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1.1 Background  

The world population is expected to peak around 9 billion by the middle of this 

century (Bruinsma 2009) and the question how to feed this large number of 

people will be one of the greatest challenges facing humanity in the coming 

decades (van Ittersum et al. 2016; Godfray et al. 2010). Options to bridge the 

gap between projected food demand and current level of supply include: 1) 

expansion of land under cultivation, 2) intensification on currently available 

farmlands by growing two or three crops per year, 3) reducing the yield gap in 

farmers’ fields, 4) raising the yield ceiling by introducing higher yielding 

varieties, and 5) reducing postharvest losses and food waste (Keating et al. 

2014; Godfray et al. 2010; Koning and van Ittersum 2009). Ramankutty et al. 

(2008) showed that roughly half of the land that is suitable for agriculture on 

the planet is already under cultivation today. They also showed that much of 

the remaining cultivable land covers the tropical rain forests of South America 

and Africa; biomes that have high economic, social and ecological values. 

Therefore, the option of expansion of land under cultivation has associated 

costs such as deforestation, biodiversity loss and, soil degradation. The other 

alternative and promising strategy to increase agricultural production is to 

intensify production. While yield ceilings (potential yields) (Hall and Richards 

2013) and cropping intensity may be further increased, the largest role is 

foreseen for reducing the gap between yields currently achieved on farmers’ 

fields and those that can be achieved by using the best adapted crop varieties 

with the best current crop and land management practices for a given 

environment (Keating et al. 2014; van Ittersum et al. 2013). In order to 

estimate the magnitude of the yield gap, two quantities are required: the 

benchmarking yield and the actual yield. 

For the benchmark yield two situations can be distinguished: yield potential or 

potential yield (Yp) for irrigated crops or water-limited yield potential (Yw) for 

rainfed crops. Yp is the maximum theoretical yield achieved by a specific crop 

genotype in a well-defined biophysical environment, with both abiotic (water 

and nutrients) and biotic factors (pests, diseases and weeds) effectively 

controlled (van Ittersum and Rabbinge 1997). Yp is determined by solar 

radiation, temperature, atmospheric CO2 and crop characteristics that govern 

the length of the growing period (cultivar or hybrid maturity) and light 

interception by the crop canopy (i.e., canopy structure) (van Ittersum et al. 

2013). For rainfed crops, water-limited yield potential, also known as water-

limited (potential) yield, is the most relevant benchmarking yield (van Ittersum 

et al. 2013). The definition of Yw is similar to Yp, but in the case of Yw, crop 

growth is also limited by water supply. The actual yield (Ya) is defined as the 

yield currently realised in farmers’ fields. To capture variation in space and 

time for a specific location, van Ittersum et al. (2013) defined  actual yield as 
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the spatial and temporal average yield achieved by farmers in the region for 

the most widely used management practices (sowing date, cultivar maturity, 

and plant density, nutrient management and crop protection). The yield gap 

(Yg) is then defined as the difference between Yp (for irrigated crops), or Yw 

(for rainfed crops) and the actual yield (Ya). Figure 1.1 illustrates the schematic 

representation of the yield gap concept. 

Yield gap analysis is critical for four main reasons (van Ittersum et al. 2013). 

First, yield gap analysis provides the foundation to identify the main crop, soil 

and management factors limiting current farm yields and improved practices 

to close the yield gap (Lobell et al. 2009). Second, to enable effective 

prioritization of research, development and interventions (van Oort et al. 

2017). The third reason is to evaluate the impact of climate change and other 

future scenarios that influence land and natural resource use (Reidsma et al. 

2010). And fourth, results from yield gap analysis are important inputs to 

economic models that assess food security and land use at different spatial 

scales.  

In yield gap analysis, two major steps can be identified. The first step is to 

quantify the magnitude and distribution of the yield gap. The second step is to 

identify the main factors that cause the yield gap (Lobell 2013). A prominent 

example of the first step is the Global Yield Gap Atlas (GYGA), a project 

designed to quantify the size and distribution of the yield gap for the major 

crops across the globe (www.yieldgap.org) (Hochman et al. 2016). In the GYGA 

project, a “bottom-up” approach for yield gap analysis has been proposed that 

can be applied globally, but has a strong local agronomic relevance and exploits 

local knowledge and data (van Ittersum et al. 2013). The GYGA “bottom-up” 

approach recommends (1) the use of well-calibrated crop growth simulation 

models applied to relatively homogenous climate zones, (2) the use of measured 

daily weather data, (3) the simulations to estimate Yp or Yw to be done for the 

dominant soil types and cropping systems, taking into consideration the 

current spatial crop distribution, (4) the use of site-specific agronomic and 

actual yield information, (5) empirical verification at the local level of estimated 

yield gaps with on-farm data and experiments and (6) the use of an explicit 

methodology for up-scaling (www.yieldgap.org) (Boogaard et al. 2013). At the 

time of writing, the yield gaps of 9 field crops in 47 countries (one up to five 

crops per country) have been estimated using the aforementioned protocols and 

work is underway in another five countries (www.yieldgap.org; last accessed 

March 10, 2017). 

 

 

 

 

http://www.yieldgap.org/
http://www.yieldgap.org/
http://www.yieldgap.org/
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Figure 1.1  Different production levels as determined by growth defining, 

limiting and reducing factors (van Ittersum et al. 2013).  

Several studies have examined the yield gap at the regional or global scale 

using aggregated data for actual crop yield and explaining factors (Mueller et 

al. 2012; Foley et al. 2011; Neumann et al. 2010; Licker et al. 2010). These types 

of “top-down” studies are useful in quantifying the scope for yield improvement 

in a broad sense and comparing different regions using harmonised data (van 

Ittersum et al. 2013). Moreover, such global studies are useful to understand 

the spatial variability of yield gaps at a larger scale, along with trends across 

regions (Mueller et al. 2012; Neumann et al. 2010). However, there are a 

number of issues associated with such “top-down” yield gap studies (van 

Ittersum et al. 2013). For example, these studies mostly use global datasets on 

agricultural management (e.g., Waha et al. 2012) and actual yields (Monfreda 

et al. 2008) which are generally too coarse for local relevance (van Ittersum et 

al. 2013). Estimates of Yp, Yw and Yg based on these global datasets may not 

represent current management of a cropping system (e.g., crop rotation, 

planting date, cultivar maturity) in a specific location, which limits the 

agronomic relevance of the yield gap analysis. Therefore, for yield gap analysis 

to have a strong local agronomic relevance and to improve understanding of 

the main factors causing the yield gap, more local studies are needed to bring 
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the role of farm and farmer characteristics into the picture, as well as more 

local biophysical and socio-economic conditions (Silva et al. 2017). A major 

challenge for this type of analysis is the high data standards required which 

typically refer to (a) large sample size, (b) fine resolution and (c) great level of 

detail. Clearly, obtaining information about biophysical characteristics and 

crop and farm management for individual agricultural activities within a farm, 

as well as farm and farmer’s characteristics and socio-economic conditions for 

a large number of farms is costly and time-consuming. 

 
Nowadays, the proliferation of different types of mobile phones (e.g., 

smartphones) equipped with sensors (e.g., GPS, camera) makes it possible to 

implement effective and low-cost “bottom-up” data collection approaches such 

as citizen science (Ferster and Coops 2013). Using these innovative 

methodologies facilitate the collection of relatively large amounts of 

information directly from local communities (Van Etten et al. 2016; Herrick et 

al. 2013). Moreover, other data collection methods such as remote sensing can 

provide data (e.g., on actual crop yield) for yield gap analysis (Lobell 2013). 

1.2 Innovative data collection methods for yield gap analysis 

1.2.1 Citizen science and crowdsourcing 

Citizen science is the involvement of non-professional scientist volunteers to 

participate in scientific activities like data collection, analysis and 

dissemination for a scientific project (Silvertown 2009; Cohn 2008). Citizen 

scientists - volunteers who collect and/or process data as part of a scientific 

enquiry (Silvertown 2009) - have been participating among others in projects 

about seed variety selection (Van Etten et al. 2016), invasive species (Carballo-

Cárdenas and Tobi 2016), water quality monitoring (Scott and Frost 2017) and 

stream water levels monitoring (Fienen and Lowry 2012). Recent citizen 

science approaches accomplish large tasks by distributing small tasks to many 

volunteers, and combine the results (Van Etten et al. 2016). This distributed 

way of working is termed as ‘crowdsourcing’ and was first coined by Howe 

(2006). According to the definition of USAID (2013), ‘crowdsourcing is when 

information is sourced from a group of people (e.g. farmers) in response to an 

open call, a request for specific information (e.g. management information), or 

for an exchange, organized by a central organizer/organizing body’. In the 

context of this thesis, the crowd/citizen scientists mainly refer to the 

smallholder farmers in developing countries.  

According to Silvertown (2009), there are three main factors behind the great 

explosion of activities using the citizen science approach. The main factor is the 

ubiquitous availability of technological tools (e.g., Personal Digital Assistance 

(PDA), mobile phones, smartphones) for disseminating information about 
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projects and collecting data from the public. A second factor for the rapid 

growth of citizen science is the increasing realisation by the scientific 

community that the public represents a free source of skills, computational 

power, labour and even finance (Cohn 2008) through an approach called 

crowdfunding (Vachelard et al. 2016). The third reason is that research funders 

are imposing upon every grantholder to undertake project-related scientific 

outreach.  

The emergence of the internet and the world wide web has enabled a new era 

of citizen science, which has been termed ‘citizen cyberscience’ by Grey (2009) 

and also called ‘technology-mediated (or ‘online’) citizen science’ (Nov et al. 

2014). Within citizen cyberscience, three subcategories are identified, namely: 

volunteered computing, volunteered thinking and participatory sensing 

(Haklay 2013). These categories of citizen science projects can be characterised 

by the different level of task granularity: “the smallest possible individual 

investment necessary to participate in a project” (Nov et al. 2014).  

In volunteered computing type of projects, a large computational task is divided 

into ‘micro tasks’ that are then distributed over the internet and the unused 

processing capacity of personal computers are used to analyse the tasks and 

once completed, tasks are send automatically back to a central server (Nov et 

al. 2014; Haklay 2013). Participation in this type of projects requires very little 

effort from the participants (Haklay 2013). Mostly, it requires the download 

and installation of a software application, after which contribution is largely 

passive, and therefore the task granularity is relatively low (Nov et al. 2014). 

Prominent volunteered computing projects include SETI@home 

(setiathome.berkeley.edu/) and Folding@home (folding.stanford.edu/). 

In volunteered thinking, also called distributed analysis projects, the 

volunteers are engaged at a more active and cognitive level (Grey 2009). Well 

known examples in volunteered thinking category include projects like 

Stardust@home (stardustathome.ssl.berkeley.edu/) in which volunteers analyse images 

of interstellar dust particles (Westphal et al. 2006), and Galaxy Zoo 

(www.galaxyzoo.org/), a project in which volunteers classify galaxies (Raddick 

et al. 2010). Participation in this type of projects often require some task-

specific training, and ongoing cognitive effort in analysing the images, and 

therefore the task granularity is relatively high (Nov et al. 2014). The last 

category of citizen cyberscience, participatory sensing is the most recent type 

of citizen science activity (Haklay 2013). In this type of citizen science, the 

capabilities of the mobile phones (e.g., camera, GPS) are used to sense the 

surrounding environment of participating citizens (Ferster and Coops 2013; 

Newman et al. 2012).  

https://setiathome.berkeley.edu/
https://folding.stanford.edu/
http://stardustathome.ssl.berkeley.edu/
http://www.galaxyzoo.org/
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According to Nov et al. (2014), digital citizen science is grounded on two pillars: 

1) a motivational pillar, and 2) a technological pillar. The motivational pillar 

involves attracting and retaining people who are willing to contribute their 

time, skills, effort and knowledge for a scientific cause. The technological pillar 

involves the development of systems to collect, store, analyse, visualise and 

disseminate large volume of data from geographically distributed citizen 

science participants. These two pillars are described in detail below. 

1.2.1.1 Motivation  

One of the important steps in citizen science is to understand what motivates 

people to get involved in order to attract and retain a large number of citizen 

science volunteers (Land-Zandstra et al. 2016a; Nov et al. 2014). Ryan and Deci 

(2000a) describe motivation as a continuum ranging from “amotivation or 

unwillingness, to active personal commitment”, and define that: “to be 

motivated means to be moved to do something. A person who feels no impetus 

or inspiration to act is thus characterized as unmotivated, whereas someone 

who is energized or activated toward an end is considered motivated.” Ryan 

and Deci (2000a) further distinguished two basic types of motivations: intrinsic 

and extrinsic motivations. Intrinsic motivation refers to “doing something 

because it is inherently interesting or enjoyable”, and extrinsic motivation, 

refers to “doing something because it leads to a separable outcome”.  

Previous citizen science studies have identified different categories of 

motivations (Land-Zandstra et al. 2016a; Curtis 2015; Raddick et al. 2010). 

Some participants get involved because they would like to contribute to 

scientific research (Land-Zandstra et al. 2016a). Others are motivated to 

participate because they would like to use the opportunity to network with 

other citizen science community members with similar interests, either in 

person or online (Nov et al. 2014; Dickinson et al. 2012). Another reason to 

participate is because volunteers find the citizen science activities enjoyable 

and fun (Curtis 2015; Nov et al. 2011b; Raddick et al. 2010). The motivation of 

people to participate in citizen science is not static, it might differ during the 

citizen science process. For example, the study of Rotman et al. (2012) showed 

that participants have different types of motivation at the different stages of 

the citizen science process. This implies that responding to the different 

motivational factors at different times of participation will help the 

participants to keep engaged in the citizen science process. For example, 

provision of relevant and timely agronomic advice to the farmers at the 

different stages of crop growth (Aker 2011) might help to keep farmers engaged 

in the citizen science process. As citizen science methodologies for the 

agricultural sciences have only recently emerged (Van Etten et al. 2016; van 

Etten 2011), it is questionable to what extent insights from motivational 

studies with participants in citizen science projects from other disciplines may 
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be generalized. Therefore, it is important to study the motivations of farmers 

to participate in agriculture oriented citizen science projects.  

1.2.1.2 Technology  

Next to motivation, the other important factor for the success of digital citizen 

science is the technological pillar, which deals with developing a system to 

collect, manage, analyse, and disseminate information (Nov et al. 2014, 2011b). 

New emerging and affordable technologies, such as mobile phones 

(smartphones and tablets), mobile apps (shore for applications), sensor 

networks, and also the growing ubiquity of social media and new 

communication platforms, show great promise for advancing citizen science 

(Newman et al. 2012; Silvertown 2009). Mobile apps are software programs 

developed for use on portable devices such as smartphones and other mobile, 

web-enabled equipment (Herrick et al. 2017). Sensor networks consist of 

spatially distributed, autonomous or semi-autonomous sensors that monitor 

physical or environmental conditions (Newman et al. 2012), such as air 

temperature and humidity (e.g., iButtons; Mittra et al. 2015) and soil nutrient 

and moisture content (Viscarra Rossel and Bouma 2016). The recent 

proliferation of web 2.0 channels (e.g., Twitter, Facebook and picture sharing 

sites such as Flicker) have opened up opportunities to engage with citizen 

scientists for scientific purposes (Pratihast et al. 2016; Muller et al. 2015). For 

example, the study of Pratihast et al. (2016) used social media Facebook as a 

platform to engage local forest rangers for community-based forest monitoring.  

Depending on the purpose and type of the community, different kinds of 

technologies (e.g., smartphones/tablets or basic phones) can be used by citizen 

science volunteers. Using the appropriate technology helps to avoid bias, i.e. 

not only educated community members but everyone in the community 

interested to participate can provide data. This allows to address some of the 

issues (e.g., skill and usage) discussed under the notion of digital divide (van 

Dijk 2006). Moreover, to assure data quality, the type of technology used should 

be clear to everyone participating in citizen science.   

In developing countries, where there is a large yield gap for most of the crops 

(Tittonell and Giller 2013; Laborte et al. 2012; Neumann et al. 2010), the 

proliferation of mobile phone technology offers a unique opportunity to collect 

relevant factors for yield gap analysis (e.g., Herrick et al. 2013). As shown in 

Figure 1.2, in developing countries there were around 23 mobile-cellular 

telephone subscriptions per 100 people in 2005 and this number has raised to 

94 mobile-cellular telephone subscriptions per 100 people in 2016. Currently, 

the use of mobile phones is mostly focused on delivering market information to 

farmers (e.g., using Esoko platform; www.esoko.com) so that farmers can make 

informed decisions on when and where to sell their products (Muto and Yamano 

http://www.esoko.com/
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2009). Provision of information, such as management advice and weather 

forecasts is another area of development where the use of mobile phones play 

a major role (Aker 2011). The experiences and lessons learnt from 

aforementioned initiatives can be used to collect agricultural information (e.g., 

using mobile SMS) (Paustian 2013), including the relevant factors for yield gap 

analysis. In addition to data collection and management, innovative use of 

existing technology may help citizen science project managers to identify 

participants and expedite team formation, and assist professional scientists 

and program coordinators with locating required resources, and disseminate 

project results to the public (Newman et al. 2012). 

 
 

 

 

 

 

 

 

 

 

Figure 1.2 Global mobile-cellular telephone subscriptions per 100 inhabitants 

Source: ITU World Telecommunication/ICT Indicators Database [I.T.U. 2016]. 

Note: * estimate. 

1.2.2 Remote sensing 

Another innovative data collection approach for yield gap analysis is remote 

sensing. Remote Sensing (RS) is the science of obtaining information about 

objects or areas through the analysis of data obtained by a device (e.g., sensor) 

that is distant from the object of interest (Lillesand et al. 2014). Satellite 

remote sensing has been used for agricultural applications for over three 
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Index (NDVI), have been widely utilized for different purposes such as 

agricultural mapping and monitoring (Funk and Budde 2009), crop yield 

estimation and forecasting (Bolton and Friedl 2013; Mkhabela et al. 2011) and 

crop disease prediction (Wakie et al. 2016).  

Crop yield information is one of the important parameters for yield gap 

analysis (Grassini et al. 2015). The most common traditional methods (e.g., 

farm surveys and crop cuts) to collect crop yield information are expensive, 

time-consuming, labour-intensive, and often difficult (Fermont and Benson 

2011). Remote sensing is an alternative to complement/substitute the 

traditional methods to collect crop yield information. Remote sensing has been 

successfully used for yield estimation and monitoring over the last few decades 

due to its ability to acquire spatiotemporal data over a large region (Son et al. 

2014; Schulthess et al. 2013). Generally, three main approaches are used to 

estimate crop yields using remote sensing data (Lobell 2013). The first 

approach is based on an empirical relationship that relates ground-based yield 

measures to vegetation indices (VIs) derived from remotely sensed surface 

reflectance (Schulthess et al. 2013; Mkhabela et al. 2011). The second approach 

to estimate crop yields is by incorporating VIs or biophysical variables (e.g., 

LAI) derived from remote sensing data into crop growth simulation models 

(Rembold et al. 2013; Dente et al. 2008; Doraiswamy et al. 2005). The simulated 

yield by the model then provides an estimate of crop yield. The last approach 

is by using the relationship between the fraction of photosynthetically active 

radiation (fPAR) and crop yield (Monteith and Moss 1977).  

1.3 Problem description 

Yield gap analysis at the farm and farming system level provides the 

foundation for identifying the most important crop, soil and management 

factors limiting current farm yields (e.g., Affholder et al. 2013). However, 

limited data availability at the individual farm level for a large number of fields 

within a farm often limits the use of more detailed modelling approaches and 

detailed assessments of cause-effect relationships related to agricultural 

production (Reidsma et al. 2009).  

Nowadays, the proliferation of computing devices like different types of mobile 

phones equipped with sensors (e.g. GPS), and other similar technologies makes 

it possible to implement effective and low-cost “bottom-up” data collection using 

the citizen science approach (Ferster and Coops 2013). However, citizen science 

methodologies for the agricultural sciences have only recently emerged and 

therefore, seem to be underdeveloped (Van Etten et al. 2016). Specific 

requirements for this development in developing countries and smallholder 

farming communities, such as motivation and technology adoption, are yet not 
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well studied. Therefore, to receive accurate and timely information using the 

citizen science approach, the motivations of the farmers to participate in citizen 

science need to be understood. Moreover, as the most pervasive ICT tool in the 

developing world, mobile phone technology presents an unprecedented 

opportunity to address the data gap researchers (agronomists) face to perform 

detailed yield gap analysis at the farm and farming system level. However, this 

potential will only be achieved when the factors that determine the farmers to 

adopt mobile phone as a data collection tool are studied. Therefore, the factors 

that determine farmers to adopt mobile phone technology for agricultural data 

collection need to be investigated.  

Vegetation indices (VIs) derived from multi-temporal remote sensing has been 

successfully used to estimate crop yield. However, the relationship between VIs 

derived from multi-temporal remote sensing and crop yield vary over the 

growing season (Mkhabela et al. 2011; Wall et al. 2008). Thus, using a fixed 

calendar date to estimate remote sensing-based yield prediction models is not 

optimal (Bolton and Friedl 2013). However, synergetic use of data streams (i.e., 

combining remote sensing and crowdsourcing) may offer opportunities to 

improve the accuracy of remote sensing based crop yield estimation.  

1.4 Objectives and research questions 

The main objective of the PhD research is to investigate the applicability of 

innovative data collection approaches such as crowdsourcing and remote 

sensing to support the assessment and monitoring of crop yield gaps. The focus 

is largely on developing countries. The PhD thesis addresses the following 

research questions: 

1. What are the main factors causing the yield gaps at the global, regional 

and crop level? 

2. How could data for yield gap explaining factors be collected with 

innovative “bottom-up” approaches? 

3. What are motivations of farmers to participate in agricultural citizen 

science? 

4. What determines smallholder farmers to use technologies (e.g., mobile 

SMS) for agricultural data collection? 

5. How can synergy of crowdsourced data and remote sensing improve the 

estimation and explanation of yield variability? 

1.5 Thesis outline 

This thesis comprises of six chapters among which chapter 2 until chapter 5 

form the core of the thesis (Figure 1.3). Chapter 2 addresses research question 
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1 and 2 and provides an overview of the factors considered and explaining the 

yield gap at the global, regional and crop level, based on a review of 50 

agronomic studies. Moreover, to address research question 2, the potential of 

innovative data collection approaches to collect the relevant factors for yield 

gap analysis are extensively discussed and presented in chapter 2. Chapter 3 

explores research question 3 and provides the motivations of farmers to 

participate in citizen science. A questionnaire based methodology was applied 

in three communities of farmers, in countries from different continents 

(Ethiopia, India and Honduras), participating as citizen scientists. Chapter 4 

addresses research question 4 and provides the determining factors for farmers 

to adopt mobile SMS technology for agricultural data collection. Chapter 5 

demonstrates the results of synergetic use of remote sensing and 

crowdsourcing for estimating and explaining crop yields at the field level. In 

Chapter 6 the main results from the previous chapters are summarised and 

the necessary additional steps that need to be considered to utilize the full 

potential of innovative data collection approaches for agricultural citizen 

science are discussed. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Overview of the chapters of the thesis. 
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Abstract 
 
Yield gap analysis is gaining increased scientific attention, as estimating and 

explaining yield gaps shows the potential for sustainable intensification of 

agricultural systems. Explaining yield gaps requires detailed information 

about the biophysical environment, crop management as well as farm(er) 

characteristics and socio-economic conditions in which farmers operate. 

However, these types of data are not always available, mostly because they are 

costly to collect. The main objective of this research is to assess data availability 

and data collection approaches for yield gap analysis, and to summarize the 

yield gap explaining factors identified by previous studies. For this purpose, a 

review of yield gap studies (50 agronomic-based peer-reviewed articles) was 

performed to identify the most commonly considered and explaining factors of 

the yield gap. Besides a global comparison, differences between regions, crops 

and methods were analysed as well.  

The results show that management and edaphic factors are more often 

considered to explain the yield gap compared to farm(er) characteristics and 

socio-economic factors. However, when considered, both farm(er) 

characteristics and socio-economic factors often explain the yield gap. 

Fertilization and soil fertility factors are the most often considered 

management and edaphic factors. In the fertilization group, factors related to 

quantity (e.g. N fertilizer quantity) are more often considered compared to 

factors related to timing (e.g. N fertilizer timing). However, when considered, 

timing explained the yield gap more often.  

Explaining factors vary among regions and crops. For example, while soil 

fertility is considered relatively much both in Africa and Asia, it is often 

explaining in Africa, but not in Asia. Agronomic methods like crop growth 

simulation models are often used for yield gap analysis, but are limited in the 

type and number of factors that can be included. Qualitative methods based on 

expert knowledge can include the largest range of factors.  

Although the data included in yield gap analysis also depends on the objective, 

knowledge of explaining factors, and methods applied, data availability is a 

major limiting factor. Bottom-up data collection approaches (e.g. 

crowdsourcing) involving agricultural communities can provide alternatives to 

overcome this limitation and improve yield gap analysis. 

Keywords: Yield variability, potential yield, actual yield, benchmarking, 

crowdsourcing, data collection 
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2.1 Introduction 

Sustainable intensification of agricultural systems, including the closure of 

existing yield gaps on currently available agricultural land, has been pointed 

as a possible pathway to meet the future food demand (Cassman 1999). The 

concept of ‘yield gap’ is based on production ecological principles and can be 

estimated as the difference between a benchmark (e.g. climatic potential or 

water-limited yield) and the actual yield (van Ittersum and Rabbinge 1997). 

This concept is particularly important because it indicates the biophysical 

potential available to improve agricultural production in a specific location (van 

Ittersum et al. 2013).  

Yield gap analysis provides the foundation for identifying the most important 

crop, soil and management factors limiting current farm yields (van Ittersum 

et al. 2013; Lobell et al. 2009; Tittonell et al. 2008; Lobell et al. 2005). 

Information on the magnitude of the yield gap, and associated explaining 

factors, is important for efficiently targeting efforts to increase crop production 

in a particular farming system (Affholder et al. 2013). For example, a yield gap 

analysis for cassava in Cambodia revealed that soil nutrients, short crop 

duration and weed infestation explained much of the yield gap in the area and 

these factors had to be improved to increase cassava yield (Sopheap et al. 2012). 

A number of yield gap analysis studies have been conducted for different crops 

in different agro-ecological conditions (van Ittersum and Cassman 2013) and 

the results of these studies showed that the magnitude and factors that cause 

the yield gap vary among locations (e.g., Affholder et al. 2013).  

Many studies have examined yield gaps at the scale of the region or agro-

climatic zone, using aggregated data on crop yields and explaining factors (e.g., 

Mueller et al. 2012; Neumann et al. 2010). These type of studies are useful to 

compare different regions in relative terms using harmonized data (van 

Ittersum et al. 2013). However, in order to further understand yield gaps, more 

local studies are needed to bring the role of farm and farmer characteristics 

into the picture, as well as more local biophysical and socio-economic conditions 

(Silva et al. 2017). 

The interactions between different activities at farm level, together with 

resource constraints faced by individual farmers, likely explain why inputs are 

not optimally allocated across the farm and hence why yield gaps persist (e.g., 

Tittonell et al. 2008). Therefore, yield gap analysis at farm and farming system 

level can contribute to better understand whether or not yield gaps can be 

closed and if so, under which production, economic and environmental 

conditions (Giller et al. 2006). A major drawback of this type of analysis is the 

high data standards required which typically refer to a) large sample size,         
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b) fine resolution and c) great level of detail. Clearly, obtaining information 

about biophysical characteristics and crop and farm management for 

individual agricultural activities within a farm, as well as farm and farmer’s 

characteristics and socio-economic conditions for a large number of farms is 

costly and time-consuming. Nowadays, the proliferation of computing devices 

like different types of mobile phones equipped with sensors (e.g. GPS), and 

other similar technologies makes it possible to implement effective and low-

cost “bottom-up” data collection approaches such as crowdsourcing (Ferster and 

Coops 2013). These innovative methodologies facilitate the collection of 

relatively large amounts of information directly from local communities 

(Herrick et al. 2013; Pratihast et al. 2013a). 
   
The main objective of this research was to  review the yield gap explaining 

factors identified by previous studies, in order to assess data availability and 

suggest improved data collection approaches for yield gap analysis. To address 

this specific objective, the following steps were undertaken: (1) to provide an 

overview of factors considered and explaining yield gaps; (2) to identify most 

commonly considered and often explaining factors of the yield gap at the global, 

regional and crop levels; (3) to investigate if there are regional similarities or 

differences in the factors which are commonly considered and explaining yield 

gaps; (4) to identify the most common data sources for the different factors 

considered for yield gap analysis; (5) to evaluate to which extent innovative 

data acquisition methods (e.g. crowdsourcing) are relevant for improving data 

availability. 

2.2 Methodology 

2.2.1 Literature search and study selection 

A detailed literature search was carried out as starting point for this review. 

The selection of  papers was made through specific searches for peer-reviewed 

articles on yield gap analysis in agronomic journals with key words “yield gap”, 

”potential yield”, “yield variability”, “water-limited yield” and “yield gap 

variability”. The initial focus was on a special issue released by Field Crops 

Research on yield gap analysis (van Ittersum and Cassman 2013). In addition, 

whenever peer-reviewed articles related to yield gap analysis were found in the 

reference list of an already reviewed article, they were analysed and included 

for our study. However, priority was given to articles which explained yield 

gaps and/or yield variability rather than only estimating the yield gap. The 

review was not completely systematic, as using a keywords-based approach 

resulted in a large amount of papers that were not directly relevant for this 

review, as they did not explain yield gaps. Although some relevant papers may 

be missing due to this, the selected papers provide a good basis to reach our 

objectives.  



Review of yield gap explaining factors and opportunities for alternative data 

collection approaches 

17 

 

2.2.2 Review of studies and construction of  database 

A database was created using MS-Excel 2010 in order to store the information 

from the selected articles. The database consists of five different tables, 

namely: “yield gap”, “determining factors”, “considered factors”, “explaining 

factors” and “validation table”. Each of the tables was organised in such a way 

that information about the five main categories climate, edaphic, management, 

farm characteristics and socio-economic factors were stored separately. All of 

the tables were linked with unique identifiers (IDs) to facilitate information 

retrieval.  

Specific information about the study locations including the continent, country, 

administrative region and site names and their respective coordinates were 

compiled in the “yield gap” table. When the coordinates of the study locations 

were not provided, the names of the study locations were used as a geographic 

reference and Google Maps was used to obtain the approximate coordinates of 

the study locations. In addition, information about the level at which the yield 

gap was estimated and explained (e.g. farm, field, regional or global level), 

resolution of data collection and the types of crops grown were also compiled. 

In this table, we also included the years in which the yield gap analysis was 

performed, the data sources used to estimate both actual and benchmarking 

yields as well as the methods used to estimate the benchmarking yield (e.g. 

name of crop model) and the term(s) used to indicate the benchmarking yield 

(e.g. potential yield, attainable yield, water-limited yield or economic yield). For 

studies that explained the yield gap, the explanatory methods used to explain 

the yield gap/yield variability (e.g. boundary-line, linear regression) were 

included in the database as well. Finally, the purpose of the different methods 

(for e.g. to explain yield gap or yield variability) used within each paper were 

recorded.  

For each of the methods used in a specific paper, the dependent variable (Y) 

and the independent variables (X) were identified and included in the database. 

The independent variables were included in the “considered factors” table of 

the database. Out of these “considered factors”, the ones which explained part 

of the yield gap and/or yield variability according to the criteria set by the 

specific paper were included in the “explaining  factors” table.   

In order to determine the number of records (entries) per study, the following 

criteria were used: number of crops considered, number of locations, years in 

which the yield gap analysis was performed, and methods used to estimate the 

benchmarking yield and to explain the yield gap. One record is a unique 

combination of location x crop x year x benchmark yield estimation method x 

yield gap explanatory method. A total of 270 records with unique identifiers 

(IDs) were included into the database. For studies which explicitly provided the 
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actual yield (Ya) and the benchmarking yield (Yp or Yw), the magnitude of the 

yield gap (%) was calculated as the difference between the benchmark yield and 

the actual yield divided by benchmark yield times 100%. For studies which 

didn’t provide the values explicitly, we didn’t calculate the percentage of the 

yield gap and it was left blank in the database. 

In order to categorize the data and methods used, and ensuring consistency, a 

“validation table” was included in the database. This table provides an 

overview of all different variables considered, including their units. This table 

also provided the basis for grouping variables and methods. 

2.2.3  Identification of factors 

2.2.3.1 Determining factors 

Determining factors are all the input factors that were used to estimate the 

benchmark yield. As the focus of this analysis is on investigating factors 

explaining the yield gap or yield variability, and because required determining 

factors mainly depend on the method used, these factors are not further 

analysed in this chapter. In general, the least data are needed when using the 

highest farmers’ yields, as only yield data are needed. When using frontier 

analysis methods, it is important that the yield data  are available for a large 

number of farmers. When using crop growth models, data on climatic 

conditions and cultivars are required in order to simulate potential or water-

limited yields (Lobell et al. 2009). Most data are needed when using 

experimental data/fields, as detailed information is required about the optimal 

management used to obtain the highest possible yields. 

2.2.3.2 Considered and explaining factors 

Considered factors are all the input factors that were used as explanatory 

factors in the analysis of the yield gap or yield variability. Explaining factors 

are the factors which, out of the considered factors, explained part of the yield 

gap or yield variability. For example, if correlation or regression analysis was 

used to explain the yield gap then all the input factors included as independent 

variables were classified as considered factors. Out of the considered factors 

those which had a statistical significant relationship with the yield gap were 

classified as explaining factors. If a method that was used to compare 

differences between groups (e.g. ANOVA) was used and if there were statistical 

significant differences between the treatments and the control plot, then all the 

factors in the treatments were included into the database under explaining 

factors. In this case, all factors behind the treatments and control plot were 

defined as considered factors. If interviews were used to explain the yield gap, 

all the factors asked for were included as “considered factors”, and all the 

factors that were judged to be explaining by the authors were included as 
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“explaining factors”. The selection of the explaining factors for our database 

was based on results from the reviewed papers, i.e. additional information cited 

from other papers was not included in the database. Authors of the papers were 

asked to check the “explaining factors”, and around 50 % responded to this. 

2.2.4  Grouping of factors 

Prior to the review, factors in the five main categories were grouped into 

different sub-groups. The climatic factors were grouped into six sub-groups, 

namely: radiation, temperature, precipitation, evapotranspiration, wind speed 

and others. The edaphic factors were grouped into four groups, namely: soil 

type, soil fertility, soil water and slope. The crop and farm management factors 

were grouped into eight sub-groups, namely: land preparation, planting, 

fertilization, irrigation, weeding, crop protection, crop characteristics and 

others. The farm characteristics were grouped into five sub-groups, namely: 

income, labour, training, size and intensity, and the socio-economic factors 

were grouped into three sub-groups, namely: institutional, technical and 

population. An overview with all the individual factors belonging to each of the 

aforementioned sub-groups is provided in Appendix 1.  

2.2.5  Analysis of factors explaining yield gaps 

An analysis was conducted based on the “considered factors” and “explaining 

factors” tables to quantify the percentage of considered and explaining factors 

within particular subsets of the database. The percentage of considered factors 

within a group (e.g. fertilization) was computed as the fraction between the 

total number of records in the “considered factors” table which contained at 

least one factor from the group of interest and the total number of unique 

records in the database (n=270). The percentage of explaining factors within a 

specific group was calculated as the quotient between the total number of 

records in the “explaining factors” table which contained at least one factor 

from the group of interest and the total number of records in the “considered 

factors” table which contained at least one factor from the same group.  

To calculate the considered percentage of the individual factors within the 

specific groups (e.g. considered % of N fertilization quantity), first we counted 

the total number of records which included the individual factor in the 

“considered factors” table. We then divided the counted number of records by 

the total number of records in the database (i.e. 270 records) and multiplied by 

100%. To calculate the explaining percentage of the individual factors within 

the specific groups (e.g. explaining % of N fertilization quantity), first we 

counted the total number of records which included the individual factor in the 

“explaining factors” table. We then divided this number of “explaining factors” 

by the counted number of “considered factors” and multiplied by 100%. Besides 
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the global analysis, both continent and crop specific percentages of considered 

and explaining yield gap factors were analysed. The same procedures were 

used, but studies were filtered by continent and/or crop.  

To calculate the percentage of factors from a specific data source (e.g. farm 

survey), first we counted total number of factors in a specific category (e.g. 

edaphic), and second we counted total number of factors in a specific category 

which were collected from a specific data source. We then divided the total 

number of factors collected from a specific data source by the total number of 

factors in a specific category and multiplied by 100%. The considered and 

explaining percentage for climatic factors were not analysed in this study 

because they were used mostly as determining factors. 

2.3 Results 

2.3.1 Crops, continents and yield gaps 

A total of 14 different crops were identified and the majority of the studies 

focused on rice (34%), maize (28%) and wheat (26%). The majority of the studies 

(64%) included in the database were from Africa and Asia (Figure 2.1 and 

Appendix 2). Studies from Africa are mostly concentrated in the east, west and 

southern parts and studies from Asia were mainly in the southern and south-

eastern regions. Studies from other continents (Europe, America and Oceania) 

were also included but are few in number (38%) compared to the number of 

studies from Africa and Asia. The reason for the large number of studies in 

Africa and Asia might be because of the existence of large yield gaps in these 

continents (Tittonell and Giller 2013; Laborte et al. 2012; Neumann et al. 

2010). Also the increasing human population in Asia and the associated future 

food demand to feed this population stimulates scientists to identify factors 

explaining the yield gap (Laborte et al. 2012). 

Overall, yield gaps for different crops in different continents range from 3-91% 

(Appendix 2). Even for one crop in one country, estimated yield gaps can be 

large. For example yield gaps range from 14-80% for rice in an irrigation 

scheme in Mauritania (Haefele et al. 2001). Although yield gaps are on average 

smaller in Europe compared to Africa, this is not necessarily the case for rice, 

as the yield gaps found in La Camargue, France (37-57%) (Delmotte et al. 2011) 

are similar to yield gaps in an irrigation scheme in West Africa (27-49%) 

(Wopereis et al. 1999). This brings us to the important notion that although it 

is relevant to compare yield gaps, yield gaps may differ not only depending on 

the crop and location, but also depending on the level of yield gap estimation, 

the resolution at which data are collected, the benchmark yield, and data and 

model quality to estimate benchmark and actual yields. 
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Figure 2.1: A map showing location of the studies and the type of crops included 

in the review. Although not presented in the map, the global studies of 

Neumann et al. (2010) and Licker et al. (2010) were also included in the 

database. 

2.3.2 Between group comparison of considered and explaining factors 

Management factors can often explain the yield gap (Figure 2.2a; see Appendix 

1 for details on variables included in the groups). Fertilization was the group 

most often considered; it was considered by 45% of the records. In 94% of the 

records where a factor related to fertilization was included in the analysis, this 

factor could also explain the yield gap. Irrigation had a similar explaining 

power but it was only considered in 15% of the records. Factors related to land 

preparation and crop characteristics explained the yield gap in 88% and 86% 

of the records respectively but only 10% of the records considered land 

preparation factors and 16% of the records considered crop characteristics 

factors. Planting, crop protection and weeding also explained the yield gap in 

more than 60% of the cases. Only one study included at least one factor from 

each of the management groups (Tanaka et al. 2013). In section 2.3.3 the result 

of detailed analysis of specific management factors are presented. 

Like management factors, edaphic factors also explain the yield gap (Figure 

2.2b). For 69% of the records where a factor related to slope was considered in 
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the analysis, this factor could also explain the yield gap. Factors related to soil 

fertility were considered by a relatively large number of records (25%) 

compared to the other groups of factors and it explained the yield gap in 69% 

of these records. Soil type explained the yield gap in around 58% of the cases 

while soil water explained the yield gap in 38% of the cases. Compared to 

management factors, edaphic factors were in general less often considered to 

explain the yield gap and when considered, the power of the factors to explain 

yield gap was less than that of management factors (Figure 2.2a & b). For 

example, both soil fertility and fertilization were considered by a relatively 

large number of records, 25% and 45% of the cases respectively. However, 

factors in the fertilization group explained the yield gap more often than factors 

in the soil fertility group. 

In general, few studies considered farm characteristics when explaining the 

yield gap, compared to management and edaphic factors. However, from Figure 

2.2c we see that in 93% of the records where a factor related to intensity (e.g. 

resource use intensity) or labour (e.g. cost of labour) was considered in the 

analysis, this factor could also explain the yield gap. Although none of the 

factors in this category were considered often, size was relatively most often 

considered. Factors in the size category explained the yield gap in 70% of the 

records when a factor related to size (e.g. farm area) was considered in the 

analysis. The maximum number of farm characteristics factors considered 

were five (Fermont et al. 2009; Haefele et al. 2001) and there were 16 studies 

out of 50 which considered farm characteristics to explain the yield gap. 

 

Like the farm characteristics factors, socio-economic factors were not often 

considered to explain the yield gap. Compared to other types of factors, the 

maximum number of socio-economic factors considered by a specific study was 

also smaller. For example, compared to the management factors where a 

maximum of 29 factors was considered by one study (Delmotte et al. 2011), for 

socio-economic factors a maximum of three was considered (Neumann et al. 

2010). However, when socio-economic factors were considered, they were often 

explaining, especially factors related to population (e.g. rural population 

density) and institutions (e.g. access to fertilizers and credits), but also 

technical factors (e.g. technical assistance) were explaining in more than 50% 

of the cases (Figure 2.2d). 
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Figure 2.2: Percentage of considered and explaining factors for management 

(a), edaphic (b), farm characteristics (c) and socio-economic (d) sequence based 

on explaining percentage. 

2.3.3 Within group comparison of considered and explaining factors 

As data availability may be a relevant issue to include or exclude factors, we 

analysed 179 unique management factors which were included in the studies 

reviewed. The average number of factors considered for management per 

record was three, the minimum was zero (Kassie et al. 2014; Neumann et al. 

2010; Licker et al. 2010; Bhatia et al. 2008) and the maximum was 29 (Delmotte 

et al. 2011). For the most considered and explaining groups, we analysed the 

factors in detail (Figure 2.3). The explaining power of the quantity of fertilizer 

is relatively smaller compared to the timing of fertilizer application 

(Pfertilization timing, Kfertilization timing and Nfertilization timing), but data 

related to quantity are more considered than timing (Figure 2.3a). Fertilizer 

costs are also not often considered, but explained the yield gap in 80% of the 
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cases. This might be because data related to quantity are more abundant than 

timing and cost.  

As for fertilization, also in other management groups, including irrigation and 

weeding, timing of operation was less often considered than amounts used, but 

more often explaining (see Appendix 1). Also in the planting group, sowing date 

was more often explaining than sowing density, but it was also more 

considered.  

In the soil fertility group of the edaphic category (Figure 2.3b), exchangeable 

cations and electric conductivity are not often considered, but when considered, 

they often explained the yield gap. Total N, organic matter, pH and P-Olsen 

are relatively considered by more records, but have smaller explaining power 

compared to exchangeable cations and electric conductivity.  

Detailed analysis on the labour group of the farm characteristics category 

showed that opportunity cost of labour, availability of machines and 

mechanization are the three most often explaining factors despite their low 

frequency consideration to explain yield gaps (Figure 2.3c). Besides, labour 

efficiency and labour availability explained the yield gap in 80% and 67% of the 

cases respectively. Looking into the institutional group of the socio-economic 

category, access to fertilizer, credit and markets (km) are the three 

institutional factors which explain the yield gap the most. Moreover, market 

access (hrs), market influence and subsides explain the yield gap in more than 

75% of the cases when considered (Figure 2.3d). 

2.3.4 Spatial differences in considered and explaining factors 

2.3.4.1 Africa 

It is evident that more management factors were considered in Africa compared 

to Asia (Figure 2.4a & b). In Africa, factors in the fertilization category were 

both often considered (57%) and often explaining (96%). Factors in the weeding, 

planting, crop characteristics and crop protection were often considered but 

less often explaining, compared to factors in the land preparation category. 

Factors in the land preparation and irrigation categories were less often 

considered, but when a factor from these categories was considered, it 

explained the yield gap in 89% and 67% of the cases respectively. With regard 

to the edaphic category, soil fertility factors often explained the yield gap in 

Africa compared to factors in the slope, soil water and soil type groups (Figure 

2.4c). 
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Figure 2.3: The top ten most considered factors in the fertilization (a), soil 

fertility (b), labour (c) and institution (d) groups sequenced based on explaining 

percentage. 
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In general more management factors were considered in Africa (Figure 2.4a) 

compared to global studies (Figure 2.2a). Among the management factors, 

fertilization factors were often considered and often explaining, both in Africa 

and globally. Slope is the most often explaining edaphic factor in the global 

analysis (Figure 2.2b), while it less often explained the yield gap in Africa 

(Figure 2.4c). Soil fertility was often considered and often explaining both in 

Africa and globally. Among others, size was the most often considered farm 

characteristic, both in Africa and globally, but less often considered factors, 

labour and intensity, explain the yield gap more often both in Africa and in 

global studies (Figure 2.4e & Figure 2.2c). Institutional and population factors 

also often explained the yield gap both globally (Figure 2.2d) and in Africa 

(Figure 2.4g). 

2.3.4.2 Asia 

Similar to studies in Africa, yield gap analysis in Asia focused mainly on the 

influence of soil fertility and fertilization (Figure 2.4b & d). However, while soil 

fertility was explaining in 70% of the cases in Africa, in Asia it explained yields 

in only 43% of the cases. Fertilization did have a high explaining power (100%), 

but this was also the case for land preparation, crop characteristics, crop 

protection, weeding and irrigation, which were not often considered. Even 

though less management factors were considered in Asia compared to Africa, 

when considered, they often explain the yield gap. Soil water and slope 

appeared to be more important, although they were only considered in few 

cases. Factors in the labour, intensity and size groups explain the yield gap 

more often in Asia compared to Africa. However, it was found that both farm 

characteristics and socio-economic factors were considered by few studies to 

explain yield gap in Asia compared to Africa. In general, many factors were 

often considered in Africa, while in Asia less number of factors were considered 

for yield gap analysis. This might be because in Africa there are more complex 

interactions and therefore, the problems for the existence of the yield gap are 

less well known compared to Asia, where they have better ideas of the 

problems. 
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Figure 2.4: Percentage of considered and explaining factors in Africa (left 

column) and Asia (right column). The first row shows management factors in 

Africa (a) & Asia (b), second row edaphic factors in Africa (c) & Asia (d), third 

row farm characteristics in Africa (e) & Asia (f) and fourth row, socio-economic 

factors in Africa (g) & Asia (h). 
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2.3.5 Crop specific considered and explaining factors 

2.3.5.1 Rice 

In the analysis, rice was considered in seven studies in Africa, seven in Asia, 

and two in Europe (Appendix 2). Fertilization, land preparation and crop 

protection categories often explain the rice yield gap in Africa while crop 

characteristics and planting more often explain the rice yield gap in Europe 

(Figure 2.5). Factors from the land preparation group were less often 

considered but often explained the yield gap in Africa, whereas they never 

explained the yield gap in Europe, even though they were more often 

considered. In general, management factors were more often considered and 

often explain (except for land preparation) the rice yield gap in Europe 

compared to Africa, whereas they were not considered (except fertilization) for 

rice yield gap analysis in Asia (at least not in the studies included, as based on 

our criteria, we did not capture research dealing with, for example, site-specific 

nutrient management (Dobermann et al. 2002) and irrigation water 

management (Bouman and Tuong 2001)).  

Compared to the overall analysis in Africa (Figure 2.4), crop protection, soil 

type, slope and soil fertility factors were more important to explain the rice 

yield gap in Africa, while crop characteristics and soil water factors had less 

importance (Figure 2.5). Farm characteristics factors were in general less 

important to explain the rice yield gap in Africa compared to their large 

contribution to explain yield gaps for the overall analysis conducted in Africa.   

In the overall analysis, soil fertility was of little importance to explain the yield 

gap in Asia (Figure 2.4d) but it was important to explain rice yield gap in Asia 

(Figure 2.5). Soil fertility was also most often considered and often explained 

the rice yield gap in Europe, while soil type explained the rice yield gap more 

often in Africa. Moreover, soil water often explained yield gaps in Asia but not 

rice yield gaps in Asia. Technical factors from the farm characteristics category 

less often explained the rice yield gap in Asia compared to overall analysis in 

Asia. Both farm characteristics and socio-economic factors were not considered 

to explain rice yield gaps in Europe. 

2.3.5.2 Maize  

In the analysis, four studies from Africa, six studies from Asia, three studies 

from North America, one study from Europe, one study from South America 

and two global studies on maize were included (Appendix 2); the first three 

continents were further analysed.  

In Africa, factors in the fertilization, crop characteristics and planting groups 

explained the maize yield gap in all the cases when factors from these groups 
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were considered (Figure 2.6). Crop protection factors were less important to 

explain the yield gaps of maize compared to rice (Figure 2.5). Land preparation 

factors explained the yield gaps in 89% of the studies performed in Africa 

(Figure 2.4a), but they were not considered in studies on maize (Figure 2.6). 

While crop characteristics factors did not explain much of the rice yield gap in 

Africa, they did explain the maize yield gap more often. Soil fertility is the most 

considered and often explaining edaphic group for maize yield gap (Figure 2.6) 

whereas soil type often explained the rice yield gap (Figure 2.5). Size and 

intensity also explained the yield gap in more than 60% of the cases, but labour 

factors which often explained rice yield gaps in Africa were not considered for 

maize studies in Africa. Intensity factors explained maize yield gaps in Africa 

in 67% of the cases, while this group of factors were not considered for rice 

studies. Socio-economic factors were less often considered; however, 

institutional and population groups explained the maize yield gap in all the 

cases when factors from these groups were considered.   

For maize yield gap analysis in Asia, factors from farm characteristics and 

socio-economic categories were not considered; only management and edaphic 

factors were considered (Figure 2.6). Even from the management categories, 

only fertilization, crop characteristics and irrigation groups were considered. 

Fertilization and irrigation factors were most often considered and often 

explain the maize yield gap in Asia. However, less often considered factors in 

the crop characteristics group also explain the yield gap in all the cases when 

factors from this group were considered. Soil fertility factors were the only 

edaphic factors considered for maize yield gap analysis in Asia. 

 

In North America, fertilization, weeding and planting groups were most often 

considered to explain the maize yield gap (Figure 2.6). Except from the planting 

and crop protection groups, management factors explained the yield gap in all 

the cases when factors from these groups were considered. Crop protection 

factors were considered but did not explain maize yield gaps in North America. 

Slope was the only edaphic factor considered and often explained maize yield 

gap in North America. Farm characteristics factors from the intensity group 

and socio-economic factors from the institutional and population groups also 

explain the yield gap in all the cases when considered. 
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Figure 2.5: Percentage of considered and explaining factors for rice yield gaps 

in Africa (1st column), Asia (2nd column) and Europe (3rd column). The first row 

of the table shows management factors, second row edaphic factors, third row 

farm characteristics and fourth row, socio-economic factors. Empty cells (NA) 

in the table indicate that in Europe farm characteristics and socio-economic 

factors were not considered by rice studies included in this analysis. 
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Figure 2.6: Percentage of considered and explaining factors for maize yield gaps 

in Africa (1st column), Asia (2nd column) and North America (3rd column). The 

first row of the table shows management factors, second row edaphic factors, 

third row farm characteristics and fourth row, socio-economic factors. Empty 

cells (NA) in the table indicate that, in Asia farm characteristics and socio-

economic factors were not considered by maize studies included in this 

analysis. 
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2.3.5.3 Wheat 

Regarding wheat, four studies from Asia, three from Europe, two from 

Australia, two from North America and one from South America were included 

in the analysis (Appendix 2). For Asia (Figure 2.7), factors in the planting group 

were more often considered compared to other groups; however, factors in the 

fertilization, land preparation, irrigation and crop protection groups explain 

the wheat yield gap as often as the factors in the planting group. Crop 

characteristics and weeding factors were not considered for explaining the 

wheat yield gap in Asia. In general, more management factors were considered 

for wheat yield gap analysis compared to the overall (Figure 2.4a) and 

specifically compared to maize yield gap analysis in Asia (Figure 2.6). Slope 

was the only edaphic factor considered and often explained the wheat yield gap 

in Asia.  Labour and size were most often considered farm characteristics 

factors to explain the wheat yield gap. However, less often considered factors 

from the intensity group also often explained the yield gap. More labour factors 

were considered by wheat studies in Asia than for other crops. From the socio-

economic category, factors in the technical group were more often considered 

and explained the wheat yield gap in Asia than for the average (Figure 2.4h). 

In addition, less often considered factors from institutional and population 

groups also explained the wheat yield gap in all the cases when considered.  

Studies in Europe considered only management factors for wheat yield gap 

analysis (Figure 2.7). However, management factors from land preparation, 

weeding and irrigation groups were not considered for wheat yield gap analysis 

in Europe. Fertilization and crop characteristics factors were more often 

considered management factors but less often considered factors from crop 

protection and planting groups explained the yield gap more often compared to 

crop characteristics factors.  

For North America, land preparation is the least considered management 

group to explain the wheat yield gap; however, it explained the yield gap more 

often compared to other management factors (Figure 2.7). Irrigation is the most 

considered management group and explained the yield gap in 86% of the cases. 

Fertilization, planting and crop protection factors were less important to 

explain wheat yield gap in North America compared to land preparation and 

irrigation. Fertilization, planting and crop protection were equally considered 

(71% of the cases) and both fertilization and planting explained the yield gap 

in 60% of the cases, while crop protection in only 20% of the cases. In addition, 

farm characteristics factors from the intensity group and socio-economic factors 

in the institutional and population groups were less often considered but when 

considered, they explained the yield gap in all the cases. For South America, 

fertilization factors and soil fertility factors explain the yield gap more often 

compared to other groups (data not shown).  
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For Australia, fertilization, land preparation, crop protection and planting 

groups were considered in 50% of the cases and factors from these groups 

explained the wheat yield gap in all the cases (Figure 2.7). Irrigation, crop 

characteristics and weeding factors were not considered for wheat yield gap 

analysis in Australia. From the edaphic category, soil fertility and soil water 

factors also explained the wheat yield gap in all the cases. Soil type and slope 

groups from edaphic categories were not considered. In addition, farm 

characteristics and socio-economic factors were also not considered for wheat 

yield gap analysis in Australia. 
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Figure 2.7: Percentage of considered and explaining factors for wheat crop in Asia (1st column), Europe (2nd column), 

North America (3rd column) and Australia (4th column). The first row of the table shows management factors. Second 

row edaphic factors, third row farm characteristics and fourth row, socio-economic factors. Empty cells (NA) in the 

table indicate that edaphic factors in Europe and farm characteristics factors in Europe and Australia and socio-

economic factors in Europe and Australia were not considered by maize studies included in this analysis. 
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2.4 Discussion  and opportunities for innovative data collection 
approaches 

2.4.1 Methodological approach 

The  main objective of this research was to  review the yield gap explaining 

factors identified by previous studies, in order to assess data availability and 

suggest improved data collection approaches for yield gap analysis. A review 

was performed based on peer-reviewed journal articles, using the keywords 

“yield gap”, ”potential yield”, “yield variability”, “water-limited yield” and “yield 

gap variability”. We acknowledge however that this terminology is used by a 

specific group of researchers, and that many studies may be available on 

similar work, but which are not included in this analysis. For example, 

economists use production functions and frontier analysis to explain yields 

(e.g., Monchuk et al. 2010; Helfand and Levine 2004; Giannakas et al. 2001; 

Ali 1995) and few of such studies came back in this analysis. Such type of 

studies focus more on farm(er) characteristics and socio-economic factors, and 

therefore including those would have increased the percentage of considered 

factors on these categories. 

 

In addition, our analyses rely on data from a variety of yield gap studies at 

different scales. At each scale, different factors are more or less important. Also 

benchmark yields are different among different type of studies. While for 

example soil type may be important to explain the gap between actual and 

potential yield, soil type is considered when estimating the water-limited yield, 

and therefore its relevance is smaller when explaining the gap between actual 

and water-limited yield. During the review we also learnt that there is no 

consistent procedure followed to report the importance of explaining factors. 

Hence, we had to only compile factors explaining part of the yield gap based on 

the criteria (e.g. significance) used by the individual papers. However, a more 

consistent procedure is required for reporting the importance of explaining 

factors in future yield gap analysis studies. 

 

Nevertheless, despite these limitations, this review  gives a good overview of 

considered and explaining factors in yield gap studies across the globe, and 

therefore it provides a good impression of gaps in required data, and a basis for 

improved data collection. 

2.4.2 Important factors for yield gap analysis 

The global analysis shows that factors from the management category are most 

often considered to explain the yield gap or yield variability compared to the 

other main categories (edaphic, farm characteristics and socio-economic). 

Among the management groups, the fertilization group is most often 
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considered and often explains the yield gap. However, less often considered 

factors from the irrigation, land preparation and crop characteristics groups 

also explain the yield gap in more than 80% of the cases, when considered. The 

importance of fertilization and irrigation factors for explaining the existing 

yield gaps at the global level is also indicated by Mueller et al. (2012). Planting, 

crop protection and weeding are the other groups which explain the yield gap 

in more than 60% of the cases when considered. Overall, this highlights the 

importance of crop management for existing yield gaps.    

In general, both the global and detailed analysis show that edaphic factors 

explain a relatively lower percentage compared to management, farm 

characteristics and socio-economic factors (Figure 2.2b and 2.3b). This could be 

explained by the improved access to technology and resources to solve soil 

limitations. Farm characteristics and socio-economic factors appear to be of 

high relevance to explain yield gaps, but these were only considered in a few 

studies. For example, when considered, institutional factors (e.g. access to 

fertilizers, credit and market) and labour related factors (e.g. opportunity cost 

of labour, access to machineries and mechanisation) are relevant socio-

economic and farm characteristics factors to explain the yield gap (Figure 2.3). 

The majority of the studies included in this review  are agronomic studies and 

this certainly explains the lower number of factors considered from these two 

categories. 

 

Our detailed analysis shows that timing of fertilization, irrigation and weeding 

is less often considered compared to quantities applied. However, when 

considered, the timing factors explain the yield gap more often than the 

quantity factors. The study of Lobell et al. (2005) noted that timing of irrigation 

was more important than number of irrigations, suggesting that the efficient 

use of water is more important than total amount of water applied for yields in 

Yaqui valley region, Mexico. The issue on timing is very important because it 

strengthens the notion that for example water or nutrients should be available 

to the crop in both the right amount and the right moment of time (i.e. in some 

stages the demand for N is higher than others). Further, it is related to labour 

and cash availability at farm level (Chadwick et al. 2015). The timing of 

operations (e.g. weeding) is strongly related to labour dynamics at farm level 

(Gianessi 2013). Family labour depends on household composition and off-farm 

activities, while hired labour refers to cash availability and market conditions.  

We must also conclude however that the relevance of factors depends on the 

location and crop, and that generalizations should not be made. For example 

soil fertility is relevant to explain yield gaps in Africa whereas soil water is 

more relevant for yield gaps in Asia. The importance of soil fertility factors to 

explain part of the yield gap in Africa is explicitly indicated by several studies 
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(e.g., Affholder et al. 2013; Okumu et al. 2011; Wairegi et al. 2010; Fermont et 

al. 2009). Fertilization, land preparation and crop protection are the factors 

that often explain the rice yield gap in Africa while crop characteristics and 

planting are important factors for the rice yield gap in Europe. The latter can 

be explained by the availability of agricultural inputs (e.g. fertilizers) and farm 

machineries in Europe and lack of these resources in many African countries.  

In addition, explaining factors can be considered in many different ways (e.g. 

kg N/ha, fertilization (Y/N)), and an overview of these is given in Appendix 1. 

The data collection procedure is therefore highly important when performing 

yield gap analysis, as a focus on few factors may bias the results. 

2.4.3 Selection of factors for explaining yield gap  

While we have shown that many factors can explain the yield gap, and ideally 

these should all be considered in a study, in practice the selection of factors is 

limited. The selection of factors may be influenced by 1) objectives of the study, 

2) knowledge on possible explaining factors, 3) the method used to explain yield 

gaps and 4) data availability. Below we will first discuss the first three reasons, 

and then go in further detail on data availability, and possibilities to improve 

this. 

2.4.3.1 Objective, previous knowledge and methods used 

First of all, the objective of a study may limit the selection of factors. For 

example if the objective of a study is to assess the effect of soil quality problems 

or iron toxicity on yield, then authors tend to focus on factors related to soil 

quality or iron toxicity instead of other types of factors (Audebert and Fofana 

2009; Van Asten et al. 2003). In addition, most of the studies analysing yield 

gaps are of agronomic nature, and therefore focused more on management and 

edaphic factors compared to farm characteristics and socio-economic factors.  

Secondly, knowledge on possible explaining factors may guide the selection of 

considered factors. Soil fertility is more often explaining in Africa compared to 

Asia (Figure 2.4). Previous studies on the importance of soil fertility factors in 

Africa could influence studies in Africa to consider more soil fertility factors 

compared to other factors. This is also the case in other regions. For example, 

a study by Anderson et al. (2005) indicated that in Western Australia yields 

are more constrained by edaphic factors compared to management factors. 

Following these findings, the focus of the study of Oliver and Robertson (2013) 

was to relate yield gaps to spatial variation  in soil properties that are known 

to limit yield in a water-limited environment.  

Finally, the method used to explain the yield gap also has an influence on the 

selection of factors. Table A and B in Appendix 3 show an overview of the 

different methods used to explain yield gaps and factors used by the methods. 
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It is notable that some methods like Classification And Regression Tree (CART) 

analysis and qualitative methods use many and different types of factors to 

explain the yield gap (e.g., Tittonell et al. 2008), while other methods like 

CERES-Wheat (a crop model; Abeledo et al. 2008) use only few factors to 

explain the yield gap. 

2.4.3.2 Data availability  

Although the data included in yield gap analysis also depends on the objective, 

previous knowledge of explaining factors, and method used, data availability is 

a major limiting factor. Selecting few factors based on available data may bias 

the analysis and the researcher might miss some important yield gap 

explaining factors because of unavailability of data. To mention few examples, 

the study of  Neumann et al. (2010) indicated that fertilizer application, one of 

the most important management options to increase actual grain yields, could 

not be included into their analysis due to lack of appropriate data and hence 

the yield gap attributed to fertilizer application  was not identified in their 

study. Lu and Fan (2013) also mentioned that due to lack of data, the EPIC 

model, which was used in their study to assess yield gaps in the North China 

Plain (NCP), was validated using data from only two experimental stations. 

The authors indicated validation of the EPIC model with data from two to four 

other sites would be worthwhile to provide stronger evidence of the utility of 

the model in yield gap assessment for the NCP region.   

Figure 2.8 shows the main data sources for factors used for yield gap analysis 

in different parts of the world. It is evident that around 47% of the management 

factors were from field trials, followed by farm surveys which contributed with 

19% to the management data used for yield gap analysis. Compiled databases 

and a combination of measurements & surveys contributed to 12% and 11% of 

the management factors, respectively. Soil sampling was the main data source 

for edaphic factors’, with 55%, followed by national databases, which 

contributed with 22% to the edaphic factors for yield gap analysis. Farm 

surveys and global databases were the main data sources for farm 

characteristics and socio-economic factors, respectively. The majority of the 

management data were from field trials, not from real farms. However, data 

from field trials generally do not represent real farms in the area in terms of 

soil properties and crop management. Moreover, it is important to understand 

what are the farm level constraints and technical problems farmers face. One 

of the reasons not to consider data from real farms for yield gap analysis might 

be because of the lack of datasets containing field-specific information for a 

large set of individual farms. Therefore, how can we collect more of these 

relevant factors for yield gap analysis? The next section provides an overview 

of alternative data collection approaches that can potentially be used to 



Chapter 2 

40 

 

complement traditional data collection methods (e.g. farm survey) to collect 

some of the relevant factors for farm level yield gap analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: An overview of data sources for factors considered for yield gap 

analysis a) management factors b) edaphic factors c) farm characteristics 

factors d) socio-economic factors. 

2.4.4 Opportunities for alternative data collection approaches 

Most of the management, farm characteristics and socio-economic factors that 

explain the yield gap (e.g. timing of fertilization, education level/age of the 

farmer, access to fertilizers) can only be obtained either by asking farmers 

using traditional farm survey methods (e.g., Tittonell et al. 2008) or through 

self-reporting (e.g. Yield Prophet: www.yieldprophet.com.au; Hochman et al. 

2012). Other data collection methods, e.g. remote sensing can provide data on 

factors such as soil organic matter content (Gomez et al. 2008), field size 

calculated from high spatial resolution satellite images (Schulthess et al. 2013), 

and crop density (Bai et al. 2011; Thorp et al. 2008). Moreover, sensor networks 

can also provide factors such as crop canopy (e.g. using upward-pointing digital 
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cameras; Ryu et al. 2012) and soil moisture content (e.g. using DACOM sensor). 

However, remote sensing measurements are still highly uncertain and 

specifically challenging for the heterogeneous and small size fields that are 

common for smallholder agriculture in the tropics (Lobell 2013), where there is 

a large yield gap for most of the crops (www.yieldgap.org). Moreover, the use of 

remote sensing to collect data for farm level yield gap analysis can be 

constrained by availability of satellite images at the required spatial and 

temporal resolution.   

 

Most developed countries have a well-developed and organised infrastructure 

to collect harmonised agricultural data that are used for different purposes 

(Paustian 2013), including yield gap analysis. For example, the Farm 

Accountancy Data Network (FADN) of the European Commission collects farm 

characteristics (e.g. crop areas, labour force) and socio-economic data (e.g. 

subsidies) at farm level. As an example, these data were used to asses regional 

yield gaps in Europe (Reidsma et al. 2009). However, even these well-

established and organised databases lack some important factors (Paustian 

2013) for yield gap analysis (e.g. soil and crop-specific management data) and 

additionally, these are available only as aggregated averages at farm level that 

might not fully capture some important field specific factors (e.g. amount of 

fertilizer applied). 

 

In most developing countries detailed agricultural data are much less 

harmonised and scarce due to lack of resources to conduct extensive surveys on 

agricultural practices (Paustian 2013). Data compiled in national level 

databases (e.g. FAOSTAT) provide a useful first estimate of agricultural 

activities (Paustian 2013) that can be used in national and global yield gap 

analysis, but are inadequate for detailed farm level yield gap analysis (Grassini 

et al. 2015; van Ittersum et al. 2013). One possible way to overcome this critical 

data gap is by ‘letting the farmers tell us themselves’ (Paustian 2013). 

Nowadays, due to the proliferation of computing and mobile devices which are 

equipped with sensors (e.g. GPS), and other similar technologies, it has become 

possible to implement bottom-up data collection approaches like crowdsourcing 

with which relatively large amounts of information can be directly obtained 

from local communities (Herrick et al. 2013). Currently, applications are 

mostly focused on delivering market information to farmers so that farmers 

can make informed decisions on when and where to sell their products (Muto 

and Yamano 2009). Provision of information, such as management 

recommendations and weather forecasts is another area of development where 

the use of mobile phones played a major role (Aker 2011). As also suggested by 

(Paustian 2013), the experiences and lessons learnt from aforementioned  

initiatives can be used to collect more of the relevant factors for yield gap 

analysis. 

http://www.yieldgap.org/
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Table 2.1 provides an overview of the potential and limitations of three 

categories of alternative data collection methods to acquire factors relevant for 

yield gap analysis: 1) crowdsourcing (CS); 2) remote sensing (RS); and 3) sensor 

networks (SN). While describing the different data collection methods, special 

attention is given to the potential of the crowdsourcing approach due to its 

great potential for collecting farm level data (Table 2.1).  

 

With the advent of widespread mobile phone access, crowdsourcing for data 

collection is an emerging method for data capture (Belden et al. 2013). 

Crowdsourcing can mainly be used to collect information related to the timing 

of an activity (e.g. timing of fertilization, weeding, irrigation). Moreover, 

quantity information like amount of fertilizer applied, number of weeding and 

irrigation operations performed in a specific field can be collected. Cropping 

calendar (e.g. sowing date, dates of flowering, maturity and harvest) are other 

potential management factors that can be collected using crowdsourcing. With 

the ubiquitous availability of smartphones which are equipped with sensors 

(e.g. GPS), the  geo-location (boundary) of a field can be collected which can be 

used to calculate field size. The camera feature of the phone can be used to 

capture some incidents in a field (e.g. incidence of pest, disease or weed) which 

can later be used by experts to assess the infestation level and also to identify 

the type of pest, disease and/or weed that caused the damage to the crop. 

Providing training for selected community members (e.g. focal farmers) to be 

able to identify pest and/or disease as done by Plant clinics of CABI 

(www.plantwise.org/plant-clinics/) can help the farmers to get assistance and 

provide the right information. 

 

Unlike management factors, collecting soil fertility factors using the 

crowdsourcing approach might not be straight forward. However, asking 

farmers to assess the fertility level of their soils using their own local indicators 

can potentially be used to complement soil chemical analysis (Desbiez et al. 

2004). In addition, an on-farm soil testing kit which allows farmers to diagnose 

soil constraints in the field and transmit the information quickly through SMS 

(e.g. SoilDoc) could potentially be used for acquiring soil fertility factors. For 

smartphone/tablet users, apps like MySoil app can be used to provide 

information about pH and organic-matter content of the soil (Shelley et al. 

2013).  

The crowdsourcing approach also has huge potential to collect farm 

characteristics and socio-economic factors. Farm(er) characteristics factors like 

labour (e.g. labour availability), training (e.g. years in school) and income (e.g. 

farm income) are factors that can be collected using the crowdsourcing 

approach. Socio-economic factors like access to fertilizer (Y/N), access to credit 

(Y/N), number of technical assistances received and gender of a farmer are few 

http://www.plantwise.org/plant-clinics/
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example factors which can be collected using crowdsourcing. However, to 

receive accurate and timely information, understanding the motivations of the 

community (farmers) to participate in crowdsourcing and incentivising them to 

provide the requested information is critical (Roy et al. 2012). Moreover, 

identifying the right technology (platform) for the farmers to use in the 

crowdsourcing activity is another important step that needs to be considered 

while designing a crowdsourcing campaign. 
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Table 2.1: Alternative data collection methods (crowdsourcing (CS), remote sensing (RS) and sensor networks (SN)) 

and their potential to collect factors relevant for yield gap analysis. 

Factors CS RS SN Examples/Reference 
M

a
n

a
g
e
m

e
n

t 

Fertilization +/- - - CS: Timing of fertilization, quantity of fertilizer(s) applied and 

fertilizer costs. 

 
Planting 

 

+/- 

 

+ 

 

- 

CS: Sowing date, number of plants/m2, seeding method and 

intercropping (Y/N).RS: Crop density (Bai et al. 2011; Thorp et al. 

2008), sowing date (Ortiz-Monasterio and Lobell 2007; Lobell et al. 

2003) and intercropping (Jain et al. 2013). 

 
Crop 

characteristics 

 

 

+ 

 

 

+ 

 

 

+ 

CS: LAI app (Confalonieri et al. 2013), lodging (Y/N), physiological 

maturity (using Growing Degree Days app): 

https://itunes.apple.com/us/app/growing-degree-

days/id386655475?mt=8%0D, harvesting time, crop genotype (name 

of variety planted), and dates of flowering and maturity. 

RS: Canopy cover percentage (Pacheco et al. 2008; DeTar and 

Penner 2007), lodging (Zhang et al. 2014). SN: LAI (Ryu et al. 2012). 

 
Irrigation 

 

+ 

 

+ 

 

+ 

CS: Timing of irrigation (Smart ICT- Africa project: 

http://www.smartict-africa.com/EN/), irrigation infrastructure, 

irrigation system, supplementary irrigation (Y/N), water control 

(good/bad) and number of irrigations. RS: Irrigation amount 

(Droogers et al. 2010). SN: DACOM sensor (http://en.dacom.nl/).  

 
 

Weeding 

 

 

+/- 

 

 

+ 

 

 

+ 

CS: Timing of weeding/herbicide application, number of 

weeding/herbicide applications, weeding method and weed 

management (score). Moreover, using apps to identify weeds and 

assess weed pressure (Rahman et al. 2015). RS: Weed management 

(Goel et al. 2003). SN: Weed intensity (Sui et al. 2008). 

 
Crop 

protection 

 

+ 

 

+ 

 

+/- 

CS: 1) Digital Early Warning Network (DEWN): 

http://www.scidev.net/global/farming/news/cassava-disease-

monitoring-goes-mobile.html,  

https://itunes.apple.com/us/app/growing-degree-days/id386655475?mt=8%0D
https://itunes.apple.com/us/app/growing-degree-days/id386655475?mt=8%0D
http://www.smartict-africa.com/EN/
http://en.dacom.nl/
http://www.scidev.net/global/farming/news/cassava-disease-monitoring-goes-mobile.html
http://www.scidev.net/global/farming/news/cassava-disease-monitoring-goes-mobile.html
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2) PestNet: http://www.pestnet.org and 3) Plant clinics of CABI: 

http://www.cabi.org/projects/plantwise/plant-clinics/.  

RS: Disease detection (Cao et al. 2013). 

Land 
preparation 

 

+/- 

 

+ 

 

- 

CS: Tillage system, area per crop (%), land levelling (#), fallow reside 

management and crop residue management.  

RS: Crop residue and tillage practices (Zheng et al. 2014). 

E
d

a
p

h
ic

 

 
 

Soil 
fertility 

 

 

+ 

 

 

+ 

 

 

+ 

CS: Farmers diagnose soil constraints in the field using soil testing 

kits (SoilDoc) and transmit the information through SMS: 

http://agriculture.columbia.edu/projects/agriculture/soildoc/ and 

using MySoil app to provide information about pH & organic-matter 

content of the soil (Shelley et al. 2013).  

RS: Organic matter content of the soil (Gomez et al. 2008) 

SN: SoilCares initiative – Mobile Lab: 

http://www.soilcares.com/en/our-ongoing-projects and SoilCares 

handheld scanner: http://www.soilcaresscanner.com/ 

Soil 
water 

+ + + 

CS: Soil Water app for smartphones (SWApp): 

http://www.grdc.com.au/Research-and-Development/GRDC-Update-

Papers/2015/03/A-new-way-to-estimate-and-monitor-the-water-

content-of-soil. RS: Soil moisture (Petropoulos et al. 2015).   

SN: Soil moisture sensors (Xiao et al. 2013).  

Soil 
type 

 

+ 

 

+ 

 

- 

CS: Using SoilWeb app to provide the soil type of the current 

location of the phone: http://casoilresource.lawr.ucdavis.edu/soilweb-

apps. RS: Soil type identification (Jiji and Nadar 2015). 

Slope + + - 

CS: Using LandInfoapp to assess slope: http://landpotential.org/ 

RS: Using satellite images for Digital Elevation Model extraction 

(Murgante et al. 2012). 

  

http://www.pestnet.org/
http://www.cabi.org/projects/plantwise/plant-clinics/
http://agriculture.columbia.edu/projects/agriculture/soildoc/
http://www.soilcares.com/en/our-ongoing-projects
http://www.grdc.com.au/Research-and-Development/GRDC-Update-Papers/2015/03/A-new-way-to-estimate-and-monitor-the-water-content-of-soil
http://www.grdc.com.au/Research-and-Development/GRDC-Update-Papers/2015/03/A-new-way-to-estimate-and-monitor-the-water-content-of-soil
http://www.grdc.com.au/Research-and-Development/GRDC-Update-Papers/2015/03/A-new-way-to-estimate-and-monitor-the-water-content-of-soil
http://casoilresource.lawr.ucdavis.edu/soilweb-apps
http://casoilresource.lawr.ucdavis.edu/soilweb-apps
http://landpotential.org/
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Factors CS RS SN Examples/Reference 

F
a
rm

 c
h

a
ra

ct
e
ri

s
ti

cs
 

Labour +/- - - 
CS: Labour availability, cost of labour, availability of machines and 

mechanisation. 

Income +/- - - 
CS: Crop income, farm income, household income and production 

costs. 

Training +/- - - CS: Years in school, farming experience (years)  and farmer age. 

Size + + - 
CS: Field size (Fritz et al. 2015). 

RS: Field size (Yan and Roy 2014). 

Intensity +/- +/- - 
CS: Resource use intensity (score), irrigated area (%), irrigated area 

per grain type (ha). 

S
o
ci

o
-

e
co

n
o
m

ic
 Institutional +/- - - 
CS: Access to fertilizer (Y/N), access to credit (Y/N) and market access 

(hrs or km). 

Technical +/- - - CS: Technical assistance (#) and extension contacts (score). 

Population +/- - - CS: Gender (M/F). 

Y
ie

ld
 

Actual farm 
yields 

+ + - 

CS: Farmers self-report  the amount of yield they harvested: 

www.yieldprophet.com.au (Hochman et al. 2012), (Gittleman et al. 

2012). RS: (Lobell et al. 2005). 

Benchmarking 
yield 

+/- + - 

CS: Asking farmers to provide the maximum yield they have 

harvested in a specific field for the last few growing seasons.  

RS: to use the maximum yield within the remote sensing estimates 

as a proxy for the benchmarking yield (Lobell et al. 2002). 

(+): It is possible and has already been used, (+/-): Potentially possible, (-): It is not possible/ it has not been used.

http://www.yieldprophet.com.au/
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2.5 Conclusion 

In studies explaining yield gaps a large variety of factors are considered. The 

selection of factors is influenced by 1) objectives of the study, 2) knowledge on 

possible explaining factors, 3) the method used to explain yield gaps and 4) 

data availability.  

The results of this study show that management factors were most often 

considered compared to edaphic, farm characteristics and socio-economic 

factors. Although fertilization related factors seem to be more often considered, 

when considered, other management factors like land preparation, irrigation 

and crop characteristics also often explained the yield gap. When considered, 

both farm characteristics and socio-economic factors also often explain the yield 

gap; thus future yield gap studies need to collect and consider farm 

characteristics and socio-economic factors to explain the yield gap as well. 

Information related to quantity (e.g. N fertilizer quantity, irrigation amount 

and no. of weeding operations) is more often collected and used in yield gap 

analysis than timing (e.g. N fertilizer timing, irrigation timing and timing of 

weeding). However, when considered, the timing of management activities 

often explains the yield gap; hence it is important that data about the timing 

of operational activities is also collected and taken into account in the analysis. 

The relevance of factors to explain the yield gap depends on the location and 

crop, and generalization should not be made. Explaining factors are region and 

crop specific, and approaches for data collection should be region and/or crop 

specific.  

Data availability can be increased by using bottom-up data collection 

approaches like crowdsourcing which might help to collect more of the 

explanatory factors particularly from the categories of farm characteristics and 

socio-economic factors. Crowdsourcing based methods (e.g. farmers send timing 

information via SMS) is also a promising alternative to acquire real-time 

information about timing of management activities. 
 

Supplementary data associated with this chapter can be found in the online 

version at: http://dx.doi.org/10.1016/j.eja.2016.06.016 
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Abstract 

As the sustainability of agricultural citizen science projects depends on 

volunteer farmers who contribute their time, energy and skills, understanding 

their motivation is important to attract and retain participants in citizen 

science projects. The objectives of this study were to assess 1) farmers’ 

motivations to participate as citizen scientists and 2) farmers’ mobile telephone 

usage. Building on motivational factors identified from previous citizen science 

studies, a questionnaire based methodology was developed which allowed the 

analysis of motivational factors and their relation to farmers’ characteristics. 

The questionnaire was applied in three communities of farmers, in countries 

from different continents, participating as citizen scientists. We used statistical 

tests to compare motivational factors within and among the three countries. In 

addition, the relations between motivational factors and farmers 

characteristics were assessed. Lastly, Principal Component Analysis (PCA) 

was used to group farmers based on their motivations. Although there was an 

overlap between the types of motivations, for Indian farmers a collectivistic 

type of motivation (i.e., contribute to scientific research) was more important 

than egoistic and altruistic motivations. For Ethiopian and Honduran farmers 

an egoistic intrinsic type of motivation (i.e., interest in sharing information) 

was most important. While fun has appeared to be an important egoistic 

intrinsic factor to participate in other citizen science projects, the smallholder 

farmers involved in this research valued ‘passing free time’ the lowest. Two 

major groups of farmers were distinguished: one motivated by sharing 

information (egoistic intrinsic), helping (altruism) and contribute to scientific 

research (collectivistic) and one motivated by egoistic extrinsic factors 

(expectation, expert interaction and community interaction). Country and 

education level were the two most important farmers’ characteristics that 

explain around 20% of the variation in farmers motivations. For educated 

farmers, contributing to scientific research was a more important motivation 

to participate as citizen scientists compared to less educated farmers. We 

conclude that motivations to participate in citizen science are different for 

smallholders in agriculture compared to other sectors. Citizen science does 

have high potential, but easy to use mechanisms are needed. Moreover, 

gamification may increase the egoistic intrinsic motivation of farmers. 

 

Keywords: Citizen science, crowdsourcing, mobile phone, motivations, 

gamification, smallholder farmers
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3.1 Introduction 

Public participation has a long and distinguished tradition in agricultural 

research. Over the last decades, numerous methodologies have been developed 

to address the participation of farmers as agricultural end-users in trial design, 

innovation development, different steps of plant breeding, and other fields of 

research (Neef and Neubert 2011; Bellon 2001; Okali et al. 1994). Important 

objectives of involving farmers in research include creating synergies between 

local and formal innovation, and increasing the practical impact of research 

(Hellin et al. 2008; Sumberg et al. 2003). Participatory methodologies in the 

agricultural sciences usually involve limited numbers of farmers, often trained 

by researchers and living in close proximity to the research facility, and scaling 

is usually difficult due to requirements in training and farmer group 

organization (Ceccarelli and Grando 2007). Yet, given the strong heterogeneity 

of socio-economic requirements and environmental conditions in many 

locations, there is increasing interest in methodologies that facilitate the 

engagement of larger numbers of farming households and environments. 

 

In the last fifteen years, modern communication tools have enabled the 

emergence of participatory research methodologies involving very high 

numbers of contributors via crowdsourcing (Dickinson et al. 2012; Newman et 

al. 2012). Although the term may include any participatory research, such 

methodologies are usually referred to as ‘citizen science’, and have now become 

widely established and led to many peer-reviewed publications in the ecological 

and biological disciplines (Follett and Strezov 2015; Cooper et al. 2010; Hand 

2010). In citizen science projects, a large number of volunteers individually 

participate in crucial activities of formal research. These projects have 

accomplished tasks that traditional research often cannot, due to restricted 

resources. The accumulated time dedicated to the crowdsourced research task, 

the number of contributions, and, in many cases, the geographic spread of data 

entries often exceed the capacities of traditional research. Successful examples 

include national surveys of bird migration (Sullivan et al. 2014), or citizens 

classifying the water quality of nearby water bodies (Conrad and Hilchey 2011). 

Only now, similar research methodologies are under development for the 

agricultural sciences, offering new opportunities for the scaling and 

specification to local context of agricultural research. 

Although other factors also play a role, recent literature suggests two 

important preconditions for establishing successful crowdsourced research. 

Firstly, since the remote network of participants is a key characteristic of 

crowdsourced research, participants must have access to digital 

communication infrastructure. And secondly, since participation is voluntary, 

participants need to be motivated (Nov et al. 2011a). In Self-Determination 
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Theory (SDT) two basic types of motivations are distinguished: intrinsic 

motivation, which refers to “doing something because it is inherently 

interesting or enjoyable”, and extrinsic motivation, which refers to “doing 

something because it leads to a separable outcome” (Ryan and Deci 2000a). 

Research about volunteers’ motivation to participate in citizen science has 

suggested a key role of egoistic affective goals, like fun and the experience of 

participating in a meaningful activity (Singh et al. 2014; Raddick et al. 2010). 

So, to address affective parts of motivation in designing for large-scale 

participation, many recent citizen science projects have introduced elements of 

gamification (Dickinson et al. 2012). Gamification refers to the application of 

design elements from games to a non-game context, with the end goal of 

improving the user experience, and, eventually, motivating participation 

(Deterding 2011). Empirical research demonstrates that gamification can 

encourage some people to use an application more often (Thom et al. 2012) and 

to derive greater enjoyment from their use of an application (Fitz-Walter et al. 

2011; Flatla et al. 2011). 

One simple way to gamify citizen science is to provide extrinsic incentives such 

as score boards, badges or progressive ranks. But many projects rely on more 

sophisticated motivational design. For example, the citizen science project 

eBird provides game-type incentives like personal bird lists, user rankings or 

rare bird alerts, the introduction of which contributed to a strong increase in 

participant numbers (Wood et al. 2011). These incentives draw on intrinsic 

motivation rather than the extrinsic motivation of scoreboards and social 

rewards. Many successful citizen science projects rely on intrinsic motivation, 

like participants’ interest in learning, developing skills, and social exchange 

(Land-Zandstra et al. 2016a; Curtis 2015; Rotman et al. 2012). We are 

specifically interested in the relation between intrinsic and extrinsic 

motivation in farmer citizen science.  

 

The goal of our research is to contribute to the design and development of 

citizen science methodologies for the agricultural sciences that can effectively 

engage high numbers of smallholder farmers in developing countries. 

According to Nov et al. (2011b), digital citizen science is founded on two 

facilitating pillars: motivational and technological. Our specific objectives are 

therefore to assess 1) farmers’ motivations to participate as citizen scientists 

and 2) farmers’ mobile telephone usage. Although the mantra “easy, fun and 

social” (Dickinson et al. 2012) points the way, more context-specific analysis is 

needed. As citizen science methodologies for the agricultural sciences are just 

emerging, it is questionable to what extent insights from motivational studies 

with participants in citizen science projects from other disciplines may be 

generalized. Given the strong link of the research topic to their families’ 

livelihoods, farmers’ motivation may differ substantially from the motivation 
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revealed in previous studies, where participants usually engaged as a leisure-

time activity. Thus, to be able to design methodologies for large-scale 

agricultural citizen science, it is crucial to understand what motivates 

participants. 

We draw insights from citizen science projects of crop variety trials which 

implement ‘triadic comparison of technologies’ (tricot). In this project, farmers 

participate by planting three varieties of one crop on their own farms, and 

reporting simple observations to an implementing body, like an NGO or a 

research organization (Van Etten et al. 2016; van Etten 2011). Data and 

information exchange is already facilitated by mobile phone technology, which 

we see as a simple technological interface that allows observing opportunities 

and constraints of future digitalized citizen science trials in practice. 

In order to derive conclusions that may contribute to design principles for 

agricultural citizen science, we were interested in what are the roles of 

different drivers of motivation for the engagement of participants. We therefore 

assessed the relative importance of egoistic, collectivistic, and altruistic 

motives. Motivation may not be homogeneous among participants: individual 

differences in, for example, age, gender, education level or country may 

influence what motivates participants (and what does not). When different 

groups of participants can be distinguished by their motivation, citizen science 

projects may be specifically designed to offer different roles for participants, 

with different types of participation. Hence, we tested for interactions between 

motivation and farmers’ characteristics. We addressed the following research 

questions: What motivates farmers to participate in agricultural citizen 

science? Which different groups of participants can be distinguished with 

regard to their motivation? 

To be able to make statements about potential future use of communication 

technology in citizen science, it is vital to understand opportunities and 

constraints related to the use of mobile phone technology by current 

participants in citizen science, who represent an already-motivated sub-

sample. We studied the habits in usage of mobile phones, as well as the 

availability and distribution of related resources like literacy and airtime credit 

among participants in tricot. Here, too, it is interesting to identify discrete 

groups of participants, since different roles and different types of participation 

in the citizen science project may also be offered in order to address the variety 

of technology user profiles. With our research, we want to answer the following 

questions: In what ways are mobile phones used by participants in citizen 

science? Which opportunities and constraints does this experience bring along? 

We then conclude by analysing how these findings may translate into design 

principles for agricultural citizen science projects. 
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3.2 Material and Methods 

3.2.1 Seeds for Needs initiative 

Seeds for Needs is a Bioversity International initiative involving more than 

20,000 smallholder farmers in 14 countries (Figure 3.1), to explore how 

agricultural biodiversity can minimize the risks associated with climate 

variability (www.bioversityinternational.org/seeds-for-needs/). The main idea 

of the initiative is: if farmers have the opportunity to access better information 

and different varieties, they are better able to choose what is appropriate for 

their conditions and cope with unpredictable weather (Van Etten et al. 2016; 

van Etten 2011). The Seeds for Needs initiative addresses the issue of access 

to information and seed variety by exposing farmers to more crop varieties and 

increasing their knowledge about different traits. Since 2011, the initiative has 

been using a crowdsourcing approach called triadic comparisons of technologies 

(tricot): each farmer receives three randomly-assigned varieties from a larger 

pool of varieties, to compare with their own varieties. By carrying out these on-

farm mini-trials with a small number of varieties, many farmers can 

participate voluntarily as citizen scientists. The initiative involves farmers 

directly in evaluating and selecting varieties, and provides valuable feedback 

about preferred traits to researchers. Mobile phones are also used by the 

initiative to communicate with farmers. Weather sensors, known as iButtons, 

have been setup in farmers’ fields to record local temperature and humidity 

(Mittra et al. 2015). The collected data is compared with feedback from farmers 

on crop performance. The ClimMob data analysis software has been developed 

to help identify trends and give farmers feedback based on the collected data 

(Van Etten et al. 2016). The participation of farmers is voluntary. 

3.2.2 Study areas 

We chose India, Ethiopia and Honduras to explore the motivation of the 

farmers to participate in crop improvement trials using the crowdsourcing 

approach as citizen scientists. The main reason why we focused on these three 

countries is because of their geographical locations (in three continents) and 

duration of the Seeds for Needs initiative. The initiative has been testing the 

crowdsourcing for crop improvement trial approach in these three countries at 

least since 2013. 

3.2.2.1 India 

The Seeds for Needs initiative started with 10 farmers in 2010. The 

crowdsourcing approach was first implemented in 2012 and, within three 

years, included 15,000 rice and wheat growing farmers in 24 districts in four 

http://www.bioversityinternational.org/seeds-for-needs/
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states (Mittra et al. 2015).  For the current research, data were collected from 

300 farmers in 30 villages from Muzaffarpur (26.17° N, 85.42° E), Samastipur 

(25.86° N, 85.78° E) and Vaishali (25.99° N, 85.13° E) districts in the state of 

Bihar. 

 

Figure 3.1: Overview of countries where the Seeds for Needs initiative is 

running (lower map) and locations in Honduras, Ethiopia and India (upper 

insets) where the surveys were conducted (black polygons inside the three 

countries). 

3.2.2.2 Ethiopia 

The Seeds for Needs initiative first started in Ethiopia in 2009. From 25,000 

accessions of durum wheat and barley, 500 were short listed using Geographic 

Information System (GIS) technology and characterization. Out of this short 

list, farmers and scientists selected 50 to test for local adaptation. The 

crowdsourcing approach was first tested in two areas involving 200 farmers in 

12 villages covering 350 km2 with different climatic conditions. Currently the 

project is working with more than 1500 farmers. For our current research, data 

were collected from 94 farmers in 9 Kebele’s (smallest administrative unit) 

from Gimbichu (8.83° N, 39.17° E) and Lume districts (8.58° N, 39.17° E) of the 

Oromia Region. 
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3.2.2.3 Honduras 

The Bean Research Program at Zamorano, a private agricultural school, has 

collaborated with two local NGOs in the diffusion and evaluation of 18 

traditional and improved varieties of common bean within Seeds for Needs, 

from 2013 to 2015. Around 200 farming households in four different regions 

participated in the project. For this research, data were collected from 32 

farmers in 9 municipalities from Comayagua (14.46° N, 87.65° W), Intibucá 

(14.32° N, 88.15° W), Lempira (14.58° N, 88.58° W), Santa Barbará (14.91° N, 

88.23° W) and Yoro (15.13° N, 87.1° W) departments. 

3.2.3 Theoretical framework 

Motivation is a concept used in behavioural science to explain the “initiation, 

direction, intensity, persistence, and quality” of behaviour (Brophy 2004). We 

follow the definition by Brophy (2004), where motives are “hypothetical 

constructs used to explain why people are doing what they are doing”. 

Participation in research is necessarily participation in collective action, and 

Batson et al. (2002) proposed four types of motives for participation in activities 

with collective goals: egoism (the ultimate goal of involvement is increasing 

one’s own welfare), altruism (increasing other persons’ welfare), collectivism 

(increasing the welfare of a group one belongs to), and principlism (to uphold 

one or more moral principles). In this study, we assess the importance of these 

types of motives for farmers’ engagement in a citizen science project. 

We distinguish egoistic motivation driven by intrinsic motives, which involves 

inherent satisfaction, and extrinsic motives, which are believed to lead to some 

desirable, separable outcome (Ryan and Deci 2000a). This study applies 

incentive theory to study motivation, seeing human beings as fundamentally 

active, proactively pursuing goals, and responsive in their behaviour to 

external reinforcement, i.e., incentives (Laffont and Martimort 2001). 

Therefore, we seek to identify the most important incentives that researchers 

may set to increase farmer participation in citizen science.  

3.2.4 Survey design: Selection of motivational factors 

As starting point for this study, a literature study about the motivation of 

people to participate in different crowdsourcing and citizen science activities 

was conducted. Motivational factors identified by previous studies were used 

as a starting point to develop a questionnaire for semi-structured interviews 

(Table 3.1). 
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Table 3.1: Motivational factors identified by previous studies and used in this 

study. Typology is based on the framework of Batson et al. (2002). 

No. 
Motivational 

factors 
Code 

Type(s) of 
motivation 

References 

Mot 1 

Want to 

contribute to 

scientific 

research 

Contributing Collectivistic 

(Land-Zandstra et 

al. 2016a; Curtis 

2015; Raddick et al. 

2013; Raddick et al. 

2010; Holohan and 

Garg 2005). 

Mot 2 
Wish to pass 

free time (fun) 
Pastime 

Egoistic 

(Intrinsic) 

(Schunko et al. 

2015; Curtis 2015; 

Raddick et al. 2010; 

Brabham 2008). 

Mot 3 

Interest in 

sharing 

information 

Sharing 

info 

Egoistic 

(Intrinsic) 
(Land-Zandstra et 

al. 2016a). 

Mot 4 

Expectation of 

something in 

return 

Expectation 
Egoistic 

(Extrinsic) 

(Johnson et al. 

2014; Holohan and 

Garg 2005). 

Mot 5 

Interest in 

networking 

with experts 

Expert 

interaction 

Egoistic 

(Extrinsic) 
(Rotman et al. 2012). 

Mot 6 

Interest in 

networking 

with other 

community 

members 

Community 

interaction 

Egoistic 

(Extrinsic) 

(Schunko et al. 

2015; Johnson et al. 

2014; Raddick et al. 

2010; Brabham 

2010; Krebs 2010; 

Brabham 2008). 

Mot 7 

Wish to help 

the 

researcher(s) 

Helping Altruistic 

(Curtis 2015; 

Rotman et al. 2012; 

Raddick et al. 2010; 

Krebs 2010; Batson 

et al. 2002). 

We interviewed farmers about their motivation to participate in the citizen 

science project using a semi-structured interview format. We asked farmers 

whether they were interested in continuing participation in the future, and to 

elaborate their answer. Then, we presented the seven potential motivational 

factors for participation (Table 3.1), including intrinsic and extrinsic egoistic, 

as well as collectivistic and altruistic motivational factors, and asked for the 
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level of importance of each motivational factor for their personal motivation to 

participate in crop variety  trials. 

In addition, three open questions about motivation were included in the survey. 

Firstly, respondents were given the opportunity to express additional 

motivational factors that were not included in the options. Secondly, farmers 

who had ranked motivational factor 4 (I participate because I expect something 

in return from the expert) “Important” or “Very important” were asked to 

specify the incentives they expected from the expert or from the citizen science 

process.  

Lastly, farmers were asked whether they would expect a reward (Yes/No) for 

sharing farm information in the future. Respondents answering “Yes” were 

asked to specify the type of preferred reward they would like to receive. The 

latter question was asked only in India and Ethiopia. 

3.2.5 Data collection 

In 2014 and 2015, we conducted 426 face-to-face structured interviews in three 

countries; India (300), Ethiopia (94), and Honduras (32). In India, farmers who 

had participated in more than two growing seasons were selected and data 

collection was carried out by junior agronomists working for Bioversity 

International-India. In Ethiopia, researchers and agricultural extension 

workers of the Ethiopian Biodiversity Institute selected the farmers for 

interview, giving preference to individuals who had participated in the trials 

for more than one growing season. The first author conducted the interviews 

together with project team members of the Ethiopian Biodiversity Institute. In 

Honduras, farmers were selected by local NGO extension workers, and the 

second author carried out the interviews. The selection of participants was 

determined by ongoing activities of the local NGO and no explicit criteria were 

used to select farmers. 

During the structured interview, motivational factors (Table 3.1) were read to 

each farmer one by one in their local language and each farmer was asked to 

mark if they apply to his/her personal motivations for participation in the 

crowdsourcing for crop improvement trials. Farmers were asked to rank the 

motivational factors using Likert scales with the values 1 (“Not important at 

all”), 2 (“Not important”), 3 (“Neutral”), 4 (“Important”) and 5 (“Very 

important”). Farmers’ characteristics (age, education level, head of household 

(Yes/No) and gender) and use of mobile phones were also collected during the 

interview (see S1 Appendix for a complete list of questions). 
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3.2.6 Data analysis 

3.2.6.1 Quantitative data analysis 

Data were first analysed by frequencies and percentages. Comparisons of 

motivational factors within each of the three countries were performed using 

Friedman’s test, a non-parametric model used to test for differences between 

groups across multiple conditions. This was followed by post-hoc pairwise 

comparisons using the Wilcoxon signed-rank test. Comparisons of motivational 

factors between the three countries were performed using the Kruskal-Wallis 

test followed by post-hoc pairwise comparisons using the Dunn-Bonferroni 

approach. The Kruskal-Wallis test is a non-parametric statistical test that 

assesses differences among three or more independently sampled groups on a 

single, non-normally distributed continuous variable (Kruskal and Wallis 

1952). The test can deal with non-normally distributed data (e.g., ordinal or 

rank data) (McKight and Najab 2010). For both tests, the level of significance 

was set at 0.05 and Bonferroni adjustment was used to account for multiple 

comparisons (Rice 1989). 

 

Principal Component Analysis (PCA) was used to group the motivational 

factors into smaller sets of groups and also to assess the correlation between 

the motivational factors. We determined how different types of motivation can 

be explained with farmers’ characteristics (gender, age, education level, 

household head (Y/N) and country) using Generalized Linear Models (GLM). 

To create the GLMs, we chose the linear model type, included only main effects, 

and selected Type III analyses, Wald statistics, and a significance level of p = 

0.05 for identifying significant relations.  

 

In addition, Redundancy analysis (RDA) was used to identify the most 

important farmers’ characteristics that explain the variation of farmers’ 

motivations in the three countries. RDA can assess how much of the variation 

in the motivational factors values can be explained by the farmers’ 

characteristics. The suitability of RDA was first identified by a detrended 

correspondence analysis (DCA) to obtain the gradient length of response 

variables (Šmilauer and Lepš 2014). The linear ordination method (RDA) was 

suggested because of the small gradient length (0.8 SD). By using the manual 

forward selection procedure of Canoco advisor (an expert system built into 

Canoco 5) (Šmilauer and Lepš 2014), the statistical significance of each of the 

farmers’ characteristics included in the model was calculated by performing 

Monte Carlo permutation tests (499 unrestricted permutations), testing 

against the null hypothesis that the factor does not add to the explanation of 

the motivation data. In this stepwise selection, we chose factors with a 

threshold of p < 0.05 for retention in the model. Moreover, the score scaling 
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type was set to focus on response variable correlations, and response variable 

scores were divided by standard deviations (Šmilauer and Lepš 2014).  

 

The relative relationship between motivational factors (response variables) 

and farmers’ characteristics (explanatory variables) were demonstrated using 

triplot diagrams. In the RDA triplot, the correlation between motivational 

factors and farmers’ characteristics is given by the cosine of the angle between 

the two vectors (Šmilauer and Lepš 2014). Vectors crossing at right angles 

indicate a near zero correlation, vectors pointing in the same direction indicate 

a positive correlation, while vectors pointing in opposite direction show a high 

negative correlation.  

For the last three analyses (i.e., for GLM, PCA and RDA) normalized Likert 

scale data were used. Missing values were treated as missing listwise in the 

calculations. All non-parametric tests and GLMs were performed using SPSS 

version 22 and multivariate analyses (PCA and RDA) were performed using 

Canoco 5. 

3.2.6.2 Qualitative data analysis 

To identify the main motives, effective incentives and farmers’ expectations 

from experts, the responses from the open-ended survey questions were 

subjected to a qualitative content analysis method. The open-ended survey 

questions about farmers’ additional motivations, expectations and types of 

rewards farmers would like to receive for sharing agronomic information were 

analysed qualitatively. This analytical approach involves a close examination 

of textual data, which is explored inductively for emerging themes relating to 

the same central meaning (Graneheim and Lundman 2004). These themes 

were grouped into coding units, counted and presented graphically. Responses 

from open-ended questions were analysed using Atlas.ti 7 (Muhr 1991). 

3.2.6.3 Mobile phone usage 

Farmers’ current and preferred use of mobile phone was analysed using 

frequency and percentage analysis. 

3.2.7 Ethical Statement 

Prior to beginning of the study, approval was obtained from both the 

Laboratory of Geo- information Science and Remote Sensing—Wageningen 

University, The Netherlands and Bioversity international Seeds for Needs 

initiative scientific project leaders. Our university does not require prior ethical 

approval from the Social Sciences Ethics Committee for a study like this. The 

people who are asked to participate are not specifically vulnerable, and the 

interview questions were not sensitive. Oral informed consent was obtained 
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from all respondents, who were already participating in the ongoing broader 

Seeds for Needs project. In Ethiopia, following the ABS proclamation 482-2006 

of the Ethiopian government, farmers were interviewed after getting the 

necessary permission from local agricultural office administrators. 

3.3 Results 

3.3.1 Quantitative analysis 

3.3.1.1 Demography of farmer communities 

The average age of the respondents in the three countries was similar; 

respondents were 47 years old on average (standard deviation (SD) = 12, range: 

14–80 years) (Table 3.2). The majority of the respondents were male (83%). 

Furthermore, 90.8% of the respondents were head of the household. The 

respondents had different educational levels. Indian farmers in our sample 

were more educated than Ethiopian and Honduran farmers. 

Table 3.2: Demographic characteristics of the surveyed farmers in the three 

countries. 

Variable 
India 

(n=300) 

Ethiopia 

(n=94) 

Honduras 

(n=32) 

Average age ± SD 47 ± 13 48 ± 11 46 ± 14 

Gender Count % Count % Count % 

     Male 238 79 85 90 29 91 

     Female 62 21 9 10 3 9 

Education level Count % Count % Count % 

     Illiterate 58 19.4 15 16.0 3 9.4 

     Can read & write 84 28.0 41 43.7 5 15.6 

     Primary school 3 1.0 24 25.5 15 47.0 

     Secondary school 118 39.3 14 14.8 0 0 

     Higher education 34 11.3 0 0 0 0 

     Missing 3 1.0 0 0 9 28.0 

Household head Count % Count % Count % 

     Yes 263 87.7 93 98.9 31 96.9 

     No 31 10.3 1 1.1 1 3.1 

     Missing 6 2.0 0 0 0 0 
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3.3.1.2 Comparison of motivational factors within each country 

Among Indian farmers, the average response rates for the motivational factors 

‘Sharing info’, ‘Expectation’, ‘Expert interaction’, ‘Community interaction’ and 

‘Helping’ were similar (average score ranging from 4.38 to 4.52) (Figure 3.2). 

However, the value of the motivational factor ‘Helping’ was significantly higher 

than ‘Sharing info’ (Table 3.3). The Indian farmers valued their participation 

to ‘Contributing’ (4.86) significantly higher and ‘Pastime’ (3.66) was valued 

significantly less compared to the other motivational factors (Figure 3.2 and 

Table 3.3). 

 

Figure 3.2: Motivational factors of farmers in the three countries (India, 

Ethiopia and Honduras) to participate in the crop improvement trials as citizen 

scientists. 

Among Ethiopian farmers, the motivational factor ‘Sharing Info’ was valued 

significantly higher and ‘Pastime’ was valued significantly less compared to the 

other motivational factors (Figure 3.2 and Table 3.3). After ‘Sharing info’, the 

motivations to ‘Helping’ and ‘Contributing’ were valued highest but not 

significantly different from ‘Expert interaction’ (Table 3.3). In addition to these 

two, ‘Helping’ and ‘Expert interaction’ were valued significantly higher than 

‘Community interaction’. ‘Expectation’ was valued lowest after ‘Pastime’ and 

‘Community interaction’, but the value was not significantly different from 

‘Expert interaction’ and ‘Community interaction’. 
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Results for Honduras were similar to Ethiopia. Also here, ‘Sharing info’ was 

valued highest, ‘Contributing’ second and, ‘Pastime’ lowest (Figure 3.2 and 

Table 3.3). The average rates for the motivational factors ‘Expert interaction’, 

‘Community interaction’, ‘Helping’ and ‘Expectation’ were in between and 

similar (average score ranging from 3.38 to 4.13) (Figure 3.2). The high value 

for ‘Contributing’ and low value for ‘Pastime’ was also found in India, while 

‘Sharing info’ was valued less in that country. 

3.3.1.3 Comparison of motivational factors between countries 

The results of the Kruskal-Wallis test show that the importance of different 

motivations differed between the three countries for all motivational factors 

(Table 3.4). Post-hoc pairwise comparisons using the Dunn-Bonferroni test 

revealed a large number of significant differences. For farmers in India 

‘Contributing’ and ‘Pastime’, were more important than for farmers in Ethiopia 

and Honduras (Figure 3.2 and Table 3.4). Ethiopian farmers found ‘Sharing 
info’ more important for their motivation than Indian farmers, while the 

difference between Honduras and India was not significant. ‘Expectation’ was 

valued higher by farmers in India than farmers in Honduras and the difference 

with Ethiopia was almost significant. Also ‘Expert Interaction’ was more 

motivating for Indian farmers than for Honduran farmers, and ‘Community 
Interaction’ was more motivating in India than in Ethiopia. Extrinsic egoistic 

motivations (Table 3.1) were thus more important in India than in Honduras 

and Ethiopia. Lastly, ‘Helping’ was more motivating to Indian and Ethiopian 

farmers than to Honduran farmers. 
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Table 3.3: Differences of the motivational factors of farmers within each of the three countries’ using Friedman's 

test and post-hoc Wilcoxon signed-rank test. For codes of motivational factors see Table 3.1. 

Comparisons 

India Ethiopia Honduras 

N T r p-

Value 

N T r p-

Value 

N T r p- 

Value 

Contributing –  Pastime 282 12.23 0.45 0.000** 94 3331.5 0.57 0.000** 32 465 0.61 0.000** 

Contributing –  Sharing 281 5409 0.37 0.000** 94 762 0.24 0.001** 32 58.5 0.22 0.083 

Contributing –  Expectation 276 3917.5 0.02 0.000** 94 1022.5 0.22 0.002** 30 220.5 0.40 0.002** 

Contributing –  Expert interaction 284 3424 0.31 0.000** 94 455 0.09 0.206 31 92 0.25 0.049 

Contributing –  Community 

interaction 
280 4471 0.35 0.000** 94 1205.5 0.27 0.001** 32 209.5 0.29 0.021 

Contributing –  Helping 282 4087.5 0.33 0.000** 94 414.5 0.01 0.950 31 116 0.32 0.011 

Pastime – Sharing 279 5.39 0.34 0.000** 94 3734 0.62 0.000** 32 496 0.62 0.000** 

Pastime – Expectation 274 8.09 0.38 0.000** 94 1956 0.50 0.000** 30 264 0.5 0.000** 

Pastime – Expert interaction 282 8.68 0.37 0.000** 94 3299 0.56 0.000** 31 435 0.61 0.000** 

Pastime – Community interaction 279 8.43 0.36 0.000** 94 2365 0.47 0.000** 32 431.5 0.59 0.000** 

Pastime – Helping  281 8.85 0.40 0.000** 94 3705.5 0.57 0.000** 31 322.5 0.55 0.000** 

Sharing – Expectation 273 1316.5 0.06 0.169 94 1004.5 0.38 0.000** 30 149.5 0.45 0.000** 

Sharing – Expert interaction 281 1807 0.09 0.038 94 835 0.30 0.000** 31 121 0.38 0.003 

Sharing – Community interaction 278 2105.5 0.04 0.402 94 1347 0.42 0.000** 32 167.5 0.38 0.002** 

Sharing – Helping 279 1818.5 0.14 0.000** 94 625 0.25 0.001** 31 120 0.44 0.001** 

Expectation – Expert interaction 276 1147 0.03 0.461 94 894 0.21 0.004 30 179 0.29 0.023 

Expectation – Community interaction 273 1376.5 0.04 0.419 94 721 0.02 0.766 30 124 0.22 0.090 

Expectation – Helping 275 903 0.07 0.086 94 1151 0.24 0.001** 29 132 0.2 0.125 

Expert interaction – Community 

interaction 
280 993 0.08 0.054 94 699.5 0.23 0.002** 31 76 0.12 0.341 

Expert interaction – Helping 286 967 0.02 0.689 94 480.5 0.09 0.196 30 68 0.21 0.109 

Community interaction – Helping 279 1205 0.10 0.027 94 807 0.30 0.001** 31 139.5 0.11 0.392 
*: Difference within a country was statistically significant at (P<0.05).  
** : Statistically significant difference detected at P = 0.002 (after Bonferroni adjustment for multiple comparisons) 

N: total number of respondents, T: test statistics for Wilcoxon signed-rank test, r: effect size 
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Table 3.4: Comparisons of motivational factors of farmers between the three 

countries using the Kruskal-Wallis test followed by pairwise comparisons 

using the Dunn-Bonferroni test. 

Motivational 

factor 
N 

Kruskal-Wallis test 
Pairwise comparisons using Dunn-

Bonferroni test 

H df 
p-

Value 
 

p-

Value 
r 

Contributing 410 39.15 2 0.000* 

India–Ethiopia 0.000** -0.28 

Ethiopia–Honduras 1.000 0.04 

India–Honduras 0.000** -0.22 

Pastime 408 152.47 2 0.000* 

India– Ethiopia 0.000** -0.58 

Ethiopia–Honduras 1.000 -0.03 

India–Honduras 0.000** -0.38 

Sharing info 407 18.09 2 0.000* 

India–Ethiopia 0.000** 0.21 

Ethiopia–Honduras 1.000 0.07 

India–Honduras 0.259 0.09 

Expectation 400 14.68 2 0.001* 

India–Ethiopia 0.059 -0.12 

Ethiopia–Honduras 0.236 0.16 

India–Honduras 0.002** -0.19 

Expert 

interaction 
409 8.56 2 0.014* 

India–Ethiopia 0.561 -0.07 

Ethiopia–Honduras 0.220 0.16 

India–Honduras 0.016** -0.16 

Community 

interaction 
406 18.303 2 0.000* 

India–Ethiopia 0.000** -0.21 

Ethiopia–Honduras 1.000 -0.03 

India–Honduras 0.081 -0.13 

Helping 407 12.92 2 0.002* India–Ethiopia 1.000 -0.01 

     
Ethiopia–Honduras 0.004** 0.28 

India–Honduras 0.001** -0.20 
*: Difference between the three countries was statistically significant at (P = 0.05). 
** : Statistically significant difference detected at p = 0.017 (after Bonferroni adjustment for 

multiple comparisons) 

N: total number of respondents, H: test statistics for Kruskal-Wallis test, df: degree of freedom,      

r: effect size 

3.3.1.4 Relationships among motivational factors 

The result of the PCA of motivational factors revealed four components. The 

four components explained 81.7% of the variance (S2 Appendix A). The first 

two main components explained most of the variance (56.5%) in the 

motivational factors. The first component accounted for 35% of the variance 

and comprised of four factors (‘Sharing info’, ‘Helping’, ‘Contributing’ and 

‘Pastime’ (Figure 3.3). While ‘Sharing info’, ‘Helping’, and ‘Contributing’ 

contribute positively to this component, ‘Pastime’ was negatively related. The 

http://journal.frontiersin.org/article/10.3389/fmicb.2012.00045/full#F1
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second component accounted for 21.5% of the variance and mainly associated 

with ‘Expectation’, ‘Expert interaction’ and ‘Community interaction’ and all 

were negatively related to the second component. The first component also 

reflects what was observed earlier: the generally high importance of ‘Sharing 
info’, ‘Helping’ and ‘Contributing’ and lower importance of ‘Pastime’. 

The vectors of the motivational factors ‘Sharing info’, ‘Helping’ and 

‘Contributing’ point in the same direction, indicating a strong positive 

correlation between these three motivational factors (Figure 3.3). The 

correlation was specifically strong between ‘Sharing info’ and ‘Helping’. This 

implies that farmers who were motivated to share information were also 

motivated to help researchers and contribute to scientific research and vice 

versa. On the other hand, the negative relation between the factors ‘Sharing 
info’, ‘Helping’ and ‘Contributing’ and ‘Pastime’ vectors, suggests that farmers 

who were motivated either to contribute to scientific research, to help  

researchers or had an interest in sharing information did not consider their 

participation as a pastime activity. The vectors of the motivational factors 

‘Expectation’, ‘Expert interaction’ and ‘Community interaction’ points in the 

same direction, suggesting a strong positive correlation among these three 

motivational factors (Figure 3.3). Some vectors (‘Pastime’ and ‘Expectation’; 

‘Contributing’ and ‘Expert interaction’) cross nearly at right angle, suggesting 

a near zero correlation. The centroids of the supplementary variable (country) 

were closer for Ethiopia and Honduras than for India. This indicates that there 

was more similarity between Ethiopia and Honduras compared to India. 
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Figure 3.3: Triplot diagram showing the result of the PCA analysis of 

motivational factors using country as a supplementary variable (filled circle) 

together with samples from the three countries. The blue (dashed) vectors 

represent motivational factors. The circles (unfilled), triangles and squares 

represent samples from India, Ethiopia and Honduras, respectively.  

3.3.1.5 Relationship between motivational factors and farmers’ 
characteristics 

The relationship between each of the motivational factors and farmers’ 

characteristics was examined using Generalized Linear Models (GLM). For 

educated farmers (Regr B = 0.009; p = 0.000), contributing to scientific research 

was a more important factor to participate as citizen scientists compared to 

less educated farmers (Table 3.5). Women (Regr B =0.020; p = 0.004) and less 
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educated farmers (Regr B = -0.008; p = 0.000) valued their participation as 

‘Pastime’ activity more than men and educated farmers. The relationship 

between gender and the motivational factor ‘Sharing info’ was almost 

significant (Regr B = -0.010; p = 0.068). This suggests that female farmers were 

less interested in sharing information compared to men farmers.   

 

Redundancy Analysis (RDA) was used to identify the most important farmers’ 

characteristics that explain the variation in the set of motivational factors 

(Figure 3.4). After stepwise forward selection by RDA, only two farmers’ 

characteristics, country and education level, were retained (p < 0.05, tested by 

Monte Carlo permutation). The factors country and education level explained 

15% and 5% of the variation in the motivational factors respectively. The 

education level vector points in the same direction as the motivational factor 

‘Contributing’ vector indicating a positive correlation between education level 

and farmers motivation to contribute to scientific research (Figure 3.4). On the 

other hand, the vector of education level points roughly in an opposite direction 

to the motivational factor ‘Pastime’ vector. This indicates that there was a 

negative correlation between education level and the motivational factor 

‘Pastime’. The vectors of the explanatory factor education level and the 

motivational factor ‘Sharing info’ cross nearly at right angle, suggesting a near 

zero correlation. These results also confirm what was observed earlier in the 

GLM analysis results (Table 3.5). 

Table 3.5: Generalized linear model showing relationship between 

motivational factors and farmers’ characteristics using pooled data from the 

three countries. 

Motivational 

factors 

Gender 

(Male, Female) 

Age 

(in years) 

Education 

level 

Household 

Head  

(Yes, No) 

Regr 
Ba 

P-
Value 

Regr 
B 

P-
Value 

Regr 
B 

P-
Value 

Regr 
B 

P-
Value 

Contributing 0.006 0.135 0.000 0.172 0.009 0.000* 0.007 0.247 

Pastime 0.020 0.004* 0.000 0.438 -0.008 0.000* 0.011 0.283 

Sharing Info -0.010 0.068 -0.000 0.717 -0.003 0.115 -0.004 0.637 

Expectation 0.008 0.159 0.000 0.965 0.001 0.627 -0.005 0.511 

Expert 

Interaction 
-0.005 0.231 0.000 0.344 0.002 0.218 -0.003 0.613 

Community 

Interaction 
-0.004 0.458 0.000 0.297 0.001 0.428 -0.006 0.409 

Helping -0.007 0.107 0.000 0.156 0.001 0.596 -0.008 0.221 
a: Regression Coefficient B; * significant at 0.05 significance level. 
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Figure 3.4: Triplot diagram showing the result of the RDA analysis of 

motivational factors and farmers’ characteristics together with samples from 

the three countries. The blue (dashed) vectors represent motivational factors, 

green (solid) vector denotes the explanatory factor, education level and 

triangles (filled) represent the nominal explanatory variable, country. 

3.3.2 Qualitative analysis 

3.3.2.1 What do farmers expect in return from the citizen science process 
(‘Expectation’)? 

We asked farmers who had responded “Important” or “Very important” to the 

motivational factor ‘Expectation’ to specify their expectations. The main 

returns which farmers expect to receive from the citizen science process for 

participation in the crop improvement trials were: agronomic advice (e.g., weed 
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management), capacity building (e.g., training) and seed innovation (e.g., 

improved seed) (Figure 3.5). In Ethiopia, 33% of the farmers expected to receive 

agronomic advice. For farmers in Honduras, capacity building was the most 

important factor (50%), while in India, seed innovation was what farmers (44%) 

expected to receive. Production inputs (e.g., fertilizers) were expected by 9.4% 

of farmers in Honduras. Only in India, a few farmers mentioned that they 

would like to receive money (1%) and weather information (1%) in return. 

Around 3% of the farmers in India and Honduras and around 2% of the farmers 

in Ethiopia indicated that they expected to receive research results from the 

trials they participated in. 

 

Figure 3.5: Factors which farmers expected from the citizen science process in 

return for their participation. 

3.3.2.2 Additional motivations 

Farmers were also asked for any additional motivations than the pre-defined 

motivations (Table 3.1) using an open-ended question. In Ethiopia, 24.5% of 

the farmers mentioned production inputs (e.g., receive pesticides) as one of 

their motivations to participate in the crop improvement trials (Figure 3.6). 

Moreover, both expert recommendation and the desire for improved production 

were mentioned by 16% of the farmers. Beneficial previous experiences from 

research and capacity building were mentioned by 12.8% and 8.5% of the 

Ethiopian farmers respectively. The desire for improved production (21.9%) 

and capacity building (25%) were the two most mentioned motivations for 
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farmers in Honduras. Seed innovation was the most mentioned motivation by 

Indian farmers (10%). Around 1% of Ethiopian and 3% of Honduran farmers 

had the desire to help the researcher to accomplish his/her task. 

 

Figure 3.6: Additional motivations to participate in crop improvement trials 

using the crowdsourcing approach. 

3.3.2.3 What reward farmers expect for sharing agronomic information? 

The types of reward farmers would like to receive for sharing their agronomic 

information in the future was also identified using an open-ended question. 

Around 50% of the farmers in India and 44% in Ethiopia indicated that they do 

not expect any reward for sharing their agronomic information (Figure 3.7). 

However, around 42% of the farmers in Ethiopia indicated that they would like 

to receive agronomic information in return as a kind of reward. In India, the 

farmers that did indicate they expect reward, expected either seed innovation 

(30%), capacity building (25%) or money (11%). Information related to market 

and weather were also mentioned by few farmers in Ethiopia. 
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Figure 3.7: Types of rewards farmers would like to receive for sharing 

agronomic information. 

3.3.3 Current and preferred use of mobile phones by farmers 

More than 90% of the farmers in the three countries had mobile phones (Table 

3.6). Around 59% in India, 52% in Ethiopia and 43% in Honduras “always 

maintain airtime” on their mobile phones. Making and receiving calls were the 

two most often used functions of the mobile phone in the three countries. Using 

the mobile phone to browse the internet was very low in Ethiopia (1%) and 

Honduras (4%), but also low in India (8%). A majority of the farmers in all the 

three countries preferred calls over short message service (SMS) as a medium 

for communication. Farmers in Ethiopia used their mobile phones to access 

weather and market information more than Honduran and Indian farmers. 

Ethiopian farmers mainly used the calling feature of the phone to get market 

information from non-formal information channels (e.g., local traders, brokers 

and friends). Farmers in Ethiopia (77%) also mentioned that they used their 

mobile phones to receive agricultural advice. The mobile phone was mainly 

used by the Ethiopian farmers to communicate with extension workers and 

receive information (e.g., availability of inputs) and also to get extension 

support. Farmers used their mobile phone to receive extension support in 

different stages of cultivation i.e., from pre-planting (e.g., land preparation 

advice) until harvesting (e.g., when to harvest the crop based on the weather 

condition). 
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Table 3.6: An overview of mobile phone usage variables in the three countries. 

 India Ethiopia Honduras 

Mobile phone ownership 91% 93% 93% 

Average monthly airtime 

expenditure (in average 2014 

US$) 

2.79 ± 2.18 3.58 ± 2.72 4.86 ± 3.95 

Farmers who: 

 “Always” maintain 

airtime 
59% 52% 43% 

 “Sometimes” maintain 

airtime 
35% 46% 39% 

 “Never” maintain 

airtime 
6% 2% 18% 

Used functions of the mobile phone 

 Making calls 99%  100% 96% 

 Receiving calls 99.5%  100% 96% 

 Sending SMS messages 31% 15% 30% 

 Reading SMS messages 40% 20% 32% 

 Taking pictures 20% 5% 36% 

 Using Internet 8% 1% 4% 

Use mobile phone for personal 

calls 
96% 100% 75% 

Use mobile phone to get: 

 Market and weather 

information 
43% 66% 21% 

 Agricultural advice 37% 77% 21% 

Able to read and understand 

SMS message 
87% 21% 85% 

Preferred information medium 
for future citizen science 
communication: 

   

 SMS 1% 8% 7% 

 Calls 76% 87% 68% 

 No preference 23% 5% 25% 

3.4 Discussion 

To increase the understanding of farmers’ motivation to participate in citizen 

science projects, we have interviewed 426 smallholder farmers in India, 

Ethiopia and Honduras as part of the “Seeds for Needs” initiative. 
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3.4.1 Country-by-country analysis 

For Indian farmers, the collectivistic (increasing the welfare of a group that one 

belongs to) type of motivation (i.e., ‘Contribute to scientific research’) was 

valued more important than egoistic and altruistic motivation types (Figure 

3.2 and Table 3.3). This means that Indian farmers valued their contribution 

to scientific research more than their participation to receive something in 

return (egoistic extrinsic) and interest in sharing information (egoistic 

intrinsic). The altruistic type of motivation ‘Helping’ and egoistic extrinsic type 

of motivation ‘Expert Interaction’ were the second and third important factors 

for Indian farmers respectively.  

For Ethiopian farmers, the egoistic intrinsic type of motivation (‘Sharing info’) 

was valued more than collectivistic, altruistic and egoistic extrinsic types of 

motivations (Figure 3.2 and Table 3.3). The altruistic type of motivation 

‘Helping’ and collectivistic type of motivation ‘Contributing’ were the second 

and third important factors for Ethiopian farmers respectively. Like Ethiopian 

farmers, for Honduran farmers, the egoistic intrinsic type of motivation 

(‘Sharing info’) was valued more important than collectivistic, altruistic and 

egoistic extrinsic types of motivations (Figure 3.2 and Table 3.3). The 

collectivistic type of motivation ‘Contributing’ and egoistic extrinsic type of 

motivation ‘Expert Interaction’ were the second and third important factors for 

Honduran farmers respectively. The difference in motivations of farmers 

between the three countries suggests that future citizen science projects 

targeting the farming community in developing countries might need to 

consider different approaches to attract and retain farmer citizen scientists. 

Factors that motivate farmers in a specific country might not necessarily 

motivate farmers in another country. 

3.4.2 Comparisons between countries 

Comparison of motivational factors between the three countries revealed that 

Indian farmers valued their contribution to scientific research (‘Contributing’) 

more than Ethiopian and Honduran farmers, making ‘Contributing’ a more 

salient motivator for Indian farmers (Figure 3.2 and Table 3.4). This might be 

because our sampled farmers in India are more educated (Table 3.2) and hence, 

have better understanding and perception of their participation to contribute 

to scientific research. Participation to ‘Contributing’ was still the second and 

third most important motivational factor for Honduran and Ethiopian farmers, 

respectively. This indicates that the motivational factor ‘Contributing’ is in 

general an important factor for farmers in all the three countries to participate 

as citizen scientists.  
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For Ethiopian and Honduran farmers, ‘Interest in Sharing information’ was 

the first ranked motivational factor. By sharing their (mostly agronomic) 

information, farmers thought that they would receive expert advice on how to 

improve their crop production. As revealed from the open-ended questions 

(Figure 3.5), 33% of Ethiopian and 25% of Honduran farmers would like to 

receive agronomic advice for their participation as citizen scientists’. In order 

to achieve this need of farmers, sharing their agronomic information with 

experts or researchers is necessary. Besides, for experts to deliver helpful 

agronomic advice for the farmers, receiving information from farmers about 

the different agronomic practices performed in the farmers’ fields and socio-

economic conditions of the farmers helps to provide a set of site-specific 

agronomic advices (Car et al. 2012; Antonopoulou et al. 2010; Reddy and 

Ankaiah 2005; Bernet et al. 2001). In the context of variety selection, receiving 

information from farmers about their variety preferences can be used by agro-

dealers and provide preferred seed varieties to farmers in the following 

cropping season.  

 

For both Ethiopian and Indian farmers, the motivational factor ‘Helping’ was 

the second ranked motivational factor. The direct reason or ultimate goal for 

this can be because farmers in Ethiopia and India have the desire to help 

researchers or experts to accomplish their tasks. However, these farmers also 

might have thought, if they help the researchers or experts to get their job done, 

researchers or experts in return will help them when they have problems (e.g., 

visiting an agronomic expert when a farmer has an urgent  question). 

According to Batson et al. (2002), a goal can be either ultimate or instrumental. 

An ultimate goal is the valued state the individual is seeking to reach, while 

the instrumental goals are sought as they act as stepping stones to one’s 

ultimate goals. In this situation, farmers might use the opportunity of ‘Helping’ 

as a stepping stone to their ultimate goals. In this case, the ultimate goal of 

farmers is to produce better yield and for this they need expert advice for the 

different problems they might face over the growing season. 

3.4.3 Generalization and reliability of results 

The study was exploratory and, as such does not claim to statistically represent 

farmers in all the three countries (e.g., in terms of age and gender). However, 

the findings give insights on motivations that are likely to be common among 

smallholder farmers in Ethiopia, India and Honduras. 

 

An earlier exploratory study, by Johnson et al. (2014), assessed the motivation 

of citizen science volunteers in India to participate in wildlife conservation 

projects, and one of the motivations to participate was ‘concern to the 

environment and wildlife conservation’. This motivation can be categorized 
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under the theme “collectivistic motivation” (Batson et al. 2002), which was also 

important for Indian farmers in our study. The study of Rotman et al. (2014) 

showed the importance of ‘personal interests’ for volunteers to participate in 

citizen science projects in Costa Rica. In our study, Honduran farmers valued 

their participation to ‘share information’ mainly with experts and would like to 

receive feedback in return (egoistic). Getting similar results both from 

volunteer citizen scientists in Costa Rica and Honduras highlights that there 

is some sort of similarity for people to participate in citizen science in central 

America. In general, the more studies that will be performed, in the more 

regions, the more can be said about generalization of results. 

We took several precautions to ensure good data quality and responsiveness of 

the farmers. These included adhering a similar approach in the three countries 

where the study was conducted, having the interviewer being assisted by local 

people to make the farmers comfortable, and using a well-developed 

methodology used by previous studies (Table 3.1). In order to cross-check the 

answers provided by the farmers, the use of role-playing games might be used 

in future studies. Letting the farmers play games, designed to capture the 

motivation of a farmer to participate in citizen science, might be used to 

triangulate what has been said during the interview. For example, the study 

of Villamor et al. (2017) used role-playing games to identify gender-specific 

preferences for annual crops and tree-based agroforestry systems, and the 

underlying motivation of those preferences. 

3.4.4 Comparison with other citizen science applications  

The nature of the Seeds for Needs initiative is different from most other citizen 

science projects in that it works with smallholder farmers in developing 

countries. Therefore, we discuss if the findings of other studies on the role of 

motivation in citizen science can be generalized to this type of citizen science.  

 

The finding that citizen scientists in Seeds for Needs have a high motivation to 

contribute to science (‘Contributing’) is in line with many other studies of 

citizen science projects in applications related to astronomy (Raddick et al. 

2013; Raddick et al. 2010), in understanding the three-dimensional structures 

of protein (Foldit, example of citizen science game (Curtis 2015)), in measuring 

aerosols using smartphones (e.g., iSPEX; Land-Zandstra et al. 2016a), in 

health (Land-Zandstra et al. 2016b; Grid 2013) and in collaborative distributed 

computing projects (Holohan and Garg 2005). In ecology-based citizen science 

projects, Rotman et al. (2012) found that egoism (one’s own welfare) was the 

most important motivational factor during initial participation. We also found 

the same result (egoistic intrinsic i.e., ‘Sharing Info’) for both Ethiopian and 

Honduran farmers. However, Indian farmers had a more collectivistic 

motivation (‘Contributing’) at the start of their participation. 
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Although reasons such as enjoyment of the activity (‘Pastime’) can be an 

important reason to participate in other citizen science projects (Curtis 2015; 

Schunko et al. 2015), it was not particularly an important motivational factor 

for farmers in the three countries who participated in the “Seeds for Needs” 

initiative. Possibly, the close relation of the project with the professional 

activities of the participants might have created the difference here. Unlike 

other citizen science projects that include going outdoors to explore and record 

observational data in nature (e.g., bird watching;  Sullivan et al. 2009), for the 

smallholder farmers, testing the different seed varieties on their farming 

condition is crucial for their livelihood. Seed is an important production input 

for farmers and they would like to participate and perform variety selection as 

part of their main task, not as a ‘Pastime’ activity. However, there is a variation 

between the farmers in the three countries on how they perceive the 

motivational factor ‘Pastime’. Indian farmers significantly scored higher than 

Ethiopian and Honduran farmers on the motivational factor ‘Pastime’ (Figure 

3.2 and Table 3.4). This indicates that there are still some farmers who enjoyed 

their participation as citizen scientists more than others and these farmers 

might be important agents to promote citizen science locally in the future. The 

study of Johnson et al. (2014) discussed that when citizens are interested in 

one or more environmental issues, they seek out citizen science opportunities 

to gain expertise through participation and diffuse acquired skills and 

knowledge to peers through social networks, education of other non-scientist 

citizens.   

 

The lower scoring of the motivational factor ‘Pastime’ by the farmers might also 

be that farmers may have interpreted this as being about “funny fun”, and not 

about “serious fun” (e.g., the difference between card playing and enjoying our 

job). Even though farmers scored low for ‘Pastime’ compared to the other 

motivational factors, this does not mean that enjoyment should not be an 

important ingredient in designing a future digital citizen science system. It 

could also be that the citizen science in this project was ‘not fun enough’. 

In all the three countries, the motivational factor ‘Community interaction’ was 

valued less by farmers for their participation (Figure 3.2 and Table 3.3). This 

might be because farmers mostly test the different varieties in their own fields 

and farmers did not have much opportunity to interact with other farmers 

during the variety selection process. However, social interaction was an 

important motivational factor for other citizen science projects (Raddick et al. 

2013; Holohan and Garg 2005). This could also point to the fact that farmers 

in our study areas conceive their productive activities as centered on the 

household and not the community, which may explain the difficulty of 

community-based approaches to participation in agricultural projects (e.g., 

Misiko 2013).  Also, motivational factors may change over time (Rotman et al. 
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2012). It remains to be seen if citizen science projects have the potential of 

strengthening local communities around agricultural experiments. 

3.4.5 Grouping of farmers based on motivations 

The result of the PCA showed that motivational factors in the same category 

i.e., from egoistic extrinsic type such as ‘Expectation’, ‘Expert interaction’ and 

‘Community interaction’ were positively correlated (Figure 3.3). The strong 

correlation between these extrinsic motivations indicates that there was a 

group of farmers who were motivated extrinsically. On the other hand, the 

positive strong correlation among the motivational factors from different 

motivation types ‘Sharing info’ (egoistic intrinsic), ‘Helping’ (altruistic) and 

‘Contributing’ (collectivistic) indicate another group of farmers who 

participated because they had different types of motivations. This indicates 

that  many farmers did not have only one type of motivation to participate; 

rather they had different types of motivations. Similar results i.e., people 

having different types of motivations to participate in citizen science were also 

found in other studies (Curtis 2015; Raddick et al. 2010). Motivational factors, 

‘Pastime’ and ‘Sharing info ’ both egoistic intrinsic, were oppositely valued by 

the farmers. This indicates that farmers’ motivations need to be assessed as 

specific as possible rather than generalize it under major motivation types. If 

the citizen science approach had to tailor to different groups of farmers with 

different motivations, these two groupings of farmers can be used to divide the 

farmers into major groups that can be handled differently.    

3.4.6 Effects of farmers’ characteristics on farmers’ motivations 

The relationship between motivational factors and farmers’ characteristics 

using redundancy analysis revealed that country is a main factor explaining 

the variation in the motivations of the farmers (Figure 3.4). This might be 

because of cultural differences between the three countries. An in-depth 

comparison of cultures is beyond the scope of this paper. However,  for example 

according to the Hofstede's cultural dimensions, Ethiopian and Honduran 

nationals are on average more collectivistic compared to Indian nationals 

(Hofstede 2001; Hofstede 1984; https://geert-hofstede.com/countries.html). 

This might be the reason why farmers in Ethiopia and Honduras valued 

sharing information more than Indian farmers.  

 

Farmer’s characteristics, country and education level explained only 20% of the 

total variation in the motivational factors (S2 Appendix C). The large 

unexplained variation indicates that there were other factors which were not 

considered in the current study but might had been relevant to explain the 

variation in the motivations of farmers in the three countries. 

https://geert-hofstede.com/countries.html
https://geert-hofstede.com/countries.html
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3.4.7 Prospects of gamification 

The findings about motivational factors in farmers’ participation shed light on 

the prospects of gamification in this type of citizen science and which 

motivational factors it needs to support. Even though there are important 

differences between groups of participants with different educational level and 

gender, at the same time the diversity of motivations within each group imply 

that gamification should tailor to a number of different motivations at the same 

time to be inclusive. There is a low emphasis on ‘Pastime’ as a motivation for 

participating in tricot citizen science trials and it has a negative correlation 

with other motivational factors of more weight. This finding suggests that a 

careful approach is needed to support the enjoyment of tricot trials. Even 

though game-like elements in a broad sense may play a role, it will be 

important to determine if each element is appropriate in this context. In any 

case, gamification through the unreflective adoption of game elements that 

emphasize extrinsic motivation (scoreboards, badges, etc.) will likely be 

counterproductive. Intrinsic motivation features highly in the motivation 

factors that participating farmers score highly in all three study areas. 

Likewise, Deterding (2011) emphasizes intrinsic motivation for enjoyable game 

experiences, with references to Self-Determination Theory. According to this 

theory, intrinsically motivating activities are those that the individual finds 

interesting and performs without any kind of conditioning, just by the mere 

pleasure of carrying them out, supported by autonomy (which requires the task 

to be voluntary), the need to feel competent and efficient and to feel connected 

to other persons (Ryan and Deci 2000a; Ryan and Deci 2000b). The relatively 

high scores for intrinsic motivation factors from the current study reinforces 

this view. 

3.4.8 Future potential of mobile phone as technological interface for 

citizen science  

Volunteers’ participation in digital citizen science activities is grounded on two 

facilitating pillars: a motivational, and a technological pillar (Nov et al. 2011b). 

The results of this study show the high initial motivation of smallholder 

farmers to act as citizen scientist. The next important issue is to assess the 

technological pillar for digital citizen science. For smallholder citizen scientist 

farmers, mobile phone is the most accessible technology to use and provide 

their experimental results. Interestingly, an overwhelming majority of the 

sampled farmers in the present study have mobile phones (Table 3.6). This 

result shows a promising potential as most of the farmers have the mobile 

telephone technology to provide their experimental results. In terms of 

preferences, farmers preferred calling over SMS because of their illiteracy. This 

means citizen science projects targeting the farmers’ community need to 
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consider to include features like Interactive Voice Response (IVR) systems as a 

data collection mechanism to harness the full potential of mobile phone as a 

citizen science data collection tool. Recent examples of using IVR to collect food 

security indicators at the household level shows its huge potential to be used 

in citizen science projects which target the farming community (Robinson and 

Obrecht 2016). Furthermore, mobile phones also have the potential to facilitate 

the interaction between the farmers and experts. In earlier examples, in the 

Digital Early Warning Network (DEWN) project, an initiative at the 

International Institute of Tropical Agriculture (IITA), farmers send text 

messages to researchers about incidence of Cassava Mosaic Disease (CMD) and 

Cassava Brown Streak Disease (CBSD) and receive disease control options in 

return (Ogodo 2009). Having detailed agronomic data from farmers 

participating as citizen scientists can also be used by researchers to identify 

the key causes of the yield gap, in order to prioritize efforts in research and 

extension (Beza et al. 2017a). Moreover, participating in citizen science projects 

and share their information using mobile phones (e.g., land information) can 

even give farmers the opportunity to get connected across the globe and learn 

on how to manage their plot of land from other farmers with similar land 

characteristics (www.landpotential.org/; Herrick et al. 2013). 

3.5 Conclusions 

This study explored the motivations of farmers to participate as citizen 

scientists in crop improvement trials in three countries: Ethiopia, Honduras 

and India. The most pronounced motivation for Indian farmers was the desire 

to contribute to scientific research (i.e., collectivistic). For Ethiopian and 

Honduran farmers, the motivation ‘Interest in sharing information’ (i.e., 

egoistic intrinsic) was more salient than the other types of motivations. 

‘Pastime’ was in general less motivating compared to the other motivational 

factors. Two major groups of farmers could be distinguished for future design: 

one motivated by sharing information (egoistic intrinsic), helping (altruism) 

and contribute to scientific research (collectivistic) and one motivated by 

egoistic extrinsic factors (expectation, expert interaction and community 

interaction). Around half of the farmers expected something in return from the 

citizen science process. Agronomic advice, capacity building and seed 

innovation were the most needed incentives.  

 

The majority of the farmers have mobile phones and they are already using 

their mobile phones to access extension advice and market information. Even 

if the farmers who participated in the present study did not use their mobile 

phones to provide their experimental results yet, we can conclude that there is 

a high potential for farmers to use their mobile phones to provide information 

from their experimental results. However, since there are many farmers who 

http://www.landpotential.org/
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are not educated, it is recommended to introduce easy to use mechanisms (e.g., 

Interactive Voice Response).  

 

We conclude that motivations to participate in citizen science are different for 

smallholders in agriculture compared to other sectors. Citizen science does 

have high potential, but easy to use mechanisms are needed. Moreover, 

gamification may increase the egoistic intrinsic motivation of farmers. 

 

 

The supporting materials for this chapter are available  online: 

S1 Appendix: Motivation interview questions :     

https://doi.org/10.1371/journal.pone.0175700.s001 

S2 Appendix: Summary of PCA and RDA results :   

https://doi.org/10.1371/journal.pone.0175700.s002 

S3 Appendix: GLM result: https://doi.org/10.1371/journal.pone.0175700.s003 

 

 

Acknowledgements 

This research was carried out in a PhD project and it is part of the Wageningen 

UR strategic program ‘Mapping for sustainable intensification’, 2012-2016, 

funded by the Strategic Funds of Wageningen UR. The research is also a 

contribution to the CGIAR Research Program on Climate Change, Agriculture 

and Food Security (CCAFS). The views expressed in this document cannot be 

taken to reflect the official opinions of CGIAR or Future Earth. The authors 

also would like to thank all the farmers and project team members in the three 

countries who participated in this research.

https://doi.org/10.1371/journal.pone.0175700.s001
https://doi.org/10.1371/journal.pone.0175700.s002
https://doi.org/10.1371/journal.pone.0175700.s003


 

 

 

 

 

 



 

 

 

 

Chapter 

 4 
Exploring farmers’ intentions to adopt mobile 

Short Message Service (SMS) for citizen science 

in agriculture 

 

Eskender Beza, Pytrik Reidsma, P. Marijn Poortvliet, Melisew Misker Belay, 
Ben Sjors Bijen, Lammert Kooistra 

 

 

 

 

 

 

 

 

Under review (Computers and Electronics in Agriculture) 



Chapter 4 
 

84 

 

Abstract  

Understanding the factors that determine the intention of farmers to adopt 

mobile SMS technology for agricultural data collection is an essential step in 

the process of developing digital citizen science in agriculture. The main 

objective of this study was to explore the acceptance of mobile SMS technology 

by smallholder farmers to provide farm related information. A second objective 

was to assess the role of farmer’s characteristics (i.e., age and experience) in 

predicting farmer’s behavioural intention to adopt mobile SMS. This study 

extended the unified theory of acceptance and use of technology (UTAUT2) 

model with constructs from trust, personal innovativeness in information 

technology and mastery-approach goals, to identify the factors that affect the 

intention of farmers to adopt mobile SMS for agricultural data collection. The 

model was applied to a sample of 220 smallholder farmers using structural 

equation modelling. The sample consisted of group of farmers involved in a 

mobile SMS experiment and another group which was not involved in a mobile 

SMS experiment, in three regions of Ethiopia. The results showed that 

performance expectancy, effort expectancy, price value and trust were all 

positively and significantly correlated with farmer’s intention. The intention of 

farmers to adopt mobile SMS for agricultural data provision was therefore 

influenced by the perceived usefulness of the technology, the effort needed to 

use the technology, the cost of using the technology and the trustworthiness of 

the organising body (e.g., organisations behind the citizen science initiative). 

Multi-group analysis using farmer’s characteristics age and experience as 

moderator variables revealed that performance expectancy was important for 

younger farmers, whereas price value was important for farmers who did not 

participate in a mobile SMS experiment. This study generates useful 

information and implications for citizen science practitioners, policy makers 

and mobile application developers by identifying the determinant factors for 

smallholder farmers to adopt mobile SMS for agricultural data collection.   

Keywords: Mobile phone, citizen science, data collection, unified theory of 

acceptance and use of technology, smallholder farmers
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4.1 Introduction 

Closing the yield gap between actual yields currently achieved on farms and 

those that can be achieved with best practice and current technology in a given 

environment is a key strategy for increasing crop production on existing 

cropland (van Ittersum et al. 2013). To conduct yield gap analysis at the farm 

level, detailed information about soil, management activities, farm(er) 

characteristics and socio-economic factors for large number of farmers are 

needed (Beza et al. 2017a). However, collecting this information for a large 

number of farms is costly and time consuming and therefore not always 

feasible. Citizen science, the involvement of citizens such as farmers, in the 

research process (Dehnen-Schmutz et al. 2016), supported by the proliferation 

of mobile communication technologies such as smartphones allows for 

collecting a large amount of data (Herrick et al. 2013). Although the use of 

citizen science in agriculture is in its early stage, recent studies showed the 

potential of citizen science in agriculture (Rossiter et al. 2015; Rahman et al. 

2015; van Etten 2011). A recent special issue on the next generation of 

agricultural system data, models and knowledge products also emphasized the 

potential of innovative data collection approaches (Antle et al. In Press; 

Janssen et al. In Press). 

According to Nov et al. (2011b), volunteer’s participation in digital citizen 

science is grounded on two facilitating pillars. The first is motivational: how to 

attract and retain people who would be willing to contribute their skills, time 

and effort for citizen science initiatives. Recruiting and sustaining community 

members to participate in citizen science requires an understanding of the 

motivations of the community to participate (Beza et al. 2017b). The second 

pillar - which the current study investigates - is the technological pillar: 

developing systems to collect, manage, and aggregate large amount of data. 

The rapid spread and ubiquitous availability of mobile phones, especially in 

developing countries, has created the opportunity to use mobile phones to 

support rural development (Qiang et al. 2011).  

According to the International Telecommunication Union (ITU), seven billion 

people (95% of the global population) live in an area that is covered by a mobile-

cellular network (ITU 2016). Considering its broad coverage, the utilization of 

mobile Short Message Service (SMS) for agricultural data collection, especially 

in developing countries, offers a technological platform for agricultural citizen 

science projects. However, the promising development of the mobile-cellular 

network alone does not guarantee that mobile phones can be used to collect 

detailed information for yield gap analysis by a large number of farmers. For 

this reason, it is necessary to explore the intention of farmers to adopt mobile 

SMS for agricultural data collection. The study of Newman et al. (2012) 
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discussed the importance of assessing technology adoption for managers of 

future citizen science projects and to be open to experimenting with and 

exploiting new technologies as they emerge. Although there are a number of 

studies on the adoption of mobile services (e.g. mobile government) in rural 

regions (Liu et al. 2014), to the authors’ best knowledge, there is no a single 

study that has studied the adoption of mobile SMS for agricultural citizen 

science. The current study seeks to fill this gap. 

The objectives of the current study are twofold. First, to explore the acceptance 

of mobile SMS technology by smallholder farmers to provide farm related 

information. More specifically, we aim to identify the factors that are important 

for the farmers to adopt mobile SMS technology for agricultural data provision. 

Second, to assess the role of farmer’s characteristics (i.e., age and experience) 

in predicting farmer’s behavioural intention to adopt mobile SMS. 

The remainder of the chapter is structured as follows. Section 4.2 presents the 

theoretical background, followed by a discussion about the research model and 

its hypotheses in section 4.3. Section 4.4 provides a description on the mobile 

SMS experiments and technologies used in the experiments to collect 

agronomic information. Section 4.5 is about the research methodology, followed 

by the results in section 4.6. The discussion and implications, and  limitations 

of the research and future research directions are presented in section 4.7, 

followed by conclusion in section 4.8. 

4.2 Theoretical background 

4.2.1 Adoption and use of information technology models  

In this section, we provide an overview of the most commonly used theories 

that have been applied within the context of adoption and use of mobile 

technology in order to build a foundation for our research model.   

4.2.1.1 Unified theory of acceptance and use of technology (UTAUT) 

The Technology Acceptance Model (TAM) is one of the most commonly used 

models to assess the behavioural intention to use information technology 

(Davis et al. 1989). However, TAM was criticised for its predictive capacity by 

some researchers and as a result the Unified theory of acceptance and use of 

technology (UTAUT) was developed by Venkatesh et al. (2003). The UTAUT 

model was developed after a comprehensive examination of eight prominent 

user adoption models that earlier research had employed to explain 

information systems usage behaviour, namely: Theory of reasoned action 

(TRA), Technology acceptance model (TAM), the motivational model (MM), 

theory of planned behaviour (TPB), the PC utilization model, Combined TAM 
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and TPB (C-TAM-TBP), innovation diffusion theory and social cognitive theory 

(Venkatesh et al. 2003). The resulted model from the aforementioned theories 

(UTAUT) postulates that behavioural intentions and behaviour are determined 

by four key constructs: (i) performance expectancy, (ii) effort expectancy, (iii) 

social influence, and (iv) facilitating conditions. Moreover, the model posits that 

the effects of these four constructs on behavioural intention and use behaviour 

are moderated by different combinations of gender, age, experience and 

voluntariness to use. Since its inception in 2003, the UTAUT model has 

attracted the attention of many researchers in different research fields and has 

been applied to examine a wide range of technologies (Williams et al. 2015; 

Ovčjak et al. 2015; Williams et al. 2011) in single and multiple countries (Im et 

al. 2011). Amongst others, the model has been used in studies examining the 

acceptance of mobile wallet (Shin 2009), mobile health (m-health) (Dwivedi et 

al. 2016), mobile learning (m-learning) (Sabah 2016) and mobile banking 

(Oliveira et al. 2014).  

Although the UTAUT model provides a very good and detailed model for 

acceptance and  use of technology, it still has some limitations (Negahban and 

Chung 2014). Therefore, Venkatesh et al. (2012) developed UTAUT2 extending 

and adapting the theory to the consumer context by adding three more 

constructs, namely hedonic motivation, price value and habit. Hedonic 

motivation, which is conceptualized as perceived enjoyment, was added as it 

was found to be a key predictor in earlier research (Venkatesh et al. 2003). 

Price value was added because users in a consumer context need to bear the 

costs associated with the service use (Venkatesh et al. 2012), and habit, which 

reflects the multiple results of previous experiences (Venkatesh et al. 2012) 

was added because it was supported in previous studies that showed it to be a 

critical factor in technology context use (Limayem et al. 2007; Kim and 

Malhotra 2005). The UTAUT2 model (Figure 4.1) thus comprises seven 

constructs: (1) performance expectancy, (ii) effort expectancy, (iii) social 

influence, (iv) facilitating conditions, (v) hedonic motivation, (vi) price value, 

and (vii) habit. Individual differences- namely age, gender and experience - are 

hypothesized to moderate the effects of the aforementioned constructs on 

behavioural intention and technology use (Venkatesh et al. 2012). The 

moderating variable voluntariness from the previous UTAUT model has been 

dropped in the latest version of UTAUT2. Some additional changes were made 

with respect to whether constructs and moderating variables affect both or 

either behavioural intention and use behaviour (‘use behaviour’ is not in Figure 

4.1, as it is not part of our study). UTAUT2 provides a complete theoretical 

framework, and has been playing a prominent role in the literature and 

received strong empirical validation in a variety of disciplines and task 

environments (e.g., Dwivedi et al. 2016; Baptista and Oliveira 2015). In 

addition, compared to its predecessor, UTAUT2 yields considerable 
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improvement in the variance explained in behavioural intention and 

technology use (Venkatesh et al. 2012). Therefore, the UTAUT2 model serves 

as the theoretical basis for the present research.   

The conceptual model used in the current research (Figure 4.1) extended the 

UTAUT2 model with additional antecedents from the concept of diffusion of 

innovation (i.e., personal innovativeness in information technology (PIIT)), 

trust (i.e., benevolence), and goal orientation (i.e., mastery-approach goals). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Conceptual model for the current research. The dashed line depicts 

a moderation effect of experience on performance expectancy and price value 

which was not in the original UTAUT2 model. 
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4.2.1.2 Diffusion of innovation 

A second theoretical approach that is used in this research is derived from 

Diffusion of Innovation theory (DOI) (Rogers 2002, 1995). DOI has originated 

from sociology and it views innovation diffusion as a particular type of 

communication process in which the message about a new idea is passed from 

one member to another in a social system. The theory of DOI posits that the 

rate of adoption is partially determined by the perceived attributes of an 

innovation, called innovation characteristics, and proposes several attributes 

potentially important across diverse innovation adoption models (Rogers 2002, 

1995). Importantly, and relevant for the conceptual framework we put forward, 

DOI suggest that one particular individual characteristic is important in the 

adoption of innovation: personal innovativeness (Yi et al. 2006; Agarwal and 

Prasad 1998). Agarwal and Prasad (1998) adapted the concept to the domain 

of Information Technology (IT) and proposed a new instrument to measure 

personal innovativeness in IT (PIIT) defined as, “the willingness of an 
individual to try out any new IT”.  Since farmers participating in the current 

research did not have experience in using the SMS feature of the mobile phone 

for agricultural data provision, it is considered as a new technology for the 

farmers to test. Therefore, we found it relevant to extend the UTAUT2 model 

by including the PIIT construct and assess the personal innovativeness of 

farmers to test mobile SMS for agricultural data collection (Figure 4.1). 

4.2.1.3 Trust  

The framework of Mayer et al. (1995) defines trust as “a willingness to be 
vulnerable to the actions of another party”. According to Mayer et al. (1995) 

trustworthiness contained three factors: ability, benevolence, and integrity. 

Ability is described as that group of competencies, skills, and characteristics 

that allow a party to have influence within some specific domain.   Benevolence 

is the extent to which a trustee (i.e., to-be-trusted; e.g. researcher) is believed 

to want to do good to the trustor (i.e., trusting party; e.g. farmer) apart from an 

egocentric motive. If a farmer believes a researcher cares about the farmer’s 

interests, the researcher will be seen as having benevolence for the farmer. The 

third factor of trustworthiness, integrity is defined as the trustor’s perception 

that the trustee obeys to a set of principles that the trustor finds acceptable. 

The importance of the aforementioned factors in defining trustworthiness 

depends between individuals and between situations (Mayer and Davis 1999). 

In our study, we seek to investigate how one of the key factors of trust, 

benevolence, affects the acceptance of mobile SMS for agricultural data 

collection. For this reason, we extended the UTAUT2 model with one construct 

to measure trust (i.e., benevolence) (Figure 4.1). 
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4.2.1.4 Mastery-approach goals 

According to goal orientation theory, there are two main goal types people can 

hold while performing a task: mastery (learning) goal orientation, and 

performance goal orientation (Nicholls 1984). The aim of people with a mastery 

goal orientation while approaching a task is to understand something new or 

to improve their level of competence (Yi and Hwang 2003). People with a 

mastery goal orientation consider ability as an incremental skill that can be 

continually improved by acquiring knowledge and perfecting competencies 

(Wood and Bandura 1989). In contrast, the aim of people with a performance 

goal orientation while approaching a task is to demonstrate their competence. 

Performance goals orient the individual to focus on the self and to demonstrate 

competence relative to others. People with a performance goal orientation 

approach see ability as a fixed entity that reveals their intellectual capacity. 

They prefer tasks that minimize errors at the expense of acquiring new skills, 

and are concerned about their ability and performance relative to others 

(Nicholls 1984). Previous technology adoption studies have shown that mastery 

goal orientation has a significant positive effect on self-efficacy, implying that 

individuals with a mastery goal orientation are more likely to develop a higher 

sense of confidence (Yi and Hwang 2003; Hwang and Yi 2002). The study of 

Janssen and Van Yperen (2004) revealed a positive relationship between 

mastery goal and innovative behaviour of employees. In the current study, we 

would like to explore the relationship between mastery goal orientation and 

the behavioural intention of farmers to adopt mobile SMS for agricultural data 

collection. 

4.3 Research model and hypotheses 

As mentioned in the previous section, the ten constructs that make up our 

research framework are expected to positively affect intention to adopt mobile 

SMS technology (Figure 4.1). In this section, we will detail our hypotheses 

pertaining the relationships between the proposed drivers for adoption and 

behavioural intention (BI) to use mobile SMS for agricultural data collection 

on smallholder farms specifically. 

4.3.1 UTAUT2 constructs 

“Performance expectancy” is the degree to which using a technology will 

provide benefits to users in performing certain activities (Venkatesh et al. 

2012). In our research context, it is the degree to which a farmer believes that 

providing agronomic information to others (e.g. to agronomic experts) using 

mobile SMS will benefit the farmer. It indicates that individuals will use 

computing technology if they believe it will have positive outcomes in their day 

to day life (Compeau and Higgins 1995). In the original model of UTAUT, 
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Venkatesh et al. (2003) found performance expectancy to be the strongest 

predictor of intention and the effect of performance expectancy on behavioural 

intention has been supported in the adoption of mobile services such as mobile 

banking (Baptista and Oliveira 2015), mobile cloud services (Park and Kim 

2014), mobile maps (Park and Ohm 2014) and mobile learning (Ho et al. 2010). 

The reason for this is due to the benefits the technologies provide such as 

mobility, personalization, flexibility and convenience (Gilbert and Han 2005). 

One of the attractive features of mobile SMS for farmers to provide agricultural 

information is the ability to provide the information anywhere, at any time, 

without wasting much of their productive time to answer long surveys. As 

mobile SMS offers a convenient method for data provision, with no spatial 

constraints via a mobile device that has become ubiquitous, it offers practical 

benefits that are likely to be important drivers of adoption. Therefore, we 

hypothesised that: 

H1: Performance expectancy (PE) positively affects behavioural 

intention (BI) to use mobile SMS.  

“Effort expectancy” is the degree of ease associated with farmers’ use of 

technology (Venkatesh et al. 2012). In the case of mobile SMS data collection, 

some farmers might be more mobile SMS literate than others and, 

consequently, would expect to have fewer problems to use their mobile phone 

to provide agronomic information via SMS. If farmers find data provision using 

mobile SMS easy to use, then we expect them to be more willing to use it to 

provide agronomic information. Therefore, we hypothesised that: 

H2: Effort expectancy (EF) positively affects behavioural intention (BI) 

to use mobile SMS 

“Social influence” is the extent to which farmers perceive that important others 

believe they should use a particular technology (Venkatesh et al. 2012). The 

underlying assumption is that individuals tend to consult their social network, 

especially friends and family, about new technologies and can be influenced by 

perceived social pressure of important others. Therefore, we hypothesised that: 

H3: Social influence (SI) positively affects behavioural intention (BI) to 

use mobile SMS.  

“Facilitating conditions” refers to how farmers believe that technical 

infrastructure exists to help them to use the system whenever necessary 

(Venkatesh et al. 2012). Sending SMS requires some skills, such as being able 

to operate a mobile phone or tablet, inserting the receivers’ mobile number, and 

writing/inserting the content of the SMS. A farmer who has educated 
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household members or has access to a favourable set of facilitating conditions, 

such as support from extension workers, will have a greater intention to use. 

Therefore, we hypothesised that: 

H4: Facilitating conditions (FC) positively affect behavioural intention 

(BI) to use mobile SMS. 

“Hedonic motivation” is defined as the fun or pleasure derived from using a 

technology (e.g. mobile SMS) (Venkatesh et al. 2012), and it has been shown to 

play an important role in determining technology acceptance and use (Brown 

and Venkatesh 2005). The greater entertainment value the mobile SMS brings, 

the greater acceptance intention farmers will show to use the mobile SMS. 

Therefore, we hypothesised that: 

H5: Hedonic motivation (HM) positively affects behavioural intention 

(BI) to use mobile SMS. 

“Price value” is the farmers’ cognitive trade-off between the perceived benefits 

of using mobile SMS and the monetary cost of using it (Venkatesh et al. 2012). 

It includes factors such as data service carrier costs, device cost and service 

costs. The price value is positive when the benefits of using the mobile SMS are 

perceived to be greater than the associated monetary cost. Therefore, we 

hypothesise that:   

H6: Price value (PV) positively affects behavioural intention (BI) to use 

mobile SMS. 

“Habit” reflects the multiple results of previous experiences (Venkatesh et al. 

2012) and people often consult their past behaviours as anchoring points to 

inform their future actions (Ajzen 2002). Therefore, we hypothesise that:  

H7: Habit (HA) positively affects behavioural intention (BI) to use 

mobile SMS. 

4.3.2 Additional constructs 

In general innovation diffusion research, it has long been recognized that 

highly innovative individuals are active information seekers about new ideas. 

They are able to cope with high levels of uncertainty and develop more positive 

intentions toward acceptance (Rogers 1995). Therefore, we hypothesise that: 

H8: Personal innovativeness in information technology (IN) positively 

affects behavioural intention (BI) to use mobile SMS. 
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The majority of the smallholder farmers’ livelihood is dependent on agriculture 

and the probability of sharing their agronomic information using mobile SMS 

is highly dependent on the trustworthiness of the party (i.e., trustee) on the 

other side of the communication channel (e.g., agronomic experts, researchers, 

and research institutes). Farmers try to avoid using any technology which 

might bring any uncertainties and risks into their farming activity, such as 

disclosing confidential agro-business information to an untrusted recipient. 

Therefore, we hypothesise that: 

H9: Trust (TR) positively affects behavioural intention (BI) to use 

mobile SMS. 

The majority of the smallholder farmers’ livelihood is dependent on farming. 

Therefore we believe that farmers will always look for options that help them 

to improve their agricultural production. To achieve this, farmers will strive 

for more skills and knowledge that help them to achieve their goals. Thus, in 

the context of adopting a new technology, farmers with a mastery goal 

orientation are expected to use the mobile SMS to acquire new skills and 

knowledge. Therefore, we hypothesise that: 

H10: Mastery-approach goal orientation positively affects behavioural 

intention (BI)  to use mobile SMS. 

4.3.3 Moderator effects 

We hypothesise that farmer’s characteristics age and experience moderate the 

effects of UTAUT2 constructs (PE, EE, SI, FC, HM, PV and HA) on behavioural 

intention (Venkatesh et al. 2012; Venkatesh et al. 2003). In our case, farmers 

who participated in the mobile SMS experiment are “experienced” and farmers 

who did not participate are “non-experienced”. The effect of effort expectancy 

(EE), facilitating conditions (FC) and price value (PV) on behavioural intention 

(BI) are expected to be stronger for older farmers with no experience. The effect 

of performance expectancy (PE) and hedonic motivation (HM) are expected to 

be stronger for younger farmers with no experience. Lastly, the effect of social 

influence (SI) and habit (HA) are expected to be stronger for older and 

experienced farmers. The added constructs (IN, TR, MAG) could also be 

influenced by age and experience, but were not included in the analysis as 

further explained later. 
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4.4 Research context 

4.4.1 Description of the mobile Short Message Service (SMS) 

experiment 

During the 2014 and 2015 growing seasons, around 125 farmers from three 

regions in Ethiopia participated in an experiment where farmers were sending 

their daily agricultural activities using SMS over the growing season. The 

experiment was conducted as part of two large ongoing projects, N2Africa 

(http://www.n2africa.org/) and Sesame Business Network (SBN; 

http://sbnethiopia.org/). Farmers in N2Africa have been participating in 

agronomic experiments and have been testing the effect of inoculants (I) and 

phosphorus (P) on the yield of legume crops (chickpea in our study area). 

Farmers in the SBN project have been testing the effect of applying the so 

called “20 steps” (production/agricultural practices identified & recommended 

by experts) in experimental plots in their own fields on sesame yields. The 

farmers that participated in the SMS experiments were randomly selected 

from the list of farmers participating in the two projects. However, one of the 

requirements to be part of the SMS experiment was that farmers needed to 

have at least a basic mobile phone in the household. In both years, farmers 

received a short training before the start of the growing season on how to send 

SMS messages using their mobile phones. During the training, short codes 

associated with the different agricultural activities (e.g. send “1” for sowing 

date, “2” for emergence) were introduced and farmers received a laminated A4 

paper with the list of factors with the associated codes of the activities in their 

local language for later reference during the season. The list of the factors that 

needed to be collected using SMS were identified from previous agronomic crop 

yield gap analysis studies (Beza, Vasco Silva, et al. 2017). The main objective 

of collecting factors was to demonstrate the potential of innovative bottom-up 

data collection approaches (e.g. crowdsourcing) and use the collected factors in 

crop yield gap analysis studies that aim to identify the main causes of the crop 

yield gap at the farm level. 

4.4.2 Data collection technologies used in the experiment 

In order to receive and manage SMS messages sent by the farmers, 

FrontlineSMS desktop (http://www.frontlinesms.com/) & Ushahidi applications 

(https://www.ushahidi.com/) were used. We selected FrontlineSMS and 

Ushahidi as the messaging platforms because they are free and open source 

software tools and commonly used for data collection. FrontlineSMS enables 

users to send, receive and manage large numbers of incoming and outgoing 

SMS messages (Mahmud et al. 2010). FrontlineSMS does not require the 

internet to work, but does need to be connected to a mobile network. When a 

computer running FrontlineSMS is connected to a GSM (Global System for 

http://www.n2africa.org/
http://sbnethiopia.org/
http://www.frontlinesms.com/
https://www.ushahidi.com/
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Mobile communication) modem or mobile phone, it is converted to a two-way 

text-messaging hub (Figure 4.2) (Mahmud et al. 2010). Farmers with mobile 

phones can send and receive messages to and from the platform, which is linked 

to a specific phone number with a SIM (Subscriber Identity Module) card. The 

software manages contacts, allows for mass-messaging, auto-forwarding and 

auto-reply. 

Ushahidi is a platform for collecting, visualising and mapping information. 

Using FrontlineSMS and Ushahidi tools together can produce good results, 

with FrontlineSMS being used as a tool which can manage incoming SMS data 

which can then be visually represented using Ushahidi (Banks and Hersman 

2009). The cloud-based version of Ushahidi (Crowdmap) was used in this pilot 

study to receive an automatically forwarded SMS message from the 

FrontlineSMS application. FrontlineSMS application uses a local SIM card; 

data sent to the application can only be accessed by people who have access to 

the local computer where the FrontlineSMS application is installed. To 

overcome this limitation, we linked the FrontlineSMS application with the 

Crowdmap platform so that SMS data received by FrontlineSMS is 

automatically forwarded to the Crowdmap platform and project partners 

(researchers) far from the implementation area and having connection to 

internet can also access the SMS data received using the Ushahidi Crowdmap 

platform. 

We deployed the data collection platform at the International Livestock 

Research Institute (ILRI), Addis Ababa campus, where the Ethiopian national 

office of N2Africa is located, and in the regional offices in Gondar and Humera, 

Ethiopia, for the data collection campaign for the Sesame Business Network 

project (Figure 4.2). Agronomists working for both projects received a training 

on how to manage the application and were managing the FrontlineSMS 

application over the growing seasons. Technical problems beyond the capacities 

of the agronomists were solved in consultation with researchers at Wageningen 

University & Research in the Netherlands. 

During the 2015 growing season around 685 SMS messages were received from 

the farmers (Figure 4.3). As shown in the top right figure (Figure 4.3), using 

the Ushahidi Crowdmap application allowed us to sort the SMS messages 

based on their categories. In addition to its potential to collect detailed 

information from a large number of farmers, the application can also be used 

to visualise where there is an outbreak of pest or disease for immediate 

remedial actions. An overview of the individual factors belonging to each of the 

groups in Figure 4.3 is provided in Appendix 4.1. 
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Figure 4.2: Overview of the information flow between the farmer and 

agronomists within the N2Africa and Sesame Business Network projects. 

4.5 Research methodology  

4.5.1 Measurement tool  

In order to analyse the behavioural intention of farmers to adopt mobile SMS 

for agricultural data collection, a study was carried out in November and 

December 2015 using a standardised questionnaire. The questionnaire was 

originally written in English and a back translation process was applied 

(Brislin 1986) for the Ethiopian Amharic version and minor corrections have 

been done for the items that did not match precisely. The questionnaire 

consisted of two distinct sections. The first section consisted of general 

information and demographic characteristics of the farmers. It also included 

questions on the use of SMS in the context of agronomic data collection for the 

specific projects. The second section consisted of measurement items for the 

constructs of UTAUT2, and the added constructs trust, mastery approach goal 

and personal innovativeness in information technology.  
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Figure 4.3: Screenshots of FrontlineSMS (top left) and Ushahidi Crowdmap 

(top right) applications. The bottom figure presents the types of factors and 

frequency of SMS data collected from sesame fields during the 2015 growing 

season in North West Ethiopia. 

To make the objective of the second section of the questionnaire clear for the 

farmers, we used a “scripted introduction” which clearly describes that the 

follow-up questions were related to the use of their mobile SMS for agricultural 

data collection/provision. The measurement items for the constructs of our 

research model were derived from previous studies and are included in 

Appendix 4.2. Each construct was based on three to five items. The items for 

the UTAUT2 constructs were adapted from Venkatesh et al. (2003) and 

Venkatesh et al. (2012). The items for measuring trust (benevolence) were 
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adapted from Mayer and Davis (1999). The  items for measuring mastery 

approach goals were adapted from Elliot and McGregor (2001) and the items 

for personal innovativeness in information technology were adapted from Yi et 

al. (2006). A total of 40 measurement items were adapted from prior studies 

and each item was carefully rephrased for the agricultural data collection 

context using mobile SMS (Appendix 4.2). Each item was measured with a five-

point Likert scale, ranging from “Strongly disagree” (1) to “Strongly agree” (5). 

4.5.2 Respondents, sampling and data collection 

The respondents formed two groups. The first group comprised of farmers who 

have participated in mobile SMS for agricultural data collection experiment. 

These farmers were called “SMS farmers”. The second group comprised of 

farmers who have mobile phones but did not participate in the mobile SMS for 

agricultural data collection experiment. These farmers are called “Non SMS 

farmers”. The survey was conducted in a face-to-face interview with both group 

of farmers. Both “SMS farmers” and “Non SMS farmers” were randomly 

selected from the list of farmers participating in the N2Africa and Sesame 

Business Network projects; multi-group analysis was conducted to control for 

and explore the possible influence of group membership. During the selection 

process, an equal number of respondents from each group were selected per 

Kebele (smallest administrative unit). A total of 220 responses with no missing 

values were collected and all were used in the analysis.  Oral informed consent 

was obtained from all respondents, who were already participating in the 

ongoing N2Africa and Sesame Business Network projects. 

4.5.3 Data analysis 

The demographic data was first analysed using descriptive statistics. We 

conducted Structural Equation Modelling (SEM) to test our research model 

(Figure 4.1) using AMOS 23. SEM is a set of statistical models that seek to 

explain the relationships between multiple variables (Hair et al. 2010). SEM 

was used as a preferable method compared to regression as it allows 

simultaneous analysis of all relationships, combining multiple regression with 

factor analysis, while also allowing for both observed and latent variables to be 

analysed at the same time, and providing overall fit statistics (Tabachnick and 

Fidell 2007; Gefen et al. 2000). Moreover, SEM takes into account 

measurement errors within observed variables (Hair et al. 2010; Gefen et al. 

2000). It has also been identified that SEM is an appropriate covariance-based 

approach for studies like ours with a strong basis on ‘a priori’ theory (e.g., Hung 

et al. 2013). Following the recommendations of Anderson and Gerbing (1988), 

the analysis was done in two steps. First, confirmatory factor analysis (CFA) 

was conducted using Maximum Likelihood Estimation method to examine 

reliability and validity of our measurement model (Outer model). Second, we 
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evaluated the path analysis of the structural model (Inner model) estimates to 

test the significance of our hypotheses and the predictive power of the proposed 

model for this study (Figure 4.1).  

The overall fit of the measurement and structural models were assessed using 

a combination of absolute and relative indexes, namely normed chi-square 

(CMIN/DF), Adjusted Goodness-of-Fit Index (AGFI), Comparative Fit Index 

(CFI), and Root Mean Square Error of Approximation (RMSEA). For both the 

measurement and structural models to have sufficiently good fit, these 

measures needed to be < 3, ≥ 0.8, ≥ 0.95, and ≤ 0.7 respectively (Hair et al. 2010; 

Hu and Bentler 1999). For the structural model, the strength and significance 

of the relationship between each of the constructs and behavioural intention 

was assessed using standardised regression weights (SRW) and p-value (p < 

0.05).  

Prior to the path analysis (hypotheses testing), the measurement model was 

also assessed for (i) construct reliability, (ii) indicator reliability, (iii) 

convergence validity, and (iv) discriminant validity. Construct reliability is a 

measure of internal consistency of the measurement items and was assessed 

using composite reliability (CR) and Cronbach’s alpha values (Nunnally and 

Bernstein 1994; Straub 1989). The indicator reliability was evaluated based on 

factor loadings (Churchill 1979). Convergence validity measures whether items 

can effectively reflect their corresponding construct (i.e., converge on the 

intended construct), whereas discriminant validity measures whether two 

constructs are statistically and theoretically different (Hair et al. 2010; Hu and 

Bentler 1999). Average variance extracted (AVE) was used as the criterion to 

test convergence validity (Fornell and Larcker 1981). To examine discriminant 

validity, we compared the square root of AVE and factor correlation coefficients 

(Fornell and Larcker 1981). 

Prior to assessing the measurement and structural models, Common Method 

Variance (CMV) and multicollinearity were tested. The Common Latent Factor 

(CLF) method was applied to test Common Method Variance (CMV) (Podsakoff 

et al. 2003). No factor was found to account for the majority of the variance in 

the variables, confirming that the common method variance is not a concern in 

the data. Moreover, to test multicollinearity, Variance Inflation Factors (VIFs) 

and tolerance were computed for different constructs in our model and they 

were found to be less than the threshold of 3 and greater than 0.1 respectively, 

suggesting that multicollinearity was not a major issue in our study (O’brien 

2007).   

Furthermore, multi-group analysis was performed to assess the moderation 

effect of farmer’s characteristics (age and experience) between UTAUT2 
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constructs and behavioural intention (Figure 4.1). For the factor age, 

respondents were divided into two groups based on the mean age: (1) “Younger 

farmers” who were less than 43 years old (n = 115), and  (2) “Older farmers” 

who were 43 years and older (n = 105) at the time of the data collection. To 

examine the moderation effect of experience, the data were divided into two 

groups. The first group consisted of farmers who participated in the mobile 

SMS experiment (i.e. “SMS Farmers”, n = 110), and the second group consisted 

of farmers who did not participate in the mobile SMS experiment (i.e. “Non 

SMS farmers”, n = 110). The moderator variable of the UTAU2 model ‘gender’ 

was not further considered in the analysis because there were few female 

farmers who participated in the study. 

As part of the multi-group analysis, measurement model invariance, which 

includes  configural and metric invariance, was assessed following a step by 

step procedure presented in Steenkamp and Baumgartner (1998). Configural 

invariance checks if the factor structure is invariant across groups, indicating 

that the participants from the different groups understand the constructs in 

the same way (Milfont and Fischer 2015). Metric invariance tests if different 

groups respond to the items in the same way. That is, it checks if the strengths 

of the relations between specific items and their respective underlying 

construct (i.e. factor loadings) are the same across groups (Milfont and Fischer 

2015).   

To assess configural invariance, unconstrained multi-group measurement 

models which allow factor loadings to vary across the two groups (i.e. between 

“SMS farmers”, farmers who have participated in mobile SMS for agricultural 

data collection  and  “Non SMS farmers”, farmers who did not participate in 

mobile SMS for agricultural data collection) and between “Younger farmers” 

and “Older farmers”) were developed. The model fit for the configural 

invariance between “SMS farmers” and “Non SMS farmers” was satisfactory 

(CMIN/DF = 1.518; CFI = 0.910; RMSEA = 0.049), and between “Younger 

farmers” and “Older farmers” it was also satisfactory (CMIN/DF = 1.381; CFI 

= 0.934; RMSEA = 0.042) (Milfont and Fischer 2015). This implied that the 

models fit both groups well and configural invariance was met.  

To assess metric invariance, fully constrained measurement models that 

constrain the measurement weights (i.e., factor loadings) for each measured 

variable to be equal for the two groups (i.e. between “Younger farmers” and 

“Older farmers” and between “SMS farmers” and “Non SMS farmers”) were 

developed. Fit indices for the fully constrained measurement model between 

“SMS farmers” and “Non SMS farmers” were satisfactory (CMIN/DF = 1.569; 

CFI = 0.90; RMSEA = 0.051), and between “Younger farmers” and “Older 

farmers” they were also satisfactory (CMIN/DF = 1.360; CFI = 0.934; 
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RMSEA = 0.041). The results of the fully constrained measurement models 

were compared to those of the unconstrained multi-group measurement models 

using chi-square difference test. The chi-square difference test for the two 

groups were not significant, suggesting metric invariance for the two groups 

was also met (Milfont and Fischer 2015). After meeting the criteria of both 

configural and metric invariance at the measurement model level, invariance 

analysis at the structural model level was assessed. 

4.6  Results 

4.6.1 Descriptive statistics 

The characteristics of the farmers who participated in this study are presented 

in Table 4.1. The majority of the respondents were male (91.8%). Respondent’s 

age fell predominantly between 31 – 50 years old (56.8%), and the education 

level was mainly primary school (70.9%). The majority of the respondents 

(62.7%) have been using mobile phones for the last 6 – 10 years. Furthermore, 

87.3% of the respondents were married. 

Table 4.1: Demographic characteristics of the surveyed farmers. 

Factor Frequency Percentage (%) 

Gender   

  Male 202 91.8 

  Female 18 8.2 

Age (years)   

  21 – 30  37 16.8 

  31 – 40  66 30.0 

  41 – 50  59 26.8 

  51 – 60  42 19.1 

  61 – 70  12 5.5 

  71 or older 4 1.8 

Education level   

  Illiterate 9 4.1 

  Can read & write 13 5.9 

  Primary school 156 70.9 

  Secondary school 24 10.9 

  Higher education 18 8.2 

Years of using mobile phone   

  0 - 5 years  56 25.5 

  6 - 10 years 138 62.7 

  11 years and more 26 11.8 

Marital status   

  Married 192 87.3 

  Single  28 12.7 
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4.6.2 Measurement model results 

The first fit of the measurement model including all the items of the constructs 

was not sufficient. Therefore, following the suggestions from the analysis of the 

model fit indices, standardised regression weights and covariance modification 

indices, as it was also done by Slade et al. (2015), it was decided to remove the 

items SI3 and SI4 (Appendix 4.2). This improved the model fit indices and 

resulted in a “good measurement model” (Gefen et al. 2000) with the following 

index values: CMIN/DF: 1.250; AGFI: 0.824; CFI: 0.969; and RMSEA: 0.034 

(Table 4.2). 

The measurement model was also further adapted based on an assessment of 

(i) construct reliability, (ii) indicator reliability, (iii) convergence validity, and 

(iv) discriminant validity. As shown in Table 4.3, all the constructs have 

composite reliability (CR) and Cronbach’s alpha values greater than 0.7, 

indicating the construct’s reliability criterion was achieved (Nunnally and 

Bernstein 1994; Straub 1989). The indicator reliability was evaluated based on 

the criteria that item loading should be higher than 0.7 and that every item 

with loading less than 0.4 should be eliminated (Churchill 1979). Two items, 

EE2 and HA3 were dropped because of low factor loading. The factor loadings 

for the remaining items are greater than the threshold value of 0.7, confirming 

a good indicator reliability of the instrument (Table 4.3). The convergence 

validity was tested with the Average Variance Extracted (AVE) value (Fornell 

and Larcker 1981). As shown on Table 4.3, all the constructs have an AVE 

greater than the minimum acceptable value of 0.5 confirming the convergence 

validity criterion was achieved. 

Discriminant validity was analysed using Fornell-Larcker criterion. Table 4.4 

contains the square root of the AVE in bold along the diagonal, confirming the 

condition of being greater than the correlation between the constructs (Fornell 

and Larcker 1981). The overall results of the measurement model indicate that 

the model has good indicator and construct reliability, and convergence and 

discriminant validity, confirming that the constructs are statistically distinct 

and can be used to test the path analysis of the structural model. 

 

 

 

 

 



Exploring farmers’ intentions to adopt mobile Short Message Service (SMS) 

for citizen science in agriculture 

 

103 

 

Table 4.2: Summary of fit indices for the measurement and structural models. 

Model fit indices 
Recommended 

value 

Model 

results 
Reference 

Normed chi-square 

(CMIN/DF) 

< 3 1.250 (Hair et al. 2010; 

Hu & Bentler 1999) 

Adjusted Goodness-of-Fit 

Index (AGFI) 

≥ 0.8 0.824 (Etezadi-Amoli and 

Farhoomand 1996) 

Comparative Fit Index 

(CFI) 

≥ 0.95 0.969 (Hair et al. 2010; 

Hu & Bentler 1999) 

Root Mean Square Error of 

Approximation (RMSEA) 

≤ 0.7 0.034 (Hair et al. 2010; 

Hu & Bentler 1999) 

TLI (Tucker-Lewis Index) Approaches 1 0.964 (Byrne 2001) 

Table 4.3: Summary of reliability and validity measures of the measurement 

model. 

Construct Number 

of items 

Composite 

reliability (CR) 

Cronbach’s  

alpha 

AVE Factor 

loadings 

BI 3 0.783 0.777 0.546 0.70 – 0.80 

PE 4 0.892 0.891 0.676 0.79 – 0.87 

HA 4 0.863 0.857 0.681 0.79 – 0.84 

TR 5 0.917 0.905 0.689 0.78 – 0.90 

PV 3 0.812 0.797 0.591 0.78 – 0.79 

FC 4 0.857 0.851 0.601 0.75 – 0.84 

SI 4 0.811 0.809 0.683 0.75 – 0.80 

HM 3 0.885 0.869 0.722 0.82 – 0.92 

IN 3 0.837 0.824 0.633 0.77 – 0.87 

MAG 3 0.922 0.919 0.799 0.89 – 0.94 

EE 4 0.814 0.810 0.594 0.74 – 0.79 

Note: AVE=Average Variance Extracted, BI=Behavioural intention, PE=Performance 

expectancy, HA=Habit, TR=Trust, PV=Price value, FC=Facilitating conditions, 

SI=Social influence, HM=Hedonic motivation, IN= Innovativeness, MAG= Mastery 

approach goals, and EE=Effort expectancy. 
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Table 4.4: Square root of Average Variance Extracted (AVE) in bold on diagonal and factor correlation coefficients. 

 BI PE HA TR PV FC SI HM IN MAG EE 

BI 0.739           

PE 0.324 0.822          

HA 0.373 0.146 0.825         

TR 0.329 0.070 0.100 0.830        

PV 0.476 0.292 0.454 0.196 0.769       

FC 0.163 0.135 0.224 0.119 0.205 0.775      

SI 0.224 0.294 0.062 0.136 0.278 -0.049 0.826     

HM 0.201 0.138 0.073 -0.006 0.144 -0.037 0.332 0.850    

IN 0.187 0.155 0.140 0.145 0.391 0.254 0.029 -0.070 0.796   

MAG 0.079 -0.083 0.080 0.159 0.014 0.001 -0.174 -0.024 0.202 0.894  

EE 0.350 0.076 0.477 -0.078 0.367 0.442 0.072 0.119 0.342 -0.035 0.771 
Note:  BI=Behavioural intention, PE=Performance expectancy, HA=Habit, TR=Trust, PV=Price value, FC=Facilitating 

conditions, SI=Social influence, HM=Hedonic motivation, IN= Innovativeness, MAG= Mastery approach goals, and EE=Effort 

expectancy.  
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4.6.3 Structural model results 

After assessing the measurement model, the structural model (path analysis) 

was assessed. The overall model fit for the structural model was also good 

(Table 4.2). Values of the indices CMIN/DF, AGFI, CFI, and RMSEA were the 

same as the measurement model. The path analysis revealed that four of the 

ten hypotheses are supported (Table 4.5). Significant positive impacts on 

behavioural intention (BI) were found for performance expectancy (PE) 

(confirming H1), effort expectancy (EE) (confirming H2), price value (PV) 

(confirming H6) and trust (TR) (confirming H9). However, no significant 

relationships were observed between behavioural intention and the other 

constructs implying the hypotheses (H3, H4, H5, H7, H8 and H10) could not be 

supported. The four significant constructs explained 41% of the variance in 

behavioural intention to use mobile SMS for agricultural data collection. 

Table 4.5: Summary of results of path analysis of the structural model. 

Hypothesis 
Structural 

Path 

Estimates Result 

SRW p-Value  

H1 PE → BI 0.211 0.007** Supported 

H2 EE → BI 0.273 0.013* Supported 

H3 SI → BI 0.011 0.899 Not supported 

H4 FC → BI -0.065 0.438 Not supported 

H5 HM → BI 0.090 0.230 Not supported 

H6 PV → BI 0.249 0.015* Supported 

H7 HA → BI 0.084 0.355 Not supported 

H8 IN → BI -0.081 0.363 Not supported 

H9 TR → BI 0.286 0.000** Supported 

H10 MAG → BI 0.071 0.329 Not supported 
Note: BI=Behavioural intention, PE=Performance expectancy, EE=Effort expectancy, SI=Social 

influence, FC=Facilitating conditions, HM=Hedonic motivation, PV=Price value, HA=Habit, IN= 

Innovativeness, TR=Trust, MAG= Mastery approach goals, SRW = Standardized Regression 

Weight;  

*: Significant at p < 0.05 and **: Significant at p<0.01 

4.6.4 Multi-group analysis results 

After establishing configural and metric invariance at the measurement model 

level, multi-group analyses were conducted at the structural level to determine 

if participating in the SMS experiment (‘experience’) and age had a moderation 

effect. Because the complexity did not allow to include all variables, and no 

hypotheses were available for the added constructs, the included variables 

were limited by the ones from UTAUT2. 
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Individual path analysis showed that the effect of price value on behavioural 

intention was significantly higher for “Non SMS farmers” (farmers who did not 

participate in mobile SMS for agricultural data collection)  compared to “SMS 

farmers” (farmers who have participated in mobile SMS for agricultural data 

collection) (Table 4.6). The standardised regression weights (SRW) revealed 

that price value was significant for those farmers who did not participate in 

the mobile SMS experiment, but not for those who participated in the 

experiment. The effect of performance expectancy on behavioural intention was 

significantly higher for younger (and significant) compared to older farmers 

(not significant) (Table 4.7). The effect of facilitating conditions on behavioural 

intention narrowly missed significance (p = 0.056), but was higher for older 

farmers. 

Table 4.6: Multi-group analysis between “SMS farmers” (farmers who have 

participated in agricultural data collection) and “Non SMS farmers” (farmers 

who did not participate in agricultural data collection). 

Structural 

path 

SMS farmers 
Non SMS 

farmers        χ² df p-Value 

SRW p-Value SRW p-Value 

PE → BI -0.015 0.896 0.138 0.197 1.142 1 0.285 

EE → BI -0.081 0.632 0.041 0.748 0.262 1 0.608 

SI → BI 0.072 0.520 0.034 0.770 0.004 1 0.951 

FC → BI -0.027 0.801 0.001 0.991 0.013 1 0.908 

HM → BI -0.167 0.094 0.133 0.241 3.066 1 0.080 

PV → BI 0.221 0.099 0.532 0.000* 10.763 1 0.001* 

HA → BI 0.638 0.001 0.086 0.440 0.948 1 0.330 
SRW = Standardized Regression Weight; χ² = chi-square; df  = degree of freedom; *: Significant at 

p < 0.01. 

Table 4.7: Multi-group analysis between younger and older farmers. 

Structural 

path 

Younger farmers Older farmers  χ²  df p-Value 

SRW p-Value SRW p-Value    

PE → BI 0.392 0.000* -0.008 0.947 4.586 1 0.032* 

EE → BI 0.157 0.225 0.121 0.431 0.005 1 0.943 

SI → BI -0.083 0.483 0.146 0.271 1.636 1 0.201 

FC → BI -0.232 0.052 0.115 0.370 3.665 1 0.056 

HM → BI 0.100 0.311 0.067 0.562 0.028 1 0.868 

PV → BI 0.356 0.034 0.314 0.023 0.215 1 0.643 

HA → BI 0.111 0.423 0.056 0.655 0.139 1 0.709 
SRW = Standardized Regression Weight; χ² = chi-square; df  = degree of freedom; *: Significant at 

p < 0.05.  
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4.7 Discussion and implications 

The purpose of this study was firstly to investigate the intention to adopt 

mobile SMS by smallholder farmers to provide farm related information. 

Second, to assess the role of farmer’s characteristics (i.e., age and experience) 

in predicting farmer’s behavioural intention to adopt mobile SMS. To address 

these objectives, the current study employed and extended UTAUT2 with 

additional constructs of trust, mastery-approach goals and personal 

innovativeness in information technology. 

4.7.1 Constructs affecting behavioural intention 

The factors that positively influence farmer’s intention to adopt mobile SMS 

for agricultural data provision are performance expectancy, effort expectancy, 

price value and trust (Table 4.5). While the UTAUT2 model of Venkatesh et al. 

(2012) explained 44% of variance in consumers behavioural intention to use 

mobile internet when the interaction terms (i.e. age, gender and experience) 

were not included, the three significant factors from the UTAUT2 model in this 

study explained 32% of the variance in farmer’s intention to adopt mobile SMS 

for agricultural data collection. The extended model with the additional 

construct of trust explained 41% of the variance in farmer’s intention to adopt 

mobile SMS. Getting significant results from additional constructs such as 

trust indicates the importance of tailoring technology adoption models 

originally developed for the organisational context to other contexts like mobile 

data services (e.g. SMS) (Baptista and Oliveira 2015). 

The finding of the relationship of performance expectancy with behavioural 

intention (H1) is consistent with earlier studies in consumers SMS adoption 

(Kim et al. 2008), mobile banking (Baptista and Oliveira 2015; Oliveira et al. 

2014; Zhou et al. 2010), SMS advertising (Muk and Chung 2015), mobile e-

government services (Hung et al. 2013) and adoption of mobile devices/services 

(Carlsson et al. 2006). In the agricultural domain, studies also found the 

importance of performance expectancy on the intention of farmers to adopt 

decision support tools (Rose et al. 2016), precision agriculture (D’Antoni et al. 

2012; Adrian et al. 2005) and dairy farming technology (Flett et al. 2004). 

The significant impact of performance expectancy on farmer’s intention to 

adopt mobile SMS indicates that using mobile SMS needs to provide utilitarian 

benefits to the farmers. For example, providing location specific agronomic 

advice or feedback based on the data received by SMS, which can help the 

farmers in their management decisions to improve agricultural production, can 

be an option to show the practical benefit of using mobile SMS for data 

provision (Car et al. 2012; Aker 2011).  
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The research model validated the positive relationship between effort 

expectancy and behavioural intention (H2). This implies that a farmer who 

perceives operating the mobile phone to send SMS requires low effort, has a 

high intention to adopt the mobile SMS for data collection. The finding is 

consistent with other studies in consumers SMS adoption (Kim et al. 2008), 

and farmers adoption of decision support systems (Rose et al. 2016) and 

precision agriculture (Aubert et al. 2012). This finding is also relevant with 

regard to the question which data collection method to use: while more 

advanced methods such as smartphones and tablets may be available, the 

selected method should be suitable for the target community.  

The other core factor from the UTAUT2 constructs that has a significant 

impact on mobile SMS adoption is price value. This implies that the lower the 

costs for using the mobile SMS, the higher the intention for the farmers to 

adopt mobile SMS for agricultural data collection. Similar results were found 

by studies in adoption of decision support tools (Rose et al. 2016).  

The results (Table 4.5) show that social influence (H3), facilitating conditions 

(H4), hedonic motivation (H6), habit (H7), personal innovativeness (H8) and 

mastery-approach goals (H10) are not significant predictors of behavioural 

intention to adopt mobile SMS. As farmers in the current study have a 

collectivistic culture, it was anticipated that social influence would positively 

affect behavioural intention to adopt mobile SMS. However, our study revealed 

that social influence is not a strong predictor of farmer’s behavioural intention 

to adopt mobile SMS. This implies that farmers will not simply adopt a 

technology because important others (e.g. friends or neighbours) are using the 

technology. Facilitating conditions were also found to have no effect on farmers 

intention to adopt mobile SMS. This is consistent with what was reported in 

earlier studies (Baptista and Oliveira 2015; Im et al. 2011). When there is a 

facilitating condition (e.g., resources, getting support from extension workers) 

to help  farmers to use mobile SMS for agricultural data collection, they do not 

give it much importance (Baptista and Oliveira 2015). The low importance of 

hedonic motivation shows that farmers do not enjoy using mobile SMS 

technology. The low importance of habit can be explained by the fact that the 

farmers did not have previous experience of using mobile SMS for agricultural 

data collection and hence it is not yet their habit. The low importance of 

mastery–approach goals indicate that farmers did not believe that using mobile 

SMS will help them to improve their level of competence in crop production. 

Farmers are already using mobile phones (e.g., to access market and weather 

information) in Ethiopia (Beza et al. 2017b). As a result, they did not consider 

using the SMS feature of the phone as being innovative. 
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4.7.2 Implications for citizen science in agriculture 

Identifying the most important factors that affect the adoption of mobile 

technology for data collection is essential for citizen science practitioners and 

also for researchers who would like to use the citizen science approach to collect 

farm related information.  

In this study, it was revealed that performance expectancy, effort expectancy, 

price value and trust are the most important factors for the farmers to adopt 

mobile SMS for data collection. Among these factors, trust is the strongest 

predictor of farmers intention to adopt mobile SMS to provide their farm 

related information. This clearly indicates that in order to use the citizen 

science approach in the agricultural domain, establishing a trusted 

relationship with the smallholder farming community is crucial. Unlike other 

citizen science participants who can provide observations without caring much 

about the implementers (e.g. bird watchers), for farmers the trustworthiness of 

the people or organisation behind the citizen science campaign is important 

before sharing their farm related information. At the start of agricultural 

citizen science initiatives, cooperatives and farmers associations would 

probably be well placed to take the lead to establish relationships between 

farmers and citizen science initiatives (Aubert et al. 2012). They already have 

close relationships with the farmers, and are likely to be perceived as more 

trustable. Working with local institutes (e.g., research centres and NGOs) 

which have a good reputation is another alternative to establish initial trust 

between farmers and citizen science initiatives. Both types of stakeholders 

(research centres and NGOs) participated in the two projects (N2Africa and 

SBN) in which the citizen science experiments in this study were performed. 

Overtime when the relationship between citizen science initiatives and 

farming community develops, trust between farmers and citizen science 

initiatives will evolve. 

Given that performance expectancy significantly predicted farmer’s 

behavioural intention to adopt mobile SMS, managers of agricultural citizen 

science projects need to ensure that using mobile SMS for agricultural data 

collection offers utilitarian benefits to the farmers. For example, providing 

location specific agronomic advice or feedback based on the data received by 

SMS, which can help the farmers in their management decisions to improve 

agricultural production, can be an option to show the practical benefit of using 

mobile SMS for data provision (Beza et al. 2017b; Car et al. 2012; Antonopoulou 

et al. 2010).  

The multi-group analysis between younger and older farmers reveals that 

performance expectancy is more important for younger farmers compared to 

older farmers to adopt mobile SMS (Table 4.7). The possible reason for this may 



Chapter 4 
 

110 

 

be younger farmers are less experienced with farming and hence demand more 

external information (Taragola and Van Lierde 2010; Schnitkey et al. 1992). 

Therefore, they expect using mobile SMS will create an opportunity to access 

information related to farming and also enable them to interact with agronomic 

experts. For agricultural citizen science initiatives, planning to provide 

agronomic advice based on the data received, the result highlights the 

importance of tailoring advises for farmers based on farmer’s characteristics 

(e.g. age). 

The comparison between experienced (i.e. “SMS farmers”, farmers who have 

participated in mobile SMS for agricultural data collection) and unexperienced 

farmers (i.e. “Non SMS farmers”, farmers who did not participate in mobile 

SMS for agricultural data collection) shows that the price value is more 

important for the “Non SMS farmers” compared to the “SMS farmers” to adopt 

mobile SMS (Table 4.6). The reason that price value was relatively less 

important for “SMS farmers” is that in the studied setting the costs of sending 

the SMS were covered by the projects, and not by the farmers who participated 

in the experiment. The fact that price value was specifically important for “Non 

SMS farmers” indicates that projects implementing citizen science need to find 

a mechanism where the SMS data transmission is free of charge (e.g. by 

providing free airtime). 

4.7.3 Implications for mobile app developers and policy makers 

The importance of effort expectancy on farmers intention to adopt mobile SMS 

clearly indicates that mobile phone software developers need to develop easy 

to use SMS apps. Iannone Iii et al. (2012), in a study of citizen science to assess 

the abundance of earthworms, stated that a data collection method for citizen 

science must meet three criteria: (1) ease, (2) safety, and (3) reliability. To 

simplify the data collection process, applications that support Interactive Voice 

Response (IVR) (e.g., Robinson and Obrecht 2016) and icon-based user 

interfaces can potentially be developed (e.g., Herrick et al. 2016). The study of 

Wyche and Steinfield (2016) discovered a mismatch between the design of 

market information services (MIS) and smallholder farmers’ perceptions of 

their mobile phones’ communication capabilities. While designing mobile SMS 

applications for agricultural data collection, the farming community needs to 

be considered (Alvarez and Nuthall 2006) and applications need to be 

developed following the design principles for low-literacy users (Medhi et al. 

2011).  

In other sectors (e.g. forestry), researchers have shown the high potential of 

local communities using mobile phones for national forest monitoring 

(Pratihast et al. 2013a). The lessons learnt from the forestry sector can also be 

extended to the agricultural domain. To integrate ICT tools like mobile phones 
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in the agricultural sector to collect agricultural information or food security 

indicators in developing countries (e.g. Hammond et al. 2016) directly from the 

farmers, there needs to be an enabling environment. As most of the farmers in 

the rural areas are low-literate, the use of mobile phones for data collection 

need to be supported by the agricultural extension system.  

4.7.4 Limitations and future research 

Despite its contributions regarding factors that are important for smallholder 

farmers to adopt mobile SMS for agricultural citizen science, this study is not 

without limitations. These limitations provide fruitful avenues for future 

research. First, since half of the farmers participated in this study did not 

experience the use of mobile SMS for agricultural data collection, we did not 

examine the effect of behavioural intention on use behaviour. Therefore, it is 

recommended that future research takes a longitudinal approach which would 

enable the examination of the effect of behavioural intention on farmers use 

behaviour. Longitudinal research would also allow to assess if the importance 

of the constructs would change over time. For example, the effect of trust on 

farmers behavioural intention to use mobile SMS might become unimportant 

when farmers trust towards the people and/or organisation managing the 

citizen science initiative develops. Second, the study does not claim to 

statistically represent farmers in Ethiopia (e.g. in terms of gender), so it would 

be interesting to test the model with more woman farmers. Finally, the 

important factors for technology adoption might differ from location to location, 

so assessing the validity of this model with farmers across different cultures 

both in developed and developing countries would be theoretically and 

practically useful. 

4.8 Conclusion 

The main objective of this research was to explore the factors that influence 

farmers’ adoption of mobile SMS for agricultural data collection. A second 

objective was to assess the role of farmer’s characteristics (i.e., age and 

experience) in predicting farmer’s behavioural intention to adopt mobile SMS. 

Results showed that farmers’ behavioural intention to adopt mobile SMS was 

influenced by performance expectancy, effort expectancy, price value and trust. 

These four constructs explained 41% of the variance of farmers’ behavioural 

intention to adopt mobile SMS. Among these factors, trust is the strongest 

predictor of farmers intention to adopt mobile SMS to provide their farm 

related information. This clearly highlights the importance of establishing a 

trusted relationship with the farming community in order to utilize the full 

potential of citizen science in the agricultural domain. In addition, managers 

of agricultural citizen science projects need to ensure that using mobile SMS 

for agricultural data collection offers utilitarian benefits to the farmers. 
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Further, the technology that will be used as part of the digital citizen science 

need to be easy to use by the farmers. Moreover, the cost of using the technology 

need to be affordable by the farmers and whenever possible, the citizen science 

projects need to cover the data transmission cost. Multi-group analysis using 

farmer’s characteristics age and experience as moderator variables revealed 

that performance expectancy was important for younger farmers; whereas 

price value was important for farmers who did not participate in a mobile SMS 

experiment. 
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 Appendix 4.1. List of factors and associated group names 

 

 

 

 

 

            List of activities            Group name 

Start/end of land clearing   

 

Land 

preparation 

Start/end of land cleaning  

Start/end of first ploughing  

Start/end of second ploughing  

Start/end of third ploughing  

Start/end of row making  

Start/end of sowing/planting   

Planting Start/end of gap filling  

Start/end of thinning  

Start/end of 1st weeding   

Weeding Start/end of 2nd weeding  

Start/end of 3rd weeding  

Date of Emergence  

 

Crop 

characteristics 

Date of full canopy closure (no bare soil to be seen) 

Start/end of flowering 

Full flowering 

Crop reaching full maturity (yellowed and ready for harvest) 

Start/end of harvesting  

Start/end of fertilizer application  Fertilization 

Start/end of pest scouting  Crop 

protection Start/end of pest control/chemical application in the field 

Start/end of preparing drying spots   

 

 

 

 

Postharvest 

handling  

Start/end of threshing  

Start/end of winnowing and cleaning  

Start/end of bagging sesame in the field  

Start/end of loading sesame bags for transporting to store 

(home)  

Start/end of transporting sesame bags to store (home)  

Start/end of (un)loading sesame bags in the store (home)  

Start/end of chemical application in the store (home)  

Start/end of loading bags for transporting sesame to market  

Start/end of transporting bags to market  

Start/end of unloading bags in the market  
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Appendix 4.2. Questionnaire to assess mobile SMS technology acceptance of 

farmers 

The main purpose of this survey is to assess the SMS technology acceptance of 

farmers as a data provision tool  to provide agricultural information for yield 

gap analysis.  

1. Background information  
1.1. Date of interview: ___________ 1.2. Region: ___________________________              

1.3. District/Woreda: ___________  1.4. Kebele/Village: ______________________ 

2. Introduction 
Introduce yourself and explain the purpose of the survey as it will mainly be 

used for research purpose and assure the interviewee of the confidentiality. 

Please check if the farmer has any questions at this time. 

3. General information of the respondent 
3.1. Name of the respondent: ___________________________  

3.2. Gender: Male[ ] Female[ ]. 3.3. Age (years): _____ 3.4. Marital 

status:_____________ 

3.5. Educational level (grade/illiterate): ____________________ 

3.6. Distance to the nearest city (Min) _____________________ 

4. Mobile phone information 
4.1. Mobile number: _________________________________ 

4.2. Number of years of using mobile phone _______(Years)_________(Months) 

4.3. Did you send SMS in the 2014/2015 growing season about the 

N2Africa/SBN 20 steps field?  Yes[ ] No [ ] 

4.4. If yes, how many SMS messages did you send over the growing season? 

_______________ 

4.5. Did you use another mobile number to send SMS about the N2Africa/SBN 

20 steps field?  Yes[ ] No[ ] 

4.6. If yes, mobile number(s) used to send SMS about the N2Africa/SBN 20 

steps field ___________ 

4.7. Did you ever send SMS before you participate in N2Africa/SBN SMS pilot 

data collection campaign? Yes[ ]  No[ ] 

4.8. What do you prefer to provide agronomic information?   

Calling[ ] SMS messaging[ ] Face-to-face[ ] Other:_______________ 
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1 

Disagree 

strongly 

2 

Disagree 

3 

Neither agree 

nor disagree 

4 

Agree 

5 

Agree strongly 

 

 1 2 3 4 5 

4.9. I have lots of experience of using SMS messaging       

 
Read [the following scripted introduction].  
Dear [name of farmer] first I would like to thank you once again for 

participating in this interview. The questions I ask you after this point are 

related to your mobile phone, mainly the use of your mobile phone to send 

agronomic information using short message system (SMS). Thank you for your 

valuable time and we will proceed to the questions. Please indicate the degree 

to which you agree with each statement by using the following scale. 

1 

Disagree 

strongly 

2 

Disagree 

3 

Neither agree 

nor disagree 

4 

Agree 

5 

Agree strongly 

 

Item 

No. 
Constructs Items No. Source 

1 Behavioural 

Intention 

(BI) 

- I intend to use or continue 

using mobile SMS messaging 

in the future 

BI1 (Venkatesh et al. 

2012; Venkatesh 

et al. 2003) 

2 

 

- I will always try to use mobile 

SMS messaging in my daily 

life 

BI2  

3 

 

- I plan to use or continue using 

mobile SMS messaging 

frequently 

BI3  

4 Performance 

Expectancy 

(PE) 

- I find mobile SMS messaging 

useful in my daily life 

PE1 (Venkatesh et al. 

2012; Venkatesh 

et al. 2003) 

5 
 

- Using mobile SMS messaging 

increases my productivity 

PE2  

6 

 

- Using mobile SMS messaging 

helps me accomplish things 

more quickly in the farm 

PE3  

7 

 

- Using mobile SMS messaging 

increases my chances of 

achieving high crop 

productivity 

PE4  
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Item 

No. Constructs Items No. Source 

8 Effort 

Expectancy 

(EE) 

- Learning how to use mobile 

SMS messaging is easy for me 

EE1 (Venkatesh et al. 

2012; Venkatesh 

et al. 2003) 

9 

 

- My interaction with mobile 

SMS messaging is clear and 

understandable 

EE2  

10 
 

- I find mobile SMS messaging 

easy to use 

EE3  

11 

 

- It is easy for me to become 

skilful at using mobile SMS 

messaging 

EE4  

12 Social 

Influence 

(SI) 

- People who are important to 

me think that I should use 

mobile SMS messaging 

SI1 (Venkatesh et al. 

2012; Venkatesh 

et al. 2003) 

13 

 

- People who influence my 

behaviour think that I should 

use mobile SMS messaging 

SI2  

14 

 

- People whose opinions that I 

value prefer that I use mobile 

SMS messaging 

SI3  

15 

 

- People who are important to 

me would use mobile SMS 

messaging themselves 

SI4  

16 Facilitating 

Conditions 

(FC) 

- I have the resources 

necessary to use mobile SMS 

messaging 

FC1 (Venkatesh et al. 

2012; Venkatesh 

et al. 2003) 

17 

 

- I have the knowledge 

necessary to use mobile SMS 

messaging 

FC2  

18 

 

- Mobile SMS messaging is 

compatible with other 

technologies I use 

FC3  

19 

 

- I can get help from others 

(e.g.  extension workers or 

children ) when I have 

difficulties using mobile SMS 

messaging 

FC4  
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Item 

No. 
Constructs Items No. Source 

20 Hedonic 

Motivation 

(HM) 

- Using mobile SMS messaging 

is fun 

HM1 (Venkatesh et al. 

2012) 

21 
 

- Using mobile SMS messaging 

is enjoyable 

HM2  

22 
 

- Using mobile SMS messaging 

is very entertaining 

HM3  

23 Price 

Value 

 (PV) 

- Mobile SMS messaging is 

reasonably priced 

PV1 (Venkatesh et al. 

2012) 

24 
 

- Mobile SMS messaging is a 

good value for the money 

PV2  

25 

 

- At the current price, mobile 

SMS messaging provides a 

good value 

PV3  

26 Habit 

(HA) 
- The use of mobile SMS 

messaging has become a habit 

for me 

HA1 (Venkatesh et al. 

2012) 

27 
 

- I am addicted to using mobile 

SMS messaging 

HA2  

28 
 

- I must use mobile SMS 

messaging 

HA3  

29  

 

- Using mobile SMS messaging 

has become natural to me 

HA4  

30 Trust 

(TR) 
- SBN1/N2Africa is very 

concerned about my 

sesame/chickpea2 crop 

production 

TR1 (Mayer and 

Davis 1999) 

31 
 

- My needs and desires are very 

important to SBN/N2Africa 

TR2  

32 

 
- SBN/N2Africa would not 

knowingly do anything to 

hurt me 

TR3  

33 
 

- SBN/N2Africa really looks out 

for what is important to me 

TR4  

34 
 

- SBN/N2Africa will go out of 

its way to help me 

TR5  
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Item 

No. 
Constructs Items No. Source 

35 Mastery-

approach goals 

(MAG) 

- I want to learn as much as 

possible about 

sesame/chickpea crop 

production 

MAG1 (Elliot and 

McGregor 2001) 

36 

 

- It is important for me to 

completely understand the 

recommendations provided by 

SBN/N2Africa about 

sesame/chickpea crop 

production 

MAG2  

37 

 
- I desire to completely master 

sesame/chickpea crop 

production 

MAG3  

38 Innovativeness 

(IN) 
- If I heard about a new 

technology, I would look for 

ways to experiment with it 

IN1 (Yi et al. 2006) 

39 

 
- Among my peers, I am 

usually the first to explore 

new gadgets & technologies 

IN2  

40 
 

- I like to experiment with new 

technologies 

IN3  

1 Sesame Business Network  
2 The word sesame was used while surveying farmers in the Sesame Business Network 

project and chickpea was used for N2Africa farmers.
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Abstract 

This study aimed to use the synergy of remote sensing and crowdsourcing to 

estimate and explain yields. Sesame production on medium and large farms in 

Ethiopia was used as a case study. Firstly, the potential of vegetation indices 

based on remote sensing images for predicting sesame yield at the field level 

was explored. A total of 14 Landsat-8 images, representing different growth 

stages, were used to derive vegetation indices (VIs). Secondly, crowdsourced 

data on crop phenology was used to improve the prediction of yields based on 

VIs. Thirdly, farmer reported data using the crowdsourcing approach was 

compared to the predicted yield from the VIs, in order to explain yield 

variability among and within fields. Results of the study showed that there is 

a correlation between sesame actual yield as reported by farmers and predicted 

yield based on VIs. The highest correlation was observed between sesame 

actual yield and the predicted yield using average NDVI over the growing 

season (R2 = 0.65, RMSE = 0.62). Crowdsourced information related to crop 

phenology per field used to adjust the VIs, could further improve the 

performance of the model to predict sesame yield. As yield estimation based on 

measurements or surveys are not always reliable, the increasing spatial 

resolution of remote sensing images thus provides increased potential for yield 

estimation. Crowdsourced information could further identify factors that 

caused the yield variability within a field, and locations with lower yields in 

the remote sensing images largely overlapped with locations with reported 

yield limiting and/or reducing factors. According to the perception of farmers, 

overall soil fertility is the most important factor explaining the yield variability 

within a field, followed by high presence of weeds. Identifying the variation 

within a field based on different types of information will assist the farmers in 

managing their agricultural practices. While the analysis described in this 

chapter focused on sesame yield in Ethiopia, the approach of coupling remote 

sensing with crowdsourcing has the potential to support yield monitoring and 

forecasting efforts in the other parts of the world.  

Keywords: citizen science, yield gap analysis, satellite imagery, actual yield 

estimation, Sesamum indicum L., vegetation index, Ethiopia, Landsat-8 
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5.1 Introduction                                               

Closure of the existing yield gap on currently available agricultural lands has 

been pointed as one of the possible pathways to meet the future food demand 

(Cassman 1999). Yield gap is estimated as the difference between a 

benchmarking yield (potential yield (Yp), for irrigated crops or water-limited 

yield (Yw), for rainfed crops) and actual yield (Ya). This means yield gap 

estimation requires two quantities: a benchmarking yield and actual yield. The 

study of (Lobell et al. 2009) provides a detailed explanation about the different 

approaches used to estimate the benchmarking yield. The second important 

parameter required and often a bottleneck for yield gap analysis is actual yield 

(Grassini et al. 2015). For yield gap analysis to have a strong local agronomic 

relevance (van Ittersum et al. 2013) and to further understand the main factors 

causing the yield gap, more local studies at the farming system level are needed 

(Silva et al. 2017; Affholder et al. 2013). However, the main drawback for this 

type of analysis is that, it requires detailed information including actual yield 

for each field from a large number of farms (Beza et al. 2017a). The most 

common traditional methods (e.g., farm surveys and crop cuts) to collect crop 

yield information are expensive, time-consuming, labour-intensive, and often 

difficult (Fermont and Benson 2011), and are also limited in spatial and 

temporal coverage. The study of Fermont and Benson (2011) provides a 

detailed description about the common traditional approaches to collect crop 

yield information.  

Remote sensing is an alternative to complement/substitute the traditional 

methods to collect crop yield information. Remote sensing has been successfully 

used for yield estimation and monitoring over the last few decades due to its 

ability to acquire spatiotemporal data over a large region (Son et al. 2014; 

Schulthess et al. 2013). Generally three approaches have been suggested to 

estimate crop yield using remote sensing data (Lobell 2013). The first approach 

is based on an empirical relationship that relates ground-based yield measures 

to vegetation indices (VIs) derived from remotely sensed surface reflectance 

measured on a single date or integrated over the growing season (Schulthess 

et al. 2013; Mkhabela et al. 2011). Among the different VIs, the Normalised 

Difference Vegetation Index (NDVI), the Soil Adjusted Vegetation Index 

(SAVI), the Modified Soil Adjusted Vegetation Index (MSAVI) and the 

Enhanced Vegetation Index (EVI) have become popular indicators for studying 

vegetation health and crop production (Kayad et al. 2016; Johnson 2016).  

The second approach to estimate yield is by incorporating VIs or biophysical 

variables (such as LAI) derived from remote sensing data into crop growth 

simulation models (Rembold et al. 2013; Dente et al. 2008; Doraiswamy et al. 

2005). The simulated yield by the model then provides an estimate of crop yield. 
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The third approach is by using the relationship between the fraction of 

photosynthetically active radiation (fPAR) and crop yield (Monteith and Moss 

1977).  

Regarding the first approach, previous studies have examined how the 

relationship between VIs derived from multi-temporal remote sensing and crop 

yield vary over the growing season (Mkhabela et al. 2011; Wall et al. 2008). The 

results from these studies have revealed that the correlation between VIs and 

yield varies through the crop cycle (Mkhabela et al. 2011; Wall et al. 2008). 

However, crop planting dates and phenology vary by location and change from 

one year to the next. Thus, using a fixed calendar date to estimate remote 

sensing-based yield prediction models (e.g., Mkhabela et al. 2011) is not 

optimal (Bolton and Friedl 2013). Different approaches have been used to 

capture the spatial variations in planting dates and crop phenology. Some 

studies have accounted for variations in planting dates and phenology using 

the onset of the rainy season (e.g., Funk and Budde 2009)) or using the seasonal 

NDVI curve derived from AVHRR (e.g., Reynolds et al. 2000). Other studies 

used crop phenology derived from remote sensing data to capture local 

variation in the timing of optimum periods to use VI for crop yield estimation 

(e.g., Bolton and Friedl 2013; Funk and Budde 2009). The drawback of using 

crop phenology information mostly derived from coarse remote sensing data is 

its limited ability to monitor individual fields (Duncan et al. 2015a). With the 

advent and ubiquitous availability of mobile phones, crop phenology 

information can be collected from a large number of individual farmers using 

the crowdsourcing approach (i.e., farmers send crop phenology dates through 

SMS) (Beza et al. submitted). The crowdsourced crop phenology information 

can then be used to improve estimates of crop yields based on remotely sensed 

VIs at the field level. 

While remote sensing may provide improved estimates of actual yields, and 

information from crowdsourcing may further improve these estimates, 

crowdsourcing is specifically relevant for explaining yields. It has earlier been 

argued that farmers’ knowledge should be increasingly used in agricultural 

research (Doré et al. 2011), and crowdsourcing provides new opportunities 

(Beza et al. 2017a). 

The objective of this study was to investigate the capability of remote sensing 

satellite time-series to estimate and map actual yield at the field level and to 

explore the potential of bottom-up data collection approaches (e.g., 

crowdsourcing) to identify the main factors that caused the yield variability 

within a field. Sesame production on medium and large farms in Ethiopia was 

used as a case study. The main research question was: how can synergy of 

remote sensing and crowdsourced data improve the estimation and explanation 
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of yield variability? Specific research questions include: (1) which vegetation 

index is most appropriate to predict sesame yield?, (2) which time of the 

growing season and number of satellite observations is most suitable to 

estimate sesame yield using satellite time-series?, (3) can crowdsourced 

information related to crop phenology be used to improve predictions of sesame 

yield?, (4) how can farmers crowdsourced data be related to the remote sensing 

mapped yield variability within a field?, and (5) which factors are important to 

explain sesame yield variability within a field? 

5.2 Materials and methods 

5.2.1 Study area 

The study was conducted in three districts in the North-western part of 

Ethiopia, namely: Mirab Armacho (13013’N, 36026’E), Metemma (13000’N, 

36015’E) and Qwara (12030’N, 350450E) (Figure 5.1). Agriculture in the region 

is characterised by a single harvest per year, with a growing season that 

extends from July to late October. Sesame (Sesamum indicum L.), sorghum 

(Sorghum vulgare Pers.) and cotton are the main crops produced in the region. 

Among the crop types, sesame is the focus of this study. For the current study, 

45 sesame growing fields from the aforementioned three districts were selected 

at the start of the 2015 cropping season. The mean area of the studied fields 

was 34.8 ha and their mean yield was 3.0 quintals/ha.   

5.2.2 Multi-temporal remote sensing data acquisition and processing 

We downloaded Landsat 8 (Level 1 GeoTIFF) data products (vegetation 

indices) from June to November 2015 covering the study area from the archives 

of USGS using EarthExplorer (http://earthexplorer.usgs.gov/). Three tiles were 

needed to cover the study area (Figure 5.1). The downloaded images contained 

values for the Normalised Difference Vegetation Index (NDVI), Enhanced 

Vegetation Index (EVI), Soil Adjusted Vegetation Index (SAVI) and Modified 

Soil Adjusted Vegetation Index (MSAVI). In total, 14 images per vegetation 

index were available for our study (Table 5.1). Dates of satellite images are 

presented in Table 5.1.  

Each of the vegetation indices images were then processed to mask out pixels 

which were covered with cloud and cloud shadow using the cloud mask (fmask) 

distributed with the Landsat surface reflectance data products (Zhu and 

Woodcock 2012). The cleaned images were then stacked and used to extract 

temporal and spatial values of each of the vegetation indices over the growing 

season for each field.  We used the extent (boundary) of the fields to clip out 

pixel values of each of the vegetation indices for each field from the stacked 

images. For each field two profiles per vegetation index were extracted. The 

first profile (hereafter optimum growing period VI) is based on the optimum 

http://earthexplorer.usgs.gov/
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growing period (i.e., using all the available images during the growing period) 

(Figure 5.2). The second profile (hereafter phenologically adjusted VI) is based 

on crop phenology information crowdsourced by the farmers (i.e., 

phenologically adjusted vegetation index profile). For the second profile, only 

images acquired after the sowing date and before the harvest dates for each of 

the fields were extracted. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Study area represented by three Landsat scenes. The red dots 

inside the blue box are the farmer’s fields. 

For both the optimum growing period VI and phenologically adjusted VI 

profiles several values were extracted for each field and used for the 

subsequent analysis: original, peak season (maximum values), cumulative and 

average values of NDVI, EVI, SAVI and MSAVI. The original variables 

represent the spatial and temporal average (for fields which have values from 

2 or 3 Landsat-8 scenes) VI values per date for each field. Peak-season 

(maximum) variables are spatial average VI values calculated when the crop 

is in its heading, flowering and grain filling stages. For the sesame crop in our 

study area, this period mostly extends from the beginning of August until late 

October. The cumulative and average variables represent sum of the temporal 

and spatial average, and the temporal and spatial average VI values per field 

over the cropping season, respectively. 
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Figure 5.2: Spatial and temporal average profiles of the vegetation indices over 

the growing season from all the fields per district (a) NDVI, (b) EVI, (c) SAVI 

and (d) MSAVI. 

5.2.3 Field data collection and processing 

At the beginning of the 2015 growing season, 45 medium and large scale 

farmers’ fields were  randomly selected across our study area. We visited these 

fields twice to gather the necessary information over the growing season. At 

the start of the growing season in June, farmers were provided a paper note 

book with the list of management factors and were asked to record the 

management activities and crop phenology events over the growing season. In 

addition, by using Garmin handheld GPS, farmers with the help of researchers 

took the GPS boundary of the fields where sesame was growing in the 2015 

cropping season. As suggested by Sibley et al. (2014), taking the GPS tracks of 

the complete field minimizes the chance of spatial mismatches between the 

remote sensing and field-based estimates, as this often occurs when only a 

single reference point is taken for each field. The collected GPS tracks of the 

field boundaries which were originally in a .gpx format, were converted to a 

polygon feature class using ESRI ArcMap 10.2. The area for each of the fields 

(in hectare) was then calculated using the calculate geometry feature of 

ArcMap. 

a) b) 

c) d) 
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Table 5.1: Overview of Landsat 8 imagery dates  used in the subsequent 

analysis. 

Month 
Number of used 

images 

DOY 

(Day of year) 
Date 

June 1 170 June 19 

July 3 

186 

195 

211 

July 5 

July 14 

July 30 

August 1 234 August 22 

September 3 

250 

259 

266 

September 7 

September 16 

September 23 

October 4 

275 

282 

291 

298 

October 2 

October 9 

October 18 

October 25 

November 2 
307 

314 

November 3 

November 10 

At the end of the growing season (after all the fields were harvested in 

November-December), we revisited the farmers and all the management and 

crop phenology information recorded by the farmers over the growing season 

together with the actual yields were collected and checked for plausibility. The 

total reported production (in quintals) was divided by the area of the field to 

obtain the yield per hectare for each field. We used the measurement unit 

quintal for the total reported production because it is most commonly used by 

the farmers. As a result of the strong El Niño events in 2015, some parts of 

Ethiopia including our study area experienced lack of rainfall which led to 

severe drought (Aaron-Morrison et al. 2016). As a consequence, some fields 

which were included at the beginning, had to be eliminated from our study. As 

a result, information from a total of 38 fields was used for further analyses. 

To identify the underlying factors that cause the yield variability within a field, 

during the data collection at the end of the growing season, researchers printed 

the map of each of the fields under the study in “A4 sheet” with Google Earth 

image as a background and farmers were asked separately to demarcate their 

own fields based on differences in yield (Figure 5.3). In addition, farmers were 

asked to identify the main factors causing the yield variability for the paper-

drawn management zones within the fields. 
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Figure 5.3: A farmer and his assistant using the paper map of a field (red 

boundary) to delineate zones and provide factors causing yield variability for 

different zones within a field. 

5.2.4 Vegetation indices  

Vegetation indices (VIs) are mathematical combinations or ratios of spectral 

bands derived from remote sensing images. They are developed to find 

functional relationships between crop characteristics and remote sensing 

observations (Wiegand et al. 1990). In order to identify the vegetation index 

which gives a better estimation of sesame yield, the most commonly used 

vegetation indices were selected based on previous studies (Kayad et al. 2016; 

Johnson 2016). Moreover, the indices were selected to be representative and 

can be derived from conventional multispectral satellite data (e.g., Landsat-8) 

(Al-Gaadi et al. 2016; Shang et al. 2015). The selected indices for this study, 

with their respective mathematical formulas and references are provided in 

Table 5.2. 

The normalised difference vegetation index (NDVI) is one of the first vegetation 

indices developed and most widely used for monitoring vegetation growth, yield 

forecasting and estimating (Bolton and Friedl 2013; Funk and Budde 2009). 

The NDVI is related to the amount of leaf area index and the amount of green 

biomass in the canopy (Tucker 1979). However, researchers have indicated that 

NDVI may be inadequate for assessing crop vegetation due to confounding 

background soil effects and saturation under dense canopy and vulnerability 

to atmospheric conditions (Huete et al. 2002). To overcome these limitations of 
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NDVI, previous studies have proposed the enhanced vegetation index (EVI) 

which uses the blue band in combination with the red band to reduce 

atmospheric contamination and also has a background soil adjustment factor 

L (Huete et al. 2002). The coefficients adopted in the EVI formula are: C1=6.0, 

C2=7.5, L=1, and G is a gain factor set to 2.5 (Huete et al. 2002). Moreover, to 

overcome the confounding background soil effect, the use of indices such as soil 

adjusted vegetation index (SAVI) (Huete 1988) and the modified soil adjusted 

vegetation index (MSAVI) (Qi et al. 1994) have been suggested. 

Table 5.2: An overview of the vegetation indices assessed in the present study 

with their respective mathematical formulas. 

Name (Index) Formula Reference 

Normalised Difference 

Vegetation Index (NDVI) 

(𝑁𝐼𝑅 − 𝑅)

(𝑁𝐼𝑅 + 𝑅)
 (Tucker 1979) 

Enhanced 

Vegetation Index 

(EVI) 
𝐺 ∗ [

𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝐶1 ∗ 𝑅 − 𝐶2 ∗ 𝐵 + 𝐿
] (Huete et al. 2002) 

Soil Adjusted Vegetation 

Index (SAVI) 
[

𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅 + 𝐿
] ∗ (1 + 𝐿) (Huete 1988) 

Modified Soil 

Adjusted 

Vegetation 

Index (MSAVI) 

2 ∗ 𝑁𝐼𝑅 + 1 − √(2 ∗ 𝑁𝐼𝑅 + 1)2 − 8 ∗ (𝑁𝐼𝑅 − 𝑅)

2
 

(Qi et al. 

1994) 

Note:- NIR: Near infrared reflectance (Band 5); R: Red reflectance (Band 4); B: Blue reflectance 

(Band 2), C1=6.0, C2=7.5, L=1 and G=2.5. 

5.2.5 Data analysis 

Our analysis includes two main elements. First, we compared the effectiveness 

of four Landsat-8 spectral indices for predicting sesame yield at the field level 

using empirical models. For this, both the optimum growing period and 

phenologically adjusted VI profiles were assessed. By using the phenologically 

adjusted VI profile, we investigated the added value of crop phenology 

information crowdsourced by the farmers to improve the accuracy of the model 

to predict sesame yield. Second, we explored the potential of crowdsourced data 

to identify factors causing the yield variability within a field as perceived by 

the farmers. 
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5.2.5.1 Establishing relationship between sesame actual yield and 
vegetation indices 

First, we tested whether sesame yield data for the 38 fields was normally 

distributed or not using the Shapiro–Wilk test (Shapiro and Wilk 1965). 

Regression analyses were used to investigate the relationship between each of 

the vegetation indices and sesame actual yield (Shang et al. 2015). Sesame 

actual yield was estimated by regressing each of the vegetation indices versus 

reported yield of the 38 fields. The yield data were regressed using original 

(NDVIorg, EVIorg, SAVIorg, SAVIorg), peak-season (NDVImax, EVImax, SAVImax, 

MSAVImax), average (NDVIave, EVIave, SAVIave, MSAVIave), and cumulative 

(NDVIcum, EVIcum, SAVIcum , MSAVIcum) variables independently for both the 

optimum growing period and phenologically adjusted VI profiles.  

The model with a vegetation index that gave the highest coefficient of 

determination (R2) with sesame actual yield was selected for establishing the 

prediction model (Wang et al. 2014). If the R2 values of two models were similar, 

then the model with relatively lower RMSE and RE values would be selected. 

We tested for normality of the residuals (Poole and O'Farrell 1971) of the 

regression of the selected vegetation index and sesame yield to test whether 

the relationship between the vegetation index and sesame yield is linear or 

nonlinear (Kuri et al. 2014).  

5.2.5.2 Model validation and accuracy assessment 

Cross validation using Leave-one-out (LOOCV) was applied for the selected 

model to test its robustness (Kuri et al. 2014; Mkhabela et al. 2011). The 

model’s coefficient of determination (R2), the prediction error (root mean square 

error (RMSE)) and relative error (RE) were computed and used to assess the 

predictive performance of the model (Wang et al. 2014). The RMSE and RE 

between the observed and predicted values were computed using the following 

formulae:  

RMSE = √
∑  (𝑌𝑜𝑏𝑠−𝑌𝑝𝑟𝑒)2𝑁

i=1

𝑁
 

RE =  
𝑌𝑜𝑏𝑠−𝑌𝑝𝑟𝑒

𝑌𝑜𝑏𝑠
 

Where Yobs  is measured yield values, Ypre  is predicted yield values for field i and 

N is the total number of fields. 
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5.2.5.3 Mapping of sesame yield within a field 

The regression equation of the selected model was applied to all the sesame 

pixels in the remote sensing image within a particular field, to calculate the 

yield of sesame for each of the fields. The resulting map was used to assess the 

spatial variability of yield within a field. 

5.2.5.4 Identification of factors causing yield variability within a field 

Independent of the yield map based on remote sensing, farmers were asked to 

draw a map of their field delineating management zones related to different 

yields and/or problems. This map was used to identify factors that caused the 

yield variability among the delineated zones within a field. Per field, factors 

were ranked based on the area a farmer perceived a specific factor to explain 

the yield variability within a field. For example, if a farmer perceived that a 

large part of the field had low yield because of low soil fertility and small part 

of the field because of high presence of weeds, then we ranked soil fertility as 

the 1st important factor followed by weed for that specific field. If a farmer 

perceived that all the factors were equally important to explain the yield 

variability within a field, then all the factors were ranked equally. The areas 

of the zones in which factors were perceived to explain yield variability within 

a field were estimated (compared) visually. Frequency analysis was then used 

to determine the number of cases in which factors were perceived important or 

not important by the farmers to explain yield variability within the fields. 

Finally, the spatial pattern similarities or differences between the remote 

sensing yield map of the fields and the maps delineated into zones by the 

farmers were visually assessed. Here also the number of cases the spatial 

pattern of the two maps looked very similar (high), moderately similar 

(medium) and not similar at all (low) were counted and subjected to frequency 

analysis. A similar approach using crowdsourcing of Google Earth Imagery was 

used to map and validate cropland in Ethiopia via the Geo-wiki platform (See 

et al. 2013).  

The methodology followed in the present study allowed farmers to participate 

as a citizen scientist (Van Etten et al. 2016; Aragó Galindo et al. 2012) by 

involving them in the research process from simple information provision (i.e. 

contributory; e.g. providing sowing and harvest dates) up to a level which needs 

their cognitive skills (i.e. collaborative; e.g. reasoning and identifying the 

factors that cause the yield variability within a field) (Bonney et al. 2009). 
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5.3 Results 

5.3.1 Estimation of sesame yield using vegetation indices 

Overall, the relationship between sesame yield and vegetation indices was 

strong when VI values extracted based on crowdsourced crop phenology were 

used (Table 5.3). Hence, we present results based on VI values extracted using 

crop phenology. The Shapiro–Wilk test for normality showed that the average 

yield data for all the sesame fields is not normally distributed. The test for 

normality of the residuals of the regression also showed that sesame yield and 

each of the vegetation indices are linearly related. Figure 5.4 depicts significant 

(p<0.01) linear relationships between sesame yield and the average values of 

the vegetation indices over the cropping season. The strongest relationship was 

observed when average NDVI values over the growing season were used to 

regress sesame yield (Table 5.3). Thus, using average NDVI values over the 

cropping season is the most appropriate approach to relate satellite time-series 

and to predict sesame yield. Next to the average values, peak-season values 

(August-October) for all the four vegetation indices revealed a moderate 

relationship with sesame yield. For all the four VIs, both the original and 

cumulative values reveal the weakest relationship with sesame yield. 

 

Table 5.3: Quantitative relationships between sesame actual yield (y) and 

vegetation indices (x). 

 Using phenologically adjusted VI 

Using optimum 

growing period 

VI 

Vegetation 

index 

Model calibration 

Model 

validation 

(LOOCV) 

Model 

calibration 

Fitting model R2 RMSE R2 R2 

NDVIave y = 9.56 * x - 1.47 0.654 0.623 0.612 0.114 

EVIave y = 11.12 * x + 0.48 0.548 0.707 0.500 0.027 

SAVIave y = 12.13 * x + 0.18 0.572 0.690 0.524 0.027 

MSAVIave y = 11.05 * x + 0.69 0.545 0.710 0.497 0.025 

Figure 5.2 shows the mean temporal profile characteristics of the four 

vegetation indices throughout the 2015 growing season. From the temporal 

profile characteristics there are obvious timing and amplitude differences 

between the vegetation indices and districts. In general, the cropping calendar 

of sesame in the study areas varied from Qwara district to Mirab Armacho 

district. The sowing period of sesame in the Qwara district was earlier than 

that of the Mirab Armacho district mainly due to the variations in the start of 

the rainy season (Figure 5.5). Moreover, VI values for the fields in the Qwara 
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district reduced earlier in the season which indicates these fields were 

harvested earlier than fields in the other two districts (Figure 5.6). Qwara and 

Metemma fields had higher amplitudes for all the four vegetation indices 

compared to Mirab Armacho fields. This implies that there was more 

vegetative growth and hence yield in Qwara and Metemma districts compared 

to Mirab Armacho district (Figure 5.10). The temporal intensity of the 

vegetation indices from sesame fields generally characterised seasonal changes 

of sesame crop phenology (Figure 5.2). 

Figure 5.4: Regression per vegetation indices showing the relationships 

between the selected  vegetation indices and sesame actual yield with, a) 

NDVIave b) EVIave c) SAVIave and d) MSAVIave. 

a) b) 

c) d) 
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Figure 5.5: Sowing dates of sesame for fields in the three districts. 

 

  

 Figure 5.6: Harvest dates of sesame for fields in the three districts. 
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5.3.2 Accuracy of the model used in the prediction of sesame yield 

Figure 5.7 presents the scatter plots of the measured yield against the 

predicted yield using the models of each of the vegetation indices developed 

using the leave-one-out cross-validation (LOOCV) approach. The RMSE values 

range from 0.62 to 0.71 and the model based on average NDVI (NDVIave) had 

the smallest RMSE (0.62 qtha-1) and the highest coefficient of determination 

(R2 = 0.61) values.  

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Scatter plot of measured yield against predicted yield using a) 

NDVIave, b) EVIave, c) SAVIave and d) MSAVIave. The dashed line represents the 

1:1 line (y = x). 

5.3.3 Mapping the spatial variability of sesame yield within a field 

Actual yield of sesame for all the pixels within a field was calculated by using 

the model based on average NDVI values. Figure 5.8 illustrates the resulting 

spatial distribution of sesame yield (based on average NDVI) for the low, 

medium and high yielding fields in the three districts. The maps showed a 

considerable yield variation within each field (Figure 5.9). For low yielding 

fields the yield variability within a field was from 2.11 qtha-1 – 4.4 qtha-1 while 

for medium fields the variation was from 4.0 qtha-1 – 5.2 qtha-1. The variation 

within a field for high yielding fields was relatively smaller compared to the 

low and medium fields. It ranged from 5.3 qtha-1 –  6.2 qtha-1 (Figure 5.9). There 

NDVI 

R2 = 0.61 

RMSE = 0.62 

EVI 

R2 = 0.50 
RMSE = 0.71 

SAVI 

R2 = 0.52 
RMSE = 0.70 

MSAVI 

R2 = 0.50 

RMSE = 0.71 

a) b) 

c) d) 
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was more variability among the low yielding fields in the three districts 

compared to the medium and high yielding fields (Figure 5.9). At the district 

level, there was more variation between fields in Qwara district compared to 

the Metemma and Mirab Armacho districts (Figure 5.10). 

Metemma Mirab Armacho Qwara 

Figure 5.8: Matrix showing the yield variability within a field for some of the 

fields included in the current study. The rows 1-3 illustrate the low, medium 

and high yielding fields respectively. The columns 1-3 show fields from 

Metemma, Mirab Armacho and Qwara districts respectively. Light blue dashed 

lines represent low soil fertility areas, black dashed lines represent high 

presence of weeds, solid lines represent an area with high incidence of pests 

and diseases and purple dashed lines represent presence of water logging as 

perceived by the farmers. The values are yield in quintal per pixel. 
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Metemma Mirab Armacho         Qwara 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: Matrix showing the histogram of the low, medium and high yielding 

fields in the three districts. The 1st row illustrates the low, 2nd row medium and 

3rd row high yielding fields. The columns 1-3 show fields from Metemma, Mirab 

Armacho and Qwara districts respectively. 

5.3.4 Factors causing yield variability within a field 

Farmers perception and their spatial knowledge about their field were used to 

identify the main factors causing the yield variability within a field. According 

to the perception of farmers, overall soil fertility is the most important factor 

explaining the yield variability within a field, followed by high presence of 

weeds (Figure 5.11). Among the factors, soil fertility and weeds were the main 

factors causing the yield variability in Mirab Armacho district while incidence 

of pests and diseases was more important in Qwara district (Figure 5.12). In 

Metemma district, low soil fertility and presence of weeds were equally 

important to explain yield variability within a field (Figure 5.12). 

 Yield (qt/pixel) 
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Figure 5.10: Boxplots showing the yield variability of observed and predicted 

sesame average yield among fields in the three districts. 

 

Figure 5.11: Overall rank of the factors causing yield variability within a field 

as perceived by the farmers. 
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Figure 5.12: Factors causing yield variability within a field in the three 

districts. 

5.4 Discussion 

The objective of this study was to investigate the capability of remote sensing 

satellite imagery (i.e., Landsat 8) to estimate and map sesame yield at the field 

level and to explore the potential of bottom-up data collection approaches (e.g., 

crowdsourcing) to improve these estimations and to identify the main factors 

that cause the yield variability within a field. The main research question was: 

how can synergy of remote sensing and crowdsourced data improve the 

estimation and explanation of yield variability? During yield estimation, 

farmers crowdsourced crop phenology information was used to select images 

acquired after planting and before harvest dates per field. Vegetation indices 

were then extracted from the selected images and used in the empirical model. 

This improved the accuracy of the model to predict sesame yield compared to 

the model based on the VIs extracted from all the images available for the 

optimal growing period (Table 5.3). Using VIs extracted only from images 

acquired during the growing season helped to remove pre and post season 

unnecessary signals and hence resulted in a more accurate model. Moreover, 

the crowdsourcing approach was used to identify the underlying factors 

limiting yield at the field level. Coupling the remote sensing approach with 

crowdsourcing improves the accuracy of the model and also gave the 

opportunity to acquire yield limiting factors at the field level. Previous studies 

focusing on land cover, combined remote sensing with crowdsourced data and 

produced hybrid land cover maps with better overall accuracy compared to the 
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existing individual land cover products (Fritz et al. 2015; See et al. 2015). Our 

results suggest that vegetation indices derived from moderate-resolution 

satellite imagery (e.g., Landsat-8) can be used to make predictions of sesame 

crop yield at the field level with acceptable accuracy (R2 = 0.65, RMSE = 0.62). 

5.4.1 Predicting sesame yield using VIs derived from remote sensing 

time-series data 

In our study, we found a linear relationship between NDVI derived from 

Landsat-8 time-series and sesame yield (Figure 5.4). Compared to the other 

vegetation indices, average NDVI over the growing season had the strongest 

relationship with sesame yield (R2 = 0.65, RMSE = 0.62). The reason for the 

NDVI to have a better relation with sesame yield compared to the other indices 

might be because NDVI is sensitive to chlorophyll content while the others 

(e.g., EVI) are more sensitive to canopy structure and related variables, such 

as LAI (Huete et al. 2002). Similarly, in the study of Johnson (2016), NDVI 

outperformed EVI to predict yield of canola, sorghum and sugar beet using 

MODIS products.  

Previous studies have also shown that crop phenology derived from remote 

sensing data can be used to capture local variation in the timing of optimum 

periods to use vegetation indices for crop yield estimation (Duncan et al. 2015b; 

Bolton and Friedl 2013; Funk and Budde 2009). For example, the study of 

Bolton and Friedl (2013) demonstrated how VI time-series information 

adjusted using crop phenology derived from remote sensing per pixel increased 

the accuracy of crop yield estimates. However, remotely derived crop phenology 

information from coarser spatial resolution data (e.g. MODIS) is limited to 

monitor individual fields (Duncan et al. 2015a).  

In the present study, crowdsourcing was used to collect crop phenology events 

for all the sesame fields in our study. This information was then used during 

the data preparation phase. VIs values were extracted and used in the 

subsequent analysis only from satellite images acquired after planting and 

before harvest dates for all the fields in our study. Using VIs values extracted 

based on the crop phenology information improved the accuracy of the model 

to predict sesame yield (Table 5.3). The study of El Hajj et al. (2009) presented 

a comparable approach of integrating farmers reported crop phenology 

information (i.e., maturity dates) and expert knowledge with remote sensing 

time-series data to improve the accuracy of a decision support system to 

monitor agricultural practices (sugarcane harvest) at the field level. Similarly, 

a citizen science project called Season Spotter, engaged volunteer citizen 

scientists to detect plant phenology events from near-surface remote sensing 

imagery and use the information to connect landscape-level measures with 

field-based measures (Kosmala et al. 2016a). 
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In our study, we found that average VI values over the growing season gave a 

stronger relationship with sesame yield compared to peak or single date VI 

values (Table 5.3). This demonstrates the importance of including multi-

temporal VI information into crop yield models, and not to isolate time-periods 

which correspond to the phenological stages of crop development which 

determine crop yield (Huang et al. 2013; Bolton and Friedl 2013; Sakamoto et 

al. 2013). Vegetation indices derived from satellite images were earlier used to 

predict yield levels of corn (Johnson 2016), rice (Son et al. 2014), sugar cane 

(Morel et al. 2014), winter oilseed rape (Han et al. 2017), among others. As the 

resolution of satellite images, both in time and space is increasing, yield 

estimates are becoming increasingly accurate (Burke and Lobell 2017). Remote 

sensing can thus become important to estimate actual yields, as yield estimates 

based on surveys or measurements are not always reliable (Fermont and 

Benson 2011). Measurements depend on samples in the field, and when 

variability is high as often the case and also shown in this study (Figure 5.8), 

reliability largely depend on the location and number of samples. Recall of 

farmers is not always accurate and does not consider within field variability.  

5.4.2 Crowdsourcing to acquire factors explaining yield variability at 

field level 

The remote sensing based approach was used to estimate sesame crop yield at 

the field level. The resulting yield map demonstrated clear spatial yield 

variability within the fields (Figure 5.8). The next step in the workflow is to 

identify the factors causing the yield variability within the fields. However, the 

remote sensing approach using moderate-resolution satellite imagery (e.g., 

Landsat) would not be able to provide detail information. The crowdsourcing 

approach was used to identify factors that caused yield variability within a field 

(Figure 5.12). For this specific purpose, the participation of farmers was more 

of collaboration than the contributory model of citizen science (Bonney et al. 

2009). Farmers participated and contributed to the process with their cognitive 

skills. Figure 5.12 illustrates the main factors explaining the yield variability 

within a field as perceived by the farmers. In addition to improving the 

accuracy of the model to predict sesame yield, the crowdsourcing approach has 

a high potential to collect factors that explain the yield variability with a field.   

5.4.3 Limitations and future recommendations 

A few important limitations are noteworthy for this study. One potential error 

is in the farmer reported yields because of errors in estimating the weight of a 

bag. Although we tried to cross-check the average weight of a bag reported by 

the farmer with the information from the closest ECX (Ethiopian Commodity 

Exchange) market, it is worth mentioning as it might have affected the 

accuracy of the prediction model. In most situations, non-negligible errors exist 
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in the farmer-reported data, as also mentioned above, suggesting that the true 

accuracies of remote sensing data can be even higher (Lobell 2013). 

Although the model developed in this study was successfully evaluated using 

one season data, there is a need to continue evaluating the performance of the 

model using data from other seasons. Improving on the spatial resolution of 

images used to extract vegetation indices to calibrate the model and using a 

crop-specific mask may improve the reliability of the model. The open-access 

Sentinel-2 earth observation system should overcome the spatial limitation 

because it will provide 10-m resolution satellite images with a 5-day frequency. 

In addition, in recent studies vegetation indices derived from micro-satellites 

are used to estimate and map crop yield at the field level even for the small and 

heterogeneous fields which are typical for the smallholder farming system in 

the tropics (Burke and Lobell 2017; Jain et al. 2016). The use of Unmanned 

Aerial Vehicle (UAV) is another possibility to acquire high spatio-temporal 

data for estimating and mapping crop yield at the field level (Du and Noguchi 

2017).  

In the current study, farmers delineated zones within a field using paper based 

maps. However the ubiquitous availability of mobile phones and tablets which 

are equipped with GPS sensors can potentially be used (e.g. using GeoODK) to 

collect the information directly from the farmers digitally and send it to a 

central database (e.g., Land-Potential Knowledge System; Herrick et al. 2016; 

Herrick et al. 2013) and any error during the data submission can be corrected 

in a near-real time. 

5.5 Conclusions 

The capability of vegetation indices derived from remote sensing time-series 

was assessed to estimate sesame yield at the field level. Our results showed 

that vegetation indices derived based on farmers crowdsourced crop phenology 

information had strong relationship with sesame yield compared to vegetation 

indices derived based on the optimal growing period. This made us to conclude 

that using farmers crowdsourced crop phenology information have improved 

the accuracy of the model to predict sesame yield at the field level. 

Furthermore, among the vegetation indices, NDVI was a more effective 

predictor of sesame yield than the other three VIs (EVI, SAVI, MSAVI). The 

relationship between NDVI and sesame yield was strong when average values 

over the growing season were used compared to single date or peak-season 

NDVI values. This implies using multi-temporal image acquired over the 

growing season is more suitable to predict sesame yield than using single or 

few date image(s).  
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More generally, the results from this work suggest that remotely sensed 

information coupled with crowdsourcing is useful for estimating sesame crop 

yield at the field level with a reasonable accuracy. As a next step, the 

crowdsourcing approach was used to identify the factors causing the yield 

variability within a field after the yield was mapped at the field level using the 

remote sensing approach. According to the perception of farmers participated 

in the crowdsourcing, overall soil fertility was the most important factor 

explaining the yield variability within a field followed by high presence of 

weeds. Our study clearly demonstrated that using the crowdsourcing approach 

has a huge potential to collect the underlying factors causing yield variability 

within a field especially in regions where there is scarcity of farm level data. 

While the analysis described in this chapter focused on sesame yield in 

Ethiopia, the approach of coupling remote sensing with crowdsourcing has the 

potential to support yield monitoring and forecasting efforts in the other parts 

of the world. 
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6.1 Main results 

The main objective of this PhD thesis was to investigate the applicability of 

innovative data collection approaches like crowdsourcing and remote sensing 

to support the assessment and monitoring of crop yield gaps. In the first part 

of this chapter a synthesis will be given for the main research questions 

addressed in the thesis. In section 6.2, the necessary additional factors that 

need to be considered to utilize the full potential of innovative data collection 

approaches are discussed.  

Research question 1: What are the main factors causing the yield gaps at the 

global, regional and crop level? 

In order to identify the most commonly considered and explaining factors of the 

yield gap at the global, regional and crop level, a review of yield gap studies (50 

agronomic-based peer-reviewed articles) was performed in Chapter 2. The 

results of the aggregated analysis at the global level show that factors from the 

management category are most often considered to explain the yield gap 

compared to the edaphic, farm characteristics and socio-economic categories 

(Figure 2.2). Among the management groups, the fertilization group is most 

often considered and often explains the yield gap. However, less often 

considered factors from the irrigation, land preparation and crop 

characteristics groups also explain the yield gap in more than 80% of the cases, 

when considered (Figure 2.2a). Planting, crop protection and weeding are the 

other groups which explain the yield gap in more than 60% of the cases when 

considered. Overall, this highlights the importance of crop management for 

existing yield gaps.   

Like management factors, edaphic factors also explain the yield gap (Figure 

2.2b). Among edaphic groups, factors related to soil fertility were considered by 

a relatively large number of records (25%) compared to the other groups of 

factors and they explained the yield gap in 69% of the cases when considered. 

For 69% of the records where a factor related to slope was considered in the 

analysis, this factor could also explain the yield gap. Soil type and soil water 

explained the yield gap in around 58% and 38% of the cases. At the global level, 

compared to management factors, edaphic factors were in general less often 

considered to explain the yield gap and when considered, the power of the 

factors to explain yield gap was less than that of management factors (Figure 

2.2a and b). For example, both soil fertility and fertilization were considered by 

a relatively large number of records, 25% and 45% of the cases respectively. 

However, factors in the fertilization group explained the yield gap more often 

than factors in the soil fertility group. 
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The analysis at the global level shows that in general, few studies considered 

farm characteristics factors when explaining the yield gap, compared to 

management and edaphic factors (Figure 2.2c). However, when considered, 

farm(er) characteristics factors often explain the yield gap. From Figure 2.2c, 

we see that in 93% of the records where a factor related to intensity (e.g., 

resource use intensity) or labour (e.g., cost of labour) was considered in the 

analysis, this factor could also explain the yield gap. Factors in the size 

category explained the yield gap in70% of the records when a factor related to 

size (e.g., farm area) was considered in the analysis. Like the farm 

characteristics factors, socio-economic factors were not often considered to 

explain the yield gap (Figure 2.2d). However, when socio-economic factors were 

considered, they were often explaining, especially factors related to population 

(e.g., rural population density) and institutions (e.g., access to fertilizers and 

credits), but also technical factors (e.g., technical assistance) were explaining 

in more than 50% of the cases.  

Results of the detailed analysis for the most often considered and explaining 

groups showed that, in the fertilization, irrigation and weeding groups, timing 

of operation (e.g., N fertilizer timing) was less often considered than amounts 

used (e.g., N fertilizer quantity) (Figure 2.3a). However, when considered, 

timing explained the yield gap more often. Also in the planting group, sowing 

date was more often explaining than sowing density, but it was also more 

considered. In the soil fertility group of the edaphic category, exchangeable 

cations and electric conductivity are not often considered, but when considered, 

they often explained the yield gap (Figure 2.3b). Total N, organic matter, pH 

and P-Olsen are considered by more records, but have smaller explaining power 

compared to exchangeable cations and electric conductivity. Detailed analysis 

on the labour group of the farm characteristics category showed that 

opportunity cost of labour, availability of machines and mechanisation are the 

three most often explaining factors despite their low frequency consideration 

to explain yield gaps (Figure 2.3c). Looking into the institutional group of the 

socio-economic category, access to fertilizer, credit and markets (km) are the 

three institutional factors which explain the yield gap the most (Figure 2.3d). 

Moreover, market access (hrs), market influence and subsidies explain the 

yield gap in more than 75% of the cases when considered. 

From the results at regional and crop level, it was evident that the relevance 

of factors depends on the location and crop, and that generalizations should not 

be made. For example, soil fertility is relevant to explain yield gaps in Africa 

whereas soil water is more relevant for yield gaps in Asia (Figures 2.4c and d). 

Fertilization, land preparation and crop protection are the factors that often 

explain the rice yield gap in Africa while crop characteristics and planting are 

important factors for the rice yield gap in Europe (Figure 2.5). Therefore, the 
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data collection procedure is therefore highly important when performing yield 

gap analysis, as a focus on few factors may bias the results. Although the data 

included in yield gap analysis also depends on the objective, knowledge of 

explaining factors, and methods applied, data availability is a major limiting 

factor. Bottom-up data collection approaches (e.g., crowdsourcing) involving 

agricultural communities can provide alternatives to overcome this limitation 

and improve yield gap analysis. 

Research question 2: How could data for yield gap explaining factors be 

collected with innovative bottom-up approaches? 

In Chapter 2, the results from the first research question were used as a base 

to discuss the potential of innovative bottom-up data collection approaches to 

collect the factors causing the yield gap (Table 2.1). Most of the management, 

farm characteristics and socio-economic factors that explain the yield gap (e.g., 

timing of management operations, education level/age of the farmer, access to 

fertilizers) can only be obtained either by asking farmers using traditional farm 

survey methods or through self-reporting. However, the traditional farm 

survey methods are often expensive, time-consuming and labour-intensive 

(Fermont and Benson 2011). With the advent of widespread mobile phone 

access, crowdsourcing for data collection is an emerging method for data 

capture (Belden et al. 2013).  

With regard to yield gap explaining factors, crowdsourcing can mainly be used 

to collect information related to the timing of an activity (e.g., timing of 

fertilization, weeding, irrigation). Moreover, quantity information like amount 

of fertilizer applied, number of weeding and irrigation operations performed in 

a specific field can be collected. Cropping calendar (e.g., sowing date, dates of 

flowering, maturity and harvest) are other potential management factors that 

can be collected using crowdsourcing (Figure 4.3). The advantage of sending a 

message (e.g., SMS) at the moment an activity is performed, a phenological 

event takes place above traditional methods is that farmers don’t need to recall. 
With the increasing availability of smartphones which are equipped with 

sensors (e.g., GPS, camera), the geo-location (boundary) of a field can be 

collected which can be used to calculate field size (Chapter 5). The camera 

feature of the phone can be used to capture specific incidents in a field (e.g., 

incidence of pest, disease or weed) which can later be used by experts to assess 

the infestation level and also to identify the type of pest, disease and/or weed 

that caused the damage to the crop (Rahman et al. 2015). The crowdsourcing 

approach can be used to ask farmers to assess the fertility level of their soils 

using their own local indicators. In addition, an on-farm soil testing kit which 

allows farmers to diagnose soil constraints in the field and transmit the 

information quickly through SMS (e.g., SoilDoc) could potentially be used for 
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acquiring soil fertility factors. For smartphone or tablet users, apps like MySoil 

app can be used to provide information about pH and organic-matter content 

of the soil (Shelley et al. 2013). 

The crowdsourcing approach also has huge potential to collect farm 

characteristics and socio-economic factors (Table 2.1). Farm(er) characteristics 

factors like labour (e.g., labour availability), training (e.g., years in school) and 

income (e.g., farm income) are factors that can be collected using the 

crowdsourcing approach. Socio-economic factors like access to fertilizer (Y/N), 

access to credit (Y/N), number of technical assistances received and gender of 

a farmer are few example factors which can be collected using crowdsourcing. 

To receive accurate and timely information, understanding the motivations of 

the farmers to participate in crowdsourcing and incentivising them to provide 

the requested information is critical (Beza et al. 2017b). This led us to explore 

motivations of farmers to participate in citizen science and was addressed in 

the next research question.  

Research question 3: What are motivations of farmers to participate in 

agricultural citizen science? 

This research question is mainly addressed in Chapter 3. As the sustainability 

of agricultural citizen science projects depends on volunteer farmers who 

contribute their time, energy and skills, understanding their motivation is 

important to attract and retain participants in citizen science projects. 

Building on motivational factors identified from previous citizen science 

studies (Table 3.1), a questionnaire based methodology was developed which 

allowed the analysis of motivational factors and their relation to farmers’ 

characteristics. The questionnaire was applied in three communities of 

farmers, in countries from different continents (Ethiopia, India and Honduras), 

participating as citizen scientists (Figure 3.1). For Indian farmers a 

collectivistic type of motivation (i.e., contribute to scientific research) was more 

important than egoistic and altruistic motivations (Figure 3.2). For Ethiopian 

and Honduran farmers an egoistic intrinsic type of motivation (i.e., interest in 

sharing information) was most important. Grouping of farmers based on their 

motivations resulted in two major groups of farmers: one motivated by sharing 

information (egoistic intrinsic), helping (altruism) and contribute to scientific 

research (collectivistic) and one motivated by egoistic extrinsic factors 

(expectation, expert interaction and community interaction) (Figure 3.3). 

Moreover, the majority of the farmers in the three countries indicated that they 

would like to receive agronomic advice, capacity building and seed innovation 

as the main returns from the citizen science process (Figure 3.5). Country and 

education level were the two most important farmers’ characteristics that 
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explained around 20% of the variation in farmers’ motivations (Figure 3.4). For 

educated farmers, contributing to scientific research was a more important 

motivation to participate as citizen scientists compared to less educated 

farmers. The results show that motivations to participate in citizen science are 

different for smallholders in agriculture compared to other sectors. In addition 

to motivation, technology is the other pillar for the success of digital citizen 

science (Nov et al. 2014). This is addressed in the next research question 

(Chapter 4). 

Research question 4: What determine smallholder farmers to use technologies 

(e.g., mobile SMS) for agricultural data collection? 

To identify the factors that affect the intention of smallholder farmers to adopt 

mobile SMS for agricultural data collection, the unified theory of acceptance 

and use of technology (UTAUT2) model was employed and extended with 

additional constructs of trust, mastery-approach goals and personal 

innovativeness in information technology (Figure 4.1). As part of the research, 

we setup data collection platforms using open source applications (Frontline 

SMS and Ushahidi, Figure 4.2) and farmers provided their farm related 

information using SMS for two growing seasons (Figure 4.3). The sample 

consisted of a group of farmers (n=220) involved in a mobile SMS experiment 

(“SMS farmers”) and another group which was not involved in a mobile SMS 

experiment (“Non-SMS farmers”), in three regions of Ethiopia.  

The results from the structural equation modelling showed (Table 4.5) that 

performance expectancy, effort expectancy, price value and trust were the 

factors that influence farmers to adopt mobile SMS technology for agricultural 

data collection. Among these factors, trust is the strongest predictor of farmer’s 

intention to adopt mobile SMS to provide their farm related information. This 

clearly indicates that in order to use the citizen science approach in the 

agricultural domain, establishing a trusted relationship with the smallholder 

farming community is crucial. Given that performance expectancy significantly 

predicted farmer’s behavioural intention to adopt mobile SMS, managers of 

agricultural citizen science projects need to ensure that using mobile SMS for 

agricultural data collection offers utilitarian benefits to the farmers. The 

importance of effort expectancy on farmer’s intention to adopt mobile SMS 

clearly indicates that mobile phone software developers need to develop easy 

to use mobile apps. To simplify the data collection process, applications that 

support Interactive Voice Response (IVR) (e.g., Robinson and Obrecht 2016) 

and icon-based user interfaces can potentially be developed (e.g., Herrick et al. 

2016). The fact that price value was important for farmers to adopt mobile SMS 

indicates that projects implementing agricultural citizen science especially in 

developing countries need to find a mechanism where the SMS data 
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transmission is free of charge (e.g., by providing free airtime). Moreover, multi-

group comparisons using farmer’s characteristics age and experience as 

moderator variables revealed that performance expectancy was important for 

younger farmers (Table 4.7), whereas price value was important for farmers 

who did not participate in a mobile SMS experiment (“Non-SMS farmers”) 

(Table 4.6).    

Research question 5: How can synergy of crowdsourced data and remote 

sensing improve the estimation and explanation of yield variability? 

In Chapter 5, the crowdsourcing approach was combined with remote sensing 

to estimate and explain crop yield at the field level. Sesame production on 

medium and large farms in Ethiopia was used as a case study. To evaluate the 

added value of the crowdsourcing approach to improve the prediction of sesame 

yield using remote sensing, two independent models based on the relationship 

between vegetation indices (VIs) and farmers reported yield were developed 

and compared. The first model was based on VI values extracted from all 

available remote sensing imagery acquired during the optimum growing period 

(hereafter optimum growing period VI). The second model was based on VI 

values extracted from remote sensing imagery acquired after sowing and before 

harvest dates per field (hereafter phenologically adjusted VI). To select the 

images acquired between sowing and harvesting dates per field, farmers 

crowdsourced crop phenology information were used (e.g., Figure 4.3). 

Results showed that vegetation indices derived based on farmers crowdsourced 

crop phenology information had a stronger relationship with sesame yield 

compared to vegetation indices derived based on the optimum growing period 

(Table 5.3). This implies that using crowdsourced information related to crop 

phenology per field used to adjust the VIs, improved the performance of the 

model to predict sesame yield. Among the vegetation indices explored, NDVI 

was a more effective predictor of sesame yield than EVI, SAVI and MSAVI 

(Table 5.3). The highest correlation was observed between sesame actual yield 

and the predicted yield using average NDVI over the growing season (R2 = 0.65, 

RMSE = 0.62). The relationship between NDVI and sesame yield was strong 

when average values over the growing season were used (Figure 5.4). This 

implies that using multi-temporal image acquired over the growing season is 

more suitable to predict sesame yield than using single or few date image(s). 

Crowdsourced information could further identify factors that caused the yield 

variability within a field (Figures 5.11 and 5.12), and locations with lower 

yields in the remote sensing images largely overlapped with locations with 

reported yield limiting and/or reducing factors. According to the perception of 

farmers, overall soil fertility was the most important factor explaining the yield 

variability within a field, followed by high presence of weeds (Figure 5.11). 
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6.2 Reflection and outlook 

Yield gap analysis at the farm and farming system level provides the 

foundation for identifying the most important crop, soil and management 

factors limiting current farm yields (e.g., Affholder et al. 2013). The major 

challenge of this approach is that it needs detailed information about 

biophysical characteristics and crop and farm management for individual 

agricultural activities within a farm, as well as farm and farmer’s 

characteristics and socio-economic conditions. Clearly, obtaining this 

information for a large number of fields from many farms is costly and time-

consuming. However, most of the relevant factors for yield gap analysis can 

potentially be collected using innovative data collection approaches (e.g., 

crowdsourcing; Table 2.1). In the next sections, the necessary additional steps 

that need to be considered to utilize the full potential of innovative data 

collection approaches for agricultural citizen science are discussed. 

6.2.1 Establishing and sustaining agricultural citizen science 

initiatives 

In Chapter 2, the potential of alternative data collection approaches (e.g., 

citizen science) to collect factors relevant for yield gap analysis has been 

discussed extensively (Table 2.1). However, in order to utilize the full potential 

of the citizen science approach for yield gap analysis, first the network with the 

intended community (i.e., farming community) needs to be established 

(Gharesifard et al. 2017). Network establishment mechanism is described as 

‘the establishment system of citizen science initiatives’ and three main 

approaches can be distinguished: 'top-down', 'bottom-up' and 'commerce driven' 

(Gharesifard et al. 2017). In a top-down approach, scientists or authorities at 

higher-levels of policy making start the citizen science initiative (e.g., eBird; 

Sullivan et al. 2009 and tricot; Van Etten et al. 2016) while in a bottom-up 

setup, citizen scientists such as farmers start the citizen science initiative to 

look for solutions to their local problems (Haklay 2013; Bonney et al. 2009). In 

the agricultural domain, following the top-down approach, citizen science 

initiatives can be integrated with the current agricultural data collection 

system. In other sectors (e.g., forestry), researchers have shown the potential 

of linking community-based and national forest monitoring (Pratihast et al. 

2013b). The lessons learnt from the forestry sector can also be extended to the 

agricultural domain to link farmers reported data with national or regional 

data collection efforts (e.g., Dillon 2012).  

In the case of a bottom-up approach, farmers can initiate citizen science, for 

example in order to get a solution when there is an outbreak of a disease and/or 

pest. In earlier examples, in the Digital Early Warning Network (DEWN) 

project, an initiative at the International Institute of Tropical Agriculture 
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(IITA), farmers send text messages to researchers about incidence of Cassava 

Mosaic Disease (CMD) and Cassava Brown Streak Disease (CBSD) and 

received disease control options in return (Ogodo 2009). The third approach 

(i.e. commerce driven) is a network establishment mechanism developing 

neither from official administrative bodies nor from grassroots levels, but 

rather are set up by for-profit organizations (e.g., private companies) 

(Gharesifard et al. 2017). In the agricultural domain, among others, initiatives 

like iCow (http://www.icow.co.ke/) and SoilCares (http://www.soilcares.com/en/) 

are examples where a commerce driven approach is followed to establish 

networks with the farming community.  

As a next step, once the citizen science initiative is established, a mechanism 

to sustain the initiative is required (Gharesifard et al. 2017; Dickinson et al. 

2012). Strategic collaborations and partnerships with potential public, private 

and NGOs might be necessary to gather the resources and participants 

required to sustain citizen science projects over the long term. The primary 

challenges for most projects include maintaining funding for 

cyberinfrastructure, databases, and project leadership (Dickinson et al. 2012). 

Gharesifard et al. (2017) identified seven revenue streams to sustain citizen 

science initiatives. (1) the first revenue stream is ‘government sponsorship’ 

that usually exists in a top-down set up. In this case, governments have the 

plan to use the data and thus allocate resources (e.g., from research budget) to 

establish and maintain a citizen science network. (2) Platform managers may 

combine farmers contributed data with other sources such as satellite and UAV 

data and sell these data products to individuals or organizations (e.g., eLEAF; 

www.eleaf.com). They may also process the data (e.g. using models) to generate 

information such as yield forecasts, warnings, maps, etc. and make profit from 

selling these products. This category of revenue streams is referred to as 'data 

or information usage fee'. (3) ‘Subscription fee’ refers to the membership fees 

that platform users may have to pay in order to gain continuous access to 

services provided by the platform (e.g., Yield Prophet: http://www.yieldprophet.com.au; 

(Hochman et al. 2009)). (4) 'Asset sale' refers to selling physical products (e.g., 

handheld soil scanner: www.soilcares.com/en/products/scanner/ and on-farm soil testing 

kit (SoilDoc): http://agriculture.columbia.edu/projects/agriculture/soildoc/). (5) 

'Advertising': some networks might offer advertisement opportunities on their 

platform (e.g., for agribusiness companies). (6) 'Licensing' is generated as result 

of providing intellectual property rights to data sharers or the general public. 

An example of this classification may be licenses to use a specific software or 

application that is developed by the network (e.g., ClimMob; Van Etten et al. 

2016). (7) 'Donation' indicates the network's full or partial dependence on the 

contributions of others (donors or the general public) to sustain the initiative 

(e.g., ‘Seeds for Needs’ initiative of Bioversity international; 

www.bioversityinternational.org/seeds-for-needs/). Depending on the situation 

http://www.icow.co.ke/
http://www.soilcares.com/en/
http://www.eleaf.com/
http://www.yieldprophet.com.au/
http://www.soilcares.com/en/products/scanner/
http://agriculture.columbia.edu/projects/agriculture/soildoc/
http://www.bioversityinternational.org/seeds-for-needs/


Chapter 6 
 

152 

 

or objectives, one of the aforementioned revenue streams may be used to 

sustain agricultural citizen science projects. 

As part of establishing and sustaining the citizen science initiative, ethical 

issues such as data ownership, data access policy and privacy need to be 

addressed (Riesch and Potter 2014). Agricultural data is very much linked with 

the livelihood of the farmers and protecting and securing the data collected 

using the citizen science approach is very crucial. The study of Resnik et al. 

(2015) provides a framework for addressing ethical issues in citizen science. 

Such a framework can be adopted to ethical issues that should be addressed 

when agricultural citizen science projects begin and throughout the course of 

the projects lifetime. Moreover, during the whole establishment and 

sustainability processes, emphasis need to be given for building a trusted 

relationship with the farmers (Chapter 4). 

6.2.2 Technological implementation 

Technology is one of the pillars for the success of digital citizen science (Nov et 

al. 2014). The technological dimension consists of two main components. The 

first component is to identify the right hardware (e.g., mobile phone) and 

software (e.g., SMS) to be used by the farmers to collect and send agricultural 

information to a central database (Figure 4.2). Nowadays, the proliferation of 

mobile phone technology in developing countries, where there is a large yield 

gap for most of the crops (http://www.yieldgap.org/), offers a unique opportunity 

to implement effective and low-cost “bottom-up” data collection approaches 

(e.g., Herrick et al. 2013). In Chapter 4, effort expectancy (i.e. the effort needed 

to use a technology) was found as one of the determining factors for farmers to 

adopt mobile SMS for agricultural data collection (Table 4.5). Therefore, for the 

typical low-literate smallholder farmers in developing countries (Table 3.2), 

developing a simple data collection protocol for mobile SMS (e.g., short codes) 

(Figure 4.3) is needed. In the near future, penetration of smartphones in rural 

areas is expected to rise (GSMA 2016), hence data collection tools with icon-

based user interfaces (e.g., Liebenberg et al. 2017) need to be considered to 

include all group of farmers in citizen science. This allows to address some of 

the issues (e.g., skill and usage) discussed under the notion of digital divide 

(van Dijk 2006). As a next step, a dedicated mobile app to collect relevant 

factors for yield gap analysis would be developed and make it available in 

Google Play and Apple App stores (e.g., Herrick et al. 2017).  

The second component of the technological dimension constitutes of developing 

a database to store, manage, analyse and visualise large amounts of farmers 

crowdsourced data and geospatial datasets from sources such as remote 

sensing and Unmanned Aerial Vehicle (UAV) (Figure 6.1). Setting up the 

infrastructure has an initial cost and it might not be affordable for some 

http://www.yieldgap.org/
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grassroots organisations in developing countries (e.g., farmer unions). The 

availability of free and open source applications makes the initial set up 

affordable and can be implemented in a short time with minimum technical 

skills requirements. In Chapter 4, a data collection platform using 

FrontlineSMS and Ushahidi (Crowdmap) applications was demonstrated to 

collect and map farm level data (Figure 4.2) for two growing seasons. The result 

showed that free and open source applications are promising to collect and map 

farm level data from geographically distributed farmers in a developing 

country (Figure 4.3). For the geospatial datasets, the Geoprocessing Web 

provides a promising framework to facilitate distributed geospatial 

computation and large networks of collaboration (Zhao et al. 2012). Moreover, 

applications such as GeoODK (http://geoodk.com) provides a way to collect and 

store geo-referenced information, along with a suite of tools to visualize, 

analyse and manipulate ground data for specific needs (Brovelli et al. 2016). 

Finally, dedicated cyber-infrastructure support system such as CitSci 

(www.citsci.org) which provides all the tools and resources required for free all 

in one location on the internet can be used to implement citizen science 

programs (Newman et al. 2011). 

6.2.3 Mechanisms to assess/improve citizen science data quality 

Data quality is one of the greatest challenges in citizen science projects. While 

citizen science projects vary widely in their objectives, subject matter, 

activities, and scale (Wiggins and Crowston 2014), one common goal is the 

production of reliable data that can be used for scientific purposes. Kosmala et 

al. (2016b) identified different techniques used by existing citizen science 

projects to increase the quality of citizen science data. One of the proposed 

approaches for improving data quality is to train volunteers or to require pre-

qualification via a skills test. For example as part of this research (Chapter 4), 

farmers received trainings on how to use their mobile phones to send 

information related to their farm using SMS. During the training, participating 

farmers received a list of factors with their associated short codes in a 

laminated A4 paper. By doing this, we put a restriction on the type of factors 

that need to be send over the growing season (Figure 4.3). This means any code 

other than the listed codes had to be excluded in the analysis and this had its 

own contribution for the quality of SMS data collected. To enhance the quality 

of citizen science data, providing ongoing trainings and feedbacks are beneficial 

(van der Wal et al. 2016).  

The other approach to improve data quality is iterative development of task 

and tool design (Kosmala et al. 2016b). In this regard, the ‘Seeds for Needs’ 

initiative had to improve the data collection formats realising that the first 

versions did often assume too much about the capacity of farmers to read and 

to follow procedures that resulted in rather complex data collection formats 

http://geoodk.com/
http://www.citsci.org/
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Figure 6.1: Overview of an integrated innovative data collection system for 

agricultural citizen science. 
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Expert validation is the other approach to improve citizen science data quality 

(Kosmala et al. 2016b; Sullivan et al. 2014). A hierarchical approach for weed 

identification presented by Rahman et al. (2015) used two crowdsourcing 

levels. The first level consisted of a non-expert crowd and the second level 

consisted of a crowd composed of experts such as extension agents for accurate 

weed identification. Plant clinics of CABI (http://www.plantwise.org/plant-

clinics/) also use a hierarchical approach where trained farmers known as 

‘plant doctors’ use tablets to submit a photo of the farmer’s sample to a central 

database for validation by experts (Wright et al. 2016). However, expert 

validation of every data point can be impractical, and for large projects 

efficiently targeting likely wrong answers is important (Kosmala et al. 2016b). 

For example, the project FeederWatch uses an automated “smart filter” system 

that flags observations (Bonter and Cooper 2012). Flagged data are then 

immediately sent to regional experts who then ask for supporting details from 

volunteers to validate the observations. Upon receiving a response from the 

volunteer participant, experts could confirm the report or leave the record 

flagged if insufficient information was provided. Reports not verified during 

the review process were permanently flagged as invalid and not used in the 

subsequent data visualizations or analyses (Bonter and Cooper 2012). The 

aforementioned techniques to improve citizen science data quality can 

potentially be incorporated as part of the implementation of agricultural data 

collection using the citizen science approach (Figure 6.1).  

6.2.4 Linking different data streams 

Given the nature of the factors causing the yield gap (described in detail in 

Chapter 2), a data collection system that integrates both citizen science and 

(remote) sensors gives great opportunities to collect information on the 

biophysical, management, farm(er) characteristics, and socio-economic factors. 

Since (part of) the data can be digitally collected, it is possible to geolocate the 

fields within a farm (e.g., field boundary in Chapter 5). This makes it possible 

to combine the field level crowdsourced data with geospatial data from other 

sources (e.g., remote sensing). Linking the citizen science approach with remote 

sensing for example provides the opportunity to use the citizen science data to 

calibrate remote sensing based models. In Chapter 5, farmer’s crowdsourced 

crop phenology data at the field level was used to select images acquired within 

the boundaries of the growing season per field and vegetation indices values 

were extracted only from the selected images. Using these values in the 

empirical model to estimate sesame yield based on remote sensing improved 

the accuracy of the model (Table 5.3). In addition, information derived from 

remote sensing can be used to validate crowdsourced information. For example, 

field size crowdsourced by a farmer can be compared and validated with field 

size information extracted from remote sensing (Fritz et al. 2015) or validated 

using Unmanned Aerial Vehicle (UAV) imagery (Mesas-Carrascosa et al. 

http://www.plantwise.org/plant-clinics/
http://www.plantwise.org/plant-clinics/
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2014). Moreover, edaphic factors like soil fertility information assessed by 

farmers using local indicators (Desbiez et al. 2004) can be complemented with 

soil fertility information derived from high resolution remote sensing data 

(Gomez et al. 2008). Recent studies used vegetation indices derived from micro-

satellites to estimate and map crop yield at the field level even for the small 

and heterogeneous fields which are typical for the smallholder farming system 

in the tropics (Burke and Lobell 2017; Jain et al. 2016). Therefore, as said 

earlier, there is a potential to integrate data from different sources (Figure 6.1) 

to acquire the relevant factors for yield gap analysis (Table 2.1). However, some 

of the sourced data can be unstructured, therefore “Big data” techniques will 

be needed to synthesise the data from the different sources (Wolfert et al. 2017). 

6.2.5 Linking citizen science with decision support systems 

In Chapter 3, the majority of the farmers indicated that they would like to 

receive agronomic advice in return as an incentive to actively engage and 

continue participating in citizen science (Figure 3.5). To attract and retain 

farmers in citizen science projects, providing the appropriate incentives is very 

important (Chapter 3). To achieve this, the collected data using the citizen 

science approach together with data from other sources (e.g., remote sensing or 

UAV) can potentially be accessed through Application Programming Interface 

(e.g., Herrick et al. 2017) and used by farm-level decision support tools (e.g., 
AgBiz Logic; Capalbo et al. 2016 and Rice Crop Manager; Saito et al. 2015). 

The outputs from the decision support tools can be send to the farmers through 

SMS and smartphone apps as an advice for their farm-level management 

decisions (Figure 6.1). Rice Crop Manager (http://cropmanager.irri.org/), 

previously called Nutrient Manager for Rice (NMR), developed by the 

International Rice Research Institute (IRRI), provides advice after a farmer 

answers a series of questions. The recommendations are calculated based on 

farmer’s responses to questions about the agro-ecological or administrative 

zone of the field, the variety of rice, availability of irrigation water, previous 

crop and management of its residue, previous rice yield levels, and fertilizer 

use (Saito et al. 2015). The generated information allows extension officers or 

lead farmers to give farmers a specific recommendation on nutrient, pest, weed, 

or water management via SMS. Also, the farmers would have every incentive 

to provide accurate information because they would be using the 

recommendations to make their actual management decisions (Capalbo et al. 

2016). In order to overcome the low-literacy level of the smallholder farmers in 

developing countries, where there is a large yield gap for most of the crops 

(http://www.yieldgap.org), both the data collection and sending feedbacks to 

the farmers can be facilitated using icon-based or graphical user interfaces 

(e.g., Liebenberg et al. 2017).  

 

 

http://cropmanager.irri.org/
http://www.yieldgap.org/


 Synthesis 

157 

 

In the past advisory services were mainly based on general knowledge that 

once was derived from research experiments. However, currently there is an 

increasing need for information and knowledge that is generated on-farm in its 

local-specific context (Wolfert et al. 2017). A system as illustrated in Figure 6.1, 

allows to collect relevant factors for farm level yield gap analysis and at the 

same time the collected data can be used by decision support tools to provide 

advices to the farmers at each stages of the production process (Figure 6.2) 

based on the local-context of the farm. For example, when a farmer provides 

information about planting, the system can generate and send an advice in a 

‘near-real time’ about the activities that need to be considered in the next stage 

of the growth cycle (i.e., growing). The results in Chapter 2 (Figure 2.3) showed 

that timing of fertilization was one of the factors causing the yield gap. Results 

from this type of analysis can be coupled with farm level decision support tools 

(e.g., Nutrient Manager for Rice) to provide appropriate feedback to the 

farmers as when is the appropriate time to apply fertilization (Saito et al. 

2015).  

Farmers have different types of information needs during each stage of the 

process, ranging from weather forecasts, pest attacks, inputs, cultivation 

practices, pest and disease management, and prices (Figure 6.2) (Aker 2011). 

Cole and Fernando (2016) demonstrated that delivering timely, relevant, and 

actionable information and advice to farmers using mobile phones reduced 

knowledge gaps and increases productivity. The citizen science approach will 

help not only to collect relevant factors for yield gap analysis (Beza et al. 2017a) 

but also to provide input data for decision support tools (Janssen et al. In 

Press). Moreover, as a social networking tool, developing a platform as 

presented in Figure 6.1, will allow individual farmers to easily connect with 

other farmers facing similar challenges on similar types of land (Herrick et al. 

2013). Finally, the aggregated data across large areas can be used by policy 

makers for possible interventions at the regional or national level.  

In this thesis emphasis was given on the use of citizen science for crop yield 

gap analysis in developing countries. However, the methods presented and the 

steps suggested in this thesis are applicable to a broader geographic scope. 
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Figure 6.2: Stages of the agricultural production process and information needs 

of the farmers. Figure reproduced from Aker (2011). 
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Summary  

The world population is anticipated to be around 9.1 billion in 2050 and the 

challenge is how to feed this huge number of people without affecting natural 

ecosystems. Different approaches have been proposed and closing the ‘yield 

gap’ on currently available agricultural lands is one of them. The concept of 

‘yield gap’ is based on production ecological principles and can be estimated as 

the difference between a benchmark (e.g. climatic potential or water-limited 

yield) and the actual yield. Yield gap analysis can be performed at different 

scales: from field to global level. Of particular importance is estimating the 

yield gap and revealing the underlying explanatory factors contributing to it. 

As decisions are made by farmers, farm level yield gap analysis specifically 

contributes to better understanding, and provides entry points to increased 

production levels in specific farming systems. A major challenge for this type 

of analysis is the high data standards required which typically refer to (a) large 

sample size, (b) fine resolution and (c) great level of detail. Clearly, obtaining 

information about biophysical characteristics and crop and farm management 

for individual agricultural activities within a farm, as well as farm and farmer’s 

characteristics and socio-economic conditions for a large number of farms is 

costly and time-consuming. Nowadays, the proliferation of different types of 

mobile phones (e.g., smartphones) equipped with sensors (e.g., GPS, camera) 

makes it possible to implement effective and low-cost “bottom-up” data 

collection approaches such as citizen science. Using these innovative 

methodologies facilitate the collection of relatively large amounts of 

information directly from local communities. Moreover, other data collection 

methods such as remote sensing can provide data (e.g., on actual crop yield) for 

yield gap analysis. 

The main objective of this thesis, therefore, was to investigate the applicability 

of innovative data collection approaches such as crowdsourcing and remote 

sensing to support the assessment and monitoring of crop yield gaps. To 

address the main objective, the following research questions were formulated: 

1) What are the main factors causing the yield gaps at the global, regional and 

crop level? 2) How could data for yield gap explaining factors be collected with 

innovative “bottom-up” approaches? 3) What are motivations of farmers to 

participate in agricultural citizen science? 4) What determines smallholder 

farmers to use technologies (e.g., mobile SMS) for agricultural data collection? 

5) How can synergy of crowdsourced data and remote sensing improve the 

estimation and explanation of yield variability? 
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Chapter 2 assesses data availability and data collection approaches for yield 

gap analysis and provides a summary of yield gap explaining factors at the 

global, regional and crop level, identified by previous studies. For this purpose, 

a review of yield gap studies (50 agronomic-based peer-reviewed articles) was 

performed to identify the most commonly considered and explaining factors of 

the yield gap. Using the review, we show that management and edaphic factors 

are more often considered to explain the yield gap compared to farm(er) 

characteristics and socio-economic factors. However, when considered, both 

farm(er) characteristics and socio-economic factors often explain the yield gap. 

Furthermore, within group comparison shows that fertilization and soil 

fertility factors are the most often considered management and edaphic groups. 

In the fertilization group, factors related to quantity (e.g., N fertilizer quantity) 

are more often considered compared to factors related to timing (e.g., N 

fertilizer timing). However, when considered, timing explained the yield gap 

more often. Finally, from the results at regional and crop level, it was evident 

that the relevance of factors depends on the location and crop, and that 

generalizations should not be made. Although the data included in yield gap 

analysis also depends on the objective, knowledge of explaining factors, and 

methods applied, data availability is a major limiting factor. Therefore, bottom-

up data collection approaches (e.g., crowdsourcing) involving agricultural 

communities can provide alternatives to overcome this limitation and improve 

yield gap analysis.  

Chapter 3 explores the motivations of farmers to participate in citizen science. 

Building on motivational factors identified from previous citizen science 

studies, a questionnaire based methodology was developed which allowed the 

analysis of motivational factors and their relation to farmers’ characteristics. 

Using the developed questionnaire, semi-structured interviews were conducted 

with smallholder farmers in three countries (Ethiopia, Honduras and India). 

The results show that for Indian farmers a collectivistic type of motivation (i.e., 

contribute to scientific research) was more important than egoistic and 

altruistic motivations. For Ethiopian and Honduran farmers an egoistic 

intrinsic type of motivation (i.e., interest in sharing information) was most 

important. Moreover, the majority of the farmers in the three countries 

indicated that they would like to receive agronomic advice, capacity building 

and seed innovation as the main returns from the citizen science process. 

Country and education level were the two most important farmers’ 

characteristics that explained around 20% of the variation in farmers’ 

motivations. The results also show that motivations to participate in citizen 

science are different for smallholders in agriculture compared to other sectors. 

For example fun has appeared to be an important egoistic intrinsic factor to 

participate in other citizen science projects, the smallholder farmers involved 

in this research valued ‘passing free time’ the lowest. 
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Chapter 4 investigates the factors that determine farmers to adopt mobile 

technology for agricultural data collection. To identify the factors, the unified 

theory of acceptance and use of technology (UTAUT2) model was employed and 

extended with additional constructs of trust, mastery-approach goals and 

personal innovativeness in information technology. As part of the research, we 

setup data collection platforms using open source applications (Frontline SMS 

and Ushahidi) and farmers provided their farm related information using SMS 

for two growing seasons. The sample for this research consisted of group of 

farmers involved in a mobile SMS experiment (n=110) and another group of 

farmers which was not involved in a mobile SMS experiment (n=110), in three 

regions of Ethiopia. The results from the structural equation modelling showed 

that performance expectancy, effort expectancy, price value and trust were the 

main factors that influence farmers to adopt mobile SMS technology for 

agricultural data collection. Among these factors, trust is the strongest 

predictor of farmer’s intention to adopt mobile SMS. This clearly indicates that 

in order to use the citizen science approach in the agricultural domain, 

establishing a trusted relationship with the smallholder farming community is 

crucial. Given that performance expectancy significantly predicted farmer’s 

behavioural intention to adopt mobile SMS, managers of agricultural citizen 

science projects need to ensure that using mobile SMS for agricultural data 

collection offers utilitarian benefits to the farmers. The importance of effort 

expectancy on farmer’s intention to adopt mobile SMS clearly indicates that 

mobile phone software developers need to develop easy to use mobile 

applications. 

Chapter 5 demonstrates the results of synergetic use of remote sensing and 

crowdsourcing for estimating and explaining crop yields at the field level. 

Sesame production on medium and large farms in Ethiopia was used as a case 

study. To evaluate the added value of the crowdsourcing approach to improve 

the prediction of sesame yield using remote sensing, two independent models 

based on the relationship between vegetation indices (VIs) and farmers 

reported yield were developed and compared. The first model was based on VI 

values extracted from all available remote sensing imagery acquired during the 

optimum growing period (hereafter optimum growing period VI). The second 

model was based on VI values extracted from remote sensing imagery acquired 

after sowing and before harvest dates per field (hereafter phenologically 

adjusted VI). To select the images acquired between sowing and harvesting 

dates per field, farmers crowdsourced crop phenology information was used. 

Results showed that vegetation indices derived based on farmers crowdsourced 

crop phenology information had a stronger relationship with sesame yield 

compared to vegetation indices derived based on the optimum growing period. 

This implies that using crowdsourced information related to crop phenology 

per field used to adjust the VIs, improved the performance of the model to 
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predict sesame yield. Crowdsourcing was further used to identify the factors 

causing the yield variability within a field. According to the perception of 

farmers, overall soil fertility was the most important factor explaining the yield 

variability within a field, followed by high presence of weeds.  

Chapter 6 discusses the main findings of this thesis. It draws conclusions about 

the main research findings in each of the research questions addressed in the 

four main chapters. Finally, it discusses the necessary additional steps (e.g., 

data quality, sustainability) in a broader context that need to be considered to 

utilize the full potential of innovative data collection approaches for 

agricultural citizen science. 

 

 

 

 

 

 



  

 

  

 

Samenvatting 

De wereldbevolking zal in 2050 ongeveer 9,1 miljard bedragen en het is een 

grote uitdaging  om dit enorme aantal mensen te voeden zonder dat natuurlijke 

ecosystemen worden beïnvloed. Verschillende benaderingen zijn voorgesteld en 

het sluiten van de 'yield gap' op momenteel beschikbare landbouwgrond is daar 

een van. Het concept 'yield gap' is gebaseerd op productie-ecologische principes 

en kan worden geschat als het verschil tussen een referentie oogst (bijvoorbeeld 

klimaatpotentieel of water beperkte opbrengst) en de werkelijke opbrengst 

voor een gewas. Yield gap analyse kan op verschillende schalen worden 

uitgevoerd: van veld naar globaal niveau. Het schatten van de yield gap en het 

identificeren van de onderliggende verklarende factoren is van bijzonder 

belang Aangezien beslissingen door boeren worden genomen, levert de analyse 

van de yield gap op  boerderij-niveau tot beter begrip en geeft uitgangspunten 

voor de verhoging van productieniveaus in specifieke landbouwsystemen. Een 

belangrijke uitdaging voor dit soort analyses is het vereiste hoge detail van 

inputgegevens die betrekking hebben op (a) de grootte van de steekproef, (b) 

hoge resolutie en (c) groot detailniveau. Het is kostbaar en tijdrovend om 

informatie over biofysische eigenschappen van gewas en management voor 

individuele landbouwactiviteiten binnen een boerderij te verkrijgen. Ook  de 

sociaal-economische gegevens over boerenbedrijven en de agrariërs zijn 

beperkt beschikbaar voor een groot aantal bedrijven. Tegenwoordig maakt de 

grootschalige beschikbaarheid van verschillende typen mobiele telefoons 

(bijvoorbeeld smartphones) uitgerust met sensoren (zoals GPS, camera) het 

mogelijk om effectieve en goedkope bottom-up-gegevensverzamelingsbenaderingen 

zoals ‘crowdsourcing’ te implementeren. Door deze innovatieve methodologieën 

te gebruiken, wordt het verzamelen van relatief grote hoeveelheden informatie 

rechtstreeks van de lokale gemeenschappen vereenvoudigd. Bovendien kunnen 

andere data-verzamelingsmethoden, zoals remote sensing, gegevens 

verschaffen (bijvoorbeeld werkelijke gewasopbrengst) voor  de yield gap 

analyse. 

Het hoofddoel van dit proefschrift was dus om de toepasbaarheid van 

innovatieve gegevensverzamelingsbenaderingen te onderzoeken, zoals 

crowdsourcing en remote sensing, ter ondersteuning van de beoordeling en 

monitoring van de yield gap analyse. Op basis van het hoofddoel zijn de 

volgende onderzoeksvragen geformuleerd: 1) Wat zijn de belangrijkste factoren 

die de yield gap veroorzaken op wereldwijde, regionale en gewasniveau schaal? 

2) Hoe kunnen gegevens voor yield gap factoren worden verzameld met 

innovatieve "bottom-up" benaderingen? 3) Wat zijn motivaties van boeren om 
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deel te nemen aan de crowdsourcing voor landbouw toepassingen? 4) Wat 

bepaalt of  kleinere boeren mobiele technologieën gebruiken (bijvoorbeeld 

mobiel SMS) voor de agrarische dataverzameling? 5) Hoe kan synergie van 

crowdsourced data en remote sensing de schatting van opbrengstvariabiliteit 

verbeteren? 

Hoofdstuk 2 evalueert de beschikbaarheid van gegevens en methoden voor 

gegevensverzameling voor de analyse van yield gap verklarende factoren op 

wereldwijde, regionale en gewasniveau schaal zoals die worden beschreven in 

eerdere studies. Hiervoor is een review uitgevoerd van yield gap studies (50 

agronomische artikelen) om de meest algemeen gekozen en geëvalueerde 

factoren van de yield gap analyse te identificeren. De resultaten van de review 

laten zien dat management- en bodem factoren vaker worden meegenomen om 

de yield gap te verklaren in vergelijking met de  eigenschappen van het 

agrarische bedrijf en sociaal-economische factoren. Echter, wanneer ze worden 

meegenomen in de analyse, dan zijn zowel de eigenschappen van het agrarische 

bedrijf als de sociaal-economische factoren vaak belangrijke verklarende 

variabelen. Bovendien blijkt als factoren binnen groepen vergeleken worden, 

factoren gerelateerd aan bodemvruchtbaarheid het meest worden toegepast 

binnen de management en bodem groepen. Binnen de bodemvruchtbaarheidsgroep 

worden factoren die verband houden met kwantiteit (bijvoorbeeld N-

meststofhoeveelheid) vaker meegenomen in vergelijking met factoren die 

verband houden met timing (bijvoorbeeld N-bemestingstiming). Echter, 

wanneer ze worden meegenomen in de analyse, dan is timing vaker een 

verklarende voor de yield gap. Ten slotte bleek uit de resultaten op regionaal 

en gewasniveau dat de relevantie van factoren afhankelijk is van de locatie en 

het gewas en dat generalisaties niet direct kunnen worden gemaakt. Hoewel 

de gegevens die in de analyse van de yield gap zijn opgenomen, ook afhankelijk 

zijn van de doelstelling, de kennis van factoren en de toegepaste methoden, is 

de beschikbaarheid van gegevens een belangrijke beperkende factor. Daarom 

kunnen bottom-up-gegevensverzamelingsmethoden (bijvoorbeeld crowdsourcing) 

waarbij agrariërs betrokken zijn bij gegevens inwinning een alternatief bieden 

om de analyse van de yield gap te verbeteren. 

Hoofdstuk 3 onderzoekt de motivatie van boeren om deel te nemen aan de 

crowdsourcing. Gebaseerd op motivatie factoren die zijn geïdentificeerd uit 

eerdere crowdsourcing studies, is een vragenlijst methodologie ontwikkeld die 

de analyse van motivatie factoren en hun relatie tot de kenmerken van de 

boeren toonde. Met behulp van de ontwikkelde vragenlijst werden semi-

gestructureerde interviews uitgevoerd met kleine boeren in drie landen 

(Ethiopië, Honduras en India). Uit de resultaten blijkt dat voor Indiase boeren 

een collectivistisch type motivatie (dat wil zeggen: bijdragen aan 

wetenschappelijk onderzoek) belangrijker was dan egoïstische en altruïstische 
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motivatie. Voor Ethiopische en Hondurese boeren was een egoïstisch intrinsiek 

type motivatie (dat wil zeggen: belangstelling voor het delen van informatie) 

het belangrijkst. Bovendien gaf de meerderheid van de boeren in de drie landen 

aan dat zij agronomisch advies, capaciteitsopbouw en zaadinnovatie zouden 

willen ontvangen als tegenprestatie voor hun deelname aan het crowdsourcing 

proces. Afkomst en onderwijsniveau waren de twee belangrijkste kenmerken 

van de boeren die ongeveer 20% van de variatie in de motivatie van boeren 

hebben verklaard. Uit de resultaten blijkt ook dat de motivatie om deel te 

nemen aan crowdsourcing verschilt voor kleine telers in vergelijking met 

andere sectoren. Zo is vaker aangetoond dat plezier een belangrijke egoïstische 

intrinsieke factor is om deel te nemen aan andere crowdsourcing projecten. De 

boeren die bij dit onderzoek betrokken zijn, hebben de factor 'vrije tijd' als 

laagste beoordeeld. 

Hoofdstuk 4 onderzoekt de factoren die bepalen of boeren mobiele technologie 

willen gebruiken voor de inwinning van agrarische data. Om de factoren te 

identificeren, werd het model voor uniforme theorie van acceptatie en gebruik 

van technologie (UTAUT2) ingezet en uitgebreid met aanvullende aannames 

voor vertrouwen, nieuwsgierigheid naar nieuwe kennis, en persoonlijke 

innovatie in informatietechnologie. Als onderdeel van het onderzoek hebben we 

gebruik gemaakt van open source applicaties voor data inwinning (Frontline 

SMS en Ushahidi) waarbij boeren hun teelt informatie verstrekten via SMS 

voor twee groeiseizoenen. De populatie voor dit onderzoek bestond uit een 

groep boeren die betrokken waren bij een mobiel SMS-experiment (n = 110) en 

een andere groep boeren die niet betrokken waren bij een mobiel SMS-

experiment (n = 110), in drie regio's van Ethiopië. Uit de vergelijkingsmodellering 

blijkt dat resultaat verwachting, inspanningsverwachting, prijs en vertrouwen de 

belangrijkste factoren zijn die boeren beïnvloeden om mobiele sms-technologie 

voor de agrarische dataverzameling te gebruiken. Onder deze factoren is 

vertrouwen de sterkste voorspeller van het voornemen van de boer om mobiel 

SMS te gaan te gebruiken. Dit geeft duidelijk aan dat om de crowdsourcing 

benadering binnen het landbouw domein te gebruiken, een vertrouwde relatie 

met de telers van cruciaal belang is. Aangezien de factor ‘resultaat 

verwachting’ een goede voorspeller bleek om mobiel sms te gebruiken, moeten 

managers van crowdsourcing projecten ervoor zorgen dat het gebruik van 

mobiel sms voor gegevensinwinning voor telers voordelen bied in de 

gebruikspraktijk Het belang van de inspanningsverwachting voor de boer om 

mobiel SMS te gebruiken, geeft duidelijk aan dat mobiele ontwikkelaars van 

mobiele telefoons eenvoudige mobiele applicaties moeten ontwikkelen. 

Hoofdstuk 5 toont de resultaten van het synergistische gebruik van remote 

sensing en crowdsourcing voor het schatten en analyseren van opbrengsten op 

het veldniveau. In een case studie werd deze methode toegepast voor het 
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bepalen van sesamproductie op middelgrote en grote boerderijen in Ethiopië. 

Om de toegevoegde waarde van de crowdsourcing aanpak voor een verbeterde 

voorspelling van sesamopbrengst op basis van remote sensing te evalueren, 

werden twee onafhankelijke modellen op basis van de relatie tussen vegetatie-

indices (VIs) en de door de boeren vermelde opbrengst ontwikkeld en 

vergeleken. Het eerste model was gebaseerd op VI-waarden die werden 

geëxtraheerd uit alle beschikbare Landsat beelden die tijdens de optimale 

groeiperiode werden verkregen (hierna de optimale groeiperiode VI). Het 

tweede model was gebaseerd op VI-waarden die werden verkregen uit de 

Landsat beelden die werden verkregen na het zaaien en vóór de oogstdatum 

per veld (hierna fenologisch aangepast VI). Om de beelden te verkrijgen die 

werden verkregen tussen het zaaien en oogsten van data per veld, werd gebruik 

gemaakt van crowdsourcing data over gewasfenologie. Resultaten toonden aan 

dat de vegetatie-indices afgeleid op basis van de boeren die de gewasfenologie-

informatie hadden verzameld, een veel sterkere relatie had met de 

sesamopbrengst in vergelijking met vegetatie-indices die zijn afgeleid op basis 

van de optimale groeiperiode. Dit impliceert dat het gebruik van lokale 

informatie over gewasfenologie per veld, de prestaties van het model 

verbeterde om de sesamopbrengst te voorspellen. Daarnaast werd 

crowdsourcing gebruikt om de factoren te identificeren die de 

opbrengstvariabiliteit binnen een veld veroorzaken. Volgens de perceptie van 

boeren was de algemene bodemvruchtbaarheid de belangrijkste factor die de 

opbrengstvariabiliteit binnen een veld verklaart, gevolgd door een hoge 

aanwezigheid van onkruiden. 

Hoofdstuk 6 bespreekt de belangrijkste uitkomsten van dit proefschrift. Er 

worden conclusies besproken over de belangrijkste onderzoeksresultaten voor 

elk van de onderzoeksvragen die in de vier hoofdstukken worden behandeld. 

Ten slotte bespreekt het de noodzakelijke aanvullende stappen (bijv. 

datakwaliteit, duurzaamheid) in een bredere context die moet worden 

meegenomen om het volledige potentieel van innovatieve methoden voor 

gegevensinzameling voor de agrarische crowdsourcing te benutten.
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