers (99.1%) could be assigned. Markers 

were ordered per CLG based on recombination frequency with LOD2 as weights, resulting in CLG map 

lengths ranging from 64.5 to 95.0 cM. After ordering, the groups of non-unique markers were added to 

the linkage map based on the position of their unique representing marker, resulting in a linkage map 

containing 30,312 markers (99.3% of initial; Table 6.1). Of the ordered markers, the alleles of 28,638 

(93.8% of initial) could be phased to an expected number of homologues based on parental dosages 

with at least five significant linkages to 1x0 markers (Table 6.1), resulting in a fully phased linkage map.  

Table 6.1. Summary statistics of integrated linkage map 

CLG Length (cM) 
Total 

markers 
Phased 
markers 

Contigs* Rounds† 

1 82 2,595 2,528 1,199 2 

2 77.3 3,184 3,110 1,411 3 

3 64.5 2,970 2,786 1,269 3 

4 84.2 3,601 3,215 1,557 3 

5 90.3 3,498 3,427 1,508 3 

6 91.1 3,619 3,533 1,585 2 

7 81.6 3,936 3,464 1,621 2 

8 95 3,805 3,499 1,604 2 

9 86.1 3,104 3,076 1,338 3 

sum 752.1 30,312 28,638 13,092 - 

mean 83.6 3,368 3,182 1,454.7 - 

*Number of transcript contigs associated with mapped markers.  
†Number of rounds of problematic marker removal and re-ordering after the first 
ordering. 
 

6.3.2 Synteny with lettuce and reference map 

We aligned mapped transcript contigs of chrysanthemum with mapped lettuce unigenes (Figure 6.2). 

We aligned the 13,092 mapped chrysanthemum transcript contigs to 12,841 mapped lettuce unigenes, 

and obtained 4,757 unique hits with an e-value smaller than 1E-100. This resulted in the identification 

of syntenic linkage groups between lettuce and chrysanthemum. All combinations of linkage groups of 

chrysanthemum and lettuce with maximum number of hits were unique, except for two (Additional file 

6.4; Additional file 6.5). These two had both most hits with one lettuce linkage group. Of the two 

ambiguous CLG, the CLG with least hits was renumbered with the number of the non-assigned lettuce 

LG. This combination still had 126 hits, indicating partial similarity. Syntenic analysis per LG resulted in 

identification of large regions with linear correspondence between locations of genes, so the genomes 

appear to be partly co-linear at local scale. This was not clear at a larger scale, as syntenic regions were 

scattered across the linkage map of lettuce, which can be interpreted as that each chromosome carries 

major inversions and translocations. With use of this data, we based the numbering of chrysanthemum 

CLG on the number of significant alignments of mapped transcripts. To mark these nine 

chrysanthemum linkage groups, we present 92 CLG-defining SNP markers. These are evenly spread 

over all nine CLG and originate from 85 contigs representing genes coding for protein entries of the 

UniProt database (Figure 6.3; Additional file 6.6). This should be a useful tool for future studies in 

chrysanthemum. 
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Figure 6.2. Synteny between the lettuce ultra-high density map (Truco et al., 2013) and chrysanthemum. Each dot 

represents a significant alignment between lettuce unigenes and chrysanthemum transcript contigs.  

Figure 6.3. Integrated linkage map of phased markers with 1x0 markers (black), other marker types (grey) and CLG 
defining markers (red).  

6.3.3 Linkage map quality 

We used two analyses to evaluate the quality of the linkage map. First, to investigate the concordance 

between estimated pairwise r  (rpairwise) and r based on map distance (rmap), these two estimators of r 
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were plotted against each other (Additional file 6.7). With high LOD scores, these two estimators were 

in concordance with each other over a wide range of r (from 0 to 0.3). Second, to evaluate the position 

of nearby 1x0 markers in coupling and repulsion, we aligned the position on the integrated map of 1x0 

markers that originated from the same transcript contig from the RNA-seq assembly. The positions of 

markers that originated from the same contig and had the same phase (6,937 markers in total) aligned 

nearly perfectly (Figure 6.4), indicating low error-rates. The position of markers phased on different 

homologues (8,352 markers in total) was more spread. The residual mean squared error (RMSE) was 

calculated for each linkage group (Figure 6.4) and each combination of homologues from the same 

linkage group (Additional file 6.8). RMSE was generally below 5 cM, with some outliers, on CLG 2, 5 and 

8. These outliers were caused by one, two, and two markers respectively.  

Figure 6.4. Scatterplot of marker positions of 1x0 markers on the integrated map that originated from the same 
transcript contig. Each dot represents a combination of markers that originated from the same transcript contig. The 

red dots indicate markers phased on the same homologue, grey dots on different homologues. The black line 
represents y=x. 

6.3.4 IBD probabilities 

The presence of each of the twelve segregating haplotypes per locus was estimated in all progeny 

individuals at 1 cM map intervals, which was expressed in IBD probabilities. In the middle of the CLG, 

the IBD probabilities could be estimated with high confidence (Additional file 6.4). If there were no 

markers in large parts of one homologue, the IBD probabilities could still be close to 0 or 1, because 

information from the five other homologues can complement the missing information. Even if no 

markers were mapped on the entire homologue, e.g. homologue 12 from P2 on linkage group 4, IBD 
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probabilities were complemented with information from the other five homologues. Genotype 

information content was lower towards telomeres, because in those regions markers were often missing 

in a large range in at least two homologues and informative markers were present on only one side. 

6.3.5 QTL mapping 

The population was phenotyped for four different traits: flower colour, flowering time, disk floret 

degreening and number of ray florets. All four traits had a moderately high heritability ranging from 

0.68 to 0.72 (Table 6.2). The phenotypes were fitted against the IBD probabilities at 1 cM intervals with 

an main effects model.  

Table 6.2. Summary of phenotypes 

Trait Mean phenotypic value 
Broad-
sense 

heritability 

Standard 
deviation 

 P1* P2*   

Flower colour (score) 0 0 0.71 0.613 

Flowering time (days) 51.7 49.1 0.70 3.03 

Disk floret degreening 0.124 0.527 0.68 0.115 

Number of ray florets 34.3 26.3 0.72 5.15 

*P1: DB36451; P2: DB39287 

Two regions were highly-significantly associated with flower colour, at CLG5 and 7, and one region at 

CLG9 was slightly associated (Figure 6.5). The highly significant loci were both simplex QTL (Table 6.3; 

Figure 6.6A; Additional file 6.9). Analysis of variance of the interaction between the associated alleles 

showed a highly significant (p<1E-16) interaction, indicating that both alleles need to be present to get 

a pink flower colour. Together, the two 1x0 markers that were most closely linked to each of the QTL 

explained 48.2% of the variation, indicating that the trait is mainly inherited by two major alleles 

segregating from two loci from each of the two parents. There is a minor QTL on CLG9, but some 

genotypic variation is still to be explained by undetected QTL. 

For flowering time, we found three clear QTLs on CLG2, 3 and 4 and one minor QTL at CLG8 (Figure 

6.5; Table 6.3). For the simplex QTL on CLG4, presence or absence of the allele at homologue 11 had a 

major effect on the trait (Table 6.3; Additional file 6.9D). In both loci on CLG2 and 4 presence of 

different alleles could have a positive effect, a negative effect or no significant effect on the phenotype 

(Table 6.3; Figure 6.6B; Additional file 6.9C). Therefore, at least three alleles underlie the QTLs.  

For disk floret degreening, three QTL located on CLG4, 5 and 8 were detected (Figure 6.5). The QTL on 

CLG4 was simplex and the phenotype was mainly affected by the presence of homologue 11, whereas 

on CLG5 and 8 multiple alleles underlie the QTL (Additional file 6.9F & G; Figure 6.6C). The QTL on 

CLG8 explained most phenotypic variation, and presence of the allele on homologue 5 had the 

strongest effect on the mean value of disk floret degreening.  

For number of ray florets, two minor QTL were found on CLG3 and 4. The QTL on CLG3 was affected 

by alleles from two homologues from the paternal parent with opposite contributions to the trait (Table 

6.3; Additional file 6.9H). In addition, the QTL on CLG4 was affected by alleles that originated from only 

the maternal parent with opposite effects from different homologues (Table 6.3; Figure 6.6D).  
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Figure 6.5. QTL analysis of flower colour (purple), flowering time (red), disk floret degreening (green) and number of 
ray florets (blue). Significance thresholds based on 1000 permutations are indicated with the dashed line.  
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Table 6.3. Summary statistics of the different QTL.  

CLG QTL peak position (cM) p-value* adjusted R2 
Associated 

homologues† 

Flower colour      

5 41 2.2E-15 0.208 7+ 

7 73 1.46E-10 0.151 6+ 

9 45 2.26E-05 0.080 1-, 2-, 7- 

Flowering time    

2 59 6.20E-08 0.116 4+, 5-, 9-, 10+ 

3 30 1.70E-06 0.096 2+,3-,7+,8- 

4 58 6.58E-08 0.115 11- 

8 72 8.10E-05 0.071 6- 

Disk floret degreening    

4 62 1.90E-04 0.066 4+ 

5 45 6.66E-05 0.073 4+, 11+, 12- 

8 51 5.56E-06 0.089 3+, 5-, 9+, 12- 

Ray floret number    

3 61 1.67E-04 0.066 7-, 11+ 

4 44 4.12E-05 0.076 2+, 4- 

*At the peak interval. 
†Homologues which presence has a significant effect on the phenotype (p < 0.01). A “+“ behind the 
homologue number indicates a positive effect on the phenotypic value, a “-“ denotes a negative effect. 
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Figure 6.6. Analysis per homologue for four QTL: Flower colour at CLG7 (A), flowering time at CLG2 (B), disk floret 

degreening at CLG8 (C), and number of ray florets at CLG4 (D). The p-value for testing the significance of the 
explained variation of IBD probabilities of a single allele versus phenotype (YG =  μC +  αiXi) is shown as a heatmap. 

The estimated effect of full absence or presence of an allele on the phenotypic value is shown in the black points. The 
plot limits of the effect is shown in the black box, meaning that the black points can range within the negative and 
positive value between the boundaries between homologous indicated by grey lines. The dotted grey lines represent 

an effect of zero.  

6.4 Discussion 
In this paper, we report the first integrated linkage map in a hexaploid species with polysomic 

inheritance. We were able to assign multi-dose markers to their parental homologues. With this phasing 

information, we could reconstruct inheritance of haplotype alleles in the bi-parental population and 

perform QTL analyses. We provide major steps to overcome a number of limitations to linkage map 

construction based on SNP markers in hexaploids, including full map integration and phasing.   

6.4.1 An integrated and phased linkage map 

The ultra-dense integrated map contained markers of all 19 possible types in a hexaploid (Additional file 

6.1 & Additional file 6.2). With our approach, we first defined backbone marker clusters that 
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represented homologues based on linkages between simplex x nulliplex (1x0) markers. With 1x1 

markers that contained information about homologous chromosomes, we created networks of 1x0 

linkage groups that represented CLG (chromosomal linkage groups). Subsequently the other marker 

types were assigned to these backbone clusters. Because we first defined backbone marker clusters 

based on 1x0 markers, definition of homologues relied on presence of 1x0 markers. Lack of 1x0 

markers on a homologue is possible if there is a high degree of inbreeding, the population is a selfing, 

or if there is selection for a phenotype for which alleles have an additive effect. However, our 

experience in polyploid mapping to date has shown that genotyping platform can be enriched for low-

dosage markers and they therefore tend to be the most abundant marker type (Bourke et al., 2017, 

2016; chapter 4). Nevertheless, we were not able to define one homologue on linkage group 4, even 

though all others each had 175 SNP markers or more. Too few markers therefore seems not very likely. 

A reason could be that some combinations with alleles on this homologue might have been lethal, and 

1x0 markers on this homologue might therefore have had highly distorted segregation. These markers 

would have been filtered out prior to linkage mapping. 

The MDSmap algorithm (Preedy and Hackett, 2016) has proved particularly useful for the weighted 

ordering of our large number of diverse marker types. As the LOD for linkage varies for the same values 

of r  for different marker type combinations and phases, a weighted ordering algorithm was required. 

The most frequently used algorithm for weighted ordering is based on a weighted linear regression 

(WLR) algorithm as deployed in JoinMap (Van Ooijen, 2006). However, this algorithm is limited to 

approximately a hundred markers per linkage group. Because of this restriction, Bourke et al. (2016) 

used the WLR algorithm to construct homologue maps separately, which were later integrated. In a 

subsequent mapping study in tetraploid rose, the MDSmap algorithm was used to construct an 

integrated map containing over 25k SNPs, without the need for binning or the separation of homologue 

maps before integration (Bourke et al., 2017). The MDSmap algorithm also forms the core of the map-

ordering module within TetraploidSNPMap software (Hackett et al., 2017), although its release as a 

separate R package opens up the possibility of high-density mapping at any conceivable ploidy level 

given pairwise recombination frequency information. With the MDSmap algorithm, we were able to 

order all markers from a CLG in one run (ranging from 1,721 to 2,404 markers per CLG), resulting 

directly in an integrated map. This number of markers would previously have been completely 

intractable using a WLR. With the new algorithm, such maps can be produced on an average desktop 

computer within hours. As the ordering step is time and resource efficient, running multiple rounds of 

mapping with removal of problematic markers is much more feasible. 

Linkage map quality quality was assessed based on two analyses: on the concordance between rpairwise 

and rmap, and on the relative position between 1x0 markers originating from the same contig from our 

transcriptome assembly. According to the comparison of rpairwise and rmap, the two estimators were in 

concordance if rpairwise could be estimated with high confidence (high LOD). Therefore, there is little 

discrepancy between the distance and ordering of different combinations of markers on the linkage map 

and their initial estimation of r. The second analysis resulted in information on the quality of local 

integration of homologous chromosomes. This is based on the assumption that recombinations are 

essentially absent within a transcript contig. The maximum contig length was 13 kb (not shown). 

Because of this small physical distance, we would expect that markers originating from the same contig 

have a distance very close to 0 cM. From the position of markers originating from the same contigs, a 

difference from zero can be calculated, and with that a measure for error; we used the RMSE. The 

RMSE of 1x0 markers mapped on the same homologue was generally very low indicating both a high-

quality assembly of transcripts containing mapped markers, and high-quality local ordering at the level 

of the homologue. The RMSE of 1x0 markers phased on different homologues was higher. Of all 

marker-type combinations, the estimation of genetic distance between 1x0 markers in coupling is most 

accurate. Estimation of distance between 1x0 markers in repulsion relies on higher dose markers, 

because high-confidence estimation of recombination frequency in repulsion of 1x0 markers was not 

possible with our population size of 406. The positions of 1x0 markers that are on different homologues 
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relative to each other are therefore estimated with lower certainty than if they were in coupling phase. 

However, errors in estimating distance between these 1x0 markers in repulsion were in general lower 

than 5 cM. If serious ordering issues occurred, a much higher value would be anticipated. Nevertheless, 

there were four homologue combinations with RMSE values higher than 10 cM. Only one or two 

markers per CLG caused these high values. As these markers were not associated with any notable 

stress on the map, it is likely that these markers were actually from different loci in the genome, and 

the contigs they originated may be the result of a chimeric contig assembly from two very similar 

transcripts originating from the same chromosome.  

Earlier linkage maps of chrysanthemum are based on RAPD, ISSR, AFLP (Zhang et al., 2010) and SRAP 

markers (Zhang et al., 2011a). A disadvantage of these types of molecular markers is that they are 

difficult to transfer, and different linkage maps therefore cannot be integrated. SNP markers are 

sequence based, and executing single SNP assays like KASPTM or TaqManTM are commonly applied 

laboratory procedures. They can therefore be flawlessly transferred between laboratories. To set a 

standard for chrysanthemum, we present the sequences of a set of 92 well-distributed SNP markers 

originating from conserved coding sequences that can be used as a core set to align future linkage 

maps to each of the chromosomal linkage groups presented here.  

6.4.2 Estimating IBD probabilities 

We used a relatively simple approach to estimate IBD probabilities for absence or presence of parental 

haplotypes in our segregating population (Bourke, 2014). The method only uses information of dosage 

scores if they are fully informative. This means that in case of a 1x1 marker for example, a dosage of 0 

and a dosage of 2 in the progeny is fully informative (while assuming absence of double reduction), 

because it represents inheritance of respectively none of the associated homologues or both. A dosage 

of 1 is not fully informative as it is not known from which parental homologue the allele originated. 

Therefore, higher dose markers carry relatively few informative dosage scores. A consequence of our 

method is that it is only accurate if markers with a large fraction of informative dosage scores are 

equally distributed over the homologues. In our data, parts of homologues were sometimes poorly 

endowed with informative markers. This did not turn out to be problematic if at that position all other 

five homologues for that parent carried enough information. More sophisticated methods have shown 

that higher dose markers add more information to the estimation of IBD probabilities (Hackett et al., 

2013; Zheng et al., 2016). Such methods could result in more accurate IBD estimates, but an adequate 

marker distribution over all homologues is key to all methods.  

The accuracy of genetic analysis based on IBD probabilities relies on the quality of the integrated map. 

If the estimation of distance between markers with alleles on different homologues is poor, estimation 

of IBD probabilities of alleles on the presumed same locus will be wrong, and will therefore provide a 

poor representation. However, the RMSE of the marker positions on the integrated map was generally 

well below 5 cM. This would not have a large effect on the estimation of IBD probabilities, because 

according to Haldane’s mapping function a distance of 5 cM corresponds to a recombination frequency 

of 0.047, resulting in a relatively low error of 4.7% on the estimation of IBD probabilities.  

6.4.3 QTL mapping 

With the integrated map and IBD probabilities, we were able to perform a multi-allelic QTL analysis. In 

a polyploid, this type of analysis has large advantages over the use of methods that are developed for 

diploids, because QTL that are regulated by multiple different alleles can be detected and their genetic 

architecture investigated (Hackett et al., 2014). In a polyploid, more than two alleles can underlie a 

QTL. This means that the QTL genotype does not only have a dosage, but can also be multi-allelic (i.e. 

not only different conformations of the alleles A and B, but also combinations of e.g. A,B,C,D,E and F 

are possible within a locus). To investigate the genetic architecture and with that the occurrence of 

multi-allelic QTL, we performed a QTL analysis that makes use of using IBD probabilities for four traits 

with different underlying genetic architecture.  
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The major loci associated with flower colour were bi-allelic. Together, they explained a large part 

(48.2%) of the phenotypic variation and were affected by one allele for each of the two loci. The two 

loci clearly showed an interaction, suggesting that presence of both alleles is needed for pink 

colouration. In chrysanthemum, pink colouration is caused by anthocyanin accumulation (Stickland, 

1972).  The interaction between alleles could be caused by the requirement of two enzyme variants 

needed for the production or regulation of production of anthocyanin, or two gene copies that are 

required for the same limiting step, needing the additive effect of both to become visible.  

Several QTLs associated with flowering time, disk floret degreening and number of ray florets were 

multi-allelic. These QTLs had underlying alleles with a positive effect, a negative effect and no 

significant effect on the phenotype, indicating presence of at least three alleles. The exact number of 

unique alleles that affect the phenotype is difficult to determine. Two haplotypes that have the same 

effect on the phenotype could have the same underlying polymorphism affecting the phenotype, which 

would make them the same alleles. On the other hand, they could contain different causative 

polymorphisms that have a similar effect on the phenotype. Based on our data, it is not possible to 

uniquely identify such alleles, because our analysis is based on genetic linkage, and the causative alleles 

cannot be identified. 

Compared to flower colour, the genetic architecture for flowering time was more complex. The QTL at 

CLG4 was bi-allelic, meaning that presence of one allele affected the trait, whereas the other eleven 

alleles did not significantly affect the phenotype. However, in two other major QTL on CLG2 and 3 

multiple alleles were involved. Other studies on the inheritance of flowering time in chrysanthemum 

also suggested involvement of multiple loci (Zhang et al., 2013, 2011b). Flowering time in short day 

plants is mainly the result of an interaction between growth rate and signal transduction of 

environmental cues like day-length and temperature. As these cues are strictly controlled in a 

greenhouse, the role of the environment would be expected to be relatively small. This is supported by 

the relatively high heritability (0.70), which was also found earlier (De Jong, 1984). However, genetic 

regulation of signal transduction and growth rate is likely complex and it is therefore not surprising that 

multiple loci are involved.  

Disk floret degreening is an important determinant of postharvest performance of chrysanthemum after 

long storage (chapter 3). Two multi-allelic QTL were identified, and one simplex QTL. These QTL 

explained only a small fraction of the phenotypic variation. Disk floret degreening is a physiologically 

complex trait; in the investigated population it is related to carbohydrate content of the disk floret at 

harvest (chapter 3). Many sub-traits could affect carbohydrate content, including genotypic variation 

related to photosynthetic rate and source-sink relationships. Furthermore, it was shown that 

carbohydrate content is not the only factor affecting degreening (chapter 2). It is therefore not 

surprising that we did not find major QTL for disk floret degreening. Dissecting the trait further by 

phenotyping for sub-traits such as carbohydrate content, or by backcrossing progeny harbouring 

specific trait characteristics might help to further identify specific loci underlying this complex trait. 

The number of ray florets had the highest heritability of the investigated traits, but least variation could 

be explained by detected QTL. Asteraceae plants carry composite flower heads that are comprised of 

multiple florets. Those florets can be categorized into disk florets and ray florets. The number of ray 

florets is affected by the number of florets on a capitulum and organ identity of those florets. 

Regulation of floret identity is generally inherited through one or two major loci in Asteraceae (Gillies et 

al., 2002). It is therefore quite unexpected we did not find any major QTL associated with the trait. As 

both parents were of the single flower type, it is possible that both lacked allelic variation in the major 

genes, and we only found variation in more complexly regulated minor allelic effects.  

In the QTL analyses, possible interactions between alleles were not taken into account. An alternative 

model as described by Hackett et al. (2014) that uses all possible genotype classes as parameters 

would enable detection of interactions. However, the method we used to estimate IBD probabilities is 
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not able to estimate probabilities for these genotype classes directly. More importantly, in a tetraploid, 

there are 36 possible genotype classes ((4
2
) × (4

2
)), leading to a model with 36 parameters that is 

already prone to over-fitting. In a hexaploid this would be 400 genotype classes ((6
3
) × (6

3
)), leading to 

400 parameters; over-fitting would definitely become an issue. 

Our results show that hexaploidy in chrysanthemum complicates QTL analysis because multiple alleles 

with a differential effect can underlie an associated locus. With the integrated map and IBD probabilities 

we were able to identify inheritance of parental haplotypes in the progeny, enabling us to identify 

effects of specific alleles that affected the phenotype. We indeed found clear examples in which 

different alleles from the same locus and parent affected the trait negatively or positively. With these 

findings we show that polyploids with polysomic inheritance can harbour much more diversity on a 

single locus compared to a diploid, and this is very important to take into account during QTL detection 

and breeding.  

6.5 Conclusions 
The methods described in this paper enable construction of integrated linkage maps in hexaploids with 

polysomic inheritance. With such integrated linkage maps, it is possible to perform QTL analysis that 

takes all possible alleles into account at the same locus. This has major impact on the possibilities for 

localization of genomic loci and their genetic architecture associated with traits in chrysanthemum, but 

also for other agriculturally-important hexaploid species such as sweet potato, kiwi and persimmon.  
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Additional file 6.1. Dosage conversions for each marker type. 

Additional file 6.2. Network representing all linkage functions. The dots represent a marker type as “dosage parent 1” 
x “dosage parent 2”. The edges represent each possible function to calculate linkage between the two marker types. 

Within each function, multiple phase combinations are possible. Black lines represent unique functions, grey lines 
represent that were interchangeable with a representing unique function.  

Additional file 6.3. DAPI-stained metaphase chromosomes of the parents of the F1, DB36451 (A) and DB39287 (B). 

Additional file 6.4. GIC and marker distribution for each linkage group. GIC is depicted in the bars running from yellow 
(GIC = 0.2 to blue (GIC = 1). Vertical lines represent markers, in which 1x0 markers are depicted in black, and other 

marker types in grey. 

Additional file 6.5. Number of significant alignment hits (E-value < 1E-100) for each combination of chrysanthemum 

CLG with lettuce LG 

Additional file 6.6. Position, gene and sequence of linkage group defining markers. 

Additional file 6.7. Scatterplots between pairwise estimation of r (rpairwise) and r based on distance on the ordered 

linkage map (rmap). Colour of the dots is based on LOD score of rpairwise. LOD scores greater than 50 are depicted in 
yellow.   

Additional file 6.8. Heatmap of RMSE of all combinations of 1x0 markers originating from the same contig, for each 
homologue combination. 

Additional file 6.9. QTL analysis per homologue. Legend as in Figure 6.6. 
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From the 17th century onwards, the trade in ornamentals has been a major economic activity. World-

wide, the economic importance of ornamental trade keeps increasing. To ensure a sustainable and 

growing chain of propagation, growth and distribution, challenges lay ahead for growers, traders and 

breeders. Because the genetic material is key for many improvements to enable sustainability, breeders 

will play an important part to improve the entire chain. Technological and scientific advances that 

enable DNA-informed breeding and high-throughput phenotyping have large potential to make major 

steps forward in genetic improvement. However, many major traits are heterogeneous, and many 

ornamentals, like chrysanthemum, are polyploid and outcrossing, which makes the study of inheritance 

a complicated task. In this chapter, I discuss the progress in knowledge and technology that has been 

described in this thesis in a framework of genetics and breeding of ornamentals and outcrossing 

polyploids. 

7.1 Breeding for heterogeneous traits 
Breeding aims to combine the most favourable traits into one genotype. Many important traits have 

multiple underlying sub-traits; those traits can be called heterogeneous. Postharvest performance in 

chrysanthemum falls into this category since a whole range of symptoms can make the appearance of a 

flower stem unacceptable. A proven strategy to cope with heterogeneous traits in breeding, is to 

subdivide the trait of interest into its sub-traits and improve the higher order trait by selection on the 

sub-trait level. However, to define those sub-traits, underlying symptoms and their importance need to 

be investigated.  

7.1.1 Disk floret degreening is related to carbohydrate starvation 

Knowledge on the physiological background of genotypic differences helps breeding by development of 

phenotyping methods, applying candidate gene approaches and discovery of interactions between 

traits. To use physiological knowledge for breeding, knowledge on the involvement of a physiological 

process in a phenotype is one thing, connecting this to genotypic differences is another. To aid 

breeding for postharvest performance, we aimed to identify such processes underlying disk floret 

degreening (chapter 2 and 3). Disk floret degreening is an important component of postharvest 

performance for chrysanthemum flowers that have been stored for more than two weeks. In chapter 2, 

we showed that feeding with sucrose can prevent disk floret degreening, which indicated that 

carbohydrate starvation plays a role. However, genotypic differences in carbohydrate content did not 

explain differences in disk floret degreening in all cases. It therefore seemed that genotype-dependent 

differences existed in the processes that are related to carbohydrate metabolism that underlie 

phenotypic differences. 

To draw conclusions on carbohydrate starvation as underlying physiological process of genotypic 

variation in disk floret degreening, we needed to study a large set of genotypes. Because of the trait 

complexity, a large cultivar panel of distantly related cultivars would have likely diluted the effects of 

different underlying sub-traits that reside in the panel. Therefore, identification of the processes that 

cause phenotypic variation required a set of genotypes with limited genetic variation affecting disk floret 

degreening. In chapter 3, we used a bi-parental population to reduce the genetic variation to find 

evidence for the involvement of carbohydrate content of the disk florets on disk floret degreening. The 

parents had a large difference in sensitivity to disk floret degreening and a corresponding difference in 

carbohydrate content of the disk florets. We show that carbohydrate content of disk florets co-

segregated with degreening and therefore explains the difference in disk floret degreening in the 

parents. However, the relatively weak correlation between carbohydrate content and disk floret 

degreening also indicated that other processes must be involved. This is substantiated by the absence 

of a correlation of carbohydrate content and susceptibility to degreening in the three investigated 

cultivars in chapter 2. The conclusions on the underlying processes of disk floret degreening drawn in 

chapter 3 therefore only apply to the investigated population. 
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7.1.2 Breeding for sub-traits 

The relations between sub-traits of heterogeneous traits often have a hierarchic structure. In our case, 

disk floret degreening is one of the sub-traits of postharvest performance, carbohydrate content is a 

sub-trait of disk floret degreening, and carbohydrate content likely has multiple underlying sub-traits. 

This raises the question how far one should go into disentangling heterogeneous traits into sub-traits. 

At every step going further down into sub-traits of sub-traits, genetic complexity is reduced, heritability 

might be increased, but explained variation in the highest-level trait is inevitably lost. In addition, like 

the differences in carbohydrate content in the bi-parental population, the variation of sub-traits might 

become only relevant for a smaller part of the germplasm. The level at which to collect phenotypic 

information is therefore a balance between accuracy and resource-efficiency of the phenotyping 

method, the link with the main trait and the genetic complexity. From a breeding point of view, the 

ideal level to phenotype is where traits are heritable and measuring them is resource-efficient while 

maintaining the link with the high-level trait.  

In our case of disk floret degreening, we used colour measurements of detached flowers as a 

phenotype. The developed method was cheap, simple, correlated with and had a much higher 

heritability than vase-life tests. Because disk floret degreening is quite high up in the cone of 

hierarchical trait subdivisions, it is not unexpected that it segregated quantitatively. The QTL analysis of 

sensitivity to disk floret degreening resulted in three QTL, which did not explain much phenotypic 

variation: between 7 and 9%. The power of those molecular markers to predict postharvest 

performance is much smaller compared to the developed phenotyping method. From a practical point of 

view, the phenotyping method is therefore a much more feasible selection criterion.  

In conclusion, breeding for heterogeneous traits requires understanding of the underlying sub-traits. 

Because it is often not known a priori what kind of underlying sub-traits are important, research on 

heterogeneous traits can be risky in terms of outcomes. The success of finding and phenotyping the 

sub-traits depends on heritability, the ease at which parameters are measurable and the available 

knowledge on the trait and its underlying sub-traits.  

7.2 The mode of inheritance: implications for breeding 
In chapter 4, we provide conclusive evidence for hexasomic inheritance in chrysanthemum. This means 

that each of the six homologous chromosomes can pair at meiosis, and there is recombination over 

generations between all homologous chromosomes. The mode of inheritance is not only relevant for 

methods used for genetic mapping (Bourke et al., 2017), it has also large implications for trait 

inheritance, heritable fixation and genetic load.  

The six alleles residing in a hexaploid can harbour three times more variation than two in a diploid. The 

resulting multitude of allelic combinations add even more to the possible variation in germplasm. 

However, in disomic polyploids this large variation is likely not present in reality. A first reason is that 

alleles on different sub-genomes in disomic polyploids are often subjected to silencing, loss and 

diversification (Jackson and Chen, 2010; Levy and Feldman, 2004). Secondly, heterozygosity can be 

reduced within a few generations of inbreeding because only two chromosomes can pair during meiosis. 

In polysomic polyploids however, all homologous chromosomes can recombine. Therefore, 

heterozygosity within the recombining genome is more easily maintained. In addition, loss or silencing 

of alleles require many generations to become fixed, and heritable specialization of sub-genomes does 

therefore not take place. Each of the six alleles in a polysomic polyploid can have a different effect on 

phenotypic variation. Therefore, different combinations of alleles can lead to a very broad range of 

phenotypes that are regulated by a single locus. In a polysomic hexaploid, there are 20 ((6
3
)) different 

possible gametes for each locus instead of 8 (23) in the case of disomic inheritance (Figure 1.4). The 

range of possible allelic combinations in a bi-parental population is therefore very large, and factors 

greater compared to disomic inheritance (20 × 20 = 400 vs. 8 × 8 = 64 for a single locus). Therefore, 

hexasomic inheritance can strongly increase phenotypic variation compared to disomic inheritance. This 
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is amongst others illustrated by the large range of flower colours and shapes in F1 populations in 

chrysanthemum (Figure 7.1). 

 

 

Figure 7.1. Examples of F1 populations in hexaploid chrysanthemum. Each picture represents the progeny of a single 
cross.  

The diverse possibilities of allelic combinations and dosages makes successful heritable fixation of traits 

more difficult in polysomic polyploids compared to disomic. Even in the simplest case of a dominantly 

inherited trait, the phenotype will be difficult to keep from segregating in future generations. If the 

donor parent is simplex for the trait, it will segregate in a 1:1 ratio in the progeny, and dosage would 

need to increase to quadruplex (four) before all progeny inherits at least one of the dominant alleles. 

Conversely, if the dominant allele is duplex on one subgenome in a disomic polyploid, all progeny will 

inherit one dominant allele, and the phenotype will therefore not segregate. Trait fixation becomes even 

more challenging for a polysomic polyploid in case of involvement of multiple different alleles. Only a 

small fraction of the progeny will contain the most favourable allele combination. Especially if this 

combination is favourable because of interaction, and not additivity, optimal selection procedures based 

on the genotype are complex.  

In a hexaploid, unfavourable alleles have a high chance to be masked by other alleles. If one of the six 

alleles in a polysomic hexaploid gets an unfavourable mutation, there will probably be no effect on the 

phenotype, because most of such mutations are recessive. Even if the dosage of such an allele 

increases, it will not be detected in the phenotype. Therefore, unfavourable alleles will easily remain in 



General discussion 

 

111 
 

the breeding germplasm as genetic load, even after multiple generations of selection (Otto and 

Whitton, 2000). All six alleles would need to be replaced by favourable ones in all parents, before 

effects of unfavourable alleles are absent in the offspring. This has also important implications for 

introgression breeding. If wild or distant material is used as a donor for a trait of interest, alleles of 

most or all other loci will have to be eliminated in recurrent (pseudo) back crosses. In the first 

backcross only 5% of the offspring will be homozygous for the recurrent alleles for each locus, whereas 

this would be 50% in a diploid (Figure 7.2). This means that reducing the allele frequency of the 

unfavourable background of the donor parent needs many generations and stringent selection.  

Breeders of polysomic polyploids have to work with complex trait inheritance, limited heritable fixation 

and genetic load. The complex trait inheritance is characterized by many possible combinations of 

alleles and differential dosage effects. This has a profound positive effect on the effective population 

size and trait diversity. The frequency of alleles can be successfully changed based on selection on the 

phenotype if they have an additive or dominant effect on the trait. The allele frequency of alleles that 

interact or are recessive are much more difficult to alter, and this should be taken into account during 

breeding and selection.    

 

Figure 7.2. Example of reducing unwanted background in a (pseudo) backcross in a hexaploid with polysomic 
inheritance (A) and a diploid or a locus within a subgenome in a polyploid with disomic inheritance (B). 

7.3 Allo- or autopolyploid? 
In recent literature, chrysanthemum has been postulated as a (segmental) allohexaploid (e.g. Klie et 

al., 2014; Li et al., 2011), meaning that polyploidy would have originated from a hybridization between 

multiple species. Most arguments given in the literature for allopolyploidy is based on prevalence of 

bivalents at meiosis (Chen et al., 2009; Zhang et al., 2010), but bivalents are not necessarily a feature 

of disomic inheritance (Stebbins, 1940; Watanabe, 1983). Cultivated chrysanthemum could have 

originated from a single hexaploid ancestor or be the product of multiple hybridizations with closely 

related autohexaploid species as postulated by Dowrick (1953). Multiple hybridizations with several 

related species are common in many crop species, but such hybridizations do often not make a 

polyploid allopolyploid; e.g. an introgression segment is not evidence for allopolyploidy. The question 

which can be raised therefore: are there reasons remaining to categorize cultivated chrysanthemum as 

an allohexaploid?  

A common feature of allopolyploids is that they usually have disomic inheritance, which is in 

contradiction with the strong evidence for full hexasomic inheritance in cultivated chrysanthemum 

(chapter 4). In addition, the non-biased gene expression in cultivated chrysanthemum (chapter 4) is 

more a characteristic of autopolyploids (Albertin et al., 2005; Church and Spaulding, 2009) than of 
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allopolyploids (Adams et al., 2003; Albertin et al., 2006; Leach et al., 2014). However, these findings do 

not exclude allopolyploidy; there could have been an interspecies hybridization that gave rise to higher 

ploidy levels, and at some point, the sub-genomes of all chromosomes started recombining resulting in 

full hexasomic inheritance. Recombination between sub-genomes has been reported in several 

allopolyploids (Allendorf and Danzmann, 1997; Leal-Bertioli et al., 2015; Nguepjop et al., 2016; Stift et 

al., 2008), and it could therefore be possible that some allopolyploids move towards full polysomic 

inheritance. However, this is difficult to prove, and the opposite, sub-genome specialization towards full 

diploid inheritance, is a commonly observed phenomenon (Levy and Feldman, 2004; Song et al., 1995). 

The move towards diploïdization on the one hand or towards polysomic inheritance on the other, 

probably also depends on the genetic distance between the hybridized species. This makes the 

classification of allo- or autopolyploidy problematic, because involvement of different closely related 

species will be difficult to reconstruct if the sub-genomes recombine.  

As opposed to the presumed allopolyploidy, autopolyploidy should be considered as another and even 

more likely origin of cultivated chrysanthemum. As there is crossing over between homologous 

chromosomes, it might never be possible to distinct allohexaploidy from autohexaploidy. If one would 

have to make a choice, chrysanthemum has more genetically relevant features of an autohexaploid 

than an allohexaploid, and is therefore best described as an autohexaploid. 

7.4 Polyploidy: how necessary is the evil? 
DNA-informed genetic improvement in outcrossing polyploids needs more resources, knowledge and 

time compared to inbreeding diploids. New traits that interact or are recessive are difficult to fix, and 

segregation analysis is more complex. To overcome such disadvantages, efforts are ongoing to move 

from a vegetatively propagated tetraploid potato towards diploid F1 hybrids propagated through seeds 

(Lindhout et al., 2011). Polyploids are well represented in the most important ornamental species; six 

out of the top 10 cut-flowers at the Dutch auctions are polyploid. This is most likely not a coincidence. 

The question which can be raised therefore is whether polyploidy is really needed for polyploid crops. 

In general, there can be two reasons why polyploids have a higher yield or fitness compared to diploids. 

The first is genetic load; the chance of masking of deleterious alleles is higher in polyploids (Otto and 

Whitton, 2000). The second reason is progressive heterosis, caused by specific allelic interactions 

between multiple alleles resulting in multi-allelic over-dominance (reviewed by Birchler et al., 2010). 

These two reasons are not exclusive, because progressive heterosis could be explained by the genetic 

load theory, through the concept of pseudo-overdominance (Figure 7.3). If progressive heterosis based 

on single genetic loci is absent, the genetic load theory would assume that after removal of all genetic 

load, polyploids would not outperform diploids in terms of yield or fitness. Because selection against 

unfavourable alleles in diploids is much more efficient compared to polyploids, breeding at the diploid 

level would quickly result in outperforming genotypes. The progressive heterosis theory would imply 

existence of specific interactions between multiple alleles that cause an improved phenotype over the 

main effect of each individual allele. If these interactions exist, diploids would not outperform polyploids 

if the same allelic variation is used in the breeding program. 

Similar to adaptation in nature, selection for improved traits during breeding is not only about selection 

against unfavourable alleles, but also about using variation. The effective population size that carries 

variation is potentially much larger in polyploids compared to diploids. Alleles that are unfavourable at 

first, might become favourable if selection criteria change. Unfavourable or “unused” alleles have higher 

chance to remain in polyploid than in diploid breeding germplasm. Therefore, polyploids can have much 

higher adaptation speed than diploids (Otto and Whitton, 2000). Polyploidy might therefore be 

favourable for the process of domestication itself (Dubcovsky and Dvorak, 2007), because fast 

adaptation to new circumstances, like cultivation, increases the chances of success of domestication.  

Whether polysomic polyploidy is advantageous in a domesticated crop or whether it is just an 

inconvenient heirloom of their suitability for domestication, probably depends on the need for change 
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and adaptation of the breeding germplasm, but also on the possibility for clonal propagation. For crops 

that need to adapt quickly to new environments or new consumer needs and have a clonal mode of 

propagation, polysomic polyploidy might be favoured. For ornamentals, consumer demand for specific 

flower types or colour can strongly vary over years. In addition, development of completely new flower 

types or colours can open up entirely new market niches. Increasing variation is therefore perhaps 

favoured over true-to-type inheritance for ornamental breeding. Contrary, progress in food crops is 

usually reached by approaching a continuous ideotype, and less extreme phenotypic changes might be 

required. More importantly, economically feasible multiplication of food crops often needs a massive 

multiplication system through F1 seeds, which would become severely more difficult in the case of 

polysomic polyploidy. Therefore, maintaining diversity through polyploidy is probably more 

advantageous in clonally propagated ornamentals than in many food crops.  

Figure 7.3. Pseudo-overdominance. The size of the grey circles represents a phenotypic value. The green “+” 
represent a dominant allele with positive effect, the red “-“ an allele with a recessive negative effect.  

7.5 Disentangling hexaploid genetics: impact and prospects 
In chapter 6, we describe the construction of an integrated linkage map for hexaploid chrysanthemum. 

A linkage map is a representation of the recombining genome. It therefore provides detailed 

information on the level of independence of allelic segregation. Consequently, it enabled us to develop 

methods to execute multi-allelic QTL analyses. The integrated linkage map and methods for QTL 

analysis provide essential information for the design of DNA-informed plant breeding programmes, 

because the genetic architecture of a trait defines favourable allelic combinations, and with that choice 

of parents and selection strategies.  

7.5.1 Hexaploid genetics in a tetraploid framework 

The hexaploid genetic linkage map was constructed based on the building blocks developed by the 

community that has worked on the disentanglement of the genetics of polysomic tetraploids. The SNP 

dosage calling methods were based on FitTetra (Voorrips et al., 2011), the methods for calculating 

linkage estimates, and reconstruction of chromosomal linkage groups and homologous chromosomes 

based on earlier work in tetraploids (Bourke et al., 2017, 2016; Hackett et al., 2013), very fast and 

accurate marker ordering with use of MDSmap (Preedy and Hackett, 2016), and reconstruction of 

inheritance of parental haplotypes based on a method initially developed for tetraploids (Bourke, 2014). 

With the solid basis from tetraploids we could move away from genetic analysis that uses methods 

designed for diploids to full map integration with use of all marker-types. The possibility of a situation in 

which multiple alleles from a single locus affect a trait is an important characteristic that is ignored if 

genetic analysis is performed on homologue specific maps. In chapter 6, we show that for two 

important quantitative traits, methods to detect QTL that account for involvement of multiple alleles are 

essential to disentangle the genetic architecture. 

7.5.2 The need for multi-allelic markers and a reference genome 

The chrysanthemum linkage map consists of SNPs. SNP assays are high-throughput, sequence based, 

and bi-allelic. They therefore provide an excellent methodological framework for linkage map 

construction and marker-trait analyses, for which a large number of markers with allelic information are 
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very useful. However, SNPs also have limitations, especially for QTL mapping in polyploids. As we have 

shown in chapter 6, multiple alleles can affect a phenotype in a polyploid, but a SNP can tag only two. 

This means that in single SNP analyses other non-tagged alleles are ignored. This is illustrated by the 

difference between single marker-trait associations and identity-by-descend (IBD) probabilities (Figure 

7.4). The QTL for flowering time at CLG2 and 4 (presented in chapter 6), have different genetic 

architecture; the QTL on CLG2 has four underlying alleles of which two had a negative effect on the 

trait, and the other two a positive. The QTL at CLG4 however, has one underlying allele. The 

homologue responsible for the QTL at CLG4 contained many 1x0 SNPs, which resulted in a clear peak 

with SNP-trait associations. On CLG2 however, there were no SNPs tagging each of the associated 

alleles, and if they did it would not have been possible to detect the different effects of the alleles. The 

disability to tag multiple haplotypes in one marker-assay therefore limits marker-based QTL analysis.  

Multi-allelic markers that tag haplotypes could bridge the gap between SNP markers and IBD 

probabilities. These type of markers can be retrieved with genotyping-by-sequencing (GBS) techniques 

like bait capture (Muraya et al., 2015; Uitdewilligen et al., 2013), RAD-seq (Baird et al., 2008; 

Schönhals, 2014), amplicon sequencing (Jamann et al., 2017), or whole genome re-sequencing (Takagi 

et al., 2013). Haplotypes are formed by linkages between SNP alleles through strong linkage 

disequilibrium. Such strong linkage disequilibrium between SNPs can be identified with read 

information; if two SNPs reside on the same read, they are physically very close and therefore in the 

same haplotype. This haplotype information can be used to tag alleles, and perform multi-allelic QTL 

analysis. 

Haplotype inference by GBS methods is strongly aided by a reference genome sequence. Such a 

sequence can be used to align newly acquired sequences, and assess their position and alignment 

quality. A de novo assembly of a reference sequence for hexaploid chrysanthemum is still out of reach, 

despite fast developments in increasing read length and assembly software. Luckily, three efforts are on 

their way to sequence diploid wild relatives. One for Chrysanthemum lavandulifolium at Beijing Forestry 

University, another for Chrysanthemum boreale at Sahmyook University in Seoul (Cuyacot et al., 2016), 

and a third for Chrysanthemum japonicum at Plant Breeding, Wageningen University & Research. With 

use of the ultra-dense genetic linkage map described in chapter 6, structural variants between 

cultivated chrysanthemum and the diploid relatives can be identified. This can be used to investigate 

the origin of cultivated chrysanthemum, but also to better use the diploid genome sequence for 

applications in hexaploid chrysanthemum.  

 

Figure 7.4. QTL plots of flowering time at CLG2 and CLG4. The IBD model (chapter 6) is represented by the black line, 

the single SNP analysis by the grey line. The dotted lines represent the significance threshold for the IBD model 
(black) and the single SNP analysis (grey).  
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7.5.3 Prospects of genome editing techniques 

The chance that a newly acquired recessive allele is masked is very high in a polysomic hexaploid. Such 

recessive alleles are therefore difficult to put to use for breeding. However, recessive alleles, like alleles 

that enable recessive resistance (so-called susceptibility (S-) genes), are a very interesting source of 

newly acquired traits (Schaart et al., 2016). Fixing a new recessive trait in polyploids requires a very 

large number of generations, because it would need to be fully homozygous. Sequence specific 

nuclease technologies like CRISPR-Cas9 can induce a heritable targeted mutation on all homeologous 

genomes in allohexploid bread wheat (Liang et al., 2017; Y. Wang et al., 2014), and would therefore 

also be applicable to mutate all six homologous alleles in polysomic chrysanthemum. These relatively 

new methods therefore provide a very promising tool to induce (new) recessive alleles in polyploid 

crops, and potentially can revolutionize polyploid plant breeding. 

7.6 Conclusion 
The future of polyploid breeding lays wide open. The development of technologies to characterize and 

modify genomes, together with methods described in this thesis (and the references herein) to perform 

genetic analysis are bringing us closer to the point where genetic improvement of hexaploids is 

approaching the current progress and speed in diploids. The reconstruction of inheritance of parental 

haplotypes in a hexaploid full-sib population provides detailed information to model the relationship 

between phenotype and genotype. Together with the understanding of plant physiology to develop 

dedicated phenotyping methods, this enables the disentanglement of genetic architecture of important 

but heterogeneous traits like postharvest performance. The approach described in this thesis based on 

SNPs requires a very large high-quality dataset which is at time of writing quite costly. Multi-allelic 

markers obtained with GBS methods potentially carry more information and are cheaper. A reference 

genome strongly aids the development and analysis of GBS methods, and is therefore the next big step 

in genetic improvement of chrysanthemum and other understudied polyploid crops. 
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 Summary 
DNA-informed selection can strongly improve the process of plant breeding. It requires the detection of 

DNA polymorphisms, calculation of genetic linkage, access to reliable phenotypes and methods to 

detect genetic loci associated with phenotypic traits of interest. Cultivated chrysanthemum is an 

outcrossing hexaploid with an unknown mode of inheritance. This complicates the development of 

resources and methods that enable the detection of trait loci. Postharvest performance is an essential 

trait in chrysanthemum, but is difficult to measure. This makes it an interesting but challenging trait to 

phenotype and detect associated genetic loci. In this thesis I describe the development of resources 

and methods to enable phenotyping for postharvest performance, genetic linkage map construction and 

detection of quantitative trait loci in hexaploid chrysanthemum. 

Postharvest performance is a complicated trait because it is related to many different disorders that 

reduce quality. One of these disorders in chrysanthemum is disk floret degreening, which occurs after 

long storage. In chapter 2, we show that degreening can be prevented by feeding the flower heads 

with sucrose, suggesting carbohydrate starvation plays a role in the degreening process. To investigate 

the response to carbohydrate starvation of genotypes with different sensitivity to disk floret degreening, 

we investigated the metabolome of sugar-fed and carbohydrate-starved disk florets by 1H-NMR and 

HPAEC. We show that the metabolome is severely altered at carbohydrate starvation. In general, 

starvation results in an upregulation of amino acid and secondary metabolism. Underlying causes of 

genotypic differences explaining variation in disk floret degreening in the three investigated genotypes 

remained to be elucidated, but roles of regulation of respiration rate and camphor metabolism were 

posed as possible candidates.  

In chapter 3, disk floret degreening was found to be the most important postharvest disorder after 3 

weeks of storage among 44 white chrysanthemum cultivars. To investigate the inheritance of disk floret 

degreening, we crossed two genotypes with opposite phenotypic values of both disk floret degreening 

and carbohydrate content to obtain a population segregating for disk floret degreening. To phenotype 

the cultivar panel and the bi-parental population precisely and in a high throughput manner, we 

developed a method that quantified colour of detached capitula over time. This method was validated 

with visual observations of disk floret degreening during vase life tests. In a subset of the bi-parental 

population we measured carbohydrate content of the disk florets at harvest. The amount of total 

carbohydrates co-segregated with sensitivity to degreening, which shows that the difference in disk 

floret degreening sensitivity between the parents could be explained by their difference in carbohydrate 

content. However, the correlation was rather weak, indicating carbohydrate content is not the only 

factor playing a role. 

In order to develop resources for DNA-informed breeding, one needs to be able to characterize DNA 

polymorphisms. In chapter 4, we describe the development of a genotyping array containing 183,000 

single nucleotide polymorphisms (SNPs). These SNPs were acquired by sequencing the transcriptome of 

13 chrysanthemum cultivars. By comparing the genomic dosage based on the SNP assay and the 

dosage as estimated by the read depth from the transcriptome sequencing data, we show that alleles 

are expressed conform the genomic dosage, which contradicts to what is often found in disomic 

polyploids. In line with this finding, we conclusively show that cultivated chrysanthemum exhibits 

genome-wide hexasomic inheritance, based on the segregation ratios of large numbers of different 

types of markers in two different populations. 

Tools for genetic analysis in diploids are widely available, but these have limited use for polyploids. In 

chapter 5, we present a modular software package that enables genetic linkage map construction in 

tetraploids and hexaploids. Because of the modularity, functionality for other ploidy levels can be easily 
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added. The software is written in the programming language R and we named it polymapR. It can 

generate genetic linkage maps from marker dosage scores in an F1 population, while taking the 

following steps: data inspection and filtering, linkage analysis, linkage group assignment and marker 

ordering. It is the first software package that can handle polysomic hexaploid and partial polysomic 

tetraploid data, and has advantages over other polyploid mapping software because of its scalability 

and cross-platform applicability. 

With the marker dosage scores of the bi-parental F1 population from the genotyping array and the 

developed methods to perform linkage analysis we constructed an integrated genetic linkage map for 

the hexaploid bi-parental population described in chapter 3 and 4. We describe this process in chapter 

6. With this integrated linkage map, we reconstructed the inheritance of parental haplotypes for each 

individual, and expressed this as identity-by-descent (IBD) probabilities. The phenotypic data on disk 

floret degreening sensitivity that was acquired as described in chapter 3, was used in addition to three 

other traits to detect quantitative trait loci (QTL). These QTL were detected based on the IBD 

probabilities of 1 centiMorgan intervals of each parental homologue. This enabled us to study genetic 

architecture by estimating the effects of each separate allele within a QTL on the trait. We showed that 

for many QTL the trait was affected by more than two alleles.  

In chapter 7, the findings in this thesis are discussed in the context of breeding for heterogeneous 

traits, the implications of the mode of inheritance for breeding and the advantages and disadvantages 

of polyploidy in crop breeding. In conclusion, this thesis provides in general a significant step for DNA-

informed breeding in polysomic hexaploids, and for postharvest performance in chrysanthemum in 

particular. 
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