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1.1 Background 

Humanity is highly depended on forests for a number of products (e.g. 

timber) and services (e.g. mitigation of global warming), but humanity has 

been deforesting and degrading forests at alarming rates in recent years. 

When forests are deforested or degraded (Fearnside 1996; Fearnside 2000), 

they contribute immensely to greenhouse gas (GHG) emissions (Pan et al. 

2011; Arneth et al. 2017; Le Quéré et al. 2009). Increased GHG 

concentrations in the atmosphere enhance global warming (Heimann & 

Reichstein 2008), leading to frequent occurrence of extreme climatic 

conditions i.e. heatwaves and droughts (Coumou & Rahmstorf 2012; Meehl & 

Tebaldi 2004). These extreme climatic conditions weaken the capacity for 

forest ecosystems to act as sinks for carbon (Reichstein et al. 2013). Moreover, 

extreme climatic conditions reduce food production (Ciais et al. 2005; Lobell 

et al. 2012) and they ultimately undermine the capacity for forest ecosystems 

to regulate the climate system (Bonan 2008). Deforestation and forest 

degradation also contribute to biodiversity loss (Newbold et al. 2015), and 

reduce the capacity for forest ecosystems to prevent soil erosion and sustain 

hydrological cycles (Luyssaert et al., 2008). Despite these negative impacts, 

humanity is still deforesting and degrading forests in many parts of the globe 

(Hansen et al. 2013), with tropical areas being the hotspot for forest loss 

(FAO 2015).  

Forests are deforested and degraded mainly to expand agricultural land 

(De Sy et al. 2015), but also for timber and to expand mining activities (Asner 

et al. 2013). Some deforestation and forest degradation activities are illegal. It 

is estimated that up to 10% of globally traded timber is illegally harvested 

(Seneca Creek Associates 2014), thus indicating that some people derive 

important economic value from illegally harvested timber.  With human 

population increasing by 2 billion people in the next three decades (Cohen 

2003), forest loss is expected to accelerate, triggering further loss of 

biodiversity (Jenkins 2007). Losing more forest in the next decades will 

further diminish the capacity for forests to provide goods and services to 

humanity.  

Several strategies aimed at reducing forest loss have been suggested 

recently.  One of these strategies is land sparing which refers to interventions 

which seek to minimise the demand for new agricultural land by increasing 

yield from existing agricultural land (Lamb et al. 2016; Green et al. 2005). 

Since agriculture is the main driver of forest loss (De Sy et al. 2015), 

increasing yield on existing agricultural lands can be viewed as an important 

approach to reduce agriculture-driven forest loss(Carter et al. 2015; Lamb et 

al. 2016; Green et al. 2005).  The REDD+ (Reducing deforestation and forest 

degradation) is another recent strategy that has been proposed to protect 

forest ecosystems. This strategy aims to reward developing countries 

financially for protecting and enhancing forest management (UNFCCC 2009). 
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When implemented correctly, the REDD+ mechanism can reduce forest loss 

by creating alternative incomes for local communities who live in forest areas. 

Land sparing and REDD+ can therefore be viewed as synergic and 

complementary approaches for reducing forest loss. 

In a broader perspective, implementing land sparing and REDD+ 

strategies has potential to reduce forest loss significantly by decreasing the 

demand for new agricultural land and increasing the conservation of forest 

ecosystems. However, stopping forest loss caused by illegal forest 

disturbances is likely to be a major challenge especially in areas where forest 

are deforested and degraded illegally for commercial interests (e.g. selling 

timber and mining minerals).  

To fully protect forest ecosystems, additional measures, other than land 

sparing and REDD+ mechanism, are therefore needed. Enacting and re-

enforcing forest protection laws are a critical measure needed to prevent 

illegal forest clearings (Nepstad et al. 2008), but policing large forest areas 

using traditional approaches can be expensive and challenging. To re-enforce 

forest protection laws efficiently, timely, reliable and location-specific 

information on new forest disturbances is needed.   

Frequent and large-area forest mapping and monitoring using satellite 

observations can provide timely and cost-effective information about new 

forest disturbances (Reiche et al. 2016). This approach was instrumental in 

helping Brazil to reduce illegal forest clearings in recent years (Nepstad et al. 

2014). However, existing forest monitoring systems still have major 

weaknesses. More specifically, persistent cloud cover and strong seasonal 

variations in photosynthetic activity and canopy water content of the forest 

reduce the capacity for forest monitoring systems to detect new disturbances 

accurately and timely. Persistent cloud cover is particularly a major challenge 

in the humid tropical areas, whereas strong forest seasonal dynamics are a 

major hindrance to timely detection of forest disturbances in the dry tropical 

areas. Persistent cloud cover can be addressed by using observations from 

multiple satellite sensors (Reiche, de Bruin, et al. 2015), but satellite sensors 

often have inter-sensor differences which make integration of observations 

from multiple sensors challenging. Furthermore, detecting small-scale and 

low-magnitude forest disturbances accurately and timely remains overly 

challenging, especially in complex forest landscapes. This is because existing 

forest monitoring systems use coarse spatial resolution satellite data or 

because the forest change detection methods are not able to detect low-

magnitude disturbances without amplifying the commission error. Currently, 

timely detection of forest disturbances is inherently accompanied by many 

false detections (Reiche, de Bruin, et al. 2015; Zhu et al. 2012), thus making 

the forest change alerting system unreliable. For a forest monitoring system 

to be reliable, it should generate alerts which are spatially and temporally 

accurate. To generate spatially and temporally accurate alerts, the change 
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detection algorithm should simultaneously be able to (i) account for 

seasonality, (ii) have capacity to detect small-scale and low-magnitude forest 

disturbances timely while rejecting false detections, and (ii) should be able to 

ingest observations from multiple medium spatial resolution satellite sensors 

to overcome the problem of persistent cloud cover and to increase the 

temporal details. Unfortunately, existing change detection approaches do not 

have a combination of all these capabilities. This thesis fills this gap by 

developing a space-time forest change detection framework for monitoring 

forest disturbances in humid and dry tropical forests using observations from 

multiple satellites.  

The remaining part of this chapter is structured as follows. Section 1.2 

provides a brief overview of how satellite-based forest monitoring has evolved 

over the years. Current challenges facing near real-time satellite-based forest 

monitoring, including previous effort to address them, are discussed in 

Section 1.3. Section 1.4 highlights the limitations of the existing forest change 

monitoring approaches. Section 1.5 provides the overview of how the 

challenges facing satellite-based forest change monitoring can be addressed. 

The research objectives of this thesis are presented in Section 1.6, and the 

structure of this thesis is discussed in Section 1.7. 

1.2  Evolution of satellite-based forest monitoring 

Forest change monitoring using satellite data has evolved significantly 

over the years. Early work on  satellite-based forest monitoring focused 

mainly on mapping the extent of the forest areas and other land cover types 

(Defries et al. 2000; Hansen et al. 2000). These mapping efforts produced 

several global land-cover maps, with satellite data from Pathfinder Advanced 

Very High Resolution Radiometer (AVHRR) sensors being the primary source 

for global land cover maps. AVHRR data, however, have a coarse spatial 

resolution (1km), and are rarely able to capture small-scale land-cover 

dynamics. Although these land-cover maps did not provide reliable 

information on forest cover change, they provided critical information about 

the extent of global forest ecosystems. The arrival of the moderate resolution 

imaging spectroradiometer (MODIS) on-board of Terra and Aqua satellites in 

2000, with a free and open access data policy, provided new opportunities to 

produce global land-cover maps with an improved spatial resolution (250m – 

500m). Our understanding of the extent for forest ecosystems worldwide was 

further improved when a global vegetation continuous fields (VCF) tree cover 

product from MODIS data (Hansen et al. 2003) became available. In 

subsequent years, there were other efforts to improve global tree cover 

products. For example, a Landsat-based VCF product with 30m spatial 

resolution was produced by rescaling the 250m MODIS VCF tree cover 

product using 2000 and 2005 Landsat data (Sexton et al. 2013). These VCF 



                                                                                                                                                 Chapter 1 

 5 

products have been used to identify areas where the forest has been cleared 

(Hansen & Defries 2004), but for accounting purpose only. The extent of the 

global tree cover was mapped elaborately after Landsat data archives become 

freely accessible (Hansen et al. 2013). To date, tree cover maps remain 

important inputs for forest change detection (Hansen et al. 2016; Hansen & 

Loveland 2012; Devries, Verbesselt, et al. 2015). 

The temporal scale at which forest changes are mapped using satellite 

observations has also changed drastically over the years, shifting from 

decadal (Achard et al. 2014) and annual (Souza, Jr et al. 2013; Griffiths et al. 

2012; Kennedy et al. 2010; Devries, Verbesselt, et al. 2015) to sub-annual 

scales in recent years (Reiche, de Bruin, et al. 2015; Xin et al. 2013; Zhu et al. 

2012; Shimabukuro et al. 2006).  

Forest change monitoring shifted to sub-annual scales in order to detect 

forest disturbances in near real-time. In literature, there is not yet a clear-cut 

definition of what constitutes near real-time forest change monitoring. 

However, it broadly refers to a monitoring scenario whereby forest 

disturbances are detected once a new image becomes available (Diniz et al. 

2015; Verbesselt et al. 2012; Shimabukuro et al. 2006; Hammer et al. 2014) in 

order to provide timely information about new disturbances. Timely 

information about new forest disturbances became critically important in 

recent years to support initiatives which aim to reduce illegal forest clearings.   

The shift to sub-annual forest monitoring was triggered mainly by 

availability of frequent, free and open access coarse resolution data from 

MODIS. Although MODIS data have been used widely for forest change 

monitoring (Setiawan et al. 2016; Shimabukuro et al. 2006; Hammer et al. 

2014), it is well recognised that they are too coarse (low spatial details) to 

capture forest disturbances occurring at small spatial scales (Diniz et al. 

2015). When compared to Landsat data (30 m), for example, MODIS misses 

majority of forest disturbances (Hansen & Loveland 2012). To address this 

problem, near real-time forest change monitoring is now shifting from coarse 

resolution to medium resolution data (10-30m) (Dutrieux et al. 2015; Reiche, 

de Bruin, et al. 2015; Hansen et al. 2016). Medium spatial resolution data 

(e.g. Landsat) have been available long before MODIS data (since 1972), but  

they are only being used for near real-time forest change monitoring in recent 

years (Hansen et al. 2016). In the past, medium spatial resolution data were 

not available for free, thus too expensive to buy (Wulder et al. 2012) especially 

for large-area forest monitoring, and were not frequent enough (low temporal 

details) to provide timely information on new forest disturbances, especially 

in tropical areas (Asner 2001). The availability of multiple Landsat sensors 

coupled with the advent of the European Union's Copernicus Sentinel 

satellites, such Sentinel-1 and -2 sensors in recent years, temporally dense 

free and open access medium resolution data are increasingly becoming 

available. These multiple data streams provide frequent observations suitable 



Introduction 

   

 6 

for mapping forest disturbances in near real-time. To use these multiple data 

streams optimally, however, change detection approaches which can combine 

observations from multiple sensors are needed.  

The approaches for detecting forest disturbances from satellite data have 

also evolved over the years. They shifted from approaches that detect forest 

disturbances by comparing two satellite images acquired at two different time 

steps (Coppin et al. 2014) or by using annually aggregated time series of 

satellite observations (Cohen et al. 2010; Kennedy et al. 2010; Griffiths et al. 

2012) to approaches that use all available satellite observations to detect 

forest disturbances (Reiche, de Bruin, et al. 2015; Verbesselt et al. 2012; Zhu 

& Woodcock 2014b; Zhu et al. 2012). The approaches that use the time series 

of all available satellite observations were developed mainly to address the 

challenge of seasonality in satellite data, but not inter-sensor differences in 

multi-sensor time series. Typically, these approaches detect forest 

disturbance by analysing observations available at a particular pixel, thus 

relying only on temporal and spectral information. The observations can 

either be of vegetation index (Verbesselt et al. 2012; Reiche, de Bruin, et al. 

2015) or multispectral bands (Hansen et al. 2016; Zhu & Woodcock 2014b). 

Overall, satellite-based forest monitoring has improved significantly over 

the years, and in principle, a combination of frequent medium resolution data 

and advanced change detection approaches should allow for accurate and 

timely detection of forest disturbances. However, generating spatially and 

temporally accurate forest change alerts is still challenging. Challenges which 

hinder timely and accurate detection of forest disturbances from satellite 

image time series are discussed in Sections 1.3.1. 

Throughout this thesis, unless stated explicitly, the term “forest 

disturbance” refers to full or partial loss of forest cover which is visible from 

high and medium satellite data. It is thus used to encompass both 

deforestation and forest degradation. The usage of the term “forest change” is 

also limited to forest cover loss, thus interchangeable with “forest 

disturbance” unless clearly stated. The term “monitoring” refers to the 

assessment of the forest cover over time with the aim of detecting forest 

disturbances.   

1.3 Current challenges  facing  near real-time satellite-based forest 

monitoring  

1.3.1 Seasonality in image time series and persistent cloud cover 

Strong seasonal variations in forest photosynthetic activity and canopy 

moisture content coupled with persistent cloud cover are the main challenges 

affecting accurate and timely detection of forest disturbances from satellite 

image time series. These challenges negatively affect the capacity for change 
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detection approaches to identify forest disturbances in satellite image time 

series. Seasonality in image time series, for example, can disguise low-

magnitude forest disturbances, and can also trigger many false detections. To 

detect forest disturbances timely and accurately in forests that have strong 

seasonality, the seasonal component in the image time series should be 

accounted for. Typically, the seasonal component is accounted for using a 

seasonal model (Verbesselt et al. 2012; Zhu et al. 2012). The use of a seasonal 

model is based on the assumption that the seasonal component in the time 

series can be described mathematically (Cleveland et al. 1990). However, 

because of persistent cloud cover (Asner 2001) and irregular image 

acquisition, the satellite image time series are often irregular, thus making it 

difficult to properly account for seasonality. As a result, near real-time forest 

change detection in dry tropical forests is difficult.   

1.3.2 Small-scale  and low-magnitude forest disturbances 

Detecting small-scale and low-magnitude forest disturbances timely and 

accurately is still a major challenge for satellite-based forest change 

monitoring. Oftentimes, forest disturbances which occur at small-scale 

(Hansen et al. 2016; Tyukavina et al. 2013) or have low-magnitude of change 

(Cohen et al. 2017) are omitted, even when using 30m resolution Landsat 

time series. Several factors can contribute to high omission error for small-

scale and low-magnitude forest disturbances. First, high variance in the 

satellite image time series, as a result of seasonality or noise, can disguise the 

disturbances which have low-magnitude of change, making it difficult to 

identify such disturbances early. Monitoring forest changes using algorithms 

which are tuned for high-magnitude disturbances also contributes to the 

omission of small-scale and low-magnitude forest disturbances (Cohen et al. 

2017). In principle, the omission of small-scale and low-magnitude forest 

disturbances can be reduced by using less strict thresholds when identifying 

forest disturbances in satellite image time series, but such thresholds can 

also amplify the commission error (Cohen et al. 2017).  

1.3.3 Inherent noise in satellite image time series  

Timely detection of forest disturbances is often accompanied by high 

commission error (many false detections) (Reiche, de Bruin, et al. 2015). False 

detections make near real-time forest change monitoring less reliable. Too 

many false alerts can increase the cost of policing the forest, because 

resources might be deployed to many areas where forest disturbances are not 

truly happening. It can also erode confidence in near real-time forest 

monitoring systems among the users of the alerts. When seasonality is 

accounted for, false detections are caused mainly by noise which is inherent 
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in the satellite images time series as a result of atmospheric contaminations 

and sensor artefacts. Climate-induced forest disturbances, which may not 

lead to forest loss, can also trigger many false detections. For example, 

drought can trigger abrupt decrease in photosynthetic activity of the forest 

(Saatchi et al. 2012), and such decrease can be detected during forest change 

monitoring. Yet, existing forest change detection approaches do not have the 

capacity to account for the effects of climate extremes.  

In recent years, there has been research effort to address the problem of 

false detections, but the proposed approaches (e.g. Zhu et al. 2012) either 

reduce temporal accuracy or increase the omission error. Therefore, amplified 

false detections remain a pressing challenge in satellite-based forest 

monitoring. 

1.3.4 Inter-sensor differences in multi-sensor time series 

Currently, not a single medium spatial resolution satellite sensor is 

capable of providing sufficiently frequent observations to support near real-

time forest monitoring across the globe. Observations from multiple sensors 

are needed. However, it is challenging to combine such multi-sensor 

observations into a temporally consistent time series because of the inter-

sensor differences. Oftentimes, satellite sensors (optical ones) have different 

radiometric calibrations, viewing angles, orbit times, and spatial and spectral 

resolutions, and these differences can propagate disjoints in multi-sensor time 

series (Roy et al. 2016; Zhang & Roy 2016; Fan & Liu 2017). Such disjoints 

can lead to many false abrupt changes in a multi-sensor time series (Tian et 

al. 2015). Methods for reducing inter-sensor differences in the multi-sensor 

data have been proposed (Scarino et al. 2016; Roy et al. 2016; Fan & Liu 

2017), but they use one sensor as a reference for other sensors. Using one 

sensor as a reference is problematic because a new reference sensor is always 

needed once the initial reference sensor is no longer a good reference. Ideally, 

methods for reducing inter-sensor differences in multi-sensor time series 

should be generic and should not rely on one sensor as a reference for others.  

Inter-sensor differences also exist among the Synthetic Aperture Radar (SAR) 

sensors.  SAR sensors operate at different wavelength, with some operating in 

C-band (Reiche, Verbesselt, et al. 2015) while others are operating in L-band 

(Lehmann et al. 2012; Rosenqvist et al. 2007). To overcome the challenge of 

persistent cloud cover,  data from multiple  SAR and optical sensors should be 

integrated to achieve timely detection of forest disturbances (Reiche, de 

Bruin, et al. 2015). Significant progress has been made towards addressing 

the challenge of combining SAR and optical time series (Lehmann et al. 2015; 

Lehmann et al. 2012; Reiche, Verbesselt, et al. 2015) to improve near real-

time monitoring of forest disturbances (Reiche et al. 2016; Reiche, de Bruin, 

et al. 2015), but the proposed approaches for combining SAR and optical time 
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series were only tested in areas where forests do not exhibit strong 

seasonality. As a result, it is not yet known whether the current approaches 

for combining time series are also applicable to dry forests.  

1.4 Limitations of existing  forest change monitoring approaches  

Several forest change monitoring approaches have been proposed over 

the years (Zhu et al. 2012; Shimabukuro et al. 2006; Verbesselt et al. 2012; 

Reiche, de Bruin, et al. 2015; Hansen et al. 2016) to improve detection of 

forest disturbances from satellite data. However, the proposed approaches 

have major limitations. First, existing forest monitoring approaches only rely 

on single-pixel-time series to detect forest disturbances from satellite data. 

They are developed with a view that temporal and spectral information in 

satellite image time series is sufficient to distinguish forest disturbances from 

normal forest dynamics. Yet, accounting for seasonality in image time series 

based on temporal information only is often challenging when the pixel-time 

series is irregular, contain strong effects of inter-sensor differences or is too 

short to fit a seasonal model correctly. Second, existing approaches lack 

capacity to reject false detections without compromising the temporal 

accuracy or amplifying omission of small-scale and low-magnitude 

disturbances. Oftentimes, single pixel-time series alone does not contain 

additional and useful information to immediately differentiate forest 

disturbances from false detections. Third, existing change detection 

approaches are not capable of reducing inter-sensor differences in multi-

sensor time series. As a result, the existing change detection approaches are 

either only applied on a single-sensor time series or on the time series from 

multiple satellite sensors which have similar characteristics (e.g. Landsat 

sensors). Those that can integrate time series from different satellite sensors 

(e.g. Reiche, de Bruin, et al., 2015) are currently challenging to apply in dry 

tropical forests because of strong seasonality.  

1.5 Integrating contextual information in satellite-based forest change 

monitoring  

Forest disturbances and natural forest dynamics are spatio-temporal 

events and processes. They have both spatial and temporal contexts, thus 

autcorrelated in space and time. Yet, existing change detection approaches for 

forest change monitoring do not include contextual information when 

detecting forest disturbances from satellite data. Contextual information in 

this thesis refers to information derived from neighbouring pixels of a focal 

pixel – a pixel that is being analysed for forest disturbance. I used the terms 

contextual information and spatial information interchangeably in this thesis. 
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Forest change monitoring can potentially be improved by including 

contextual information during forest change detection. For example, 

contextual information has potential to reduce seasonal variations in satellite 

data through spatial normalisation. This is because undisturbed pixels which 

are closer to each other are likely to exhibit similar temporal dynamics. With 

spatial normalisation, unlike with seasonal model, seasonality problem can be 

addressed even when the image time series is irregular or temporally short. 

We can potentially use spatial normalisation to also tackle the problem of 

inter-sensor differences in multi-sensor image time series. If each image is 

normalised individually using contextual information, the differences in 

multi-sensor time series caused for example by differences in radiometric 

calibrations may reduce. Using contextual information also has potential to 

reduce false detections. Since forest disturbances are spatio-temporal events, 

we can for example combine contextual and temporal information in satellite 

data to detect anomalies at pixel level, and subsequently use a set of spatio-

temporal metrics extracted from satellite data cubes to confirm forest 

disturbances. If a set of spatio-temporal metrics can help us to discriminate 

forest disturbances from false detections, then we can also probably be able to 

tackle the problem associated which high omission error for small-scale and 

low-magnitude disturbances. This is because, instead of using a strict 

threshold to identify forest disturbances, we can potentially use less strict 

thresholds to detect such disturbances, and use the spatio-temporal metrics to 

reject false detections.  

1.6 Research objectives 

The overall objective of this thesis is to improve satellite-based forest 

change monitoring by addressing the key challenges which hinders accurate 

and timely detection of forest disturbances from satellite data.  More 

specifically, the thesis assesses whether the problem of seasonality, omission 

of small-scale and low-magnitude forest disturbances, and inherent noise in 

satellite image time series and inter-sensor differences in multi-sensor image 

time series can be addressed by combining contextual and temporal 

information when monitoring forest disturbances using satellite data. The 

research presented in this thesis is guided by the following research 

questions: 

 

1. How do we account for seasonality in irregular satellite image time 

series when aiming for accurate and timely detection of disturbances 

in dry forests?  
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2. What is the added-value of using both spatial and temporal 

information when monitoring forest disturbances from satellite image 

time series?  

3. How can we combine observations from multiple satellites using 

space-time information to improve near real-time forest change 

monitoring?  

1.7 The structure of this thesis 

This thesis consists of seven chapters, including this introductory 

chapter. Figure 1.1 shows the linkage between the chapters, with arrows 

indicating how the chapters build up to each other. 

Chapter 2 addresses the first research question (RQ1) by proposing a 

spatial normalisation approach for reducing seasonality in a combined optical 

time series for Landsat-5/TM and Landsat-7 /ETM+. The proposed approach 

is compared with a seasonal model approach, and was tested at two study 

sites. One study site is dry forest area, located in south east of Santa Cruz de 

la Sierra, Bolivia, where forest is characterised by strong seasonality in its 

photosynthetic activity. Forest disturbances at this site are dominated mainly 

by industrial agricultural expansion with large blocks of deforestation events. 

The other site is an evergreen forest area, located in west of Ariquemes, 

Rondonia State, Brazil. At this site, forest disturbances are heterogeneous 

and correspond mostly to a process of colonisation. Forest disturbances were 

detected using existing change detection method that analyses single pixel-

time series to detect forest disturbances (Verbesselt et al. 2012). 

Chapter 3 tackles the second research question (RQ2) by developing a 

space-time change detection approach that detects forest disturbances by 

exploiting both spatial and temporal information in satellite data cubes. As in 

Chapter 2, this approach is evaluated at a dry tropical forest site in Bolivia 

and a humid tropical forest site in Brazil using a combined time series from 

Landsat-5/TM and Landsat-7 /ETM+. The spatial normalisation approach 

proposed in Chapter 2 was used to reduce seasonality in the image time 

series. 

Chapter 4 also addresses the second research question (RQ2) by 

identifying the “space-time features” which are important for accurate and 

timely detection of forest disturbances. This chapter uses the space-time 

features derived from satellite data cubes to increase the capacity for 

rejecting false detections without compromising temporal accuracy. This 

chapter builds upon Chapter 2 and Chapter 3. The idea of space-time features 

approach was evaluated in the UNESCO Kafa Biosphere Reserve, situated in 

the southwest of Ethiopia, where small-scale and gradual disturbance 

processes, caused mainly by small-holder agriculture, human settlements 
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expansion, industrial coffee plantations, and domestic firewood and charcoal 

extractions are common(Pratihast et al. 2014; Dresen et al. 2014; Devries, 

Verbesselt, et al. 2015). Forest disturbances were detected using a combined 

time series of Landsat-7/ETM+ and Landsat-8/OLI. 

Chapter 5 combines time series from Landsat and Sentinel-2 sensors to 

address the third research question (RQ3). In particular, this chapter 

assessed whether the spatial context approach proposed in Chapter 2 can also 

be used to reduce inter-sensor differences in multi-sensor time series of 

optical sensors. It also evaluated how detection of small-scale disturbances 

improves with increasing spatial resolution (10m), and whether increasing 

temporal density of medium spatial resolution observations also improves the 

estimates for forest loss. In this chapter, forest disturbances are detected 

using the space-time approaches developed in Chapter 3 and 4. The approach 

presented in this chapter is demonstrated in the UNESCO Kafa Biosphere 

Reserve, situated in the southwest of Ethiopia.  

Chapter 6 tackles RQ1 and RQ3. First, it evaluates whether the spatial 

normalisation approach developed in Chapter 2 can also be used to reduce 

seasonal variations in SAR time series to facilitate SAR-Optical multi-sensor 

data integration to detect forest disturbances in near real-time. Second, it 

evaluates how the timeliness for forest change detection improves when 

combining observations from multiple sensors. A probabilistic change 

approach that combines SAR-optical time series (Reiche, de Bruin, et al. 

2015) was used to detect forest disturbances after reducing seasonality using 

spatial context. The probabilistic change detection approach converts the 

original SAR and optical information into non-forest probabilities, thus 

removing inter-sensor differences in the multi-sensor time series. 

Chapter 7 presents the main findings of this thesis. The findings are 

discussed in the context of the research questions, and the remaining 

research gaps are highlighted. In particular, the prospects for space-time 

forest change detection using SAR-optical image time series to take 

advantage of  the space-time features is discussed.   
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Figure 1.1: Overview of the chapters (excluding Chapter 1) for this thesis 
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Abstract 

 

Mapping deforestation using medium spatial resolution satellite data 

(e.g. Landsat) is increasingly shifting from decadal and annual scales to sub-

annual scales in recent years, but this shift has brought new challenges on 

how to account for seasonality in the satellite data when detecting 

deforestation. A seasonal model is typically used to account for seasonality, 

but fitting a seasonal model is difficult when there are not enough data in the 

time series. Here, we propose a new approach that reduces seasonality in 

satellite image time series using spatial context. With this spatial context 

approach, each pixel value in the image is spatially normalised using the 

median value calculated from neighbouring pixels whose pixel values are 

above 90th percentile. Using Landsat data, we compared our spatial context 

approach to a seasonal model approach at a humid tropical forest in Brazil 

and a dry tropical forest with strong seasonality in Bolivia. After reducing 

seasonal variations in Landsat data, we detected deforestation from the same 

data using Breaks For Additive Season and Trend (BFAST) method. We show 

that, in dry tropical forest, deforestation events are detected much earlier 

when the spatial context approach is used to reduce seasonal variations in 

Landsat data than when a seasonal model is used. In the dry tropical forest, 

the median temporal detection delay for deforestation from the spatial 

context approach was two observations, seven times shorter than the median 

temporal detection delay from the seasonal model approach (15 observations). 

In the humid tropical forest, the difference in the temporal detection delay 

between spatial context and seasonal model approach was not significant. 

The differences in overall spatial accuracy between the spatial context and 

seasonal model were also not significant in both dry and humid tropical 

forests. The main benefit for using spatial context is early detection of 

deforestation events in forests with strong seasonality. Therefore, the spatial 

context approach we propose here provides opportunity to monitor 

deforestation events in dry tropical forests at sub-annual scales using 

Landsat data. 

Keywords: Landsat, deforestation, spatial context, seasonality, seasonal 

model 
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2.1 Introduction 

Mapping deforestation using medium spatial resolution satellite data 

(e.g. Landsat) is increasingly shifting from decadal (Achard et al. 2014) and 

annual scales (Devries, Verbesselt, et al. 2015; Souza, Jr et al. 2013; Griffiths 

et al. 2012; Kennedy et al. 2010) to sub-annual scales (Reiche, Verbesselt, et 

al. 2015; Reiche, de Bruin, et al. 2015; Dutrieux et al. 2015) mainly because of 

increased temporal availability of medium spatial resolution satellite data in 

recent years. Mapping deforestation from medium spatial resolution satellite 

data at sub-annual scales is beneficial because it provides opportunity for 

timely detection of small deforestation events that cannot be detected from 

coarse spatial resolution data. Currently, however, detecting deforestation 

from medium spatial resolution satellite data at sub-annual scales is 

challenging especially in forests that exhibit strong seasonality in their 

photosynthetic activity. Satellite images from medium spatial resolution 

satellite sensors are often not acquired regularly in all parts of the globe. 

Methods (e.g. DeVries et al., 2015; Verbesselt, Zeileis, & Herold, 2012; Zhu & 

Woodcock, 2014), which are used to detect deforestation at sub-annual scales 

from satellite image time series, account for seasonality in the time series 

using a seasonal model. The use of a seasonal model is based on an 

assumption that there is an identifiable seasonal pattern in the time series 

which can be described mathematically (Cleveland et al. 1990). However, this 

assumption may not always hold if the time series is for satellite images 

which are not acquired at regular interval, or have wide temporal gaps due to 

persistent cloud cover (Asner 2001). Oftentimes, however, a seasonal model is 

still used to account for seasonality in such image time series (Zhu & 

Woodcock 2014b; Devries, Verbesselt, et al. 2015). Yet, we do not know if 

using a seasonal model to account for seasonality in satellite image time 

series which is not acquired at regular interval affects our ability to detect 

deforestation events early. 

Recently, time series from coarse resolution sensors (e.g. Moderate 

Resolution Imaging Spectroradiometer) have been used to derive the seasonal 

patterns when mapping deforestation at sub-annual scales from medium 

spatial resolution satellite data (Dutrieux et al. 2015).The approach of using 

time series from coarse resolution sensors to address the problem of 

seasonality in medium spatial resolution satellite data is novel and can be 

viewed as a synergistic way of using satellite data (De Sy et al. 2012; Zhang 

2010; Reiche, Verbesselt, et al. 2015). The weakness of this approach, 

however, is its reliance on data from another sensor to account for seasonality 

in Landsat data. If the sensor producing data that are used to derive the 

seasonal pattern fails, the approach would also not work anymore. To avoid 

such situation, methods that can address the issue of seasonality in image 
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time series without using data from other satellite sensors to derive the 

seasonal pattern are critically needed and should be developed. 

Instead of using a seasonal model to account for seasonality in image 

time series, we can potentially use spatial context. Here, spatial context 

refers to spatial neighbourhood of a focal pixel – the pixel which is being 

processed. There are several ways we can use spatial context to address the 

challenge of seasonality in image time series. For example, we can assume 

that pixels within a spatial neighbourhood of a focal pixel are likely to exhibit 

temporal dynamics similar to that of the focal pixel. Based on this 

assumption, we can simply calculate similarity between values of the 

neighbouring pixels and the focal pixel at each time step, resulting into a time 

series of similarity measures (Lhermitte et al. 2011). Similarity measures 

calculated during the growing season are likely to be similar to those 

calculated during senescence. In this way, deforestation can then be mapped 

from the time series of similarity measures. To calculate similarity measures 

in a consistent manner, however, reference pixels need to be selected and 

such pixels themselves should remain stable for the period under 

consideration. The challenge, however, is on how to keep the same cohort of 

reference pixels throughout the entire time series because, at some time 

steps, selected reference pixels might be affected by clouds, and would be 

masked out by cloud masking algorithm. Such challenge makes the method of 

calculating similarity measures to minimise the seasonal variations in image 

time series cumbersome. Another spatial context method that can be used to 

tackle the problem of seasonal variations in image time series is the one 

applied in vegetation regeneration studies. In such studies, regeneration of 

vegetation after fire is usually characterised from satellite data by calculating 

the ratio between burned plot pixels and un-burned plot pixels at each time 

step, resulting into the so-called regeneration index time series (Riano et al. 

2002; Lhermitte et al. 2010). In a simplistic view, such method can be viewed 

as local normalisation of pixel values using spatial context. The problem with 

such method, however, is that pixels which are similar to the focal pixel prior 

to a fire event should be used as a reference when calculating regeneration 

index (Lhermitte et al. 2010). Such requirement has some crucial advantages, 

but is equally problematic because if the reference pixels happen to be 

disturbed at some subsequent time steps they can no longer be useful 

references. A new method that does not require selection of reference pixels 

when using spatial context to tackle the problem of seasonal variations in 

image time series is, therefore, desirable.  

In this chapter, our objectives were i) to investigate how spatial context 

can be used to reduce seasonal variations in satellite image time series, and 

ii) to assess whether using spatial context to reduce seasonal variations in 

satellite image time series leads to earlier detection of deforestation events 

than when a seasonal model is used. To achieve these objectives, we proposed 
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a new spatial context approach for reducing seasonal variations in satellite 

image time series, and compared the results from the spatial context 

approach to those where a seasonal model is used to account for seasonality. 

Normalised difference vegetation index (NDVI) (Tucker 1979) derived from 

Landsat Thematic Mapper (TM 5) and Enhanced Thematic Mapper Plus 

(ETM+ 7) images spanning from April 1984 to December 2014 was used as an 

indicator of vegetation temporal dynamic. Deforestation events were detected 

using Breaks For Additive Season and Trend (BFAST, Verbesselt et al., 

2012), a change detection method capable of detecting forest cover 

disturbances at sub-annual scales (Dutrieux et al., 2015; Reiche, Verbesselt, 

et al., 2015). BFAST was first proposed by Verbesselt, Hyndman, Newnham, 

& Culvenor (2010) and later optimised by Verbesselt et al. (2012) for near 

real-time detection of disturbances from satellite image time series based on 

structural change monitoring framework (Chu et al. 1996; Zeileis et al. 2005; 

Leisch et al. 2000). With BFAST, the history and monitoring periods are first 

defined. History period contains the historical data whereas the monitoring 

period contains newly acquired observation that should be assessed for 

disturbance. To assess the newly acquired observation for disturbance, 

regression coefficients are first estimated from the historical data, and 

subsequently used to predict the value of an incoming observation in the 

monitoring period. Approaches for testing for structural change in the time 

series (Chu et al. 1996; Zeileis et al. 2005) are then  used to assess if the 

incoming observations are significantly different when compared to the 

prediction based on the history period. We hypothesised that deforestation 

events would be detected much earlier from the time series whose seasonality 

is reduced using spatial context than from time series whose seasonality is 

accounted for using a seasonal model.  

2.2  Study area 

Our study focused at two tropical forest sites, a humid and dry forest 

(Figure 2.1). The humid forest site, covering an area of about 10 000 km2, is 

located west of Ariquemes, Rondonia State, Brazil (centred at: 10.2952° S, 

64.0478° W). The dry forest site, also covering 10 000 km2, is located in south 

east of Santa Cruz de la Sierra, Bolivia (centred at: 18.388° S, 62.361° W). 

These two sites have similar rainfall pattern throughout the year, but the 

Brazilian site receive higher rainfall per month (Figure 2.2). Compared to the 

Bolivian site, the study site in Brazil is closer to the equator, and this may 

explain why the rainfall per month is much higher. This high rainfall per 

month also means more cloud cover and atmospheric contamination in the 

satellite data. The forest at the Brazilian site exhibits weak seasonality in its 

photosynthetic activity, typical of an evergreen tropical forest (Figure 2.3). In 

contrast, the forest at the Bolivian site is characterised by strong seasonality 



Using spatial context to improve early detection of deforestation  

   

 20 

in its photosynthetic activity, typical of dry tropical forest (Figure 2.3). 

Deforestation at the Bolivian site is dominated mainly by industrial 

agricultural expansion with large blocks of deforestation events whereas at 

the Brazilian site deforestation events are heterogeneous and correspond 

mostly to a process of colonization. The forests at these two sites have varying 

degree of seasonality, thus providing an ideal opportunity to evaluate 

whether using spatial context to reduce seasonal variations in image time 

series is more beneficial than using a seasonal model when detecting 

deforestation at sub-annual scales. 

 

 
Figure 2.1: Overview of study sites. One study site, a humid forest, is located 

west of Ariquemes, Rondonia State, Brazil, and the other site, a dry forest, is 

located south east of Santa Cruz de la Sierra, Bolivia. The base images are 

band 1-2-3 composites of Landsat ETM+ images from 2013-04-15 (Bolivian 

site) and 2014-07-21 (Brazilian site). 
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Figure 2.2: Monthly precipitation (mm) for the period 1998 -2014 measured 

by the tropical rainfall measuring mission (TRMM) for the Bolivian and 

Brazilian study site. The time series are spatially-averaged, and were 

obtained through the Giovanni online data system 

(http://disc.sci.gsfc.nasa.gov/giovanni). 

 

Figure 2.3: Time series for Normalised difference vegetation index (NDVI) for 

period of 1984 – 2014 derived from Landsat Thematic Mapper (TM 5) and 

Enhanced Thematic Mapper Plus (ETM+ 7) at the Brazilian and Bolivian 

study sites. 

2.3 Data and pre-processing steps 

2.3.1 Landsat data and tree cover percent dataset 

We used NDVI time series derived from terrain corrected (L1T) Landsat 

TM 5 and ETM+7 images, spanning from April 1984 to December 2014. 

Landsat images were obtained from The United State of America’s Geological 

Survey (USGS) Landsat Surface Reflectance (SR) Climate Data Records 

http://disc.sci.gsfc.nasa.gov/giovanni
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(CDR). Landsat SR CDR Products are atmospherically and geometrically 

corrected. In total, 448 L1T images were used at the Bolivian study site, and 

228 L1T images at the Brazilian study site. Clouds and cloud-shadows were 

masked out using the Function of mask (Fmask) outputs (Zhu & Woodcock 

2012), which were distributed with Landsat SR CDR Products by The United 

State of America’s Geological Survey (USGS). We masked non-forest areas 

using the Landsat tree cover continuous fields for 2005 (Sexton et al. 2013).To 

ensure that we do not analyse pixels with insufficient data, we also masked 

pixels which had less than 15 observations in their entire time series and less 

than 6 observations in the historical period - the period prior to year 2005. 

2.3.2 Validation data  

A total of 468 sample points were used to validate the final change map 

at the Bolivian site, whereas 400 sample points were used at the Brazilian 

site (Table 2.1). Another 82 sample points were used as training data set at 

the Bolivian site, whereas 70 sample points were used at the Brazilian site 

(Table 2.1). Validation data were collected from Landsat images, 

complemented by high spatial resolution imagery available in Google Earth 

(https://www.google.com/earth/) and Bing Maps (http://www.bing.com/maps/), 

through visual interpretation. We followed a proportional probability 

sampling when collecting the validation data. The maps for deforested and 

stable forest areas were used as strata (see Section 2.4.7). 

 

Table 2.1: The number of sample points which were used for training 

purposes and final validation of deforestation maps produced at the Bolivian 

and Brazilian site. Training dataset was used to calibrate Breaks For 

Additive Season and Trend (BFAST) for deforestation detection, whereas the 

test dataset was used to validate the deforestation map produced after 

calibrating BFAST. 

 

 Bolivian site Brazilian site 

               Forest  Deforested           Forest  Deforested  

Training data   74  8  49        21 

Test data  421 47 280       120 

2.4 Methods 

First, we proposed a new spatial context approach for reducing seasonal 

variations in image time series, and applied it to Landsat NDVI time series, 

resulting in a new time series that we referred to as spatially normalised 

NDVI time series (Section 2.4.1). Second, we tested eight varying spatial 

window sizes at each study site to determine the optimal window size to 

calculate spatially normalised NDVI, and determined the computational time 

http://www.bing.com/maps/
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per pixel for each window (Section 2.4.2). Third, we removed the negative 

outliers from Landsat NDVI and spatially normalised NDVI time series 

(Section 2.4.3). Fourth, we optimised BFAST algorithm for deforestation 

detection using the magnitude of change (Section 2.4.4). Fifth, deforestation 

was detected from spatially NDVI (Section 2.4.5) and original NDVI (Section 

2.4.6) time series using BFAST. Finally, we explain how validation data were 

collected (Section 2.4.7) and how the final deforestation maps were validated 

(Section 2.4.8). 

 

2.4.1 Using spatial context to reduce seasonal variations in Landsat NDVI 

time series  

Vegetation indices derived from satellite data are used as proxy 

indicators of the state and condition of the forest.  A major negative deviation 

in the time series of a vegetation index, not related to seasonality, can 

therefore be used to signal forest disturbance, for example deforestation. 

Seasonal variations, however, can be mistaken for deforestation if not 

properly removed from the time series. So far, seasonal model is the only 

approach used to account for seasonality in satellite image time series. Yet, 

fitting a seasonal model is difficult when there is not enough data in the time 

series. Here, we propose an alternative method for reducing seasonal 

variations in image time series using spatial context. To reduce seasonal 

variations using spatial context, we propose that i) a median value should be 

computed from the pixels within a defined spatial neighbourhood, which are 

above a certain percentile (e.g. 90th), and  ii) divide the value of the focal pixel 

using the calculated median value. When this procedure is applied at each 

time step, it would result into a spatially normalised time series from which 

deforestation can be detected using existing generic change detection methods 

(e.g. Verbesselt et al., 2012; Zhu & Woodcock, 2014). We base our approach on 

the assumption that, if no disturbance has occurred, the forest at the focal 

pixel would exhibit temporal dynamics similar to that of forest pixels within 

its neighbourhood. Similarly, we exploit the fact that climatic influences (e.g. 

drought) occur at more regional scales and deforestation events at more local 

scales. As such, climate influences can easily be removed from the time series 

when dividing the value of the focal pixel with a median value computed from 

the pixels within a defined spatial neighbourhood. Dividing the value of the 

focal pixel with median value of its neighbours would yield a value closer to 

one if no disturbance has occurred or if the disturbance is regional. When the 

focal pixel becomes disturbed and the disturbance is local, dividing the value 

of the focal pixel by the median value calculated from pixels in the 

neighbourhood, which are above a certain percentile, is likely to amplify the 

impact of the disturbance on the time series.  
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To spatially normalise each image, we implemented a spatial moving 

window whereby a 90th percentile is calculated from pixel values which are 

within the spatial window, and subsequently calculate the median value 

(VImedian) from the value of the pixels that are above or equal to the 90th 

percentile. In a next step, the value of the focal pixel (VIpixel) is divided by the 

VImedian (Eq. 2.1), resulting in what we refer to as spatially normalised NDVI 

(sNDVI). 

                    sNDVI =   
𝑉𝐼𝑝𝑖𝑥𝑒𝑙

𝑉𝐼𝑚𝑒𝑑𝑖𝑎𝑛

                                                                                               (2. 1) 

 

When the spatial normalisation procedure is applied to all pixels in the 

image, and applied at each time step we obtain sNDVI time series (Figure 

2.4). Deforestation can then be detected from sNDVI time series using time 

series-based change detection methods (e.g. Verbesselt et al. 2012). It is 

important that the VIpixel is normalised with a value calculated from forest 

pixels, to avoid normalising with a value from deforested area. Therefore, in 

calculating VImedian, we assume that there are always some pixels within the 

moving window which are not disturbed, and these pixels would be either 

above or equal to the 90th percentile of all pixels in the moving window. If we 

calculate VImedian from disturbed pixels, and VIpixel is also disturbed, the 

impact of the disturbance may be smoothed out from the time series when 

dividing VIpixel by VImedian. So, by calculating VImedian from pixels that are 

above or equal to the 90th percentile, we minimise the chance of calculating 

VImedian from disturbed pixels. Although we used 90th percentile here, other 

percentiles (e.g. 95th) can also be used when calculating VImedian.  
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Figure 2.4: An example of normalised difference vegetation index (NDVI) and 

spatially normalised difference vegetation index (sNDVI) time series for 

period of 1984 - 2014 calculated from Landsat Thematic Mapper (TM 5) and 

Enhanced Thematic Mapper Plus (ETM+ 7) images at the Bolivia study site. 

The NDVI and sNDVI are from the same Landsat pixel. 

 

2.4.2 Window size  

The window size is an important aspect for our spatial context method. 

The spatial moving window needs to be sufficiently larger than the size of the 

deforestation event to avoid smoothing out the disturbance impact from the 

time series when dividing VIpixel by VImedian, and also for it to capture local 

variations. We evaluated how the window size  influence the detection of 

deforestation from sNDVI time series, by testing eight window sizes, ranging 

from 7.29 ha to 1 317.69 ha (Table 2.2). We also assessed how the size of 

spatial window influences computational time, the time it takes to complete 

processing a single pixel when calculating sNDVI. An optimal window size 

should yield high mapping accuracy and relatively low computational cost. 

 

Table 2.2: The size of spatial windows used to calculate spatially 

normalised vegetation index (sNDVI) from Landsat normalised deference 

vegetation index (NDVI). 
Window 

 name 

Window dimension 

(row x column) 
Number of Landsat pixels 

Window 

size (ha) 

W9 9 * 9 81 7.29 

W25 25 * 25 625 56.25 

W35 35 * 35 1225 110.25 

W41 41 * 41 1681 151.29 

W61 61 * 61 3721 334.89 

W81 81 * 81 6561 590.49 

W101 101 * 101 10201 918.09 

W121 121 * 121 14641 1317.69 
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2.4.3 Removing noise from NDVI and sNDVI time series  

Satellite-based products (e.g. NDVI) usually contain noise (Vermote et al. 

2009). So, our time series of Landsat NDVI, and by extension the sNDVI, 

were also noisy, characterized by negative outliers, which possibly are a 

result of factors such as cloud contamination and atmospheric scatter that 

were not captured by Fmask algorithm. Such negative outliers can be 

detected as if they are deforestation thus resulting in high commission error. 

To remedy this problem, we removed the negative outliers from original 

NDVI and sNDVI time series using the method proposed by Hamunyela et al. 

(2013) (Eq.2.2). 

 

xt =  
xt−1  +   xt+1

2
   {if xt −  xt−1 < −0.01xt−1 &  xt −  xt+1 < −0.01xt+1}              (2 2) 

 

where xt is an observation in the time series at time t,    xt−1 is the observation 

in the time series at time t -1, and   xt+1  is the observation at time t+1. 

Observation xt is replaced as an outlier with the average of    xt−1 and    xt+1 if 

the difference between xt and  xt−1 is less than -1% of   xt−1, and the difference 

between xt and xt+1 is also less than -1% of   xt+1. This method is however not 

able to remove outliers which are consecutive. Figure 2.5 show an example of 

how local outliers were removed the   sNDVI time series. 

 
Figure 2.5: An example of how local outliers are removed from the time series 

using the method proposed by Hamunyela et al. (2013). 

 

2.4.4 Optimising BFAST for deforestation detection  

BFAST is a generic change detection method (Verbesselt et al. 2012), and 

it is not calibrated to differentiate deforestation from other disturbances. 

Therefore, when a negative breakpoint is detected in the image time series 

using BFAST, it does not necessarily imply deforestation. Magnitude of 
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change can be used to optimise BFAST to  better differentiate deforestation 

from other disturbances (Devries, Verbesselt, et al. 2015). To map 

deforestation from Landsat NDVI and sNDVI time series therefore, we 

determined the optimal change magnitude that can be used as threshold for 

accepting the change detected by BFAST as deforestation. To determine the 

optimal change magnitude (𝑚𝑐𝑠), we created a sequence of magnitudes (n = 

500) ranging from -0.5 to 0, at an interval of -0.001. Each of these magnitudes 

was then used as a magnitude threshold (𝑚𝑐𝑡) for deforestation while 

applying BFAST to the time series of each pixel which was selected for 

training purposes. Sequentially, each observation in the monitoring period 

was evaluated for disturbance, and deforestation was declared if the 

calculated magnitude of change (𝑚𝑐𝜌) is higher than the pre-defined 

magnitude threshold (𝑚𝑐𝑡).We then used the training data to calculate the 

overall spatial accuracy achieved when using each of the magnitude threshold 

as a threshold for deforestation. The magnitude threshold that achieved the 

highest overall spatial accuracy (OSA) was chosen as the optimal magnitude 

threshold (Table 2.2). We determined the optimal magnitude threshold ( 𝑚𝑐𝑠) 

for NDVI (seasonal model approach) and sNDVI (seasonal model approach) 

separately at each study site. 

 

Table 2.3: Optimal magnitude thresholds ( 𝐦𝐜𝐬) which were used to 

calibrate BFAST when mapping deforestation from normalised vegetation 

index (NDVI) and spatially normalised difference vegetation index (sNDVI) 

time series at the Bolivian and Brazilian study site. The optimal magnitude 

thresholds were derived by calculating the overall spatial accuracy (OSA) 

using the training data set. Magnitude thresholds that achieved the highest 

OSA were the optimal magnitude threshold. 

 

 

Bolivian site Brazilian site 

OSA (%) 𝑚𝑐𝑠 OSA (%)  𝑚𝑐𝑠 

NDVI  

sNDVI from W9 

95.1 

92.7 

-0.185 

-0.132 

85.7 

85.7 

-0.202 

-0.072 

sNDVI from W25 93.9 -0.206 91.4 -0.115 

sNDVI from W35 93.9 -0.203 88.6 -0.108 

sNDVI from W41 93.9 -0.383 88.6 -0.113 

sNDVI from W61 93.9 -0.210 87.1 -0.090 

sNDVI from W81 93.9 -0.377 85.7 -0.093 

sNDVI from W101 93.9 -0.198 88.6 -0.098 

sNDVI from W121 92.7 -0.132 87.1 -0.100 

 

2.4.5 Detecting deforestation from sNDVI time series 

We detected deforestation from sNDVI time series using BFAST 

(Verbesselt et al. 2012). We focused on detecting deforestation events that 

occurred in 2005 through 2014 at each study site. The detection of 
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deforestation was done in a sequential manner whereby each observation in 

the monitoring period (2005 – 2014) was treated as an incoming observation. 

We mimicked a monitoring scenario whereby an incoming observation is 

immediately assessed for deforestation. BFAST, as described by Verbesselt et 

al. (2012) detects breakpoints in a ‘near real-time mode’ within the time 

series by first predicting the value for the incoming observation (𝑦𝑡) using a 

regression equation 𝐸𝑞. 2. 3 if the trend and seasonal terms are not included. 

 
       ŷ𝑡 = 𝛽0 + 𝜀                                                                                                                            (2.3) 

 

whereby ŷ𝑡 is the predicted value of 𝑦𝑡,  𝛽0 is the intercept estimated by 

regressing previous observations (historical data) on time (acquisition date of 

the image); and ε is the random error. The estimation of 𝛽0 is done using the 

ordinary least squares (OLS). Next, residuals are computed by subtracting 𝑦𝑡 

from ŷ𝑡. Moving sum (MOSUM) of residuals is then calculated using 𝐸𝑞. 2.4 : 

 

𝑀𝑂𝑡 =
1

𝜎√𝑛
∑ (𝑦𝑠 − ŷ𝑠)

𝑡

𝑠=𝑡−ℎ+1

                                                                                                (2.4) 

 

where h is the size of the moving window calculated as a fraction of the 

number of observations (n) in the historical period, t is time, and σ is an 

estimator of the variance (Leisch et al. 2000; Zeileis et al. 2005). Throughout 

this study, we assigned 25% of n as the size (h) for the moving window when 

calculating the MOSUM of residuals. In a subsequent step, we test if the 

residuals have crossed the boundary of its empirical fluctuation whereby the 

boundary is the confidence interval (e.g. 95%) specified by the user. Empirical 

fluctuation of MOSUM residuals is basically the historical oscillation of 

MOSUM of residuals estimated from historical data. The MOSUM of 

residuals (𝑀𝑂𝑡) is expected to remain within the boundary of its empirical 

fluctuation (Leisch et al. 2000) if β0 is a good predictor of the incoming 

observation (Chu et al. 1996; Zeileis et al. 2005). A 5% significant level was 

used as threshold to either accept or reject the null hypothesis that the 

MOSUM of residuals has not crossed the boundary of its empirical 

fluctuation. The assumption is that if the photosynthetic activities of the 

forest have not been disturbed, the incoming observation (𝑦𝑡) can be 

estimated reliably by 𝛽0. A breakpoint is signalled when the 𝑀𝑂𝑡 crosses the 

boundary of its empirical fluctuation (Zeileis et al. 2010; Zeileis et al. 2005; 

Verbesselt et al. 2012). When a breakpoint is detected in the time series 

based on 𝑀𝑂𝑡, we calculate the magnitude of change (𝑚𝑐𝜌) by subtracting the 

predicted value ( ŷ𝑡) from incoming observation (𝑦𝑡) where a breakpoint is 

detected (Eq. 2. 5). Next, we compare 𝑚𝑐𝜌 and  𝑚𝑐𝑠, and deforestation is 

signalled if  𝑚𝑐𝜌is negative, and  |𝑚𝑐𝜌| is greater than |𝑚𝑐𝑠|. If deforestation is 
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signalled, the monitoring of deforestation at that particular pixel is ceased, 

otherwise, the monitoring at such pixel continues until each of subsequent 

observation is evaluated. With this monitoring approach, if an area had 

experienced multiple deforestation events between 2005 and 2014, only one of 

the events would be detected. 

 
𝑚𝑐𝜌 = 𝑦𝑡 − ŷ𝑡                                                                                                                             (2.5) 

 

2.4.6 Detecting deforestation from Landsat NDVI time series  

We also detected deforestation from Landsat NDVI time series following 

the same approach presented in Section 2.4.5, except that here we updated 

the regression equation to include the seasonal terms to account for seasonal 

variations in NDVI. The regression equation that includes the seasonal terms 

takes the form: 

ŷ𝑡 = 𝛽0 + ∑ 𝛾𝑗𝑠𝑖𝑛 (
2𝜋𝑗𝑡

𝑓
+ 𝛿𝑗)

𝑘

𝑗=1

+ 𝜀𝑡                                                                                (2.6) 

 

where  𝛽0 is the y-intercept coefficient , 𝛾 is the amplitude, 𝛿  is the phase of 

the harmonic season and 𝜀𝑡 is the random error at time 𝑡 (Verbesselt, 

Hyndman, Zeileis, et al. 2010; Verbesselt, Hyndman, Newnham, et al. 2010; 

Verbesselt et al. 2012). We set the frequency 𝑓 to 23, corresponding to the 

number of images that would be acquired at each location by a Landsat 

sensor per year based on a 16-day revisit frequency. We fitted three harmonic 

terms (i.e. k = 3). As in Section 2.4.5, we calculated the magnitude of change 

(𝑚𝑐𝜌) using Eq.2.5. 

 

2.4.7 Collecting validation data 

In many parts of the globe, reliable validation data for forest change are 

lacking. As a result, high and medium spatial resolution satellite data are 

mostly used as source of validation data (Cohen et al. 2010; Zhu & Woodcock 

2014b; Dutrieux et al. 2015). Here, we also collected validation data for 

deforestation from Landsat images, complemented by high spatial resolution 

imagery available in Google Earth (https://www.google.com/earth/) and Bing 

Maps (http://www.bing.com/maps/), through visual image interpretation. We 

defined deforestation as loss of forest cover that is visually visible from 

Landsat images and other high resolution imagery available in Google Earth 

and Bing Maps. To facilitate the collection of validation data, forest and 

deforested areas were first digitised from Landsat images at each site, 

resulting into two strata per study site: forest and deforested stratum. 

Deforested stratum consists of all areas which were deforested in 2005 
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through 2014, whereas the forest stratum consists of areas which were still 

forest at the end of 2014. In total, 550 sample points we generated at the 

Bolivian site and 470 at the Brazilian site. In each stratum, we generated 

sample points proportionate to the area of the stratum, using probability 

sampling. For each study site, a training data set, 15% of the sample points, 

was sampled from these sample points also using proportional probability 

sampling. The training data set was used to validate the results generated 

during the calibration of BFAST algorithm (Section 2.4.4). The remaining 

validation data (85%), the test data set, were used to validate the final 

deforestation maps produced after calibration of BFAST algorithm. For each 

sample point in deforested stratum, the date for deforestation was 

documented by systematically tracing the first image on which the 

deforestation event was visible. The acquisition date of the image in which 

deforestation event was first visible was used as a surrogate date for when 

the deforestation has occurred, and such date was used to the calculate the 

temporal detection delay. The procedure followed here to collect validation 

data is consistent with approaches recommended or used in previous studies 

(Cohen, Yang, & Kennedy, 2010; Olofsson et al., 2014; Zhu & Woodcock, 

2014b). 

 

2.4.8 Accuracy assessment 

We estimated the overall spatial accuracy, commission and omission 

errors, bias and temporal detection delay for deforestation detected from 

NDVI and sNDVI using test validation data set (Table 2.1). The bias is the 

difference between commission and omission error. The spatial accuracy was 

calculated based on the overall change detected at each study site in 2005 

through 2014. Confidence interval for the overall spatial accuracy was 

calculated using binomial probability of success using Wilson’s method 

(Wilson 1927). In some cases, a change was detected at locations where 

deforestation has indeed occurred, but the change is detected before the 

deforestation has occurred. Such scenario occurs when not all remnant noise 

is successfully removed from the time series. If such incidents are not taken 

into account, estimated overall spatial accuracy would be falsely amplified. In 

our analysis, we treated such incidents as commission error. 

The temporal detection delay was determined at each sample point by 

counting the number of valid observations available between the image in 

which deforestation was visually identified, and the image in which 

deforestation was detected by BFAST. The temporal detection delay was 

calculated only for sample points where the date of deforestation detected 

from NDVI or sNDVI was similar to, or later than, that of the validation data. 

We expressed the temporal detection delay in the number of observations as 

unit of measurement, and not in time, because expressing temporal detection 

delay in terms of observations provides a clear picture on how robust a 
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change detection method is, and it also makes it possible to clearly see the 

number of observations required before deforestation is detected.  

We used a paired t-test to compare the temporal detection delay for 

deferent spatial window sizes which were used to calculate the sNDVI. The 

paired t-test was also used to compare the temporal detection delay achieved 

from NDVI (seasonal model approach) to the temporal detection delay 

achieved from sNDVI (spatial context approach). For the paired t-test, a 5% 

significant level was used as threshold to accept or reject the null hypothesis 

that the difference in temporal detection delays is significant. 

Finally, to demonstrate that it is possible to monitor deforestation 

throughout the year in the tropics using Landsat image time series, we 

plotted a graph showing distribution of the date of deforestation based on 

validation data, and changes detected from sNDVI and NDVI. 

2.5 Results  

2.5.1 Spatial context approach vs. seasonal model approach 

Reducing seasonal variations in the Landsat image time series using 

spatial context (spatial window = 61 x 61 pixels) when detecting deforestation 

resulted in the overall spatial accuracy higher than when a seasonal model 

was used (Figure 2.6a,b). The overall spatial accuracy of 95.9% was achieved 

at the Bolivian site when spatial context was used to reduce seasonal 

variations in Landsat image time series, whereas an overall spatial accuracy 

of 94.0% was achieved when a seasonal mode was used. Conversely, at the 

Brazilian site, the overall spatial accuracy of 85.5% was achieved when 

spatial context was used to account for seasonality, whereas 82.5% overall 

spatial accuracy was achieved when a seasonal model was used. The 

difference (Bolivian site =1.9%, Brazilian site = 3.0 %) in the overall spatial 

accuracy observed between the spatial context and seasonal model approach 

at each site was marginal. The incidents of false detections were lower at the 

Bolivian site when spatial context was used to reduce seasonal variations in 

Landsat image time series than when a seasonal model is used to account for 

seasonality (Figure 2.6a). At the same site, deforestation events were omitted 

almost equally when either spatial context or seasonal model was used to 

reduce seasonal variations. In contrast, at the Brazilian site, incidents of 

detecting false detections when spatial context was used to reduce seasonal 

variations in Landsat image time series were almost equal to those of when a 

seasonal model was used to account for seasonality (Figure 2.6b).  Unlike at 

the Bolivian site, the incidents of omitting deforestation events were higher 

when a seasonal model was used to account for seasonality in Landsat image 

time series at the Brazilian site than when spatial context was used to reduce 

seasonal variations (Figure 2.6b). Figure 2.7 shows deforestation events 

detected at each study site from the time series of spatially normalised 
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Landsat vegetation index (sNDVI; the spatial context approach), and Landsat 

normalised difference vegetation index (NDVI; the seasonal model approach). 

The benefit of using spatial context to reduce seasonal variations in Landsat 

image time series when mapping deforestation was more pronounced in the 

temporal detection delay, especially at the Bolivian site (Figure 2.6c). The 

mean temporal detection delay for deforestation events at the Bolivian site 

when spatial context was used to reduce seasonal variations in Landsat 

image time series, prior to deforestation mapping, was shorter than when a 

seasonal model was used to account for seasonality (t = 2.3855, df =15, p < 

0.05 ). The median temporal detection delay from the spatial context 

approach was two observations, seven times shorter than the median 

temporal detection delay from seasonal model approach (15 observations) at 

the Bolivian site. The temporal detection delay achieved from spatial context 

and seasonal model approach were not significantly different at the Brazilian 

site (t = 1.7703, df = 57, p > 0.05). 
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Figure 2.6: Overall spatial accuracy (a, b)  and distribution of temporal 

detection delay (c, d) for deforestation events detected from spatially  

normalised vegetation index (sNDVI) and Landsat normalised difference 

vegetation index (NDVI) time series at the Bolivian (a, c) and Brazilian (b, d) 

study sites. Deforestation is for the period of 2005 through 2014, and was 

detected using BFAST. The “error” bars in (a) and (b) are 95% confidence 

intervals for the overall spatial accuracy, calculated using binomial 

probability of success based on Wilson’s method (Wilson, 1927). The black 

dots in (c) and (d) represent the outliers. 
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Figure 2.7: Deforestation events detected from the time series of spatially 

normalised Landsat vegetation index (sNDVI; the spatial context approach), 

and Landsat normalised difference vegetation index (NDVI; the seasonal 

model approach), at the Bolivian and the Brazilian study site. Deforestation 

is for the period of 2005 through 2014, and was detected using Breaks For 

Additive Season and Trend (BFAST) method. Deforested area data in the first 

column were digitised from Landsat images. 

 

2.5.2 Effect of spatial window size on spatial accuracy  

Mapping deforestation from sNDVI time series calculated from each 

spatial window resulted in the overall spatial accuracy above 92% at the 

Bolivian site, and above 85% at the Brazilian site. For the Bolivian site, the 

highest overall spatial accuracy (95.9%) was achieved from sNDVI time series 

calculated from the spatial window of 334.89 ha (W61), and the lowest overall 

spatial accuracy (92.1%) was achieved from the spatial window of 1317.69 ha 

(W121) (Figure 2.8a). The spatial window (W61) that achieved the highest 

overall spatial accuracy at the Bolivian site also achieved the lowest bias (-

0.7%). Apart from window W9, W101, W121, the bias at the Bolivian site was 

in favour of the omission error (Figure 2.8b), implying that for these windows 

the omission error was higher than the commission error. At the Brazilian 

site, the highest overall spatial accuracy (89.0%) was achieved from sNDVI 

time series calculated using a spatial window of 56.25 ha (W25), whereas the 
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lowest overall spatial accuracy (85.5%) was achieved from the spatial window 

of 334.89 ha (W61).Like at the Bolivian site, the spatial window (W25) that 

achieved the highest spatial accuracy at Brazilian site also achieved the 

lowest bias (1.7%). Unlike at the Bolivian site, the bias for each spatial 

window at the Brazilian site was in favour of the commission error, implying 

that for all windows the commission error was higher than the omission error. 

At the Brazilian site, smaller spatial windows (W9, W25, W35 and W41) 

achieved higher overall spatial accuracy than larger windows (W61, W81, 

W101, and W121). 

 
Figure 2.8: (a) overall spatial accuracy for deforestation detected from the 

spatially normalise difference vegetation index (sNDVI) at the Bolivian and 

Brazilian study sites; and (b) the bias between commission and omission error 

(Bias = commission error – omission error). Varying spatial window sizes 

were used to calculate sNDVI. 

 

2.5.3 Effect of spatial window size on temporal detection delay  

The temporal detection delay for deforestation events at the Bolivian site 

(Figure 2.9a) was not different across the spatial windows except for W61 

which recorded a shorter mean temporal detection delay than window  

W101( t = -2.4227, df = 15, p < 0.05). For the Brazilian site (Figure 2.9b), the 

mean temporal detection delay for W61 was shorter than that of W9 (t = 

2.1914, df = 57, p < 0.05), W25 (t = 2.2629, df = 57, p < 0.05) and W35 (t = 

2.0867, df = 57, p < 0.05). The mean temporal detection delays for all other 

windows were not different at the Brazilian site. A median temporal detection 

delay of two observations was achieved when detecting deforestation from 



Using spatial context to improve early detection of deforestation  

   

 36 

sNDVI calculated using each of the spatial windows at the Bolivian site. For 

the Brazilian site, a median temporal detection day of one observation was 

achieved from W25, whereas a median temporal detection delay of two 

observations was achieved from W35, W41, W61, W81, W101, and W121. The 

smallest window (W9) achieved a median temporal detection delay of four 

observations at the Brazilian site. Generally, the sNDVI time series 

calculated from W61 resulted in shorter mean temporal detection delay at 

each study site.  

 
Figure 2.9: Distribution of deforestation temporal detection delay per spatial 

window size for (a) the Bolivian and (b) Brazilian study site. Deforestation 

was detected from spatially normalised deference vegetation index (sNDVI) 

calculated from Landsat normalised deference vegetation index (NDVI). The 

black dots are outliers. 

 

2.5.4 Effect of spatial window size on computational time 

Increasing the size of the spatial window resulted in a linear increase in 

the computational time per pixel when computing sNDVI (Figure 2.10). When 

using R software (R Core Team, 2014) on a LINUX computer with 32 GB 

RAM, the computational time per pixel increased from 0.000318 seconds for 

the smallest window (W9) to 0.001755 seconds for the largest window (W121). 
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Figure 2.10: Computational time per pixel for each spatial window when 

calculating spatially normalised difference vegetation index (sNDVI) from 

Landsat normalised deference vegetation index (NDVI). 

  

2.5.5 Effect of magnitude threshold on spatial accuracy and temporal 

detection delay 

Increasing the magnitude threshold for deforestation, in absolute term, 

leads to an increase in the overall spatial accuracy, but only until the 

maximum overall spatial accuracy is reached (Figure 2.11a, b). After the 

maximum overall spatial accuracy is reached, increasing the magnitude 

threshold further leads to a decrease in overall spatial accuracy. At smaller 

magnitude thresholds, the bias is in favour of false detections, and it favours 

omission of deforestation events at larger magnitude thresholds (Figure 

2.11a, b). At larger magnitude thresholds, omission of deforestation was much 

higher at the Brazilian site than at the Brazilian site (Figure 2.11a, b). 

Generally, the median temporal detection delay was higher at lower 

magnitude thresholds for the Bolivia site, and lower for the Brazilian site 

(Figure 2.11c, d). 
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.  

Figure 2.11: An example of how the overall spatial accuracy, area bias and 

temporal detection delay change when using different magnitude thresholds 

to discriminate deforestation from other disturbances. Graphs on the left (a 

and c) are for Bolivian site, and the graphs on the right (b and c) are for the 

Brazilian site. 

 

2.5.6 Monitoring deforestation with Landsat data throughout the year 

There was a valid Landsat image in each month at each study site 

during the period of 1984 through 2014 (Figure 2.12a). In general, valid 

images were distributed almost equally among the months at the Bolivian 

site, whereas most of the valid images at the Brazilian site were mainly 

available during the month of April –October. Our validation data show that 

deforestation occurred at the Bolivian site throughout the year (Figure 2.12b, 
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c), whereas deforestation was mainly restricted to the period of April – 

October at the Brazilian site. Generally, the day-of-the-year for deforestation 

events detected either from NDVI or sNDVI exhibits temporal pattern similar 

to that of validation data (Figure 2.12b, c), but at each site the distribution of 

the day-of-the-year for deforestation detected from NDVI was biased more to 

the months of September and October than for deforestation detected from 

sNDVI. 

 
Figure 2.12: (a) Number of Landsat images per month acquired by Landsat 

Thematic Mapper (TM 5) and Enhanced Thematic Mapper Plus (ETM+ 7) for 

a period of 1984 through 2014, and (b, c) the distribution of day-of-the-year 

(DOY) for deforestation events derived from validation data and deforestation 

detected from nor normalised deference vegetation index (NDVI) and 

spatially normalised deference vegetation index (sNDVI) at the (b) Bolivian 

and (c) Brazilian site. 
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2.6 Discussion  

In this chapter, we propose a new approach for reducing seasonal 

variations in satellite data using spatial context, and evaluate whether 

reducing seasonal variations in satellite data using spatial context improves 

early deforestation detection by comparing our approach to a seasonal model-

based approach. We demonstrated the spatial context approach on Landsat 

data at dry (Bolivian site) and evergreen (Brazilian site) forest site. Our 

results show that deforestation events are detected earlier if we reduce 

seasonal variations in the data using spatial context than when we use 

seasonal model. The benefit of reducing seasonal variations in Landsat image 

time series using spatial context is only significant at the Bolivian site where 

the forests exhibit strong seasonality. At this site, we were able to achieve a 

median temporal detection delay of two observations, which is seven times 

shorter than if we use the seasonal model (15 observations). This significant 

decrease in the temporal detection delay when mapping deforestation from 

spatially normalised Landsat time series can be attributed to the fact that the 

spatial context approach minimises the fluctuations in the time series while 

amplifying the impact of a disturbance. Such amplification of the disturbance 

impact enabled the MOSUM of residuals (Chu et al. 1996; Zeileis et al. 2005) 

to quickly cross its critical boundary. BFAST, which we used to detect 

deforestation, only detects abrupt changes (breakpoints) in the time series if 

the MOSUM of residuals crosses its critical boundary.  Therefore, shorter 

temporal detection delay indicates that the MOSUM of residuals was crossing 

its critical boundary earlier if we use spatial context to reduce seasonal 

variations than when using a seasonal model. Fitting a seasonal model is 

difficult when there are not enough temporal observations. Model overfitting 

is likely to occur, and this may affect the removal of seasonality. If 

seasonality is not properly removed, the impact of a deforestation event can 

be disguised by seasonality, and this may lead to a delay in detecting 

deforestation. 

Unlike at the Bolivian site, no significant difference in the temporal 

detection delay was observed between the spatial context and seasonal model 

approach at the Brazilian site. This non-significant difference in temporal 

detection delay at the Brazilian site can be explained by inherently low 

seasonality in the time series at this site. The forest at this site is evergreen, 

and the impact of deforestation on the time series can hardly be disguised by 

seasonal variations. As a result, the impact of deforestation on either original 

or spatially normalised Landsat time series is therefore likely to immediately 

push the MOSUM of residuals beyond its critical boundary at evergreen 

forest sites. 

The overall spatial accuracy achieved from the spatial context approach 

at each study site was marginally higher than the one achieved from the 

seasonal model approach. At the Bolivian site, the overall spatial accuracy 
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from the spatial context approach was higher than that of the seasonal model 

approach because there were less false detection (commission error) when 

seasonality was reduced using spatial context. Possibly, the seasonal model 

was not effective in accounting for seasonality, and some seasonal variations 

might have been detected as deforestation at the Bolivian site, thus resulting 

in higher commission error. Another possible explanation for why commission 

error from seasonal model was higher than that from spatial context at the 

Bolivian site could be drought effects. Unlike seasonal model, spatial context 

has potential to remove the impact of drought disturbances from the time 

series. Such drought disturbances could be lead to false alarms of 

deforestation if not removed from the time series. The overall spatial accuracy 

from the spatial context approach at the Brazilian site was mainly higher 

than that of the seasonal model approach because the incidents of omitting 

deforestation (omission error) were few when seasonality was reduced using 

spatial context. A possible explanation for low omission error from spatial 

context at the Brazilian site than that from seasonal model is the 

amplification of the impact of deforestation on the time series. Spatial context 

approach normalise the value of the focal pixel, and this procedure has 

potential to amplify the impact of local disturbances on the time series. 

Omission error from the spatial context approach was therefore lower than 

that from the seasonal model approach possibly because the impact of 

deforestation on the time series was amplified, making it easier for the 

BFAST to distinguish deforestation from normal forest dynamics.  

The overall spatial accuracy achieved in this study either from spatial 

context or seasonal model approach is consistent with accuracies achieved 

from other studies that used Landsat image time series to map deforestation 

(Devries, Verbesselt, et al. 2015; Dutrieux et al. 2015; Zhu & Woodcock 2014b; 

Reiche, de Bruin, et al. 2015; Reiche, Verbesselt, et al. 2015). For temporal 

detection delay, previous studies (Reiche, Verbesselt, et al. 2015; Reiche, de 

Bruin, et al. 2015; Dutrieux et al. 2015), which looked at the temporal 

detection delay experienced when mapping deforestation from Landsat time  

series, expressed the temporal detection delay in time. Here, we used the 

number of observations as a measure for temporal detection delay. It is 

therefore not possible to compare the temporal detection delay achieved in 

this study to that of other studies. Using time as measure of temporal 

detection delay is intuitive but such approach makes it difficult to understand 

why a delay is experienced. In time, a delay can be caused by the change 

detection algorithm, but lack of observations because of cloud cover can also 

lead to a delay, time-wise. 

Deforestation events were detected with higher spatial accuracy at the 

Bolivian site than at the Brazilian site. These differences could be explained 

by the process causing deforestation. At the Bolivian site, deforestation is 

dominated mainly by industrial agricultural expansion with large blocks of 
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deforestation events whereas at the Brazilian site deforestation events are 

heterogeneous and correspond mostly to a process of colonization. Large 

blocks of deforestation events may be easier to detect than deforestation 

caused colonization because such changes are typically abrupt. There were 

fewer images at the Brazilian site than at the Bolivian site. This difference in 

temporal distribution of available images might have also contributed to the 

inter-site difference in overall spatial accuracy. Detectability of deforestation 

events is likely to increase with the number of images available at the study 

site.   

Landsat NDVI images were used in this study, but our spatial context 

approach can be applied to any satellite-derived vegetation index, and is also 

not restricted to Landsat data. Although we used 90th percentile when 

calculating sNDVI, other percentiles can equally be used but selecting lower 

percentiles (e.g. 50th) can potentially lead to lower VImedian which may 

undesirably smooth out the impact of deforestation from the time series. 

Furthermore, the results presented in this study only came from two sites 

which are in the same continent. Therefore, the size of spatial windows used 

here to calculate sNDVI, and the magnitude thresholds we applied, may not 

be optimal in other parts of the globe where different pattern of deforestation 

exist. For example, in Ethiopia, forest change processes occur at small-scale 

and the change is generally gradual (Devries, Verbesselt, et al. 2015). Such 

forest disturbances may be detected more accurately if a different window 

size or magnitude threshold is applied. Further work is therefore needed in 

many parts of the globe in order to determine more robust spatial window 

size(s) from which sNDVI can be calculated, and also to rigorously calibrate 

BFAST algorithm. 

We have shown that reducing seasonal variations in Landsat data using 

spatial context when mapping deforestation is beneficial in forests that 

exhibit strong seasonality. Strong seasonality is a major challenge when 

mapping deforestation at sub-annual scales from Landsat data. Therefore, 

our spatial context approach is a novel approach that provides a unique 

opportunity to map deforestation from Landsat data at sub-annual scales in 

areas where forests exhibit strong seasonality. However, our spatial context 

approach may face challenges in heterogeneous forests, where evergreen and 

deciduous are mixed. In heterogeneous forest, calculating VImedian from pixels 

above 90th percentile may not reduce seasonal variations for pixels, which are 

deciduous because the all pixels above 90th percentile might be from 

evergreen pixels. A possible solution for mixed forests when using spatial 

context is to normalise the value of the focal pixel with VImedian calculated 

from neighbouring pixels, which show similar temporal variations to that of 

focal pixel. In this way, we can avoid normalising a deciduous forest pixel 

with VImedian calculated from evergreen forest pixels. Identifying pixels that 

show temporal dynamics similar to that of the focal pixel is likely to be a 
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cumbersome step and computationally demanding, and may make the spatial 

context approach less attractive. 

Our spatial context approach adds extra computational time to already 

computationally demanding analysis of satellite data. This shortcoming is 

even more pronounced if larger spatial window are used when computing 

sNDVI. Fortunately, our results show that even if smaller spatial windows, 

which are less computationally demanding, are used, deforestation can still 

be detected much earlier with high overall accuracy than when a seasonal 

model is used. 

The spatial context approach we propose here can also be applied on 

highly irregular image time series like those from RapidEye and Disaster 

Monitoring Constellation (DMC) satellite sensors to remove seasonality 

effects in order to enable change detection at high spatial resolution. 

2.7 Conclusion  

In this chapter, we presented a new approach that reduces seasonality in 

Landsat data using spatial context, and compared this new approach to a 

seasonal model approach. We have demonstrated that deforestation can be 

detected with a short delay even in the tropical dry forests if we use spatial 

context to reduce seasonal variations in the data. A median temporal 

detection delay of two observations was achieved in forest with strong 

seasonality from spatial context approach, and this delay was seven times 

shorter than if we use the seasonal model (15 observations). In the humid 

tropical forest, the difference in the temporal detection delay between spatial 

context and seasonal model approach was not significant. The gain in the 

overall spatial accuracy is only marginally higher when using spatial context 

than when using a seasonal model. The spatial context approach we 

presented in this chapter is a novel and useful approach for timely detection 

of deforestation events in areas where forests exhibit strong seasonality and 

it provides opportunity to detect deforestation events from satellite data 

throughout the year even in deciduous forests. Therefore, our spatial context 

approach provides unique opportunity to monitor deforestation events in dry 

tropical forests at sub-annual scales using Landsat data. With data from 

sentinel constellation becoming available it will be possible to detect 

deforestation events within days or weeks of occurrence. 
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Abstract 

 

Current methods for monitoring deforestation from satellite data at sub-

annual scales require pixel time series to have many historical observations in 

the reference period to model normal forest dynamics before detecting 

deforestation. However, in some areas, pixel time series often do not have 

many historical observations. Detecting deforestation at a pixel with scarce 

historical observations can be improved by complementing the pixel time series 

with spatial context information. In this work, we propose a data-driven space-

time change detection method that detects deforestation events at sub-annual 

scales in data cubes of satellite image time series. First we spatially 

normalised observations in the local space-time data cube to reduce 

seasonality. Subsequently, we detected deforestation by assessing whether a 

newly acquired observation in the monitoring period is an extreme when 

compared against spatially normalised values in a local space–time data cube 

defined over reference period. We demonstrated our method at two sites, a dry 

tropical Bolivian forest and a humid tropical Brazilian forest, by varying the 

spatial and temporal extent of data cube. We emulated a “near real-time” 

monitoring scenario, implying that observations in the monitoring period were 

sequentially rather than simultaneously assessed for deforestation. Using 

Landsat normalised difference vegetation index (NDVI) time series, we 

achieved a median temporal detection delay of less than three observations, a 

producer’s accuracy above 70%, a user’s accuracy above 65%, and an overall 

accuracy above 80% at both sites, even when the reference period of the data 

cube only contained one year of data. Our results also show that large 

percentile thresholds (e.g., 5th percentile) achieve higher producer’s accuracy 

and shorter temporal detection delay, whereas smaller percentiles (e.g., 0.1 

percentile) achieve higher user’s accuracy, but longer temporal detection delay. 

The method is data-driven, not based on statistical assumption on the data 

distribution, and can be applied on different forest types. However, it may face 

challenges in mixed forests where, for example, deciduous and evergreen 

forests coexist within short distances. A pixel to be assessed for deforestation 

should have a minimum of three temporal observations, the first of which must 

be known to represent forest. Such short time series allow rapid deployment of 

newly launched sensors (e.g., Sentinel-2) for detecting deforestation events at 

sub-annual scales. 

 

Keywords: Landsat, deforestation, spatial context, seasonality, seasonal model 
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3.1  Introduction 

Monitoring deforestation at sub-annual scales (e.g., weekly or monthly) 

using satellite data is increasingly becoming an important part of the 

initiatives that aim to reduce deforestation across the globe. This is because 

monitoring deforestation at the sub-annual scale, unlike annual monitoring, 

allows for timely detection of deforestation events, thus providing an 

opportunity for early interventions to stop illegal deforestation activities 

(Shimabukuro et al. 2006). For example, the Brazilian Institute for Space 

Research (INPE) monitors deforestation events at sub-annual scales in the 

Amazon using a system based on Moderate Resolution Imaging 

Spectroradiometer and bi-temporal change detection which has played an 

important role in reducing deforestation in Brazil. However, forest monitoring 

systems which detect deforestation events at sub-annual scales based on a bi-

temporal change detection approach may face challenges in areas where forest 

has strong seasonality. To address this challenge, methods that detect 

deforestation at sub-annual scales from satellite image time series while 

accounting for seasonal variations have been developed in recent years 

(Hamunyela, Verbesselt & Herold 2016; Hansen et al. 2016; Hilker, Wulder, 

Coops, Linke, et al. 2009; Zhu & Woodcock 2014b; Verbesselt et al. 2012; 

Dutrieux et al. 2015; Reiche, de Bruin, et al. 2015). These methods detect 

deforestation events by testing if a newly acquired observation at a particular 

pixel is abnormally low when compared to historical temporal dynamics of 

forest at such pixel (Verbesselt et al. 2012; Reiche, de Bruin, et al. 2015; Zhu & 

Woodcock 2014b; Reiche, Verbesselt, et al. 2015). However, for the test to be 

robust, a pixel time series is required to have many historical observations. In 

some areas, however, pixel time series often do not have enough historical 

observations, mainly because of persistent cloud cover coupled with a relatively 

long revisit time in the past (Asner 2001), especially for satellite sensors which 

have high and medium spatial resolutions. To remedy the problem of cloud 

cover, new methods that detect deforestation events at sub-annual scales by 

combining optical and synthetic aperture radar (SAR) data have been proposed 

(Reiche 2015; Reiche, Verbesselt, et al. 2015). However, these methods also 

require a pixel to have many historical observations. In the past, SAR sensors, 

which can penetrate the clouds, had limited temporal coverage, also resulting 

in sparse time series. Such sparse historical observations make it difficult to 

properly model the normal temporal dynamics of the forest, and may lead to 

many false detections during deforestation detection. In the near future, 

however, temporally dense SAR time series from Sentinel sensors will be 

available, and such dense time series, when combined with data from optical 

sensors, will address some of the current challenges associated with 

monitoring deforestation at sub-annual scales in the tropics (Reiche et al. 

2016). In particular, it will be possible to detect deforestation events within a 

few days of occurrence. However, with such dense time series, another 
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challenge related to pre-processing huge amounts of historical data will arise: 

pre-processing huge amounts of historical data for large areas is likely to take 

a relatively long time, thus affecting rapid detection of deforestation events. 

The challenge associated with monitoring deforestation at sub-annual 

scales in areas with scarce historical observations can also be addressed by 

exploiting both temporal and spatial information in satellite image time series. 

An individual pixel may not have enough observations, but the spatial context 

derived from neighbouring pixels can provide sufficient information to 

determine whether a pixel with scarce historical observations is deforested or not. 

Such an approach may reduce the amount of historical satellite data that needs to 

be processed when monitoring deforestation at sub-annual scales. 

Recently, Huang and colleagues (Huang et al. 2009) exploited 

spatiotemporal Landsat data to identify deforested areas, but that work 

focused on detecting deforestation at the annual scale. Similarly, Hamunyela 

and co-workers (Hamunyela, Verbesselt & Herold 2016) used the spatial 

context of pixels to reduce seasonal variations in Landsat time series before 

detecting deforestation at sub-annual scales using a method (Verbesselt et al. 

2012) which relies on individual pixel time series. These studies demonstrate 

that spatiotemporal information of image time series is useful for deforestation 

monitoring. However, methods for detecting deforestation at sub-annual scales 

based on integrated analysis of spatiotemporal data have not been published, 

to the best of our knowledge.  

The approach proposed in this chapter is to identify deforested pixels by 

exploiting spatiotemporal information available in the space-time data cube of 

satellite image time series. In this way, a pixel with at least three temporal 

observations in its time series is expected to still allow assessment of 

deforestation at sub-annual scales. This is because observations in the space-

time data cube are likely to be sufficient for deciding whether a newly acquired 

observation is abnormally low. However, shifting to space-time change analysis 

requires two major challenges to be overcome. The first challenge concerns 

dealing with seasonality in the data cube. Seasonal variations may disguise 

deforestation in the data if not removed, especially in dry forests where 

seasonality is strong. The second challenge is how to consistently identify 

anomalies in a space-time data cube. Existing methods for identifying 

anomalous observations in space–time data cubes of climatic data (Davis & 

Mikosch 2008) and global gross primary production (Zscheischler et al. 2013) 

nevertheless focus on the temporal perspective, since thresholds are defined 

without considering spatial context.  

This chapter describes a data-driven space-time change detection method 

for monitoring deforestation at sub-annual scales. The method detects 

deforestation at pixel level as an extreme event in vegetation index values 

within local space-time cubes of satellite image time series. With this method, 

spatial-temporal information in satellite image time series is exploited to 
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detect deforestation at sub-annual scales. Our method builds upon the spatial 

context approach developed in a previous study (Hamunyela, Verbesselt & 

Herold 2016) for reducing seasonal variations in satellite image time series. 

The method we propose here demonstrates how data cubes of satellite image 

time series can be used for sub-annual deforestation monitoring. We 

demonstrated our method at two sites, a dry tropical forest and a humid 

tropical forest (Section 3.2.3), using normalised difference vegetation index 

(NDVI, (Rouse et al. 1974; Tucker 1979)) time series derived from Landsat-

5/TM and Landsat-7/ETM+ data.  

3.2 Method description  

3.2.1 Space-time approach for deforestation detection—the concept  

Methods for detecting deforestation events at sub-annual scales (e.g., 

monthly) from satellite image time series first model the normal forest cover 

dynamics before assessing deforestation. Modelling normal forest cover 

dynamics is challenging for pixels which do not have many historical 

observations. We can remedy this challenge of insufficient historical 

observations in individual pixel time series by adding the spatial context of the 

focal pixel in a so-called neighbouring pixels space–time data cube. To do this, 

we implement the following steps (Figure 3.1). First, like in other studies 

including (Devries, Verbesselt, et al. 2015; Dutrieux et al. 2015; Hamunyela, 

Verbesselt & Herold 2016) we mask non-forest areas in the historical period 

from the image time series. In this study, we masked non-forest areas using 

Landsat tree cover continuous fields (Sexton et al. 2013). Second, we define a 

local space–time data cube (e.g., Figure 3.2) around each pixel in the image 

time series. Essentially, we have a spatially moving window with an additional 

time dimension that moves from one pixel to the other. To avoid the smoothing 

out effect when deseasonalising the data [5], the spatial extent of the data cube 

should be larger than the size of deforestation events the user aims to detect. 

Third, we deseasonalise the observations in the local data cube (e.g., Figure 

3.3) to increase the sensitivity for detecting non-seasonal changes (see Section 

3.2.2). Fourth, we split each local data cube into a reference cube (RC) and 

monitoring cube (MC). The RC contains historical observations—where non-

forest pixels have been masked, whereas the MC contains newly acquired 

observations—not yet assessed for deforestation. Here, we build upon the idea 

of specifying the history (reference) and monitoring period as employed in a 

structural change monitoring framework (Chu et al. 1996; Zeileis et al. 2010; 

Zeileis et al. 2005; Verbesselt et al. 2012). Fifth, based on training data and 

observations in the RC, we compute a threshold percentile for defining an 

observation as abnormally low (see Section 3.2.3). Sixth, we assess whether the 
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focal pixel in the MC is below the threshold percentile. If so, the pixel is flagged 

as deforestation or potential deforestation. 

 

Figure 3.1. The workflow for detecting deforestation at sub-annual as extreme 

event in space-time data cube. 

 

Figure 3.2. An example of a local space-time data cube (right) for normalised 

difference vegetation index (NDVI) derived from a stack of Landsat images for 

the period of 2004–2014. The data cube moves across the image stack (moving 

window), and it is split into a reference and monitoring cube. The NDVI values 

in the cube are not yet deseasonalised. The horizontal banding in the cube 

shows the effect of seasonal variations, with yellowish tones representing the 

dry season.  
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Figure 3.3. An example of distributions of observations in the reference cube 

before (a) and after (b) reducing the seasonality in a space-time data cube using 

spatial context. sNDVI denotes spatially normalised NDVI—after applying the 

spatial context method. Note that some values for spatially normalised NDVI 

are above 1 because we used 95 percentile to normalise the pixel values. Such 

values represent NDVI values which were above 95 percentile. 

3.2.2 Deseasonalising observations in the space-time data cube 

Building on the method of (Hamunyela, Verbesselt & Herold 2016), NDVI 

time series are deseasonalised by dividing the NDVI value for each pixel with 

the 95th percentile (P95) computed from the NDVI values of the pixels within a 

defined spatial neighbourhood of such pixel. The use of the P95 is based on the 

assumption that, for each spatial neighbourhood, forested pixels would occupy 

the upper tail of the distribution, which is deemed to be properly represented 

by P95 (Hamunyela, Verbesselt & Herold 2016). Note that this assumption may 

not hold if the forest canopy cover is low, or if there are pixels with high 

vegetation index (VI) values owing to land cover types other than forests (e.g., 

agriculture). A good forest mask is needed to make sure seasonality for forest 

pixels can be captured by P95. In contrast to (Hamunyela, Verbesselt & Herold 

2016), where P95 was computed for each pixel, here we compute P95 at each 

time step in the local data cube, and use it to deseasonalise all pixels per time 

slice in the data cube. The subscript t in P95t denotes a particular time instance 

t. Within the data cube, we calculate P95t for each time instance, and 

deseasonalise all pixel values at such time instances by dividing them by P95t. 

An example of how observations in the reference cube are distributed (a) before 

and (b) after reducing the seasonality in a space-time data cube using spatial 

context is shown in Figure 3.3. After deseasonalising, the next step (Section 
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3.2.3) is to determine whether a newly acquired observation at the focal pixel 

in the monitoring period is abnormally low.  

3.2.3 Detecting deforestation as extreme event in space-time data cube  

We rely on the existing extreme value approach (Zscheischler et al. 2013) 

to compute the threshold from RC for determining if an observation in the 

monitoring period is abnormally low. With the extreme value approach, 

observations below a specified percentile (e.g., 5th percentile) are regarded as 

abnormally low (Zscheischler et al. 2013). Here, a suitable percentile is 

established by using a training dataset (see Section 3.3.2).  

For each local cube, an observation is abnormally low if it is below the 

specified percentile, and such an observation is initially flagged as potential 
deforestation. Definite labelling is postponed since satellite image time series 

are often noisy, mainly because of remnants of clouds and cloud shadows. 

Furthermore, some pixels may have naturally low values if they cover forest 

areas that have lower photosynthetic activity. Values for such pixels might be 

identified as extreme observations within a local space-time data cube, 

although no deforestation has occurred. If not accounted for, these pixels could 

lead to the detection of false deforestation events.  

Deforestation is confirmed if the next observation is also below the 

specified percentile regardless of the size of the time step between the 

observations. Given this monitoring approach, deforestation events are 

detected with a delay of one observation. This delay is referred to as temporal 

detection delay, which is the number of observations between when the 

deforestation event occurred and when the deforestation is detected 

(Hamunyela, Verbesselt & Herold 2016). We only assess a pixel for 

deforestation if such a pixel contains a minimum of three observations, one of 

which must be in the RC.  

3.3 Monitoring deforestation in Landsat NDVI data cubes—a case study  

We assessed our space-time change detection method at two study sites, 

shown in Figure 3.4. One study site is a dry tropical forest located southeast of 

Santa Cruz de la Sierra in Bolivia, (centred at 18.388°S, 62.361°W), and the 

other study site is a humid tropical forest located west of Ariquemes, Rondonia 

State, Brazil (centred at 10.2952°S, 64.0478°W). The forest at the Bolivian site 

is characterised by strong seasonality in its photosynthetic activity, whereas 

the seasonality is less pronounced at the Brazilian site. Each of the study sites 

covers an area of about 10,000 km2. Deforestation at the Bolivian site is 

dominated mainly by industrial agricultural expansion that resulted in large 

blocks of deforestation events, whereas deforestation events at the Brazilian 

site are heterogeneous in size, corresponding mostly to a process of 
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colonisation. With varying degrees of seasonality and different deforestation 

processes, these study sites are particularly suitable for testing a new method 

for sub-annual deforestation monitoring. 

We used the NDVI image time series derived from atmospherically 

(Masek et al. 2006) and geometrically corrected Landsat-5/TM and Landsat-

7/ETM+ images. Landsat images were obtained from the United State of 

America’s Geological Survey (USGS) Landsat Surface Reflectance (SR) Climate 

Records (CDR). We used all available (2000–2014) terrain corrected images 

(L1T). We assumed that co-registration of Landsat-5/TM and Landsat-7/ETM+ 

images was satisfactory. Clouds and cloud shadows were masked using the 

Fmask procedure (Zhu & Woodcock 2012). Note that Fmask outputs are 

distributed with Landsat SR CDR Products. Landsat tree cover continuous 

fields for 2005 (Sexton et al. 2013) were used to mask non-forest areas and 

areas with less than 10% tree cover prior to the year 2005. 

 

Figure 3.4. An overview of the location of the study sites south east of Santa 

Cruz de la Sierra, Bolivia, and west of Ariquemes, Rondonia State, Brazil. The 

base images are band 1–2–3 composites of Landsat ETM+ images from 15 April 

2013 (Bolivia) and 21 July 2014 (Brazil).  

To understand how the spatial extent of the local data cube influences 

spatial and temporal accuracies, we tested six varying spatial extents of the 
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local data cube (Table 3.1). We also varied the temporal extent of the RC, 

herein referred to as temporal extent of the data cube, to understand how it 

affects spatial and temporal accuracy for deforestation detection. The temporal 

extent was varied from one to five years of data, at an interval of one year. The 

RC contained images from 2004 for the one-year data scenario, images from 

2003–2004 for the two-year scenario, and images from 2002–2004 for the 

three-year data scenario. For the four- and five-year data scenarios, the RC 

contained images from 2001–2004 and 2000–2004, respectively. Figure 3.5 

shows the number of images available in the RC for each temporal extent at 

each study site. For each spatial and temporal extent, we trained our method 

to determine the optimal percentile for detecting deforestation at a sub-annual 

scale (Section 3.3.2). Next, we used the optimal percentiles to validate our 

method (Section 3.3.3). 

Table 3.1. Data cube names and their spatial extents and dimensions for 

the Bolivian and Brazilian sites. 

Name of the Data 

Cube 

Spatial Dimensions the Data 

Cube  

(Row × Column) 

Spatial Extent of the Data 

Cube  

(ha) 

C5 5 × 5 2.25 

C9 9 × 9 7.29 

C13 13 × 13 15.21 

C17 17 × 17 26.01 

C21 21 × 21 39.69 

C25 25 × 25 56.25 

 

 
Figure 3.5. Cumulative number of images in the reference cube versus the 

temporal extent of the reference cube at Bolivian and Brazilian study sites. 
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3.3.1 Reference data 

We used 966 sample pixels to validate the final change map for the 

Bolivian site, and 400 sample pixels were used for validating the Brazilian 

change map (Table 3.2). Training was based on 170 and 70 sample pixels for 

the sites in Bolivia and Brazil, respectively. Similar to (Cohen et al. 2010; 

Dutrieux et al. 2015; Devries, Verbesselt, et al. 2015), reference data were 

acquired by visual interpretation of Landsat data along with high spatial 

resolution imagery available in Google Earth and Bing Maps . High spatial 

resolution imagery available in Google Earth and Bing Maps were used to 

determine whether an area is indeed deforested or not. At each study site, we 

sampled deforested and forested areas by stratified probability sampling 

(Stehman 2009; Olofsson et al. 2014) after manually digitising corresponding 

areas on Landsat images. The number of sample pixels was proportional to the 

area of the stratum. The deforested stratum contained areas that had been 

deforested during the period of 2005–2014, whereas the forested stratum 

covered areas which were still forested at the end of 2014. For each sample 

pixel in the deforested area, we estimated the date of deforestation by visually 

determining the Landsat image in which the deforestation event is first visible. 

The date of deforestation was used to assess the temporal accuracy. 

Table 3.2. Number of sample pixels used for training purposes and final 

validation of deforestation maps produced at the Bolivian and Brazilian 

sites. 

 

Bolivian Site Brazilian Site 

Forest  Deforested Forest  Deforested  

Training data 155 15 49 21 

Test data 878 88 280 120 

3.3.2 Training the space-time change detection method 

To train our method, we generated a series of percentiles (n = 50), ranging 

from 0.1 to the 5th percentile, at an interval of 0.1 percent. Next, for each 

spatial and temporal extent, we used each of these percentiles as a threshold 

for identifying deforestation at a sub-annual scale. A training data set (Table 

3.2) was then used to calculate the overall accuracy, bias (calculated by 

subtracting the omission error from the commission error (Reiche 2015)), and 

the median temporal detection delay. Since our monitoring goal was to detect 

deforestation events as early as possible but with high overall accuracy, for 

each spatial and temporal extent we selected the percentile, i.e., the optimal 

percentile, that achieved the shortest median temporal detection delay with 

the highest overall accuracy. 
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3.3.3 Validating the space-time change detection method  

At each study site, we applied our space-time change detection method 

using the optimal percentiles, determined from the training data, as thresholds 

for deforestation. We emulated a “near real-time” monitoring scenario, 

implying that observations in the monitoring period were sequentially rather 

than simultaneously assessed for deforestation. Although some areas may have 

experienced multiple deforestation and regrowth regimes between 2005 and 

2014, we only considered the first deforestation event per pixel, and once 

labelled as deforested, we stopped monitoring such a pixel at subsequent time 

steps. The spatial and temporal accuracy for change detected between 2005 

and 2014 were calculated using the test data set (Table 3.2). More specifically, 

we calculated the overall accuracy, producer’s accuracy, user’s accuracy, and 

the median temporal detection delay. Like (Hamunyela, Verbesselt & Herold 

2016), the temporal detection delay was calculated at each sample point by 

counting the number of valid observations available between the image in 

which deforestation was visually identified, and the image in which 

deforestation was detected by our method. Confidence intervals for the overall 

accuracy, as well as producer’s and user’s accuracies, were calculated using 

binomial probability of success based on Wilson's method (Wilson 1927) 

3.4  Results 

In this section, first we show the results from the training phase of our 

method (Section 3.4.1). In particular, we show how the percentile threshold 

affects the spatial and temporal accuracy (Section 3.4.1.1), and how spatial and 

temporal extents of the data cube influence the optimal percentile for detecting 

deforestation at a sub-annual scale. Next, we show the validation results 

(Section 3.4.2). 

3.4.1  Training  

3.4.1.1 Effect of percentile threshold on spatial and temporal accuracy 

Figure 3.6 shows an example of how overall accuracy, bias, and median 

temporal detection delay were changing in relation to the percentile threshold. 

Here, we only show examples for the smallest (C5) and largest (C25) cubes for 

each study site. Generally, larger percentiles produced lower overall accuracy 

(Figure 3.6a,d) and shorter median temporal detection delay (Figure 6c,f), 

except for the C25 at Brazilian site. Deforestation events were increasingly 

being omitted (negative bias) when using smaller percentiles (Figure 3.6b,e).  
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Figure 3.6. Change in the overall accuracy, bias, and the median temporal 

detection delay (tD) as a function of the percentile for defining deforestation as 

extreme event in Landsat space-time data cubes (C5 and C25) at the Bolivian 

(a–c) and Brazilian (d–f) study sites. The blue lines denote zero bias. Bias was 

calculated by subtracting the omission error from the commission error (Reiche 

2015).  

3.4.1.2 Effect of spatial and temporal extent of the data cube on optimal 

percentile  

Figure 3.7 shows how the optimal percentile changes for different 

combinations of spatial and temporal extents. For longer temporal extents (TE 

= 4 or 5 years), the optimal percentile is higher for larger spatial extents 

(Figure 3.7). Generally, the optimal percentiles at the Brazilian site were 

larger than those for the Bolivian site. At the Bolivian site, the optimal 

percentile was smaller than 3% for each spatial and temporal extent 

combination.  
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Figure 3.7. Change in the optimal percentile for detecting deforestation events 

at sub-annual scales when varying the spatial extent and temporal extent (TE) 

of the data cube at the Bolivian and Brazilian site. The optimal percentile was 

determined by choosing the percentile that achieves the shortest median 

temporal detection delay and highest overall accuracy based on the training 

data set. 

3.4.2 Validation  

Figure 3.8 shows how the spatial and temporal accuracies varied in relation 

to spatial and temporal extents. Note that the effect of the spatial extent on spatial 

and temporal accuracy (Figure 3.8a,c,e,g), is shown for the results obtained from 

the longest temporal extent (TE = 5 years). The effect of the temporal extent is 

shown for the results obtained from the largest spatial extent (56.25 ha, Figure 

3.8b,d,f,h). Varying the spatial extent or temporal extent had a marginal 

influence on the overall accuracy at both the Bolivian and the Brazilian site 

(Figure 3.8a,b). However, the change in either the spatial extent or temporal 

extent of the data cube had a pronounced effect on the producer’s (Figure 

3.8c,d,) and user’s accuracies (Figure 3.8e,f). Increasing the spatial or temporal 

extent of the data cube resulted in higher producer’s accuracy and lower user’s 

accuracy at both sites. Data cubes with a smaller spatial extent (e.g., smaller 
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than 20 ha) produced maps with a higher user’s accuracy at both study sites 

than larger data cubes. The reference cube with the shortest temporal extent 

(one year of data) produced maps with 74.4% user’s accuracy at the Bolivian 

site, and 65.8% at the Brazilian site. Deforestation events detected at Bolivian 

and Brazilian sites when the reference cube contained one year of data are 

shown by month (Figure 3.9) and year (Figure 3.10) of detection. The variation 

in producer’s accuracy was generally larger when varying the spatial extent of 

the cube than when varying the temporal extent (Figure 3.8c,d). 

Increasing the spatial or temporal extent of the data cube resulted in a 

shorter median temporal detection delay at both study sites (Figure 3.8g,h). 

However, the change in temporal extent did not have an influence on the 

median temporal detection delay at the Brazilian site. At this site, reference 

cubes with a temporal extent of four or five years achieved the shortest median 

temporal detection delay (one observation). Similar to the producer’s accuracy, 

the variation in median temporal detection delay was generally greater when 

varying the spatial extent of the cube than when varying the temporal extent 

(Figure 3.8g,h).  
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Figure 3.8. Overall accuracy (a,b), producer’s accuracy (c,d), user’s accuracy 

(e,f), and median temporal detection delay (tD) (g,h) of deforestation events at 

the Bolivian and Brazilian study sites as a function of the spatial (left) and 

temporal extent (right) of the local data cube. Vertical bars (a–f) indicate 95% 

confidence intervals. The effect of the spatial extent on spatial and temporal 

accuracy (Figure 3.8a,c,e,g), is shown for the results obtained from the longest 

temporal extent (TE = 5 years). The effect of the temporal extent is shown for the 

results obtained from the largest spatial extent (56.25 ha, Figure 3.8b,d,f,h). 
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Figure 3.9. The month in which deforestation events detected from Landsat 

time series at Bolivian site (a) and Brazilian site (b) over the period of 2005–

2014 occurred. Deforestation was detected as an extreme event in Landsat data 

cube with a reference period containing one year of data. 

 

Figure 3.10. The year in which deforestation events detected from Landsat 

time series at Bolivian site (a) and Brazilian site (b) over the period of 2005–

2014 occurred. Deforestation was detected as an extreme event in Landsat data 

cube with a reference period containing one-year of data.  
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3.5 Discussion 

In this chapter, we proposed a data-driven space-time change detection 

method that exploits spatiotemporal information in satellite image time series 

to detect deforestation at sub-annual scales as extreme events in local data 

cubes. We demonstrated the space-time change detection method on Landsat 

NDVI image time series at a dry (Bolivian site) and humid (Brazilian site) 

tropical forest sites. Our results show that the method is suitable for accurate 

detection of deforestation events at sub-annual scales in both dry and humid 

forests even when image time series contains only one year of historical 

observations. We were able to achieve a median temporal detection delay of 

less than three observations, and producer’s accuracy above 70%, user’s 

accuracy above 65%, and an overall accuracy above 80% at both dry and humid 

tropical forest areas when using a data cube with one year of historical 

observations and a window size of 56.25 ha (Figure 3.8). A previous study at 

the same study sites (Hamunyela, Verbesselt & Herold 2016), which used a 

method that only analysed individual pixel time series (Verbesselt et al. 

2012)and used all available Landsat images (1984–2014), also achieved at 

overall accuracy above 80% and a median temporal detection delay of less than 

four observations. Other studies (Zhu & Woodcock 2014b; Dutrieux et al. 2015; 

Reiche, de Bruin, et al. 2015) which used different methods to detect 

deforestation at sub-annual scales at different study sites, also achieved 

overall accuracies above 80%. These studies expressed the temporal delay in 

time, whereas here we express the temporal detection delay as number of 

observations, thus making it difficult to directly compare their temporal delay 

to ours. 

Deforestation events were mapped more accurately at the Bolivian site 

when using data cubes with a large spatial extent. This is mainly because 

deforestation events at the Bolivian site were generally large. In areas with 

large deforestation events, cubes with a larger spatial extent lead to accurate 

deforestation mapping because the cube is less likely to be entirely within the 

footprint of a deforestation event. If the spatial extent of a data cube is smaller 

than the footprint of the deforestation event, the impact of deforestation is 

likely to be smoothed out when spatially normalising data to reduce seasonal 

variations. The spatial normalisation approach assumes that there are at least 

5% forest pixels within the spatial window, since pixels’ values are spatially 

normalised against the upper 5% tail (Hamunyela, Verbesselt & Herold 2016). 

Using data cubes with small spatial extent can lead to accurate mapping of 

deforestation events in areas with relatively small deforestation events. With 

small deforestation events, spatial normalisation is less likely to smooth out 

the impact of deforestation in the data. This is why deforestation events were 

mapped accurately at the Brazilian site even when using data cubes with small 

spatial extent.  
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The incidents of false detection (low user accuracy) were particularly high 

for data cubes with large spatial extents because the thresholds calculated 

from data cubes with large spatial extents or longer temporal extents were 

relatively large. Such large thresholds can lead to many false detections 

because they might be too sensitive. Such sensitivity could also explain why 

deforestation events were typically detected with shorter delay when using 

data cubes with either large spatial extent or longer temporal extent (Figure 

3.8). Sensitive thresholds can also explain why increasing the temporal extent 

of the data cube at the Bolivian site led to accurate mapping of deforestation 

events. Increasing the temporal extent of the data cube did not affect the 

temporal detection delay at the Brazilian site (Figure 3.8h). This is mainly 

because, for each temporal extent, the optimal percentile at the Brazilian site 

was large (Figure 3.7). 

Increasing the spatial extent had more of a major influence on the optimal 

percentile at the Brazilian site than at the Bolivian site (Figure 3.7). This 

inter-site difference can be explained by the number of observations in the 

reference cube. Temporally, there were fewer images at the Brazilian site than 

at the Bolivian site (Figure 3.5). So, optimal percentiles at the Brazilian site 

were less likely to reach stability at smaller spatial extents because 

observations in the reference cube were few. In contrast, at the Bolivian site, 

the optimal percentile was most likely to reach stability at smaller spatial 

extents because the images were many, and additional information from 

spatial context was less likely to have a major influence on the optimal 

percent. 

Our method offers new opportunities to tackle challenges associated with 

existing methods for monitoring deforestation at sub-annual scales (Verbesselt 

et al. 2012; Dutrieux et al. 2015; Reiche, de Bruin, et al. 2015; Hamunyela, 

Verbesselt & Herold 2016; Zhu et al. 2012). In particular, our method exploits 

both spatial and temporal information in satellite image time series to detect 

deforestation at a sub-annual scale, thus allowing us to analyse pixels which 

do not have many historical observations. Results from the two case studies 

indicate that our method is robust in detecting deforestation events at a sub-

annual scale, even when the image time series only contains one year of 

historical observations (Figure 3.8). One year of historical observations is often 

too short to properly differentiate deforestation from normal forest dynamics, 

especially in forests that exhibit strong seasonality. By combining spatial and 

temporal information, we can use image time series of high spatial resolution 

satellite sensors (e.g., RapidEye), whose time series are short, to track small-

scale forest disturbances (e.g., selective logging). Similarly, by exploiting 

spatiotemporal information in image time series, there is no need to wait for 

image time series from newly launched sensors (e.g., Sentinel-2) to lengthen 

before exploiting such data to detect deforestation events at sub-annual scales. 

Since our method remains robust in detecting deforestation at sub-annual 
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scales even when the reference period only contains one year of data, users 

may not need to pre-process huge amounts of historical data when monitoring 

deforestation at sub-annual scales. 

The method presented in this chapter can be applied in different forest 

areas because it is a data-driven approach using thresholds computed from the 

data. However, it may face challenges in mixed forests, where deciduous and 

evergreen forests coexist at short distances. This is mainly because of the way 

we reduce seasonal variations in the data cube. Normalisation against P95t 

(Section 3.2.2) is not likely to reduce seasonal variations because P95t would 

represent evergreen trees in mixed stands. This limitation may be addressed 

by calculating P95t for each forest type separately and by deseasonalising pixels 

from each forest type using the corresponding P95t. Another limitation is 

related to how we treat the pixels whose historical observations also qualify as 

extremes although no deforestation has occurred.  

We determined optimal percentiles for identifying deforestation at sub-

annual scale, but these percentiles might not be optimal for other areas with 

different forest types and processes causing deforestation. In areas with 

gradual changes (Devries, Verbesselt, et al. 2015) for example, smaller 

percentiles (5th percentile) might be preferable. Therefore, users should 

calibrate the method to identify optimal percentiles for their respective study 

areas before monitoring for deforestation at sub-annual scales. To do this, 

users should select sample pixels from both deforested and forested areas in 

their study areas, and apply space-time change detection method while varying 

the percentile for deforestation detection (e.g., in Section 3.3.2). Depending on 

the monitoring goal, for example a shorter temporal detection delay, the user 

can then selects the percentile that achieves the shortest median temporal 

delay as the optimal percentile. 

We tested several window sizes (spatial extents) of the data cube, but 

identifying a window size appropriate for different parts of the globe is still 

challenging. This is because a window size which is optimal in one area might 

not be optimal in another area. Prior knowledge on the size of the deforestation 

events that typically occur in a particular area can be used to decide on the 

spatial extent of the data cube. If such prior knowledge is lacking, the user 

should choose a spatial extent which is larger than the size of deforestation 

events the user aims to detect. 

With the advent of open and free access to data from Sentinel sensors, 

especially Sentinel-1 and -2, detecting deforestation at small spatial scales 

within few days of occurrence will be possible. Combining Sentinel and 

Landsat data will boost monitoring of deforestation at sub-annual scales, 

allowing agencies responsible for forest protection to timely intervene in areas 

where illegal deforestation events are occurring. However, such multi-source 

data would need harmonisation to produce multi-sensor time series which is 

temporally consistent. 
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3.6 Conclusion  

In this chapter, we demonstrated how spatial and temporal information 

can be combined and exploited to detect deforestation from satellite image time 

series at a sub-annual scale. We proposed a data-driven space-time change 

detection method that detects deforestation as an extreme event within a 

space-time data cube of satellite image time series. We detected sub-annual 

deforestation from Landsat NDVI time series at a dry tropical forest site, 

where the forest exhibits strong seasonality, and at humid tropical forest site. 

The method remained robust in detecting deforestation events at a sub-annual 

scale even when the image time series only contained one year of historical 

observations. The space-time method we presented in this chapter is a novel 

and robust approach for timely detection of deforestation events in areas where 

forests exhibit strong seasonality. It provides an opportunity to detect 

deforestation events using image time series with scarce historical 

observations. The method can be used in different types of forest, both 

evergreen and deciduous, but, it may face a challenge in mixed forests, where 

deciduous and evergreen forests coexist at short distances. Although we used 

NDVI, the method is expected to be applicable for image time series of any 

satellite-derived metric that is used for deforestation monitoring. To further 

improve deforestation monitoring at a sub-annual scale, future research should 

investigate how data from different satellite sensors (i.e., Landsat 7 and 8, 

Sentinel-2, RapidEye, and SPOT) can be combined in a space-time change 

detection framework to facilitate near real-time deforestation detection. 
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Abstract 

Current research on forest change monitoring using medium spatial 

resolution Landsat satellite data aims for accurate and timely detection of 

forest disturbances. However, producing forest disturbance maps that have 

both high spatial and temporal accuracy is still challenging because of the 

trade-off between spatial and temporal accuracy. Timely detection of forest 

disturbance is often accompanied by many false detections, and existing 

approaches for reducing false detections either compromise the temporal 

accuracy or amplify the omission error for forest disturbances. Here, we 

propose to use a set of space-time features to reduce false detections. We first 

detect potential forest disturbances in the Landsat time series based on two 

consecutive negative anomalies, and subsequently use space-time features to 

confirm forest disturbances. A probability threshold is used to discriminate 

false detections from forest disturbances. We demonstrated this approach in 

the UNESCO Kafa Biosphere Reserve located in the southwest of Ethiopia by 

detecting forest disturbances between 2014 and 2016. Our results show that 

false detections are reduced significantly without compromising temporal 

accuracy. The user’s accuracy was at least 26% higher than the user’s 

accuracies obtained when using only temporal information (e.g. two 

consecutive negative anomalies) to confirm forest disturbances. We found the 

space-time features related to change in spatio-temporal variability, and 

spatio-temporal association with non-forest areas, to be the main predictors for 

forest disturbance. The magnitude of change and two consecutive negative 

anomalies, which are widely used to distinguish real changes from false 

detections, were not the main predictors for forest disturbance. Overall, our 

findings indicate that using a set of space-time features to confirm forest 

disturbances increases the capacity to reject many false detections, without 

compromising the temporal accuracy. 

Keywords: Space-time features, Data cubes, Landsat, Change detection, Forest 

disturbance   
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4.1  Introduction 

Current research on forest change monitoring aims for accurate and 

timely detection of forest disturbances. Many change detection approaches 

have therefore been proposed in recent years to improve the detection of forest 

disturbances from medium spatial resolution satellite data (e.g. Landsat) (Zhu 

et al. 2012; Xin et al. 2013; Zhu & Woodcock 2014b; Hilker, Wulder, Coops, 

Seitz, et al. 2009; Verbesselt et al. 2012; Hamunyela, Verbesselt, Bruin, et al. 

2016; Reiche, de Bruin, et al. 2015; Hansen et al. 2016). The proposed 

approaches have addressed many key challenges, including seasonality in dry 

forests (Dutrieux et al. 2015; Hamunyela, Verbesselt & Herold 2016; Reiche et 

al. in review). However, it is still challenging to produce forest disturbance 

maps which have both high spatial and temporal accuracy. There is always a 

trade-off between spatial and temporal accuracy (Zhu et al. 2012; Hamunyela, 

Verbesselt, Bruin, et al. 2016; Reiche, de Bruin, et al. 2015; Reiche et al. in 

review). A shorter temporal detection delay is typically associated with high 

producer’s accuracy and low user’s accuracy (Reiche et al., in review). Low 

user’s accuracy implies that timely detection of forest disturbances is 

accompanied by many false detections. False detections in satellite time series 

may occur because of insufficient deseasonalisation or because of the presence 

of sensors’ artefacts and remnant atmospheric contaminations (Vermote et al. 

2009; Zhu et al. 2012). Yet, existing approaches lack capacity to reject false 

detections without compromising the temporal accuracy. In cases where high 

user’s accuracy has been reported, the omission error for small-scale forest 

disturbances was high (Hansen et al. 2016). In short, amplified false detections 

and high omission error for small-scale forest disturbances are two major 

challenges that currently hinder accurate and timely detection of forest 

disturbances.  

Recent studies attempted to remedy the problem of false detections by 

using a threshold on the magnitude of change, to discriminate real 

disturbances from false detections (Devries, Verbesselt, et al. 2015; 

Hamunyela, Verbesselt & Herold 2016). The use of a threshold on the 

magnitude of change is based on the assumption that, when compared to real 

changes, false detections have smaller magnitude of change. This assumption 

is problematic, however, because forest disturbances that involve partial 

removal of forest cover may also have small magnitude of change (Huang et al. 

2009). Small-scale and gradual forest disturbances, which are widely common 

especially in Africa, caused mainly by small-holder agriculture expansion, 

domestic firewood and charcoal extractions (Fisher 2010) also tend to have 

small magnitude of change (Devries, Verbesselt, et al. 2015). Recent studies 

show that false detections are particularly common in areas where small-scale 

forest disturbances, caused by small-holder agriculture and human settlements 

expansion, are prevalent (Schultz et al. 2016). Separating forest disturbances 
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from false detections using a threshold on the magnitude of change in such 

areas may therefore lead to high omission error for small-scale forest 

disturbances. The difficulty in separating false detections and forest 

disturbances may explain why small-scale forest disturbances are still a major 

constraint to accurate mapping and quantification of forest loss (Tyukavina et 

al. 2013). It is therefore important that new change detection approaches 

should be able to improve the detection of small-scale forest disturbances in 

order to achieve accurate mapping and quantification of forest loss. 

Alternative to magnitude of change, some change detection approaches use 

consecutive anomalies to confirm forest disturbance. Essentially, forest 

disturbance is only confirmed if there are at least two or more consecutive 

negative anomalies in the time series (Zhu & Woodcock 2014b; Hamunyela, 

Verbesselt, Bruin, et al. 2016; Reiche, de Bruin, et al. 2015; Hansen et al. 

2016). An observation is considered as negative anomaly if it is below a 

specified threshold (Zscheischler et al. 2013). The approach of consecutive 

anomalies is based on the assumption that the presence of multiple consecutive 

negative anomalies in the time series may be strong indicator for forest 

disturbance because the impact of forest disturbances is typically persistent 

through time (Zhu et al. 2012). Consecutive negative anomalies are also 

considered more robust against noise in the time series than a threshold on the 

magnitude of change (Zhu & Woodcock 2014b; Zhu et al. 2012; Reiche, de 

Bruin, et al. 2015). To detect forest disturbances timely using a consecutive 

negative anomaly approach, however, a threshold for defining an observation 

as an anomaly has to be less strict (Hamunyela, Verbesselt, Bruin, et al. 2016; 

Reiche et al. in review). Unfortunately, a less strict threshold amplifies false 

detections (Hamunyela, Verbesselt, Bruin, et al. 2016). In addition to 

consecutive anomalies, other approaches use temporal metrics derived from 

pixel-time series of Landsat spectral bands and indices to calculate the 

likelihood of forest loss (Hansen et al. 2016). Forest loss is confirmed when 

there are two consecutive observations at the pixel showing a higher likelihood 

of forest loss (Hansen et al. 2016). This approach is particularly novel because 

the likelihood of forest loss is calculated based on a set spectral and temporal 

metrics. Overall, this forest change detection approach produced a forest 

disturbance map with high user’s accuracy in Peru, but the omission error for 

small-scale forest disturbances was high (Hansen et al. 2016).  

Solving the problems of false detections and omission of small-scale forest 

disturbances remains challenging mainly because existing forest change 

detection approaches only rely on temporal and spectral information. They 

ignore spatial information. Yet, forest disturbances, by default, are spatio-

temporal processes (Alves 2002). Oftentimes, new disturbances, especially 

those induced by humans, have both spatial and temporal association to old 

disturbances (Alves 2002). This spatio-temporal association arises because new 

loggings, for example, are more likely to occur within the neighbourhood of 
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previously logged areas or logging routes than in areas which are far from 

previous disturbances. Essentially, a set of “space-time features” can be 

extracted from satellite data cubes and subsequently use such features as 

indicators for forest disturbance in order to discriminate false detections from 

real disturbances. To the best of our knowledge, this idea of using space-time 

features to discriminate false detections from real disturbances has not yet 

been investigated.  

The objective of this chapter was to investigate whether the detection of 

forest disturbances from Landsat time series can be improved by using space-

time features. We propose a new approach that first detects potential forest 

disturbances in the pixel-time series based on two-consecutive negative 

anomalies, and subsequently use space-time features to confirm forest 

disturbances. The forest disturbance maps generated using the space-time 

features approach were compared to maps generated using two-consecutive 

negative anomaly only to detect forest disturbances,  and using two-consecutive 

negative anomalies and the magnitude of change to confirm forest 

disturbances. We hypothesised that the space-time features approach would 

produce forest disturbance maps which are spatially more accurate. 

Throughout this chapter, forest disturbance is defined as forest loss which 

constitutes either full or partial removal of forest cover, which is visible from 

Landsat multi-spectral data.   

4.2 Study area 

Our study focused on detecting forest disturbances in the UNESCO Kafa 

Biosphere Reserve, situated in the southwest of Ethiopia (Figure  4.1), where a 

moist Afromontane broadleaf evergreen forest with moderate seasonality exists 

(Devries, Verbesselt, et al. 2015). The forest in this area is subject to small-

scale and gradual disturbance processes, caused mainly by small-holder 

agriculture, human settlements expansion, industrial coffee plantations, and 

domestic firewood and charcoal extractions (Pratihast et al. 2014; Dresen et al. 

2014). Previous studies in the UNESCO Kafa Biosphere Reserve show that 

separating forest disturbances, especially those involve partial removal of the 

forest cover,  from false detections is difficult (Devries et al. 2016; Devries, 

Verbesselt, et al. 2015; Schultz et al. 2016).  This study area is therefore ideal 

for evaluating the importance of using space-time features to achieve accurate 

and timely detection of forest disturbances. We defined forest disturbance as 

full or partial removal of forest cover, which is visually visible from Landsat 

multi-spectral images. 
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Figure 4.1: Overview of the UNESCO Kafa Biosphere Reserve located in 

southwest of Ethiopia. Areas in green colour represent the benchmark forest 

map.  The benchmark forest map was generated using a supervised maximum 

likelihood classifier. 

4.3 Data and methods  

The overview of the data used, and the methods followed in this chapter is 

shown in Figure 4.2. To detect forest disturbances, we first pre-processed a 

total of 172 terrain corrected (L1T) multi-spectral images from Landsat-7 

Enhanced Thematic Mapper (ETM+, 116 images) and Landsat-8 Operational 

Land Imager (OLI, 56 images) acquired between January 2010 and June 2016. 

From these images, we derived normalised difference vegetation index (NDVI; 

(Tucker 1979; Rouse et al. 1974), Section 4.3.1.1). Second, we produced a 

benchmark forest mask (Section 4.3.1.2), and used it to mask non-forest areas 

in the NDVI time series. Third, we normalised NDVI time series spatially to 

reduce seasonality (Section 4.3.1.3). Fourth, we flagged pixels with two 

consecutive negative anomalies in Landsat NDVI time series as potentially 

disturbed (Section 4.3.2). Fifth, we used three different approaches to confirm 

forest disturbance (Section 4.3.3). In the first approach (Section 4.3.3.1), forest 

disturbances were immediately confirmed once there were two consecutive 
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negative anomalies in the pixel-time series (Two-consecutive anomaly 
approach). In the second approach (Section 4.3.3.2), we used two consecutive 

negative anomalies and the magnitude of change to calculate the probability of 

forest disturbance (Two consecutive anomalies + magnitude of change 
approach). In the third approach (Section 4.3.3.3), we used several space-time 

features from the local data cube of a flagged pixel to calculate the probability 

of forest disturbance (Space-time feature approach). Finally, for each approach, 

we estimated the spatial and temporal accuracy for forest disturbance maps 

(Section 4.3.4).  

 

Figure 4.2: The workflow for this chapter.  
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4.3.1 Pre-processing steps 

4.3.1.1 Landsat NDVI  

Landsat NDVI time series was derived from terrain corrected (L1T) 

Landsat-7/ETM+ and Landsat-8/OLI images, spanning from January 2010 to 

June 2016.  Landsat-7/ETM+ and Landsat-8/OLI images, geometrically and 

atmospherically corrected, were obtained from The United State of America’s 

Geological Survey (USGS) Landsat surface Reflectance (SR) Climate Data 

Records (CDR; http://landsat.usgs.gov/CDR_LSR.php). USGS use Landsat 

Ecosystem Disturbance Adaptive Processing System (LEDAPS) algorithm 

(Masek et al. 2006) to generate Landsat-7/ETM+ surface reflectance products. 

Landsat 8 OLI surface reflectance products are generated using Landsat 8 OLI 

surface reflectance algorithm (Vermote et al. 2016). Clouds and cloud shadows 

in Landsat-7/ETM+ and Landsat-8/OLI images were masked using the 

CFmask cloud-shadow mask product (Zhu & Woodcock 2012). CFmask 

products are distributed together with the Landsat SR CDR Products. Our 

reference period was 2010 -2013 whereas the monitoring period was 2014 -

2016.  

4.3.1.2 Benchmark forest mask 

A benchmark forest mask is essential when monitoring forest cover 

disturbances from satellite time series to avoid confusing forest cover loss with 

other land cover dynamics (e.g., cropping cycles; Devries et al., 2015; 

Hamunyela, Verbesselt, & Herold, 2016). Similar to (Devries, Verbesselt, et al. 

2015) we used a supervised maximum likelihood classifier to generate a forest 

mask from Landsat-8 OLI mult-spectral image time series for 2013. We 

removed from the forest mask patches which were smaller than 0.5 h to 

conform to areal defining a forest (FAO 2015). The final forest mask product 

contained 3 034 809 pixels (≈ 273133 ha) classified as forest. 

4.3.1.3 Spatial normalisation to reduce seasonality in NDVI time series 

The moist Afromontane broadleaf evergreen forest in the UNESCO Kafa 

Biosphere Reserve exhibits moderate seasonality (Devries, Verbesselt, et al. 

2015). If not accounted for appropriately, seasonality may disguise forest 

disturbances in the time series. Here, we used spatial normalisation 

(Hamunyela, Verbesselt & Herold 2016) to reduce seasonality in Landsat NDVI 

time series.  It has been demonstrated that spatial normalisation significantly 

reduces seasonality (Hamunyela, Verbesselt, & Herold, 2016; Reiche et al., in 

review) in satellite time series. Seasonality is reduced by dividing the NDVI 
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value for each pixel with the 95th percentile (P95) computed from the NDVI 

values of the pixels within the spatial neighbourhood of such pixel. The spatial 

window that defines the neighbourhood should be larger than the size of forest 

disturbance events one wants to detect, to ensure that at least there are forest 

pixels within the window to avoid normalising against a value from disturbed 

area (Hamunyela, Verbesselt, Bruin, et al. 2016). The spatial window of 15 by 

15 pixels (≈ 20 ha) we used in this study was deemed sufficient because forest 

disturbance patches in the UNESCO Kafa Biosphere Reserve tend to be small 

(Devries, Verbesselt, et al. 2015; Pratihast et al. 2014). 

4.3.2 Detecting negative anomalies in Landsat NDVI data cubes  

We detected negative anomalies in the local data cubes of spatially 

normalised Landsat NDVI time series using a method that detects forest 

disturbances as extreme events in Landsat data cubes (Hamunyela, Verbesselt, 

Bruin, et al. 2016). The local data cube is defined around each pixel in the 

image time series and its temporal and spatial extents are user-defined 

(Hamunyela, Verbesselt, Bruin, et al. 2016). We used a local data cube with a 

spatial extent of the 15 x 15 Landsat pixels. The temporal extent was from 

2010 to 2016. The local data cube is split into a reference cube and monitoring 

cube. The reference cube contains historical observations, whereas the 

monitoring cube contains newly acquired observations that need to be assessed 

for forest disturbance (Hamunyela, Verbesselt, Bruin, et al. 2016). Negative 

anomalies in the monitoring period were identified using a threshold computed 

from the observations available in the reference period of the local data cube. 

The threshold corresponds to a user-specified percentile (e.g. 5th percentile), 

and an observation was a negative anomalies if it was below the specified 

percentile (Zscheischler et al. 2013). Here, we evaluated five percentile 

thresholds (1st, 2nd, 3rd, 4th and 5th). A pixel was flagged as potentially disturbed 

if it had two consecutive negative anomalies in its time series. Three different 

approaches were used to confirm negative anomalies as forest disturbance 

(Section 4.3.3). Observations in the monitoring period were assessed 

sequentially rather than simultaneously to mimic a near real-time monitoring 

scenario.  

4.3.3 Confirming anomalies as forest disturbances  

4.3.3.1 Two-consecutive anomaly approach 

With this approach, a pixel was immediately confirmed as disturbed once 

two consecutive negative anomalies in the pixel-time series. This approach was 

proposed in our earlier work, and it has been demonstrated at two sites, one in 
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dry tropical forest in Bolivia and the other in humid evergreen forest in Brazil 

(Hamunyela, Verbesselt, Bruin, et al. 2016). 

 

4.3.3.2 Two consecutive anomalies + magnitude of change approach 

We used the two consecutive negative anomalies (Canomaly) and magnitude 

of change (Mchange) (Table 1) to confirm forest disturbance. The aim here was to 

assess whether using magnitude of change together with two consecutive 

negative anomalies would improve discrimination of forest disturbances from 

false detections when compared to a scenario whereby forest disturbance is 

confirmed using two consecutive negative anomalies only. We used a random 

forest model (n =1311,  trees = 501; (Breiman 2001)) to calculate the probability 

of disturbance using two consecutive negative anomalies and magnitude of 

change as predictors of forest disturbance. We used a probability 0.5 as 

threshold for accepting negative anomalies as forest disturbance. Random 

forest model was trained using a training data set acquired through visual 

interpretation of Landsat multi-spectral images. The training sample pixels 

were selected through probability sampling, using a forest disturbance map 

generated using the two-consecutive anomaly approach (Section 4.3.3.1).  

4.3.3.3 Space-time feature approach 

We used all 17 space-time features (see Table 4.1) extracted from the local 

data cube of Landsat NDVI time series, to calculate the probability of forest 

disturbance once two consecutive anomalies are signalled at a pixel. The 

probability of forest disturbance was calculated using a trained a random forest 

model (n =1311,  trees = 500; (Breiman 2001)). A pixel was declared disturbed 

if the probability of disturbance was equal or greater than 0.5. The importance 

of each space-time feature for predicting forest disturbance was determined 

using the conditional variable importance approach (Strobl et al. 2008) that 

accounts for correlation between variables, and accommodates variables of 

different data types. We used the same training data set as in Section 4.3.3.2 to 

train the random forest model. 

Out of 17 features, one (SDrc) is measuring spatio-temporal variability in 

the reference period, three (Pocum, Prcum, SDTrend) are measuring change in 

spatial variability over time, six (Poextremes, Popatch, Postep, Prpatch, Prextremes, Prstep) 

are measuring spatio-temporal association with pixels experiencing negative 

anomalies, and three (CBnf, Nnf, Pnf) are measuring spatial association with 

non-forest areas. The remaining four features, i.e. Vrc, Qthresh, Mchange, Canomaly, 

represent the number of observations in the local data cube over the reference 

period, the anomaly threshold for identifying negative anomalies, the 

magnitude of change and two consecutive negative anomalies, respectively. 
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Spatial variability and spatio-temporal variability can be measured using 

various metrics (e.g. the range, standard deviation; (Ichoku et al. 2002; Glasbey 

et al. 2001; Uddstrom & Oien 1999)).  Here, we used the standard deviation as 

a measure of spatial variability and spatio-temporal variability. Spatial 

variability was calculated at each time slice within the local data cube, whereas 

spatio-temporal variability was calculated by taking in account both the spatial 

and temporal information in the local data cube. Many space-time features can 

be extracted from data cubes of satellites image time series. In this study, we 

chose the space-time features that can be extracted easily in an automated 

manner from local data cube to ensure that the change detection framework 

can be used for near real-time forest change monitoring.  

Table 4.1: Space-time features extracted from local data cubes for Landsat 

NDVI time series to predict the probability of forest disturbances given two 

consecutive negative anomalies at particular pixel. The spatial extent of the 

local data cube was 15 by 15 Landsat pixels. T1 refers to the time step where 

the first negative anomaly of the two consecutive negative anomalies is 

detected, whereas T2 is time step for the second negative anomaly. The space-

time features are grouped by category in the table 

Category   Feature Acronym Data type Explanation 

T
e
m

p
o
ra

l 

Consecutive 

anomalies 

Canomaly  Discrete-

Numeric 

Number of consecutive 

negative anomalies. Here, 

we used two consecutive 

negative anomalies  

Magnitude of 

change 

Mchange Continuous  Magnitude of change 

calculated by subtracting 

the anomaly threshold from 

the second anomaly at T2  

S
p

a
ti

a
l 

Number of non-

forest pixels in 

the reference 

period 

CBnf Discrete-

Numeric 

Number of pixels within the 

local data cube which have 

been masked as non-forest 

in the reference period  

Presence of 

non-forest 

neighbours 

Nnf Binary (yes 

= 1, no = 0) 

Indicates whether any of the 

8-connected neighbours for 

the focal pixel is already 

non-forest in the reference 

period 

Number non-

forest 

Pnf Discrete-

Numeric 

Number of the 8-connected 

neighbours for the focal 
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neighbours  pixel which are already non-

forest in the reference 

period 

Presence of 

neighbours 

with negative 

anomalies at T1 

Prstep Binary (yes 

= 1, no = 0) 

Indicates whether any of the 

8-connected neighbours for 

the focal pixel also 

experienced negative 

anomalies at T1 

Number of 

neighbours 

with negative 

anomalies at T1 

Prpatch Discrete-

Numeric  

Number of 8-connected 

neighbours for focal pixel 

which also experienced 

negative anomalies at T1 

Number of 

pixels in the 

local data cube 

with negative 

anomalies at T1 

Prextremes Discrete-

Numeric 

Number of pixels in the 

local data cube which also 

experienced negative 

anomalies at T1  

Presence of 

neighbours 

with negative 

anomalies at T2 

Postep Binary (yes 

= 1,no = 0) 

Indicates whether any of the 

8-connected neighbours of 

the focal pixel is also 

experiencing negative 

anomalies at T2 

Number of 

neighbours 

with anomalies 

T2 

Popatch Discrete-

Numeric 

Number of 8-connected 

neighbours of the focal pixel 

which are also experiencing 

negative anomalies at T2 

Number of 

pixels with 

negative 

anomalies in 

the local data 

cube at T2 

Poextremes Discrete-

Numeric 

Number of pixels in local 

data cube with negative 

anomalies at T2 

S
p

a
ti

o
-t

e
m

p
o
ra

l Cumulative 

sum of 

residuals for 

spatial 

variability at T2 

Pocum Continuous Cumulative sum of 

residuals for spatial 

variability at T2. Calculated 

following these steps: i) 

calculate spatial variation 

(standard deviation) at each 

time step of the time series; 

ii) calculate the temporal 
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mean of spatial variation; 

(3) subtract the temporal 

mean of spatial variation 

from spatial variation at 

each time step 

Cumulative 

sum of 

residuals for 

spatial 

variability at T1 

Prcum Continuous Cumulative sum of 

residuals for spatial 

variability at T1. Calculated 

in same way as Pocum above 

Anomaly 

threshold 

Qthresh Continuous Threshold for identifying 

negative anomalies, 

computed from the local 

data cube over the reference 

period, corresponding to the 

specified percentile (e.g. 5th 

percentile)  

Variability of 

observations in 

the local data 

cube in the 

reference period 

SDrc Continuous Standard deviation of the 

observations in the 

reference period of a local 

data cube 

Temporal 

linear  trend in 

spatial 

variability  

SDTrend Continuous Temporal linear trend in 

spatial variability, 

quantified using a linear 

model.  

Number of 

observations in 

local data cube 

over the 

reference period 

Vrc  Discrete- 

Numeric 

Number of valid 

observations in the local 

data cube over the reference 

period 

4.3.4 Estimating the spatial and temporal accuracy 

We estimated the spatial and temporal accuracy for forest cover 

disturbance using 2343 sample pixels generated through stratified probability 

sampling (Stehman 2009). The sample pixels and the strata were generated 

using a forest disturbance map produced by Hamunyela et al (in preparation). 

This forest disturbance map was generated using the change detection 

framework presented in this chapter, but it was based on the combination of 



Using space-time features to improve detection of forest disturbances  

  

 80 

Landsat and Sentinel-2 data. The area proportion for each stratum is shown in 

Table 4.2. The largest stratum (No change I) represents forest areas which 

were 60m away from areas where disturbances were detected. Stratum No 
change II was a 60m buffer around the areas where disturbances were 

detected. A buffer zone was created around disturbances in order to improve 

the estimation of the omission error because changes and misclassifications are 

expected at the edges of the forest. Stratum Change I represents areas where 

disturbances were detected between 2014 and 2015, while stratum Change II 
represents areas where disturbances were detected between 2015 and 2016. 

The area was classified as change if the probability of forest disturbance was 

greater than or equal to 0.5. The allocation of sample size to each stratum was 

based on the approach recommended by (Olofsson et al. 2014; Stehman 2012) 

that ensures a reliable estimation of overall accuracy, producer’s and user’s 

accuracy for classes with small area proportions. Based on this sample 

allocation, we calculated the area-adjusted overall accuracy, producer’s 

accuracy and user’s accuracy. In addition, we calculated the area bias (a 

difference between user’s and producer’s accuracy), and the temporal accuracy 

expressed as a median temporal detection delay in days. The temporal 

detection delay was defined as the number of days between the date of 

disturbance as per reference data and the acquisition date for the image in 

which a disturbance was confirmed. Similar to (Cohen et al. 2010; Devries, 

Verbesselt, et al. 2015; Dutrieux et al. 2015; Hamunyela, Verbesselt & Herold 

2016; Zhu & Woodcock 2014b), reference data were collected from Landsat 

multi-spectral images through visual interpretation of images. This approach, 

however, has major limitation because forest disturbances which are smaller 

than the spatial resolution of Landsat images might not be visible, but might 

be detected. It is for this reason that we complemented the visual 

interpretation of Landsat images with very high resolution imagery available 

in Google Earth (https://www.google.com/earth/) and Bing Maps 

(http://www.bing.com/maps/), but images are not temporally dense like 

Landsat. 

Table 4.2: Area proportions, number of pixels and allocated sample size for 

each stratum 

Stratum No. of pixels Area proportion No. of samples 

No change I  2694771 0.888 1443 

No Change II 261204 0.086 500 

Change I 71167 0.023 200 

Change II 7667 0.003 200 

Total 3 034 809 1 2343 

 

http://www.bing.com/maps/
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4.3.5 Assessing the effect of probability threshold on spatial accuracy 

In Section 4.3.3.2 and 4.3.3.3, we used a probability threshold of 0.5 to 

discriminate false detections from real changes. In some instances, the user 

may have a different monitoring objective. For example, a user may prefer a 

map with the lowest area bias. We assessed how the probability threshold 

affects the spatial accuracy for forest disturbance maps produced using the 

space-time feature approach and the magnitude of change approach. We chose 

the maps which were generated using the 5th percentile that achieved the 

highest producer’s accuracy and the shortest temporal detection delay. More 

specifically, we assessed how overall accuracy, user’s accuracy, producer’s 

accuracy vary as function of the probability of threshold for accepting negative 

anomalies as forest disturbance. We increased the probability threshold from 0 

to 0.95, at an interval of 0.05. 

4.4 Results 

The accuracies for the space-time feature approach and the two 
consecutive anomalies + magnitude of change approach are based on the forest 

disturbance maps generated using 0.5 as the probability threshold for 

accepting anomalies as forest disturbance. Effect of the probability threshold 

on the overall accuracy, user’s accuracy and producer’s accuracy for maps 

generated using the space-time features approach and the two consecutive 
anomalies + magnitude of change approach is shown in Section 4.4.2.  In 

Section 4.4.3, the area estimates for disturbed forest are presented. The 

ranking of the space-time features based on their conditional variable 

importance are presented in Section 4.4.4. 

4.4.1 Spatial and temporal accuracy 

Using the space-time feature approach yielded the highest user’s accuracy 

across all the percentile thresholds (>70%, Figure 4.3d). More specifically, for 

each percentile threshold, the user’s accuracy achieved from the space-time 
feature approach was at least 26% higher than the user’s accuracy achieved 

either from a two-consecutive anomaly approach or from the magnitude of 

change approach. This gain in the user’s accuracy was particularly high 

(36.4%) when using the least strict percentile threshold (5th percentile). The 

difference in the user’s accuracy between the two-consecutive anomaly 
approach and the two consecutive anomalies + magnitude of change approach 

was marginal across all the percentile thresholds. Across all percentile 

thresholds, the user’s accuracy achieved from the two-consecutive anomaly 
approach and the two consecutive anomalies + magnitude of change approach 
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was below 60%.  Compared to the space-time feature approach, the two-
consecutive anomaly approach and the two consecutive anomalies + magnitude 
of change approach achieved the higher producer’s accuracy when using the 

least strict percentile thresholds (4th and 5th percentile, Figure 4.3c), but the 

space-time feature approach achieved the highest overall accuracy (Figure 

4.3a), and the lowest area bias (Figure 4.3b). More specifically, the producer’s 

accuracy for the space-time feature approach was about 9% lower than those of 

the two-consecutive anomaly approach and the two consecutive anomalies + 
magnitude of change approach when using the least strict percentile threshold. 

For all approaches, the least strict percentiles achieved the shortest temporal 

detection delay (32 days) and highest producer’s accuracy (> 79%). For the 

space-time feature approach, the differences in the producer’s accuracy and 

median temporal detection delay between the most strict percentile threshold 

(5th percentile) and least strict percentile threshold (1st percentile) were 47.7% 

and 137 days, respectively. Figure 4.4 shows an example of a false detection, 

related to remnant clouds, which was accepted when using the two-consecutive 
anomaly approach and the magnitude of change approach, but rejected by the 

space-time feature approach. 
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Figure 4.3: Overall accuracy (a); area bias (b); producer’s accuracy (c); user’s 

accuracy (d); and median temporal detection delay (e) for forest disturbances 

detected in the UNESCO Kafa Biosphere Reserve between 2014 and 2016 from 

Landsat NDVI time series. Forest disturbances were confirmed using three 

approaches: the two-consecutive anomaly approach, the two consecutive 
anomalies + magnitude of change approach and the space-time feature 
approach. The accuracies are shown as a function for the percentile thresholds 

for declaring anomalous observations in local data cubes. The vertical bars in 

(a), (c) and (d) indicate the 95% confidence interval. 
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Figure 4.4: An example of a false detection (red dotted line), related to remnant 

clouds, which was rejected (probability of disturbance = 0.13) when using the 

space-time features. The probability of disturbance was 0.51 when only using 

the magnitude of change to predict forest disturbance. The magnitude of 

change was -0.22. The red dot represents the pixel (location: 7°30'5.042"N, 

36°1'30.959"E) whose time series is shown, and the black areas in the image 

chips represent areas which were masked as clouds or cloud shadow using 

CFmask. Image chips which were covered completely with no data are skipped.  

4.4.2 The effect of the probability threshold on spatial accuracy  

For the space-time approach, the user’s accuracy for map produced using 

the 5th percentile threshold increased by 69.8%, reaching 99.1% when 

increasing the probability threshold from 0 to 0.95. The producer’s accuracy 

decreased by 75.8 %, reaching 15.4%. The crossover point for the user’s and 

producer’s accuracy was approximately at the probability threshold of 0.55 

(Figure 4.5). At this probability threshold, the user’s accuracy was 78.3% while 

the producer’s accuracy was 76.8%.  In contrast, the user’s and producer’s 

accuracy did not reach the crossover point when using the two consecutive 
anomalies + magnitude of change approach (Figure 4.5). For this approach, the 

lowest area bias (17.3%) was achieved at the probability threshold of 0.95, and 

it was in favour of the producer’s accuracy. For the magnitude of change 

approach, the user’s accuracy only increased by 18.3%, reaching 47.6% when 

increasing the probability threshold from 0 to 0.95; the producer’s accuracy 

decreased by 26.3%, reaching 64.3%.   
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Figure 4.5: Overall accuracy, producer’s accuracy and user’s accuracy for forest 

disturbances detected in the UNESCO Kafa Biosphere Reserve between 2014 

and 2016 from Landsat NDVI time series using the 5th percentile while 

changing the probability threshold for accepting two consecutive negative 

anomalies as forest disturbance.  

4.4.3 Area estimates for disturbed forest  

Using the map produced from the space-time feature approach, the 5th 

percentile threshold and probability threshold of 0.55 (Figure 4.6), we 

estimated that about 17 915 ha of forest in UNESCO Kafa Biosphere Reserve 

has been disturbed between 2014 and 2016. The disturbances involved either 

full or partial removal of forest canopy. Disturbances were mainly concentrated 

at edges of forest (Figure 4.6).   
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Figure 4.6: An example of forest disturbances detected in the UNESCO Kafa 

Biosphere Reserve between 2014 and 2016 from Landsat NDVI time series 

(insert A). The probability disturbance was calculated using the space-time 

features extracted from Landsat NDVI data cubes based on 5th percentile 

threshold and 0.55 probability threshold. The base image is the surface 

reflectance in the red channel (Band 4) for Landsat-8/OLI acquired on 10-03-

2016. The black patches represent areas masked for clouds and cloud shadows. 

4.4.4 Space-time features important for predicting forest disturbance 

Our results show that cumulative sums of residuals for spatial variability 

(Pocum, and Prcum), the anomaly threshold for identifying anomalous 

observations (Qthresh), the variability in the reference cube of a local data cube 

(SDrc) and the number of non-forest pixels within the local data cube in the 

reference period (CBnf) were the most important predictors for forest 

disturbance (Figure 4.7). These space-time features were two times more 

important than consecutive negative anomalies (Canomaly) and the magnitude of 

change (Mchange). 
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Figure 4.7: Conditional variable importance for each space-time feature using 

to predict forest disturbances in the UNESCO Kafa Biosphere Reserve from 

data cubes of Landsat normalised difference vegetation index (NDVI) time 

series. Training data (n =1311) was used to determine the conditional variable 

importance. 

4.5  Discussion 

In this chapter, we proposed to use space-time features to improve forest 

change monitoring using Landsat time series. Space-time features are used to 

confirm forest disturbances when negative anomalies are detected in the pixel-

time series. Our results show that using space-time features to confirm forest 

disturbances reduces false detections significantly, with minimal negative 

effect on producer’s accuracy for forest disturbance. Our results also show that 

using two consecutive negative anomalies to confirm forest disturbances does 

not reduce false detections sufficiently even when using strict percentile 

thresholds to identify the anomalies. Instead of reducing false detections, strict 

percentile thresholds amplified the omission error, and led to a longer temporal 

detection delay. These results suggest that the criterion of two consecutive 

anomalies is not robust enough to reject false detection as previously thought 

(Hamunyela, Verbesselt, Bruin, et al. 2016; Zhu et al. 2012; Reiche, de Bruin, 
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et al. 2015). Two consecutive anomalies might be sufficient in areas where 

forest disturbances occur at large scale and in an abrupt manner [e.g. 6,7], but 

not sufficient when dealing with complex small-scale forest disturbances 

(Devries, Verbesselt, et al. 2015; Pratihast et al. 2014).  Our results also show 

that using the magnitude of change, in addition two consecutive negative 

anomalies, to confirm forest disturbances does not reduce false detections 

sufficiently. The two consecutive anomalies + magnitude of change approach 

produced spatial and temporal accuracies largely similar to those of the two-

consecutive anomalies approach. The false detections remained high despite 

using strict probability thresholds, implying that false detections also had high 

probability of disturbance when using magnitude of change as a predictor of 

forest disturbance. Overall, these findings suggest that temporal information 

alone might not be sufficient to reduce false detections especially when aiming 

for accurate and timely detection of small-scale and gradual forest 

disturbances. 

We observed that forest disturbances were mainly detected on the 

periphery of the forest. This pattern of forest disturbance is consistent with the 

findings of the previous studies (Devries, Verbesselt, et al. 2015; Devries et al. 

2016) that mapped forest disturbances in this area using Landsat time series. 

The drivers of forest disturbance, especially expansion of small-holder 

agricultural areas and human settlements are likely to occur on edges of the 

forest especially when there has been an ongoing forest conservation and 

restoration activities in the area because it might be easier to illegally disturb 

forest edges than clearing new large intact forest area. 

4.5.1 Importance of space-time features to accurate and timely detection of 

forest disturbances  

Space-time features provided an opportunity to timely detect anomalies 

without amplifying false detections. This capacity to reject many false 

detections explains why the difference in the user’s accuracy between the maps 

produced using the least strict percentile threshold (5th percentile) and the 

maps produced using most strict percentile threshold (1st percentile) was only 

(8%). This difference was greater than 17% when using only two consecutive 

negative anomalies or magnitude of change to confirm forest disturbances. 

These results suggest that, although using less strict percentile thresholds may 

initially flag many pixels as potentially disturbed, a set of space-time features 

provides sufficient information to accurately discriminate false detections from 

real changes. At the same time, by using least strict percentile thresholds, we 

can reduce the omission error and the temporal detection delay. When aiming 

for the lowest area bias (1.5%), our spatial accuracies (overall accuracy = 

96.2%, user’s accuracy = 76.8%, producer’s accuracy = 78.3%) were within the 

range of those reported in other studies that attempted to map forest 
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disturbances at annual or sub-annual scales in recent years (Reiche, 

Verbesselt, et al. 2015; Grogan et al. 2015; Hamunyela, Verbesselt & Herold 

2016; Hamunyela, Verbesselt, Bruin, et al. 2016; Dutrieux et al. 2015; Reiche, 

de Bruin, et al. 2015; Devries, Verbesselt, et al. 2015). However, our high 

spatial accuracies were not achieved at the expense of temporal accuracy.  

4.5.2 Important space-time features for forest disturbance predicting  

Our analysis for conditional variable importance shows that space-time 

features which are related to spatial variability were the most important 

predictors for forest disturbances. More specifically, cumulative sum of 

residuals for spatial variability at the time step before the focal pixel is flagged 

as potentially disturbed, the anomaly threshold, the variability of the 

observations in the reference cube, and the cumulative sum of residuals for 

spatial variability at the time step the focal pixel is flagged as potentially 

disturbed were the most important predictors for forest disturbance. All these 

variables are computed using both spatial and temporal information, and are 

measuring spatio-temporal variability. The high importance of the variables 

related to spatio-temporal variability is not surprising because spatio-temporal 

variability is likely to increase once the forest become disturbed. The number of 

non-forest pixels within the local data cube was also an important predictor of 

forest disturbances. This is expected because new human-induced forest 

disturbance typically occur closer to old disturbances in time and space (Alves 

2002). So negative anomalies detected at forest pixels which have spatial 

association with non-forest areas are most likely to signify forest disturbance.   

Magnitude of change and two consecutive negative anomalies, which are 

widely used to distinguish real changes from false detections (Hamunyela, 

Verbesselt & Herold 2016; Hamunyela, Verbesselt, Bruin, et al. 2016; Devries, 

Verbesselt, et al. 2015; Zhu et al. 2012; Reiche, de Bruin, et al. 2015), were not 

the strongest predictors for forest disturbance. Note however that our 

magnitude of change is computed differently from those used in other studies 

(Devries, Verbesselt, et al. 2015; Hamunyela, Verbesselt & Herold 2016). In our 

study area, forest disturbances are known to occur at small-scale and in 

gradual manner (Devries, Verbesselt, et al. 2015). They may therefore have 

small magnitude of changes. This may explain why the magnitude of change 

was not a strong predictor of forest disturbance. 

Although some space-time features were less important than others, it is 

important to highlight here that the importance of each space-time feature as 

predictor for forest disturbance may vary from one area to another, depending 

on the nature of forest disturbance. In areas where the forest is cleared on 

large scale and involves sudden and full forest cover removal, the magnitude of 

change might be a strong predictor of forest disturbance. Nonetheless, the 

space-time feature approach is flexible because the probability of disturbance is 
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calculated using a supervised machine learning algorithm (Breiman 2001). 

However, elaborate training data set to train the learning algorithm is needed 

to ensure the applicability of this approach to different forest areas. The 

requirement for training data is therefore disadvantageous because training 

data for forest disturbances are often lacking in many parts of the world 

(Cohen et al. 2010), especially for small-scale forest disturbances which are 

difficult to acquire through visual interpretation of satellite images. 

Nonetheless, with advent of community-based forest monitoring (Pratihast et 

al. 2012; Pratihast et al. 2016), observations on forest disturbances acquired 

through citizen science and local experts could be used for training purposes 

(See et al. 2014; Pratihast et al. 2016; Pratihast et al. 2014; Devries et al. 

2016). Availability of daily high-resolution image from nanosatellites sensors 

(e.g. Planet’s satellites) may also improve acquisition of training data. 

4.5.3 Space-time features approach in the era of multi-sensor forest 

disturbances  

The approach of using space-time features we presented in this chapter is 

generic because the features we proposed here can be computed from image 

time series of any satellite sensors (e.g. Sentinel-2), including Synthetic 

Aperture Radar (SAR) sensors whose data are widely used for forest 

monitoring in recent years (Lehmann et al. 2012; Lehmann et al. 2015; Reiche 

et al. n.d.; Reiche, de Bruin, et al. 2015; Reiche, Verbesselt, et al. 2015). Our 

approach can also be applied to other optical satellite data metrics. We can for 

example use of all spectral bands, and extract space-time features from each 

spectral band. Such multi-spectral space-time features can then be used to 

predict the probability of forest disturbances. In this way, we can concurrently 

exploit spatial, temporal and spectral information in satellite data to 

accurately and timely map forest disturbance. It should be noted however that 

a clear understanding of how reflectance in each spectral channel reacts to 

forest disturbance is needed to extract consistent and meaningful space-time 

features.  

4.6 Conclusion 

This chapter demonstrated that using space-time features extracted from 

Landsat NDVI data cubes to confirm forest disturbance increases the capacity 

to reject many false detections, without compromising the temporal accuracy. 

The use of space-time features is based on the idea that forest disturbances, by 

default, are spatio-temporal processes, hence information on spatio-temporal 

association and variability in satellite time series should be taken in account to 

accurately and timely detect forest disturbances. The following space-time 
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features were the strongest predictors for forest disturbance: i) the change in 

spatio-temporal variability, ii) spatio-temporal association with non-forest, and 

iii) variability in the reference period. Magnitude of change and two 

consecutive negative anomalies, which are widely used to distinguish real 

changes from false detections, were not main predictors of forest disturbance. 

These findings indicate that space-time features have potential to improve the 

detection forest disturbances, especially small-scale and gradual forest 

disturbances whose magnitude of change is often small. Detection of small 

scale forest disturbances may further improve when using satellite sensors, 

like Sentinel-2, that provides increased spatial and temporal details. 
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Abstract 

Quantifying forest loss accurately and timely is important for initiatives 

that aim to reduce carbon emissions from deforestation and forest degradation. 

Yet, in many parts of the globe, quantifying forest loss accurately and timely is 

often constrained by our limited capacity to map small-scale forest disturbances. 

Here, we evaluate whether mapping of small-scale forest disturbances can be 

improved by detecting forest disturbances using the 10m resolution Sentinel-2 

time series. To do this, we compared area estimates for forest disturbance 

assessed from Sentinel-2 time series at 10m and 30 m resolutions. We also 

evaluated how observation density in the time series affects the detection of 

small-scale forest disturbances at 30m resolution by detecting forest 

disturbances at 30m resolution using a combined time series of all available 

Landsat-7/ETM+, Landsat-8/OLI and Sentinel-2/MSI observations. We detected 

forest disturbances in UNESCO Kafa Biosphere Reserve, southwest of Ethiopia, 

where small-scale forest disturbances are common, using normalised vegetation 

index (NDVI) time series. NDVI time series was normalised spatially to reduce 

seasonality and inter-sensor differences. Landsat time series (2013 -2015) was 

used as a historical reference. We show that spatial normalisation reduces inter-

sensor differences in Landsat-Sentinel-2 NDVI time series significantly, 

resulting in temporally consistent multi-sensor time series. Our results show 

that, detecting forest disturbances at 10m Sentinel-2 resolution improves the 

detection of small-scale forest disturbances significantly. At the crossover point, 

area estimate for disturbed forest derived from Sentinel-2 10m resolution was 

2115.9 ± 65.4 ha, whereas the area estimate derived from Sentinel-2 30m 

resolution was 1397.9 ± 40.5 ha. Sentinel-2 10m resolution allowed for detection 

of small-scale disturbances (e.g. road networks), which could not be detected 

using the 30m resolution, but it did not supersede the importance of monitoring 

forest disturbances using dense time series. The area estimate from 10m 

resolution was not significantly different from those estimated from the 30m 

resolution scenario (2245.1 ± 68.6 ha) when using a combined time series of all 

available Landsat and Sentinel-2 observations. With a Sentinel-2B/MSI 

launched successfully, free and open access dense time series at 10m resolution 

will become available, and will further improve our capacity to map small-scale 

forest disturbances. 

 

Keywords: Sentinel-2, Landsat, Data cubes, Change detection, Small-scale, 

Forest disturbance   
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5.1  Introduction 

Quantifying forest loss accurately and timely is important for initiatives 

that aim to reduce carbon emissions from deforestation and forest degradation 

(Ryan et al. 2012; Anderson et al. 2005; Diniz et al. 2015; Hansen et al. 2016; 

Achard et al. 2007; Hansen et al. 2010). However, in many parts of the globe, 

quantifying forest loss accurately and timely is often constrained by our limited 

capacity to map small-scale forest disturbances (Tyukavina et al. 2013). Over the 

years, there has been effort to improve the detection of small-scale forest 

disturbances by using all available medium resolution (30m) Landsat time series 

(Devries, Verbesselt, et al. 2015; Zhu et al. 2012; Hamunyela, Verbesselt & 

Herold 2016; Hansen et al. 2016), but our capacity to map small-scales forest 

disturbances (< 10ha) remains limited (Hansen et al. 2016).  

Several factors limit our capacity to map small-scales forest disturbances 

using Landsat time series. Firstly, in tropical regions, availability of valid 

Landsat observations per year is generally limited due to persistent cloud cover 

(Asner 2001). This low observation density affects the detection of forest 

disturbances from Landsat time series (Reiche, Verbesselt, et al. 2015; Reiche, de 

Bruin, et al. 2015). Fortunately, with advent of free and open access SAR 

observations from Sentinel-1 sensors, low observation density in the tropics can 

now be addressed (Reiche et al. in review). Secondly, the choice of the change 

detection algorithm can also limit the detection of small-scale forest 

disturbances. Some algorithms are tuned to reduce omission error, other are 

tuned minimise the commission error (Cohen et al. 2017). Detecting forest 

disturbances using change detection algorithms tuned for higher-magnitude 

disturbances reduces the capacity to detect subtle forest disturbances (Cohen et 

al. 2017). Algorithms that rely on magnitude of change to balance between the 

commission and omission error (e.g.Devries et al., 2015) can also increase the 

omission of small-scale disturbances. Thirdly, spatial resolution of Landsat can 

also affect our capacity to detect small-scale forest disturbances. In many parts 

of the globe, human-induced forest disturbances occur at small spatial scale 

(Devries, Verbesselt, et al. 2015; Ryan et al. 2012; Fisher 2010), and majority of 

such disturbances may be too small to capture using the medium resolution 

Landsat data. For example, a logging road may be too narrow to capture using 

Landsat data. Disturbances caused by small-holder agriculture expansion, 

domestic firewood and charcoal extractions may also be too small to detect 

correctly using Landsat time series. Satellite sensors such as RapidEye (5m) and 

PlanetScopes (3.7m) provide high spatial resolution data which can enhance the 

detection of small-scale forest disturbances, but these high resolution satellite 

data are distributed on commercial basis. However,  procuring long time series 

data acquired by commercial satellites can be costly (Wulder & Coops 2013), thus 

limiting the application of such data for frequent and large-area forest change 

monitoring (Wulder et al. 2012; Reiche et al. 2016).  
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With the advent of two Sentinel-2 Multi-Spectral Instrument 

(MSI) satellites, free and open access satellite data with much higher spatial 

resolution (10m) than Landsat are now available. However, it is not yet known 

whether using the 10m resolution Sentinel-2 time series improves the detection 

of small-scale forest disturbances. This chapter aims to evaluate the potential of 

the 10m resolution Sentinel-2 time series for small-scale forest change 

monitoring. The first Sentinel-2 sensor (Sentinel-2A/MSI) was launched on 23 

June 2015, and the second sensor (Sentinel-2B/MSI) was only launched recently 

(7 March 2017). Therefore, Sentinel-2 time series currently lacks sufficient 

historical observations. Yet, sufficient historical observations are required for 

robust forest change detection. Landsat has sufficient historical observations, 

and could potentially be used as reference for Sentinel-2 time series, but 

combining time series from multiple sensors is often challenging because of the 

intrinsic inter-sensor differences. Apart from spatial resolution, earth observing 

satellites often have different radiometric calibrations, viewing angles, orbit 

times, and spectral resolutions. These inter-sensor differences can propagate 

disjoints in multi-sensor time series, resulting in many false abrupt changes 

(Tian et al. 2015). 

Although Landsat and Sentinel-2 sensors are considerably similar (Figure 

5.1), they also have substantial differences (Mandanici & Bitelli 2016) in their 

sensor parameters. For example, Sentinel-2/MSI has radiometric quantization 

(12 bit) similar to Landsat-8/OLI, but different from Landsat-7/ETM+ (8 bit). 

Sensors with high radiometric quantization are more sensitive to changes in 

reflectance signal. The spectral resolution for Sentinel-2/MSI in near-infrared 

(NIR) region (785 - 900 nm) is also narrower than that of Landsat 7/ETM+ (775 -

900 nm), but wider than that of Landsat-8 /OLI (845 – 885 nm). The difference in 

spectral resolution propagates considerable inter-sensor differences between 

multi-sensor data. For example, recent studies show that, differences in the NIR 

spectral resolution between the Landsat-7/ETM+ and Landsat-8/OLI sensors 

were clearly pronounced in the normalised difference vegetation index (NDVI) 

values (Roy et al. 2016; Li et al. 2014). Another difference between Landsat 

7/ETM+, Landsat-8/OLI and Sentinel-2/MSI is the spatial resolution. Sentinel-

2/MSI acquires data at 10m resolution in the visible and NIR regions only, other 

spectral regions are acquired either at 20m or 60 m resolution, thus limiting the 

integration of Sentinel-2 and Landsat data for forest change monitoring mainly 

to the visible and NIR channels. 

To combine Landsat and Sentinel-2 time series, their differences in spectral 

resolutions should be reduced to ensure that such differences do not propagate 

artificial abrupt changes or increase the variance in a Landsat-Sentinel-2 time 

series. Traditionally, inter-sensors differences in multi-sensor time series are 

reduced using adjustment factors (Roy et al. 2016; Steven et al. 2003). 

Adjustment factors are derived by using the configurations or characteristics of 

one sensor as a reference for other sensors (Fan & Liu 2017). Although this 
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approach works (Roy et al. 2016), it has serious limitations because an 

undesirable change in the condition of the reference sensor would render prior 

adjustment factors invalid. Correcting inter-sensor differences in multi-sensor 

time series using adjustment factors is nonetheless essential for quantitative 

analysis (e.g. vegetation trend analysis) to maintain the quantitative meaning of 

the observations.  For forest cover change monitoring, however, maintaining the 

quantitative meaning of the observations is not important. What is important is 

to ensure that the impact of forest disturbances in the time series is preserved 

when reducing inter-sensor differences.  

For forest change monitoring, inter-sensor differences in multi-sensor time 

series can potently be reduced through spatial normalisation. Recently, spatial 

normalisation has been used to reduce seasonal variations in satellite image 

time series (Hamunyela, Verbesselt, Bruin, & Herold, 2016; Hamunyela, 

Verbesselt, & Herold, 2016; Reiche, Hamunyela, Verbesselt, Hoekman, & 

Herold, in review), but its suitability to reduce inter-sensor differences is not 

known. With spatial normalisation, inter-sensor differences in multi-sensor time 

series would be reduced by normalising each pixel value in each image spatially 

using information derived from the neighbouring pixels.  

The objectives of this chapter are to:  (i) assess whether monitoring forest 

disturbances at 10m resolution leads to more accurate forest change detection 

than when using 30m resolution, (ii) investigate whether Landsat and Sentinel-2 

observations harmonization improves the detection of small-scale forest 

disturbances compared to Landsat only scenario, (iii) evaluate whether spatial 

normalisation can reduce inter-sensor differences in Landsat-Sentinel-2 time 

series. We hypothesised that normalising Landsat-Sentinel-2 time series 

spatially would reduce inter-sensor differences significantly, resulting in a 

temporally consistent multi-sensor time series suitable for forest change 

detection. We also assumed that monitoring forest disturbance at 10m resolution 

would lead to more accurate detection of small-scale forest disturbances than 

when using the 30m resolution.  
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Figure 5.1: Spectral comparison between Landsat 7/ETM+, Landsat-8/OLI 

and Sentinel-2/MSI (source: https://landsat.gsfc.nasa.gov/sentinel-2a-

launches-our-compliments-our-complements/).   

5.2 Study area 

Our analysis focused on detecting forest disturbances in the UNESCO Kafa 

Biosphere Reserve, southwest Ethiopia (Fig.  1), where small-scale forest 

disturbances are known be common (Dresen et al. 2014; Pratihast et al. 2014). 

The forest in Kafa is a moist Afromontane broadleaf evergreen forest that 

exhibits a moderate seasonality. We chose Kafa Biosphere Reserve particularly 

for two reasons.  First, it is part of the areas where Sentinel-2/MSI has 

consistently been acquiring data since its launch, thus allowing us to evaluate 

the importance of integrating optical data streams from Landsat and Sentinel-2 

sensors for forest monitoring. Second, forest disturbances in Kafa Biosphere 

Reserve occur at small spatial scale and are generally gradual (DeVries et al., 

2015). Such   small-scale and gradual change processes are difficult to detect. 

This study area is therefore particularly ideal for evaluating whether improved 

spatial resolution of Sentinl-2 improves the detection of small-scale forest 

disturbances when compared to 30m resolution. 

Kafa Biosphere Reserve is over 700,000 ha in size and is one of the few 

remaining natural habitats for Coffee Arabica (Aerts et al. 2015), and of many 

other endemic species of plants, mammals and birds (Schmitt et al. 2010). Yet, 

forests in this area are subjected to human-induced disturbances mainly caused 

by small-holder agriculture, human settlements expansion, industrial coffee 

plantations, and domestic firewood and charcoal extractions (Dresen et al. 2014; 

Pratihast et al. 2014).  Recent studies (Pratihast et al. 2016; Devries, Verbesselt, 

et al. 2015; Devries et al. 2016) show that small-scale  forest disturbances 

continue to occur in Kafa Biosphere Reserve.  

https://landsat.gsfc.nasa.gov/sentinel-2a-launches-our-compliments-our-complements/
https://landsat.gsfc.nasa.gov/sentinel-2a-launches-our-compliments-our-complements/
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Figure 5.2: Overview of the UNESCO Kafa Biosphere Reserve located in 

southwestern Ethiopia, The green areas represented the forest cover in Kafa 

Biosphere Reserve in year 2015.  The forest areas were identified using 

supervised maximum likelihood classifier. 

5.3 Data and methods 

An overview of the methods we followed in this study to detect forest 

disturbances from Landsat-Sentinel-2 time series is shown in Figure 5.2. First, 

we masked cloud and cloud shadows in Landsat (Section 5.3.1.1) and Sentinel-2 

(Section 5.3.1.2) multi-spectral images.  Second, Landsat multi-spectral images 

were co-registered to Sentinel-2 multi-spectral images (Section 5.3.1.3). We 

derived NDVI (Rouse, Haas, Scheel, & Deering, 1974; Tucker, 1979) from co-

registered Landsat-7/ETM+, Landsat-8/OLI  and Sentinel-2/MSI images. Third, 

we produced a benchmark forest mask (Section 5.3.1.4), and use it to mask non-

forest areas in the Landsat and Sentinel-2 time series. Fourth, we combined 

Landsat and Sentinel-2 NDVI time series at 30m and 10m resolutions (Section 

5.3.1.5). Firth, Landsat and Sentinel-2 NDVI were normalised spatially to reduce 

seasonality and inter-sensor differences in the time series (Section 5.3.1.6). 

Sixth, we quantified inter-sensor differences in Landsat-Sentinel-2 NDVI pixel 

time series before and after spatial normalisation (Section 5.3.2). Seventh, in 

Section 5.3.3, we detected forest disturbances in Sentinel-2/MSI NDVI time 
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series at 10m and 30m resolution while using observations from Landsat- 

Sentinel-2 (2013 -2015) as a historical reference to assess the effect of spatial 

resolution on the detection of forest disturbances in Kafa Biosphere Reserve. For 

the 10m scenario, Landsat time series were disaggregated to 10m resolution. 

Forest disturbances were also detected in Landsat time series only, and in a 

combined time series of all available Landsat and Sentinel-2 at 30m to assess 

the effect of observation density for detection of forest disturbances in Kafa 

Biosphere Reserve. Finally, spatial and temporal accuracy, as well as and forest 

loss estimates were calculated using a sample-based reference data (Section 

5.3.4).  

 
Figure 5.3: The workflow for detecting forest disturbances using Landsat-

Sentinel-2 image time series.  



   Chapter 5 

 101 

 

Table 5.1: Number of NDVI images from Landsat-7/ETM+, Landsat-8/ OLI and 

Sentinel-2/ MSI sensor that were used for detection of forest cover loss UNESCO 

Kafa Biosphere Reserve. 

Sensor  No. of images in 

history period 

No. of images in 

monitoring period 

Total no. of 

images 

Landsat-7/ETM+   55 16 71 

Landsat-8 /OLI 46 16 62 

Sentinel-2/MSI 3 18 21 

5.3.1 Pre-processing of satellite data  

5.3.1.1 Landsat data 

We sourced geometrically and atmospherically corrected Landsat-7/ETM+ 

and Landsat-8/ OLI surface reflectance products from The United State of 

America’s Geological Survey (USGS) Landsat surface Reflectance (SR) Climate 

Data Records (CDR; http://landsat.usgs.gov/CDR_LSR.php). Landsat-7/ETM+ 

surface reflectance products were generated using Landsat Ecosystem 

Disturbance Adaptive Processing System (LEDAPS) algorithm (Masek et al. 

2006), whereas Landsat 8 OLI surface reflectance products are generated using 

Landsat 8 OLI surface reflectance algorithm (Vermote et al. 2016). We masked 

the clouds and cloud shadows in Landsat-7/ETM+ and Landsat-8/OLI  images 

using the CFmask cloud-shadow mask product (Zhu & Woodcock 2012) which is 

distributed together with the Landsat SR CDR Products.  

5.3.1.2 Sentinel-2 data  

We used Sentinel-2 data acquired by Sentinel-2A/MSI between November 

2015 and December 2016. Similar to Pipitone et al., (2016), we generated the 

Sentinel-2 bottom of atmosphere (BOA) reflectance products from the top of 

atmosphere (TOA) Level-1C data using Sen2cor software (Uwe et al. 2013). TOA 

reflectance data were sourced from the Sentinels Scientific Data Hub 

(https://scihub.copernicus.eu). Currently, a standard algorithm for masking 

clouds and cloud shadows in Sentinel-2/MSI data does not exist. To mask clouds 

in Sentinel-2/MSI data, we used reflectance thresholds derived from coastal 

aerosol band (Band 1, disaggregated to 10m resolution) and blue band (Band 2). 

For shadow masking, we used reflectance thresholds derived from near-infrared 

band (Band 8) and short-wave infrared band (Band 12, disaggregated to 10m 

resolution). Thresholds and the procedure we used to detect and mask clouds 

and cloud shadows in Sentinel-2 multi-spectral images are shown in Table 5.2. 

Note that the thresholds were derived from images whose reflectance values 
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were scaled by 10000.  Reflectance thresholds were derived by training a logistic 

regression to determine the probability of a pixel being clear, contaminated by a 

cloud or cloud shadow given its reflectance values. In the next step, we 

calculated classification accuracy for each class, while varying the probability for 

clouds or shadows. We chose the reflectance thresholds that achieved the highest 

classification accuracy for clouds and shadow.  We trained the logistic regression 

using data manually digitised from Sentinel-2/MSI data acquired on 29-11-2015 

and 08-03-2016.  Thresholds for cloud and cloud shadows were validated using a 

test dataset also manually digitised from Sentinel-2/MSI data, acquired on 17-

02-2016 and 29-12-2015. Reflectance thresholds, derived from the bands we used 

here, have been used recently to detect and mask clouds and cloud shadows in 

Sentinel-2 multi-spectral images (Verhegghen et al. 2016).  

 

Table 5.2: Cloud and cloud-shadow thresholds and a procedure for detecting and 

masking clouds and cloud shadows in Sentinel-2 multi-spectral images. Note 

that the thresholds were derived from images whose reflectance values were 

scaled by 10000. 

if (Coastal Aerosol Band > 296 &  Blue Band > 691){ 

   pixel  = cloud 

} else if (Near-Infrared Band < 1722 & Short-wave Infrared Band < 923){ 

    pixel = shadow 

} else { 

    pixel = clear 

} 
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Figure 5.4: An example of how cloud and cloud shadows were identified in 

Sentinel-2/MSI image using our thresholds. The blue colour in (b) represents 

areas in (a) which were identified as clouds, and the yellow colour in (b) 

represents areas identified as shadows. The base image is band 8–3–2 composite, 

which is part of a Sentinel-2/MSI image acquired over UNESCO Kafa Biosphere 

Reserve, southwest of Ethiopia, in 2015-11-29. 
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5.3.1.3 Co-registration of Landsat and Sentinel-2 images 

Accurate image-to-image co-registration is a prerequisite for meaningful 

time series-based change detection. Currently, however, there is a known sensor-

to-sensor geolocation error of about 38m between Landsat-8/OLI  and Sentinel-

2/MSI (Storey et al. 2017).  Here, we co-registered Landsat and Sentinel-2 

images using the GAMMA software package (Werner & Strozzi 2000) to ensure 

good image-to-image co-registration. Landsat multi-spectral images were co-

registered to Sentinel-2 multi-spectral images. Co-registration steps involved an 

automated cross-correlation between the source image (Landsat) and a reference 

target image (Sentinel-2) using the least-squares polynomial fitting, which 

resulted in range and azimuth offset of 4th polynomial order. The offset 

polynomials were then used to co-register the source image to the reference 

target image achieving a sub-pixel accuracy smaller than 0.01 pixel.  

5.3.1.4 Benchmark forest mask 

To avoid detecting changes occurring in other land cover types than forest 

loss, we masked non-forest areas using a benchmark forest mask. The 

benchmark forest mask was generated from Landsat-8/OLI multi-spectral image 

time series for 2015 using a supervised maximum likelihood classifier. Forest 

patches smaller than 0.54 ha were excluded in order to avoid including 

transitional mosaic areas composed of trees planted around the crop fields. Such 

transitional mosaic areas are  common in UNESCO Kafa Biosphere Reserve and 

can amplify commission error if not excluded (Devries, Verbesselt, et al. 2015). In 

total, the final forest mask product contained 2 985 996 forest pixels (≈268 740 

ha).  

5.3.1.5 Spatial normalization to reduce seasonality and inter-sensor differences 

in the time series 

Accounting for seasonality in satellite image time series is essential for 

robust forest cover change detection.  The moist Afromontane broadleaf 

evergreen forest in the UNESCO Kafa Biosphere Reserve exhibits moderate 

seasonality (Devries, Verbesselt, et al. 2015). In addition, differences in spectral 

resolution (NIR channel) propagate significant inter-sensor differences in NDVI 

time series from multiple sensors (Ke, Im, Lee, Gong, & Ryu, 2015; Roy et al., 

2016). If not accounted for, both forest seasonality and inter-sensor differences 

can affect the detection of forest disturbances adversely, either by increasing 

commission error or increasing the omission error because of high variance in 

the time series. Here, we used spatial normalisation (Hamunyela, Verbesselt & 

Herold 2016) to reduce seasonality and inter-sensor differences in Landsat-

Sentinel-2 NDVI time series.  Seasonality and inter-sensor differences are 

reduced by dividing the NDVI value for each pixel in each image with a global 
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95th percentile (P95) computed over the entire NDVI image. We used a global P95 

for two main reasons. First, the forest in our study area was largely homogenous 

in terms of forest type. Second, unlike local P95, the global P95 eliminate the 

difficulty of selecting the suitable size for a local spatial window, and is more 

computationally efficient than a local spatial window. 

5.3.1.6 Combining Landsat and Sentinel-2 time series  

Among the 13 spectral regions for Sentinel-2/MSI, only the visible and NIR 

regions at 10m resolution allow for straightforward spatial integration with 

Landsat data. Other spectral regions for Sentinel-2 sensors are either available 

at 20 m or 60 m.  Sentinel-2/MSI acquires data at 10m resolution in the visible 

and NIR regions, whereas Landsat sensors acquire at 30m.  To combine Landsat 

and Sentinel-2 time series, we first derived normalised difference vegetation 

index (NDVI) (Tucker 1979; Rouse et al. 1974) from pre-processed Landsat (30 

m) and Sentinel-2 (10m) data. Next, we combined Landsat and Sentinel-2 time 

series at two different spatial resolutions: 30m and 10m. At the 30m, we first 

aggregated Sentinel-2 time series to 30m resolution, and combined all available 

Landsat and Sentinel-2 observations. At 10m resolution, Landsat NDVI time 

series (2013 - 2015) disaggregated to 10m resolution was combined with 10 m 

resolution Sentinel-2 NDVI time series.  

5.3.2 Quantifying inter-sensor differences in Landsat-Sentinel-2 pixel-time 

series 

To assess whether spatial normalisation can reduce inter-sensor differences 

in Landsat-Sentinel-2 NDVI time series, we quantified the differences before and 

after spatial normalisation.  To quantify the inter-sensor differences between 

Landsat-7/ETM+, Landsat-8/OLI  and Sentinel-2/MSI NDVI time series, we first 

calculated the median NDVI value from the time series for each sensor at each 

pixel. For each sensor, only observations acquired between November 2015 and 

December 2016 were included in the calculation of the median NDVI value. This 

period corresponds with the period when the Sentinel-2/MSI started acquiring 

data. We restricted the calculation of inter-sensor differences to the observations 

acquired between November 2015 and December 2016 to ensures that inter-

sensor differences are calculated from data acquired during corresponding time 

of the year.  After calculating the median NDVI value, we calculated the 

difference between the median NDVI values for two different sensors. For 

example, let ML7, ML8 and MS2 be the median values for Landsat-7/ETM+, 

Landsat-8/OLI  and Sentinel-2/MSI NDVI time series at a particular pixel. Inter-

sensor difference between Landsat-8/OLI  and Landsat-7/ETM+ was quantified 

by subtracting ML7 from ML8; MS2 from ML8 for Landsat-8/OLI  and Sentinel-

2/MSI differences; and MS2 from ML7 for Landsat-7/ETM+ and Sentinel-2/MSI 
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differences. We used the median value because it is robust against outliers. After 

calculating the inter-sensor differences, we used a t-test to assess whether the 

median inter-sensor difference before spatial normalisation (BSN) was different 

from zero.  Next, we used a paired t-test to assess whether spatial normalisation 

(ASN) reduces inter-sensor differences in NDVI time series significantly. We 

only compared inter-sensor differences for sample pixels  (n =399), based on the 

validation data, where no anomalies were detected (see Section 5.4.3) and where 

the time series for each sensor had at least more than six valid observations. A 

5% significant level was used as threshold for accepting or rejecting the null 

hypothesis that the reduction in the inter-sensor differences after spatial 

normalisation is significant. 

5.3.3 Detecting forest disturbances from Landsat-Sentinel-2  time series  

We used a space-time change detection framework (Hamunyela, Reiche, 

Verbesselt, & Herold, in review; Hamunyela, Verbesselt, Bruin, et al., 2016) that 

detects forest disturbances as extreme events in satellite data cubes to detect 

forest disturbances in Landsat- Sentinel-2 time series. With this change 

detection framework, potential forest disturbances in the satellite image time 

series are identified based on two consecutive negative anomalies (Hamunyela, 

Verbesselt, Bruin, et al. 2016).  We used the 5th percentile threshold computed 

from the observations available in the reference period of a local data cube to 

identify the negative anomalies.  A 5th percentile threshold was used because it 

leads to timely detection of forest disturbances (Hamunyela et al., in review; 

Hamunyela, Verbesselt, Bruin, et al., 2016).  A local data cube is defined around 

each pixel, and it has both spatial and temporal extents. These extents are user-

defined. A temporal extent corresponds to the length of the time series (2013 -

2016). Here, we used a spatial extent of 9 x 9 pixels. Once two consecutive 

negative anomalies are detected, a set of space-time features extracted from the 

local data cube is used to confirm forest disturbances(Hamunyela et al., in 

review).  Forest disturbance is confirmed by first calculating the probability for 

forest disturbance with space-time features being predictors of forest 

disturbances.  Forest disturbances are identified using a probability threshold, 

which is user-defined. The probability for forest disturbance was calculated 

using a trained random forest model (n =2483,  trees = 1000; (Breiman 2001)).  

5.3.4 Estimating spatial and temporal accuracy, and area for disturbed forest 

For each monitoring scenario (Sentinel-2 at 10m, Sentinel-2 at 30m, 
Landsat at 30m , and  Landsat + Sentinel-2 at 30m), we estimated area-adjusted 

spatial accuracy (overall accuracy, producer’s and user’s accuracy) and area 

estimates for forest cover disturbance and area bias (difference between 

commission error and omission error). Areas estimates and area bias were 
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expressed in hectares.  The accuracies and area of  forest disturbances for maps 

with 30m resolution (Sentinel-2 at 30m, Landsat at 30m , and Landsat + 
Sentinel-2 at 30m) were estimated using 2000 sample pixels (Change area = 500, 

Buffer zone = 500, No change area = 1000) generated through stratified 

probability sampling (Stehman 2009) using the forest disturbance map 

(probability threshold = 0.5) produced from Landsat + Sentinel-2 at 30m 

scenario.  The accuracies and area of disturbances for map with 10m resolution 

(Sentinel-2 at 10m) were estimated also using  2000 sample pixels (Change area 

= 500, Buffer zone = 500, No change area = 1000)  generated through stratified 

probability sampling (Stehman 2009). The stratification was based on the forest 

disturbance map (probability threshold = 0.5) produced from Sentinel-2 at 10m 

scenario.  

 To estimate overall accuracy, producer’s and user’s accuracy for rare class 

(disturbed forest)  reliably, we allocated the sample size to each stratum based 

on a recommended approach (Stehman 2012; Olofsson et al. 2014). Based on this 

sample allocation, we calculated the area-adjusted spatial accuracy (overall 

accuracy, producer’s accuracy and user’s accuracy) and area estimates for forest 

disturbance. Apart from spatial accuracy and estimates, we calculated the 

temporal detection delay (expressed in days) for forest disturbances detected 

from Landsat at 30m  and  Landsat + Sentinel-2 at 30m to evaluate how 

observation density affects the temporal detection accuracy for  small-scale forest 

disturbance.  The temporal detection delay was defined as the number of days 

between the date of disturbance as per reference data and the acquisition date 

for the image in which a disturbance was confirmed.  

Reference data were collected through visual interpretation of Landsat 

(30m) and Sentinel-2 (10m) multi-spectral time series. This approach of 

collecting reference data through visual interpretation of dense medium spatial 

resolution images is widely used in recent years (Devries, Verbesselt, et al. 2015; 

Hamunyela, Verbesselt & Herold 2016; Zhu & Woodcock 2014b; Dutrieux et al. 

2015) because elaborate reference data for forest disturbance are scarce in many 

parts of the globe (Cohen, Yang, & Kennedy, 2010). However, collecting reference 

data in this way has a major drawback, because forest disturbances which are 

smaller than the spatial resolution of the satellite images from which reference 

data are collected might not be visible, but could be detected, and might be 

interpreted incorrectly as commission error.  
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Table 5.3: Area proportions, number of pixels and number of sample pixels per 

stratum based on forest disturbance map produced using the probability 

threshold of 0.5 

30 m   resolution map 

Stratum No. of pixels Area proportion No. of sample pixels 

No change area 2649105 0.887 2000 

Buffer zone 282173 0.095 500 

Change area 54230 0.018 500 

Total 2985508 1 2000 

 

10 m resolution map 

Stratum No. of pixels Area proportion No. of sample pixels 

No change area 22335931 0.831 2000 

Buffer zone 4118755 0.153 500 

Change area 414886 0.016 500 

Total 26869572 1 2000 

5.4 Results 

5.4.1 Effect of spatial normalisation on inter-sensor differences in Landsat-

Sentinel-2 time series 

Our analysis show that statistically significant inter-sensor differences exist 

between the NDVI time series for Landsat-8/OLI and Landsat-7/ETM+ (t = 

30.76, df = 398, p < 0.0001), Landsat-8/OLI, Sentinel-2/MSI (t = 19.37, df = 398, p 

< 0.0001), and Landsat-7/ETM+ and Sentinel-2/MSI (t = -4.59, df = 398, p < 

0.0001). However, these inter-sensor differences in Landsat-Sentinel-2 NDVI 

time series were reduced significantly by normalising the time series spatially. 

The median difference between Landsat-8/OLI  and Landsat-7/ETM+ NDVI time 

series were reduced from 0.043 to 0.015 (t = 35.45, 398, p < 0.0001), from 0.030 to 

0.020 for Landsat-8/OLI  and Sentinel-2/MSI NDVI time series (t = 10.66, df = 

398, p < 0.0001), and from 0.012 to 0.004 for Landsat-7/ETM+ and Sentinel-

2/MSI NDVI time series (t = -13.44, df = 398, p < 0.0001) . Overall, the 

distribution of inter-differences becomes narrower after normalising the time 

series spatially (Figure 5.5). The inter-quartile range for Landsat-8/OLI - 

Landsat-7/ETM+ differences, for example, decreased from 0.033 to 0.027 and 

from 0.033 to 0.027 for Landsat-8/OLI - Sentinel-2/MSI. Inter-quartile range for 

Landsat-7/ETM+ - Sentinel-2/MSI differences also decreased from 0.044 to 0.036.  

Based on the distributions of the differences, the NDVI for Landsat-8/OLI was 

higher than that of Landsat-7/ETM+ and Sentinel-2/MSI, whereas the NDVI for 

Landsat-7/ETM+ was lower than that of Sentinel-2/MSI.  Fig. 5.6 show a multi-
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sensor time series for Landsat-8/OLI, Landsat-7/ETM+ and Sentinel-2/MSI 

before (BSN) and after (ASN) spatial normalisation. This example shows how the 

multi-sensor time series become more temporally consistent after spatial 

normalisation.  

Figure 5.5: A boxplot for inter-sensor differences between the temporal median 

NDVI time series for Landsat-7/ETM+, Landsat-8/OLI and Sentinel-2/MSI 

before (BSN) and after (ASN) spatial normalisation 

Figure 5.6: An example of a multi-sensor NDVI time series for Landsat-7/ETM+, 

Landsat-8/OLI and Sentinel-2/MSI before (BSN) and after (ASN) spatial 

normalisation. The time series for undisturbed forest cover is shown in (a), and 

(b) shows the time series for disturbed forest cover.   
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5.4.2 Effect of spatial resolution on detection of forest disturbances 

The omission error for forest disturbances was generally high both for the 

10m and 30m resolution (Figure 5.7). At the probability threshold of 0, the 

producer’s accuracy for the 10m resolution was only 54.6 ± 11.7% (user’s 

accuracy = 4.1 ± 1.7%), whereas the producer’s accuracy for the 30m resolution 

was 57.3 ± 13.7% (user’s accuracy = 3.3 ± 1.6%). At crossover point (lowest area 

bias), the producer’s accuracy for the 10m resolution was 50.7± 3.1% (user’s 

accuracy = 51.0 ± 4.4%), whereas the producer’s accuracy for the 30m resolution 

was 41.7 ± 2.9%. Note that the accuracies for 30m and 10m resolution are 

estimated using different reference datasets because of the different minimum 

mapping units. Detecting forest disturbances at 10m resolution nonetheless led 

to more accurate area estimates for forest disturbance than when detecting 

forest disturbances at 30m resolution (Figure 5.8). At the probability threshold of 

0, forest disturbances was estimated at 2280.7 ± 266.2 ha from 10m resolution 

and at 1919.2 ± 262.7 ha from 30m resolution. Estimated areas of forest 

disturbances decreased with increasing probability threshold for forest 

disturbance, reaching 166 ± 2.7 ha for 10m scenario and 107.4 ± 1.6 ha for 30m 

scenario at 0.95 probability threshold.  Overall, the area bias for 10m and 30m 

resolutions was high at the low probability thresholds, but the area bias for 10m 

resolution was generally lower than that of 30m resolution. The area bias 

decreased exponentially with increasing probability threshold.  For the 10m 

resolution, the lowest area bias (-26.4 ha) was achieved at 0.5 probability 

threshold, whereas the lowest area bias (-521.2 ha) for 30m resolution was 

achieved at the probability threshold of 0.55.  The lowest area bias for 10m and 

30m were all in favour of commission error, implying that the omission error was 

higher than the commission error.  The area estimates at lowest bias was 2115.9 

± 65.4 ha for the 10m resolution and 1397.9 ± 40.5 ha for the 30m resolution.  

Figure 5.9 shows an example of river channels which were omitted by the 30m 

resolution but are clearly visible in 10m resolution scenario. In our case, 

however, detection of these river channels is accounted as a commission error.  
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Figure 5.7: Overall accuracy, user’s accuracy and producer’s for forest 

disturbances detected in UNESCO Kafa Biosphere Reserve, southwestern 

Ethiopia in 2016 using Sentinel-2 normalised difference vegetation index (NDVI) 

time series at 30m and 10m resolution. Landsat and Sentinel-2 NDVI time series 

for 2010 -2015 was used as historical reference. Note that the accuracies for 30m 

and 10m resolution are estimated using different reference datasets because of 

the different minimum mapping units.  

Figure 5.8: Area estimates (a) and area bias (b) for forest disturbances detected 

from Sentinel-2 NDVI (normalised difference vegetation index) time series at 

10m and 30m resolutions in UNESCO Kafa Biosphere Reserve, southwestern 

Ethiopia while using Landsat and Sentinel-2 NDVI time series for 2010 -2015 as 

historical reference.    
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Figure 5.9: An example for forest disturbances detected from Sentinel-2 NDVI 

time series at 10m and 30m resolutions in Kafa biosphere reserve while using 

Landsat and Sentinel-2 NDVI time series for 2010 -2015 as historical reference. 

Note the river channels which were omitted by the 30m resolution scenario but 

clearly detected by 10m resolution scenario. These river channels have been 

there prior to year 2016, but given its narrow nature, it does not appear as a 

non-forest area in a 30m resolution image.   This example illustrates how spatial 

resolution affects the detection of forest disturbances from satellite image time 

series.   

5.4.3 Effect of observation density on detection of forest disturbances 

Combining Landsat and Sentinel-2 time series increased the number of 

valid observations available per pixel in the monitoring period (Figure 5.10). 

Increasing the observation density of the improved the detection of forest 

disturbances (Figure 5.11). For example, at the probability threshold of 0, the 

producer’s accuracy for Landsat-only was only 55.6 ± 8.4% (area estimates = 

1862.6 ± 155.7 ha). This producer’s accuracy increased to 81 ± 11.9% (area 

estimates = 2741.1 ± 327.3 ha) when using a combined time series of Landsat 

and Sentinel-2. The producer’s accuracy for forest disturbances, however, 

decreased with increasing probability threshold, reaching 25.4 ± 2.6% (area 
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estimate = 851.2 ± 21.8 ha) for Landsat-only scenario and 8.2 ± 0.5% (area 

estimates =273.3 ± 5.8 ha) for Landsat + Sentinel-2 scenario at probability 

threshold of 0.95. At lower probability thresholds, the area bias (in favour of the 

commission error) was higher when using a combined time series of Landsat and 

Sentinel-2 than when using Landsat-only (Figure 5.12). This area bias, however, 

decreased exponentially when increasing the probability threshold from 0 to 

0.95.  For Landsat-only scenario, the lowest area bias (-124.2ha) was achieved at 

probability threshold of 0.65, whereas the lowest area bias (-39.5 ha) for Landsat 
+ Sentinel-2 scenario was achieved at probability threshold of 0.55. At the lowest 

area bias, the producer’s accuracy for Landsat-only scenario was 51.8 ± 3.0% 

(area estimate =1735.7 ± 52.7 ha), and 67.0 ± 3.1% (area estimate = 2245.1 ± 68.6 

ha) for Landsat + Sentinel-2 scenario. Figure 5.13 shows an example of forest 

disturbances detected when using Landsat only, and additional forest 

disturbances detected after combining Landsat and Sentinel-2 time series.  

The impact of combining Landsat and Sentinel-2 time series on temporal 

accuracy was marginal. At the crossover points (lowest area bias), the temporal 

detection delay for Landsat only scenario was 21 days, and only decreasing to 17 

days after combining Landsat and Sentinel-2 time series. 

  

 

Figure 5.10: The number of valid observations in the monitoring period (01- 01-

2016 to 31-12-2016) over UNESCO Kafa Biosphere Reserve, southwest of 

Ethiopia for Landsat-only and Landsat + Sentinel-2 scenarios. The number of 

valid observations is based on 2000 validation sample pixels. 
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Figure 5.11: Overall accuracy, user’s accuracy and producer’s for forest 

disturbances detected in UNESCO Kafa Biosphere Reserve, southwestern 

Ethiopia in 2016 from normalised difference vegetation index (NDVI) time series 

derived from Landsat and Sentinel-2 data. Accuracies are for Landsat-only 

(Landsat-7/ETM+ and Landsat-8/OLI) and Landsat +Sentinel-2 scenarios. 

Figure 5.12: Area estimates (a) and area bias (b) for forest disturbances detected 

in UNESCO Kafa Biosphere Reserve, southwestern Ethiopia in 2016 from 

normalised difference vegetation index (NDVI) time series derived from Landsat 

and Sentinel-2 data. Area estimates are for Landsat-only (from Landsat-7/ETM+ 

and Landsat-8/OLI) and Landsat +Sentinel-2 scenario.  
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Figure 5.13: An example illustrating the complementarity of Landsat and 

Sentinel-2 for detection of forest disturbances. Additional forest disturbances (in 

red) were detected after combining Sentinel-2/MSI time series. Forest 

disturbances (in blue) were detected when using Landsat time series only 

(Landsat-7/ETM+ and Landsat-8/OLI). Forest disturbances were detected in 

UNESCO Kafa Biosphere Reserve, southwestern Ethiopia between 01- 01-2016 

and 31-12-2016 at 30m resolution using normalised difference vegetation index 

(NDVI). 

5.4.4 Comparison of overall accuracy and disturbance area estimates for all 

four monitoring scenarios at crossover point  

The overall accuracy and area estimates of forest disturbance achieved from each 

monitoring scenario (Landsat at 30m, Sentinel-2 at 30m, and Landsat + 
Sentinel-2 at 30m, Sentinel-2 at 10m) at crossover point (lowest area bias) are 

shown in Figure 5.14. The difference in overall accuracy between all scenarios 

was not significant, but area estimates were significantly different.  Detecting 

forest disturbances at 30m resolution in Sentinel-2 time series only (Sentinel-2 
at 30m) achieved the lowest area estimates (1397.9 ± 40.5ha) at the crossover 

point, followed by Landsat-only scenario (Landsat at 30m ) which achieved area 

estimates of 1735.7 ± 52.7 ha. The highest area estimates (2245.1 ± 68.6 ha)  at 
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the crossover point was achieved from Landsat + Sentinel-2 at 30m, but this 

estimate was not significantly different from that achieved from Sentinel-2 at 
10m scenario ( 2115.9 ± 65.4ha).   

 

Figure 5.14: Overall accuracy and area estimates for forest disturbance achieved 

from each monitoring scenario at the crossover point (lowest area bias) when 

detecting forest disturbances in UNESCO Kafa Biosphere Reserve, southwestern 

Ethiopia in 2016 from normalised difference vegetation index (NDVI) time series 

derived from Landsat and Sentinel-2 data.  

5.5 Discussion 

In this chapter, we combined Landsat and Sentinel-2 time series to evaluate 

how spatial resolution and observation density affects detection of small-scale 

forest disturbances. We also evaluated whether spatial normalisation can reduce 

the inter-sensor differences in Landsat-Sentinel-2 NDVI time series significantly 

to create a temporally consistent multi-sensor NDVI time series suitable for 

forest change detection. Our results show that the inter-sensor differences in 

Landsat-Sentinel-2 NDVI time series can be reduced significantly through 

spatial normalisation. Spatial normalisation did not completely remove the 

differences, but it reduced them significantly, resulting into temporally 

consistent time series suitable for forest change detection. Previous studies 

demonstrated that spatial normalisation reduces seasonality in image time 

series (Hamunyela, Verbesselt, & Herold, 2016; Reiche et al., in review), but it 

was not known whether it can also reduce inter-sensor differences in multi-
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sensor time series. Our findings, therefore, indicate that spatial normalisation is 

an important pre-processing step in satellite-based forest change monitoring 

because it can reduce both seasonality and inter-sensor differences in satellite 

image time series. Reducing inter-sensor differences and seasonality in multi-

sensor time series through spatial normalisation is more attractive for forest 

change monitoring because it allows for rapid combination of data from multiple 

sensors for forest change detection in different forest types. Unlike the 

adjustment factors which are commonly used to harmonise observations from 

multiple satellites (Roy et al. 2016; Fan & Liu 2017), spatial normalisation 

simplifies the process of combining data from multiple satellites for forest change 

detection, because it eliminates the need for using the time series of one sensor 

as a reference for other sensors. However, spatial normalisation may face 

challenges in areas where evergreen and deciduous forests co-exist because P95 is 

likely to be calculated from pixels from evergreen forest (Hamunyela, Verbesselt, 

Bruin, et al. 2016). This problem of co-existence of evergreen and deciduous 

forest can be solved by normalising each pixel based on forest type. 

Our analysis show that mapping forest disturbances at 10m resolution leads 

to more accurate forest change detection than mapping forest disturbances  at 

30m resolution (Figure 5.9). We observed that small-scale disturbances (e.g. road 

networks), as well as river channels within the forest, which were not detectable 

from 30m resolution, were detected with high confidence at 10m resolution 

(Figure 5.9). The ability to detect small-scale disturbances such as road networks 

may explain why the area estimates for forest disturbance estimated from 

Sentinl-2 at 10m resolution were much higher than those estimated from 

Sentinel-2 at 30m resolution. These findings, therefore, highlight the importance 

of high spatial resolution data from Sentinel-2 sensors within the context of 

forest change monitoring. In particular, we demonstrated that free and open 

access 10m resolution data from Sentinel-2 has high potential to improve our 

capacity to map forest disturbances occurring at small spatial scale. In the 

Landsat-only era, detecting small-scale forest disturbances has been challenging, 

limiting our capacity to quantify global forest loss accurately (Tyukavina et al. 

2013). However, with the 10m Sentinel-2 data available globally, there is now a 

unique opportunity to improve global estimates of forest loss. In our monitoring 

context, detection of river channels is a commission error, but detecting these 

channels robustly demonstrates the importance of using high spatial resolution 

satellite time series in land monitoring. It also highlights the potential for 

Sentinel-2 sensors to improve our understanding of different dynamics occurring 

on land surface. 

 With two Sentinel-2 sensors now available, the 10m resolution time series 

from Sentinel-2 also has potential to enhance the capacity to detect forest 

disturbances which are caused, for example, by logging roads and selective 

logging early.  Although Sentinl-2 time series currently lacks sufficient historical 

observations, we showed in this chapter that Landsat time series disaggregated 
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to 10m resolution can be used as a reliable historical reference for Sentinel-2 

time series. Therefore, there is no need to wait for several years before exploiting 

Sentinel-2 time series to map forest disturbances at sub-annual scales. Detecting 

forest disturbances at 10m resolution is, however, computationally demanding, 

hence posing a huge challenge for large-area forest monitoring. Computationally 

powerful platforms, e.g. Google Earth Engine (https://earthengine.google.com/), 

may therefore play a crucial role in achieving sub-annual forest change mapping 

and monitoring over large area using 10m resolution Sentinel-2 time series. 

Combining all available Landsat and Sentinel-2 observations at 30m 

resolution resulted in more accurate forest change detection than when using 

Landsat only (Landsat-7/ETM+ and Landsat-8/OLI). More specifically, our 

results show that combining observations from multiple sensors to increase 

observation density in image time series does not only improve temporal 

accuracy, but it also improves the area estimates for forest disturbance. These 

findings corroborate previous studies (Reiche, de Bruin, et al. 2015; Reiche et al. 

2016; Reiche, Verbesselt, et al. 2015) which showed that combining observations 

from multiple satellite sensors increases the accuracy of forest change detection. 

However, combining time series from multiple sensors can increase the noise in 

the time series, resulting to high commission error. In our case, the high 

commission error when combining Landsat and Sentinel-2 NDVI time series 

could be attributed to imperfect cloud and shadow masking for Sentinel-2 data.  

Nonetheless, we observed that the commission error also increased when 

combining observations from Landsat-7/ETM+ and Landsat-8/OLI only. To avoid 

this high commission error, change detection approaches should have capacity to 

reject false detections when detecting forest disturbances from multi-sensor time 

series. We observed that the commission error decreased exponentially when 

increasing the probability threshold for forest disturbance. This exponential 

decrease in the commission error corroborates our previous findings (Hamunyela 

et al., in review) that using a set of space-time features to confirm forest 

disturbances increases the capacity to reject false detections.   

For all monitoring scenarios we implemented in this chapter Sentinel-2 at 
30m scenario produced the lowest disturbance area estimates when aiming for a 

disturbance map with the lowest area bias, followed by Landsat at 30m scenario. 
Area estimates from Sentinel-2 at 30m scenario were lower than those estimated 

from Landsat at 30m because Sentinel-2 at 30m scenario had lower observation 

density than Landsat at 30m scenario. For Sentinel-2 at 30m, forest 

disturbances were detected using observations from a single sensor (Sentinel-

2/MSI) whereas the scenario for Landsat at 30m combined observations from two 
sensors (Landsat-7/ETM+ and Landsat-8/OLI). The area estimates for forest 

disturbance increased further after combining all available observations from 

Landsat-7/ETM+, Landsat-8/OLI and Sentinel-2/MSI at 30m resolution, thus 

confirming that increasing observation density in the image time series 

increases the accuracy for forest change detection (Reiche, de Bruin, et al. 2015; 

https://earthengine.google.com/
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Reiche, Verbesselt, et al. 2015). Disturbance area estimates from Sentinel-2 at 

10m resolution were higher than those from Sentinel-2 at 30m and Landsat at 
30m scenarios, despite it having similar observation density as Sentinel-2 at 

30m, and lower density than that of Landsat at 30m. These findings show that 

the use of high spatial resolution data improves the detection of small-scale 

forest disturbances significantly. The disturbance area estimates from Sentinel-2 
at 10m scenario were nonetheless not significantly different from those 

estimated from a combined time series of all available Landsat-7/ETM+, 

Landsat-8/OLI and Sentinel-2/MSI observations at 30m resolution. For Sentinel-
2 at 10m scenario, some forest disturbances, which were detected in Landsat + 
Sentinel-2 at 30m scenario, might have been omitted because there were not two 

consecutive anomalies in time series due to limited observation density. These 

findings, therefore, show that mapping forest disturbances using high spatial 

resolution data does not supersede the importance of dense time series when 

monitoring forest disturbances from satellite data. Dense time series is critically 

important, especially for change detection approaches which only confirm forest 

disturbance when there are at least two consecutive negative anomalies in the 

time series. With a Sentinel-2B/MSI launched successfully, free and open access 

dense time series at 10m resolution will become available. Such high resolution 

(spatially and temporally) data will enhance our capacity to map small-scale 

forest disturbances accurately and timely. 

5.6 Conclusion  

Mapping small-scale forest disturbances accurately and timely remains one 

of the major challenges for satellite-based forest monitoring. This chapter 

demonstrated that mapping of small-scales can be improved by using the 10m 

resolution time series from recently launched Sentinel-2 sensors. Monitoring 

forest disturbances at 10m resolution improved the detection of small-scale 

disturbances significantly when compared to 30m resolution. Combining all 

available Landsat-7/ETM+, Landsat-8/OLI and Sentinel-2/MSI observations at 

30m resolution also improves the detection of forest disturbances when 

compared to Landsat-only scenario, thus emphasis the complementarity between 

Landsat and Sentinel-2 sensors.  Disturbances area estimates from 10m 

resolution Sentinel-2 were not significantly different from those estimated from 

a combined time series of all available Landsat-7/ETM+, Landsat-8/OLI and 

Sentinel-2/MSI observations at 30m resolution, thus highlighting the importance 

of using high spatial resolution and dense time series when monitoring small 

scale forest disturbances. Spatial normalisation is not only suitable approach for 

reducing seasonality in image time series, but it is also a promising approach for 

reducing inter-sensor differences in multi-sensor time series when combining 

observations from multiple optical satellite sensors. With two Sentinel-2 sensors 

now available, the observation density for the 10m resolution time series will 
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increase globally, providing an opportunity to improve the estimates of global 

forest loss. However, processing and analysing the 10m resolution time series is 

computationally demanding when compared to the 30 resolution. Therefore 

computationally powerful cloud computing platforms (e.g. Google Earth Engine) 

will crucial in facilitating large-area and frequent monitoring of forest 

disturbances using the 10m resolution time series from Sentinel-2 sensors.  
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Abstract 

Combining observations from multiple optical and synthetic aperture 

radar (SAR) satellites can provide temporally dense and regular information at 

medium resolution scale independently of weather, season and location. This 

has the potential to improve near real-time deforestation monitoring in dry 

tropical regions, where traditional optical only monitoring systems typically 

suffer from limited data availability due to persistent cloud cover. In this 

context, the recently launched Sentinel-1 satellites promise unprecedented 

potential as for the first time dense and regular SAR observation are available 

free and openly. Here, we demonstrated multi-sensor near real-time 

deforestation detection in tropical dry forests, for which we combined Sentinel-

1 C-band SAR time series with ALSO-2 PALSAR-2 L-band SAR and Landsat 7 

and 8. We used spatial normalisation to reduce the dry forest seasonality in the 

SAR and optical time series, and combined them within a probabilistic 

approach to detect deforestation in near real-time. Our results for a dry tropical 

forest site in Bolivia (10,000 km²) showed that, as a result of high observation 

availability of Sentinel-1, deforestation events were detected more timely with 

Sentinel-1 than compared to Landsat and PALSAR-2. The spatial and temporal 

accuracies further improved beyond the single-sensor results when combining 

observations in a multi-sensor approach. We improved the precision of the 

reference data derived from the multi-sensor satellite time series, which 

enabled a more robust estimation of the temporal accuracy. We quantified how 

the near real-time deforestation detection is associated with a trade-off 

between the confidence in detection and the temporal accuracy. We showed 

that the trade-off affects the choice on how to use the near-real time data for 

different applications such as fast alerting with high temporal accuracy but 

lower confidence versus accurate detection at lower temporal detail. When 

aiming for a high confidence in change area estimates for example, 

deforestation was detected with a user’s accuracy of 88% and producer’s 

accuracy of 89% (low area bias) and a mean time lag of 31 days using all 

sensors. This is on average 7 days earlier than when using only Sentinel-1 

observations and six weeks earlier than when relying on Landsat observations 

only. We showed that confident near real-time deforestation alerts can be 

provided with a mean time lag of 22 days but these are associated with a 

higher commission error. With more dense time series data expected from the 

Sentinel-1 and -2 sensors for the upcoming decade, spatial and temporal 

detection accuracy of multi-sensor deforestation monitoring in the tropics will 

improve further. 

Keywords: Sentinel-1, Multi-sensor, Near real-time, ALOS-2 PALSAR-2, 

Landsat, Temporal accuracy, Time series, Change detection, Deforestation, 

Sensor interoperability, SAR-optical, Dry forest 
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6.1  Introduction 

Satellite-based monitoring systems are the primary tools for providing 

near real-time (NRT) information on newly deforested areas in vast and 

inaccessible tropical forests. Their potential to empower governments and 

communities to enact timely actions against illegal and unsustainable forest 

activities and to respond to natural disasters is increasingly recognized 

(Assunção et al. 2013; Lynch et al. 2013; Wheeler et al. 2014; Hansen et al. 

2016). At an operationalised level, the NRT detection of deforestation is 

currently realized by monitoring systems that mainly rely on near daily 

observations of the coarse resolution MODIS (Moderate Resolution Imaging 

Spectroradiometer) sensor. The near daily observations provide a satisfactory 

temporal coverage in the frequently cloud covered tropical region (Diniz et al. 

2015; Shimabukuro et al. 2006; Hammer et al. 2009; Wheeler et al. 2014). Due 

to the coarse resolution of MODIS data of 250 - 500m, however, many small 

scale changes are missed (Anderson et al. 2005; Hansen & Loveland 2012; 

Hammer et al. 2014). Hansen & Loveland (2012) demonstrated that MODIS 

misses up to fifty percent of the forest changes when compared to medium 

resolution Landsat data (30 m). 

Stimulated by the opening of the Landsat archive in combination with the 

ability to download fully pre-processed images, efforts in recent years shifted 

towards operational and large area Landsat based deforestation monitoring at 

annual (Hansen et al. 2013; Souza, Jr et al. 2013) and sub-annual scale 

(Hansen et al. 2016). Several optical time series approaches with NRT 

capabilities have been developed to exploit the entire temporal detail of 

Landsat data (Verbesselt et al. 2012; Xin et al. 2013; Zhu et al. 2012; Hansen et 

al. 2016). Hansen et al. (2016) demonstrated the potential for and constraints 

of operational Landsat based deforestation alerts for the humid tropics. The 

major limitation of Landsat-based tropical deforestation alerts is the limited 

availability of cloud-free observations (Sannier et al. 2014; Hansen et al. 2016; 

Souza, Jr et al. 2013). In particular cloud-free observations are rare during the 

wet season. Other regions, such as the Peruvian cloud forests for example 

(Hansen et al. 2016), suffer from pervasive cloud cover throughout the entire 

year. In extreme cases, Landsat data gaps even remain for more than one year 

(Potapov et al. 2012; Hansen et al. 2016; Sannier et al. 2014). In summary, a 

monitoring system that relies on medium resolution optical data only will not 

provide a sufficient number of cloud-free observations throughout all seasons 

and geographical locations. A reduced number of cloud-free observations 

results in delayed detection of new deforestation events (Reiche, Verbesselt, et 

al. 2015). 

Synthetic aperture radar (SAR) can penetrate through clouds, and 

therefore has the potential to complement optical-based forest monitoring 

systems (Joshi et al. 2016; Vaglio Laurin et al. 2013; De Sy et al. 2012). To 

monitor tropical deforestation at larger scales mainly long wavelength L-band 
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SAR (~ 23.5 cm) data has been utilized (Shimada et al. 2014; Whittle et al. 

2012). Shorter wavelength C-band (~5.6 cm) SAR are generally less useful for 

forest change monitoring because of the lower penetration depth and rapid 

saturation of the signal over forests (Woodhouse 2005). Fragmented and 

inconsistent data acquisitions and/or commercial data distribution of key SAR 

missions in the past hampered their operational application and limited 

opportunities to integrate  SAR and optical data (Reiche et al. 2016). With the 

launch of the Sentinel-1A and 1B C-band SAR satellites in 2014 and 2016 

(Torres et al. 2012), for the first time, dense SAR time series are free and 

openly available for the tropical region. Since temporal sampling frequency is 

key to NRT deforestation monitoring, Sentinel-1 could be a milestone when it 

comes to more precise tracking of forest change events and activities - a 

potential that is yet to be explored. A key question is to what extent the high 

temporal observation density of Sentinel-1 C-band SAR may compensate for 

the lower sensitivity to detect deforestation when compared to longer-

wavelength L-band SAR observations. L-band SAR data are currently available 

from the ALOS-2 PALSAR-2 mission (launched 2014, Rosenqvist et al. 2014), 

but only a few images per year are available for most tropical regions and the 

commercial data distribution limits the operational uptake. However, freely 

accessible L-band data are in sight with the upcoming SAOCOM-1 (Satélite 

Argentino de Observación Con Microondas; planned launch 2017) and NISAR 

(NASA/ISRO Synthetic Aperture Radar; planned launch 2020) missions.  

Space agencies and international organisations, i.e. the Global Forest 

Observation Initiative (GFOI 2015), emphasize the need and potential for joint 

exploitation of the impeding stream of free-of-charge C-band SAR, L-band SAR 

and optical time series to improve tropical forest monitoring (Reiche et al. 

2016). Using dense Sentinel-1 time series for NRT deforestation monitoring 

could provide a significant step forward in its own right. Combining time series 

from multiple SAR and optical sensors, however, has the potential to even 

improve the robustness of NRT deforestation monitoring at medium resolution 

scale by increasing the number of available observations and ensuring a 

minimum number of observations for all seasons and geographical locations. In 

recent years several studies have demonstrated the increase of spatial and 

temporal accuracy of deforestation detection when combining  SAR and optical 

time series (Lehmann et al. 2012; Lehmann et al. 2015; Reiche et al. 2013; 

Reiche, de Bruin, et al. 2015; Reiche, Verbesselt, et al. 2015). These studies 

have developed some of the methodological underpinnings for the combination 

of these datasets using probabilistic approaches (Lehmann et al. 2012; 

Lehmann et al. 2015; Reiche, de Bruin, et al. 2015), and focused on combining 

Landsat and ALOS PALSAR L-band SAR data at small test sites and humid 

tropical forest conditions. The expansion of these methods, however, to 

seasonal dry tropical forest conditions, to combine more than two sensors, and 

the consideration of new dense Sentinel-1 C-band SAR data, is outstanding.  
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Detecting deforestation in satellite image time series in dry tropical forest 

conditions requires the removal of the seasonal forest component. Otherwise, 

the seasonal variations may lead to substantial false detection of deforestation 

(Hamunyela, Verbesselt & Herold 2016). While the seasonal forest component 

in the optical time series signal is driven by changes in the photosynthetic 

phenology (Tucker 1979), changes in canopy structure and moisture cause 

seasonal variations in the SAR backscatter signal (Ulaby et al. 1986). The 

majority of time series approaches proposes seasonal model fitting to account 

for forest seasonality (Verbesselt, Hyndman, Newnham, et al. 2010; Zhu et al. 

2012). Robust model fitting requires sufficient historical observations. Due to 

cloud cover, historical Landsat time series in tropical regions are often too 

sparse for robust fitting of seasonal model. The same applies for ALOS 

PALSAR-1/2 L-band SAR time series. Hamunyela, Verbesselt & Herold (2016) 

proposed spatial normalisation to reduce seasonality in Landsat time series 

and successfully applied it to a dry tropical forest. Each pixel is normalised 

with the value of dense forest in the spatial surrounding of the pixel to be 

normalised. The application of spatial normalisation could also be applied in 

SAR time series to reduce seasonal variability; a potential that has yet to be 

demonstrated.  

Assessing the temporal accuracy alongside the spatial accuracy gets 

increasingly important when evaluating NRT monitoring systems. While 

consolidated guidelines and methods exist for estimating the spatial accuracy 

of detected change (Foody 2002; Olofsson et al. 2013; Stehman 2009; Olofsson 

et al. 2014), assessing the temporal accuracy is challenging due to the lack of 

temporally dense reference information. As a result, reference data are 

commonly derived from the satellite time series itself using visual image 

interpretation (Cohen et al. 2010; Zhu et al. 2012; Devries, Verbesselt, et al. 

2015). Commonly, the date at which the change is first visible in the image 

time series is used as reference data to calculate the temporal accuracy or 

temporal detection delay (Zhu & Woodcock 2014a; Pratihast et al. 2015; 

Hansen et al. 2016; Reiche, Verbesselt, et al. 2015; DeVries et al. 2015). This 

approach results in time-biased reference data. The bias is related to the fact 

that true date of deforestation can occur at any date between the date of the 

image at which the change is first visible (commonly considered as reference 

date) and the date of the previous image in the time series. This imprecision is 

variable in time and space, and becomes even larger when relying on sparse 

and/or irregular time series, such as for example Landsat in some tropical 

regions. Since NRT monitoring is aiming for temporal accuracies in order of 

weeks or days, such an imprecision in the reference data becomes critical when 

assessing the performance for various applications. Despite the fundamental 

importance, the consideration of the temporal precision in the reference data, 

and the impact for users, have not been thoroughly studied for forest change 

alerting.  
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In this chapter we address some key challenges for multi-sensor NRT 

deforestation monitoring building on newly available dense Sentinel-1 time 

series data in combination with Landsat and PALSAR-2. We aim to:  

(i) Demonstrate how spatial normalisation reduces dry forest 

seasonality in Sentinel-1, ALOS-2 PALSAR-2 and Landsat time 

series in order to combine them for NRT deforestation detection 

using a probabilistic approach. We put particular emphasis on how 

environmental effects and dry forest seasonality affect the dense 

Sentinel-1 C-band SAR time series signal when compared to 

Landsat NDVI and PALSAR-2 L-band SAR. 

(ii) Compare the spatial and temporal accuracy of single-sensor 

Sentinel-1, PALSAR-2 and Landsat results versus multi-sensor 

results. We take the precision of the reference data into account to 

provide a more robust estimate on how quickly a change event 

happening on the ground can be detected.  

(iii) Evaluate the impact of uncertainties for different user scenarios by 

taking a critical look at the trade-off between spatial and temporal 

accuracy associated with NRT deforestation monitoring. 

With this study we highlight the unprecedented potential of dense 

Sentinel-1 time series and its combination with other SAR and optical sensors 

to improve the robustness of NRT deforestation monitoring in dry tropical 

forest environment.  

6.2 Study area  

The study was conducted at a dry tropical forest site (10,000 km²), located 

in the southeast of the province of Santa Cruz, Bolivia (centred at 18.388° S, 

62.361° W) (Figure 6.1). Being one of the wettest regions of Bolivia, this area is 

characterized by a humid tropical climate with distinct wet (~October – May) 

and dry seasons (~June – September). The change from wet and dry seasons is 

associated with a strong change in photosynthetic activity of the forest. 

Deforestation in the area is mainly caused by large-scale industrial logging and 

agricultural expansion, resulting into visible patches of land cleared from 

forests (Figure 6.1). While deforestation is defined in many ways, we follow a 

forest cover definition in a sense that pixels with less than 10% canopy cover 

are considered non-forest. Since this is a study for near-real time detection, a 

focus on the pixel level is our preferred choice. 
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Figure 6.1: The dry tropical forest study site located in the province of Santa 

Cruz, Bolivia. The large area deforested patches that are the result from 

logging activities over the past decade are clearly visible. The base image is a 

Sentinel-1 VV-polarised image acquired at 2016-08-26. 

6.3 Data and methods 

An overview of the methods used in this study is shown in Figure 6.2. We 

acquired Sentinel-1 VV-polarised C-band SAR, ALOS-2 PALSAR-2 HV-

polarised L-band SAR and Landsat (7 and 8) NDVI time series data for the two 

year period between 2014-10-01 and 2016-09-30; corresponding to the first two 

years of available Sentinel-1 images. Data from the first year was used to 

derive training information (training period), and data from the second year 

was used to detect new deforestation events (monitoring period). We first pre-

processed the individual Sentinel-1 VV, ALOS-2 PALSAR-2 HV and Landsat 

NDVI time series (Section 6.3.1.1 – 6.3.1.3), including time series co-

registration (Section 6.3.1.4). Next, a digitized forest benchmark map was used 

to mask out all non-forest areas at the beginning of our monitoring period 

(Section 6.3.2), before we applied spatial normalization to reduce dry forest 

seasonality in the individual time series (Section 6.3.3). We used a probabilistic 

approach to combine the spatially normalised time series and to detect 

deforestation in NRT (Section 6.3.4). We emulated a NRT scenario for the 

monitoring period (Section 6.3.5), and assessed the spatial and temporal 

accuracy of detected deforestation (Section 6.3.6). We compared the single-

sensor results with multi-sensor results. 
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Figure 6.2: Flowchart used in this study to process and combine time series of 

Sentinel-1 VV-polarised C-band SAR, ALOS-2 PALSAR-2 HV-polarised L-band 

SAR and Landsat NDVI for NRT deforestation detection. 

6.3.1 Satellite image processing 

6.3.1.1 Sentinel-1 VV-polarised C-band SAR 

We obtained Sentinel-1 VV-polarised (S1VV) images acquired in 

Interferometric Wide Swath (IW, 250 km swath width) from the Sentinel 

science hub (https://scihub.copernicus.eu/) for the period between 2014-10-01 

and 2016-09-30. The Sentinel-1A C-band SAR instrument operates at 5.3 cm 

wavelength (Torres et al. 2012). In total, 162 single-polarised (VV) and 9 dual-

polarised (VV and VH) acquisitions were retrieved. The images were acquired 

in ascending and descending mode with an incidence angle of 39° (±0.5°) and 

provided in Level-1 Ground Range Detected (GRD) format. We used the VV-

polarised images to build a time series (S1VV). Because of few dual-polarised 

acquisitions (VV and VH) we did not consider the VH polarisation for this 

study.  

Sentinel-1 time series processing consisted of five steps: (i) individual 

image pre-processing and geocoding, (ii) quality control, (iii) mosaicking, (iv) 

multi-temporal filtering, (v) and co-registration to Landsat. Firstly, we pre-

processed each image individually using the Gamma software package 

(Wegmüller et al. 2016). Pre-processing consisted of data import and format 

https://scihub.copernicus.eu/
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conversion, multi-looking, radiometric calibration, topographic normalization 

and geocoding to 30 m pixel resolution (WGS84, UTM 20S) using the 30 m 

SRTM DEM (https://lta.cr.usgs.gov/SRTM1Arc). The outputs were geocoded 

and topographically normalised gamma-nought backscatter images at 30 m 

resolution. Secondly, we removed corrupted images and images with 

geolocation accuracy smaller than 0.5 pixels. In total, we removed 13 images. 

The resulting average geocoding accuracy was smaller than 0.2 pixels. This 

reflects an internally well co-registered S1VV time series. Thirdly, we 

mosaicked all images acquired at the same date. The pre-processed and 

mosaicked S1VV backscatter time series consists of 98 images. Fourthly, we 

applied adaptive multi-temporal SAR filtering (Quegan & Yu 2001) to the pre-

processed and mosaicked time series. A measured increase of the equivalent 

number of looks indicated a clear reduction of SAR speckle in the data. Fifthly, 

we co-registered the S1VV time series to Landsat images described in Section 

6.3.1.4. The number of per-pixel observations averages 57 observations (~2.4 

obs. /month) and ranges between 47 (~1.9 obs. /month) and 98 observations 

(~4.1 obs. /month) for the two year period (Figure 6.3a). The observations were 

distributed regularly over time. Due to overlapping of ascending and 

descending frames, the eastern part of the study area has a higher temporal 

coverage (Figure 6.3a). 

6.3.1.2 ALOS-2 PALSAR-2 HV-polarised L-band SAR 

ALOS-2 PALSAR-2 HV-polarised (P2HV) images acquired in Fine Beam 

Dual (FBD, 70 swath width) mode were obtained from the ALOS-2 data archive 

(https://auig2.jaxa.jp/ips/home) for the period between 2014-10-01 and 2016-09-

30. In total, 47 FBD images were obtained in Level 1.1 format. The images 

were acquired in ascending and descending mode with an incidence angle of 

34.3°. We chose the HV polarization as ALOS-2 PALSAR-2 metric (P2HV). The 

higher capacity to detect forest cover change in L-band HV-polarised images 

when compared to HH-polarised images is well recognised and has been 

demonstrated by multiple studies (Motohka et al. 2014; Ryan et al. 2012; 

Thapa et al. 2013; Joshi et al. 2016; Shimada et al. 2014). Time series 

processing of P2HV was as the processing of S1VV described in Section 6.3.1.2. 

We removed corrupted images and images with geolocation accuracy smaller 

than 0.5 pixels. In total, two images were removed. The geocoding accuracy was 

below 0.4 pixels for all images. This reflects an internally well co-registered 

P2HV time series. The pre-processed and mosaicked P2HV time series consists 

of 15 images. Co-registration to Landsat images is described in Section 6.3.4. 

The number of per-pixel P2HV observations averages 8 observations (~0.3 obs. 

/month) and ranges between 4 (~0.15 obs. /month) and 15 observations (~0.6 

obs. /month) (Figure 6.3b) for the two year period.  

 

 

https://lta.cr.usgs.gov/SRTM1Arc
https://auig2.jaxa.jp/ips/home
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6.3.1.3 Landsat NDVI 

We obtained Landsat NDVI (LNDVI) products from the United State of 

America's Geological Survey (USGS) Landsat Surface Reflectance (SR) Climate 

Data Records (CDR) (http://landsat.usgs.gov/CDR_LSR.php) for the period 

between 2014-10-01 and 2016-09-30. The NDVI products are atmospherically 

and geometrically corrected and were derived from Level 1 Terrain corrected 

(L1T) Landsat-7/ETM+ and Landsat-8/OLI images. In total, 63 images 

(WGS84, UTM 20S) were acquired. We masked cloud and cloud shadows for 

each individual image using the CFmask cloud mask product which is 

distributed with the Landsat SR CDR data. We assumed the LNDVI time 

series to be internally well geocoded. The number of cloud-free LNDVI 

observations averages 30 observations (~1.25 obs. /month) and ranges between 

13 (~0.5 obs. /month) and 44 observations (~1.8 obs. /month) for the two year 

period (Figure 6.3c).  

6.3.1.4 Co-registration 

A precisely co-registered and integrated satellite image time series 

consisting of S1VV, P2HV and LNDVI images is crucial, in order to apply any 

SAR-optical algorithm. We used the GAMMA software package (Werner & 

Strozzi 2000) to co-register the S1VV and P2HV time series to the LNDVI time 

series. Co-registration included an automated cross-correlation between the 

source image (S1VV / P2HV) and the reference target image (LNDVI), using 

improved least-squares polynomial fitting. The cross-correlation resulted in 

range and azimuth offset polynomial of 4th order. The offset polynomials were 

subsequently used to co-register the source images to the reference image 

(Werner & Strozzi 2000). Co-registration results indicated a sub-pixel accuracy 

of smaller than 0.01 pixels for both, S1VV and P2HV. For the multi-sensor 

S1VV, P2HV and LNDVI time series, the number of valid per-pixel 

observations averages 96 observations (~4 obs./month) and ranges from 65 

(~2.7 obs./month) to 147 observations (~6.1 obs./month) for the two year period 

(Figure 6.3d). 

6.3.2 Benchmark forest mask 

We divided the two years period of available and overlapping S1VV, P2HV 

and LNDVI time series into a one year training period (2014-10-01 – 2015-09-

30) and a one year monitoring period (2015-10-01 – 2016-09-30). We used data 

from the training period to parametrize the probabilistic approach that we used 

to combine the S1VV, P2HV and LNDVI time series and to detect deforestation 

in NRT during the monitoring period (Section 6.3.4). To validate the detected 

deforestation events, reference deforestation information are required for the 

monitoring period. As for many tropical forest areas, reliable reference data for 

forest cover and forest cover change are not available. High to medium spatial 

http://landsat.usgs.gov/CDR_LSR.php
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resolution satellite data are commonly used to facilitate the derivation of 

validation data (Dutrieux et al. 2015; Hamunyela, Verbesselt, Bruin, et al. 

2016; Cohen et al. 2010; Zhu & Woodcock 2014b; Hansen et al. 2016).  

We used the available S1VV, P2HV and LNDVI images complemented by 

high spatial resolution imagery available in Google Earth 

(https://www.google.com/earth/) and Bing Maps (http://www. bing.com/maps/) to 

derive reference information through visual image interpretation. First, we 

generated a forest benchmark mask representing all forested pixels at the 

beginning of the monitoring period. We only considered pixels that were 

entirely covered with forest. The forest strata accounts for 77.5% (7749.75 km²) 

and the non-forest strata for 22.5% (2250.25 km²). Based on the forest 

benchmark mask, we generated a deforestation mask for the monitoring period 

consisting of two strata: deforestation and stable forest. Deforestation was 

defined as loss of forest cover that is visually visible from the satellite images 

and the complementary high resolution maps. Stable forest areas represent all 

forest pixels that did not change during the monitoring period. The 

deforestation strata accounted for 1.03% (79.5 km²) of the benchmark forest 

area, whereas the stable forest area accounted for the remaining 98.97% 

(7670.25 km²).  
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Figure 6.3: The number of valid per-pixel observations for Sentinel-1 VV 

(S1VV, a), ALOS-2 PALSAR-2 HV (P2HV, b), Landsat NDVI (LNDVI, c), and 

the multi-sensor time series (d) for the two year period between 2014-10-01 and 

2016-09-30. The minimum, mean and maximum number of available per-pixel 

observations is given for each of the time series. 

6.3.3 Spatial normalization to reduce dry forest seasonality 

We used spatial normalization to reduce dry forest seasonality in the 

S1VV, P2HV and LNDVI time series whereby we built upon the method of 

Hamunyela, Verbesselt & Herold (2016). Pixels were spatially normalised by 

subtracting the 95th percentile, P95, of the distribution of pixel within their 

spatial neighbourhood. It is based on the assumption that the upper tail of the 

distribution (corresponding to P95) of pixels within the spatial neighbourhood 

represents forest pixels (Hamunyela, Verbesselt & Herold 2016). To spatially 

normalise a pixel, we subtract P95 from the pixel instead of dividing the pixel by 

P95 as proposed by Hamunyela, Verbesselt & Herold (2016). This ensures that 

the difference between P95 and the pixel to be normalised results in the same 
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normalised pixel value for varying P95. The 2 dB difference between -14 dB 

(corresponding to P95) and -16 dB (corresponding to the pixel to be normalised) 

and the 2 dB difference between -15 dB and -17 dB, for example, results in the 

same normalised pixel value of -2 dB. This allows the robust application to non-

normalised metrics with open value scales such as the S1VV and P2HV SAR 

backscatter images.  

A forest benchmark mask is required so that (i) non-forest land cover types 

such as agriculture do not affect P95, and (ii) that the seasonality for forest pixel 

can be captured by P95. We used the benchmark forest mask (Section 6.3.2) to 

mask out all non-forest pixels in the S1VV, P2HV and LNDVI time series 

images. Further, it is crucial that the spatial window used to calculate P95 

covers forest areas. Otherwise deforested areas are erroneously normalised 

with P95 that was calculated based on deforested pixels instead of forest pixels. 

A large spatial window is required at our study site, because we deal with large 

logging operations and forest patches being surrounded by already deforested 

land. As our study site is relatively small and is characterised by homogeneous 

dry forest areas, we used a global P95, calculated for the entire study area. We 

assumed that environmental effects such as droughts are regional, affecting 

the whole of our study area in the same manner (Hamunyela, Verbesselt & 

Herold 2016). The spatially normalised S1VV, P2HV and LNDVI time series 

are hereafter referred to as S1VVn, P2HVn and LNDVIn, respectively.  

6.3.4 Probabilistic approach for multi-sensor NRT deforestation detection 

Building upon the approach of Reiche, et al. (2015), we present a 

probabilistic approach to combine the spatially normalized S1VVn, P2HVn 

(both SAR) and LNDVIn (optical) time series and to detect deforestation in 

NRT. For method parametrisation, we first derived sensor specific forest (F) 

and non-forest (NF) probability density functions (pdfs) using data from the 

training period (Section 6.3.4.1). Figure 6.4 gives a schematic overview the 

probabilistic approach. We considered a NRT scenario with past (t-1), current 

(t) and future observations (t+1), with multiple observations possible at the 

same observation date. First (Section 6.3.4.2), once a new observation of either 

of the input time series was available (t = current) it was converted to the 

conditional NF probability (sNF) using the sensor specific F and NF pdf. The 

derived conditional NF probability was added to the combined time series of 

conditional NF probabilities derived from the previous S1VVn, P2HVn and 

LNDVIn time series observations (t–i). Second (Section 6.3.4.3), we flagged a 

potential deforestation event in the case that the conditional NF probability 

was larger than 0.5. We calculated the probability of deforestation using 

iterative Bayesian updating. Future observation (t+i) were used to update the 

probability of deforestation in order to confirm or reject the flagged 

deforestation event. 
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Figure 6.4: Probabilistic approach used to combine time series of spatially 

normalized Sentinel-1 VV (S1VVn), ALOS-2 PALSAR-2 HV (P2HVn) and 

Landsat NDVI (LNDVIn) observations and to detect deforestation in NRT.  

6.3.4.1 Deriving sensor specific forest and non-forest pdfs from training data 

We derived sensor specific probability density functions (pdfs) for forest (F) 

and non-forest (NF), separately for S1VVn, P2HVn and LNDVIn. We selected 

ten equally sized stable F and NF training areas (~25 ha each) for the training 

period through visual image interpretation, whereby we followed the method 

described in Section 6.3.2. We used all observations available for the training 

period and covering the F and NF training areas to derived sensor specific F 

and NF distributions. We fitted a Gaussian model separately to the F and NF 

distributions. Maximum likelihood fitting with an iterative optimization 

method was used (Venables & Ripley 2002). We evaluated the F/NF 

separability for S1VVn, P2HVn and LNDVIn using the normalized Jeffries-

Matusita distance (JM) (Laliberte et al. 2012). JM has a finite dynamic range 

between 0 (inseparable) and 2 (separable). We compared the F/NF separability 

obtained for S1VVn, P2HVn and LNDVIn with results obtained for S1VV, 

P2HV and LNDVI. 

6.3.4.2 Deriving and combining time series of conditional NF probabilities 

Using the corresponding sensor specific F and NF pdfs (Section 6.3.4.1), we 

estimated the conditional NF probability for individual time series 

observations. Following Bayes’ theorem, we calculated the conditional NF 

probabilities for S1VVn, P2HVn and LNDVIn observation: P(NF|S1VVn), 

P(NF|P2HVn) and P(NF|LNDVIn). For example, the conditional NF 

probability for a S1VVn observation was calculated as: 
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P(NF|S1VVn) =
p(S1VVn|NF)

p(S1VVn|NF)+p(S1VVn|F)
                                                                   (6.1) 

 

with p(S1VVn|F) and p(S1VVn|NF) being the probability of the S1VVn 

observation given the presence of F and NF, respectively. p(S1VVn|F) and 

p(S1VVn|NF) were derived from the sensor specific S1VVn F and NF pdfs. We 

used a block weighting function that modifies P(NF|S1VVn) at 0.1 and 0.9 to 

avoid extreme probabilities (Reiche, de Bruin, et al. 2015).  

Next, we combined the conditional NF probabilities estimated for the 

individual S1VVn, P2HVn and LNDVIn, (P(NF|S1VVn), P(NF|P2HVn) and 

(P(NF|LNDVIn)) observations to create a new time series of conditional NF 

probabilities, sNF. In case that multiple observations from different sensors 

were acquired at the same observation date, we computed sNF jointly from the 

multiple observations using Bayesian updating. For example, in case of a 

S1VVn and LNDVIn observation acquired at the same date, sNF was calculated 

as: 

 

sNF|S1VVn, LNDVIn =
P(NF|S1VVn)∗P(NF|LNDVIn)

(P(NF|S1VVn)∗P(NF|LNDVIn)+(1−P(NF|S1VVn))∗(1−P(NF|LNDVIn)))
      (6.2) 

6.3.4.3 Iterative Bayesian updating to detect deforestation 

We checked each new observation (t = current) if it was potentially 

deforested. It was flagged to be potentially deforested in the case that the 

conditional NF probability (sNFt) exceeded 0.5. For a flagged observation, the 

conditional probability of deforestation was computed by iterative Bayesian 

updating, using the previous observation (t − 1), the current observation (t), as 

well as upcoming observations (t + i):  

 

P(Dt|s
NF

t+i) =
P(sNF

t+i|D)P(Dt|sNF
t+i−1)

P(sNF
t+i)

     (6.3) 

 

with P(Dt|sNFt+i) being the posterior, denoting the conditional probability of 

deforestation at t (Dt) given sNFt+i as new evidence. P(sNFt+i) refers to the total 

probability of the signal sNFt+i. i refers to the i-th future observation that can 

take values between 0 and n.  

For the initial step (i = 0 = current), P(Dt|sNFt) was calculated using the 

conditional NF probability at the current step (sNFt) as new evidence, and the 

conditional NF probability at the previous time step (sNFt-1) as the prior 

probability. With the availability of future observation in subsequent steps (i > 

0), the conditional probability of deforestation (Dt) was repeatedly updated. 

Hereby, upcoming observations (sNFt+i) were used as new evidence (Reiche, de 

Bruin, et al. 2015). Deforestation events were confirmed if the conditional 

probability of deforestation exceeded a defined threshold χ. The χ threshold 
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value can range between 0 and < 1. Choosing high χ threshold values increase 

the confidence to confirm deforestation events, because more observations are 

used to reach a high probability of deforestation, and, thus to confirm the 

change. When compared to lower χ threshold values, however, events are more 

likely to be confirmed later. In case the conditional probability of deforestation 

decreased below 0.5 when using future observation, we considered a falsely 

indicated deforestation event. In this case we unflagged the observation as 

being potentially deforested, and continued monitoring (Reiche, de Bruin, et al. 

2015).  

6.3.5 Detecting deforestation in an emulated NRT scenario 

We emulated a NRT scenario for the monitoring period to validate the 

proposed method with respect to its NRT deforestation detection performance. 

We added the individual S1VVn, P2HVn and LNDVIn observations 

chronologically to the multi-sensor time series from the start of the monitoring 

period onwards (2015-10-01). We applied the probabilistic approach described 

in the previous Section 6.3.4 to each newly added observation with subsequent 

observations being considered as future observations. We analysed the results 

for increasing χ threshold values from χ = 0.5 to χ = 0.975 in steps of 0.025. We 

compared the multi-sensor results obtained for the combined S1VVn, P2HVn 

and LNDVIn time series with single-sensor results.  

6.3.6 Estimating the spatial and temporal accuracy 

We estimated the spatial and temporal accuracy for the deforestation 

maps. We generated 1877 sample points using probability sampling consistent 

with Stehman (2012) and Olofsson et al. (2014). To address the small 

proportion of deforestation in the monitoring period (1.03%), which is typical 

for land changes, we followed Olofsson et al. (2014) and allocated 200 sample 

points to the deforestation stratum. The remaining 1677 samples were 

allocated to the stable forest stratum. This allocation ensured a reliable 

estimation of both, the producer’s and user’s accuracy of the deforestation class. 

We calculated the area adjusted overall accuracy (OA), producer’s accuracy 

(PA; 1- omission error) and user’s accuracy (UA; 1 – commission error). Due to 

the very small area proportion of the deforestation class, the OA is mainly 

driven by the UA and PA of the dominating stable forest class and is not a good 

measure to assess the method performance to detect deforestation. The UA and 

PA of the deforestation class are more useful for the comparison of single- 

versus multi-sensor approaches.  

To estimate the temporal accuracy, we calculated the mean time lag of 

confirmed deforestation events (MTL). In addition, we calculated the mean 

time lag of the time at which the confirmed deforestation events were initially 

flagged (MTLF). To calculate MTL and MTLF, we retrieved reference 
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information from the deforestation sample. For each of the 200 sample points, 

we documented the date at which the deforestation was visible for the first 

time (Tref) by systematically tracing the images in the multi-sensor S1VV, 

P2HV and LNDVI time series. The approach is consistent with approaches 

recommended or used in previous studies (Cohen et al. 2010; Devries, 

Verbesselt, et al. 2015; Hansen et al. 2016; Zhu & Woodcock 2014b) 

Commonly Tref is used as reference data to calculate the temporal accuracy 

or temporal detection delay (Zhu & Woodcock 2014a; Pratihast et al. 2016; 

Hansen et al. 2016). Tref, however, does not represent the “true” date of the 

deforestation event, but rather provides a reference date relative to the 

satellite time series observations itself. The “true” date instead occurred 

sometime between the image in which the deforestation event is first visible 

(Tref) and the previous image in the time series (Tref_previous). The time span 

between Tref and Tref_previous depends on the observation density and is varying 

across space (see Figure 6.3d). For the 200 deforestation sample points, the 

time span between Tref and Tref_previous varied between 2 days and 39 days and 

averages 13 days (Figure 6.5). The time span describes the imprecision of Tref. 

Accordingly, the average imprecision was 13 days. To reduce the imprecision of 

Tref in the absence of any further information on when the change truly 

occurred within the time span, we calculated an adjusted reference time, 

Tref_adjusted, as the date right in-between Tref and Tref_previous: 

 

Tref_adjusted = Tref −
(Tref−Tref_previous)

2
           (6.4) 

 

This reduced the average imprecision by fifty percent to ± 6 days. Next, we 

calculated the time lag of detected deforestation events, TL, by calculating the 

time span between Tref_adjusted and the date at which a deforestation event was 

confirmed by our algorithm (T). We treated detected deforestation events that 

have been flagged (TF) earlier than first visible in the multi-sensor time series 

(Tref) as commission error and exclude them from the calculation: 

 

               TL = T(TF > Tref) − Tref_adjusted                       (6.5) 

 

Analogously to TL, we calculate the time lag of the date at which the 

confirmed changes were first flagged, TLF: 

 

                  TLF = TF(TF > Tref) − Tref_adjusted             (6.6) 

 

We calcualted MTL as the mean of TL for all correctly detected change 

pixels. We derived MTLF as the mean of TLF for all correctly detected change 

pixels. MTL and MTLF were given in days. It is important to analyse MTL and 

MTLF jointly with the OE, because MTL and MTLF are calculated based on 

correctly detected changes only.  



Improving near real-time deforestation monitoring in tropical dry forests 

 

 138 

 
Figure 6.5: The time span between the image at which the deforestation event 

is first visible in the multi-sensor S1VV, P2HV and LNDVI time series (Tref) 

and the previous image in the time series (Tref_previous). 

6.4 Results  

6.4.1 Spatial normalization and derived F and NF pdfs 

Figure 6.6 depicts the F and NF distributions overlaid with fitted pdfs 

separately for the original and spatially normalized time series: S1VV (a1) and 

S1VVn (b2), P2HV (b1) and P2HVn (b2), LNDVI (c1) and LNDVIn (c2). For the 

original time series we found LNDVI to have the weakest F/NF class 

separability (JM = 0.66) when compared to S1VV (JM=1.14) and P2HV (JM = 

1.91). The bimodal LNDVI class distribution for F corresponds to wet and dry 

season observations, whereby the dry season observations largely overlap with 

the NF class. S1VV and P2HV show unimodal F and NF distributions. We 

found strongly increased F/NF separabilities for the spatial normalized S1VVn 

(JM = 1.44), P2HVn (JM = 1.98) and LNDVIn (JM = 0.91) time series. The 

derived sensor specific pdfs for the spatially normalized time series were used 

for method parametrization. Figure 6.7 shows an example time series with the 

original (black dots) and spatially normalized (blue dots) observations for the 

two year period: S1VV and S1VVn (a), P2HV and P2HVn (b), LNDVI and 

LNDVIn (c). The pixel time series covers a stable dry forest that is deforested 

in January 2016. In addition to the time series covering the 2-year overlapping 

period, the LNDVI and LNDVIn time series are shown for a seven year period 

(2010 – 2016; Figure 6.7c1). The strong seasonality in photosynthetic activity, 

typical for dry forest, is clearly reflected in the original LNDVI time series 

(Figure 6.7c, c1). The original S1VV and P2HV SAR time series show a much 

weaker seasonal signal for stable dry forest. The seasonality was strongly 

reduced for the spatially normalized time series, in particular for LNDVIn.  
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Figure 6.6. Forest (F) and non-forest (NF) distributions overlaid with 

probability density functions (pdfs) fitted separately for the original S1VV (a1), 

P2HV (b1) and LNDVI (c1) time series, and the spatially normalized S1VVn 

(a2), P2HVn (B2) and LNDVIn (a2) time series. Mean and standard deviation 

(sd) of the derived pdfs and the Jeffries-Matusita distance (JM) are given. JM 

ranges between 0 (inseparable) and 2 (separable). 
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Figure 6.7: Example time series with the original (black dots) and spatially 

normalized (blue dots) observations: S1VV and S1VVn (a), P2HV and P2HVn 

(b), LNDVI and LNDVIn (c). In addition to the time series covering the 2-year 

overlapping period (a, b, c), the LNDVI and LNDVIn time series are shown for 

a seven year period (2010 – 2016; Figure 6.7c1).) This shows the annual 

seasonal dry forest pattern reflected in the LNDVI time series signal. When 

compared to the original LNDVI (c and c1) time series, the original S1VV (a) 

and P2HV (b) SAR time series show a weaker seasonality over stable dry 

forest. The pixel covers a stable dry forest that was deforested in January 2016. 

The time series are from the same pixel. 
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6.4.2 Detected deforestation 

Figure 6.8 illustrates a single pixel example with a deforestation event in 

January 2016, and shows the results for the single-sensor cases, S1VVn (a), 

P2HVn (b), LNDVIn (c) and the multi-sensor case (d). For the multi-sensor case 

the time series of conditional NF probabilities, sNF, is shown in addition (d-

bottom). The reference time at which the change was first visible in the 

satellite time series (Tref) is 2015(354) (day of year) and the adjusted reference 

time (Tref_adjusted) was 2016(4). The adjusted reference time was used to calculate 

the mean time lag of confirmed changes (MTL), as well as the mean time lag of 

the time at which confirmed changes were first flagged (MTLF). For the multi-

sensor case, the deforestation event was confirmed at T = 2008(16), which is 12 

days after it was flagged at TF = 2008(04). When compared to multi-sensor 

case, the deforestation event was confirmed 6 days later with S1VVn, 25 days 

later for LNDVIn and 56 days later with P2HVn. 

6.4.3 Spatial and temporal accuracies for increasing χ threshold 

The spatial accuracy (OA; PA and UA of the deforestation class) and 

temporal accuracy (MTL and MTLF) are shown in Figure 6.9 for increasing of χ 

threshold values, for the single-sensor cases, S1VVn (a) and LNDVIn (b), and 

multi-sensor case (c). Single-sensor results for the P2HVn are not presented. 

Because the P2HVn observations available in the monitoring period were very 

limited, with some areas covered with one observation only, most deforestation 

events were not detected. A valid comparison with the other cases was 

therefore not possible. The P2HVn single pixel example depicted in Figure 6.7b 

and 6.8b have above average observation availability. The results for S1VVn, 

LNDVIn, and the multi-sensor case can be summarized as follows. 

For S1VVn (Figure 6.9a), we found increasing UA and decreasing PA of 

the deforestation class was obtained by increasing χ threshold values. The 

UA/PA cross-over point occurred at χ = 0.85. At the cross-over point, the UA 

and PA for the deforestation class were 85.9% and 82.7%, respectively. The 

maximum OA (99.7%) for S1VVn was also achieved at the UA/PA cross-over 

point. The UA and PA for the stable forest class (not shown in Figure 6.9a) 

were generally higher than the UA and PA for the deforestation class. For the 

UA/PA cross-over point (χ = 0.85), UA and PA for the stable forest class were 

99.8% and 99.0%, respectively. The MTL increased for increasing χ threshold 

values from 21 days (for χ = 0.5) to 58 days (for χ = 0.975), and was 39 days at 

the UA/PA cross-over point. The MTLF was similar for all χ threshold values 

and was 16 days for the UA/PA cross-over point. 

For LNDVIn (Figure 6.9b), spatial and temporal accuracies were generally 

lower when compared to those of S1VVn. We found an increasing UA and 

decreasing PA of the deforestation class for increasing χ threshold values. No 

UA/PA cross-over point was found due to a low UA. The maximum OA (99.1%) 
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was achieved at χ = 0.975, and the corresponding UA and PA of the 

deforestation class were 51.5% and 69.5%, respectively. The UA and PA for the 

stable forest class (not shown in Figure 6.9b) were generally higher than the 

UA and PA for the deforestation class. For χ = 0.975, UA and PA for the stable 

forest class were 99.7% and 99.0%, respectively. The MTL and MTLF increased 

for increasing χ threshold values from 27 days (for χ = 0.5) to 78 days (for χ = 

0.975). The MTLF was similar for all χ threshold values and was 18 days for χ = 

0.975. 

The spatial and temporal accuracies for the multi-sensor case (Figure 6.9c) 

were generally higher when compared to those of single-sensor S1VVn, P2HVn 

and LNDVIn cases. For increasing χ threshold values, the UA of the 

deforestation class increased while the PA for the deforestation class decreased. 

The UA for deforestation class increased from 8.8% (for χ = 0.5) to 93.2% (for χ 

= 0.975), whereas the PA decreased from 100% (for χ = 0.5) to 87.4% (for χ = 

0.975). The UA/PA cross-over point occurred at χ = 0.925, for which the UA and 

PA of the deforestation class were 88% and 88.9%, respectively. The maximum 

OA (99.8%) for the multi-sensor case was also found at the UA/PA cross-over 

point. For the UA/PA cross-over point (χ = 0.925), UA and PA for the stable 

forest class (not shown in Figure 6.9c) were 99.9% and 99.0%, respectively. The 

MTL increased for increasing χ threshold values from 13 days (for χ = 0.5) to 39 

days (for χ = 0.975). At the UA/PA cross-over point, the MTL was 31 days. The 

MTLF was similar for all χ threshold values and was 11 days for the UA/PA 

cross-over point. 

6.4.4 Deforested area 

We choose a χ threshold value for which we achieved the lowest area bias 

to generate the final deforestation maps for S1VVn, LNDVIn and the multi-

sensor case (Figure 6.10). For all three cases, the χ threshold value with the 

lowest area bias also corresponds to the maximum OA. For S1VVn and the 

multi-sensor case this refers to the UA/PA cross-over point (Figure 6.9b and 

6.9c). We choose χ = 0.975 for LNDVIn, χ = 0.85 for S1VVn and χ = 0.925 for 

multi-sensor case. Different key user scenarios for selecting a χ threshold value 

are discussed in Section 6.5.1. The total deforested area for the one year 

monitoring period between 2015-10-01 and 2016-09-30 was estimated to be 

67.8 km² (bias = 2.8 km²) for S1VVn, 56.7 km² (bias = 22.6 km²) for LNDVIn 

and 71 km² (bias = 0.4 km²) for the multi-sensor case.  
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Figure 6.8. Pixel example showing detected deforestation, for the single-sensor 

cases, S1VVn (a), P2HVn (b), LNDVIn (c) and the multi-sensor case (d). For the 

multi-sensor case the time series of conditional NF probabilities, sNF, is shown 

in addition (d-bottom). The time at which the deforestation was first flagged 

(TF) and the time at which it was confirmed (T) are given as the day of year. 

The reference time at which the change was first visible in the satellite time 

series (Tref) is 2015(354) (day of year). The adjusted reference time (Tref_adjusted) 

is 2016(4). The time series are from the same pixel as Figure 6.7. 
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Figure 6.9. Spatial accuracy (OA = overall accuracy; PA and UA = producer’s 

and user’s accuracies of the deforestation class), and temporal accuracy (MTL = 

mean time lag of confirmed deforestation events; MTLF = mean time lag of the 

date at which confirmed deforestation events were first flagged) as a function of 

increasing χ threshold values, separately for S1VVn (A), LNDVIn (b) and the 

multi-sensor case (S1VVn, P2HVn, LNDVIn; c). 
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Figure 6.10. Deforestation events detected for multi-sensor case (S1VVn, 

P2HVn, LNDVIn) for the one year monitoring period (2015-10-01 - 2016-09-30) 

at the dry forest study site in Santa Cruz, Bolivia (bottom left). Reference forest 

benchmark map and deforested areas (top left) were digitized from the original 

images. For a subset (squared red box in reference map), single-sensor results 

for S1VVn and LNDVIn are compared with the multi-sensor results (right 

panel).  
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6.5 Discussion  

In this chapter we presented the first study on multi-senor SAR-optical 

NRT deforestation detection in a tropical dry forest, and we combined newly 

available dense Sentinel-1 time series with ALOS-2 PALSAR-2 and Landsat 7 

and 8 data. We demonstrated that spatial normalisation can be used to reduce 

dry forest seasonality in the SAR time series in order to combine them with 

optical time series for NRT deforestation detection using a probabilistic 

approach. Our results for a dry tropical forest site in Bolivia show that 

deforestation events were detected more timely with Sentinel-1 than with 

Landsat or PALSAR-2. The spatial and temporal accuracies further improved 

beyond the single-sensor results when combining observations in a multi-

sensor approach. We improved the precision of the reference data derived from 

the multi-sensor satellite time series, which enabled a more robust estimation 

of the temporal accuracy. When aiming for the lowest map area bias, the 

overall accuracy of our multi-sensor map was 99.8%, with deforestation events 

detected with a user’s accuracy of 88% and a producer’s accuracy of 89%. We 

estimated 71 km² of newly deforested areas. This relatively high forest loss 

within one year can be attributed to large scale commercial logging activities 

which are typical for this area (Hamunyela, Verbesselt, Bruin, et al. 2016). 

Deforestation events were detected with a MTL of 31 days. This is more than 

one week earlier than when using single-sensor S1VVn results (MTL = 39 

days), and even six weeks earlier than when using single-sensor LNDVIn 

results (MTL = 78 days). The ability to detect deforestation events with such a 

high spatial and temporal accuracy highlights the advantage of combining 

medium spatial resolution time series data from multiple SAR and optical 

sensors. 

6.5.1 Optimized threshold selection for different use cases 

We found a clear trade-off between spatial and temporal accuracy when 

selecting the χ threshold value for deforestation monitoring. While the UA of 

the deforestation class improved for increasing χ threshold values, the PA of 

the deforestation class and temporal accuracy (MTL) decreased (Figure 6.9c). 

In other words, an increasing confidence to accurately detect deforestation 

events is associated with omitted and delayed detected changes. This trade-off 

confirms the findings of previous studies which evaluated the performance of 

satellite based time series change detection (Zhu et al. 2012; Hamunyela, 

Verbesselt, de Bruin, et al. 2016; Reiche, Verbesselt, et al. 2015). No single χ 

threshold value satisfies the highest UA, PA and temporal accuracy. The 

selection of the χ threshold value is therefore dependent on the monitoring 

requirements of the user and is always associated with an error.  

Here, we discuss four key use cases based on the multi-sensor results 

(Figure 6.9c). Table 6.1 provides an overview of the use cases and lists the χ 
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threshold value used to generate the results together with the associated OA, 

UA and PA of the deforestation class, the estimated area bias and the MTL.  

 

Table 6.1. Key use cases for detecting deforestation based on the multi-sensor 

results (Figure 6.9c). For each use case, the χ threshold value used to generate 

the results is listed together with the associated overall accuracy (OA), user’s 

and producer’s accuracy of the deforestation class (UA & PA), the estimated 

area bias and the mean time lag of detected deforestation (MTL).  
Use case χ threshold 

value 

OA 

(%) 

UA 

(%) 

PA 

(%) 

Area bias 

(km²) 

MTL 

(days) 

 Fast alerting 0.5 90.2 8.8 100 755 12 

Confident alerting 0.8 99.1 53.3 94.9 50.4 22 

Accounting of changes 0.925 99.8 88.0 88.9 0.4 31 

Target field surveys    0.975 99.8 93.3 87.5 -9 39 

 

The first use case (Fast alerting) describes the case in which a user is 

interested in detecting deforestation as quickly as possible. By choosing a low χ 

threshold value of 0.5, deforestation events are confirmed with a MTL of 13 

days. This case basically relies on single observations to timely detect 

deforestation events, which are prone to noise, artefacts, and short-term image 

variability stemming from use multi-sensor data. In combination with the high 

sensitivity to flag change, this results in many false detections and large 

commission error (UA = 8.8%). On the other hand no events were missed (PA = 

100%). These fast alerts might be used to identify potentially critical areas 

and/or for tasking high-resolution satellite data acquisitions to zoom in to 

specific hot spot areas.  

The second use case (Confident alerting) describes a more realistic use 

case for NRT monitoring in which deforestation is detected based on more 

observations, less timely, but with an acceptable false alarm rate. By using a χ 

threshold value of 0.8, deforestation events were detection with a MTL of 22 

days, a commission error of 47% and an omission error of 5%.  

The third use case (Accounting of changes) reflects a user that aims for 

high confidence in area estimates (i.e. as used in greenhouse gas accounting; 

Defries et al. 2007) and wants to produce quality deforestation maps but does 

not need the highest temporal detail. Therefore, a low area bias is essential for 

accounting changes. The lowest area bias corresponded to the UA/PA cross-over 

point at χ = 0.925 (area bias = 0.4 km²). A MTL of 31 days, basically allows for 

(on average) monthly accounting of forest loss area change.  

The fourth use case (Target field surveys) presents the case in which a 

user wants to assess impacts of events on the ground with a dedicated field 

campaign. Deforestation events, therefore, need to be detected with the highest 

possible certainty to avoid field teams being sent to sites at which deforestation 

events were falsely detected. By using a χ threshold value of 0.975, a UA of 

93.3% was achieved indicating a low false alarm rate. Since many observations 
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were used to increase the confidence to confirm deforestation, a high MTL of 39 

days was the result and some changes were omitted.  

In conclusion, there are trade-offs for multi-sensor satellite-based NRT 

deforestation monitoring depending on the intended use. A systems working in 

parallel optimizing monitoring towards these needs and addressing both 

alerting and area accounting could be followed. Increasing the use of local 

calibration data (i.e. from local experts, forest managers) can continuously and 

significantly improve the detection accuracy (Devries et al. 2016). 

6.5.2 Observation availability and implications for large area NRT 

monitoring 

Observation availability is considered the driving factor for the NRT 

performance of satellite based deforestation monitoring systems in the tropics 

(Hansen et al. 2016). With Sentinel-1, dense C-band SAR time series are now 

available globally. For the two year study period (2014-10-01 - 2016-09-30), a 

minimum of 57 Sentinel-1 observations (~2.4 obs. /month) were available for 

our study site (Figure 6.3a). The relatively flat topography of our study site, 

typical for the Amazonian basin, allowed the straightforward combination of 

ascending and descending images. In areas with strong relief, differing 

topographic effects in ascending and descending images should be considered; 

e.g. SAR layover and shadow at different locations. The two year study period 

corresponds to the first two mission years of Sentinel-1. For this period only 

one satellite (Sentinel-1A) was operating. It was used mainly to acquire data 

over prioritised areas and, therefore, many tropical areas were covered with 

few observations. With the launch of the second Sentinel satellite (Sentinel-

1B), the new observation strategy of the Sentinel-1A/B constellation is in place 

(https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario). 

With this new acquisition strategy, 12 day repeated acquisitions for all tropical 

regions are guaranteed; for many areas even in dual-polarisation mode (VV and 

VH). For many tropical regions ALOS-2 PALSAR-2 provides limited coverage 

per year. For the two year period, large parts of our study area were covered 

with four or less observations only. This did not allow a meaningful detection of 

deforestation using ALOS-2 PALSAR-2 data only. With the upcoming 

SAOCOM-1 (2017) and NISAR (2020) missions, more frequent and free of 

charge L-band SAR time series will become available.  

While the acquisition strategy determines the observation availability of 

SAR sensors, cloud cover is the main limiting factor for optical sensors. For the 

two year period, cloud cover strongly reduced the number of valid per-pixel 

Landsat observations from 63 to a minimum of 13 observations (~0.5 obs. 

/month) (Figure 6.3c). Our results confirm the findings of previous studies, 

which showed a large spatial variance of Landsat observation densities across 

space (Potapov et al. 2012; Sannier et al. 2014; Hansen et al. 2016). The issue 

https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario
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of sparse optical time series over certain tropical regions, for example cloud 

forests, will remain even when combining multiple optical sensors, e.g. Landsat 

and Sentinel-2. 

By combining observations from Sentinel-1, PALSAR-2 and Landsat, we 

were able to increase the number of available observations to a minimum of 65 

observations (~2.7 obs./month) and an average of 96 observations (~4 

obs./month) for the two year period (Figure 6.3d). We showed that providing 

regular observation throughout all seasons and locations results in increased 

spatial and temporal detection accuracies, which corroborates the findings of 

previous studies (Reiche, Verbesselt, et al. 2015; Reiche, de Bruin, et al. 2015). 

6.5.3 Spatial normalization to reduce dry forest seasonality  

The seasonal dry forest component was strongly pronounced in the optical 

LNDVI signal. The high sensitivity of the NDVI signal to change in 

photosynthetic activity that is associated with the change between wet and dry 

season, led to a drop of the LNDVI signal of up to 0.5 (Figure 6.7c1). LNDVI 

wet and dry season observations are reflected in a bimodal F distribution 

(Figure 6.6c). The dry season observations strongly overlapped with the NF 

class. This resulted in a weak F/NF class separability (JM = 0.66). Spatial 

normalisation reduced the seasonal dry forest component, as reflected in a 

unimodal F distribution, resulting in increased F/NF separability (JM = 1.01). 

We found a weaker seasonal dry forest component for the S1VV and P2HV 

SAR backscatter signals. A weaker seasonal component was expected as SAR 

backscatter is not influenced by photosynthetic activity of the forest, but 

instead is sensitive to its structure and moisture (Ulaby et al. 1986). The 

backscatter signal increased from the dry to wet season in the range of ~ 2 dB. 

This is mainly explained by increased canopy moisture during the wet season 

(Woodhouse et al. 1999). Due to the relatively stable backscatter signal over 

forest, S1VV (JM = 1.14) and P2HV (JM = 1.91) already showed good F/NF 

separability prior to spatial normalisation. Nonetheless, spatial normalisation 

increased F/NF separability for S1VVn (JM = 1.44) and P2HVn (JM = 1.98). 

The higher F/NF separability of P2HV can be mainly explained by two factors. 

First, the long wavelength L-band SAR penetrates the tropical forest canopy 

and backscattering is primarily caused by branches and trunks. After 

deforestation, the L-band backscatter strongly decreases causing a large 

contrast between forest and non-forest. Secondly, cross-polarised HV 

backscatter (P2HV) is more sensitive to forest change than single-polarised VV 

backscatter (S1VV) (Hoekman & Quiriones 2000; Woodhouse 2005). The 

shorter wavelength of C-band SAR only partially penetrates the forest canopy, 

and primarily interacts with leaves and small branches. After forest removal, 

C-band interacts in a similar way with the remaining understory vegetation 

and bushes. C-band also largely responds to soil surface roughness and 
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moisture. Increased soil moisture after strong rain events for example, can lead 

to increased backscatter (Woodhouse et al. 1999). This effect is visible as 

temporary spikes in the S1VVn time series at NF conditions (Figure 6.7a). 

These effects lead to a generally lower F/FN separability when compared to L-

band SAR (van der Sanden 1997; Ulaby et al. 1986; Woodhouse 2005). Utilizing 

the upcoming cross-polarised Sentinel-1 (VV and VH) time series promises 

increased F/NF separability, as for example soil moisture differences will affect 

the signal less. 

While spatial normalisation has been applied to reduce dry forest 

seasonality in Landsat NDVI data in earlier studies (Hamunyela, Verbesselt & 

Herold 2016; Hamunyela, Verbesselt, Bruin, et al. 2016), its application on 

SAR data was first demonstrated in this study. We successfully applied spatial 

normalisation on both sparse (P2HV) and short SAR time series (P2HV and 

S1VV) acquired over dry forest. Our results confirm that spatial normalisation 

can be a valid and promising alternative approach to seasonal model fitting 

approaches (Hamunyela, Verbesselt & Herold 2016) that rely on long and 

dense historical time series (Verbesselt, Hyndman, Newnham, et al. 2010; Zhu 

et al. 2012). We used a global percentile for spatial normalisation as our study 

site was covered homogeneously with dry forest. Computationally, a global 

percentile is more attractive, especially in an areas dominated by a single 

forest type. Where spatial normalisation is applied to an area with varying 

forest types and seasonality, a local window approach as demonstrated by 

Hamunyela, Verbesselt & Herold (2016) should be used. 

6.5.4 Probabilistic approach for multi-sensor NRT deforestation detection  

Converting the original SAR (S1VVn and P2HVn) and optical (LNDVIn) 

information into NF probabilities allowed us to combine and analyse a single 

signal instead of separate SAR and optical signals. While we demonstrated the 

combination of three different sensors, the approach is flexible to combine 

observations from additional sensors, like e.g. Sentinel-2.  

A major advantage of the proposed probabilistic approach is that it directly 

accounts for the different sensor specific F/NF class separability of S1VVn, 

P2HVn and LNDVIn observations, as the derived NF probabilities are used to 

calculate and update the conditional probability of deforestation. This allowed 

us to overcome some key limitations of the single-sensor time series. First, 

while P2HVn showed the highest F/NF class separability, NRT deforestation 

monitoring based on only P2HVn observations was not reliable due to the very 

low data availability. For the multi-sensor case, however, the individual 

P2HVn observations were used. The high F/NF separability resulted in rather 

extreme NF probabilities of individual P2HVn observations, which in turn had 

a strong effect on the iterative Bayesian updating of the deforestation 

probability. Second, the lower F/NF class separability of LNDVIn and S1VVn 
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often resulted in a reduced impact of single LNDVIn and S1VVn observation. 

However, this was compensated by the higher observation availability. 

We demonstrated the combination of univariate SAR and optical time 

series. To make full use of the available reflectance spectra of optical sensors 

and different polarisations of SAR sensors, sensor specific F and NF class 

distributions should be derived from multi-variate instead of univariate feature 

spaces. Using VH-polarised Sentinel-1 observations in addition to the VV-

polarised observations for example, can improve F/NF class distributions (see 

Section 6.5.3). 

In this study, we dealt with large area industrial logging activities which 

are typical in the region. For operationalisation and a wider area of application, 

the approach should be adapted to and tested for varying harvesting practices 

and more complex forest dynamics.  

6.5.5 Temporal accuracy and adjusted reference date 

We showed that the temporal accuracy is equally important as spatial 

accuracy when assessing the performance of satellite based NRT alert systems. 

Temporally dense ground information to assess deforestation events detected 

from dense SAR and optical time series is very rare. We showed that the 

reference date derived from the satellite time series itself, as commonly used in 

recent studies (Zhu & Woodcock 2014a; Pratihast et al. 2015; Hansen et al. 

2016; Reiche, Verbesselt, et al. 2015; DeVries et al. 2015), is associated with 

uncertainty about the true date for deforestation. The imprecision is related to 

the fact that the true date of deforestation occurred sometime between the date 

of the image at which the change is first visible (commonly considered as the 

reference date) and the date of the previous image in the time series. When 

combining the observations from Landsat, Sentinel-1 and ALOS-2 PALSAR-2 

for our site, the imprecision of the derived reference date varied between 2 days 

and 39 days with an average of 13 days. By adjusting the reference date we 

were able to reduce the imprecision by fifty percent to an average of ± 6 days. 

In this context, Sentinel-1 time series show great potential as regular and 

dense observations to enable the derivation of regular sampled reference data. 

This may allow a more comparable assessment of the temporal accuracy across 

different areas. 

6.6 Conclusion 

We demonstrated multi-sensor SAR-optical NRT deforestation detection in 

a tropical dry forest, and we combined time series observations from Sentinel-1, 

PALSAR-2 and Landsat 7 and 8. We successfully applied spatial normalisation 

to reduce the dry forest seasonality in the SAR and optical time series, and 

combined them in a probabilistic approach. Our results show that deforestation 
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events were detected with a higher spatial and temporal accuracy when 

combining observations from multiple sensors than when using observations 

from a single sensor. We showed the unprecedented potential of dense Sentinel-

1 C-band time series for providing dense observations and to compensate for 

sudden environmental effects. We improved the precision of reference data 

derived from the satellite time series itself and provided a more robust 

estimate of the temporal accuracy. We presented and discussed different use 

cases, and highlighted that deforestation detection is always associated with a 

trade-off between the user’s, producer’s and the temporal accuracy. Timely 

detection of deforestation events, for example, is commonly associated with a 

low user’s accuracy and a high producer’s accuracy. The operationalisation of 

the approach requires its adaption to deal with varying harvesting practices, 

more complex forest dynamics and to make use of all optical bands and SAR 

polarisations. In particular, the upcoming dense Sentinel-1 dual-polarised data 

promises to increase the capacity for NRT deforestation detection. In summary, 

combining multiple SAR and optical time series can guarantee regular and 

temporally dense observations at medium spatial resolution independent of 

weather, season and spatial location, and with this improves NRT 

deforestation monitoring in the tropics.  
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7.1 Main results 

Monitoring forest disturbances is crucial for initiatives that aim to protect 

of forest ecosystems from illegal exploitations, but detecting forest disturbances 

timely and accurately is challenging. The main objective of this thesis was to 

improve satellite-based forest change monitoring by tackling some key 

challenges that affect accurate and timely detection of forest disturbances. 

More specifically, the thesis assessed the extent to which combining contextual 

and temporal information in satellite image time series can help us to address 

the problems of: i) seasonality, ii) omission of small-scale disturbances, iii) 

inherent noise in satellite image time series and iv) inter-sensor differences in 

satellite image time series. To achieve the objective of the thesis, four research 

questions are formulated (Section 1.6), and each question is addressed through 

a core chapter, resulting into specific findings for each research question. Here, 

I summarise the main research findings for each question.   

7.1.1 How do we account for seasonality in irregular satellite image time 

series when aiming for accurate and timely detection of disturbances in 

dry forests (Chapter 2 and 6)?  

Accounting for seasonality is a pre-requisite for near real-time forest 

change detection using satellite data. Typically, existing change detection 

frameworks use a seasonal model to account for seasonality satellite image 

time series, but fitting a seasonal model is particularly challenging when the 

time series lacks sufficient observations or when the time series consist of 

observations acquired at irregular intervals. In this thesis, I tackled the 

problem of seasonality from a different perspective. Instead of using a seasonal 

model, I used contextual information in satellite images to reduce seasonality. 

More specifically, I developed a spatial normalisation approach in Chapter 2 

which reduces seasonality, and applied that approach to Landsat image time 

series. I tested this spatial normalisation approach in both dry and humid 

tropical forests. The seasonality in the image time series for dry tropical forest 

was strong and poorly pronounced in the humid forest. Based on this analysis, 

the results showed that, in dry tropical forest, deforestation events were 

detected much earlier when using spatial normalisation approach to reduce 

seasonality than when using a seasonal model. In the dry tropical forest, the 

median temporal detection delay for deforestation from the spatial 

normalisation approach was two observations, which was seven times shorter 

than the median temporal detection delay from the seasonal model approach 

(15 observations). The difference in temporal detection delay between the 

spatial normalisation approach and the seasonal model approach in the humid 

tropical forest was not significant. This non-significant difference in temporal 

detection delay at the humid tropical forest site could be attributed to inherent 

low seasonality in the image time series over evergreen forests. Unlike strong 
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seasonality, lowly pronounced seasonality in humid forest can hardly disguise 

the impact of deforestation on the time series.  

I found that the differences in overall spatial accuracy between the spatial 

normalisation approach and seasonal model approach were also not significant 

in both dry and humid tropical forests. With a critical view, this non-

significance in spatial accuracy is contradictory to the findings on temporal 

detection delay. Ironically, if the forest disturbances are detected early when 

using the spatial normalisation approach, then the spatial accuracy for the 

spatial normalisation approach should also be better than that of the seasonal 

model approach. A non-significant difference in spatial accuracy can be 

attributed to the way the validation approach was implemented. I sequentially 

tracked forest disturbances over a longer period, but the validation was based 

on single forest disturbance map which contains all changes detected over such 

long period. As result, even if the deforestation events were initially omitted, in 

case of the seasonal model approach, they could still be detected on a later 

stage. An appropriate monitoring and validation strategy would therefore been 

to bin the monitoring period into several monitoring periods, and generate a 

forest disturbance map for each period. The accuracy for each monitoring 

period could then be assessed separately. Such approach would be more robust 

and informative on the difference between spatial normalisation and seasonal 

model approach. Nonetheless, the results for this analysis show that using 

contextual information to reduce seasonality in satellite image time series is a 

robust alternative to a seasonal model approach, and can improve near real-

time detection of forest disturbances, especially in dry forest.  

In Chapter 2, I only demonstrated the spatial normalisation approach to 

optical image time series. Yet, near real-time forest change monitoring is 

increasingly done using a combination of optical and Synthetic Aperture Radar 

(SAR) image time series.  Cognisant of this fact, in Chapter 6, this thesis 

further evaluated whether spatial normalisation approach can also be extended 

to SAR time series. It should be noted however, that SAR signal is not 

influenced by photosynthetic activity of the forest, but by forest structure and 

moisture (Ulaby et al. 1986). Yet, since the canopy moisture for forest 

especially for the dry forest, varies significantly between the wet and dry 

season because of the drying of the leaves, some form of seasonality is still 

expected in SAR time series. Therefore, in chapter 6, spatial normalisation 

approach was applied to Sentinel-1 and ALOS-2 PALSAR-2 time series to 

evaluate whether seasonal variations can be reduced by normalising SAR 

signal using contextual information. The results from this analysis show that 

spatial normalisation can also be used to reduce seasonal variations in SAR 

time series, thus increasing the separability between forest and non-forest 

observations. Forest change results from this analysis confirm that combining 

observations from multiple sensors improves the detection of forest 

disturbances. The results also confirm that timely detection of forest 
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disturbances is typically accompanied by many false alerts, resulting in 

extremely low user’s accuracy.  

7.1.2 What is the added-value of using both spatial and temporal information 

when monitoring forest disturbances from satellite image time series 

(Chapter 3 and 4)? 

In the past, monitoring forest disturbances using satellite data was based 

on the analysis of single pixel-time series, thus exploiting spectral and 

temporal information only. Contextual information is not included in deciding 

whether a pixel has been disturbed or not.  In Chapter 3, I demonstrated how 

contextual and temporal information in satellite image time series can be 

combined and exploited to detect forest disturbances in near real-time. I 

proposed a data-driven space-time change detection method that forest 

disturbance as an extreme event within a space-time data cube of satellite 

image time series. Contextual and temporal information is combined by 

reducing the seasonal variations in image time series through spatial 

normalisation, and subsequently treat each deseasonalised observation in the 

local data cube as an independent observation. Forest disturbance is identified 

based on the distribution of deseasonalised observations in the data cube. I 

showed that forest disturbances can still be detected reliably even when the 

reference period only contains one-year of data. In this context, the proposed 

change detection approach provides an opportunity to detect forest 

disturbances using image time series with scarce historical observations. In 

addition, by leveraging both contextual and temporal information, there would 

be no need to pre-process huge amounts of historical data when monitoring 

forest disturbances. The proposed approach for combining contextual and 

temporal information in satellite data may however face challenges in mixed 

forests where deciduous and evergreen forests coexist within short distances 

mainly because of the way seasonality is reduced in the time series.  

Producing forest disturbance maps that have both high spatial and 

temporal accuracy is one of the major challenges facing near real-time forest 

change monitoring. This thesis aimed at addressing this challenge by using a 

set of space-time features to reduce false detections when aiming for timely 

detection of forest disturbances. In Chapter 4, I demonstrated that achieving 

both high spatial and temporal accuracy is possible by using a set of space-time 

features extracted from local data cubes of satellite image time series to predict 

forest disturbance. Using a set of space-time features to confirm forest 

disturbance increases the capacity to reject many false detections, without 

compromising the temporal accuracy. I found space-time features related to 

change in spatio-temporal variability, and spatio-temporal association with 

non-forest areas, to be the main predictors for forest disturbance. The 

magnitude of change and two consecutive negative anomalies, which are widely 
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used to distinguish forest disturbances from false detections, were not the main 

predictors for forest disturbance. However, it is should be noted that the 

importance of each space-time feature as predictor for forest disturbance may 

vary from one area to another, depending on the nature of forest disturbance. 

Nonetheless, like in Chapter 3, the findings in Chapter 4 emphase the 

importance of combining contextual and temporal information when aiming for 

accurate and timely detection forest disturbances. In particular, I showed that 

relying only on temporal information is not sufficient for accurate and timely 

detection of forest disturbances, especially when monitoring forest disturbances 

in areas where the disturbances occur at small spatial scale and in gradual 

manner. 

 

7.1.3 How can we combine observations from multiple satellites using space-

time information to improve near real-time forest change monitoring 

(Chapter 5 and 6)? 

Accurate and timely detection of forest disturbances using satellite data 

can only be achieved when using observations from multiple satellites. 

However, earth observing satellites often have different radiometric 

calibrations, viewing angles, orbit times, and spatial and spectral resolutions. 

The unit of measurement also differ between SAR and optical. These inter-

sensor differences complicate the combination of multi-sensor time series in 

two ways. First, the inter-sensor differences propagate disjoints in the time 

series which can amplify false detections. Second, deseasonalisation of the 

multi-time series cannot be done using a single seasonal model, especially 

when the sensors are using different measurement units.  

In Chapter 5, I demonstrated that inter-sensor differences in optical-time 

series can be reduced through spatial normalisation. The differences are not 

entirely removed from the time series, but they are significantly reduced 

resulting into temporally consistent time series suitable for forest change 

detection. More specifically, using contextual information to harmonise 

Landsat and Sentinel-2 time series allowed for monitoring of forest 

disturbances at 10m Sentinel-2 resolution while using Landsat time series as 

historical reference. Monitoring forest disturbance at 10m Sentinel-2 resolution 

improved the detection of forest disturbances when compared to 30m 

resolution.  

In Chapter 6, the problem of seasonality in multi-sensor time series was 

tackled through spatial normalisation. More specifically, spatial normalisation 

was used to reduce seasonality in SAR and optical time series, thus facilitating 

the integration of multiple SAR and optical time series to monitor forest 

disturbances at dry tropical forest in near real-time. By using spatial 

normalisation, the use of sensor-specific seasonal model to account for 

seasonality was avoided, thus enabling for rapid combination of observations 
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multiple satellites. In the Chapter 6, spatial normalisation approach was 

modified slightly. Instead of dividing each observation with P95, we subtracted 

P95 from each observation in order to preserve the magnitude of change.  The 

inter-sensor differences between  SAR and optical time series were instead 

reduced by converting observations into probability of forest (Reiche, de Bruin, 

et al. 2015). As result, in this Chapter, we could not conclude whether the 

spatial normalisation approach which is used in Chapter 5 to reduce inter-

sensor differences in Landsat-Sentinel-2 time series can also be used to reduce 

inter-sensor differences in SAR-optical time series. 

In Chapter 6, we showed that combining observations from Sentilel-1 and 

Landsat sensors leads to accurate and timely detection of forest disturbances, 

but timely detection of forest disturbances is accompanied by high commission 

error. In chapter 4 and 5, we showed that the commission error can be reduced 

by using a set of space-time features to confirm forest disturbances. Potentially 

space-time features can also reduce false detections in case of SAR-optical time 

series, but monitoring of forest disturbances from SAR-optical time series 

should shift from single pixel-analysis to space-time change analysis to take 

advantage of the space-time features.    

7.2 Reflection and outlook 

7.2.1 Reducing inter-sensor differences in SAR-optical time series through 

spatial normalisation 

In chapter 5, I demonstrated that inter-sensor differences in multi-optical 

sensor time series can be reduced through spatial normalisation to generate 

temporally consistent multi-sensor time series suitable for monitoring forest 

disturbances. I did not however investigate whether spatial normalisation can 

also be used to reduce inter-sensor differences between SAR and optical time. 

So, one of the outstanding questions that this thesis did not answer is whether 

spatial normalisation can be an alternative approach for reducing inter-sensor 

differences between  SAR and optical time series. Preliminary results show 

that spatial normalisation can also reduce inter-sensor differences in SAR-

optical time series, resulting in temporally consistent multi-sensor time series 

(Figure 7.1), suitable for forest change detection (Figure 7.2). Inter-sensor 

differences in SAR-optical time series are reduced by first inverting each SAR 

value in each image (E.q. 7.1), before applying spatial normalisation as 

proposed in Chapter 2. 

        ρ =
1

|𝚚|
                                                                                                                                     (7.1) 
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where |𝚚| is the absolute value of the original SAR backscatter, and ρ is an 

inverted SAR backscatter. Future work should aim at assessing whether SAR-

optical time series integrated through spatial normalisation can also result in 

accurate and timely detection of forest disturbances. Reducing inter-sensor 

differences between  SAR and optical time series through spatial normalisation 

is advantageous because:  i) the user can apply any change detection approach 

of choice, including curve-fitting approaches e.g. (Zhu et al. 2012; Verbesselt et 

al. 2012; Kennedy et al. 2010). 

Figure 7.1: An example of original and spatially normalised pixel-time series 

for Landsat NDVI, Sentinel-1 and ALOS-2 PALSAR-2 backscatter at 

undisturbed and disturbed pixels from a dry tropical forest in Bolivia. Note 

that the variations in the original time series, especially for Landsat, are not 

evident because of the scale on y-axis. 
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Figure 7.2: An example of forest disturbance detected from spatially 

normalised multi-sensor time series for Landsat, Sentinel-1 and ALOS-2 

PALSAR-2 using the BFAST (Verbesselt et al. 2012). The time series is for the 

disturbed pixel shown in Figure 7.1. The solid horizontal line (dark blue) is the 

fitted mean model, whereas the dashed vertical lines indicate the start of the 

monitoring period (black) and the date in which a forest disturbance was 

detected (dark green). Here, the forest disturbance was detected in Sentinel-1 

image. 

7.2.2 Space-time forest change monitoring using SAR-Optical time series 

This thesis demonstrated that space-time features, extracted from data 

cubes of satellite image time series, improve the detection of forest 

disturbances at sub-annual scale by increasing the capacity to reject false 

detections without compromising the temporal accuracy. However, in this 

thesis, I used the optical image time series to demonstrate the idea of using 

space-time features to confirm forest disturbances. Yet, forest change 

monitoring is increasingly done using a combination of SAR and optical time 

series. With this fact in mind, it is important that the idea of using space-time 

features is also extended to a combined SAR-optical time series.  To do this, 

however, a space-time change detection framework that can integrate SAR and 

optical time series is needed. There is high potential that the space-time 

change approach I developed in Chapter 3 and 4 can accommodate SAR- optical 

time series. This is so because, like seasonal variations, inter-sensor differences 

in SAR-optical time series can also be reduced through spatial normalisation 

(Figure 7.1 and 7.3). Figure 7.3 shows the distribution of SAR and optical 

observations in local data cube before and after spatial normalisation. 

Potentially, with this distribution after spatial normalisation, forest 

disturbance can be identified as extreme event in SAR- optical data cube, and 

space-time features can also be extracted from the data cube. However, future 

work should aim at investigating whether detecting forest disturbances from 

SAR-optical time series using the space-time change approach also leads to 

accurate and timely detection of forest disturbances.  
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Figure 7.3: Distribution of Landsat NDVI, and Sentinel-1 and ALOS-2 

PALSAR-2 backscatter in a local cube (a) before and (b) after spatial 

normalisation  

7.2.3 Toward timely characterisation of the drivers of forest change 

Apart from forest change itself, timely and accurate wall-to-wall 

information on the type and drivers of forest change is critically needed to 

understand why the forest cover is disturbed (Hansen et al. 2010). Currently, 

wall-to-wall information on the drivers for forest change is approximated from 

satellite data retrospectively (De Sy et al. 2015). With advancement in forest 

change detection realised in this thesis, whereby both spatial and temporal 

information are exploited for forest change detection, coupled recent 

advancement in machine learning and computer vision (Huang et al. 2006; 

Lary et al. 2016; Akram et al. 2017), there is now a unique opportunity to 

investigate whether drivers of forest change can be predicted from space-time 

features extracted from satellite image time series. Recently, features extracted 

from satellite images were used to predict spatially-explicit poverty levels using 

machine learning (Jean et al. 2016). There is also a need to investigate whether 

existing approaches for mapping forest regrowth (Devries, Decuyper, et al. 

2015) can be improved by exploiting space-time information in satellite data.  

Characterisation of forest changes should ideally determine the type of 

forest change (deforestation, forest degradation, or forest regrowth) and the 

driver of forest change (e.g. agriculture or timber harvesting), as well as the 

agent causing the forest disturbances (human or natural). Characterising 

drivers of forest change in this way would lead to timely and wall-to-wall 

determination of types and the drivers of forest change, thus contributing 

significantly towards the measurement, reporting and verification (MRV) 

systems under REDD+ mechanism (Reduce emissions from deforestation and 

forest degradation). To achieve this, however, elaborate training and validation 

data sets are essential. Acquiring elaborate training and validation data sets 
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for forest change is challenging (Cohen et al. 2010), but, with recent 

advancement in citizen science and community-based forest monitoring 

(Pratihast et al. 2012; Pratihast et al. 2016; Devries et al. 2016; Pratihast et al. 

2014), elaborate training and validation data sets for drivers of forest change 

can be acquired. Training and validation data sets acquired through citizen 

science and community-based forest monitoring can be complemented with 

data sourced through daily high-resolution image from nanosatellites sensors 

(e.g. Planet’s satellites) to also acquire training and validation data in areas 

where local people could not access. 

7.2.4 Optimising space-time forest change detection for large-area 

monitoring 

The space-time change detection framework proposed in this thesis was 

tested at three test sites, namely in Bolivia, Brazil and Ethiopia. These sites 

have major differences. For example, the Bolivian site is a dry tropical forest 

that exhibits strong seasonality. Forest disturbances at this site are mainly 

large blocks of deforestation events caused by industrial agricultural 

expansion. The forest at the Brazilian site is an evergreen tropical forest, and 

the forest disturbances are heterogeneous, composed of large and small-scale 

disturbances. The Ethiopian site is a moist Afromontane broadleaf evergreen 

forest with moderate seasonality. At this site, forest disturbances are occurring 

mainly at small spatial scale, and are caused by small-holder agriculture, 

human settlements expansion, industrial coffee plantations, and domestic 

firewood and charcoal extractions. Although these three sites represent a 

combination of some major differences in forest types and disturbances, they do 

not represent all important types of forest disturbance regimes that occur at 

regional or global scale. Therefore it is not possible to conclude that the 

proposed space-time change detection framework is ready for upscaling to 

regional or global scale. The space-time change detection framework should be 

evaluated further especially in dry tropical forest areas where disturbances 

occur at small spatial scales and in gradual manner, to properly optimise the 

approach for large-area forest change monitoring. In conclusion, it is critical 

that forest change detection methods are sufficiently flexible to adapt to 

different regions with varying forest disturbances in order to improve large-

area forest monitoring.   

7.2.5  Monitoring forest changes in a big earth observation data era: 

challenges and opportunities 

With recent advent of Copernicus Sentinel satellites, such as Sentinel-1 

and -2 sensors, coupled with existing Landsat sensors, free and open access 

medium resolution earth observation data with high temporal frequency are 
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increasingly becoming available. Such “big” earth observation data will have 

profound influence on how forest changes are monitored, especially on the 

monitoring frequency and the nature of disturbances that can be detected. For 

example, since it will be possible to have medium spatial resolution satellite 

image every few days even in cloudy tropical regions, mainly because of 

Sentinel-1 that penetrates clouds, forest disturbances especially small-scale 

disturbances caused for example by selective logging can be detected with high 

temporal details. However, monitoring forest changes using such voluminous 

earth observation data will present major challenges. For example, 

downloading and pre-processing such voluminous data and use it to monitor 

forest disturbances at high temporal frequency and over large area will be 

computationally challenging.  

Computationally, space-time forest change monitoring is more expensive 

than single pixel-time series change monitoring. Currently, the space-time 

change detection approach presented in this thesis is implemented using R 

programming language, which is computationally not fast. This makes the 

approach relatively slow for upscaling to large areas. So, to upscale space-time 

forest change monitoring approach to large areas requires further research on 

how to computationally optimise it, especially in the context of big earth 

observation data. Recent developments in spatio-temporal detection of forest 

disturbances in multi-dimensional satellite data arrays (Lu et al. 2016) coupled 

with ongoing initiatives which aim to scale-up spatio-temporal analytics of 

earth observation using R and SciDB (http://r-spatial.org/r/2016/05/11/scalable-

earth-observation-analytics.html) have potential to accelerate research on 

space-time forest change monitoring using multi-sensor image time series. 

Furthermore, cloud-computing infrastructure i.e. Google Earth Engine,  Earth 

Observation Data Centre for Water Resources Monitoring, NASA Earth 

Exchange and the planned European Open Science Cloud will be crucial for 

overcoming the challenges presented by large-area and frequency monitoring of 

forest changes using big earth observation data. However, for such cloud-

computing infrastructures to be more effective, the image pre-processing and 

change detection algorithms should remain open-source to enable reproducible 

science and to accelerate forest change monitoring. Overall, accurate, timely 

and consistent co-registration of data from multiple satellites is a key challenge 

that should be addressed to ensure exploitation of such multi-sensor data for 

forest change monitoring. 



 

  



 

 

 

References 

 

Achard, F. et al., 2014. Determination of tropical deforestation rates and 

related carbon losses from 1990 to 2010. Global change biology, 20, 

pp.2540–2554. 

Achard, F. et al., 2007. Pan-tropical monitoring of deforestation. 

Environmental Research Letters, 2(45022), p.11. 

Aerts, R., Berecha, G. & Honnay, O., 2015. Protecting coffee from 

intensification. Science, 347(6218), p.139. 

Akram, T. et al., 2017. Towards real-time crops surveillance for disease 

classification : exploiting parallelism in computer vision. Computers and 
Electrical Engineering, 59, pp.15–26.  

Alves, D.S., 2002. Space-time dynamics of deforestation in Brazilian Amazônia. 

International Journal of Remote Sensing, 23(14), pp.2903–2908. 

Anderson, L.O. et al., 2005. Assessment of deforestation in near real time over 

the Brazilian Amazon using multitemporal fraction images derived from 

Terra MODIS. IEEE Geoscience and Remote Sensing Letters, 2(3), 

pp.315–318. 

Arneth, A. et al., 2017. Historical carbon dioxide emissions caused by land-use 

changes are possibly larger than assumed. Nature Geoscience, 10, pp.79–

84. 

Asner, G.P., 2001. Cloud cover in Landsat observations of the Brazilian 

Amazon. International Journal of Remote Sensing, 22(18), pp.3855–3862. 

Asner, G.P. et al., 2013. Elevated rates of gold mining in the Amazon revealed 

through high-resolution monitoring. PNAS, 110(46), pp.18454–18459. 

Assunção, J., Gandour, C. & Rocha, R., 2013. DETERring Deforestation in the 
Brazilian Amazon: Environmental Monitoring and Law Enforcement, Rio 

De Janeiro: Climate Policy Initiative. 

Bonan, G.B., 2008. Forests and climate change: climate benefits of forests. 

Science, 320, pp.1444–1450. 

Breiman, L.E.O., 2001. Random Forests. Machine Learning, 45, pp.5–32. 

Carter, S. et al., 2015. Mitigation of agriculture emissions in the tropics: 

comparing forest land-sparing options at the national level. 

Biogeosciences Discussions, 12(7), pp.5435–5475. 



References 

  166 

Chu, C., Stinchcombe, M. & White, H., 1996. Monitoring structural change. 

Econometrica, 64(5), pp.1045–1065. 

Ciais, P. et al., 2005. Europe-wide reduction in primary productivity caused by 

the heat and drought in 2003. Nature, 437(7058), pp.529–33. 

Cleveland, R.B. et al., 1990. STL: A seasonal-trend decomposition procedure 

based on loess. Journal of Official Statistics, 6, pp.3–73. 

Cohen, J.E., 2003. Human Population : The Next Half Century. Science, 302, 

pp.1172–1175. 

Cohen, W.B. et al., 2017. How similar are forest disturbance maps derived from 

different Landsat time series algorithms? Forests, 8, p.98. 

Cohen, W.B., Yang, Z. & Kennedy, R., 2010. Detecting trends in forest 

disturbance and recovery using yearly Landsat time series: 2 . 

TimeSync — Tools for calibration and validation. Remote Sensing of 
Environment, 114(12), pp.2911–2924.  

Coppin, P. et al., 2014. Digital change detection methods in ecosystem 

monitoring : a review. International Journal of Remote Sensing, 25(9), 

pp.1565–1596. 

Coumou, D. & Rahmstorf, S., 2012. A decade of weather extremes. Nature 
Climate Change, 2(7), pp.1–6.  

Davis, R. a. & Mikosch, T., 2008. Extreme value theory for space-time processes 

with heavy-tailed distributions. Stochastic Processes and their 
Applications, 118, pp.560–584. 

DeFries, R. et al., 2007. Earth observations for estimating greenhouse gas 

emissions from deforestation in developing countries. Environmental 
Science & Policy, 10(4), pp.385–394. 

Defries, R.S., Hansen, M.C. & Townshend, J.R.G., 2000. Global continuous elds 

of vegetation characteristics: a linear mixture model applied to multi-year 

8 km AVHRR data. International Journal of Remote Sensing, 21(6), 

pp.1389–1414. 

Devries, B. et al., 2016. Characterizing forest change using community-based 

monitoring data and Landsat time series. PLoS ONE, 11(3), p.e0147121. 

Devries, B., Verbesselt, J., et al., 2015. Robust monitoring of small-scale forest 

disturbances in a tropical montane forest using Landsat time series. 

Remote Sensing of Environment, 161, pp.107–121.  

Devries, B., Decuyper, M., et al., 2015. Tracking disturbance-regrowth 

dynamics in tropical forests using structural change detection and 

Landsat time series. Remote Sensing of Environment, 169, pp.320–334.  



                                                                                                                                                  References  

 167 

Diniz, C.G. et al., 2015. DETER-B: The New Amazon Near Real-Time 

Deforestation Detection System. IEEE Journal of Selected Topics in 
Applied Earth Observations and Remote Sensing, 8(7), pp.3619–3628. 

Dresen, E. et al., 2014. Fuelwood savings and carbon emission reductions by 

the use of improved cooking stoves in an afromontane forest, Ethiopia. 

Land, 3, pp.1137–1157. 

Dutrieux, L.P. et al., 2015. Monitoring forest cover loss using multiple data 

streams, a case study of a tropical dry forest in Bolivia. ISPRS Journal of 
Photogrammetry and Remote Sensing, 107, pp.112–125. 

Fan, X. & Liu, Y., 2017. A Generalized Model for Intersensor NDVI Calibration 

and Its Comparison With Regression Approaches. IEEE Transactions on 
Geoscience and Remote Sensing, 55(3), pp.1842–1852. 

FAO, 2015. Global Forest Resources Assessment 2015, 

Fearnside, P.M., 1996. Amazonian deforestation and global warming: carbon 

stocks in vegetation replacing Brazil’s Amazon forest. Forest Ecology and 
Management, 80, pp.21–34. 

Fearnside, P.M., 2000. Global warming and tropical land-use change: 

greenhouse gas emissions from biomass burning, decomposition and soils 

in forest conversion, shifting cultivation and secondary vegetation. 

Climatic Change, 46, pp.115–158. 

Fisher, B., 2010. African exception to drivers of deforestation. Nature 
Geoscience, 3, pp.375–376. 

Foody, G., 2002. Status of land cover classification accuracy assessment. 

Remote Sensing of Environment, 80(1), pp.185–201. 

GFOI, 2015. GFOI R & D Plan for 2015+: An action plan for advancing priority 

R&D topics related to the use of Remote Sensing in National Forest 

Monitoring. Version 1.1, (Version 1.1), p.105. 

Glasbey, C.A., Graham, R. & Hunter, A.G.M., 2001. Spatio-temporal variability 

of solar energy across a region : a statistical modelling approach. Solar 
Energy, 70(4), pp.373–381. 

Green, R.E. et al., 2005. Farming and the Fate of Wild Nature. Science, 307, 

pp.550–556. 

Griffiths, P. et al., 2012. Using annual time-series of Landsat images to assess 

the effects of forest restitution in post-socialist Romania. Remote Sensing 
of Environment, 118, pp.199–214. 

Grogan, K. et al., 2015. Cross-border forest disturbance and the role of natural 

rubber in mainland Southeast Asia using annual Landsat time series. 



References 

  168 

Remote Sensing of Environment, 169, pp.438–453. 

Hammer, D., Kraft, R. & Wheeler, D., 2014. Alerts of forest disturbance from 

MODIS imagery. International Journal of Applied Earth Observation and 
Geoinformation, 33, pp.1–9.  

Hammer, D., Kraft, R. & Wheeler, D., 2009. FORMA: Forest Monitoring for 
Action-Rapid Identification of Pan-Tropical Deforestation Using 
Moderate-Resolution Remotely Sensed Data, Rochester, New York: Centre 

for Global Development. 

Hamunyela, E., Verbesselt, J., Bruin, S. De, et al., 2016. Monitoring 

deforestation at sub-annual scales as extreme events in Landsat data 

cubes. Remote sensing, 8, p.651. 

Hamunyela, E. et al., 2013. Trends in Spring Phenology of Western European 

Deciduous Forests. Remote Sensing, 5(12), pp.6159–6179. 

Hamunyela, E. et al., Using space-time features to improve detection of forest 

disturbances using Landsat time series. Remote sensing, In review. 

Hamunyela, E., Verbesselt, J. & Herold, M., 2016. Using spatial context to 

improve early detection of deforestation from Landsat time series. Remote 
Sensing of Environment, 172, pp.126–138.  

Hansen, M.. et al., 2016. Humid tropical forest disturbance alerts using 

Landsat data. Environmental Research Letters, 11(3), p.34008.  

Hansen, M.C. et al., 2000. Global land cover classification at 1 km spatial 

resolution using a classification tree approach. International Journal of 
Remote Sensing, 21(6), pp.1331–1364. 

Hansen, M.C. et al., 2003. Global Percent Tree Cover at a Spatial Resolution of 

500 Meters: First Results of the MODIS Vegetation Continuous Fields 

Algorithm. Earth Interactions, 7(10), pp.1–13. 

Hansen, M.C. et al., 2013. High-resolution global maps of 21st-century forest 

cover change. Science, 342, pp.850–853. 

Hansen, M.C. & Defries, R.S., 2004. Detecting Long-term Global Forest Change 

Using Continuous Fields of Tree-Cover Maps from 8-km Advanced Very 

High Resolution Radiometer ( AVHRR ) Data for the Years 1982 – 99. 

Ecosystems, 7, pp.695–716. 

Hansen, M.C. & Loveland, T.R., 2012. A review of large area monitoring of land 

cover change using Landsat data. Remote Sensing of Environment, 122, 

pp.66–74.  

Hansen, M.C., Stehman, S. V & Potapov, P. V, 2010. Quantification of global 

gross forest cover loss. PNAS, 107(19), pp.8650–8655. 



                                                                                                                                                  References  

 169 

Heimann, M. & Reichstein, M., 2008. Terrestrial ecosystem carbon dynamics 

and climate feedbacks. Nature, 451, pp.289–292. 

Hilker, T., Wulder, M.A., Coops, N.C., Linke, J., et al., 2009. A new data fusion 

model for high spatial- and temporal-resolution mapping of forest 

disturbance based on Landsat and MODIS. Remote Sensing of 
Environment, 113(8), pp.1613–1627.  

Hilker, T., Wulder, M.A., Coops, N.C., Seitz, N., et al., 2009. Generation of 

dense time series synthetic Landsat data through data blending with 

MODIS using a spatial and temporal adaptive reflectance fusion model. 

Remote Sensing of Environment, 113(9), pp.1988–1999.  

Hoekman, D.H. & Quiriones, M.J., 2000. Land cover type and biomass 

classification using AirSAR data for evaluation of monitoring scenarios in 

the Colombian Amazon. IEEE Transactions on Geoscience and Remote 
Sensing, 38(2), pp.685–696. 

Huang, C. et al., 2009. Dynamics of national forests assessed using the Landsat 

record : Case studies in eastern United States. Remote Sensing of 
Environment, 113(7), pp.1430–1442.  

Huang, G., Zhu, Q. & Siew, C., 2006. Extreme learning machine : Theory and 

applications. Neurocomputing, 70, pp.489–501. 

Ichoku, C. et al., 2002. A spatio-temporal approach for global validation and 

analysis of MODIS aerosol products. Geophysical Research Letters, 

29(12), p.1616. 

Jean, N. et al., 2016. Combining satellite imagery and machine learning to 

predict poverty. Science, 353(6301), pp.790–794. 

Jenkins, M., 2007. Prospects for Biodiversity. Science, 302, pp.1175–1177. 

Joshi, N. et al., 2016. A Review of the Application of Optical and Radar Remote 

Sensing Data Fusion to Land Use Mapping and Monitoring. Remote 
Sensing, 8, p.70. 

Ke, Y. et al., 2015. Characteristics of Landsat 8 OLI-derived NDVI by 

comparison with multiple satellite sensors and in-situ observations. 

Remote Sensing of Environment, 164, pp.298–313.  

Kennedy, R.E., Yang, Z. & Cohen, W.B., 2010. Detecting trends in forest 

disturbance and recovery using yearly Landsat time series: 1. 

LandTrendr — Temporal segmentation algorithms. Remote Sensing of 
Environment, 114(12), pp.2897–2910. 

Laliberte, A.S., Browning, D.M. & Rango, A., 2012. A comparison of three 

feature selection methods for object-based classification of sub-decimeter 



References 

  170 

resolution UltraCam-L imagery. International Journal of Applied Earth 
Observation and Geoinformation, 15, pp.70–78. 

Lamb, A. et al., 2016. The potential for land sparing to o set greenhouse gas 

emissions from agriculture. Nature Climate Change, 6, pp.488–492. 

Lary, D.J. et al., 2016. Machine learning in geosciences and remote sensing. 

Geoscience Frontiers, 7(1), pp.3–10.  

Lehmann, E.A. et al., 2012. Joint processing of Landsat and ALOS-PALSAR 

data for forest mapping and monitoring. IEEE Transactions on Geoscience 
and Remote Sensing, 50(1), pp.55–67. 

Lehmann, E.A. et al., 2015. SAR and optical remote sensing : Assessment of 

complementarity and interoperability in the context of a large-scale 

operational forest monitoring system. Remote Sensing of Environment, 
156, pp.335–348. 

Leisch, F., Hornik, K. & Kuan, C.-M., 2000. Monitoring structural changes with 

the generalized fluctuation test. Econometric Theory, 16, pp.835–854. 

Lhermitte, S. et al., 2011. A comparison of time series similarity measures for 

classification and change detection of ecosystem dynamics. Remote 
Sensing of Environment, 115(12), pp.3129–3152. 

Lhermitte, S. et al., 2010. A pixel based regeneration index using time series 

similarity and spatial context. Photogrammetric Engineering and Remote 
Sensing, 76(6), pp.673–682. 

Li, P., Jiang, L. & Feng, Z., 2014. Cross-Comparison of Vegetation Indices 

Derived from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and 

Landsat-8 Operational Land Imager (OLI) Sensors. Remote Sensing, 6, 

pp.310–329. 

Lobell, D.B., Sibley, A. & Ortiz-monasterio, J.I., 2012. Extreme heat effects on 

wheat senescence in India. Nature Climate Change, 2(3), pp.186–189.  

Lu, M. et al., 2016. Spatio-temporal change detection from multidimensional 

arrays : Detecting deforestation from MODIS time series. ISPRS Journal 
of Photogrammetry and Remote Sensing, 117, pp.227–236.  

Luyssaert, S. et al., 2008. Old-growth forests as global carbon sinks. Nature, 

455, pp.213–215. 

Lynch, J. et al., 2013. Choose satellites to monitor deforestation. Nature, 

496(7445), pp.293–294. 

Mandanici, E. & Bitelli, G., 2016. Preliminary Comparison of Sentinel-2 and 

Landsat 8 Imagery for a Combined Use. Remote Sensing, 8, p.1014. 



                                                                                                                                                  References  

 171 

Masek, J.G. et al., 2006. A Landsat surface reflectance dataset for North 

America, 1990-2000. IEEE Geoscience and Remote sensing letters, 3(1), 

pp.68–72. 

Meehl, G.A. & Tebaldi, C., 2004. More intense , more frequent , and longer 

lasting heat waves in the 21st century. Science, 305, pp.994–997. 

Motohka, T. et al., 2014. Using time series PALSAR gamma nought mosaics for 

automatic detection of tropical deforestation: A test study in Riau, 

Indonesia. Remote Sensing of Environment, 155, pp.79–88. 

Nepstad, D. et al., 2014. Slowing Amazon deforestation through public policy 

and interventions in beef and soy supply chains. Science, 344(6188), 

pp.1118–23. 

Nepstad, D. et al., 2008. The end of deforestation in the Brazilian Amazon. 

Science, 326, pp.1350–1351. 

Newbold, T. et al., 2015. Global effects of land use on local terrestrial 

biodiversity. Nature, 520, pp.45–50. 

Olofsson, P. et al., 2014. Good practices for estimating area and assessing 

accuracy of land change. Remote Sensing of Environment, 148, pp.42–57. 

Olofsson, P. et al., 2013. Making better use of accuracy data in land change 

studies : Estimating accuracy and area and quantifying uncertainty using 

strati fi ed estimation. Remote Sensing of Environment, 129, pp.122–131.  

Pan, Y. et al., 2011. A large and persistent carbon sink in the world’s forests. 

Science, 333(6045), pp.988–93. 

Pipitone, C. et al., 2016. Data Service Platform for Sentinel-2 Surface 

Reflectance and Value-Added Products: System Use and Examples. 

Remote Sensing, 8, p.938. 

Potapov, P. V. et al., 2012. Quantifying forest cover loss in Democratic Republic 

of the Congo, 2000–2010, with Landsat ETM+ data. Remote Sensing of 
Environment, 122, pp.106–116. 

Pratihast, A.K. et al., 2014. Combining satellite data and community-based 

observations for forest monitoring. Forests, 5, pp.2464–2489. 

Pratihast, A.K. et al., 2016. Design and implementation of an interactive web-

based near real-time forest monitoring system. PLoS ONE, 11(3), 

p.e0150935. 

Pratihast, A.K. et al., 2012. Mobile devices for community-based REDD+ 

monitoring: a case study for Central Vietnam. Sensors, 13(1), pp.21–38. 

Quegan, S. & Yu, J.J., 2001. Filtering of multichannel SAR images. IEEE 



References 

  172 

Transactions on Geoscience and Remote Sensing, 39(11), pp.2373–2379. 

Le Quéré, C. et al., 2009. Trends in the sources and sinks of carbon dioxide. 

Nature Geoscience, 2(12), pp.831–836.  

Reiche, J., de Bruin, S., et al., 2015. A bayesian approach to combine Landsat 

and ALOS PALSAR time series for near real-time deforestation detection. 

Remote sensing, 7, pp.4973–4996. 

Reiche, J., 2015. Combining SAR and optical satellite image time series for 
tropical forest monitoring PhD Thesis., Wageningen University, The 

Netherlands. 

Reiche, J. et al., 2016. Combining satellite data for better tropical forest 

monitoring. Nature Climate Change, 6(2), pp.120–122.  

Reiche, J. et al., 2013. Feature Level Fusion of Multi-Temporal ALOS PALSAR 

and Landsat Data for Mapping and Monitoring of Tropical Deforestation 

and Forest Degradation. IEEE Journal of Selected Topics in Applied 
Earth Observations and Remote Sensing, 6(5), pp.2159–2173. 

Reiche, J., Verbesselt, J., et al., 2015. Fusing Landsat and SAR time series to 

detect deforestation in the tropics. Remote Sensing of Environment, 156, 

pp.276–293.  

Reiche, J. et al., Improving near-real time deforestation monitoring in tropical 

dry forests by combining dense Sentinel-1 time series with Landsat and 

ALOS-2 PALSAR-2. Remote Sensing of Environment, In review. 

Reichstein, M. et al., 2013. Climate extremes and the carbon cycle. Nature, 

500(7462), pp.287–295.  

Riano, D. et al., 2002. Assessment of vegetation regeneration after fire through 

multitemporal analysis of AVIRIS images in the Santa Monica 

Mountains. Remote Sensing of Environment, 79, pp.60–71. 

Rosenqvist, A. et al., 2007. ALOS PALSAR : A Pathfinder Mission for Global-

Scale Monitoring of the Environment. IEEE Transactions on Geoscience 
and Remote Sensing, 45(11), pp.3307–3316. 

Rosenqvist, A. et al., 2014. Operational performance of the ALOS global 

systematic acquisition strategy and observation plans for ALOS-2 

PALSAR-2. Remote Sensing of Environment, 155, pp.3–12.  

Rouse, J.. et al., 1974. Monitoring vegetation systems in the Great Plains with 

ERTS. In 3rd Earth Resource Technology Satellite (ERTS) Symposium. 

pp. 48–62. 

Roy, D.P. et al., 2016. Characterization of Landsat-7 to Landsat-8 reflective 

wavelength and normalized difference vegetation index continuity. 



                                                                                                                                                  References  

 173 

Remote Sensing of Environment, 185, pp.57–70.  

Ryan, C.M. et al., 2012. Quantifying small-scale deforestation and forest 

degradation in African woodlands using radar imagery. Global Change 
Biology, 18(1), pp.243–257. 

Saatchi, S. et al., 2012. Persistent effects of a severe drought on Amazonian 

forest canopy. PNAS, 110(2), pp.565–570. 

van der Sanden, J.J., 1997. Radar remote sensing to support tropical forest 
management, Georgetown, Guyana: Tropenbos-Guyana Programme. 

Sannier, C. et al., 2014. Using the regression estimator with Landsat data to 

estimate proportion forest cover and net proportion deforestation in 

Gabon. Remote Sensing of Environment, 151, pp.138–148.  

Scarino, B.R. et al., 2016. A Web-Based Tool for Calculating Spectral Band 

Difference Adjustment Factors Derived From SCIAMACHY 

Hyperspectral Data. IEEE Transactions on Geoscience and Remote 
Sensing, 54(5), pp.2529–2542. 

Schmitt, C.B. et al., 2010. Floristic diversity in fragmented Afromontane 

rainforests: Altitudinal variation and conservation importance. Applied 
Vegetation Science, 13, pp.291–304. 

Schultz, M. et al., 2016. Performance of vegetation indices from Landsat time 

series in deforestation monitoring. International Journal of Applied Earth 
Observations and Geoinformation, 52, pp.318–327. 

See, L., Fritz, S. & Victoria, D.G., 2014. Beyond sharing Earth observations. 

Nature, 514, p.168. 

Seneca Creek Associates, 2014. “Illegal” Logging and Global Wood Markets: 

The Competitive Impacts on the U.S. Wood Products Industry. Prepared 

for American Forest & Paper Association by Seneca Creek Associates and 

Wood Resources International. 

Setiawan, Y., Kustiyo, K. & Darmawan, A., 2016. A simple method for 

developing near real-time nationwide forest monitoring for Indonesia 

using MODIS near- and shortwave infrared bands. Remote Sensing 
Letters, 7(4). 

Sexton, J.O. et al., 2013. Global, 30-m resolution continuous fields of tree cover: 

Landsat-based rescaling of MODIS Vegetation Continuous Fields with 

lidar-based estimates of error. International Journal of Digital Earth, 

6(5), pp.427–448. 

Shimabukuro, Y.E. et al., 2006. Near real time detection of deforestation in the 

Brazilian Amazon using MODIS imagery. Revista Ambiente & Água - An 



References 

  174 

Interdisciplinary Journal of Applied Science, 1(1), pp.37–47. 

Shimada, M. et al., 2014. New global forest/non-forest maps from ALOS 

PALSAR data (2007–2010). Remote Sensing of Environment, 155, pp.13–

31. 

Souza, Jr, C. et al., 2013. Ten-Year Landsat Classification of Deforestation and 

Forest Degradation in the Brazilian Amazon. Remote Sensing, 5(11), 

pp.5493–5513. 

Stehman, S. V., 2012. Impact of sample size allocation when using stratified 

random sampling to estimate accuracy and area of land-cover change. 

Remote Sensing Letters, 3(2), pp.111–120. 

Stehman, S. V., 2009. Sampling designs for accuracy assessment of land cover. 

International Journal of Remote Sensing, 30(20), pp.5243–5272. 

Steven, M.D. et al., 2003. Intercalibration of vegetation indices from different 

sensor systems. Remote Sensing of Environment, 88, pp.412–422. 

Storey, J. et al., 2017. A note on the temporary misregistration of Landsat-8 

Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument 

(MSI) imagery. Remote Sensing of Environment, 186, pp.121–122.  

Strobl, C. et al., 2008. Conditional variable importance for random forests. 

BMC Bioinformatics, 9, p.307. 

De Sy, V. et al., 2015. Land use patterns and related carbon losses following 

deforestation in South America. Environmental Research Letters, 10. 

De Sy, V. et al., 2012. Synergies of multiple remote sensing data sources for 

REDD + monitoring. Current Opinion in Environmental Sustainability, 4, 

pp.696–706. 

Thapa, R.B. et al., 2013. The tropical forest in south east Asia: Monitoring and 

scenario modeling using synthetic aperture radar data. Applied 
Geography, 41, pp.168–178. 

Tian, F. et al., 2015. Evaluating temporal consistency of long-term global NDVI 

datasets for trend analysis. Remote Sensing of Environment, 163, pp.326–

340.  

Torres, R. et al., 2012. GMES Sentinel-1 mission. Remote Sensing of 
Environment, 120, pp.9–24. 

Tucker, C.J., 1979. Red and photographic infrared linear combinations for 

monitoring vegetation. Remote Sensing of Environment, 150, pp.127–150. 

Tyukavina, A. et al., 2013. National-scale estimation of gross forest 

aboveground carbon loss : a case study of the Democratic Republic of the 



                                                                                                                                                  References  

 175 

Congo. Environmental Research Letters, 8, p.14. 

Uddstrom, M.J. & Oien, N.A., 1999. On the use of high-resolution satellite data 

to describe the spatial and temporal variability of sea surface 

temperatures in the New Zealand region. Journal of Geophysical 
Research, 104(C9), pp.20729–20751. 

Ulaby, T.F., Moore, R.K. & Fung, A.K., 1986. Microwave remote sensing - 
Active and Passive, Norwood, USA: Artech House. 

UNFCCC, 2009. Cost of implementing methodologies and monitoring systems 

relating to estimates of emissions from deforestation and forest 

degradation , the assessment of carbon stocks and greenhouse gas 

emissions from changes in forest cover , and the enhancement of for. 

UNFCCC Secretary, Bonn, Germany. 

Uwe, M.-W. et al., 2013. Sentinel-2 level 2A prototype processor : architecture , 

algorithms, and first results. In ESA Living Planet Symposium 2013, 
Edinburgh, UK. pp. 3–10. 

Vaglio Laurin, G. et al., 2013. Optical and SAR sensor synergies for forest and 

land cover mapping in a tropical site in West Africa. International Journal 
of Applied Earth Observation and Geoinformation, 21, pp.7–16. 

Venables, W.N. & Ripley, B.D., 2002. MASS: modern applied statistics with S. 

Issues of Accuracy and Scale, p.868. 

Verbesselt, J., Hyndman, R., Newnham, G., et al., 2010. Detecting trend and 

seasonal changes in satellite image time series. Remote Sensing of 
Environment, 114(1), pp.106–115. 

Verbesselt, J., Hyndman, R., Zeileis, A., et al., 2010. Phenological change 

detection while accounting for abrupt and gradual trends in satellite 

image time series. Remote Sensing of Environment, 114(12), pp.2970–

2980.  

Verbesselt, J., Zeileis, A. & Herold, M., 2012. Near real-time disturbance 

detection using satellite image time series. Remote Sensing of 
Environment, 123, pp.98–108.  

Verhegghen, A. et al., 2016. The Potential of Sentinel Satellites for Burnt Area 

Mapping and Monitoring in the Congo Basin Forests. Remote Sensing, 8, 

pp.1–22. 

Vermote, E. et al., 2016. Preliminary analysis of the performance of the 

Landsat 8 / OLI land surface re fl ectance product. Remote Sensing of 
Environment, 185, pp.46–56. 

Vermote, E., Justice, C.O. & Bréon, F., 2009. Towards a Generalized Approach 



References 

  176 

for Correction of the BRDF Effect in MODIS Directional Reflectances. 

IEEE Transactions on Geoscience and Remote Sensing, 47(3), pp.898–908. 

Wegmüller, U. et al., 2016. Sentinel-1 support in the GAMMA software. 

Procedia Computer Science, 100, pp.1305–1312. 

Werner, C. & Strozzi, T., 2000. Gamma SAR and interferometric processing 

software. In Proceeedings of the 2000 ERS-ENVISAT Symposium. 

Gothenburg, Sweden. 

Wheeler, D. et al., 2014. Satellite-based forest clearing detection in the 
Brazilian Amazon: FORMA, DETER, and PRODES, World Resources 

Institute. 

Whittle, M. et al., 2012. Detection of tropical deforestation using ALOS-

PALSAR: A Sumatran case study. Remote Sensing of Environment, 124, 

pp.83–98. 

Wilson, E., 1927. Probable inference, the law of succession, and statistical 

inference. Journal of the American Statistical Association, 22(158), 

pp.209–212. 

Woodhouse, I., van der Sanden, J.J. & Hoekman, D.H., 1999. Scatterometer 

observations of seasonal backscatter variation over tropical rain forest. 

IEEE Transactions on Geoscience and Remote Sensing, 37(2), pp.859–861. 

Woodhouse, I.H., 2005. Introduction to Microwave Remote Sensing, CRC Press. 

Wulder, M.A. et al., 2012. Opening the archive : How free data has enabled the 

science and monitoring promise of Landsat. Remote Sensing of 
Environment, 122, pp.2–10.  

Wulder, M.A. & Coops, N.C., 2013. Make Earth observations open access. 

Nature, 513, pp.2013–2014. 

Xin, Q. et al., 2013. Toward near real-time monitoring of forest disturbance by 

fusion of MODIS and Landsat data. Remote Sensing of Environment, 135, 

pp.234–247. 

Zeileis, A. et al., 2005. Monitoring structural change in dynamic econometric 

models. Journal of Applied Econometrics, 20(1), pp.99–121. 

Zeileis, A., Shah, A. & Patnaik, I., 2010. Testing , monitoring , and dating 

structural changes in exchange rate regimes. Computational Statistics 
and Data Analysis, 54(6), pp.1696–1706.  

Zhang, H.K. & Roy, D.P., 2016. Landsat 5 Thematic Mapper re fl ectance and 

NDVI 27-year time series inconsistencies due to satellite orbit change. 

Remote Sensing of Environment, 186, pp.217–233. 



                                                                                                                                                  References  

 177 

Zhang, J., 2010. Multi-source remote sensing data fusion: status and trends. 

International Journal of Image and Data Fusion, 1(1), pp.5–24. 

Zhu, Z. & Woodcock, C.E., 2014a. Automated cloud , cloud shadow , and snow 

detection in multitemporal Landsat data : An algorithm designed speci fi 

cally for monitoring land cover change. Remote Sensing of Environment, 
152, pp.217–234. 

Zhu, Z. & Woodcock, C.E., 2014b. Continuous change detection and 

classification of land cover using all available Landsat data. Remote 
Sensing of Environment, 144, pp.152–171. 

Zhu, Z. & Woodcock, C.E., 2012. Object-based cloud and cloud shadow detection 

in Landsat imagery. Remote Sensing of Environment, 118, pp.83–94.  

Zhu, Z., Woodcock, C.E. & Olofsson, P., 2012. Continuous monitoring of forest 

disturbance using all available Landsat imagery. Remote Sensing of 
Environment, 122, pp.75–91. 

Zscheischler, J. et al., 2013. Detection and attribution of large spatiotemporal 

extreme events in Earth observation data. Ecological Informatics, 15, 

pp.66–73.  



 

 



 

 

 

Summary 

 

Forests provide essential goods and services to humanity, but human-

induced forest disturbances have been on ongoing at alarming rates, 

undermining the capacity for forests to continue providing essential goods and 

services. In recent years, the understanding of the short-term and long-term 

impacts of deforesting and degrading forest ecosystems has improved, and 

global efforts to reduce forest loss are ongoing. However, in many parts of the 

globe, significant forest areas continue to be lost. To fully protect forest 

ecosystems efficiently, timely, reliable and location-specific information on new 

forest disturbances is needed. Frequent and large-area forest mapping and 

monitoring using satellite observations can provide timely and cost-effective 

information about new forest disturbances. However, there are still key 

weaknesses associated with existing forest monitoring systems. For example, 

the capacity for forest monitoring systems to detect new disturbances 

accurately and timely is often limited by persistent cloud cover and strong 

seasonal dynamics. Persistent cloud can be addressed by using observations 

from multiple satellite sensors, but satellite sensors often have inter-sensor 

differences which make integration of observations from multiple sensors 

challenging. Seasonality can be accounted for using a seasonal model, but 

image time series are often acquired at irregular intervals, making it difficult 

to properly account for seasonality. Furthermore, with existing forest 

monitoring systems, detecting subtle, low-magnitude disturbances remains 

challenging, and timely detection of forest disturbances is often accompanied 

by many false detections. The overall objective of this thesis is to improve forest 

change monitoring by addressing the key challenges which hinders accurate 

and timely detection of forest disturbances from satellite data. In the next 

paragraphs, I summarise how this thesis tackled some of the key challenges 

which hamper effective monitoring of forest disturbances using satellite 

observations.  

Chapter 2 addresses the challenge of seasonality by developing a spatial 

normalisation approach that allows us to account for seasonality in irregular 

image time series when monitoring forest disturbances. In this chapter, I 

showed that reducing seasonality in image time series using spatial 

normalisation leads to timely detection of forest disturbances when compared 

to a seasonal model approach. With spatial normalisation, near real-time forest 

monitoring in dry forests, which has been challenging for many years, is now 

possible. Applying spatial normalisation in areas where evergreen and 

deciduous forests co-exist is however challenging. Therefore, further research is 

needed to improve the spatial normalisation approach to ensure that it is 



Summary 

 180 

applicable to areas with a combination of different forest types. In particular, a 

spatial normalisation approach which is forest type-specifics is desirable. In 

this chapter, forest disturbances were detected by analysing single pixel-time 

series. Spatial information was only used to reduce seasonality.  

Taking in account the fact that forest disturbances are spatio-temporal 

events, I investigated whether there is an added-value of combining both 

spatial and temporal information when monitoring forest disturbances from 

satellite image time series. To do this, I first developed a space-time change 

detection method that detects forest disturbances as extreme events in satellite 

data cubes (Chapter 3). I showed that, by combining spatial and temporal 

information, forest disturbances can still be detected reliably even with limited 

historical observations. Therefore, unlike approaches which detect forest 

disturbances by analysing single pixel- time series, the space-time approach 

does not require huge amount of historical images to be pre-processed when 

monitoring forest disturbances. I then evaluated the added-value of using 

space-time features when confirming forest disturbances (Chapter 4). I showed 

that using a set of space-time features to confirm forest disturbances enhance 

forest monitoring significantly by reducing false detections without 

compromising temporal accuracy. With space-time features, the discrimination 

of forest disturbances from false detections is no longer based on temporal 

information only, hence providing opportunity to also detect low-magnitude 

disturbances with high confidence. Based on the analysis for conditional 

variable importance, I showed that features which are computed using both 

spatial and temporal information were the most important predictors of forest 

disturbances, thus enforcing the view that forest disturbances should be 

treated as spatio-temporal in order to improve forest change monitoring.   

In Chapter 2 – 4, forest disturbances where detected from medium 

resolution Landsat time series. Yet, recent studies showed that small-scale 

forest disturbances are often omitted when using Landsat time series. In 

Chapter 5, I investigated whether detection of small-scale forest disturbances 

can be improved by using the 10m resolution time series from recently 

launched Sentinel-2 sensor. I also investigated whether the spatial 

normalisation approach developed in Chapter 2 can be used to reduce inter-

sensor differences in multi-sensor optical time series.  I showed that the 10m 

resolution Sentinel-2 time series improves the detection of small-scale forest 

disturbances when compared to 30m resolution. However, the 10m resolution 

does not supersede the importance of frequent satellite observations when 

monitoring forest disturbances.  I also showed that spatial normalisation 

approach developed in Chapter 2 can reduce inter-sensor differences in multi-

sensor optical time series significantly to generate temporally consistent time 

series suitable for forest change detection. Spatial normalisation does not 

completely remove inter-sensor differences, but the differences are significantly 

reduced. 
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Monitoring of forest disturbances is increasingly done using a combination 

of Synthetic Aperture Radar (SAR) and optical time series. Therefore, Chapter 

6 investigated whether the spatial normalisation approach developed in 

Chapter 2 can also reduce seasonal variations in SAR time series to facilitate 

the integration of SAR-optical time series for forest monitoring in dry tropical 

forests.  This Chapter demonstrated that seasonal variations in SAR time 

series can also be reduced through spatial normalisation. As a result, 

observations from SAR and optical time series were combined to improve near 

real-time forest change detection in dry tropical forest. In Chapter 7, it is 

demonstrated that spatial normalisation has potential to also reduce inter-

sensor differences in SAR-optical time series, resulting into temporally 

consistent SAR-optical time series. 

In conclusion, this thesis developed a space-time forest monitoring 

framework that addresses some key challenges affecting satellite-based forest 

monitoring. In particular, new methods that allow for timely and accurate 

detection of forest disturbances using observations from multiple satellites 

were developed. Overall, the methods developed in this research contribute to 

our capacity to accurately and timely detect forest disturbances in both dry and 

humid forests. 
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