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Conceptual models of plant immunity

Plants establish very intimate, symbiotic relationships with microbes. However, as in animals, 
microbial colonization of plant hosts only rarely results in disease. This is mainly due to the 
presence of a complex immune system, which allows plants to survey their environment for 
the presence of potential pathogens through the activity of plant immune receptors1. 

The interaction between plant immune receptors and pathogen ligands was originally 
defined in the “gene-for-gene” hypothesis, which postulated that the products of single-
dominant plant resistance (R) genes recognize the products of corresponding pathogen 
avirulence (Avr) genes to activate race-specific resistance2,3. However, this model failed to 
explain the function of so-called general elicitors, which defied the rules of race-specificity 
and were recognized by multiple plant species4. It was not until the introduction of the 
“zigzag” model that these seemingly different observations were combined into a single 
concept describing plant immunity5. In this model, the first line of defence is governed 
by cell surface-localized pattern recognition receptors (PRRs) that detect pathogen-
associated molecules patterns (PAMPs) to activate broad-spectrum disease resistance, 
called PAMP-triggered immunity (PTI). As PAMPs include molecules that are present both 
in pathogenic as well as non-pathogenic microbes6, they have been renamed microbe-
associated molecular patterns (MAMPs), whose recognition leads to the establishment of 
MAMP-triggered immunity (MTI). In turn, successful microbes employ effector molecules 
to overcome MTI resulting in effector-triggered susceptibility (ETS). In the second layer of 
defense, effectors are recognized by intracellular receptors (R proteins) that activate effector-
triggered immunity (ETI). Microbes may evade recognition through loss or mutation of 
recognized effectors or actively suppress ETI using novel effectors. These processes describe 
the continued coevolution between microbes and their hosts, which has been termed the 
molecular “arms race”. 

In addition to successfully incorporating the observations made about general elicitors, 
the “zigzag” model recognizes the role of effector molecules as contributors to microbial 
virulence irrespective of the host genotype. However, the strict separation of MTI and ETI 
layers of immunity in the “zigzag” model does not account for the spatio-temporal continuum 
underlying plant-microbe interactions7,8. In addition, is does not resolve the conceptual 
conflict that MAMPs are defined from the perspective of the host, whereas effectors are 
defined from the perspective of the invading microbe8. These discrepancies have led to the 
formulation of the Invasion Model, in which host receptors (referred to as invasion pattern 
receptors, IPRs) recognize microbe-derived or modified-self ligands (invasion patterns, 
IPs) that reveal invasion8. While any molecule can serve as IP that is detected by an IPR, the 
probability of a particular ligand-receptor complex to evolve within the framework of host 
immunity increases with the probability that the ligand retains its function, conservation 
across organisms, importance in establishment of symbiosis, and accessibility8.
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Main objective and research questions

With the availability of high-quality genome and transcriptome data for many microbial 
species, the number of identified putative effector molecules has rapidly increased in 
recent years. However, the functions of most of these effectors, as well as the mechanisms 
governing their recognition by plant receptors, have largely remained unexplored. 
The main objective of my doctoral research was to tackle this gap specifically in plant-
fungal interactions. By using a combination of physiological, biochemical, and proteomic 
approaches I addressed the following general questions:

1.	 How do plants perceive microbe-derived molecules?
2.	 What are the roles of effector proteins during host plant infection and how do they 

contribute to virulence of different fungal pathogens?

Study systems

The host model plant tomato

Tomato (Solanum lycopersicum L.) is considered one of the most important vegetable 
crops with a worldwide distribution and a net economic value exceeding $55 billion9. After 
several decades of breeding efforts for the introduction of resistance loci into cultivated 
accessions, and with the increasing availability of genomic resources, tomato has become 
a particularly important model crop for the study of plant-pathogen interactions. In 
addition, it represents an important model species for biological research on the genetic 
improvement of Solanaceous crops, including pepper, potato and eggplant10.

The broad host-range pathogen Verticillium dahliae

The Verticillium genus consist of ten currently recognized fungal ascomycete species 
whose lifestyles range from saprotrophic to symbiotic11. Among the symbionts, Verticillium 
dahliae is the most detrimental pathogen as it is able to infect over 200 dicotyledonous 
plant species including many crops, such as tomato12. It has been estimated that wilt 
disease caused by Verticillium spp. results in billions of dollars of annual economic 
losses13,14. 

V. dahliae resting structures, called microsclerotia, reside within the soil where they 
germinate in response to plant root exudates15. Emerging hyphae penetrate the host 
tissue at root tips or at sites of lateral root formation16. In susceptible plants, the fungus 
colonizes the vascular system after invasive hyphae have crossed the root endodermis. 
Conidia formation and transport throughout the vasculature eventually results in systemic 
colonization15. This causes chlorosis, necrosis and wilting of the host plant. The fungus 
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then enters a saprotrophic stage during which it colonizes necrotic and senescent plant 
tissues. At these late infection stages, V. dahliae produces large amounts of microsclerotia 
that are released into the soil upon decomposition of the host plant tissue, where they 
can survive for 10-15 years17. Due to the broad host range of V. dahliae and the long-term 
prevalence of its resting structures in the soil, agricultural practices such as crop rotation 
do not result in crop protection15. Disease control is particularly difficult as fungicides 
are generally ineffective once the pathogen has entered the vascular system, and soil 
fumigation has largely been banned due to harmful effects on the environment and/or 
public health. Therefore, the preferred method for disease control is genetic resistance.

Genetic resistance to V. dahliae has been identified in several crop species12,18-21. In tomato, 
the Ve locus was described to confer resistance against race 1 but not race 2 isolates of V. 
dahliae22,23, and has been introduced into most cultivated tomato genotypes15. Positional 
cloning showed that the Ve locus contains two closely linked genes, Ve1 and Ve2, both of 
which encode membrane-bound extracytoplasmic leucine-rich repeat receptor proteins 
(eLRR-RPs)24. While both Ve1 and Ve2 conferred resistance to pathogenic V. albo-atrum 
when expressed in susceptible potato plants, only Ve1 could be confirmed to provide 
resistance against race 1 isolates in tomato and other plant species21,24,25.

Cladosporium fulvum, the tomato specialist

In contrast to V. dahliae, Cladosporium fulvum is a non-obligate biotrophic fungus that 
causes leaf mold on tomato. On susceptible plants, C. fulvum conidia germinate on the 
abaxial side of a leaf and hyphae enter the plant through open stomata to invade leaf 
intercellular spaces26,27. Despite the lack of feeding structure formation, C. fulvum growth 
seems to rely on the physical contact with host cells in close proximity to vascular tissues. 
This is thought to be due to the sucrose gradient that is established around the phloem28,29. 
The first disease symptoms appear at approximately one week after the start of infection as 
pale green or yellow spots on the upper leaf surface as well as white to olive-green patches 
of mold on the abaxial sides of leaves. These turn brown upon sporulation at 10-14 days. 
In severe cases, sporulation is associated with leaf wilting and may lead to plant death26.

Like other plant pathogens, C. fulvum employs effector proteins to successfully infect 
susceptible tomato plants. So far, 13 effectors have been identified and the corresponding 
genes have been cloned30-39. While the three C. fulvum effectors Avr240-42, Avr443-45, and 
Ecp630,46,47 have been functionally characterized, the intrinsic function of most of them 
remains unknown. In resistant tomato accessions, C. fulvum effectors are recognized 
by Cf resistance genes that, like Ve1 and Ve2, encode eLRR-RPs48. This triggers immune 
responses, which ultimately result in a hypersensitive response (HR), a form of localized 
cell death that halts pathogen growth at the infection site49. Most of the Cf genes that 
have been introgressed into cultivated tomatoes originate from wild Solanum species and 
landraces50. Even though the use of resistant cultivars has been effective in containing the 
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pathogen, their intensive cultivation has led to the emergence of novel C. fulvum strains 
capable of overcoming cloned Cf receptor genes51-54. 

Thesis outline

Plant hosts employ surface-localized receptor molecules to survey their environment for 
the presence of potentially harmful microbes. These receptors perceive ligands, which are 
either microbe-derived or result from microbe-mediated plant manipulation, to activate 
immunity. In order to circumvent recognition or suppress immune responses, microbes 
secrete effector proteins that deregulate host physiological processes. The emphasis of 
the work presented here lies within the identification and functional characterization 
of tomato receptor proteins involved in microbe recognition, and the effector proteins 
employed by the fungal pathogens C. fulvum and V. dahliae to facilitate tomato 
colonization. 

Effectors are not unique to pathogens but are employed by any microbe that encounters 
immune responses during plant host colonization. Moreover, plant-microbe interactions 
occur in environments that contain additional microbial partners, which can affect the 
colonizing microbe as well as the host plant. Chapter 2 reviews the role of effector 
molecules secreted by pathogenic filamentous microbes in the suppression of plant 
immune responses, and proposes their involvement in microbial competition or 
cooperation to shape plant microbiomes.

Chitin is a major structural component of fungal cell walls. During host colonization 
chitin recognition results in the activation defense responses that threaten the survival of 
fungal invaders. The tomato leaf mold pathogen C. fulvum has evolved several strategies 
to prevent chitin recognition during colonization of its tomato host. The C. fulvum effector 
protein Ecp6 has previously been shown to sequester chitin fragments released from the 
fungal cell wall to suppress their recognition. However, Ecp6 has been hypothesized to 
additionally interfere with the formation of host chitin receptor complexes required for 
the activation of chitin-triggered immunity. Chapter 3 addresses this hypothesis using 
the model plant species Arabidopsis thaliana.   

While chitin recognition has been intensely studied in A. thaliana and rice, little is known 
about chitin perception in tomato. In Chapter 4, we present a proteomics approach 
that led to the identification of putative tomato chitin receptor candidates. Subsequent 
oxidative burst and gene expression assays confirmed that silencing of a single candidate 
is sufficient to reduce chitin responsiveness in tomato.

V. dahliae is a successful pathogen on hundreds of plant species. Through comparative 
genomics the effector protein Ave1 has recently been identified as a major virulence factor 
during V. dahliae infection of susceptible tomato and other hosts. Phylogenetic analysis 
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demonstrated that, in contrast to many other effectors, Ave1 has homologs in several 
plant pathogens as well as numerous plants. Based on this phylogenetic distribution, 
it has been hypothesized that Ave1 has been acquired by V. dahliae through horizontal 
gene transfer. Chapter 5 describes the functional characterization of Ave1, revealing that 
this effector has functionally diverged from its microbial and plant homologs.

In tomato cultivars that carry the Ve locus, recognition of Ave1 by the leucine-rich repeat-
containing receptor protein Ve1 results in resistance to V. dahliae. The Ve locus contains 
a second gene, Ve2, to which no function could be ascribed despite its homology to 
Ve1. Nonetheless, both Ve1 and Ve2 were shown to bind the adaptor receptor SOBIR1 in 
a ligand-independent manner. In Chapter 6, we use a biochemical approach to further 
investigate the composition of the Ve1 receptor complex upon ligand binding and address 
the question of the lack of Ve2 function in V. dahliae resistance. 

Chapter 7 places the most important findings of this thesis into the broader context 
of glycan-triggered immunity in plants, and discusses the importance of its evasion by 
filamentous pathogens.
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Abstract

Microorganisms play essential roles in almost every environment on earth. For instance, 
microbes decompose organic material, or establish symbiotic relationships that range 
from pathogenic to mutualistic. Symbiotic relationships have been particularly well 
studied for microbial plant pathogens and have emphasized the role of effectors; secreted 
molecules that support host colonization. Most effectors characterized thus far play roles 
in deregulation of host immunity. Arguably, however, pathogens not only deal with 
immune responses during host colonization, but also encounter other microbes including 
competitors, (myco)parasites and even potential co-operators. Thus, part of the effector 
catalog may target microbiome co-inhabitants rather than host physiology. 
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Introduction

During early microbial colonization stages, plant cell surface-localized pattern recognition 
receptors (PRRs) recognize microbe-associated molecular patterns (MAMPs), such as 
fungal chitin, to activate immune responses1,2. In order to establish themselves, adapted 
pathogens secrete effector molecules that deregulate immune responses and facilitate 
host colonization. Simultaneously, hosts evolve effector recognition by novel receptors 
that reinstall immunity1,2. Consequently, effectors are subject to various selective forces 
that drive their evolution, leading to diversified effector repertoires between pathogen 
lineages. Functional characterization of effectors and determination of their contribution 
to the microbial lifestyle provides insight in relevant processes for host colonization. 

Plant pathogen effectors deregulate host immunity in various 
subcellular compartments

Many pathogens initially enter the plant apoplast, which contains enzymes that hamper 
microbial colonization. For example, chitinases target fungal cell walls to release chitin 
fragments that activate immune receptors, leading to further chitinase accumulation to 
induce hyphal lysis. In turn, fungal pathogens secrete chitin-binding effectors to protect 
their cell walls and interfere with immune receptor activation3-6. The LysM domain-
containing Ecp6 effector of the leaf mold fungus Cladosporium fulvum can outcompete 
host receptors through chitin binding with unprecedented ultrahigh (pM) affinity by 
intramolecular LysM domain dimerization7. Additionally, LysM effectors likely interfere 
with receptor dimerization that is required to activate immune signaling7-9. 

Although effectors that directly target chitinases have not yet been identified, some 
effectors target other apoplastic hydrolytic enzymes, such as proteases. For example, 
sequence-unrelated effectors of C. fulvum, the oomycete Phytophthora infestans, and the 
parasitic nematode Globodera rostochiensis inhibit tomato cysteine proteases including 
Rcr310-12. The closely related oomycetes P. infestans and P. mirabilis express an orthologous 
pair of host protease inhibitor effectors that are subject to positive selection, which was 
implicated in adaptation to unique protease targets in their respective host plants13. 
Besides protease inhibitors, P. infestans secretes the Avrblb2 effector that interferes with 
protease secretion14. The smut fungus Ustilago maydis inhibits apoplastic proteases via 
multiple effectors. While Pit2 directly inhibits cysteine proteases15, Pep1 induces the maize 
cystatin CC9 that inhibits apoplastic proteases in turn16. Pep1 furthermore inhibits the 
maize peroxidase POX12 to perturb reactive oxygen species balances17. Thus, the plant 
apoplast is a dynamic battlefield for plant pathogens. 
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In addition to apoplastic effectors, many pathogens deliver effectors that act inside host 
cells, although mechanisms that govern their uptake remain controversial18. The rice 
blast fungus Magnaporthe oryzae was shown to secrete various effectors that enter rice 
cells, and even move to non-infected neighboring cells, presumably to prepare these for 
infection19. The AvrPiz-t effector targets proteasome activity through interaction with the 
RING E3 ubiquitin ligase APIP6, leading to their mutual degradation and suppression of 
PRR-mediated immunity20. Effector diffusion from infected cells into neighboring cells was 
similarly observed for the U. maydis chorismate mutase Cmu1 that targets the shikimate 
pathway to channel chorismate into the phenylpropanoid pathway, thus adversely 
affecting salicylic acid (SA) biosynthesis21. U. maydis furthermore secretes the Tin2 effector 
to stabilize the maize ZmTTK1 kinase that controls anthocyanin biosynthesis, possibly 
to suppress tissue lignification22. Also the oomycete Hyaloperonospora arabidopsidis 
targets SA signaling by secreting a nuclear-localized effector that interacts with the 
mediator complex that controls interactions between transcriptional regulators and 
RNA polymerase23. Host transcription is furthermore perturbed by effectors that inhibit 
transcription factor translocation to the nucleus24. Additionally, nuclear-localized effectors 
may affect host immunity post-transcriptionally by suppressing the biogenesis of small 
RNAs in the host25. Interestingly, Botrytis cinerea was recently suggested to deliver even 
small RNAs into host cells to affect immune responses26. 

Finally, several effectors target host cell death mechanisms, such as P. infestans Avr3a and 
PexRD2. While Avr3a suppresses INF1-triggered cell death by stabilizing the U-box E3 
ligase CMPG1 during biotrophic growth, PexRD2 targets the kinase domain of the cell 
death regulator MAPKKKε27,28. During later stages of infection, however, P. infestans relies 
on induction of host cell death as it switches to a necrotrophic lifestyle. Necrotrophic 
pathogens evolved effectors that actually induce cell death. An elegant example is 
provided by the Cochliobolus victoriae effector victorin that binds to thioredoxins including 
TRXh5, which is required for redox control of the transcriptional immune regulator NPR1. 
TRXh5 binding activates the NB-LRR-type immune receptor LOV1, facilitating necrotrophic 
exploitation of host cell death by C. victoriae29. 

In conclusion, although information for the vast majority of pathogen effectors, particularly 
of filamentous pathogens, is still lacking, effector molecules are highly versatile. Clearly, 
recently uncovered functions revealed that virulence effectors, despite the finding that 
they converge onto pivotal elements of the plant immune system30, can deregulate any 
step of immunity in any cellular compartment (Figure 1, Table 1). 
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FIGURE 1 | Filamentous pathogen effectors deregulate host immunity in various host subcellular 
compartments. Pathogens secrete effectors (red symbols) to deregulate plant immunity (see text for details). 
Whereas one group of effectors (red circles) interacts with host targets that act in immunity (black shapes), 
another group of effectors (red triangles) acts in self-defense to protect the pathogen from host-derived 
antimicrobials. 

Endophytes and mutualists use effectors to suppress host immunity too

Like pathogens, commensalistic endophytes and mutualists develop intimate host plant 
associations. During initiation of such symbioses, PRRs continue to perceive MAMPs. 
Consequently, similar to pathogens, endophytes and mutualists are recipients of immune 
responses. However, the precise role and fate of host immunity in the establishment of 
symbiosis has remained enigmatic. 

The root endophyte Serendipita indica has a wide host range and induces enhanced 
growth and stress resistance in colonized hosts. Rather than evading host detection, the 
fungus actively suppresses immunity31. During early biotrophic growth at the onset of 
symbiosis, about 10% of the transcriptome encodes putative effector proteins32. At later 
growth stages the fungus requires host cell death for further colonization, thus resembling 
hemibiotrophic pathogens such as Zymoseptoria tritici and M. oryzae. Like C. fulvum, these 
latter species utilize LysM effectors to suppress immune responses3,5,6. S. indica carries an 
expanded LysM domain-containing effector repertoire that may similarly act in immune 
suppression32. 

Effector-like proteins are also encoded by genomes of other mutualists33-35. The 
ectomycorrhiza Laccaria bicolor genome encodes hundreds of small, secreted proteins, 
several of which are only expressed in symbiotic tissues. Of these, MiSSP7 was shown to 
translocate to the nucleus of poplar host cells to stabilize the JAZ6 protein and repress 
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jasmonate signaling34,36. Likewise, the ectomycorrhiza Tuber melanosporum expresses 
125 cysteine-rich small secreted proteins, including a LysM effector, which are highly 
upregulated during symbiosis35. 

TABLE 1 | Effectors of filamentous plant-associated microbes for which molecular virulence targets were identified 

Effector Origin Target Function Reference

BEC4 Blumeria graminis f.sp. 
hordei

ARF-GAP proteins Interference with host vesicle trafficking 41

Avr2 Cladosporium fulvum Cysteine proteases Cysteine protease inhibition 10,42

Avr4 Cladosporium fulvum Chitin Hyphal protection 43

Ecp6 Cladosporium fulvum Chitin Perturbation chitin-triggered immunity 3

CfTom1 Cladosporium fulvum α-tomatine Detoxification 44

Victorin Cochliobolus victoria TRX-h5 Induction of LOV1-mediated cell death 29

SP7 Rhizophagus irregularis ERF19 Deregulation of host gene expression 40

HaRxL44 Hyaloperonospora 
arabidopsidis

MED19a Interference with SA-triggered immunity 23

MiSSP7 Laccaria bicolor JAZ6 Deregulation of host gene expression 33

AvrPiz-t Magnaporthe oryzae RING E3 ubiquitin 
ligase APIP6 

Suppression of MAMP-triggered 
immunity

20

Slp1 Magnaporthe oryzae Chitin Perturbation chitin-triggered immunity 6

MfAvr4 Pseudocercospora fijiensis Chitin Hyphal protection 45

Mg1LysM Zymoseptoria tritici Chitin Hyphal protection 5

Mg3LysM Zymoseptoria tritici Chitin Perturbation chitin-triggered immunity 5

Avr3a Phytophthora infestans CMPG1 E3 ligase stabilization 27

Avrblb2 Phytophthora infestans C14 protease Suppression of protease secretion 14

EPI1 Phytophthora infestans Serine proteases Inhibition of serine proteases 46

EPI10 Phytophthora infestans Serine proteases Inhibition of serine proteases 47

EPIC1 Phytophthora infestans Cysteine proteases Inhibition of cysteine proteases 11,48

EPIC2B Phytophthora infestans Cysteine proteases Inhibition of cysteine proteases 11,48 

PexRD2 Phytophtora infestans MAPKKKε Suppression of host cell death 28

Pi03192 Phytophthora infestans NTP1, NTP2 Suppression of transcription factor 
relocation

24

GIP1 Phytophthora sojae β-1,3-glucanases Glucanase inhibition 49

RTP1p Uromyces fabae/U. striatus Proteases Protease inhibition 50

Cmu1 Ustilago maydis Cm2 Interference with SA biosynthesis 21

Pep1 Ustilago maydis POX12 Inhibition of peroxidase-mediated ROS 
production

17

Pit2 Ustilago maydis CP2, CP1A/B, 
XCP2 proteases

Cysteine protease inhibition 15

Tin2 Ustilago maydis TmTTK1 Control of anthocyanin biosynthesis 22
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It was recently shown that arbuscular endomycorrhizal fungi produce lipochito-
oligosaccharide mycorrhizal (Myc) factors that stimulate root growth and branching to 
initiate symbiosis37. Similar to endophytes and ectomycorrhiza, arbuscular endomycorrhiza 
secrete effector-like proteins during symbiotic interactions38-40. The genome of 
Rhizophagus irregularis encodes a family of CRN-like proteins that are abundantly 
found in plant pathogenic Phytophthora spp.39. R. irregularis was furthermore found to 
encode an effector that interacts with the pathogenesis-related ethylene-responsive 
transcription factor 19 (ERF19) in the host nucleus to promote mycorrhization, potentially 
by counteracting MAMP-induced host defense responses that are regulated by ERF1940. 

Collectively, these findings suggest that symbiotic associations that include endophytism, 
mutualism and parasitism form a continuum in which effectors play essential roles (Table 1).

Effectors act in self-defense and competition

The ability to establish symbiosis evolved multiple times in microbes, presumably 
from saprotrophism, and many plant pathogens still display saprotrophic life stages. 
Saprotrophs generally reside within the soil where they feed on decaying organic matter 
in the presence of a rich microbiota. In this environment, microbial competition as well as 
co-operation occurs (Figure 2). Threats are posed by (myco)parasites and competitors that 
produce antibiotics with specific or broad-spectrum activities. Consequently, microbes 
require molecules for self-defense and interaction with other microbiome partners. 

Similar to infected plants, many mycoparasites secrete hydrolytic enzymes including 
proteases, chitinases and glucanases to target fungal cell walls. Presumably, chitin-binding 
effectors that protect hyphal cell walls against plant-derived chitinases similarly protect 
against mycoparasite-derived chitinases, which may explain abundant LysM effector 
catalogs of non-pathogenic fungi51,52. As LysM domains occur in peptidoglycan-binding 
proteins of various origins, LysM effector homologs that bind non-chitin substrates 
likely occur. Indeed, a plant pathogen LysM effector that binds bacterial cell walls was 
characterized (Kombrink and Thomma, unpublished data), potentially implicating this 
effector in bacterial competition or protection against bacterial mycoparasites. Genome 
analyses furthermore revealed that saprotrophic species encode abundant catalogs 
of small, secreted proteins that resemble pathogen effector catalogs52-55. Although 
these potential effectors are poorly studied, one such effector, CipC, was implicated in 
competition with bacteria in Aspergillus spp.55,56. The genome of the ubiquitous saprophyte 
and opportunistic mammalian pathogen A. fumigatus encodes several effector proteins57. 
However, since the vast majority of fungi that cause disease in animals are soil saprophytes 
that opportunistically infect their hosts, to which they are not highly adapted, it has been 
speculated that infection does not rely on the activity of effectors58. Rather, their effectors 
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are thought to be required for saprophytic survival58. Nevertheless, effectors that evolved 
to enable saprophytic survival may be co-opted for opportunistic infection as well.

Likely, competition between plant-associated microbes also occurs within hosts, although 
perhaps to a lesser extent than in soil due to reduced species diversity. Indeed, the second 
most abundantly in planta-expressed gene of the fungal endophyte Epichloë festucae 
encodes a secreted antifungal protein59. Thus, effector homologs may play crucial roles in 
microbial competition in a broad spectrum of environments.

Do pathogens shape local microbiomes?

For various types of multicellular organisms it is increasingly recognized that their 
microbiome, i.e. the community of microbes that thrives in, on, or immediately near the 
organism, greatly influences its performance60. For plants, it has been particularly well 
documented that the rhizosphere microbiota affects plant growth and stress tolerance. 
In addition, the importance of the phyllosphere microbiota is increasingly recognized61. 
These microbiota comprise members that provide direct as well as indirect pathogen 
protection through antibiosis and induced immunity, respectively. Whereas soil types 
have a major impact on root inhabiting bacterial community compositions on Arabidopsis, 
host genotypes were reported to only have a minor impact62,63. In contrast, different 
Arabidopsis accessions were found to harbor different phyllosphere communities and 
several host genetic mutations were found to perturb the microbiota composition, 
demonstrating that host genetic factors shape the associated microbiota64. It is less 
clear, however, whether plants evolved to actively recruit phyllosphere communities. 
Potentially, plants recruit founder species that further shape local microbiomes through 
inter-microbe interactions61. Such interactions may require effectors. Considering that 
plant factors control the composition of the microbiota, microbiome members may utilize 
effectors to modulate hosts and control competitors indirectly. Additionally, manipulation 
of host metabolism could even establish microbial cooperation (Figure 2). Although not 
immediately addressing inter-microbial interactions, an insect-transmitted phytoplasma 
was recently shown to utilize an effector to alter floral development of host plants, 
converting them into vegetative tissues that attract leafhopper vectors65. This represents 
a striking example of the exploitation of effector activity to influence compositions of the 
local biome. Similarly, the rust fungus Puccinia monoica induces floral mimicry in the host 
Boechera stricta to enhance its reproduction and spore dispersal by insects66. 

Considering the importance of the microbiome for the ability of plants to withstand 
pathogen infection, it is conceivable that pathogens evolved to affect host microbiomes, 
possibly through effector activities (Figure 2). 
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FIGURE 2 | How pathogens influence the local biota by exploiting effector activities. The interaction 
between microbial pathogens and plant hosts occurs in environments that contain additional microbiome 
partners that can negatively (competition) or positively (co-operation) impact the pathogen as well as the host. 
Consequently, the pathogen and host may target each other directly (solid lines) as well as indirectly (dotted 
lines). Likely, pathogens exploit effector activities (orange lines) to not only directly modulate their hosts, but 
also to influence the local microbiota that can impact the outcome of the interaction with their hosts.

Different mechanisms drive evolution of effector repertoires

Mechanisms underlying genome plasticity and evolution have been intensely studied, 
especially for plant pathogens. As genomes are structured and not just a random sequence 
of genes, effector genes are often found in dynamic genomic compartments, such as 
gene-sparse regions, subtelomeric regions or conditionally dispensable (pathogenicity) 
chromosomes67. For example, effector localization in gene-sparse regions was recorded for 
the endophyte S. indica32, while in the saprophyte N. crassa genes encoding small-secreted 
proteins are found in subtelomeric regions53. Genetic plasticity in such compartments is 
governed by diverse mechanisms including recombination and activity of transposable 
elements. A direct implication of genomic rearrangement in the evolution of fungal 
aggressiveness was shown for the vascular wilt fungus Verticillium dahliae, leading to the 
emergence of lineage-specific regions that are enriched for virulence effectors68. High 
genetic variability in effector genes enables rapid evolutionary processes. The importance 
of dynamic genome compartments for accelerated gene evolution was underlined in the 
specialization of P. infestans after the host jump that separated this species from related 
species. Uneven evolutionary rates across the genome occur, with in planta-induced 
genes residing in fast evolving compartments69. In turn, effector specialization can lead 
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to diversification and speciation in pathogen lineages13. In this manner, effectors can 
determine microbial niches. Moreover, composition of effector catalogs can dictate 
microbial lifestyles. For example, the leaf epiphyte and antagonist of powdery mildews 
Pseudozyme flucculosa lost its ability to parasitize plants like its smut fungi relatives due 
to loss of virulence effectors70. However, the biocontrol agent has acquired other effectors 
that are not found in the smut relatives that may have shaped its current lifestyle70. These 
findings suggest that effector catalogs evolve via different mechanisms and that their 
composition influences a microbe’s lifestyle in a given environment.  

Experimental way forward

The interaction between pathogenic (filamentous) microbes and the organisms they 
encounter in their niches, either while colonizing the host or during free-living stages 
in the environment, is poorly understood. An extensive characterization of the complex 
microbial communities in such niches may lead to a better understanding of the 
interactions that take place beyond the direct interaction between pathogen and host. 
Detailed transcriptome analyses may lead to the identification of particular triggers of 
effector gene expression derived from microbial co-inhabitants, and may hint towards 
functions in inter-microbial interactions71,72 that can subsequently be tested for in targeted 
analysis to reveal components that either promote or inhibit other microbes52. 

Conclusions

Although a paradigm in plant pathology dictates that existence of disease requires the 
interaction of a virulent pathogen with a susceptible host in a favorable environment, 
plant-microbe interactions are mostly studied as one-on-one relationships.  However, 
in addition to host immune responses, pathogenic microbes continuously encounter 
other microbes that include competitors and mycoparasites that need to be dealt with 
simultaneously. Importantly, findings for pathogenic microbes can be extrapolated 
to other types of symbioses as well. After all, irrespective of the type of symbiosis, the 
interest of the microbial partner is merely to exploit the host for nutrition and shelter. 
This may also explain the thin line that is regularly observed between the different types 
of symbioses32,33,73,74. In all types of symbioses, the microbial partner needs to suppress 
host immune responses and ward off microbial antagonists. Using effectors as probes, 
further critical processes in host colonization will be uncovered, leading to enhanced 
understanding of the biology of microbes that aim to establish symbioses. 
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Abstract

Fungal microbes utilize effector proteins to suppress chitin-triggered immunity during 
plant colonization. The tomato leaf mold fungus Cladosporium fulvum secretes the lysin 
motif (LysM)-containing effector protein Ecp6. Ecp6 has the capacity to outcompete plant 
chitin receptors through cooperative high affinity binding of chitin substrates between 
two of its three LysM domains. Additionally, the singular second LysM domain (LysM2) 
can perturb chitin responses in tomato through a yet unknown mechanism. Due to its 
relatively low affinity for chitin, it has been hypothesized that LysM2 interferes with chitin 
receptor dimerization required for the activation of immunity. To further investigate Ecp6 
functionality, we utilized the model plant Arabidopsis thaliana for which chitin perception 
has been intensely studied. Here, we show that Ecp6 suppresses chitin-mediated immune 
responses in A. thaliana. While Ecp6 does not suppress phosphorylation of the LysM 
receptor kinase AtCERK1, it affects internalization of the LysM receptor kinase AtLYK5 in a 
ligand-dependent manner. These findings suggest that, in A. thaliana, Ecp6 affects chitin 
perception by targeting chitin receptors through a yet unknown mechanism.
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Introduction

Chitin is one of the most abundant carbohydrates in nature, and represents a major 
component of fungal cell walls. During early stages of host colonization, invasive hyphae 
of filamentous microbes encounter host-derived hydrolytic enzymes, such as chitinases, 
that release chitin oligosaccharides from fungal cell walls1. Recognition of chitin 
oligosaccharides by host receptors prompts the secretion of antimicrobial compounds 
and toxins, as well as the release of additional cell wall degrading enzymes such as 
endochitinases that hydrolyze fungal hyphae. These chitin-dependent immune responses 
are detrimental to fungal growth and may eventually halt host invasion2,3.

In rice (Oryza sativa), chitin recognition is mediated by the lysin motif (LysM)-containing 
Chitin Elicitor Binding Protein (OsCEBiP), which lacks an intracellular kinase domain4. 
OsCEBiP dimerizes upon ligand binding and forms a tetrameric receptor complex with 
Chitin Elicitor Receptor Kinase 1 (OsCERK1) to initiate chitin signalling5,6. As in rice, 
Arabidopsis thaliana (hereafter Arabidopsis) CERK1 is required for chitin signalling7,8. 
However, unlike OsCERK1, AtCERK1 directly binds long chain chitin fragments via its 
second LysM domain with a relatively low affinity9-11. In addition to AtCERK1, the LysM 
receptor kinases AtLYK4 and AtLYK5, both of which lack active kinase domains, were 
identified as chitin-binding proteins10. AtLYK5 was shown to interact with AtCERK1 in a 
ligand-dependent manner, required for AtCERK1 dimerization and phosphorylation12. 
Due to its higher affinity for longer chain chitin oligomers, AtLYK5 was proposed as the 
primary chitin receptor in Arabidopsis. Remarkably, despite its high affinity for chitin 
oligomers13, the Arabidopsis orthologue of OsCEBiP, LysM domain protein 2 (AtLYM2), is 
not involved in AtCERK1-mediated chitin responses but rather modulates plasmodesmata 
conductivity in a AtCERK1-independent manner14. 

To overcome or bypass chitin-triggered immune responses, filamentous microbes employ 
various strategies, including cell wall modifications and the secretion of LysM-containing 
effector proteins that suppress chitin-triggered immune responses15-17. Moreover, effector 
proteins can shield cell wall chitin, thereby preventing hydrolysis by plant chitinases. For 
example, the tomato leaf mold fungus Cladosporium fulvum produces avirulence protein 
4 (Avr4), which binds chitin through its invertebrate chitin-binding domain (CBM14)18,19. 
While Avr4 protects invasive hyphae, it is not able to perturb chitin-induced immune 
responses. 

In addition to Avr4, C. fulvum secretes the LysM effector protein Ecp6. Ecp6 compromises 
chitin-induced immune responses by chitin binding with ultra-high (pM) affinity through 
intramolecular LysM domain dimerization, thereby outcompeting host receptors20. 
Interestingly, the singular LysM2 domain of Ecp6, which is not involved in intramolecular 
chitin binding, retains the capacity to perturb chitin-induced immune responses20,21. 
Due to its lower chitin affinity, it is unlikely that LysM2 deregulates chitin-triggered 
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immunity by chitin fragment sequestration22. Therefore, it has been hypothesized that 
LysM2 may interfere with the chitin-induced host receptor dimerization that is required 
for the activation of immune signalling3,20. Since the mechanisms underlying chitin 
recognition have not been identified in the C. fulvum host plant tomato, we made use of 
the Arabidopsis model system to study the potential role of Ecp6 in the perturbation of 
chitin receptor complex activation.

Results and Discussion

When applied to leaf discs of Arabidopsis ecotypes Col-0 or WS-4, polymeric chitin triggers 
the production of reactive oxygen species (ROS). ROS production can be detected and 
reaches its maximum at approximately 15-20 minutes following treatment (Fig. 1). This 
response is abolished in the cerk1-2 (Col-0) and cerk1-3 (WS-4) mutants (Fig. 1). Intriguingly, 
despite being derived from a fungal pathogen that has tomato as its sole host, addition 
of Pichia pastoris-produced Ecp6 protein prevents chitin-triggered ROS production in 
Arabidopsis wild type ecotypes (Fig 1). This is in accordance with previous results, which 
showed suppression of ROS generation by Ecp6 upon chitin treatment in tomato21. Ecp6 
ability to perturb chitin-induced immune responses in tomato is mediated by its LysM2 
domain, since P. pastoris-produced Ecp6 mutated in the putative chitin-binding site of LysM2 
(Ecp6T95R) no longer suppresses chitin responses20. Surprisingly, however, simultaneous 
application of polymeric chitin and Ecp6T95R effectively reduces the generation of ROS in 
Arabidopsis, similar to wild type Ecp6 protein (Fig. 1). These results suggest that Ecp6 is 
functional in Arabidopsis but that its mode of action may differ between plant species. 
Alternatively, since Arabidopsis is less sensitive to chitin than tomato23, Ecp6 ability to 
sequester chitin fragments through its high-affinity binding site may be sufficient to 
suppress chitin-induced immune responses in Arabidopsis. However, we cannot exclude 
the possibility that differences between batches of purified protein produced in P. pastoris 
result in variations of Ecp6 activity irrespective of the plant species tested.

Chitin receptors interact in a ligand-dependent manner to activate downstream 
signalling24. In a previous report, the chitin-triggered interaction between AtCERK1 and 
AtLYK5 was shown following their production in Arabidopsis protoplasts12. To be able to 
test whether Ecp6 interferes with this complex formation, we intended to confirm the 
occurrence of an interaction between AtLYK5 and AtCERK1 in transgenic Arabidopsis 
lines producing mCitrine-tagged AtLYK5. To this end, we vacuum-infiltrated Arabidopsis 
leaves with a chitin suspension or water as negative control, and immunopurified AtLYK5-
mCitrine from crude protein extracts. Immunopurification of AtLYK5-mCitrine following 
chitin treatment did not result in co-purification of AtCERK1 (Fig. 2). In a further attempt 
to demonstrate an interaction between AtLYK5 and AtCERK1 using Arabidopsis leaf tissue, 
we infiltrated the cross-linking agent ethylene glycol bis(succinimidyl succinate) (EGS) 30 
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min after chitin treatment. However, we failed to observe co-purification of AtCERK1 with 
AtLYK5-mCitrine even following cross-linking (Fig. 2). It has been hypothesized that the 
interaction between AtCERK1 and AtLYK5 is transient upon perception of chitin25. Thus, 
the use of whole Arabidopsis leaves may be inappropriate to visualize this transient 
interaction. Consequently, based on the results presented here, we were not able to test a 
possible inhibitory effect on chitin receptor dimerization by Ecp6.
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FIGURE 1 | Ecp6 suppresses ROS production in Arabidopsis. Generation of ROS was measured using luminol-
based chemiluminescence for 60 min following treatment of Arabidopsis leaf discs with 10 μg/mL polymeric 
chitin (), 10 μM Ecp6 (), 10 μM Ecp6T95R (
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FIGURE 2 | Treatment with a cross-linking 
agent is not sufficient to demonstrate chitin 
receptor interaction in stably transformed 
Arabidopsis lines. Western blot (WB) showing 
immunopurification (IP) of AtLYK5-mCitrine from 
crude leaf extracts (CE) of transgenic Arabidopsis 
treated with water or 10 μg/mL polymeric chitin. 
Thirty min after elicitation, leaves were treated 
with the cross-linking agent ethylene glycol 
bis(succinimidyl succinate) (EGS). Membranes 
were stained with Coomassie brilliant blue (CBB) 
to confirm equal loading. The experiment was 
repeated twice with similar results.

Chitin perception results in the phosphorylation of AtCERK1 and AtLYK5, and AtCERK1 
phosphorylation is required for the activation of signal transduction25. Phosphorylation 
can be detected as a band shift in total protein extracts on SDS polyacrylamide gels 
and serves as a proxy for receptor complex activation. AtCERK1 shifted on gel after 
chitin treatment in Col-0 and much less in lyk5-2 mutants (Fig. 3a), confirming AtLYK5 
involvement. Moreover, immunoprecipitation with chitin beads resulted in the recovery 
of less AtCERK1 protein from crude extracts following chitin infiltration when compared 
with water treatment (Fig. 3a). Several receptors, including the leucine-rich repeat (LRR) 
receptor kinase FLAGELLIN SENSING 2 (FLS2) and the LRR receptor protein Cf4, are 
internalized and targeted for degradation upon ligand perception26-29. Consequently, 
the overall abundance of FLS2 and Cf4 decreases following treatment with their ligands 
flg22 and Avr4, respectively27,30,31. However, AtCERK1 can be continuously detected at the 
plasma membrane and no vesicle formation is observed following chitin treatment25. Thus, 
the reduced recovery of AtCERK1 with chitin beads is likely due to the lower availability 
of chitin-free AtCERK1 molecules following chitin treatment. We then tested whether 
AtCERK1 phosphorylation is diminished following chitin treatment in the presence of 
Ecp6. While the lower band for AtCERK1, which represents AtCERK1 in absence of chitin-
triggered phosphorylation10, appeared to be stronger when leaves were treated both with 
Ecp6 and chitin when compared to treatment with chitin only, AtCERK1 phosphorylation 
was not suppressed (Fig. 3b). Interestingly, however, immunoprecipitation with chitin 
beads following total protein extraction resulted in increased recovery of AtCERK1 
receptor protein in the presence of Ecp6 and chitin. This suggests that Ecp6 (indirectly) 
affects AtCERK1 chitin binding. Possibly, Ecp6 sequesters chitin molecules, leaving fewer 
molecules for AtCERK1, and thus augmenting the amount of AtCERK1 chitin binding sites 
that remain accessible to immunoprecipitation with chitin beads. Similar results were 
obtained after co-treatment with chitin and Ecp6T95R (Fig. 3b).

Since Ecp6 interferes with chitin-dependent defense responses in Arabidopsis, but does 
not markedly affect AtCERK1 phosphorylation, we tested whether Ecp6 can interfere with 
AtLYK5 internalization. AtLYK5 is internalized into endosomes starting approximately 20 
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min and peaking around 60 min after chitin treatment25. In addition to polymeric chitin, 
chitin heptamers (GN7) and octamers (GN8) are able to induce AtLYK5 endocytosis at 10 
μM final concentrations (Fig. 4). Surprisingly, although co-infiltration of chitin oligomers 
with Ecp6 at equimolar concentrations did not change the number of observed vesicles, 
the vesicles became more prominent (Fig. 4). In contrast, treatment with Ecp6 in the 
presence of polymeric chitin resulted in the formation of fewer vesicles but did not affect 
their size (Fig. 4). These observations suggest that Ecp6 affects AtLYK5 internalization in a 
ligand-dependent manner.
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FIGURE 3 | Ecp6 does not prevent AtCERK1 phosphorylation. AtCERK1 was detected using α-CERK1 antibody 
in crude protein extracts from Col-0 or lyk5-2 leaf tissue after treatment with water or 10 μg/mL polymeric chitin 
in absence (a) or presence (b) of Ecp6 or Ecp6T95R (3 μM). Chitin binding of AtCERK1 was confirmed in pull-downs 
with chitin beads. Membranes were stained with Coomassie brilliant blue (CBB) after Western blotting to confirm 
equal loading. The results shown are representative of three independent experiments.

In summary, we show that Ecp6 perturbs chitin-triggered immune responses in 
Arabidopsis. However, its role and in particular the contribution of the singular LysM2 
domain to Arabidopsis chitin receptor inhibition remain elusive. Importantly, Ecp6 is 
produced by the tomato pathogen C. fulvum and a translation into the tomato system is 
required to fully unravel Ecp6 functionality.

Materials

Plant materials

Plants were grown under short day conditions (8 h photoperiod), at 22°C/18°C during 
day/night cycles, with 65% relative humidity and light intensity approximately 150 μmol/
m2s. Plants were used for experiments after 4-6 weeks. In vitro seedlings were grown in 
liquid ½ Murashige and Skoog medium supplemented with 0.5% sucrose for 2 weeks. 
The Arabidopsis T-DNA lines used in this study were cerk1-2 (GABI_096F09)7, lyk5-2 
(SALK_131911C)7,12 and cerk1-3 (FLAG_GX112, INRA line)32. Vesicle formation was observed 
using transgenic pLYK5::LYK5-mCitrine25. 
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FIGURE 4 | Ecp6 affects chitin-dependent 
AtLYK5 endocytosis. Leaves of Col-0 plants 
stably producing AtLYK5-mCitrine were 
infiltrated with water, 10  μM GN7, 10 μM 
GN8, or 10 μg/mL polymeric chitin with 
or without 10 μM Ecp6. Internalization of 
AtLYK5-mCitrine was detected 60 min after 
treatment. Shown are maximum projections 
of 8 focal planes. Size bar = 30 μm. 

Production and purification of recombinant effector proteins

Ecp6 was expressed in Pichia pastoris strain GS115 and purified as described previously21,33. 
For treatment of plant tissue, recombinant effector proteins were desalted over PD10 
columns (GE Life Sciences) according to manufacturer’s instructions.

Chemicals and plant treatments

For induction of vesicles, chitin (Sigma-Aldrich), and chitooligomers GN7 and GN8 (IsoSep) 
were vacuum-infiltrated into leaf pieces in absence or presence of 10 μM Ecp6. Polymeric 
chitin was used at a concentration of 10 μg/mL and oligomers at 10 μM. The incubation time 
was 60 min. For assaying phosphorylation of CERK1 100 μg/mL chitin was vacuum-infiltrated 
into detached leaves and incubated for 10 min. To test the suppression of phosphorylation 
by Ecp6 10 μg/mL chitin was infiltrated in absence or presence of 3 μM Ecp6 or Ecp6T95R. 
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Oxidative burst assay

Oxidative burst measurements were performed as previously described32 with the 
following modifications: Water was replaced with 100 μL of a solution containing 100 
μM L-012 substrate and 20 μg/mL horseradish peroxidase. ROS was elicited with 10 μg/
mL polymeric chitin in absence or presence of 10 μM recombinant effector protein. Eight 
leaf discs were used for each condition. Luminescence was measured over 60 min using 
an Infinite® M200 multimode reader (TECAN) in combination with the i.control software 
package (Version 1.6).

Protein extraction, affinity purification and immunoblotting

Receptor cross-linking was carried out in vivo by vacuum-infiltration with ethylene 
glycol bis(succinimidyl succinate) (EGS) of water- or chitin-treated leaves. Total protein 
extractions and chitin pull-downs were performed as described previously10. For receptor 
co-immunoprecipitations total extracts were mixed with 20 µL magnetic chitin beads 
(New England Biolabs) and incubated at 4°C, 10 rpm for 1 hr. Beads were washed three 
times with 1 mL TBS-T. Affinity purified proteins were eluted in 40 μL 2x SDS buffer. Proteins 
were separated by 8 or 10% SDS-PAGE and blotted to polyvinylidene difluoride (PVDF) 
membranes (Millipore). Membranes were probed with anti-CERK110,32 or HRP-linked anti-
GFP (ChromoTek). A goat-anti-rabbit alkaline phosphatase conjugate (Sigma-Aldrich) was 
used as secondary antibody for αCERK1. Reactions were detected using the ImmunStar 
AP substrate (Bio-Rad) or with SuperSignal West Femto Chemiluminescent Substrate 
(Thermo Scientific). 

Confocal microscopy

Confocal microscopy was performed on a Leica TCS SP5 system (Leica Microsystems, 
Wetzlar, Germany) equipped with an argon laser and HyD hybrid detectors. mCitrine was 
excited at 514 nm, and emission was recorded between 525 and 560 nm. Chlorophyll 
autofluorescence was detected between 740 and 770 nm. Images were processed using 
the Leica LAS AF (Version 2.7.2.) software package. All the phenotypes were observed in 
at least two independent transgenic Arabidopsis lines. 
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Abstract

Plants detect the presence of potential fungal pathogens by sensing the conserved cell 
wall component chitin. To date, all plant chitin receptors identified belong to the class 
of membrane-exposed lysin motif (LysM)-containing receptor proteins. Here, we identify 
two chitin-binding LysM receptors of tomato using an affinity purification approach. 
Based on their phylogenetic relationship to well-characterized chitin receptors of rice and 
Arabidopsis thaliana, the tomato receptor candidates were named SlCEBiP and SlLYK4, 
respectively. Silencing of SlLYK4, but not of SlCEBiP, resulted in compromised tomato 
responsiveness to chitin. These results suggest that SlLYK4 is a major component of 
the receptor complex in tomato that activates the canonical chitin signal transduction 
pathway.
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Introduction

Plants detect the presence of invading microbes through cell surface-localized receptor 
molecules, which recognize either microbe-derived or modified-self molecules that 
indicate invasion1. This recognition leads to a series of cellular events that either promote 
or restrict microbial colonization2. The activation of immune responses, which include the 
generation of extracellular reactive oxygen species (ROS), an increase in cytosolic calcium 
concentrations, the activation of mitogen-activated protein (MAP) kinase and calcium-
dependent protein kinase (CDPK) cascades as well as changes in gene expression, protect 
the plant from invasion by potential pathogens3.

Bacterial molecules that are recognized by plant receptor proteins include flagellin, 
elongation factor Tu (EF-Tu), peptidoglycan or lipopolysaccharide3. In contrast, filamentous 
microbes are generally perceived due to the presence of their major cell wall components 
chitin or β-glucan4,5. Chitin consists of β-1,4-linked polymers of N-acetylglucosamine 
(GlcNAc) with varying degrees of polymerization. While longer chitin oligomers are potent 
inducers of immune responses6,7, chitin tetra- and heptamers have been implicated 
in mutualistic symbiosis8,9. Interestingly, bacterial peptidoglycan as well as lipo-chito-
oligosaccharides (LCOs) produced by beneficial rhizobacteria and arbuscular mycorrhizal 
(AM) fungi, respectively, are chitin derivatives. 

Until now, the receptor molecules that have been implicated in the recognition of GlcNAc-
containing molecules belong to the group of lysin motif (LysM) receptor proteins, which are 
classified as receptor kinases (RKs) or receptor proteins (RPs)10. The extracellular portion of 
LysM-RKs, which contains the LysM domains, is coupled to an intracellular kinase domain 
via a single pass transmembrane domain. Based on differences in their kinase domain 
features, LysM-RKs are further divided into LYKs and LYRs10,11. In contrast to LYKs, the kinase 
domains of LYRs lack most structural components required for kinase activity. LysM-RPs 
(also referred to as LYPs) are membrane-bound via a glycosyl phosphatidylinositol (GPI) 
anchor and lack an intracellular kinase domain for activation of downstream signaling. 

Signal transduction requires the presence of receptor complexes containing LYK receptor 
molecules, which relay the signal via their intracellular kinase domain. For example, in 
Arabidopsis thaliana (hereafter referred to as Arabidopsis), the LYR AtLYK5 binds chitin with 
high affinity and forms a heteromeric complex with the receptor kinase CERK1 to initiate 
chitin signalling12. While AtLYK5 has been proposed as the main chitin receptor in Arabidopsis, 
its paralogue AtLYK4 has also been implicated in chitin recognition and only lyk4lyk5 double 
mutants show a complete loss of chitin responsiveness12-14. As in Arabidopsis, rice (Oryza 
sativa) CERK1 is required for chitin signaling following its ligand-induced association with 
the LYP receptor OsCEBiP15-18. Interestingly, one of the Arabidopsis CEBiP orthologues, 
AtLYM2 controls the chitin-induced flux across plasmodesmata and resistance to fungal 
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pathogens independent of AtCERK119,20. In addition to chitin signaling, CERK1 from both rice 
and Arabidopsis has been shown to be required for peptidoglycan-triggered immunity21-24. 
Interestingly, in addition to its role in immunity, OsCERK1 has also been implicated in AM 
symbiosis that is established upon perception of fungal LCOs18,25. These findings suggest 
that CERK1 likely acts as a co-receptor in different receptor complexes4. Similar to fungal 
LCOs, also bacterial LCOs are recognized by LysM receptor pairs in leguminous plant species 
during the establishment of symbiosis with rhizobacteria26-29. 

Based on the findings in rice and Arabidopsis, it is tempting to assume that also in tomato 
LysM receptors are required for the perception of GlcNAc-containing molecules. Indeed, the 
LYR receptor kinase SlLYK10 has recently been shown to play a role in colonization by the 
AM fungus Rhizophagus irregularis30. Indirect evidence suggests that the CERK1 orthologues 
SlLYK1 and SlLYK13 may be required for tomato immunity to bacterial pathogens as they are 
targeted by the bacterial effector protein AvrPtoB to suppress plant immune responses31. 

Here we identified two LysM receptors, SlLYK4 and SlCEBiP, with a putative role in chitin 
perception using a biochemical approach. Virus-induced gene silencing of SlLYK4, but not of 
SlCEBiP, resulted in reduced chitin responsiveness, suggesting that SlLYK4 mediates chitin-
triggered immune responses in tomato.

Results 

Mass spectrometry identifies two LysM receptors as candidate chitin receptors 

To identify the receptor protein(s) involved in chitin perception in tomato, we isolated 
microsomal proteins from tomato cv. Heinz 1706 leaf tissue for affinity purification with 
magnetic chitin beads32. Specifically bound proteins were eluted either with chitohexaose 
((GlcNAc)6 abbreviated as GN6) or chitosan. In order to elute the remaining non-specifically 
bound proteins, chitin beads were boiled in sample buffer. Following size-separation 
by SDS-PAGE, proteins in the range of 50-100 kDa were subjected to trypsin digestion. 
Subsequent mass spectrometric analysis yielded several unique peptides in both GN6 and 
chitosan eluents for only two LysM-containing receptors encoded by Solyc02g089900 and 
Solyc01g112080 (Table 1; Supplementary Fig. 1). Unique peptides for the same receptors 
were also detected in the on-bead fractions, suggesting that the elution with GN6 and 
chitosan had been incomplete. Moreover, only 0 and 1 unique peptide were found in the 
supernatant following affinity purification (unbound fraction) for Solyc02g089900 and 
Solyc01g112080, respectively, demonstrating that the majority of both proteins present 
in the whole leaf extracts bound to chitin beads (Table 1). 



Chitin perception in tomato

4

44 45

TABLE 1 | Identification of chitin-binding LysM proteins of tomato (Solanum lycopersicum Heinz 1706) 
Chitin-binding proteins identified from microsomal fractions. Numbers represent unique peptides identified by 
Sequest and/or Mascot analyses.
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Solyc02g089900 SlLYK4 LYR 17.2 645 70 5.3 0 3 4 4 4

Solyc01g112080 SlCEBiP LYP 18 345 37 5.4 1 4 4 3 3

Solyc02g089900 codes for a membrane-bound LYR with three surface-exposed LysM 
domains that is closely related to Arabidopsis LYK4, and is therefore referred to as SlLYK4 
(Fig. 1; Fig. 2)30. Phylogenetic analysis of full-length LysM receptor protein sequences 
showed that, in addition to AtLYK4, SlLYK4 forms a clade together with AtLYK5, SlLYK6, 
SlLYK7, and SlLYK15 on a longer branch, as was shown previously30. Solyc01g112080 
encodes a receptor protein with extracellular LysM domains that are membrane-bound 
via a GPI anchor (Fig. 2). Sequence analysis with the domain prediction algorithm InterPro 
(http://www.ebi.ac.uk/interpro/) suggested the presence of two LysM domains in SlCEBiP. 
However, amino acid sequence alignment with its orthologue OsCEBiP suggests that 
SlCEBiP, like OsCEBiP, Medicago truncatula LYM2 and Arabidopsis LYM2, contains three 
instead of two LysMs (Fig. 1; Fig. 2; Supplementary Fig. 2)16,33-35. Considering the role of 
their orthologues in chitin signaling in Arabidopsis, rice and M. truncatula, we further 
investigated the role of SlLYK4 and SlCEBiP in chitin recognition of tomato.

SlLYK4 and SlCEBiP gene expression is induced upon fungal infection

To analyze the expression patterns of the two putative tomato chitin receptor genes, 
we first examined publicly available transcriptome data (see Methods section for 
details). The expression levels of both SlCEBiP and SlLYK4 varied greatly between the two 
tomato cultivars analyzed (Heinz 1706 and Moneymaker) as well as among the various 
tissues tested (Supplementary Fig. 2). SlLYK4 is mainly expressed in roots in tomato cv. 
Moneymaker, whereas transcript accumulation is the highest in mature fruits of tomato 
cv. Heinz (Supplementary Fig. 2a). In contrast, SlCEBiP is highly expressed in root tissue of 
both cultivars (Supplementary Fig. 2b)30. Moreover, in tomato cv. Moneymaker expression 
values vary little between root, stem and leaf tissue, whereas few SlCEBiP transcripts were 
detected in leaves, flowers and mature fruits of tomato cv. Heinz 1706. 
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FIGURE 1 | Phylogenetic analysis of LysM receptor proteins. Tomato LysM proteins were selected based on the 
presence of an extracellular domain containing LysM motifs as well as their predicted localization to the plasma 
membrane due to the presence of a predicted transmembrane domain or a GPI anchor. Their phylogenetic 
relationship to LysM receptor proteins of rice, Arabidopsis, Lotus japonicas, and Medicago truncatula was inferred 
based on the maximum likelihood method. SlLYK4 and SlCEBiP are highlighted in green.
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50 aa

200 bpSlCEBiP (1,722 bp)

SlCEBiP (346 aa) *

SlLYK4 (1,938 bp)

SlLYK4 (646 aa)
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FIGURE 2 | Graphic representation of gene and encoded protein structures of putative tomato chitin 
receptors. Genes are represented by black boxes (exons), black lines (introns) and grey boxes (5´ and 3´UTR). 
The protein structures include signal peptides and the transmembrane domain for SlLYK4 (grey boxes), LysM 
domains predicted by InterPro (yellow), one LysM domain in SlCEBiP inferred from pairwise alignment with 
OsCEBiP (Supplementary Fig. 2) (orange box), and the intracellular kinase domain with the catalytic loop of 
SlLYK4 (violet and blue, respectively). The white asterisk marks the predicted site for the attachment of a GPI 
anchor in SlCEBiP.

Next, changes in SlLYK4 and SlCEBiP gene expression upon challenge with a fungal 
pathogen were tested. To this end, tomato plants were inoculated with the vascular wilt 
fungus Verticillium dahliae and stem tissue was collected at 4, 8, and 12 days following 
inoculation. Quantitative RT-PCR analysis showed that transcript accumulation of both 
genes is enhanced during pathogen infection compared to healthy control plants (Fig. 
3). SlCEBiP expression levels peak at around 8 days post inoculation (dpi), whereas SlLYK4 
expression is highest at 4 dpi and then gradually decreases. These results suggest that 
both SlCEBiP and SlLYK4 may be implicated in chitin perception during plant invasion by 
fungal pathogens.

FIGURE 3 | SlLYK4 and SlCEBiP are expressed in 
tomato stem tissue during Verticillium infection. 
Tomato stem tissue was harvested at 4, 8, and 12 days 
following inoculation with V. dahliae. LysM receptor 
gene expression levels were determined by qRT-PCR 
with gene-specific primers and primers targeting the 
tomato tubulin gene for calibration (Supplementary 
Table 1). Shown are expression values relative to 
mock-treated tissue of three biological replicates 
consisting of pools of three plants from a single 
experiment (mean ± S.E.). This experiment was 
performed twice.

Silencing of SlLYK4 impairs chitin-triggered responses

When perceived by plants, chitin triggers the activation of multiple downstream responses, 
including the generation of reactive oxygen species (ROS) and changes in gene expression. 
In order to determine whether SlLYK4 or SlCEBiP contributes to chitin recognition and, 
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thus, the activation of chitin-triggered immunity in tomato, we generated tobacco rattle 
virus (TRV)-based constructs to silence both genes separately. Tomato plants were treated 
with TRV:SlLYK4, TRV:SlCEBiP or TRV:GUS as negative control. Three weeks later, two of the 
youngest, fully expanded leaves were collected from each plant and tested for their ability 
to respond to chitin. Silencing efficiency and specificity were confirmed by quantitative 
RT-PCR in mock (water)-treated samples (Supplementary Fig. 5). As expected, treatment 
with GN6 resulted in ROS generation in GUS-silenced plants within 2.5 min (Fig. 4a). 
However, silencing of SlLYK4 greatly impaired the oxidative burst, whereas the reduction 
in SlCEBiP transcripts had little to no effect (Fig. 4a). To confirm these results, we tested the 
induction of the three chitin responsive genes SlBAP2, SlERF5, and SlCAL-like in mock- and 
GN6-treated leaf discs of TRV-treated plants36,37. Preliminary results show that similar to 
the oxidative burst, chitin-induced gene expression is impaired in SlLYK4-silenced plants 
compared to the TRV:GUS controls (Fig. 4b-d). These findings suggest that SlLYK4, but not 
SlCEBiP, plays a role in tomato chitin recognition. 
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FIGURE 4 | Silencing of SlLYK4 results in a reduction of chitin responsiveness in tomato. a, Generation of 
ROS was measured in leaf discs of ten TRV-treated tomato plants for 30 min following elicitation with 10 μM 
chitohexamer (GN6) using a luminol-based chemiluminescencec assay. Plotted are chemiluminescence averages 
of n=80 leaf discs ± S.E. normalized to water treatments. The graph is representative of three independent 
experiments. b-d, Eight leaf disks of three TRV-treated tomato plants were treated either with 10 μM GN6 or 
water as negative control. One hour after treatment the samples were pooled for each treatment. GN6-triggered 
changes in the expression of SlBAP2 (b), SlERF5 (c) and SlCAL-like (d) (encoding homologs of chitin-responsive 
Arabidopsis genes36) were determined by qRT-PCR. The bars display normalized transcript levels of chitin-
responsive genes relative to the constitutively expressed tomato tubulin gene.
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Discussion

LysM receptor proteins mediate recognition of a broad range of microbe-derived 
structural patterns, including bacterial peptidoglycan, fungal chitin and derivatives 
thereof2,4,38. The perception of such patterns triggers plant responses that either lead to 
the establishment of a mutually beneficial plant-microbe interaction or to the activation 
of plant immunity that restricts microbial colonization2. Here we identified two chitin-
binding LysM receptors from tomato and investigated their role in the activation of chitin-
triggered immune responses. 

Affinity purification with chitin beads resulted in the recovery of the two receptor 
candidates SlCEBiP and SlLYK4 (Table 1). Surprisingly, both candidates eluted following 
treatment with GN6 and with chitosan. In contrast to chitin, chitosan oligomers have 
previously been reported to be only weak immunity elicitors and weak competitors of 
radiolabeled chitopentaose in tomato39. However, the role of chitosan as an inducer of 
immune responses remains controversial, as it has been reported to have strong effects on 
other plant species40,41. Due to the structural relatedness of chitin and chitosan, we cannot 
exclude that tomato chitin receptors have some affinity for chitosan, which resulted in the 
(partial) elution of SlLYK4 and SlCEBiP from chitin beads.

Despite its ability to bind chitin, silencing of SlCEBiP did not result in a reduction of chitin-
triggered generation of ROS (Fig. 4a). This suggests that SlCEBiP is not part of the chitin 
receptor complex that activates the canonical chitin signal transduction pathway in 
tomato. Similar to SlCEBiP, its closest homolog AtLYM2 was identified based on its chitin-
binding activity32,42. However, lym2 mutants were not affected in AtCERK1-mediated 
chitin responses suggesting that AtLYM2 functions in a CERK1-independent pathway19. 
Indeed, AtLYM2 regulates chitin-triggered plasmodesmatal fluxes, which are required for 
resistance to the fungal pathogen Botrytis cinerea19.  Thus, it is possible that also SlCEBiP 
has a more specialized role in chitin perception.

In contrast to SlCEBiP, SlLYK4 is required for the chitin-triggered generation of ROS (Fig. 
4a). Additionally, silencing of SlLYK4 impaired the induction of chitin-responsive genes 
(Fig. 4b-d). However, this experiment was carried out only once and requires repetition. 
Phylogenetic analysis showed that SlLYK4 is closely related to the Arabidopsis receptor 
kinases AtLYK4 and AtLYK5 (Fig. 1)30. Like its Arabidopsis orthologues, SlLYK4 belongs to 
the group of LYR receptor kinases that lack a glycine-rich loop and display a degenerate 
HRD motif in their catalytic loop, rendering their kinase domains inactive11,12,30. Since 
its kinase lacks the important structural features for functionality, it is likely that SlLYK4 
associates with a co-receptor upon ligand perception which is reminiscent of other LYR 
receptors2. However, we did not identify a LysM receptor protein with an active kinase 
domain following affinity purification with chitin beads suggesting that this co-receptor 
may not directly be involved in ligand binding. In rice, chitin binding is mediated by 
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OsCEBiP17,43, whereas OsCERK1 is recruited into the receptor complex following sandwich-
like dimerization of two OsCEBiP molecules around the chitin ligand16. When challenged 
with fungal pathogens, tomato plants silenced for the closest CERK1 homolog SlLYK1 did 
not display marked differences in resistance compared to control plants (A. Kombrink, 
personal communication). This indicates that SlLYK1 is not part of the chitin receptor 
complex. However, we cannot rule out that gene silencing was insufficient to result in 
reduced resistance to fungal pathogens. Thus, the identification of additional components 
of the chitin receptor complex in tomato may require transgenic knockout tomato lines 
that can be assessed for their ability to mount immunity in response to fungal invasion. 

Methods

Receptor candidate purification

Microsomal fractions were prepared from tomato (Solanum lycopersicum) cv. Heinz 1706 
leaf tissue and used for chitin or chitosan affinity enrichment as described previously32. 
Proteins from unbound, eluent and bead fractions were separated by SDS-PAGE. Gel slices 
containing proteins of 50-100 kDa were utilized for tryptic digestion and purification for 
LC-MS/MS.

Candidate identification by liquid chromatography-mass spectrometry

LC-MS analysis was performed with an Orbitrap Velos ProTM Hybrid Ion Trap-Orbitrap 
mass spectrometer. 1-5 µl of peptide solutions were loaded and washed on an Acclaim® 
PepMAP 100 pre-column (#164564, 100 µm x 2 cm, C18, 3µm, 100 Å, Thermo Fisher 
Scientific) with 100% loading solvent A (98% H2O, 2% acetonitrile, 0.07% TFA) at a flow 
rate of 25 µl/min for 6 min. Peptides were separated by reverse phase chromatography 
on an Acclaim® PepMAP RSLC column (#164540, 75 µm x 50 cm, C18, 3 µm, 100 Å, Thermo 
Fisher Scientific) with a gradient from 98% solvent A (H2O, 0.1% formic acid) and 2% 
solvent B (80% acetonitrile, 20% H2O, 0.1% formic acid) to 42% solvent B for 95 min and 
to 65% solvent B for the following 26 min at a flow rate of 300 nl/min. Peptides eluting 
from the chromatographic column were on-line ionized by nanoelectrospray at 2.4 kV 
with the Nanospray Flex Ion Source (Thermo Fisher Scientific). Full scans of the ionized 
peptides were recorded within the Orbitrap FT analyzer of the mass spectrometer within 
a mass range of 300-1850 m/z at a resolution of 30.000. Collision-induced dissociation 
fragmentation of data-dependent top-fifteen peptides was performed with the LTQ Velos 
Pro linear ion trap. Data acquisition and programming were carried out with the XCalibur 
2.2 software (Thermo Fisher Scientific). A UniProt-derived Solanum lycopersicum-specific 
database (http://www.uniprot.org, Proteome ID UP000004994, 33952 entries) was used 
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for database searches with SequestHT and Mascot search engines. Proteins were identified 
with the Proteome DiscovererTM 1.4 software. The digestion mode was set to trypsin and 
the maximum of missed cleavage sites to two. Carbamidomethylation of cysteins was set 
as fixed modification, oxidation of methionines, and biotinylation of lysines were set as 
variable modifications (if required). The mass tolerance was 10 ppm for precursor ions and 
0.6 Da for fragment ions. The decoy mode was revert with a false discovery rate of 0.01.

Phylogeny of LysM receptors and protein sequence analyses 

Selected sequences of LysM domain-containing protein sequences were retrieved 
from the solgenomics network (http://solgenomics.net) for tomato (ITAG3.0), from TAIR 
(http://arabidopsis.org) for Arabidopsis, from Phytozome 12 (http://phytozome.jgi.doe.
gov) for rice (v7) and Medicago truncatula (Mt4.0v1), and UniProt (http://uniprot.org) for 
Lotus japonicus. The sequences were loaded into the “one click” phylogeny.fr server for 
phylogenetic analysis, ignoring alignment curation by Gblocks44. 

The sequences of SlLYK4 and SlCEBiP were further analysed with SignalP 4.1 and TargetP 
1.1 (http://www.cbs.dtu.dk/services/) to predict the presence of signal peptides and 
extracellular localization of both candidates. The localization of the LysM domains in the 
extracellular region of SlLYK4 was adopted from a previous study30, whereas the LysM 
domains of SlCEBiP were predicted with InterPro (http://www.ebi.ac.uk/interpro/). The 
GPI modification site in SlCEBiP was predicted with the big-PI plant server (http://mendel.
imp.ac.at/gpi/plant_server.html). 

Candidate expression analysis

Tissue-specific RNAseq data were retrieved from the tomato functional genomics database 
(http://ted.bti.cornell.edu) for the tomato cultivar Heinz, and from the GEO database 
(https://www.ncbi.nlm.nih.gov.geo.query/acc.cgi?acc=GSE33507) for the tomato cultivar 
Moneymaker (MM)45.  

To confirm the expression of the tomato chitin receptor candidate genes, shoot tissue 
was collected from nine tomato cv. Moneymaker plants infected with Verticillium dahliae 
strain JR2 at 4, 8 and 12 days post inoculation (dpi). Tissues from three plants were pooled 
for RNA isolation using the TRIZOL reagent (Invitrogen) according to manufacturer’s 
instructions. Expression of SlLYK4, SlCEBiP, and tomato tubulin (SlTUB) was analysed by 
real-time PCR as described previously36 using primer pairs shown in Supplementary Table 
1. RNA was used as template to confirm the absence of contamination by genomic DNA. 
Expression levels in shoot tissues of Verticillium-infected plants were calculated relative to 
SlTUB using the E-ΔCt method46 and normalized to mock-treated plants. 
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Virus-induced gene silencing of receptor candidates

Selected sequences of SlLYK4 and SlCEBiP were amplified from tomato cv. Moneymaker 
cDNA and cloned into the pTRV2 vector47 using the Gateway® technology (for primer 
sequences see Supplementary Table 1). Constructs were confirmed by sequencing 
(Supplementary Fig. 4) and transformed into Agrobacterium tumefaciens strain GV3101 by 
electroporation. Control TRV:GUS and TRV:PDS vectors had been previously generated and 
transformed into A. tumefaciens48. To silence SlLYK4 and SlCEBiP, cotyledons of 10 day-old 
tomato cv. Moneymaker seedlings were infiltrated with 1:1 mixtures of pTRV1 and pTRV2 
constructs49. Photobleaching was observed 10-14 days after agroinfiltration of TRV:PDS. At 
21 dpi leaf tissue was harvested for physiological assays.

Oxidative burst and chitin-responsive gene expression assays

Oxidative burst measurements were performed on eight leaf discs from TRV-treated 
tomato plants as previously described50. Water was replaced with 100 μL of a solution 
containing 100 μM L-012 substrate and 20 μg/mL horseradish peroxidase. Luminescence 
was measured following treatment with 10 μM chitohexaose (GN6; Megazyme) or water 
over 30 min using a CLARIOstar® microplate reader (BMG LABTECH). Leaf discs were kept 
in elicitor solutions for additional 30 min and then harvested and snap-frozen in liquid N2 
for RNA extraction as described above. Chitin-responsive gene expression was tested as 
described previously36. 
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Supplementary data

>Solyc02g089900.1.1 | mature SlLYK4 
QQPYFGTGTNDCSSQDTSTSAFGYLCNGVNRTCQSYLTFRSQPPFNTVSSISSLLGANPSQLSQLNSV
SQNATFNTNQMVLVPVTCSCSGQFYQSNASYVIRRDDSFLNIAMNTLQGLSTCQAINAENSEQANNLV
VGSRINVPLRCACPTQNQTNNGTNYLLTYLIASGEFVSFISDKFGVDFRATLAANSIPEDAPTVFPNT
TLLVPLSTPPLSSQVAGPSPPPPPATTPTPPAVPVSESSSNKTWIYVVAGVVGGLVALCILGVVVFFL
FFRKKEKKADPQFVSESFEAVEKPSNKKVEEESEEFLESLSSIAQSVKVYKFEEVKAATENFSPTCLI
KGSVYRGTINGDFAAIKKMSGDVSKEINLLSKINHFNLISLSGICFHDGHWYLVYEYAANGPLSDWIC
HHNGEQKSLSWAQRVQISFDVATGLNYLHSYTSPPHVHKDLNGDNILLDGDLRAKIANFGLARSADGQ
EGEFALTRHIVGTQGYMAPEYLENGLVSPKLDVYALGVLLLEILTGKEVSALYEGSNTNLAELLIPVL
NDDNAKESLSNFVDPSLQGKYPVELAFAMVRLIDNCLMKDPSHRPNTDEIVQSVSRIMTATHSWETSF
STSVSPHRLP 

>Solyc01g112080.2.1 | mature SlCEBiP 
SFSCTSPGTCDAIIDYTLPNATTFNAVKKLFNVKNLRSLLGVNNLPVNTPADEKLPANQTIKIPFPCL
CRNGTGIANKRPIYTVVAGDFLSHIVTDIFAGLFTVEELQRVNNISNPNLIQPGDKLWIPLPCSCDDV
DGEKVVHYGRLVSSGNSIEAIAQQYNVSQETLLRLNGLASPRELLAGAVLDVPLKACQSRVSNASLDY
PLLVPNDTYIFTAANCVTCKCDAASNWTLQCQPSQIKSSLWKTCPSMQCQGLDNLYIGNVTDCNSTSC
AYAGYSNQTIFTTNTQLTCPASDNSAFGMRPGTWIWNVILVAVSSMVIVF 

SUPPLEMENTARY FIGURE 1 | Coverage map of SlLYK4 and SlCEBiP peptides identified by mass 
spectrometry. Peptides identified by LC-MS and mapping to SlLYK4 or SlCEBiP protein sequences are highlighted 
in grey. The first amino acid residue of the transmembrane domain of SlLYK4 is underlined (W248).
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SlCEBiP    1 MVSLSSLF-----VSILC-LLTVSSPAEASFSC--TSPGTCDAIIDYTLPNATTFNAVKK 
OsCEBiP    1 MASLTAALATPAAAALLLLVLLAAPASAANFTCAVASGTTCKSAILYTSPNATTYGNLVA 
 
SlCEBiP   53 LFNVKNLRSLLGVNNLPVNTPADEKLPANQTIKIPFPCLCRNGTGIANKRPIYTVVAGDF 
OsCEBiP   61 RFNTTTLPDLLGANGLPDGTLSSAPVAANSTVKIPFRCRCNGDVGQSDRLPIYVVQPQDG 
 
SlCEBiP  113 LSHIVTDIFAGLFTVEELQRVNNISNPNLIQPGDKLWIPLPCSCDDVDGEKVVHYGRLVS 
OsCEBiP  121 LDAIARNVFNAFVTYQEIAAANNIPDPNKINVSQTLWIPLPCSCDKEEGSNVMHLAYSVG 
 
SlCEBiP  173 SGNSIEAIAQQYNVSQETLLRLNGLASPRELLAGAVLDVPLKACQSRVSNASLDYP-LLV 
OsCEBiP  181 KGENTSAIAAKYGVTESTLLTRNKIDDPTKLQMGQILDVPLPVCRSSISDTSADHNLMLL 
 
SlCEBiP  232 PNDTYIFTAANCVTCKCDAASNWTLQCQPSQIKSSLWKTCPSM-QCQGLDNLYIGNVTDC 
OsCEBiP  241 PDGTYGFTAGNCIRCSCSST-TYQLNCTAVQN-----KGCPSVPLCNGTLKLGETNGTGC 
 
SlCEBiP  291 NSTSCAYAGYSNQTIFTTNTQL------TCPASDNSAFGMRPGTWIWNVILVAVSSMVIV 
OsCEBiP  295 GSTTCAYSGYSNSSSLIIQTSLATNQTTACQRGGSGRSQFARSMWSMSVISFHMVLIIIC 
 
SlCEBiP  345 F- 
OsCEBiP  355 FL 
 

SUPPLEMENTARY FIGURE 2 | Pairwise alignment of rice and tomato CEBiP protein sequences. Full-length 
protein sequences of SlCEBiP and OsCEBiP were aligned with Clustal Omega (http://www.ebi.ac.uk/Tools/msa/
clustalo/). LysM domains as annotated for OsCEBiP16,33 are underlined in red. Sequence conservation between 
the two receptors suggests that SlCEBiP contains three LysM domains.
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SUPPLEMENTARY FIGURE 3 | Expression of SlLYK4 and SlCEBiP in different tomato tissues. Tissue-specific 
expression patterns of SlLYK4 (a) and SlCEBiP (b) determined by RNAseq in the tomato cultivars Heinz 1706 and 
Moneymaker (MM) extracted from the tomato functional genomics database (TFGD) and the tomato genome 
consortium GEO (TGC-GEO) databases, respectively. 
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SlCEBiP_VIGS       1 ---------------------------------------------------CCATTTACA 
SlCEBiP_temp     481 TCCCCTTTCCTTGTCTCTGTAGAAACGGTACCGGAATAGCCAACAAACGCCCCATTTACA 

 
SlCEBiP_VIGS      10 CCGTCGTCGCCGGCGACTTCCTATCGCACATAGTTACCGACATCTTCGCCGGTTTGTTCA
SlCEBiP_temp     541 CCGTCGTCGCCGGCGACTTCCTATCGCACATAGTTACCGACATCTTCGCCGGTTTGTTCA 

 SlCEBiP_VIGS      70 CTGTTGAGGAACTTCAAAGGGTTAACAATATATCTAACCCCAATTTGATACAACCCGGGG 
SlCEBiP_temp     601 CTGTTGAGGAACTTCAAAGGGTTAACAATATATCTAACCCCAATTTGATACAACCCGGGG

SlCEBiP_VIGS     130 ATAAATTGTGGATCCCACTTCCTTGCAGCTGCGACGACGTTGACGGTGAAAAAGTTGTTC 
SlCEBiP_temp     661 ATAAATTGTGGATCCCACTTCCTTGCAGCTGCGACGACGTTGACGGTGAAAAAGTTGTTC 

 

 
SlCEBiP_VIGS     190 ATTATGGTCGATTGGTGAGCAGTGGCAACAGTATTGAGGCTATTGCTCAGCAGTACAATG
SlCEBiP_temp     721 ATTATGGTCGATTGGTGAGCAGTGGCAACAGTATTGAGGCTATTGCTCAGCAGTACAATG

SlCEBiP_VIGS     250 TTTCCCAGGAAACCCTCTTGAGGTTGAATGGTTTAGCAAGTCCCAGAGAACTTTTAGCTG 
SlCEBiP_temp     781 TTTCCCAGGAAACCCTCTTGAGGTTGAATGGTTTAGCAAGTCCCAGAGAACTTTTAGCTG 

SlCEBiP_VIGS     310 GCGCAGTTCTTGACGTTC------------------------------------------
SlCEBiP_temp     841 GCGCAGTTCTTGACGTTCCCCTTAAAGCTTGCCAATCAAGGGTGAGCAATGCCTCGCTGG

SlLYK4_VIGS        1 ------------------------GTTTTTACCATCATTCTTGCTTATTCCTCTGTTTCA
SlLYK4_temp        1 ATGAATTATTCTCATCTCATCTTTGTTTTTACCATCATTCTTGCTTATTCCTCTGTTTCA

SlLYK4_VIGS       37 ATTCTTGCACAACAGCCTTATTTTGGAACTGGAACAAATGACTGCAGCAGCCAAGATACC
SlLYK4_temp       61 ATTCTTGCACAACAGCCTTATTTTGGAACTGGAACAAATGACTGCAGCAGCCAAGATACC

SlLYK4_VIGS       97 TCCACTTCTGCTTTTGGGTATTTATGCAATGGCGTTAACCGTACTTGCCAATCTTATTTG
SlLYK4_temp      121 TCCACTTCTGCTTTTGGGTATTTATGCAATGGCGTTAACCGTACTTGCCAATCTTATTTG

SlLYK4_VIGS      157 ACCTTCAGATCTCAACCCCCTTTCAATACTGTGTCCTCAATCTCTTCTTTACTCGGTGCT
SlLYK4_temp      181 ACCTTCAGATCTCAACCCCCTTTCAATACTGTGTCCTCAATCTCTTCTTTACTCGGTGCT

SlLYK4_VIGS 217 AATCCTTCACAGCTCTCTCAGCTCAATTCTGTTTCTCAAAATGCTACCTTTAACACCAAT
SlLYK4_temp      241 AATCCTTCACAGCTCTCTCAGCTCAATTCTGTTTCTCAAAATGCTACCTTTAACACCAAT

SlCEBiP_VIGS       1 ---------------------------------------------------
SlCEBiP_temp     481 TCCCCTTTCCTTGTCTCTGTAGAAACGGTACCGGAATAGCCAACAAACGCCCCATTTACA

SlCEBiP_VIGS      10 CCGTCGTCGCCGGCGACTTCCTATCGCACATAGTTACCGACATCTTCGCCGGTTTGTTCA
SlCEBiP_temp     541 CCGTCGTCGCCGGCGACTTCCTATCGCACATAGTTACCGACATCTTCGCCGGTTTGTTCA

SlCEBiP_VIGS      70 CTGTTGAGGAACTTCAAAGGGTTAACAATATATCTAACCCCAATTTGATACAACCCGGGG
SlCEBiP_temp     601 CTGTTGAGGAACTTCAAAGGGTTAACAATATATCTAACCCCAATTTGATACAACCCGGGG

SlCEBiP_VIGS     130 ATAAATTGTGGATCCCACTTCCTTGCAGCTGCGACGACGTTGACGGTGAAAAAGTTGTTC
SlCEBiP_temp     661 ATAAATTGTGGATCCCACTTCCTTGCAGCTGCGACGACGTTGACGGTGAAAAAGTTGTTC

SlCEBiP_VIGS     190 ATTATGGTCGATTGGTGAGCAGTGGCAACAGTATTGAGGCTATTGCTCAGCAGTACAATG
SlCEBiP_temp     721 ATTATGGTCGATTGGTGAGCAGTGGCAACAGTATTGAGGCTATTGCTCAGCAGTACAATG

SlCEBiP_VIGS     250 TTTCCCAGGAAACCCTCTTGAGGTTGAATGGTTTAGCAAGTCCCAGAGAACTTTTAGCTG
SlCEBiP_temp     781 TTTCCCAGGAAACCCTCTTGAGGTTGAATGGTTTAGCAAGTCCCAGAGAACTTTTAGCTG

SlCEBiP_VIGS     310 GCGCAGTTCTTGACGTTC------------------------------------------
SlCEBiP_temp     841 GCGCAGTTCTTGACGTTCCCCTTAAAGCTTGCCAATCAAGGGTGAGCAATGCCTCGCTGG

SlLYK4_VIGS        1 ------------------------GTTTTTACCATCATTCTTGCTTATTCCTCTGTTTCA
SlLYK4_temp        1 ATGAATTATTCTCATCTCATCTTTGTTTTTACCATCATTCTTGCTTATTCCTCTGTTTCA

SlLYK4_VIGS       37 ATTCTTGCACAACAGCCTTATTTTGGAACTGGAACAAATGACTGCAGCAGCCAAGATACC
SlLYK4_temp       61 ATTCTTGCACAACAGCCTTATTTTGGAACTGGAACAAATGACTGCAGCAGCCAAGATACC

SlLYK4_VIGS       97 TCCACTTCTGCTTTTGGGTATTTATGCAATGGCGTTAACCGTACTTGCCAATCTTATTTG
SlLYK4_temp      121 TCCACTTCTGCTTTTGGGTATTTATGCAATGGCGTTAACCGTACTTGCCAATCTTATTTG

SlLYK4_VIGS      157 ACCTTCAGATCTCAACCCCCTTTCAATACTGTGTCCTCAATCTCTTCTTTACTCGGTGCT
SlLYK4_temp      181 ACCTTCAGATCTCAACCCCCTTTCAATACTGTGTCCTCAATCTCTTCTTTACTCGGTGCT

SlLYK4_VIGS 217 AATCCTTCACAGCTCTCTCAGCTCAATTCTGTTTCTCAAAATGCTACCTTTAACACCAAT
SlLYK4_temp      241 AATCCTTCACAGCTCTCTCAGCTCAATTCTGTTTCTCAAAATGCTACCTTTAACACCAAT

SUPPLEMENTARY FIGURE 4 | Alignment of target sequences selected for virus-induced gene silencing 
with gene templates. Prior to transformation of A. tumefaciens pTRV2 vectors carrying gene fragments of 
SlCEBiP (a) and SlLYK4 (b) were verified by sequencing.
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SUPPLEMENTARY FIGURE 5 | Efficiency and specificity of SlLYK4 and SlCEBiP silencing in tomato. Silencing 
efficiency of SlCEBiP and SlLYK4 was determined by qRT-PCR in tomato leaves three weeks following tobacco 
rattle virus (TRV) treatment using gene-specific primers. Primers targeting the tomato tubulin gene were used 
for sample calibration. Relative transcript levels were set to 1 for TRV:GUS-treated samples for each gene. Bars 
represent expression levels in n>3 plants ± S.D.. Statistically significant differences in expression compared to 
TRV:GUS plants were determined with a Student’s t test (*p<0.5; **p<0.01).

SUPPLEMENTARY TABLE 1 | Primers used in this study.

Name Sequence (5'  3') Application

SlLYK4_qPCR_F TCAACGCGGAGAACAGTGAA qRT-PCR

SlLYK4_qPCR_R GCCCTAAAATCCACCCCAAA qRT-PCR

SlCEBiP_qPCR_F CTTGCCAATCAAGGGTGAGC qRT-PCR

SlCEBiP _qPCR_R ATCTGGGATGGTTGGCATTG qRT-PCR

SlTUB_F AACCTCCATTCAGGAGATGTTT qRT-PCR

SlTUB_R TCTGCTGTAGCATCCTGGTATT qRT-PCR

SlLYK4_VIGS_F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGAATTATTCTCATCTC VIGS

SlLYK4_VIGS_R GGGGACCACTTTGTACAAGAAAGCTGGGTTTCATTATTAATTGGTGTTAAAGGTAGC VIGS

SlCEBiP_VIGS_F GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATTTACACCGTCGTCGC VIGS

SlCEBiP _VIGS_R GGGGACCACTTTGTACAAGAAAGCTGGGTGAACGTCAAGAACTGCGCC VIGS
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Abstract

Microbes utilize secreted molecules to facilitate niche establishment, including microbial 
pathogens that colonize plant hosts1. We previously identified the secreted effector 
protein Ave1 of the vascular wilt fungus Verticillium dahliae that acts as a virulence factor 
during plant colonization2. Ave1 homologs are ubiquitous in plants and occur only in few 
plant pathogens that acquired them via horizontal gene transfer (HGT)2. Intriguingly, all 
homologs carry a conserved plant natriuretic peptide (PNP) sequence. Here we show 
that, as previously demonstrated for some of its homologs, also V. dahliae Ave1 displays 
PNP activity. However, the contribution of Ave1 to virulence is not dependent on its PNP 
activity. Further analysis revealed that Ave1 interacts with plant endochitinases, which 
are important executors of plant defense3. Intriguingly, in contrast to its homologs, Ave1 
inhibits endochitinases to interfere with host immunity. Thus, Ave1 functionally diverged 
from its microbial and plant homologs upon HGT from plants to evolve a novel function 
in immune suppression. 
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Introduction

Verticillium dahliae is a soil-inhabiting fungal pathogen that causes vascular wilt in over 
200 dicotyledonous plants species, including many crops4,5. Like other microbes, V. 
dahliae secretes effector molecules to facilitate niche establishment1,6. Using comparative 
population genomics, we identified the V. dahliae effector gene Ave1 (hereafter referred to 
as VdAve1) that is crucial for fungal aggressiveness during infection (virulence) on tomato 
(Solanum lycopersicum), on Arabidopsis thaliana2, and on other host plants (B.P.H.J. Thomma, 
unpublished data). Similarity searches revealed that VdAve1 has numerous homologs 
in plants, but also in the phytopathogenic fungi Fusarium oxysporum, Colletotrichum 
higginsianum, and Cercospora beticola, in the saprotroph Verticillium nubilum as well as in 
the bacterial pathogen Xanthomonas citri subsp. citri2,7. Since the distribution of VdAve1 
homologs does not follow the phylogeny of the species in which they occur, it has been 
proposed that V. dahliae acquired VdAve1 from plants by horizontal gene transfer (HGT)2. 
This hypothesis is further supported by its localization in a highly dynamic lineage-specific 
region of the V. dahliae genome8-10.

Results and discussion

Most plant homologs of VdAve1 are annotated as plant natriuretic peptides (PNPs)11,12; 
functional analogues of vertebrate atrial natriuretic peptides (ANPs) that contribute to 
maintenance of osmotic and cardiovascular homeostasis13. Similarly, PNPs are systemically 
mobile molecules that are released under biotic and abiotic stress conditions and have 
been implicated in ion and water homeostasis12,14. Interestingly, the VdAve1 homolog 
XacPNP that is produced by the plant pathogenic bacterium X. citri subsp. citri is a 
horizontally acquired virulence factor that promotes bacterial proliferation through its 
PNP activity15,16. An alignment of VdAve1 with homologs of V. nubilum (VnAve1), C. beticola 
(CbAve1), F. oxysporum (FoAve1), C. higginsianum (ChAve1), XacPNP, tomato (SlAve1), and A. 
thaliana (AtPNP-A) shows that the smallest peptide with PNP function lies within the most 
conserved region (grey box, Fig 1a;15). To test whether VdAve1 has PNP activity, its ability 
to promote stomatal opening was assayed in tomato (Fig. 1b). Treatment of leaf epidermis 
with VdAve1 resulted in significantly enhanced stomatal opening as similarly observed 
upon treatment with XacPNP and the synthetic auxin analogue naphthalene acetic 
acid (NAA) (Fig 1b). Consistent with previous reports demonstrating that PNP-induced 
responses are dependent on cyclic guanosine monophosphate (cGMP) signalling17, 
aperture changes caused by VdAve1 were partially repressed by the guanylate cyclase 
inhibitor methylene blue. Collectively, these findings demonstrate that VdAve1 displays 
PNP activity.
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To test whether the PNP activity accounts for the virulence activity of VdAve1, we 
complemented a VdAve1 deletion mutant (ΔVdAve1)2 with VnAve1, ChAve1, FoAve1, 
CbAve1, XacPNP, or SlAve1 under control of the VdAve1 promoter (Supplementary Fig. 
1a), and confirmed transgene expression by qRT-PCR (Supplementary Fig. 1b). For each 
construct, we selected two transformants of which at least one reached an expression 
value similar to wild type VdAve1 for inoculation assays on tomato. Surprisingly, none of 
the VdAve1 homologs was able to restore the virulence of the VdAve1 deletion mutant to 
wild type, as determined by assessment of symptom display of inoculated plants (Fig. 2a) 
and fungal biomass by qRT-PCR (Fig. 2b). Since the PNP domain is highly conserved in all 
homologs tested here and is functional in VdAve1 as well as XacPNP, these results suggest 
that the PNP activity of VdAve1 is not responsible for its role in virulence, and that this 
effector has acquired an additional function to facilitate host colonization. 

a
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FIGURE 1 | The conserved PNP domain 
is active in VdAve1. a, Multiple sequence 
alignment of mature VdAve1 with homologs 
from Verticillium nubilum (Vn), Colletotrichum 
higginsianum (Ch), Fusarium oxysporum (Fo), 
Cercospora beticola (Cb), Xanthomonas citri 
(Xac), tomato (Sl) and Arabidopsis thaliana (At) 
shows highly conserved PNP domain (grey 
box). b, Stomatal opening was determined in 
tomato epidermis following treatment with 5 
µM VdAve1 or XacPNP in absence of presence 
of methylene blue (MB). Naphthalene acetic 
acid (NAA; 1 µM) and 50 µM abscisic acid (ABA) 
were used as positive and negative controls, 
respectively. Data are from one representative 
experiment. Experiments were performed 
twice. Letters represent statistically significant 
differences in stomatal opening according to 
one-way ANOVA (F(5,824)=124.8, p<0.001) 
and Tukey’s post-hoc test. Error bars represent 
the mean ± SD (n>70).
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FIGURE 2 | VdAve1 has functionally diverged from plant and microbial homologs. Complementation assays 
in the V. dahliae Ave1 deletion mutant with microbial and plant homologs (a,b; Supplementary Fig. 1) and chimeric 
mutants (c,d; Supplementary Fig. 2) of Ave1 show that full-length VdAve1 is required for V. dahliae virulence 
during tomato colonization. a, Representative stunting symptoms of plants inoculated with wild type V. dahliae 
(JR2), ΔVdAve1, ΔVdAve1 complemented with VdAve1, or two independent ΔVdAve1 strains expressing VdAve1 
homologs from V. nubilum (Vn), C. higginsianum (Ch), C. beticola (Cb), F. oxysporum (Fo), X. citri (Xac), and tomato (Sl). 
The XacPNP sequence encoding the mature protein was fused to the VdAve1 signal peptide to ensure secretion. 
Plants inoculated with strains expressing VdAve1 homologs display stunting symptoms similar to plants inoculated 
with the VdAve1 deletion strain, suggesting that the homologs fail to reinstall virulence. b, Fungal biomass was 
quantified in stem tissue of all mock-treated and V. dahliae-inoculated plants by quantitative RT-PCR on genomic 
DNA targeting the V. dahliae ITS gene at 17-19 days after inoculation. Primers targeting the tomato rubisco gene 
were used for sample calibration. Data are from three independent experiments. Letters represent statistically 
significant differences in biomass according to one-way ANOVA (F(15,399)=19.988, p<0.001) and Tukey’s post-hoc 
test. Error bars represent the mean ± SD (n>26). c, Similar to full-length homologs, complementation of the VdAve1 
deletion mutant with constructs expressing chimeric Vn/VdAve1, Vd/VnAve1, Xac/VdAve1, Vd/XacPNP, Sl/VdAve1 
and Vd/SlAve1 did not result in the recovery of virulence. d, Quantification of fungal biomass as in b. Data are from 
three independent experiments. Letters represent statistically significant differences in biomass according to one-
way ANOVA (F(15,435)=67.084, p<0.001) and Tukey’s post-hoc test. Error bars represent the mean ± SD (n>29).
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We then generated a range of constructs for the expression of domain swap mutants 
between VdAve1 and VnAve1, XacPNP or SlAve1 in the VdAve1 deletion mutant 
to investigate which portion of VdAve1 is responsible for its virulence function 
(Supplementary Fig. 2a). The swapping sites were chosen such that the most conserved 
sequence, including the active PNP domain, originated from the VdAve1 homologs. 
Again, transformants were selected based on transgene expression as described above 
(Supplementary Fig. 2b). Intriguingly, symptom assessment and quantification of fungal 
biomass in infected plants showed that, similar to the full-length homologs, none of 
the chimeric Ave1 proteins reinstalled virulence in ΔVdAve1 during tomato colonization 
(Fig. 2c,d). This finding confirms that the PNP domain is not responsible for the virulence 
function of VdAve1. Moreover, we hypothesize that the domain swaps disrupted the 
domain required for the virulence activity of VdAve1. Based on the functional dissection 
of the VdAve1 epitope, we have recently proposed that the surface that is formed by the 
N- and C-termini of VdAve1 is crucial for the recognition by the tomato immune receptor 
Ve17. Taken together, these findings suggest that a modification of either terminus of the 
protein destabilizes its overall structure, affecting both VdAve1 immune recognition and 
its virulence function. 

Considering that the PNP activity is not responsible for the virulence contribution of 
VdAve1, and that we cannot attribute the virulence function to a specific subdomain 
of the effector protein, we pursued affinity purification and identification of interacting 
plant proteins by mass spectrometry to reveal how VdAve1 contributes to virulence. 
To this end, we transiently expressed VdAve1 fused to green fluorescent protein (GFP), 
which was previously shown to be recognized by Ve1, in tobacco (Nicotiana tabacum) 
leaves7. The transiently expressed proteins were immunopurified with αGFP agarose 
beads and peptides generated by tryptic on-bead digestion were analyzed with mass 
spectrometry. While twelve proteins specifically co-purified with VdAve1, only two 
tobacco endochitinases (CHI1 and CHI2), with an average of 4 unique peptides in four 
biological replicates, were considered as bona fide interactors, since the remaining 
proteins are predicted to be localized intracellularly while VdAve1 is thought to act 
extracellularly (Fig. 3a; Supplementary Fig. 3; Supplementary Table 2). Endochitinases 
are important pathogenesis-related proteins and play a key role in plant defense against 
fungal microbes3,18. Consequently, several mechanisms evolved in fungi that enable them 
to evade or suppress host chitinase activity, such as proteolytic cleavage of chitinases and 
competition for the binding of chitinase substrates19-21. 
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FIGURE 3 | ChtBD1 domain-carrying tomato endochitinases are putative targets of VdAve1. a, Putative 
targets of VdAve1 were identified by mass spectrometry following transient expression of GFP-tagged VdAve1 
in tobacco leaves. Leaves of four plants were independently infiltrated with A. tumefaciens carrying GFP-Ave1 or 
Ve1-HA constructs and treated as biological replicates in subsequent analyses. Immunopurification of tagged 
proteins was carried out on total leaf extracts 2 days after infiltration. The secreted tobacco endochitinases CHI1 
and CHI2 specifically co-purified with GFP-Ave1. b, Phylogeny of putative secreted endochitinases of tobacco 
(Nicotiana tabacum), tomato (Solanum lycopersicum), Nicotiana benthamiana, potato (Solanum tuberosum), and 
Arabidopsis thaliana carrying both a chitin-binding (ChtBD1; PF00187) and a glycosyl hydrolase family 19 (GH19; 
PF00182) domain. Clustering shows that endochitinases group into two clades corresponding to class I and class 
IV chitinases. The two tobacco chitinases CHI1 and CHI2 (*) identified by mass spectrometry belong to class I, 
which contains four homologs from tomato. The clade of class IV chitinases only contains two putative tomato 
endochitinases.
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The tomato genome comprises six genes encoding endochitinases (SlChi1, SlChi2, SlChi3, 
SlChi4, SlChi13, and SlChi14) that are closely related to tobacco CHI1 and CHI2. These are 
the only secreted tomato chitinases that contain both a chitin-binding type-1 (ChtBD1; 
PF00187) and a chitinolytic glycosyl hydrolase 19 (GH19; PF00182) domain21. The ability 
to bind chitin via their ChtBD1 domain has previously been described to enhance 
enzymatic efficiency of GH19 chitinases, and removal of this domain compromises their 
enzymatic and antifungal activity21-23. Phylogenetic analysis of the tobacco and tomato 
chitinases and predicted secreted chitin-binding chitinases from Nicotiana benthamiana, 
Solanum tuberosum (potato), and Arabidopsis thaliana demonstrated that they group 
into two clades corresponding to class I and class IV chitinases (Fig. 3b)24. Quantitative 
RT-PCR analysis showed that all six endochitinase genes are expressed in tomato stem 
tissue during V. dahliae infection (Supplementary Fig. 4). Similarly, expression of SlChi2, 
SlChi3, SlChi4, and SlChi13 was induced during tomato infection by F. oxysporum that, like 
V. dahliae, colonizes the plant vascular system21,25. Additionally, SlChi2, SlChi3, and SlChi4 
expression was significantly upregulated in tomato leaf tissue upon inoculation with the 
extracellular, foliar pathogen Cladosporium fulvum21,26,27. These results indicate that the six 
chitin-binding tomato chitinases play an important role in defense against various fungal 
pathogens. 

The finding that VdAve1 interacts with chitinases may suggest that V. dahliae utilizes this 
effector to inhibit host chitinases in order to protect itself from their enzymatic activity. 
To determine the potential inhibitory activity of VdAve1, we purified the tomato class I 
chitinases SlChi2 and SlChi4 upon heterologous expression from Pichia pastoris, and 
SlChi13 as representative of class IV chitinases. We first assessed the hydrolytic activity 
of SlChi2, SlChi4, and SlChi13 alone using a colorimetric assay. Of the three enzymes, 
only SlChi4 displayed endochitinolytic activity (Supplementary Fig. 5a) while its ability to 
hydrolyze the exochitinase-specific substrate was negligible, confirming its annotation 
as endochitinase. Neither SlChi2 nor SlChi13 showed measurable enzymatic activity, 
possibly indicating differences in substrate specificity as both chitinases were previously 
shown to hydrolyze insoluble chitin azure21. Based on these findings, SlChi4 was used 
in subsequent experiments. Its activity was suppressed by the chitinase inhibitor tri-N-
acetylchitotriosyl moranoline (GN3M)28 in a concentration-dependent manner, but not 
by monomeric N-acetylchitotriosyl moranoline (GNM)28 (Supplementary Fig. 5b,c), which 
were used as positive and negative controls, respectively. Interestingly, incubation of 
SlChi4 with Escherichia coli-produced VdAve1 resulted in significantly decreased SlChi4 
activity, demonstrating that the effector indeed acts as a chitinase inhibitor (Fig. 4). 
Notably, 0.5 µM VdAve1 was sufficient to reduce SlChi4 activity by ~50%, which is similar 
to the inhibition by 100  µM GN3M, demonstrating that VdAve1 is a considerably more 
potent chitinase inhibitor than GN3M. 
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FIGURE 4 | VdAve1 inhibits tomato endochitinase 
activity. SlChi4 (0.1 µM) activity was quantified based 
on the release of p-nitrophenol from the endochitinase 
substrate 4-Nitrophenyl β-D-N,N´,N´´-triacetylchitotriose 
following two hours of incubation in reaction buffer (pH 
5.5) at 37°C. For inhibition, SlChi4 was pre-incubated for 
15 min with 0.5 µM effector proteins or 100 µM GN3M 
and GNM, respectively. Data are from three independent 
experiments with two technical replicates. Bars represent 
means ± SD (n=3). Letters show statistically significant 
differences according to one-way ANOVA and Tukey’s 
post-hoc test.

Since complementation of the VdAve1 deletion mutant of V. dahliae with homologs from 
microbes and plants did not result in the recovery of virulence, we speculated that only 
VdAve1 has the capacity to inhibit endochitinase activity. To validate this hypothesis, 
we assessed the inhibitory activity of selected Ave1 homologs towards SlChi4. To this 
end, we tested the closest VdAve1 homolog, VnAve1, as well as the well-characterized 
homolog XacPNP, which was shown to act as a microbial virulence factor. In support of 
our hypothesis, only addition of VdAve1, but not of VnAve1 or XacPNP to the reaction 
mixture resulted in significant inhibition of SlChi4 activity (Fig. 4). Collectively, these 
results demonstrate that only VdAve1, in contrast to its homologs, acquired an additional 
functionality to suppress the hydrolytic activity of plant endochitinases. 

The hydrolytic cleavage of cell wall chitin by endochitinases during plant colonization 
has detrimental effects on invading fungal microbes. On the one hand, it releases chitin 
fragments that are recognized by plant cell surface receptors, resulting in the stimulation 
of further immune responses29. On the other hand, the hydrolysis of structural chitin 
macromolecules affects the integrity of the fungal cell wall, which may ultimately lead to 
cell collapse18. Thus, by secreting VdAve1 during host colonization, V. dahliae may interfere 
with chitin-triggered immunity in two, not mutually exclusive, ways: (1) by inhibiting the 
hydrolysis of fungal hyphae, and (2) by preventing the release of immunogenic chitin 
oligomers. This finding explains the earlier observation that the core chitin-binding lysin 
motif (LysM)-containing effector proteins produced by V. dahliae do not interfere with 
chitin-triggered immunity30. This was surprising since all fungal plant pathogens need 
to address the threat posed by chitin-triggered host immunity, a role that has been 
attributed to the ubiquitous fungal LysM effectors in many species20,31,32. However, in V. 
dahliae, VdAve1 has evolved to fulfill this task.

The acquisition of effector genes by HGT from plants has been associated with emergence 
of pathogenicity and microbial host range expansion33. Moreover, phytopathogens 
utilize host-related molecules for immune evasion and host manipulation15,34. Here we 
show that VdAve1, in contrast to its homologs, inhibits tomato endochitinases during 
infection, representing a novel strategy for phytopathogens to deal with host-derived cell 
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wall hydrolytic enzymes. The finding of yet another strategy to undermine chitin-triggered 
immunity underpins its importance in host defense against fungal pathogens. Thus, we reveal 
a case of neofunctionalisation of a horizontally acquired effector gene toward a function in 
host immune suppression. 

Methods

Sequence alignment of Ave1 proteins 

Protein alignment was performed using MAFFT (Version 7.271)35. 

Production and purification of recombinant effector proteins 

The sequences encoding mature VdAve1, VnAve1, and XacPNP were cloned into the pET-
15b expression vector for N-terminal His6 tagging (Novagen, Madison, WI, USA) (for primer 
sequences see Supplementary Table 1). Heterologous proteins were produced and purified 
from inclusion bodies under denaturing conditions using His60 Ni2+ Superflow Resin 
(Clontech, Mountain View, CA, USA). Purified proteins were stored in 0.25 M ammonium 
sulphate with 0.1 M BisTris, pH 5.5. Final concentrations were determined using the BioRad 
Protein Assay (BioRad, Veenendaal, The Netherlands). For details see Supplementary Methods.

Stomatal opening assay

Stomatal aperture was tested as described previously15 using tomato leaf tissue. Significant 
differences between treatments were determined using one-way ANOVA followed by Tukey’s 
post-hoc test in R (Version 3.3.2).

Generation of V. dahliae complementation strains

Genes encoding VdAve1 homologs and chimeric Ave1 proteins (Supplementary Fig. 2) 
were synthesized (Eurofins, Ebersberg, Germany) and cloned into the pFBT005 vector 
under the control of the VdAve1 promoter (for details see Supplementary information). For 
expression of full-length XacPNP and Xac/VdAve1, the native signal peptide of XacPNP was 
replaced with that of VdAve1 (see Supplementary Fig. 1a, 2a). Transformation of V. dahliae 
ΔAve12 with A. tumefaciens Agl1 carrying the different constructs was performed as described 
previously7,36,37. Transgene expression was determined for individual colonies, grown in liquid 
½ Murashige & Skoog medium supplemented with 3% sucrose and 1 mM MES, pH 5.7 at 
22°C and 120 rpm, by qRT-PCR using primers targeting specific transgenes and VdGAPDH for 
sample calibration (Supplementary Table 1). Quantitative RT-PCR conditions and analyses of 
results were described previously2. 
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Disease assays

Tomato inoculations were carried out as described previously36. Disease development was 
monitored up to 19 days after inoculation. V. dahliae biomass was quantified as described 
in the Supplementary Methods. Significant differences in biomass between tomato plants 
inoculated with V. dahliae wild type and mutant strains was determined by one-way 
ANOVA, followed by Tukey’s post-hoc analysis in R (Version 3.3.2).

VdAve1 target identification by immunopurification and mass spectrometry.

 Immunopurifications were carried out as described previously38 with minor modifications 
(for details see Supplementary Methods). Peptides were analyzed by mass spectrometry 
(see Supplementary Methods). For protein identification, the publicly available tobacco 
(N. tabacum) database from Uniprot (2013) and an in-house V. dahliae (PeterEsse_JR2_
Genome_2013) database were queried. Results were analyzed with MaxQuant (Version 
1.3.0.5.) in label-free mode39. Result filtering and statistical analyses were carried out as 
described previously40. Tobacco CHI1 and CHI2 domain identities were confirmed using 
InterPro (Version 62.0; http://www.ebi.ac.uk/interpro/). 

Phylogenetic analysis of plant chitinases

To discern putative chitinases closely related to the two tobacco chitinases identified by 
mass spectrometry, we queried the predicted proteomes of the Solanaceous plants tomato 
(Version 2.4), Solanum tuberosum (potato; Version 3.4), Nicotiana benthamiana (Version 
0.4.4), tobacco (all from solgenomics.net), as well as A. thaliana (thale cress; TAIR Version 
10) for proteins containing chitin-binding (PF00187) and glycoside hydrolase family 19 
(PF00182) domains using HMMer (Version 3.1b)41 and a local Pfam database (Version 
27)42. Proteins without predicted N-terminal secretion signal and truncated proteins were 
removed. Remaining protein sequences were aligned using MAFFT (Version 7.271)35. 
Maximum likelihood phylogeny was inferred using RaXML (Version 8.2.4; WAG model of 
amino acid change and GAMMA model of rate heterogeneity)43, and its robustness was 
assessed using 1,000 bootstrap replicates.

Production of recombinant tomato chitinases 

Pichia pastoris GS115 expressing recombinant tomato chitinases SlChi2, SlChi4 or 
SlChi1321 were grown in a New Brunswick Bioflo 3000 fermenter for protein production 
and purification as described previously21,44 with minor modifications in the purification 
process (for details see Supplementary Methods). Purified chitinases were stored in 0.2 M 
NaCl and concentrations were measured as described above.
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Colorimetric chitinase activity assay

Endo- and exochitinase activities of purified chitinases SlChi2, SlChi4, SlChi13 were 
tested using 0.2 mg/mL or 0.5 mg/mL 4-Nitrophenyl β-D-N,N´,N´´-triacetylchitotriose and 
N-Nitrophenyl N-acetyl-β-D-glucosaminide substrates, respectively, from the Chitinase 
Assay Kit (CS0980, Sigma, St. Louis, MO, USA) according to manufacturer’s instructions. 
Effector proteins or moranoline-conjugated chitin oligomers28 were pre-incubated with 
SlChi4 at indicated concentrations for 15 min prior to addition to substrates. The release 
of p-nitrophenol (4-nitrophenol) was measured after 2 hours of incubation in 0.25 M 
ammonium sulfate, 0.1 M BisTris, pH 5.5 at 37°C in a CLARIOstar® plate reader (BMG LABTECH, 
Ortenberg, Germany) at 405 nm. Absorbance values were exported from the MARS data 
analysis software (BMG LABTECH, Ortenberg, Germany). Enzyme activities were calculated 
as described in the kit’s technical bulletin. Statistical differences between treatments were 
determined by one-way ANOVA followed by Tukey’s post-hoc analysis in R (Version 3.3.2).
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Supplementary methods

Plant materials 

Tobacco (Nicotiana tabacum cv. Petit Havana SR1) and tomato plants were grown as 
described previously1-3. Following agroinfiltration, tobacco plants were transferred to 
climate chambers with 21°C/19°C during 12/12 hours day/night periods and 70% relative 
humidity.

Production and purification of recombinant effector proteins

The sequences encoding mature VdAve1, VnAve1, and XacPNP were amplified from 
pGEM-T plasmid DNA carrying the respective gene4. Forward and reverse primers included 
XhoI and BamHI restriction sites, respectively, for restriction digest and ligation into pET-
15b with an N-terminal His6 tag sequence (Novagen, Madison, WI, USA) (Supplementary 
Table 1). The resulting expression vectors were confirmed by sequencing and used to 
transform E. coli strain BL21. Positive transformants were selected by colony PCR using a 
pFBT005 forward primer with gene specific reverse primers (Supplementary Table 1).

For heterologous protein production, BL21 cells were grown in 1xYT liquid medium at 
37°C with constant shaking at 200 rpm. Protein production was induced with 1 mM IPTG 
final concentration when cultures reached an OD600=2 to ensure maximum yields. To favor 
the generation of inclusion bodies, cultures were kept at 42°C, 200 rpm for 2 hours of 
protein production. Cell pellets were snap-frozen in liquid nitrogen and then washed 
with 100 mM NaCl, 1 mM EDTA, and 10 mM Tris at pH 8.5. Cells were disrupted by stirring 
for 1 hour in lysis buffer (100 mM Tris, 150 mM NaCl, 10% glycerol, 6 mg/mL lysozyme 
(Sigma, St. Louis, MO, USA), 2 mg/mL deoxycholic acid, 0.06 mg/mL DNaseI, protease 
inhibitor cocktail (Roche, Mannheim, Germany)) at 4°C. Soluble and insoluble fractions 
were separated by centrifuging at 20,000 x g for 10 min. The insoluble protein pellets were 
washed with 10 mL 1 M guanidine hydrochloride (GnHCl), 10 mM Tris at pH 8.0 and then 
denatured in 10 mL 6 M GnHCl, 10 mM β-mercaptoethanol, 10 mM Tris at pH 8.0. Samples 
were incubated for 1 hour at room temperature. Non-denatured debris was pelleted by 
centrifuging at 20,000 x g for 10 min and discarded. Denaturation was allowed to continue 
for additional 3-4 hours. 

Heterologously produced proteins were then purified by metal affinity chromatography 
using a column packed with 10 mL 50% His60 Ni2+ Superflow Resin (Clontech, Mountain 
View, CA, USA) and connected to a BioLogic LP System (BioRad, Veenendaal, The 
Netherlands). Each run was monitored with the LP Data View software (V1.03; BioRad, 
Veenendaal, The Netherlands). The column was equilibrated with 5-10 volumes of wash 
buffer (6 M GnHCl, 10 mM Tris, 20 mM imidazole, 10 mM reduced glutathione, 2 mM 
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oxidized glutathione, pH 8.0). Protein samples were loaded at a flow rate of 0.5 mL/min 
to allow maximum binding of affinity-tagged proteins to the nickel resin. Contaminating 
proteins were removed by washing with 10-20 column volumes of washing buffer. Bound 
proteins were either eluted in a 50 mL gradient from 100% washing buffer to 100% 
elution buffer (6 M GnHCl, 10 mM Tris, 200 mM NaCl, 500 mM imidazole, 10 mM reduced 
glutathione, 2 mM oxidized glutathione, pH 8.0) or under denaturing conditions. Eluted 
fractions containing recombinant proteins were analyzed by PAGE separation on 4-15% 
Mini-PROTEAN® TGX Stain-Free™ Protein Gels (BioRad, Veenendaal, The Netherlands). 
Fractions containing the protein of interest were pooled. Recombinant proteins eluted 
in denaturation buffer were dialyzed (Spectra/Por®3 Dialysis Membrane, MWCO= 3.5 
kDa) step-wise against 20 volumes of 0.25 M ammonium sulfate, 0.1 M BisTris, pH 5.5 
with decreasing GnHCl concentrations for refolding. Each dialysis step was allowed to 
proceed for at least 2 hours. Samples were kept overnight in buffer containing 1 M GnHCl 
supplemented with glutathione to allow further disulphide reshuffling. For downstream 
applications, proteins were then dialyzed against 0.25 M ammonium sulfate, 0.1 M BisTris, 
pH 5.5 and concentrated over Amicon Ultra Centrifugal units (MWCO= 3 kDa, Merck 
Millipore, Cork, Ireland). Final concentrations were determined using the BioRad Protein 
Assay (BioRad, Veenendaal, The Netherlands).

Biomass quantification 

For V. dahliae biomass quantification total DNA was extracted from lyophilized tomato 
stem sections of infected plants using a CTAB-based extraction buffer (100 mM Tris-HCl 
pH 8.0, 20 mM EDTA, 2 M NaCl, 3% CTAB). DNA was precipitated with 1.5 M ammonium 
acetate and absolute ethanol. Quantitative RT-PCR was carried out with the ITS1_F/St-
Ve1_R primer pair (Supplementary Table 1). For sample calibration, the tomato Rubisco 
gene (SlRUB) was targeted using SlRUB F and R primers (Supplementary Table 1). 
Quantitative RT-PCR conditions and result analyses were as described elsewhere5. 

VdAve1 target identification by immunopurification and mass spectrometry

 Immunopurifications were carried out as described previously6 with minor modifications. 
N-terminally tagged GFP-Ave14 and Ve1-HA3 were produced in fully expanded leaves 
of three or four 5 to 6 week-old N. tabacum cv. Petit Havana SR1 plants. Total proteins 
were extracted using extraction buffer (EB) (50 mM Tris, 150 mM NaCl, 1% IGEPAL CA-
630 (NP40), protease inhibitor cocktail (Roche), pH 8.0). For immunopurification, 2 mg of 
total protein were incubated with 25 μL 50% slurry of GFP-Trap®_A beads (Chromotek, 
Planegg-Martinsried, Germany) or α-HA affinity matrix (Pierce, Rockford, IL, USA) shaking 
for 1 hour at 4°C. Beads were washed five times with EB. Peptides generated by tryptic on-
bead digestion of immunopurified proteins were analyzed using a Proxeon EASY nanoLC 
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connected to a Thermo LTQ-Orbitrap XL mass spectrometer7. For protein identification, 
the publicly available tobacco (N. tabacum) database from Uniprot (2013) and an in-house 
V. dahliae (PeterEsse_JR2_Genome_2013) databases were queried. Results were analysed 
with MaxQuant 1.3.0.5. in label-free mode8. Result filtering and statistical analyses were 
carried out as described previously9.

Chitinase expression in infected tomato plants

Tomato stem sections were collected from 9 plants 4, 8, and 12 days after inoculation with 
wild-type V. dahliae or water as mock treatment. Samples of three plants were pooled 
for each treatment and time point. Chitinase expression was analyzed using previously 
published primer pairs10. Quantitative RT-PCR was carried out as previously5. Expression 
values of infected plants were normalized to those in mock-treated tissue.

Purification of recombinant tomato chitinases

Following fermentation, cell-free supernatants were concentrated using a Vivaflow 200 
crossflow device (MWCO= 5 kDa, Sartorius, Göttingen, Germany) and purified under 
native conditions by metal affinity chromatography using a column packed with 10 mL 
50% His60 Ni2+ Superflow Resin (Clontech, Mountain View, CA, USA) and connected to 
a BioLogic LP Sytem (BioRad, Veenendaal, The Netherlands). Each run was monitored 
with the LP Data View software (Version 1.03; BioRad, Veenendaal, The Netherlands). The 
column was equilibrated with 5-10 volumes of washing buffer (20 mM Tris, 200 mM NaCl, 
20 mM imidazole, pH 8.0). After sample loading, the column was washed with 20 column 
volumes of washing buffer to remove contaminants. Specifically bound proteins were 
eluted in a 50 mL gradient from 100% washing buffer to 100% elution buffer (20 mM 
Tris, 200 mM NaCl, 500 mM imidazole, pH 8.0). Fractions containing recombinant chitinase 
proteins were combined and dialyzed (Spectra/Por®3 Dialysis Membrane; MWCO= 3.5 
kDa) against 100 volumes of 200 mM NaCl overnight. Samples were concentrated and 
concentrations measured as described above.
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SUPPLEMENTARY FIGURE 1 | Construct design and expression of VdAve1 homologous genes from 
microbes and tomato in V. dahliae. a, Schematic representation of VdAve1 homologs as expressed in the 
VdAve1 deletion mutant. The native signal peptide of the bacterial homolog XacPNP was replaced with that 
of VdAve1 to ensure secretion by V. dahliae. b, In vitro expression of transgenes in selected strains. Following 
selection, transformants were grown in liquid ½ MS medium for 5 days. Transgene expression levels were 
determined by qRT-PCR using transgene-specific primers and VdGAPDH for sample calibration. Bars represent 
mean expression values of 2-3 independently grown cultures (only CbAve1 #3 was grown once) ± SD.
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SUPPLEMENTARY FIGURE 2 | Construct design and expression of chimeric Ave1 mutants. a, Schematic 
representation of Ave1 chimeras as expressed in the VdAve1 deletion mutant. Black and white boxes represent 
domains originating from VdAve1. Colored boxes show domains taken from homologs. b, In vitro expression of 
transgenes in selected strains. Transgene expression levels were determined by qRT-PCR using transgene-specific 
primers and VdGAPDH for sample calibration. Bars represent mean expression values of 2-3 independently 
grown cultures ± SD.
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CHI2 (324 aa)
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SUPPLEMENTARY FIGURE 3 | Graphic representation of tobacco chitinases. Protein structures of tobacco 
CHI1 and CHI2 include signal peptides (light grey), chitin-binding type-1 domains (yellow), glycosyl hydrolase 19 
domains (red), and a pro-peptide at the C-terminus (white), which is removed in the mature form of each protein.
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SUPPLEMENTARY FIGURE 4 | Expression of tomato endochitinase genes during V. dahliae infection. 
Tomato stem tissue was harvested at 4, 8, and 12 days following inoculation with wild type V. dahliae. 
Endochitinase expression levels were determined by qRT-PCR with chitinase gene-specific primers and primers 
targeting the tomato tubulin gene for calibration. Shown are expression values relative to mock-treated tissue 
of three biological replicates consisting of pools of three plants from a single experiment (mean ± SD). This 
experiment was performed twice.
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inhibitor GN3M efficiently inhibits tomato 
endochitinase SlChi4. a, Comparison of chitinase 
activities. SlChi2, SlChi4, and SlChi13 (0.5 µM) were 
incubated with 0.2 mg/mL substrates for 30 min at 
37°C. The highest amount of p-nitrophenol product 
was measured following endochitinolytic cleavage 
by SlChi4. Hardly any activity was detected for 
SlChi2 and SlChi13. Bars show mean values from 
two independent experiments with two technical 
replicates ± SD. b, Moranoline-coupled chitotriose 
(GN3M) suppresses SlChi4 activity. GN3M and GNM 
were added to SlChi4 at final concentrations of 1000 
µM. Following pre-incubation at room temperature, 
the mixtures were added to the substrate in 
reaction buffer. Enzyme activity was measured after 
incubation of 30 min at 37°C. Data are from a single 
experiment. The experiment was performed twice. c, 
In order to determine whether the inhibitory effect 
of GN3M on SlChi4 is concentration-dependent, 
SlChi4 was pre-incubated with serial dilutions of 
GN3M. Chitinase activity was determined as before. 
Data are from a single experiment. The experiment 
was performed twice.
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SUPPLEMENTARY TABLE 1 | Primers used in this study.

Name Sequence (5'  3') Application

XhoI_VdAve1_F CGGTATCTCGAGGATCTAGGGACCGCATCCTAC Protein production

VdAve1_BamHI_R CGTCTAGGATCCTCATTATTATATCTGTCTAAATTCGATGTTGACC Protein production

XhoI_VnAve1_F CGGTATCTCGAGCAATTAGGGACCGCATCC Protein production

VnAve1_BamHI_R CGTCTAGGATCCTCATTATTATATCTGTTCAAACTCG Protein production

XhoI_XacPNP_F CGGTATCTCGAGGACATCGGTACAATTAG Protein production

XacPNP_BamHI_RCGTCTAGGATCCTCATTATTAAATATTTGCCCAGGG Protein production

pFBT005_F GCCAGACCAATACAACAAGCA Colony PCR and sequencing

pFBT005_R TCGAGATCCTGAACACCATTT Sequencing

VdAve1_qPCR_F TGTTACCAAAGCAGCACACAAGG Real-time PCR

VdAve1_qPCR_R CCTTATGCCTCGTTCCCTTCCAC Real-time and colony PCR

VnAve1_qPCR_F GAGCCCAGACAGCTGTCAC Real-time PCR

VnAve1_qPCR_R TTCAAACTCGATGTTGACCTTCT Real-time and colony PCR

FoAve1_qPCR_F ATATCGGAACTGCAAATATTCTCAAC Real-time PCR

FoAve1_qPCR_R CTTATACATTTCATCGTATACAGTCTGC Real-time PCR

CbAve1_qPCR_F ATTCCCTTCAGGCAACCTCT Real-time PCR

CbAve1_qPCR_R CGGACAAGCTTCGCAATAAT Real-time PCR

ChAve1_qPCR_F CAAGATGCTATGGCAACAATATGAAC Real-time PCR

ChAve1_qPCR_F GTCTTGAGGAAAATCTATCGTATTTCTG Real-time PCR

XacPNP_qPCR_F GCAATCGGTTTGCTCTTTTC Real-time PCR

XacPNP_qPCR_R AGCACCGTTATCCCACAGAC Real-time and colony PCR

SlAve1_qPCR_F CGTCGGGGAATCTATTTGTG Real-time PCR

SlAve1_qPCR_R AAAGCATCCGTTGACAAAGC Real-time PCR

VdGAPDH_F CGAGTCCACTGGTGTCTTCA Real-time and colony PCR

VdGAPDH_R CCCTCAACGATGGTGAACTT Real-time and colony PCR

ITS1-F AAAGTTTTAATGGTTCGCTAAGA Real-time PCR

St-Ve1-R CTTGGTCATTTAGAGGAAGTAA Real-time PCR

SlRUB_F GAACAGTTTCTCACTGTTGAC Real-time PCR

SlRUB_R CGTGAGAACCATAAGTCACC Real-time PCR

SlTUB_F AACCTCCATTCAGGAGATGTTT Real-time PCR

SlTUB_R TCTGCTGTAGCATCCTGGTATT Real-time PCR

SlChi_F(TRV) GGGGACAAGTTTGTACAAAAAAGCAGGCTTCCTTGCCCAAACTTCCCA VIGS

SlChi_R(TRV) GGGGACCACTTTGTACAAGAAAGCTGGGTACTGCCGTGACCACATTCCA VIGS

SlChi2_F ATGAGGCTTTCTGAATTCAC coIP

SlChi2-HA_R CTAAGCGTAGTCTGGGACGTCGTATGGGTACATAATATCAACTAATAGTC coIP

SlChi4_F ATGAGGCATTTTGAATTCATAG coIP

SlChi4-HA_R CTAAGCGTAGTCTGGGACGTCGTATGGGTACATAGTATCGACTAAGAGTCCG coIP

attB1-SlChi2_F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGAGGCTTTCTGAATTCAC coIP

attB1-SlChi4_F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGAGGCATTTTGAATTCATAG coIP

HA-attB2_R GGGGACCACTTTGTACAAGAAAGCTGGGTCTAAGCGTAGTCTGGGACG coIP
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Chapter 6 

The tomato immune receptor Ve1 binds the 
Verticillium dahliae effector protein VdAve1 to 

recruit downstream signaling components

Hanna Rovenich and Bart P.H.J. Thomma

Laboratory of Phytopathology, Wageningen University and Research, Wageningen, The Netherlands
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Abstract

Receptor proteins with extracellular leucine-rich repeats (eLRR) are crucial components 
of the plant immune system. In tomato, the eLRR receptor protein Ve1 governs resistance 
against the vascular wilt pathogen Verticillium dahliae following recognition of the 
effector protein Ave1 (VdAve1). In contrast, no function could be ascribed to its homolog 
Ve2. Analyses of domain swap mutants between Ve1 and Ve2 demonstrated that the 
N-terminal eLRRs (the C1 domain) of Ve1 and Ve2 are functionally interchangeable. As 
the C1 domain has been shown to confer ligand specificity in other eLRR receptors, it has 
been hypothesized that it similarly mediates VdAve1 ligand perception. Here we show 
that both Ve1 and Ve2 interact with the VdAve1 effector. Deletion of four consecutive eLRR 
repeats that show the least amino acid difference between Ve1 and Ve2, does not result 
in the loss of binding to VdAve1. Thus, we hypothesize that this interaction is mediated by 
multiple clusters of eLRRs that are scattered along the C1 domain. Moreover, we confirm 
that Ve1 forms a ligand-induced receptor complex with the key regulatory eLRR receptor 
kinase BAK1 to initiate immune signaling, and discuss possible reasons for the lack of Ve2 
functionality.
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Introduction

Cell-surface receptors are essential components of plant surveillance systems detecting 
microbial invaders1. Recognition of appropriate ligands, which may be microbe-derived 
or result from microbe-mediated host manipulation, leads to the activation of immune 
responses to ward off potentially harmful microbes2. In turn, symbiotic microbes, including 
pathogens, endophytes as well as mutualists, secrete effector molecules that deregulate 
immune responses to successfully establish within their host3,4. 

In tomato, resistance to race 1 strains of the vascular wilt pathogen Verticillium dahliae is 
governed by the Ve locus, which encodes the two highly identical extracellular leucine-rich 
repeat receptor proteins (eLRR-RPs) Ve1 and Ve25,6. Their extracellular domains consist of two 
eLRR regions (C1 and C3), which are separated by a non-eLRR island domain referred to as 
C2, and are anchored to the plasma membrane by a single-pass transmembrane domain. In 
contrast to eLRR-containing receptor kinases (eLRR-RKs), eLRR-RPs, including Ve1 and Ve2, 
carry cytoplasmic tails that lack obvious signaling domains7. Despite their identity, Ve1, but 
not Ve2, confers resistance to race 1 strains of V. dahliae in tomato and Arabidopsis thaliana 
(hereafter referred to as Arabidopsis)8,9. Additional homologs of Ve1 have been described to 
act as immune receptors in other plant species such as potato, wild eggplant, tobacco and 
hop, indicating that Ve1 is of ancient origin10.

By using a comparative population genomics approach, the protein that is recognized 
by Ve1 was identified as V. dahliae Ave1 (VdAve1, for Avirulence on Ve1 tomato)11. During 
colonization of susceptible plant genotypes, VdAve1 greatly contributes to fungal virulence11. 
Transient Agrobacterium tumefaciens-mediated co-expression of Ve1 and VdAve1 in tobacco 
(Nicotiana tabacum) leaves resulted in a hypersensitive response (HR), a form of localized 
cell death indicative of ligand recognition by its corresponding plant immune receptor11,12. 
Similarly, transient potato virus X (PVX)-mediated expression of VdAve1 induced HR in 
tomato carrying Ve111. However, while the signaling cascade required for Ve1-mediated 
resistance is conserved in Arabidopsis, it does not involve an HR, suggesting that HR is not 
required for Verticillium wilt resistance13. 

Many eLRR-containing receptors recognize proteinaceous ligands and the specificity with 
which a ligand is recognized is usually determined by the eLRR domains7,14-17. Through 
domain swaps between Ve1 and Ve2, and targeted mutagenesis of Ve1, we have identified 
three separate clusters of Ve1 eLRR domains that are required for its function18,19. Two of these, 
namely eLRR1-8 and eLRR20-23, belong to the C1 domain and have been hypothesized to 
be involved in VdAve1 ligand binding19. In contrast, the third cluster that consists of eLRR32-
37 was proposed to function in immune signaling activation19.

Similar to other LRR-RPs, Ve1 and Ve2 constitutively associate with the eLRR-RK SUPPRESSOR 
OF BIR1-1 (SOBIR1) to form bimolecular equivalents of genuine eLRR-RKs18,20-22. Upon 
ligand perception, both eLRR-RKs and bimolecular eLRR-RP complexes initiate tightly 
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regulated cytoplasmic signal transduction cascades1,23. Recruitment of the regulatory 
BRI-1 ASSOCIATED RECEPTOR KINASE (BAK1; also known as SOMATIC EMBRYOGENESIS 
RECEPTOR KINASE 3a (SERK3a)) and other members of the SERK family only occurs upon 
ligand perception and is required for eLRR-RP-mediated immunity, as was recently shown 
for Cf-424 and RLP2325. Likewise, SOBIR1 and BAK1 associate with, or are required for, 
immunity mediated by additional eLRR-RPs22,26-30. Interestingly, BAK1 also appears to have 
a negative regulatory role in eLRR-RP-mediated immunity as it was reported to attenuate 
xylanase-induced Eix2 immune activation in collaboration with the decoy receptor Eix131. 
Genetic evidence also supports a regulatory role of BAK1 in Ve1-mediated resistance6,9. 
In this study, we further investigated the molecular mechanisms underlying Ve1 immune 
complex activation following VdAve1 ligand perception using a biochemical approach. In 
addition, based on previous findings and those presented here, we discuss the possibilities 
that explain non-functionality of Ve2 in Verticillium wilt resistance.

Results

Ve1 and Ve2 bind the effector protein VdAve1

Ve1 mediates resistance to V. dahliae race 1 strains upon perception of the VdAve1 effector 
protein11. To test whether Ve1 binds VdAve1, we first co-expressed GFP-tagged VdAve1 with 
untagged Ve1 in Nicotiana tabacum leaves to confirm its recognition (Suppl. Fig. 1a)32. As 
expected, co-expression of GFP-VdAve1 with Ve1 resulted in a hypersensitive response (HR) 
at 6 days post infiltration (dpi) (Suppl. Fig. 1b). This HR was comparable to the response 
observed when untagged Ave1 was co-expressed with Ve111. Moreover, expression of GFP-
Ave1 or Ave1 alone did not result in an HR (Suppl. Fig. 1b). To confirm the stability of GFP-
Ave1 protein, we performed immunoprecipitation at 1, 2, 3 and 4 days following its transient 
expression in N. benthamiana and N. tabacum leaves. In both plant species the protein was 
stably produced at 1-2 dpi (Suppl. Fig. 1c). Due to the comparable ease of infiltration, we 
performed the following assays in N. benthamiana. Co-immunoprecipitation experiments 
were carried out following the transient production of affinity-tagged versions of Ve1, Ve2 
and VdAve1 proteins at 2 dpi. The eLRR-RPs Cf9 from tomato and RLP30 from Arabidopsis 
served as negative controls. As expected, affinity-purification of Ve1-HA3 resulted in co-
purification of a protein of 39 kDa, which corresponds to the size of monomeric GFP-VdAve1 
(Fig. 1a). A second, higher band was observed that could correspond to GFP-VdAve1 dimers, 
suggesting that effector dimers bind to Ve1. As expected based on the previously performed 
domain swap experiments, we similarly observed binding of monomeric and dimeric GFP-
VdAve1 to Ve2-HA3 (Fig. 1a). Importantly, GFP-VdAve1 did not co-purify with RLP30-HA3 or 
Cf9-HA3, confirming that the interaction of VdAve1 with Ve1 and Ve2 is specific (Fig. 1a). 
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FIGURE 1 | Ve1 and Ve2 bind the fungal effector protein VdAve1. Affinity-tagged Verticillium dahliae Ave1 
(VdAve1) was transiently co-expressed in Nicotiana benthamiana leaves with HA-tagged Ve1, Ve2, RLP30 and Cf9 
(a) or Ve1ΔLRR20-23 and RLP30 (b). Leaf tissue was harvested at 2 dpi for total protein extraction (INPUT). Transiently 
expressed receptors were immunopurified with Anti-HA magnetic beads and co-purifying GFP-VdAve1 was 
visualized on Western blots (WB). Equal loading of protein samples onto TGX Stain-Free™ gels was determined 
by tryptophan (Trp) activation under UV light. The experiments were repeated twice.

eLRRs20-23 of Ve1 are not crucial for VdAve1 binding

Ve1 and Ve2 are share 84% amino acid identity, with the region between the eLRRs 19 
and 23 being most highly conserved5,18. In a recent mutational screen, eLRR20 through 
eLRR23 were shown to be involved in VdAve1 recognition, since alanine substitutions of 
surface-exposed amino acid residues in any of the four eLRRs resulted in the loss of HR 
upon co-expression with VdAve1 in N. tabacum19. Because both Ve1 and Ve2 bind VdAve1, 
we generated a mutant construct of Ve1 lacking eLRR20-23 to test whether this highly 
conserved part of the extracellular region is required for effector binding. Interestingly, 
as with wild type Ve1, VdAve1 also co-purified with HA-tagged Ve1ΔeLRR20-23, whereas no 
binding to RLP30-HA3 could be observed (Fig. 1b).

VdAve1 homologs interact with Ve1

VdAve1 homologs that occur in several phytopathogens are differentially perceived by 
tomato Ve132,33. Thus, we hypothesized that the homologs recognized by Ve1 bind to 
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the receptor similar to VdAve1. We tested the interaction between the receptors and 
the VdAve1 homologs of V. nubilum (VnAve1), Fusarium oxysporum (FoAve1), Cercospora 
beticola (CbAve1), Colletotrichum higginsianum (ChAve1), and Xanthomonas citri subsp. 
citri (XacPNP) following their transient production in N. benthamiana leaf tissue. Like 
VdAve1, all GFP-tagged monomers and multimers of the VdAve1 homologs co-purified 
with Ve1-HA3 but not with RLP30-HA3 (Fig. 2). Intriguingly, we also observed co-purification 
of VnAve1 and FoAve1 in Ve2-HA3 affinity purifications whereas CbAve1, ChAve1 and 
XacPNP did not co-purify with Ve2 (Fig. 2).
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FIGURE 2 | Ve1 binds microbial Ave1 homologs. GFP-tagged VdAve1 homologs from Verticillium nubilum 
(Vn), Fusarium oxysporum (Fo), Cercospora beticola (Cb), Colletotrichum higginsianum (Ch), and Xanthomonas 
citri subsp. citri (Xac) were transiently co-expressed with Ve1-HA3 and Ve2-HA3 tomato receptor proteins in 
Nicotiana benthamiana leaves. Co-expression with RLP30-HA3 was used as negative control. Receptor proteins 
were purified with Anti-HA magnetic beads from total leaf extracts (INPUT) at 2 dpi. Co-purifying effectors were 
visualized on Western blots (WB) and total proteins were visualized by tryptophan (Trp) activation under UV light 
to test equal loading. The experiment was repeated twice.

Ve1 recruits BAK1 upon VdAve1 ligand perception

Ve1 constitutively interacts with the eLRR-RK SOBIR118 and previous genetic analysis 
revealed that Ve1-mediated resistance depends on BAK19. Thus, we tested whether the 
Ve1-SOBIR1 complex recruits BAK1 upon ligand perception. To this end, Ve1-eGFP was 
transiently expressed together with SlSOBIR1-HA and SlBAK1-cMyc in N. benthamiana 
leaves. Two days later, leaves were either infiltrated with GST-tagged VdAve1 or GST 
alone. Preliminary results show that SlBAK1-cMyc specifically co-purifies with Ve1-eGFP 
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after elicitation with GST-VdAve1 but not GST (Fig. 3). This demonstrates that Ve1 forms a 
ligand-dependent receptor complex with BAK1, similar to Cf-4 and RLP3024,25. In contrast, 
SlSOBIR1-HA was detected upon immunopurification of Ve1-eGFP following infiltration 
with both GST and GST-VdAve1 (Fig. 3), confirming the ligand-independent interaction 
between SOBIR1 and LRR-RPs18,22.

FIGURE 3 | Ve1 recruits BAK1 in a ligand-
dependent manner. Ve1-eGFP, SlSOBIR1-HA 
and SlBAK1-cMyc were transiently co-expressed 
in Nicotiana benthamiana leaves. At 2 dpi, 10 μM 
purified GST-VdAve1 or GST were infiltrated into 
transformed leaves. Total protein was extracted 
after 30 min of incubation followed by α-GFP 
affinity purification. Co-purifying proteins were 
visualized on Western blots (WB). Equal loading 
of protein samples onto TGX Stain-Free™ gels was 
determined by tryptophan (Trp) activation under 
UV light. The experiment was done once.

Discussion

Plant eLRR-carrying surface-localized receptor proteins play crucial roles in development 
and immunity. While the ligands of many eLRR receptors have been identified, evidence 
for the physical receptor-ligand interaction is often still lacking. Here we show that the 
eLRR-RP Ve1 and its non-functional homolog Ve2 from tomato bind the V. dahliae effector 
protein VdAve1 (Fig. 1a). This confirms the earlier hypothesis that Ve2, like Ve1, would 
be able to interact with VdAve1 since the C1 domains of Ve1 and Ve2 are functionally 
interchangeable18. Similarly, functional dissection of the tomato Cf receptors Cf-4 and 
Cf-9, eLRR-RPs that provide resistance to the leaf mold fungus Cladosporium fulvum, by 
domain swap analyses showed that their eLRRs13-16 and eLRRs10-16 contribute to ligand 
specificity, respectively17,34. More recently, expression of chimeric mutants of tomato Eix2 
carrying the eLRR region of the eLRR-RP ReMAX resulted in responsiveness to the ReMAX 
ligand eMAX in N. benthamiana, which lacks an endogenous perception system for this 
ligand28. In addition, sequential domain swaps between the eLRR-RKs EFR and FLS2 
highlighted the importance of the EFR eLRRs for the perception of its ligand EF-Tu35. These 
findings demonstrate that the eLRR regions of eLRR-carrying receptors determine ligand 
specificity.
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While some receptors were shown to bind their ligands directly25,35-37, others perceive their 
ligands indirectly by monitoring plant molecules that are targeted by effector proteins. This 
is the case for tomato Cf-2, which does not directly interact with the C.fulvum effector Avr2 
but binds tomato papain-like cysteine proteases that are inhibited by Avr238-40. Similarly, 
Cf-9 does not directly bind C. fulvum Avr9 but requires a high-affinity binding site41,42. In 
addition, many intracellular nucleotide-binding domain leucine-rich repeat receptors 
(NLRs) recognize pathogen effectors indirectly43. This is the case for the Arabidopsis NB-
LRR receptors RPM1 and RPS2, both of which recognize modifications of the RIN4 protein 
by the Pseudomonas syringae effectors AvrB or AvrRPM1 and AvrRpt2, respectively44-46. 
Whether or not the interaction of Ve1 and Ve2 with VdAve1 is direct or indirect cannot 
be concluded from our experiments, and still needs to be confirmed. After all, the plant 
species that were used for the protein interaction studies may share the effector target. 

Phylogenetic analysis of VdAve1 resulted in the identification of homologs in the fungal 
pathogens F. oxysporum, C. higginsianum, and C. beticola, the saprotroph V. nubilum, as well 
as in the biotrophic bacterial pathogen Xanthomonas citri subsp. citri11. Strikingly, however, 
most homologs were found in plants, with the most closely related homologs present in 
tomato (Solanum lycopersicum; SlAve1) and grape (Vitis vinifera; VvPNP)11. Co-expression 
of these homologs with Ve1 in N. tabacum was previously shown to result in distinct 
patterns of HR, corresponding to their increasing divergence from VdAve132. Interestingly, 
however, despite the differences in recognition by Ve1, all microbial homologs bind the 
tomato receptor, similar to VdAve1 (Fig. 2). This suggests that the binding properties 
are conserved between VdAve1 and its homologs but that the physical receptor-ligand 
interaction is not sufficient for the activation of Ve1-mediated immunity. Potentially, this 
could be attributed to differential strengths of the interactions, which may be supported 
by the finding that VnAve1 and FoAve1 co-purify with Ve2-HA3, whereas CbAve1, ChAve1 
and XacPNP do not. 

The region composed of eLRR20-23 displays very few amino acid differences between 
Ve1 and Ve2, and has previously been shown to be required for VdAve1 recognition and 
Ve1-mediated resistance to V. dahliae19. Since both receptors interact with the VdAve1 
ligand, we tested whether eLRR20-23 are required for VdAve1 binding. Deletion of this 
subdomain in Ve1 did not result in loss of effector binding (Fig. 1b), indicating that the 
region between eLRR20-23 is not sufficient for the interaction with VdAve1. In addition 
to eLRR20-23, a second cluster of eLRRs (eLRR1-8) was shown to be required for Ve1 
functionality19. Thus, it is conceivable that the physical interaction between Ve1 (and Ve2) 
and VdAve1 may be mediated by (a surface formed between) the two separate clusters 
of eLRRs. This is in contrast to the architecture of the ligand binding sites of other eLRR-
containing receptors. For example, crystallographic analyses demonstrated that the eLRR-
RK BRASSINOSTEROID INSENSITIVE 1 (BRI1) binds its brassinolide ligand via a hydrophibic 
groove formed by the island domain and the surrounding eLRRs20-2516,47. Similarly, as 
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elegantly shown by photoaffinity labeling, phytosulfokine (PSK) binding to the PSK 
receptor PSKR1 is mediated by the island domain48,49. Instead, the receptor kinases BAM1 
and FLS2, which lack a non-LRR island domain, directly interact with the CLE9 and flg22 
peptides, respectively, through a contiguous stretch of eLRRs50,51. 

Due to the absence of cytoplasmic signaling domains, eLRR-RPs rely on the association 
with receptor kinases that function as adapters and co-receptors to activate appropriate 
responses upon ligand perception. Recent work has shown that SOBIR1 acts as a common 
adaptor to eLRR-RPs to form constitutive bimolecular receptor complexes20,21, including 
the immune receptors Cf-4, Cf-9 and Eix1 from tomato, RLP23 from Arabidopsis, as well 
as the Leptosphaeria maculans receptor 3 (LepR3) from oilseed rape22,25,26,30. In addition, 
the Arabidopsis eLRR-RPs ReMAX, RLP30 and RLP42 require SOBIR1 for their function in 
immune signaling27,28,52. Also Ve1 has been shown to associate with SOBIR1 in a ligand-
independent manner18. Due to the high sequence conservation of the juxtamembrane 
C3 domain between various eLRR-RPs and because this region is important for Ve1 
function, it has been hypothesized that the C3 domain is involved in the interaction 
with SOBIR119. However, this domain is not functional in Ve218. Nonetheless, like Ve1, Ve2 
forms a ligand-independent complex with SOBIR1. This suggests that the amino acid 
residues (or their properties) required for SOBIR1 binding are conserved between Ve1 
and the non-functional Ve2 receptor and that the association with SOBIR1 may not be a 
determining factor of Ve1-mediated immunity18. Moreover, it does not explain the lack of 
Ve2 functionality in resistance to V. dahliae.

Upon ligand perception, eLRR-containing receptor molecules recruit additional receptor 
complex components to activate intracellular signaling cascades. BAK1 acts as a common 
co-receptor to both eLRR-RPs and eLRR-RKs to regulate developmental as well as 
immunological processes53. We show here that the Ve1-SOBIR1 complex recruits BAK1 in a 
ligand-dependent manner (Fig. 3), as has previously been demonstrated for FLS2, Cf-4, and 
RLP2324,25,54. This is in accordance with the previous finding that BAK1 silencing impairs Ve1-
mediated immunity in tomato6. Considering that ligand-dependent complex formation 
with BAK1 appears to be a common feature of eLRR receptor-mediated immunity, and 
since Ve2 interacts with the SOBIR1 receptor adapter, it is tempting to speculate that Ve2 
does not activate immune signaling upon VdAve1 binding because it fails to recruit BAK1. 
This hypothesis is supported by the finding that the C-terminus of Ve2, which is 91 amino 
acids longer than that of Ve1, interferes with Ve1 function in domain swap mutants18. 
However, while Ve1 and Ve2 appear to have the same subcellular localization in tobacco 
cells, we cannot exclude the possibility that the PEST-like sequence in the Ve2 C-terminus, 
which is commonly found in proteins with short half-lives5, contributes to Ve2 degradation 
and, thus, renders it non-functional. Future studies, especially the structural analysis of the 
ligand-induced Ve1 receptor complex, will help to address this question.
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Materials

Plant material

Nicotiana benthamiana plants were grown in the greenhouse at 21°C/19°C during 16/8 
hours day/night periods, respectively, with 70% relative humidity. When natural light 
intensities dropped below 150 W/m2, supplemental light was provided at 100 W/m2. For 
agroinfiltration, plants were transferred to climate chambers set to 21°C/19°C during 
12/12 hours day/night periods, respectively, with 70% relative humidity. 

Constructs for Agrobacterium tumefaciens-mediated transient expression

Receptor expression constructs pSol2095:Ve1-eGFP, pB7K40:Ve1-HA3, pB7K40:Ve2-HA3, 
pBIN-KS-35S:RLP30-HA3, pGWB20:SlBAK1-cMyc10, and pBIN-KS-35S:SlSOBIR1-eGFP as 
well as effector expression constructs pSol2092:GFP-VdAve1, pSol2092:GFP-VnAve1, 
pSol2092:GFP-FoAve1, pSol2092:GFP-CbAve1, pSol2092:GFP-ChAve1, pSol2092:GFP-
XacPNP and pSol2092:SP-GFP were previously described12,18,22,24,32. C-terminal VdAve1 
deletion mutants were cloned from pEX-A2:SP-GFP-VdAve1 synthesized by Eurofins 
(Ebersberg, Germany) using the primers shown in Supplementary Table 1. The PCR-amplified 
fragments were cloned into pDONR207 by using the Gateway® BP Clonase® II Enzyme 
Mix (Invitrogen, California, USA) to generate the entry vectors pDONR207::VdAve1Δ126-134 
and pDONR207::VdAve1Δ117-134. The constructs were verified by DNA sequencing (Eurofins 
Genomics, Ebersberg, Germany) and transferred into the Gateway-compatible destination 
vector pSol209212 by using Gateway® LR Clonase® II Enzyme Mix (Invitrogen, California, USA).

A. tumefaciens-mediated transient expression (agroinfiltration)

Overnight cultures of A. tumefaciens strain GV3101 carrying the respective expression 
constructs were centrifuged and pellets were re-suspended in MMA medium (2% sucrose, 
0.5% Murashige & Skoog salts (Duchefa Biochemie, Haarlem, The Netherlands), 10 mM 
MES, 200 μM acetosyringone, pH 5.6 with NaOH). Bacterial suspensions were mixed at a 
1:1 ratio for co-expression of effector with receptor genes. For co-expression of Ve1-HA/
Ve2-HA, SlSOBIR1-GFP, and BAK1-cMyc, bacterial suspensions were mixed at a 1:1:1 ratio. 
Mixtures were infiltrated into leaves of 4 to 6 week-old N. benthamiana plants. After 24-
48 hours of co-expression, infiltrated leaves were harvested and snap-frozen in liquid N2.

Co-immunopurifications and immunoblotting

Ground leaf material was used for total protein extraction with 2 mL extraction buffer 
(150 mM Tris, 150 mM NaCl, 10% glycerol, 10 mM EDTA, 10 mM DTT, 0.5% PVPP, protease 
inhibitor cocktail (Roche, Mannheim, Germany), 1% IGEPAL CA-630 (NP40), pH 7.5) per gram 
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of leaf material. Five mL total protein extracts were incubated with 20 μL Pierce™ Anti-HA 
magnetic beads (Thermo Scientific, Eindhoven, The Netherlands) or GFP-Trap®_A beads 
(Chromotek, Planegg-Martinsried, Germany) shaking for 1 hour at 4°C. Beads were washed 
three times with 1x TBS-T(20). Proteins were eluted from beads in 30 μL 2x Laemmli sample 
buffer (120 mM Tris-HCl pH 6.8, 4% SDS, 10% glycerol, 0.02% (w/v) bromophenol blue) by 
boiling at 95°C for 5 min. Proteins were separated on 4-20% gradient Mini-PROTEAN® TGX 
Stain-Free™ Precast Protein Gels (BioRad, Veenendaal, The Netherlands) in 1x Tris/glycine/
SDS running buffer (BioRad, Veenendaal, The Netherlands) at 150 V for 1 hour. Protein 
bands were transferred onto Immun-Blot® PVDF membranes (BioRad, Veenendaal, The 
Netherlands) in blotting buffer (247.7 mM Tris, 1.92 M glycine, 10% ethanol) using the 
Trans-Blot® Turbo™ Blotting System (BioRad, Veenendaal, The Netherlands) for 30 min at 25 
V. Membranes were blocked in 4% bovine serum albumin (BSA) in 1x TBS-T(20). To detect 
GFP-tagged proteins, blots were incubated with 1:5,000 diluted αGFP-HRP (Anti-GFP-HRP, 
130-091-833, MACS antibodies). HA fusion proteins were detected with 1:2,500 diluted 
αHA-HRP (3F10; Roche, Mannheim, Germany) and cMyc-tagged proteins were detected 
with 1:5,000 α-cMyc-HRP (Thermo Scientific, Eindhoven, The Netherlands). Bands were 
visualized using SuperSignal West Femto Chemiluminescent Substrate (Thermo Scientific, 
Eindhoven, The Netherlands).

Recombinant protein

GST-tagged Ave1 was heterologously produced in insect cells and purified by GenScript 
(Piscataway, NJ, USA). GST was purchased from Genscript (Piscataway, NJ, USA).
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SUPPLEMENTARY FIGURE 1 | GFP-tagged VdAve1 
is expressed and recognized by Ve1. a, Graphic 
representation of the GFP-VdAve1 construct used 
for A. tumefaciens-mediated transient expression in 
N. tabacum and N. benthamiana. b, Hypersensitive 
response (HR) following co-expression of GFP-tagged 
or untagged VdAve1 with Ve1 in N. tabacum at 6 dpi. 
Expression of GFP-VdAve1 or Ave1 alone did not result 
in HR. c, Western blot (WB) showing GFP-VdAve1 
stability at 1, 2, 3, and 4 days following A. tumefaciens-
mediated transient expression in N. tabacum and N. 
benthamiana. GFP-VdAve1 was immunopurified with 
α-GFP Trap beads from total protein extracts.
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This thesis provides a detailed insight into the mechanisms underlying chitin-triggered 
immunity in tomato, and the strategies that evolved in the two fungal pathogens 
Cladosporium fulvum and Verticillium dahliae to avoid immune activation. The presented 
work represents a significant advancement in our understanding of how fungal microbes 
manipulate their host’s immune system by actively targeting its constituents, including 
chitinases and chitin receptors. In the following sections, these findings are placed into the 
broader context of immune recognition of cell wall-derived molecules and the evolution 
of fungi as well as oomycetes, collectively referred to as filamentous microbes, toward its 
suppression.

Introduction

The first intimate contact between host plants and filamentous microbes is often 
established in the apoplast; the extracellular spaces of plant tissues. While the apoplast 
provides nutrients and shelter to microbial inhabitants, it also represents a hostile 
environment with host-derived toxins and hydrolytic enzymes such as chitinases and 
glucanases that affect pathogen cell wall integrity (Fig. 1a). Moreover, the released cell 
wall fragments may serve as invasion patterns (IPs) and activate host immune receptors1-3. 
Consequently, microbial mechanisms evolved to circumvent cell wall-triggered immune 
responses and support host colonization. 

Recognition of glycan oligomers is mediated by closely related 
receptors

Chitin is an important structural building block of fungal cell walls and a well-known 
elicitor of immune responses in plants1. Chitin perception by surface-localized lysin motif 
(LysM)-containing receptors and subsequent immune activation are well understood1,4. 
In rice, chitin perception is mediated by the LysM receptor OsCEBiP, which lacks an 
intracellular signaling domain5. Two OsCEBiP molecules simultaneously bind a single chitin 
heptamer-octamer, resulting in the recruitment of the LysM receptor kinase OsCERK1 (Fig. 
1b)6. OsCERK1 is then phosphorylated and initiates immune signaling6,7. Additionally, 
OsCERK1 forms multimeric complexes with LysM receptors implicated in peptidoglycan 
perception8,9. Thus, OsCERK1 functions as signal transduction adaptor to multiple LysM 
immune receptors in response to the recognition of various microbial glycans. 

Despite considerable efforts, the proposed composition of the chitin receptor complex 
in Arabidopsis remains controversial. Similar to rice, the Arabidopsis CERK1 homolog 
plays a central role in chitin-triggered immune signaling10. However, unlike OsCERK1, 
AtCERK1 was reported to directly bind long chain chitin oligomers, albeit with relatively 
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low affinity11-13. Recently, the LysM receptor AtLYK5, which lacks an active kinase domain, 
was proposed as primary chitin receptor instead of AtCERK1 based on its higher affinity 
for chitin14. Similar to rice, AtLYK5 forms a chitin-induced heteromeric complex with 
AtCERK1, triggering AtCERK1 phosphorylation and immune signaling activation. Since 
AtCERK1 functions in additional processes including peptidoglycan recognition and 
bacterial immunity15, AtCERK1 may be a receptor adaptor, equivalent to OsCERK1. As in 
Arabidopsis, chitin recognition in tomato is mediated by a LysM receptor, called SlLYK4, 
which lacks an active intracellular kinase domain (Chapter 4). Thus, it is likely that SlLYK4 
recruits a second receptor component, such as CERK1 in Arabidopsis and rice, to initiate 
immune signaling upon chitin perception.

In contrast to chitin, little is known about glucan recognition in plants. Due to their 
abundance in fungal and oomycete cell walls, glucan oligosaccharides likely evoke plant 
immune responses (Fig. 1b)2. The only known ß-glucan receptor, soybean GBP, does not 
contain LysM domains but specifically binds a hepta-ß-glucoside via a glucan-binding 
site16. As GBP lacks an intracellular signaling domain, it is probably part of a multimeric 
receptor complex at the cell surface, analogous to chitin perception complexes. 

Interestingly, in addition to immunity, LysM receptors enhance the efficiency of the 
establishment of mutualistic symbioses triggered by short chain chitin fragments and 
chitin-related lipochitooligosaccharides, called Myc factors17,18. Some LysM receptors play 
a dual role in the perception of Myc factors and closely-related bacterial Nod factors that 
trigger root nodule symbiosis17. Moreover, OsCERK1 has recently been shown to function 
both in immunity and mutualism19,20. 

Biochemical analyses showed that several LysM receptors are glycosylated with high-
mannose-type glycans or complex-type N-glycans5,21. However, to date no functional 
role has been ascribed to LysM receptor N-glycosylation22. Thus, the importance of such 
posttranscriptional modifications for ligand binding and receptor function still needs to 
be determined.

Collectively, the findings discussed above highlight the central role of LysM receptors in 
the recognition of chitin-derived microbial ligands. Future work will have to determine 
whether the perception of other cell wall glycans is similarly mediated by LysM receptors 
or by different classes of receptor proteins.

Microbial strategies to evade glycan-triggered immunity

The recognition of microbe-derived glycan molecules activates immune responses that 
hamper host colonization. In order to overcome or bypass such responses, filamentous 
microbes employ different strategies, comprising cell wall modifications and the secretion 
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of glycan-binding effector proteins. These effectors either sequester glycan elicitors and 
prevent their recognition or shield the cell wall from hydrolysis. Additionally, filamentous 
microbes secrete effectors that inhibit hydrolytic enzyme activity and proteases that 
cleave hydrolytic enzymes.

Cell wall modifications

The cell wall of filamentous microbes is vital for their growth, morphogenesis and survival. 
Despite variations between species, chitin and ß-glucan are the most abundant cell wall 
components. Their recognition by host surface-localized receptors activates detrimental 
immune responses. In contrast, deacetylated chitin (chitosan) and α-glucans are much 
weaker inducers of defense responses in most plants2. Moreover, chitosan is a poor 
substrate for plant chitinases23. Therefore, conversion of chitin to chitosan may protect 
hyphae against cell wall hydrolysis, and limit the release of plant immune signaling 
elicitors (Fig. 1d)1. Affinity labeling of invasive hyphae of particular fungal pathogens 
with a chitosan-specific antibody but not a chitin-binding probe suggested that cell wall 
chitin was replaced by chitosan24. Moreover, genome analyses of the ectomycorrhizal 
fungus Laccaria bicolor and the phytopathogen Melampsora larici-populina revealed an 
expanded repertoire of chitin deacetylases25,26. Thus, chitin deacetylation may represent a 
widespread mechanism of fungal cell wall protection and plant immune signaling evasion 
(Fig. 1d). 

Rather than deacetylating chitin, some pathogens accumulate α-1,3-glucan on the surface 
of infectious hyphae (Fig. 1c)27. Since mutants with reduced levels of α-1,3-glucan are more 
susceptible to chitinases and display reduced virulence, α-1,3-glucan may protect fungal 
cell walls by masking chitin and ß-glucans (Fig. 1c)27. An additional strategy for evading 
ß-glucan-triggered immunity is the depletion of this polymer at the cell wall of biotrophic 
hyphae. While β-1,3-glucan synthesis is required for cell wall rigidity in appressoria and 
fast-growing necrotrophic hyphae of the maize pathogen Colletotrichum graminicola, 
during biotrophic development its synthesis is rigorously downregulated28. 

In conclusion, by converting, depleting or disguising highly immunoactive cell wall 
components, filamentous microbes can prevent cell wall hydrolysis and the release of 
host immune signaling elicitors.
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FIGURE 1 | Illustration of potential mechanisms underlying the activation of glycan-triggered host 
immune responses and microbial strategies to evade glycan recognition. (a) Microbial cell wall glycans 
are targeted by host-derived hydrolytic enzymes, including glucanases and chitinases, resulting in the release 
of glycan fragments. (b) Recognition of chitin oligomers by plasma membrane-localized host receptors results 
in the assembly of oligomeric receptor complexes, leading to the activation of immune responses. Similarly, 
recognition of ß-glucan fragments is anticipated to occur at the host cell surface. (c) Microbial cell wall remodeling 
may reduce the access of hydrolytic enzymes to particular cell wall glycans to prevent their hydrolysis, such as 
accumulation of α-1,3-glucan at the surface. (d) Certain fungal species convert chitin to chitosan, which is less 
immunogenic and a poor substrate to chitinases. Microbial secretion of glycan-binding effector proteins may 
shield cell wall chitin (e) or glucans (f ) from hydrolysis, or sequester released glycan fragments to prevent their 
recognition (g). (h) Particular effectors may prevent the assembly or activation of host receptor complexes by 
inhibiting ligand-induced receptor dimerization. (i) Finally, microbes may secrete effectors that directly inhibit 
host hydrolytic enzymes.

Sequestration of cell wall-derived glycan fragments

Chitin-binding LysM effector proteins are versatile suppressors of chitin-triggered 
immunity (Fig. 1e,g,h). The Cladosporium fulvum LysM effector Ecp6 is one of the most 
abundant apoplastic proteins during tomato infection that binds chitin with high 
specificity and perturbs chitin-triggered immune responses29,30. Crystallization of Ecp6 
demonstrated that two of its three LysM domains form a composite binding site with 
ultrahigh (pM) chitin affinity, enabling Ecp6 to outcompete host immune receptors for 
chitin binding31. Interestingly, the singular LysM2 domain of Ecp6, which is not involved 
in intramolecular chitin binding, retains the capacity to suppress chitin-triggered immune 
responses. Thus, it has been hypothesized that LysM2 of Ecp6 may interfere with chitin-
induced host receptor dimerization to prevent activation of immune signaling (Fig. 
1h)31,32. First evidence in support of this hypothesis results from functional analyses in 
Arabidopsis that suggest that Ecp6 does not prevent AtCERK1 phosphorylation but 
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affects the internalization of AtLYK5 in a ligand-dependent manner (Chapter 3). With the 
identification of the tomato chitin receptor, the biological relevance of these findings can 
now be confirmed in the C. fulvum host. 

Like Ecp6, Magnaporthe oryzae Slp1, Zymoseptoria tritici Mg3LysM, and Colletotrichum 
higginsianum ChELP1 and ChELP2 deregulate chitin-triggered immunity33-35. Therefore, 
the ability to interfere with chitin recognition and immunity is conserved between 
fungal pathogens of different genera. Interestingly, Slp1 stability and activity depend on 
N-glycosylation by the α-1,3-mannosyltransferase AGL336. Similarly, ChELP1 and ChELP2 
appear to be N-glycosylated35 suggesting that the addition of glycans may be an important 
feature of LysM effector function. 

Importantly, the root endophyte Serendipita indica has recently been shown to secrete a 
fungal-specific lectin, FGB1, to compete with Arabidopsis and barley β-glucan receptors 
to suppress β-glucan-induced defenses in root and leaf tissues37. This suggests that, in 
addition to chitin, recognition of ß-glucans sparked the evolution of ß-glucan-binding 
effectors to interfere with ß-glucan-triggered immune responses (Fig. 1g,h). 

Cell wall masking and inhibition of hydrolytic enzyme activity

In addition to chitooligosaccharide sequestration, Z. tritici Mg3LysM protects fungal 
hyphae from degradation by plant chitinases33. Z. tritici secretes a second LysM effector 
comprising a single LysM domain, called Mg1LysM, which displays protective activity as 
well. Although the molecular mechanism underlying hyphal protection is unknown, these 
LysM effectors may form chitin-dependent oligomeric chains as protective layers around 
invasive hyphae (Fig. 1e)1. This was previously demonstrated for the C. fulvum effector Avr4 
and a Pseudocercospora fijiensis orthologue that bind polymeric chitin via an invertebrate 
chitin-binding site to protect hyphae against hydrolysis38,39. Similarly, effectors to mask cell 
wall ß-glucan may exist (Fig. 1f ). 

Alternatively, Mg3LysM and Mg1LysM may protect hyphae through direct inhibition 
of chitinase activity (Fig. 1i). In silico analyses of structural models demonstrated that 
particular active site residues of plant class I chitinases are subject to positive selection 
pressure, likely imposed by microbial chitinase inhibitors40. Intriguingly, the effector 
VdAve1 of the vascular pathogen V. dahliae, which belongs to a group of ubiquitous plant 
natriuretic peptide (PNP)-containing proteins, is able to inhibit a class I chitinase of tomato 
(Chapter 5). This function is not displayed by its closest homolog from the saprotroph V. 
nubilum, and explains the earlier observation that core LysM effectors of V. dahliae are 
not expressed in planta, and thus do not contribute to virulence through suppression of 
chitin-triggered immunity41. Additionally, fungalysin metalloproteases can cleave class IV 
chitinases42. In Fusarium oxysporium f.sp. lycopersici a serine protease and metalloprotease 
contribute to virulence and proteolytically cleave extracellular tomato chitinases43. Similar 
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activities occur in other tomato pathogens, suggesting that targeting of chitinases is a 
general strategy to protect cell walls43. 

Further evidence for the direct inhibition of plant hydrolytic enzymes is provided by 
the glucanase inhibitor protein 1 (GIP1) of Phytophthora sojae, which directly inhibits a 
soybean endo-ß-1,3-glucanase (EGaseA)44. Similar to class I chitinases, Glycine EGaseA 
enzymes are under positive selection pressure and display high variability at residues 
in close proximity to the GIP1 inhibitor binding site45. Moreover, the cell death-inducing 
mycotoxin Fumonisin B1 of Fusarium verticillioides also inhibits basic ß-1,3-glucanases in 
maize embryos46. Thus, filamentous microbes evolved various protective mechanisms 
against host hydrolytic enzymes, including chitinases and glucanases (Fig. 1i).

Evasion strategies of animal-infecting fungi 

In mammals, fungal cell walls are the main source of elicitors whose recognition leads 
to the activation of immune responses including phagocytosis and fungal clearance47. 
Recognition of chitin, ß-glucans and mannosylated proteins is mediated by various 
receptor molecules, including C-type lectin and Toll-like receptors48. Consequently, also 
animal-infecting fungi evolved to mask and subvert host recognition. For example, 
Histoplasma capsulatum and Aspergillus fumigatus disguise immunoactive cell wall 
ß-glucans by depositing surface α-glucans that have little to no immunostimulatory 
activity49,50. In contrast, A. fumigatus conidia are coated with hyprophobins that are 
covalently bound to cell wall polysaccharides to prevent immune recognition51.

The lack of an identified chitosan receptor and conflicting reports on its immunological 
activity suggest that chitosan is not a major elicitor of immunity in animals52. Thus, chitin 
deacetylation to chitosan may shield invasive hyphae from recognition and hydrolytic 
cleavage. Supporting evidence is provided by a recent genomic survey on the opportunistic 
mammalian pathogen Rhizopus oryzae, which unveiled an expanded repertoire of chitin 
deacetylases53. Thus, in addition to cell wall masking, cell wall modifications may play an 
important role in the evasion of glycan-triggered immunity by animal pathogens.

Despite their ubiquitous occurrence, animal pathogen LysM effectors have thus far 
not been found to suppress host immunity. It has been hypothesized that infection 
of mammalian hosts does not rely on effector activity due to their low degree of host 
adaptation and absence of host specificity54. This is supported by the absence of LysM 
effector genes in various mammalian commensals55. 
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Conclusions

The involvement of glucans, chitin, chitooligosaccharides and their derivatives in 
plant-microbe communication exemplifies how cell-surface exposed and free glycans 
regulate complex processes during disease manifestation or establishment of mutualistic 
symbiosis in plants. As many glycans have the potential to become immunogenic in host 
organisms, filamentous microbes rely on diverse strategies to prevent the activation of 
host immune responses. Both animal and plant-infecting filamentous microbes modify 
and mask immunoactive components of their cell walls. Moreover, the role of fungal 
pathogen-derived LysM effectors in the suppression of plant chitin-triggered immunity 
has been intensely studied. Recent evidence suggests that, depending on their cell wall 
composition, fungal and oomycete symbionts may employ a suite of effector proteins to 
protect, sequester, and mask chitin and glucan cell wall components alike. Moreover, some 
effectors inhibit hydrolytic enzyme activity. Whether this inhibition is based on effector 
binding to the enzyme-glycan complex or the active site itself remains to be determined. 
Therefore, the basic requirement to circumvent glycan-triggered immunity is a driving 
force in the convergent evolution of all filamentous microbes toward its suppression.

The use of oligosaccharides as signaling molecules in plants and the adoption of cell-
surface glycan receptors illustrate how glycans have been adapted to serve new functions 
during evolution. Thus, better understanding of the factors that contribute to maintenance 
of harmful or beneficial microbial glycan structures is required as a basis for fundamental 
breakthroughs in knowledge of disease development and growth promotion in plants. 
The availability of a large number of filamentous microbe and plant genomes to identify 
putative microbial glycan-binding proteins and respective plant receptors, as well as recent 
advances in glycan research in animal systems, can now help study the role played by cell-
surface sugars and their binding proteins in plant-filamentous microbe interactions.
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Summary

Microorganisms establish symbiotic relationships with plants that range from mutualistic to 
pathogenic. During plant colonization, microbes secrete effector proteins that manipulate 
host physiology to their advantage. In turn, host plants employ receptors that recognize 
microbe-derived or modified-self molecules indicative of invasion. Over the past 70 
years, our view on the concepts that describe the mechanisms underlying plant-microbe 
interactions has drastically changed (Chapter 1). In order to enhance our understanding 
on the molecular interplay between host and microbe, the work presented in this thesis 
was designed to further unravel components involved in the recognition of the two fungal 
pathogens Verticillium dahliae and Cladosporium fulvum, as well as the functions of effector 
proteins produced by these pathogens during tomato infection. 

Chapter 2 provides an overview of the various functions displayed by effector molecules of 
phytopathogenic filamentous microbes, specifically their roles in the suppression of plant 
immune responses. However, effectors are not unique to pathogens but are employed by 
any microbe that encounters immune responses during plant host colonization. Moreover, 
plant-microbe interactions occur in environments that contain additional microbial partners, 
which can affect the colonizing microbe as well as the host plant. Thus, we propose that 
effector molecules are involved in microbial competition or cooperation in addition to their 
role in host manipulation, and may, therefore, shape the plant microbiome.

The carbohydrate-binding lysin motif (LysM) occurs in all living organisms, except Archaea. 
In fungal pathogens, effectors with varying numbers of LysMs have been implicated in the 
suppression of chitin-triggered immunity. The LysM effector Ecp6, which is secreted by the 
tomato pathogen C. fulvum during infection, contains three LysM domains and is able to 
bind chitin with high affinity. Specifically, Ecp6 disturbs chitin-induced immune responses 
by binding chitin with ultrahigh affinity through intramolecular LysM dimerization, resulting 
in its capacity to outcompete plant chitin receptors. Additionally, the singular LysM domain 
(LysM2), which is not involved in intramolecular chitin binding, can perturb chitin responses 
in tomato through a yet unknown mechanism. Due to its relatively low affinity for chitin, it 
has been hypothesized that LysM2 interferes with chitin receptor dimerization required for 
the activation of immunity. In Chapter 3 we further investigate Ecp6 functionality in the 
model plant Arabidopsis thaliana, for which chitin perception has been intensely studied. 
We show that Ecp6 suppresses chitin-mediated immune responses in A. thaliana and affects 
internalization of the LysM receptor kinase AtLYK5 in a ligand-dependent manner. 

All plant chitin receptors identified to date belong to the class of surface-localized LysM-
containing receptor proteins. Chapter 4 describes a chitin affinity-purification approach 
followed by mass spectrometry aimed at the identification of LysM receptor molecules in 
tomato. We identified two chitin-binding LysM receptor molecules that are closely related 
to A. thaliana LYK4 and rice CEBiP, respectively, both of which have been implicated in chitin 
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recognition in those plant species. While silencing of SlLYK4 resulted in reduced tomato 
responsiveness to chitin, silencing of SlCEBiP had little to no effect. Since SlLYK4 carries an 
inactive intracellular kinase domain we hypothesize that it is involved in the formation a of 
heteromeric chitin receptor complex, similar to A. thaliana and rice. Our findings suggest 
that SlLYK4 is a major component of the chitin receptor complex in tomato that activates the 
canonical chitin signal transduction pathway. 

In contrast to C. fulvum, V. dahliae infects over 200 different plant species. Like other 
pathogens, V. dahliae utilizes effector proteins to manipulate its hosts. We previously 
identified the effector protein Ave1, which greatly contributes to virulence during plant 
colonization, through comparative genomics. Ave1 homologs are ubiquitous in plants and 
occur in several other plant pathogens. As the distribution of the microbial homologs does 
not follow the phylogeny of the species they occur in, it has been hypothesized that V. dahliae 
acquired Ave1 via horizontal gene transfer. Interestingly, all homologs carry a conserved 
plant natriuretic peptide (PNP) sequence and V. dahliae Ave1 displays PNP activity (Chapter 
5). However, complementation of a V. dahliae Ave1 deletion mutant with microbial and plant 
homologs that also display PNP activity does not reinstall virulence. Thus, the contribution 
of V. dahliae Ave1 to virulence does not depend on its PNP activity. Instead, in contrast to its 
homologs, Ave1 additionally interacts with, and inhibits, plant endochitinases to interfere 
with host immunity. These findings demonstrate that Ave1 has functionally diverged from 
its homologs following horizontal gene transfer and evolved a novel function in plant 
immune suppression.

In tomato, V. dahliae Ave1 is recognized by the extracellular leucine-rich repeat-containing 
receptor protein (eLRR-RP) Ve1 resulting in resistance to V. dahliae. However, no function 
could be ascribed to the closest homolog of the Ve1 receptor, Ve2. Previous analyses of 
domain swap mutants between Ve1 and Ve2 have highlighted the role of the eLRR region in 
Ave1 ligand perception. In Chapter 6, we investigated the physical interaction between Ve1 
and its ligand using a biochemical approach. As has been suggested previously based on the 
receptor mutant analyses, not only Ve1 but also Ve2 is able to bind Ave1. This binding is not 
solely mediated by a single region in the eLRR domain but rather requires multiple clusters 
of scattered eLRRs. Moreover, we show that Ave1 binding is required for the recruitment 
of the regulatory receptor kinase BAK1 to the Ve1 receptor complex, which represents a 
hallmark of eLRR-RP immune signaling. 

In addition to chitin, ß-glucans are major cell wall components of filamentous microbes 
that elicit plant immune responses. The widespread capacity of glycan perception in plants 
has driven the evolution of various strategies that help filamentous microbes to evade 
detection. Chapter 7 synthesizes the findings presented in this thesis and places them into 
the broader perspective of glycan-triggered plant immunity and the strategies that evolved 
in plant-associated microbes to suppress it. 
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glücklich darüber, dass wir uns gegenseitiges Vertrauen schenken und zusammen halten, 
wenn es drauf ankommt. Ich danke dir für deinen Optimismus und vor allem dafür, dass 
du mir immer wieder hilfst meine Sorgen zu relativieren.

Ale, mi vida, hay tantas cosas por las cuales te tengo que agradecer. Aquí, más que nada, 
gracias por tu infinita paciencia, tu capacidad de animarme y calmarme cuando más lo 
necesite. Sin vos a mi lado no habría llegado a este punto. Te amo!
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