FUSSIM2 version 5. New features and updated user's guide
New features and updated user's guide

Marius Heinen
Peter de Willigen

Alterra-rapport 363

Alterra, Green World Research, Wageningen, 2001

Abstract

Heinen, Marius \& Peter de Willigen, 2001. FUSSIM2 version 5; New features and updated user's guide. Wageningen, Alterra, Green World Research. Alterra-rapport 363.164 pp. 22 figs.; 39 tables; 63 refs.

FUSSIM2 is a two-dimensional simulation model for describing movement of water, solute transport and root uptake of water and nutrients in partially saturated porous media. It has been documented in 1998 (Heinen and de Willigen, QASA Report 20, AB-DLO \& PE, Wageningen, The Netherlands). Since then new features have been included that are described in the current report. The new features include: extension to the van Genuchten - Mualem description of the physical properties of the porous medium, reduction of evaporation of water at the soil surface, runoff, the Vimoke drain concept, P-adsorption and P-fixation, non-zero sink nutrient uptake, root growth described as a diffusion process, nitrification and denitrification, soil temperature. Furthermore, a version in cylindrical coordinates is available, FUSSIM2 is coupled with the organic matter model MOTOR, and a expo-lineair growth and demand module is included in FUSSIM2 for special situations. This report includes an updated users' guide.

Keywords: drain, evaporation, nitrate, radial transport, root growth, root uptake, phosphate, soil temperature, solute transport, two-dimensional simulation model, Vimoke, water flow denitrification, nitrification

ISSN 1566-7197

This report can be ordered by paying 60,00 D utch guilders ($€ 27,-$) into bank account number 367054612 in the name of Alterra, Wageningen, the Netherlands, with reference to rapport 363. This amount is inclusive of VAT and postage.

© 2001 Alterra, Green World Research,

P.O. Box 47, NL-6700 AA Wageningen (The Netherlands).

Phone: +31 317 474700; fax: +31 317 419000; e-mail: postkamer@ alterra.wag-ur.nl
No part of this publication may be reproduced or published in any form or by any means, or stored in a data base or retrieval system, without the written permission of Alterra.

Alterra assumes no liability for any losses resulting from the use of this document.
Alterra is the amalgamation of the Institute for Forestry and Nature Research (IBN) and the Winand Staring Centre for Integrated Land, Soil and Water Research (SC). The merger took place on 1 January 2000.

Contents

Preface 7
Summary 9
1 Introduction 11
1.1 References 11
2 FUSSIM2 for 1-dimensional cases 13
2.1 Introduction 13
2.2 References 13
3 Cylindrical coordinates: FUSSIMR 15
3.1 D iscretization in cylindrical coordinates. 15
3.2 FUSSIMR in two dimensions 18
3.3 Boundary conditions 19
3.3.1 In r-direction 19
3.3.1.1 The outer radial boundary of the cylinder 19
3.3.1.2 The inner radial boundary of the cylinder 19
3.3.2 In z-direction 20
3.4 Geometry 20
3.5 Verification 21
3.6 References 22
4 Extension to the van Genuchten-Mualem description of the hydraulic propertiesin FUSSIM223
4.1 Introduction 23
4.2 Theory 23
4.3 Matric Flux potential 27
4.4 Implementation in FUSSIM2 29
4.5 References 29
5 From potential to actual evaporation of water at the soil surface 31
5.1 Introduction 31
5.2 Example 33
5.3 References 35
5.4 Appendix 35
6 Infiltration and runoff of water at the soil surface 37
6.1 Introduction 37
6.2 Overland flow and maximum infiltration rate 37
6.3 Implementation in FUSSIM2 40
6.4 Examples 40
6.4.1 Case 1 40
6.4.2 Case 2 42
6.5 References 43
7 Drain according to the Vimoke concept in FUSSIM2 45
7.1 Introduction 45
7.2 Theory 45
7.3 Implementation in FUSSIM2 48
7.3.1 Initialize 48
7.3.2 Compute 48
7.4 Verification against steady-state saturated Kirkham solution 49
7.4.1 Simulation 51
7.4.2 Results 51
7.5 On CF 52
7.6 Steady-state variably saturated example 55
7.7 Validation for a transient variably saturated situation 58
7.8 References 61
7.9 Appendix 62
$8 \quad \mathrm{P}$-adsorption and P-fixation in FUSSIM2 63
8.1 Introduction 63
8.2 The general transport equation 63
8.3 Expression for the new labile amount 64
8.4 P fixation 64
8.5 P adsorption isotherms 65
8.6 Computation of P_{w} 66
8.7 The initial situation 67
8.8 Fertilization 68
8.9 References 68
9 Non-zero sink nutrient uptake 69
9.1 Non-zero sink nutrient uptake 69
9.2 References 70
10 Expo-linear growth and demand 71
10.1 Introduction 71
10.2 Expo-linear growth 71
10.3 Nutrient demand 72
10.4 References 73
11 Root growth described as a diffusion process 75
11.1 Diffusive root growth in two dimensions 75
11.2 Numerical solution 75
11.3 Diffusion coefficients 76
11.4 Input rate of roots 77
11.5 Fitting parameters 77
11.6 References 77
12 Nitrification and denitrification module NITDEN 79
12.1 Introduction 79
12.2 Nitrification 79
12.3 D enitrification 81
$12.4 \mathrm{~N}_{2} \mathrm{O}$ emission 83
$12.5 \mathrm{~N}_{2} \mathrm{O}$ dynamics in the soil 84
12.6 Numerical solution 84
12.7 The input file NITD ENIN.DAT 85
12.8 A cknowledgements 85
12.9 References 86
13 Soil temperature (1-D) 87
13.1 Introduction 87
13.2 Heat conduction 87
13.2.1 Integration of the heat conduction equation 87
13.2.2 Boundary condition 89
13.3V erification 89
13.3.1 Case 1 89
13.3.2 Case 2 90
13.3.3 Case 3 92
$13.40 \mathrm{nk}_{\mathrm{h}}, \mathrm{C}_{\mathrm{h}}$ and D_{h} 93
13.5 Implementation in FUSSIM2 95
13.6 References 96
14 Coupling with MOTOR 97
14.1 Introduction 97
14.2 Incorporation of MOTOR in FUSSIM2 97
14.3 A nalytical solution to verify MOTOR 98
14.4 References 100
15 User's guide 101
15.1 Model structure 101
15.2 FUSSIM2 and FSE4 101
15.3 Correspondence between variables in files and variables in text 102
15.4 D escription of input files 112
15.4.1 Input file INPUT.DAT 113
15.4.2 Input file FUS2.CTR 115
15.4.3 Input file SO IL.DAT 119
15.4.4 Input file BO UND S.DAT 121
15.4.5 Input file TIMER.DAT 124
15.4.6 Input file WEATHER.DAT 127
15.4.7 Input file SOILS.DB 129
15.4.8 Input file EXTMAKE.DAT 131
15.4.9 Input file GWL.DAT 131
15.4.10 Input file VIMO KE.DAT 132
15.4.11 Input file THHFX FZ.DAT 133
15.4.12 Input file WET.DAT 134
15.4.13 Input file STEMP.DAT 134
15.4.14 Input file SOLUTE.DAT 135
15.4.15 Input file AMMONIUM.DAT 137
15.4.16 Input file IONSINFO.DAT 138
15.4.17 Input file NITD ENIN.DAT 139
15.4.18 Input file PHO SPHO R.DAT 144
15.4.19 Input file UPTA.DAT 145
15.4.20 Input file TRANSP.DAT 146
15.4.21 Input file TRANSP.CTR 148
15.4.22 Input file TGEN.DAT 148
15.4.23 Input file EXPLIN.DAT 149
15.4.24 Input file ROOTS.DAT 150
15.4.25 Input file FERTIL.DAT 152
15.5 Examples of output files 152
15.6 The rerun facility 161
15.7 A cknowledgements 161
15.8 References 162

Preface

This report was written within project 10198 ('V erbetering en toetsing FU SSIM 2') as part of the research program 317 ('D ynamiek en beheer van nutriënten') It was financed by "Dienst Wetenschap en Kennisoverdracht" (DWK) of the Dutch Ministry of Agriculture, Fisheries and Nature Management (LNV). It is an update of a previous description of FUSSIM2, a two-dimensional simulation model for describing water movement, solute transport and root uptake of water and nutrients in partially saturated porous media (Heinen and de Willigen, 1998. Quantitative Approaches in Systems Analysis No. 20, AB-DLO and PE, Wageningen, The Netherlands). The last chapter is a user's guide for the model.

At each chapter it is indicated who the responsible authors are. Authors who contributed are: M. Heinen, P. de Willigen, F.B.T. Assinck, J.A. de Vos (all Alterra), and J.G. Conijn (Plant Research International).

Summary

FUSSIM2 is a two-dimensional simulation model for describing water movement, solute transport and root uptake of water and nutrients in partially saturated porous media. It was documented by Heinen and de Willigen in 1998 (Quantitative Approaches in Systems Analysis No. 20, AB-DLO and PE, Wageningen, The Netherlands). Since then there have been additions to FUSSIM2, which are described in this report. Also the user's guide needed to be updated due to these additions, and forms the last chapter of this report.

The new features include: extension to the van Genuchten - Mualem description of the physical properties of the porous medium, reduction of evaporation of water at the soil surface, runoff, the Vimoke drain concept, P-adsorption and P-fixation, nonzero sink nutrient uptake, root growth described as a diffusion process, nitrification and denitrification, soil temperature. Furthermore, a version in cylindrical coordinates is available, FUSSIM2 is coupled with the organic matter model MOTOR, and a expo-lineair growth and demand module is included in FUSSIM2 for special situations.

1 Introduction

FUSSIM2 is a two-dimensional simulation model for describing water movement, solute transport and root uptake of water and nutrients in partially saturated porous media. It has been documented by Heinen and de Willigen (1998). Since then, several additions have been implemented in the code, and we feel obliged to describe them in this report. We have decided to describe each feature in a separate chapter. The responsible author(s) for each chapter are given at the beginning of each chapter.

In this report the following chapters are present
2 FUSSIM2 for 1-dimensional cases
3 Cylindrical coordinates: FUSSIMR
4 Extension to the van Genuchten-Mualem description of the hydraulic properties in FUSSIM2
5 From potential to actual evaporation of water at the soil surface
$6 \quad$ Infiltration and runoff of water at the soil surface
7 Drain according to the Vimoke concept in FUSSIM2
$8 \quad \mathrm{P}$-adsorption and P-fixation in FUSSIM2
9 Non-zero sink nutrient uptake
10 Expo-linear growth and demand
11 Root growth described as a diffusion process
12 Nitrification and denitrification module NITDEN
13 Soil temperature (1-D)
14 Coupling with MOTOR
15 User's guide
The last chapter is the update of the user's guide as given by Heinen and de Willigen (1998). Each chapter can be considered as separate units. They have their own usage of symbols and their own list of references.

In general, since the previous description of FUSSIM2 (Heinen and de Willigen, 1998) the model has been used extensively. In most cases it was coupled with plant growth models. For this purpose use was made of the FSE 4 shell (Rappoldt, 2001) software, which was specifically made for coupling existing models. As such, FUSSIM2 is no longer a stand-alone model, as it has to run under FSE4 (or any other synchronization main program or shell). Under FSE4, FUSSIM2 can be run as a single model. However, the user needs to take care of any required plant data in that case. For this situation the user can choose to use the build-in expo-linear crop model (chapter 10).

11 References

Heinen M. and P. de Willigen, 1998. FUSSIM2 A two-dimensional simulation model for water flow, solute transport and root water and root nutrient uptake in unsaturated and partly unsaturated porous media. Quantitative Approaches in

Systems Analysis No. 20, DLO Research Institute for Agrobiology and Soil Fertility and the C.T. de Wit Graduate School for Production Ecology, Wageningen, The Netherlands, 140 p .
Rappoldt C, 2001. Description of the FSE4 shell. Internal Report, Alterra, Wageningen, in preparation.

2 FUSSIM2 for 1-dimensional cases

Marius Heinen

2.1 Introduction

FUSSIM2 can easily be used for 1-dimensional studies by setting the input parameter NC equal to one. The code of FUSSIM2 has been adapted such that this case can be handled correctly. For the 1-D case, the matrix problem (Eq. [114] of Heinen and de Willigen, 1998) consists of a tri-diagonal coefficient matrix A, which can be easily solved (e.g. Press et al., 1992). The main diagonal contains the coefficients of the central CV's, and the upper and lower diagonals contain the coefficients referring to the northern and southern neighbors.

It is also possible to consider several columns as independent 1-dimensional columns, i.e. there will be no flow between the columns. Setting up the equations for all columns again yields a tri-diagonal system which can be solved as described above. This option can be achieved by setting ISOLVE < 0 (see chapter 15). This option was implemented for a special case study, but it is still available for the future.

2.2 References

Heinen M. and P. de Willigen, 1998. FUSSIM2 A two-dimensional simulation model for water flow, solute transport and root water and root nutrient uptake in unsaturated and partly unsaturated porous media. Quantitative Approaches in Systems Analysis No. 20, DLO Research Institute for Agrobiology and Soil Fertility and the C.T. de Wit Graduate School for Production Ecology, Wageningen, The Netherlands, 140 p .
Press W.H., B.P. Flannery, S.A. Teukolsky and W.T. Vetterling, 1992. Numerical recipes in Fortran 77. Second edition. The art of scientific computing. Cambridge University Press, Cambridge.

3 Cylindrical coordinates: FUSSIMR

Peter de Willigen and Marius Heinen

In this chapter we describe how water movement in cylindrical coordinates is implemented in the code FUSSIMR. We use the same notation convention as in Heinen and de Willigen (1998).

3.1 Discretization in cylindrical coordinates.

The equivalent of Richard's equation (multiplied by r for convenience) in cylindrical coordinates reads

$$
\begin{equation*}
\mathrm{r} \frac{\partial \theta}{\partial \mathrm{t}}=-\frac{\partial}{\partial \mathrm{r}} \mathrm{rq} \mathrm{q}_{\mathrm{r}}-\frac{\partial}{\partial \psi} \mathrm{q}_{\psi}-\frac{\partial}{\partial \mathrm{z}} \mathrm{rq}_{z}-\mathrm{rS} \mathrm{~S}_{\mathrm{w}} \tag{3-1}
\end{equation*}
$$

where

r	the radial coordinate	L
ψ	the tangential coordinate	L
z	the vertical coordinate	L
θ	volumetric water content	$\mathrm{L}^{3} \mathrm{~L}^{-3}$
t	time	T
q	water flux density $\mathrm{L}^{3} \mathrm{~L}^{-2} \mathrm{~T}^{-1}$	$\mathrm{~L}^{3} \mathrm{~L}^{-3} \mathrm{~T}^{-1}$

The D arcy fluxes in cylindrical coordinates ($\mathrm{r}, \mathrm{z}, \Psi$) read

$$
\begin{equation*}
\mathrm{q}_{\mathrm{r}}=-\mathrm{K}_{\mathrm{r}} \frac{\partial \mathrm{~h}}{\partial \mathrm{r}}, \mathrm{q}_{z}=-\mathrm{K}_{\mathrm{z}} \frac{\partial \mathrm{~h}}{\partial z}+\mathrm{K}_{z}, \mathrm{q}_{\psi}=-\frac{\mathrm{K}_{\psi}}{\mathrm{r}} \frac{\partial \mathrm{~h}}{\partial \psi} \tag{3-2}
\end{equation*}
$$

where
$\begin{array}{llr}\mathrm{K} & \text { hydraulic conductivity } & \mathrm{LT}^{-1} \\ \mathrm{~h} & \text { pressure head } & \mathrm{L}\end{array}$
In order to discretize this equation we integrate it over the control volume. The grid point in the control volume is indicated by the subscript P, its neighbors in the r direction are indicated by the indexes W (est) and E (ast), in the ψ-direction by L (eft) and R(ight) and in the z -direction by S (outh) and N (orth). The interfaces between the control volumes are indicated by lower case indexes, e.g. n denotes the interface between control volume P and N .

The integration of the first term of the right hand side of Eq. (3-1) yields

$$
\begin{equation*}
\int_{\psi_{1} z_{s}}^{\psi_{\mathrm{r}} \mathrm{z}_{\mathrm{n}} \mathrm{t}+\Delta \Delta} \int_{\mathrm{t}}^{\mathrm{r}} \int_{\mathrm{r}_{\mathrm{w}}}-\frac{\partial}{\partial \mathrm{r}} \mathrm{r} \mathrm{q}_{\mathrm{r}} \operatorname{drdtdzd} \int_{\psi_{1} z_{s}}^{\psi_{\mathrm{r}} \mathrm{z}_{\mathrm{n}}}-\left[\mathrm{rq}_{\mathrm{r}}\right]_{\mathrm{r}_{\mathrm{w}}}^{\mathrm{r}_{\mathrm{e}}} \Delta \operatorname{tdzd} \psi=-\left[\mathrm{r}_{\mathrm{e}} \mathrm{q}_{\mathrm{r}, \mathrm{e}}-\mathrm{r}_{\mathrm{w}} \mathrm{q}_{\mathrm{r}, \mathrm{w}}\right] \Delta \psi \Delta z \Delta \mathrm{t} \tag{3-3}
\end{equation*}
$$

The fluxes $\mathrm{q}_{\mathrm{r}, \mathrm{e}}$ and $\mathrm{q}_{\mathrm{r}, \mathrm{w}}$ are approximated by

$$
\begin{equation*}
q_{r, e}=-K_{r, e} \frac{h_{E}-h_{P}}{\delta r_{e}}, q_{r, w}=-K_{r, w} \frac{h_{p}-h_{W}}{\delta r_{w}} \tag{3-4}
\end{equation*}
$$

Substitution of Eq. (3-4) in Eq. (3-3) yields
$\int_{\Psi_{1} Z_{s}}^{\psi_{\mathrm{s}} \mathrm{z}_{\mathrm{n}} \mathrm{t}} \int_{\mathrm{t}}^{\mathrm{t}+\Delta \mathrm{t}_{\mathrm{r}}} \int_{\mathrm{r}_{\mathrm{e}}}-\frac{\partial}{\partial \mathrm{r}} \mathrm{r} \mathrm{r}_{\mathrm{r}} \mathrm{drdtdzd} \psi=\left[\mathrm{r}_{\mathrm{e}} \frac{\mathrm{K}_{\mathrm{r}, \mathrm{e}}\left(\mathrm{h}_{\mathrm{E}}-\mathrm{h}_{\mathrm{P}}\right)}{\delta r_{\mathrm{e}}}-\mathrm{r}_{\mathrm{w}} \frac{\mathrm{K}_{\mathrm{r}, \mathrm{w}}\left(\mathrm{h}_{\mathrm{P}}-\mathrm{h}_{\mathrm{W}}\right)}{\delta r_{\mathrm{w}}}\right] \Delta \psi \Delta z \Delta \mathrm{t}$
Likewise the integration of the second tem of the right hand side of Eq. (3-1) yields

$$
\begin{equation*}
\int_{r_{w}}^{r_{\mathrm{w}}} \int_{z_{s}}^{z_{\mathrm{s}}} \int_{\mathrm{t}}^{\mathrm{t}+\Delta t} \int_{\psi_{1}}^{\psi_{\mathrm{r}}}-\frac{\partial}{\partial \psi} \mathrm{q}_{\psi} \mathrm{d} \psi \mathrm{dtdzdr}=\int_{\mathrm{r}_{\mathrm{w}}}^{\mathrm{r}_{\mathrm{e}} \int_{\mathrm{z}}} \int_{\mathrm{s}}-\left[\mathrm{q}_{\psi}\right]_{\psi_{1}}^{\psi_{\mathrm{r}}} \Delta \mathrm{tdz} \mathrm{dr}=-\left[\mathrm{q}_{\psi, \mathrm{r}}-\mathrm{q}_{\psi, 1}\right] \mathrm{r} \Delta z \Delta \mathrm{t} \tag{3-6}
\end{equation*}
$$

The fluxes $\mathrm{q}_{\psi, 1}$ and $\mathrm{q}_{\psi, r}$ are approximated by

$$
\begin{equation*}
\mathrm{q}_{\psi, \mathrm{r}}=-\frac{\mathrm{K}_{\psi, \mathrm{r}}}{\mathrm{r}_{\mathrm{r}}} \frac{\mathrm{~h}_{\mathrm{R}}-\mathrm{h}_{\mathrm{p}}}{\delta \psi_{\mathrm{r}}}, \mathrm{q}_{\psi, \mathrm{l}}=-\frac{\mathrm{K}_{\psi, \mathrm{l}}}{\mathrm{r}_{\mathrm{l}}} \frac{\mathrm{~h}_{\mathrm{p}}-\mathrm{h}_{\mathrm{L}}}{\delta \psi_{1}} \tag{3-7}
\end{equation*}
$$

Substitution of Eq. (3-7) in Eq. (3-6) yields

$$
\begin{equation*}
\int_{\mathrm{r}_{w} z_{\mathrm{s}}}^{\mathrm{r}_{\mathrm{e}} \mathrm{z}_{\mathrm{n}} \mathrm{t}+\Delta t} \int_{\mathrm{t}}^{\mathrm{t}} \int_{\psi_{1}}^{\psi_{\mathrm{r}}}-\frac{\partial}{\partial \psi} \mathrm{q}_{\psi} d \psi \mathrm{dtdzdr}=-\left[\frac{\mathrm{K}_{\psi, \mathrm{r}}\left(\mathrm{~h}_{\mathrm{R}}-\mathrm{h}_{\mathrm{P}}\right)}{\mathrm{r}_{\mathrm{r}} \delta \psi_{\mathrm{r}}}-\frac{\mathrm{K}_{\psi, l}\left(\mathrm{~h}_{\mathrm{P}}-\mathrm{h}_{\mathrm{L}}\right)}{\mathrm{r}_{\mathrm{l}} \delta \psi_{\mathrm{l}}}\right] \Delta \mathrm{r} \Delta z \Delta \mathrm{t} \tag{3-8}
\end{equation*}
$$

Note that $r_{r}=r_{1}$.
Integration of the third term of the right hand side of Eq. (3-1) eventually leads to

$$
\begin{align*}
& =-\left(q_{z, n}-q_{z, s}\right) \frac{r^{r^{2}}-r_{w}^{2}}{2} \Delta \psi \Delta t \Delta z \tag{3-9}
\end{align*}
$$

The fluxes $\mathrm{q}_{2, \mathrm{n}}$ and $\mathrm{q}_{2, \mathrm{~s}}$ are approximated by
$\mathrm{q}_{z, \mathrm{n}}=-\mathrm{K}_{z, \mathrm{n}} \frac{\mathrm{h}_{\mathrm{N}}-\mathrm{h}_{\mathrm{p}}}{\delta \mathrm{z}_{\mathrm{n}}}+\mathrm{K}_{2, \mathrm{n}}, \mathrm{q}_{z, \mathrm{n}}=-\mathrm{K}_{z, \mathrm{~s}} \frac{\mathrm{~h}_{\mathrm{p}}-\mathrm{h}_{\mathrm{S}}}{\delta \mathrm{z}_{\mathrm{s}}}+\mathrm{K}_{z, \mathrm{~s}}$
Substitution of Eq. (3-10) in Eq. (3-9) yields
$\int_{\psi_{1} r_{w}}^{\psi_{\mathrm{w}}} \int_{\mathrm{t}}^{\mathrm{r}_{\mathrm{e}}} \int_{z_{\mathrm{s}}}^{\mathrm{t}+\Delta t z_{\mathrm{n}}}-\frac{\partial}{\partial z} \mathrm{rq}_{z} \mathrm{dzdtdrd} \psi=$
$\left[\frac{r_{e}^{2}-r_{w}^{2}}{2}\left(K_{z, n} \frac{h_{N}-h_{p}}{\delta z_{n}}-K_{z, s} \frac{h_{p}-h_{s}}{\delta z_{s}}\right)+\frac{r_{e}^{2}-r_{w}^{2}}{2}\left(K_{z, n}-K_{z, s}\right)\right] \Delta \psi \Delta t \Delta z$
Integration of the source term of the right hand side of Eq. (3-1) finally yields
$-S_{p} \Delta V \Delta t$
where $\Delta \mathrm{V}$ is the volume of the control volume given by
$\Delta V=\frac{r_{e}^{2}-r_{w}^{2}}{2} \Delta \psi \Delta z$
Integration of the storage term (the left hand side) of Eq. (3-1) yields

$$
\begin{equation*}
\left[\theta_{\mathrm{P}}-\theta_{\mathrm{P}}^{0}\right] \Delta \mathrm{V} \tag{3-14}
\end{equation*}
$$

but as before by using a truncated Taylor expansion around $\mathrm{h}_{\mathrm{p}}^{\vee}$ it is replaced by

$$
\begin{equation*}
\left[C_{P}^{v}\left(h_{P}^{v+1}-h_{P}^{v}\right)+\left(\theta_{P}^{v}-\theta_{P}^{0}\right)\right] \Delta V_{P} \tag{3-15}
\end{equation*}
$$

where
C differential moisture capacity
Combining and rearranging one gets the discretized equivalent of Eq. (3-1)
$A h_{P}^{v+1}=A_{W} h_{W}^{v+1}+A_{E} h_{E}^{v+1}+A_{N} h_{N}^{v+1}+A_{S} h_{S}^{v+1}+A_{L} h_{L}^{v+1}+A_{R} h_{R}^{v+1}+b$
with
$A_{R}=\frac{K_{\psi, r} \Delta r \Delta z}{r_{r} \delta \psi_{r}}$

$$
\begin{align*}
& A_{L}=\frac{K_{\psi, l} \Delta r \Delta z}{r_{1} \delta \psi_{l}} \tag{3-18}\\
& A_{E}=\frac{K_{r, e} r_{e} \Delta \psi \Delta z}{\delta r_{e}} \tag{3-19}\\
& A_{W}=\frac{K_{r, w} r_{w} \Delta \psi \Delta z}{\delta r_{W}} \tag{3-20}\\
& A_{N}=\frac{K_{z, n} \Delta \psi}{\delta z_{n}} \frac{r_{e}^{2}-r_{w}^{2}}{2} \tag{3-21}\\
& A_{S}=\frac{K_{z, s} \Delta \psi}{\delta z_{S}} \frac{r_{e}^{2}-r_{w}^{2}}{2} \tag{3-22}\\
& b=A_{P}^{0} h_{P}^{0}-\left(\theta_{P}^{v}-\theta_{P}^{0}\right) \frac{\Delta V_{P}}{\Delta t}-\left(K_{z, n}-K_{z, s}\right) \frac{r_{e}^{2}-r_{w}^{2}}{2} \Delta \psi-S_{P} \Delta V_{P} \tag{3-23}\\
& A_{P}^{0}=C_{P}^{v} \frac{\Delta V_{P}}{\Delta t} \tag{3-24}\\
& A=A_{W}+A_{E}+A_{N}+A_{S}+A_{L}+A_{R}+A_{P}^{0} \tag{3-25}
\end{align*}
$$

3.2 FUSSIMR in two dimensions

The code FUSSIMR is at present only available for two-dimensional r-z situations, i.e. no gradients in the tangential direction exist. The above equations remain valid; only the equations simplify and some coefficients vanish. In case of transport in radial (r) and vertical (z) direction only the coefficients A_{L} and A_{R} vanish and $\Delta \psi$ should be replaced by 2π..

For completeness, in case of transport in radial (r) and tangential (ψ) direction the coefficients A_{N} and A_{S} vanish, while $\Delta \mathrm{z}$ should be replaced by 1 .

3.3 Boundary conditions

3.3.1 In r-direction

3.3.1.1 The outer radial boundary of the cylinder

Prescribed flux

The first term at the RHS of Eq. (3-3) be formulated as

$$
\begin{align*}
& =\left[-r_{e} q_{r, e}-\frac{K_{r, w} r_{w}\left(h_{p}-h_{W}\right)}{\delta r_{w}}\right] \Delta \psi \Delta z \Delta t \tag{3-26}
\end{align*}
$$

The flux $q_{r e,}$ is the prescribed flux over the outer radial surface and $r_{e} \Delta \psi \Delta z$ is the outer surface of the control volume, so the product of both is the volumetric flux out or into the control volume. So the discretized equation for the boundary control volumes is similar to Eq. (3-16), except that now $\mathrm{A}_{\mathrm{E}}=0$, and the term $\mathrm{r}_{\mathrm{e}} \Delta \psi \Delta z \mathrm{q}_{\mathrm{r}, \theta}$ after division by Δt, should be added to b.

Prescribed pressure head

The easiest way to handle this condition is to make all the coefficients, A_{E}, A_{w}, A_{N} $, A_{S}, A_{B}, A_{T}$ zero and substitute $A=1$, and $b=h_{r 1}$ where $h_{r 1}$ is the prescribed pressure head. But as explained earlier this leads to difficulties with one of the solution methods used. So again the following procedure was followed: the normal discretization equation Eq. (3-16) is used, but A and b are now given as

$$
\begin{equation*}
A=0 \tag{3-27}
\end{equation*}
$$

and

$$
\begin{equation*}
b=h_{r_{1}} Q \tag{3-28}
\end{equation*}
$$

where Q is a number so large that the other terms are insignificant, this yields the desired result.

3.3.1.2 The inner radial boundary of the cylinder

At the inner boundary - the longitudinal axis -, the condition is always that of zeroflux, so here

$$
\begin{equation*}
\mathrm{A}_{\mathrm{W}}=0 \tag{3-29}
\end{equation*}
$$

the other terms being similar to those given before. If a hollow cylinder is considered, the inner boundary can be of the same type as the outer boundary as described in the previous sub-section.

3.3.2 In z-direction

The handling of boundary conditions at $\mathrm{z}=0$ and $\mathrm{z}=\mathrm{z}_{1}$ is similar to that for the radial boundary conditions. For prescribed flux at the top $\mathrm{A}_{\mathrm{N}}=0$, and to b a term $0.5\left(\mathrm{r}_{\mathrm{e}}{ }^{2}-\mathrm{r}_{\mathrm{w}}^{2}\right) \Delta \psi \mathrm{q}_{\mathrm{z}, \mathrm{n}}$ is added; at the bottom one sets $\mathrm{A}_{\mathrm{s}}=0$, and adds $0.5\left(\mathrm{r}_{\mathrm{e}}^{2}-\mathrm{r}_{\mathrm{w}}^{2}\right) \Delta \psi \mathrm{q}_{2, \mathrm{~s}}$ to b . The boundary condition of prescribed pressure head is dealt with by setting as before: $\mathrm{A}=\mathrm{Q}$ (Eq. (3-27)) and $\mathrm{b}=\mathrm{h}_{\mathrm{r} 1} \mathrm{Q}$ (Eq. (3-28)).

3.4 Geometry

The soil cylinder with radius R_{1} is divided in $N R$ rings and $N L$ layers (and NPSI segments). The radial coordinate of the grid points is located midway between the boundaries of the control volumes. The first grid point lies in the center of the soil cylinder $(r=0)$. For the outer control volume the grid point lies at the outer boundary $\left(r=R_{1}\right)$. In a (r, z) two-dimensional system the state variables pertain to gridlines (circles) rather than to grid points.

In FUSSIMR the following variables are used:
R (I) coordinate of the radial outer boundary of CV I
RGRID (I) coordinate of grid point I
DR(I) radial thickness of CV I
DISTR(I) radial distance between grid point I and I+1
At this time there are two options to divide the soil cylinder in N R rings. First, the user can enter the thickness of each ring. Secondly, the user can enter the radius R_{1} of the cylinder and the number of rings N R. Then, the thickness of the rings are computed such that the volumes of each of the control volumes are the same. In that case

$$
\begin{equation*}
\pi r_{1}^{2}=\pi\left(r_{2}^{2}-r_{1}^{2}\right)=\pi\left(r_{3}^{2}-r_{2}^{2}\right)=\ldots=\pi\left(r_{\mathrm{NR}}^{2}-r_{\mathrm{NR}-1}^{2}\right) \tag{3-30}
\end{equation*}
$$

From this it follows that
$r_{i}=r_{1} \sqrt{i}$
and so
$\mathrm{r}_{1} \sqrt{\mathrm{NR}}=\mathrm{R}_{1}$
or

$$
\begin{equation*}
\mathrm{r}_{1}=\frac{\mathrm{R}_{1}}{\sqrt{\mathrm{NR}}} \tag{3-33}
\end{equation*}
$$

Now all r_{i} can be computed. Furthermore, any DR(I) can be computed as

$$
\begin{equation*}
D R(I)=r_{1}(\sqrt{I}-\sqrt{I-1}) \tag{3-34}
\end{equation*}
$$

The sum of all $D R(I)$ equals R_{1}.

Surface areas

In computations of flux densities the surface areas perpendicular to the direction of water movement are needed if volume fluxes $\left(\mathrm{cm}^{3} \mathrm{~d}^{-1}\right)$ are required, e.g. to compute amount of water that passed a certain boundary. In rectangular coordinates these surface areas are simply $\Delta x \Delta y=\Delta x .1=\Delta x$ or $\Delta z \Delta y=\Delta z .1=\Delta z$. In cylindrical coordinates, however, we have:
for flow in z direction (assuming only flow in (r,z) domain, i.e. no ψ dimensioning)

$$
\text { SURFZ }(\mathrm{I})=\pi\left(\mathrm{R}(\mathrm{I})^{2}-\mathrm{R}(\mathrm{I}-1)^{2}\right)=\pi \mathrm{DR}(\mathrm{I})(\mathrm{R}(\mathrm{I})+\mathrm{R}(\mathrm{I}-1))
$$

for flow in r direction (assuming only flow in (r, z) domain, i.e. no ψ dimensioning) $\operatorname{SURFR}(\mathrm{I}, \mathrm{J})=2 \pi \mathrm{R}(\mathrm{I}) \mathrm{DZ}(\mathrm{J})$

3.5 Verification

A transient (r, z) analytical solution for heat transfer in a finite cylinder with unit initial temperature, zero surface temperature and constant conductivity is used to verify the numerical simulation model. The cylinder is represented by $-Z / 2<z<Z / 2,0<r<R_{1}$. The analytical solution is given by Carslaw and Jaeger (1959; their Eq. (5) on page 225)

$$
\begin{equation*}
u(r, z)=\chi\left(r, R_{1}\right) \zeta(z, Z / 2) \tag{3-35}
\end{equation*}
$$

The two functions are given by (Carslaw and Jaeger, 1959; their Eq. (1) on page 225)

$$
\begin{equation*}
\chi\left(r, R_{1}\right)=\frac{2}{R_{1}} \sum_{n=1}^{\infty} \exp \left(-K \alpha_{n}^{2} t\right) \frac{J_{0}\left(r \alpha_{n}\right)}{\alpha_{n} J_{1}\left(R_{1} \alpha_{n}\right)} \tag{3-36}
\end{equation*}
$$

where α_{n} are the positive roots of

$$
\begin{equation*}
\mathrm{J}_{0}\left(\mathrm{R}_{1} \alpha\right)=0 \tag{3-37}
\end{equation*}
$$

and (Carslaw and Jaeger, 1959; their Eq. (6) on page 173)

$$
\begin{equation*}
\zeta(z, Z / 2)=\frac{4}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)} \exp \left(-K \frac{(2 n+1)^{2} \pi^{2}}{4(Z / 2)^{2}} t\right) \cos \left(\frac{(2 n+1) \pi z}{2(Z / 2)}\right) \tag{3-38}
\end{equation*}
$$

respectively.

This verification is analogous to the verification in sections 6.1 and 6.3 of Heinen and de Willigen (1998), so we do not describe the details of how the simulation is carried out. The comparison between numerical and analytical solutions is very good for both water movement and solute transport (Figure 3-1).

Figure 3-1. C omparison between numerical (symbols) and analytial (lines) solutions for both water movement (?) and solute (?) transport.

3.6 References

Carslaw H.S. and J.C. Jaeger. 1959. Conduction of heat in solids, $2^{\text {nd }}$ ed. Macmillan, New York.
Heinen M. and P. de Willigen, 1998. FUSSIM2 A two-dimensional simulation model for water flow, solute transport and root water and root nutrient uptake in unsaturated and partly unsaturated porous media. Quantitative Approaches in Systems Analysis No. 20, DLO Research Institute for Agrobiology and Soil Fertility and the C.T. de Wit Graduate School for Production Ecology, Wageningen, The Netherlands, 140 p .

4 Extension to the van Genuchten-Mualem description of the hydraulic properties in FUSSIM2

Marius Heinen

4.1 Introduction

Movement of water through porous media is determined by the hydraulic properties of the porous media. The hydraulic properties are given by the water retention and hydraulic conductivity characteristics. These characteristics describe the relationships between pressure head $h[\mathrm{~L}]$, volumetric water content $\theta\left[\mathrm{L}^{3} \mathrm{~L}^{-3}\right]$ and hydraulic conductivity $\mathrm{K}^{\left[\mathrm{LT}^{-1}\right]}$. For soils, but also for coarse porous media used as root zone substrates in horticulture (e.g. Otten, 1994; Heinen, 1997), these relationships are commonly described by the van Genuchten (1980) $\theta(\mathrm{h})$ and Mualem (1976) $K(\theta)$ (or $\mathrm{K}(\mathrm{h})$) relationships. These relationships are incorporated in the simulation model FUSSIM2 (Heinen and de Willigen, 1998).

For some soils, especially clayey soils, it appears that the description of $K(\theta)$ fails near saturation. Vogel and Cislerova (1988) proposed an extension of the van GenuchtenMualem equations. These extensions have been included in the Hydrus_2D model of Simunek et al. (1994) and have been successfully used by de Vos (1997) for describing water flow and nutrient transport in layered silt loam soil.

It was decided to extend the van Genuchten-Mualem functions of the model FUSSIM2. This chapter describes the new functions, and discusses how these have been incorporated in FUSSIM2. Additionally, attention is paid to the matric flux potential as it is used in the water uptake module in FUSSIM2.

4.2 Theory

Vogel and Cislerova (1988) presented the following descriptions for $\theta(\mathrm{h})$ and $\mathrm{K}(\mathrm{h})$ (Figure 4-1)
$\theta(h)= \begin{cases}\theta_{a}+\frac{\theta_{m}-\theta_{a}}{\left(1+|\alpha h|^{2}\right)^{m}} & h<h_{s} \\ \theta_{s} & h \geq h_{s}\end{cases}$
and
$K(h)= \begin{cases}K_{s} K_{r}(h) & h \leq h_{k} \\ K_{k}+\frac{\left(h-h_{k}\right)\left(K_{s}-K_{k}\right)}{\left(h_{s}-h_{k}\right)} & h_{k}<h<h_{s} \\ K_{s} & h \geq h_{s}\end{cases}$
respectively, where
$K_{r}=\frac{K_{k}}{K_{\mathrm{s}}}\left(\frac{\mathrm{S}}{\mathrm{S}_{\mathrm{k}}}\right)^{\lambda}\left[\frac{\mathrm{F}\left(\theta_{\mathrm{r}}\right)-\mathrm{F}(\theta)}{\mathrm{F}\left(\theta_{\mathrm{r}}\right)-\mathrm{F}\left(\theta_{\mathrm{k}}\right)}\right]^{2}$
$F(\theta)=\left[1-\left(\frac{\theta-\theta_{a}}{\theta_{m}-\theta_{a}}\right)^{1 / m}\right]^{m}$
$\mathrm{m}=1-\frac{1}{\mathrm{n}}, \mathrm{n}>1$
$\mathrm{S}=\frac{\theta-\theta_{\mathrm{r}}}{\theta_{\mathrm{s}}-\theta_{\mathrm{r}}}$
$\mathrm{S}_{\mathrm{k}}=\frac{\theta_{\mathrm{k}}-\theta_{\mathrm{r}}}{\theta_{\mathrm{s}}-\theta_{\mathrm{r}}}$
in which
θ_{r} residual water content
$\theta_{s} \quad$ water content at saturation $L^{3} \mathrm{~L}^{-3}$
$\theta_{\mathrm{a}} \quad$ (extrapolated) fictitious $\theta_{\mathrm{r}}: \theta_{\mathrm{a}} \leq \theta_{\mathrm{r}} \quad \mathrm{L}^{3} \mathrm{~L}^{-3}$
$\theta_{\mathrm{s}} \quad$ (extrapolated) fictitious $\theta_{\mathrm{s}}: \theta_{\mathrm{m}} \geq \theta_{\mathrm{s}}$ $L^{3} L^{-3}$
h pressure head L
$\mathrm{h}_{\mathrm{s}} \quad$ air-entry value
$h_{k} \quad$ pressure head above which $K(h)$ becomes linear
$\mathrm{K}_{\mathrm{s}} \quad$ hydraulic conductivity at saturation
$\mathrm{K}_{\mathrm{k}} \quad$ hydraulic conductivity at h_{k}
$\alpha \quad$ curve shape parameter
$\mathrm{n}, \mathrm{m}, \lambda$ curve shape parameters
 Hydraulic conductivity $\mathrm{K}\left(\mathrm{cm} \mathrm{d}^{1}\right)$

Absolute pressure head h (cm)
Figure 4-1. Schematic representation of the water retention characteristic $\theta(\mathrm{h})$ and the hydraulic conductivity characteristic $K(h)$ as given by E qs. (4-1) and (4-2), reepectively. The following parameters were used: $\theta_{\mathrm{a}}=\theta_{\mathrm{r}}=$ $0.1 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}, \theta_{\mathrm{s}}=0.45 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}, \alpha=0.05 \mathrm{~cm}^{-1}, \mathrm{n}=2.5, \mathrm{~m}=0.6, \mathrm{~K}_{\mathrm{s}}=50 \mathrm{~cm} \mathrm{~d}^{-1}, \lambda=0.5, \mathrm{~K}_{\mathrm{k}}=25 \mathrm{~cm} \mathrm{~d}^{-}$ ${ }^{1}, \mathrm{~h}_{\mathrm{k}}=-26 \mathrm{~cm}, \mathrm{~h}_{\mathrm{s}}=-10 \mathrm{~cm}, \theta_{\mathrm{m}}=0.486 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}$ (omputed from E q. (4-1) with $\theta=\theta_{\mathrm{s}}, \mathrm{h}=\mathrm{h}_{\mathrm{s}}$), and $\theta_{\mathrm{k}}=$ $0.303 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}$ (omputed from E q. (4-1) with $\mathrm{h}=\mathrm{h}_{\mathrm{k}}$).

So far, in FUSSIM2 the air-entry value is not considered, i.e. $\mathrm{h}_{\mathrm{s}}=0$. In that case we have $\theta_{\mathrm{a}}=\theta_{\mathrm{r}}$ and $\theta_{\mathrm{m}}=\theta_{\mathrm{s}^{\prime}}$ Eqs. (4-1)-(4-4) are then written as (note: $F\left(\theta_{\mathrm{r}}\right)=1$)
$\theta(h)= \begin{cases}\theta_{r}+\frac{\theta_{m}-\theta_{r}}{\left(1+|\alpha h|^{n}\right)^{n}} & h<0 \\ \theta_{s} & h \geq 0\end{cases}$
$K(h)= \begin{cases}K_{s} K_{r}(h) & h \leq h_{k} \\ K_{k}-\frac{\left(h-h_{k}\right)\left(K_{s}-K_{k}\right)}{h_{k}} & h_{k}<h<0 \\ K_{s} & h \geq 0\end{cases}$
$F(\theta)=\left[1-\left(\frac{\theta-\theta_{\mathrm{r}}}{\theta_{\mathrm{s}}-\theta_{\mathrm{r}}}\right)^{1 / \mathrm{m}}\right]^{\mathrm{m}}=\left[1-\mathrm{S}^{1 / \mathrm{m}}\right]^{\mathrm{m}}$
respectively. Now, Eq. (4-8) is no longer different from the expression already used in FUSSIM2. Only the description of K is different. In FUSSIM2 there are two functions that can compute K : one based on known $\theta(\mathrm{K}(\theta))$ and the other based on known $h(\mathrm{~K}(\mathrm{~h})$). The first is used for solving the water flow problem, and has the advantage of not being influenced by hysteresis, the second is used in solving the water uptake model (in which hysteresis is not considered). Equation (4-9) expresses K as a function of both θ and h. Since θ and h are related through Eq. (4-8) (disregarding hysteresis), it is possible the substitute either h or θ in Eq. (4-9) to obtain $K(\theta)$ and $K(h)$, respectively. The $K(\theta)$ relationship reads

$$
K(\theta)= \begin{cases}K_{k}\left(\frac{\mathrm{~S}}{\mathrm{~S}_{\mathrm{k}}}\right)^{\lambda}\left[\frac{1-\mathrm{F}(\theta)}{1-\mathrm{F}\left(\theta_{\mathrm{k}}\right)}\right]^{2} & \theta \leq \theta_{\mathrm{k}} \tag{4-12}\\ \mathrm{~K}_{\mathrm{k}}+\left(1-\frac{\mathrm{G}(\theta)}{\mathrm{G}\left(\theta_{\mathrm{k}}\right)}\right)\left(\mathrm{K}_{\mathrm{s}}-\mathrm{K}_{\mathrm{k}}\right) & \theta_{\mathrm{k}}<\theta<\theta_{\mathrm{s}} \\ \mathrm{~K}_{\mathrm{s}} & \theta=\theta_{\mathrm{s}}\end{cases}
$$

with

$$
\begin{align*}
& G(\theta)=-\frac{1}{\alpha}\left(S^{-1 / m}-1\right)^{1 / \mathrm{n}} \tag{4-13}\\
& G\left(\theta_{\mathrm{k}}\right)=-\frac{1}{\alpha}\left(\mathrm{~S}_{\mathrm{k}}^{-1 / \mathrm{m}}-1\right)^{1 / \mathrm{n}} \tag{4-14}
\end{align*}
$$

and the $K(h)$ relationship reads (after some algebraic rearrangement)
$K(h)= \begin{cases}K_{k} C_{k} \frac{\left(\left(1+|\alpha h|^{n}\right)^{m}-|\alpha h|^{n-1}\right)^{2}}{\left(1+|\alpha h|^{n}\right)^{m(\lambda+2)}} & h \leq h_{k} \\ K_{k}-\frac{\left(h-h_{k}\right)\left(K_{s}-K_{k}\right)}{h_{k}} & h_{k}<h<0 \\ K_{s} & h \geq 0\end{cases}$
where
$C_{k}=\frac{\left(1+\left|\alpha h_{k}\right|^{\mathrm{n}}\right)^{m(\lambda+2)}}{\left(\left(1+\left|\alpha h_{k}\right|^{\mathrm{n}}\right)^{\mathrm{m}}-\left|\alpha h_{\mathrm{k}}\right|^{\mathrm{n}-1}\right)^{2}}$

For the case where one does not want to consider a linear part in the K curve near saturation, we have (require) $K_{k}=K_{s}, h_{k}=0$ and $\theta_{k}=\theta_{\mathrm{s}}$. In that case Eqs. (4-12) and (4-15) reduce to (note: $S_{k}=1, F\left(\theta_{k}\right)=0, C_{k}=0$)
$K(\theta)= \begin{cases}K_{S} S^{\lambda}\left(1-\left(1-S^{1 / m}\right)^{m}\right)^{2} & \theta \leq \theta_{s} \\ K_{s} & \theta=\theta_{s}\end{cases}$
and
$K(h)= \begin{cases}K_{s} \frac{\left(\left(1+|\alpha h|^{n}\right)^{m}-|\alpha h|^{n-1}\right)^{2}}{\left(1+|\alpha h|^{n}\right)^{m(\lambda+2)}} & h \leq 0 \\ K_{s} & h \geq 0\end{cases}$
respectively. Equations (4-17) and (4-18) are the ones that were originally used in FUSSIM2 (Heinen and de Willigen, 1998; their Eqs. [184] and [187], respectively).

In Eqs. (4-13) and (4-14) the α-parameter appears. For hysteretic cases, the model FUSSIM2 assumes that for drying and wetting different α values have to be used. Fortunately, in Eq. (4-12) Eq. (4-13) is divided by Eq. (4-14), so that the α-parameter disappears.

4.3 Matric Flux potential

In the transpiration module of FUSSIM2 the matric flux potential is needed (see description of this module in Heinen and de Willigen, 1998). The matric flux potential represents the integral of the $\mathrm{K}(\mathrm{h})$ relationship and is given as

$$
\begin{equation*}
\phi=\int_{h_{L}}^{h_{H}} K(h) d h \tag{4-19}
\end{equation*}
$$

in which

ϕ	matric flux potential (<0)	$\mathrm{L}^{2} \mathrm{~T}^{-1}$
$\mathrm{~h}_{\mathrm{H}}$	higher integration limit	L
h_{L}	lower integration limit	L

In FUSSIM2 there is a subroutine (MFLP(D)) that computes ϕ. Here the absolute pressure head is used, denoted as P, with $P=-h$. Furthermore, we are only interested in the unsaturated zone, so that we have to consider only the first two expressions in the K (h) relationship (Eq. (4-15)). Combining Eqs. (4-19) and (4-15) thus yields
$\phi= \begin{cases}K_{k} C_{k} \int_{P_{L}}^{P_{H}}\left(\frac{\left(\left(1+(\alpha P)^{n}\right)^{m}-(\alpha P)^{n-1}\right)^{2}}{\left(1+(\alpha P)^{n}\right)^{m(\lambda+2)}}\right) d P & P \geq P_{k} \\ \int_{P_{L}}^{P_{H}}\left(K_{k}+\frac{\left(P_{k}-P\right)\left(K_{s}-K_{k}\right)}{P_{k}}\right) d P & 0<P<P_{k}\end{cases}$
For $\mathrm{P}_{\mathrm{k}}=0$ (no linear part in K curve) we require $\mathrm{K}_{\mathrm{k}}=\mathrm{K}_{\mathrm{s}}$ and $h_{k}=0$, in which case Eq. (4-20) reduces to
$\phi=K_{S} \int_{P_{L}}^{P_{H}}\left(\frac{\left(\left(1+(\alpha P)^{n}\right)^{m}-(\alpha P)^{n-1}\right)^{2}}{\left(1+(\alpha P)^{n}\right)^{m(\lambda+2)}}\right) d P$
Equation (4-21) is also obtained when the first term of Eq. (4-18) is substituted in Eq. (4-19).

We have to consider the following four cases (note: $\mathrm{P}_{\mathrm{L}}<\mathrm{P}_{\mathrm{H}}$).

1. Both P_{L} and P_{H} are less than P_{k} so that we have to consider the linear part of $K(h)$. The matric flux potential is given by the second term of Eq. (4-20) and is given as

$$
\begin{equation*}
\phi=\mathrm{K}_{\mathrm{s}}\left(\mathrm{P}_{\mathrm{H}}-\mathrm{P}_{\mathrm{L}}\right)-\frac{\left(\mathrm{K}_{\mathrm{s}}-\mathrm{K}_{\mathrm{k}}\right)}{2 \mathrm{P}_{\mathrm{k}}}\left(\mathrm{P}_{\mathrm{H}}^{2}-\mathrm{P}_{\mathrm{L}}^{2}\right) \tag{4-22}
\end{equation*}
$$

2. Both P_{L} and P_{H} are larger than P_{k} so that we have to consider the first term in Eq. (4-20). In FUSSIM2 the integral in Eq. (4-21) is solved numerically. We can still use this solution and multiply this result with $\mathrm{K}_{\mathrm{k}} \mathrm{C}_{\mathrm{k}}$ (instead of multiplying it with K_{s}).
3. When P_{L} is less than P_{k} and P_{H} is larger than P_{k}, the matric flux potential is the sum of both integrals in Eq. (4-20) with proper integral limits. For the linear part (between P_{L} and P_{k}) the result follows from Eq. (4-22) (substituting P_{H} by P_{k})

$$
\begin{equation*}
\phi=\mathrm{K}_{\mathrm{s}}\left(\mathrm{P}_{\mathrm{k}}-\mathrm{P}_{\mathrm{L}}\right)-\frac{\left(\mathrm{K}_{\mathrm{s}}-\mathrm{K}_{\mathrm{k}}\right)}{2 \mathrm{P}_{\mathrm{k}}}\left(\mathrm{P}_{\mathrm{k}}^{2}-\mathrm{P}_{\mathrm{L}}^{2}\right) \tag{4-23}
\end{equation*}
$$

4. When $P_{k}=0$, i.e. we do not consider a linear part in the K curve, the old solution as used in FUSSIM2, i.e. the solution of Eq. (4-21) remains valid.

4.4 Implementation in FU SSIM2

The functions COND, CONDD, CONDW and CONDWD have been changed so that they compute $\mathrm{K}(\mathrm{h})$ according to Eq. (4-15) (single precision in COND, double precision in CONDD) and $K(\theta)$ according to Eq. (4-12) (single precision in CONDW, double precision in CONDWD). These computations require additional parameters, i.e. K_{k} and θ_{k} or h_{k}. It was decided that the user should supply both K_{k} and θ_{k}, and when necessary h_{k} can be computed using the function PRES(D) (with the α-parameter for the drying curve). The common block / VGEN/ is extended with these two additional parameters. The routine GTSOIL is adapted such that the two new variables are read from the soils database file. The model TRANSP required some additional changes in order to take care for correct transfer of parameters to several internal subroutines or functions (through common blocks / FFP1/ and / FUNKH/ , and in argument lists of COMAS and ESTDPH).

After reading the parameters (using G TSOIL) it is checked whether K_{k} and θ_{k} have good values. In case $\theta_{\mathrm{k}}>\theta_{\mathrm{s}}$ or $\theta_{\mathrm{k}} \beta \theta_{\mathrm{r}}$ we set $\theta_{\mathrm{k}}=\theta_{\mathrm{s}}$ and $\mathrm{K}_{\mathrm{k}}=\mathrm{K}_{\mathrm{g}}$ in this way FUSSIM2 will not consider a linear part in the K curve. Similarly, In case $K_{k}>K_{s}$ or $\mathrm{K}_{\mathrm{k}} \beta 0$ we set $\mathrm{K}_{\mathrm{k}}=\mathrm{K}_{\mathrm{s}}$ and $\theta_{\mathrm{k}}=\theta_{\mathrm{s}}$. O ther checks are not possible. It is assumed that the user is well familiar with the extended van G enuchten-Mualem model, so that the user supplies realistic values for K_{k} and θ_{k}.

The functions MFLP (single precision) and MFLPD (double precision) have been changed according to Eqs. (4-20)-(4-23).

In FUSSIM2 evaporation reduction is computed using available data from an input file (typically with extension .EXT). This EXT-file is constructed with the program EXTMAKE. In this program the functions CONDWD, CONDD and MFLPD are used. EXTMAKE has been adapted such that proper argument lists in the calls to these functions are used.

A simple program is made to transform the old SOILS.DB file into a new SOILS.D B in which the two variables K_{k} and θ_{k} are added. The values for these two variables are $K_{k}=K_{s}$ and $\theta_{\mathrm{k}}=\theta_{\mathrm{s}}$. The name of this program is CHANGEDB.

4.5 References

De Vos J. A., 1997. Water flow and nutrient transport in a layered silt loam soil. Ph.D. Thesis, Wageningen Agricultural University, The Netherlands, 287 p.
Heinen M., 1997. Dynamics of water and nutrients in closed, recirculating cropping systems. With special attention to lettuce grown in irrigated sand beds. Ph.D. Thesis, Wageningen Agricultural University, The Netherlands, 270 p.
Heinen M. and P. de Willigen, 1998. FUSSIM2 A two-dimensional simulation model for water flow, solute transport and root water and root nutrient uptake in
unsaturated and partly unsaturated porous media. Quantitative Approaches in Systems Analysis No. 20, DLO Research Institute for Agrobiology and Soil Fertility and the C.T. de Wit Graduate School for Production Ecology, Wageningen, The Netherlands, 140 p .
Mualem Y., 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research 12: 513-522.
Otten W., 1994. Dynamics of water and nutrients for potted plants induced by flooded bench fertigation: experiments and simulation. Ph.D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands, 115 p.
Simunek J., T. Vogel and M. Th. van Genuchten, 1994. The SWMS_2D code for simulating water flow and solute transport in two-dimensional variably saturated media. U. S. Salinity Lab., Agric. Res. Serv., U.S. D ept. Agric., Riverside, California, 197 p .
van Genuchten M. Th., 1980. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44: 982-989.
Vogel T. and M. Cislerova, 1988. On the reliability of unsaturated hydraulic conductivity calculated from the moisture retention curve. Transport in Porous Media 1: 1-15.

5 From potential to actual evaporation of water at the soil surface

Marius Heinen and Peter de Willigen

5.1 Introduction

Water vapor deficit in the atmosphere induces an evaporative demand from the soil and the crop. There are several methods to compute the potential evapotranspiration $E T_{p}\left(\mathrm{LT}^{-1}\right)$ demand, e.g. the Penman-Monteith equation. There are also ways to divide $E T_{p}$ into potential transpiration by the crop $T_{p}\left(\mathrm{LT}^{-1}\right)$ and potential evaporation of water from the soil surface $\mathrm{E}_{\mathrm{p}}\left(\mathrm{LT}^{-1}\right)$, e.g. via the leaf area index. Evaporation of water at the soil surface occurs through water transport across the soil-atmosphere interface and through the vapor phase. Considering evaporation at the soil surface would mean to consider vapor transport as well in a simulation model, such as FUSSIM2 (Heinen and de Willigen, 1998). In this chapter we have chosen to adopt an empirical approach to consider evaporation at the soil surface using data from the literature. This chapter describes the implementation of this method in FUSSIM2.

It is assumed that E_{p} is known at each time (see above). Based on the soil condition near the surface it is checked if E_{p} can be reached, or if not, what the actual evaporation of water at the soil surface E_{a} is. Van K eulen (1975) and van K eulen and Seligman (1987) presented an empirical relationship between the ratio $\mathrm{E}_{\mathrm{a}} / \mathrm{E}_{\mathrm{p}}$ and the pressure head near the soil surface $\mathrm{h}_{0}(\mathrm{~L})$, i.c. at $\mathrm{z}_{0}=1 \mathrm{~cm}$ below the soil surface (Figure 5-1). This relationship was obtained from their simulation model, in which they used a 2 cm thick top layer. In general, in FUSSIM2 the node of the first layer lies at the soil surface, i.e. $z=0 \mathrm{~cm}$. The node of the second layer lies in the middle of the second layer. Since the thickness of the layers may be variable, we do not know the pressure head at 1 cm depth. Next we will explain how h_{0} is obtained. The only restriction is that the node of the second layer lies deeper than 1 cm . Furthermore, we assume only vertical movement of water near the surface.

Figure 5-1. The redationship $\mathrm{E}_{\mathrm{a}} / \mathrm{E}_{\mathrm{p}}\left(\mathrm{h}_{0}\right)$ acoording to van Keulen (1975) and van Keulen and Seigman (1987).
In general the simulation model knows the pressure head at some depth $z_{1}\left(z_{1}>z_{0}\right)$ close to the soil surface, denoted by h_{1}. When the soil dries out, there is no linear drop in h near the surface, due to the highly non-linear hydraulic properties of the soil. We make use of a steady state approach. At steady state there is a constant flux density between z_{1} and z_{0} which equals the evaporation $\mathrm{E}(<0)$. According to Darcy's law we have
$E=-K \frac{\partial h}{\partial z}+K$
where
$\begin{array}{llr}\text { E } & \text { evaporation rate } & \mathrm{LT}^{-1} \\ \text { K } & \text { hydraulic conductivity (being a function of h) } & \mathrm{LT}^{-1} \\ \text { h } & \text { pressure head } & \mathrm{L} \\ \text { Z } & \text { vertical coordinate } & \mathrm{L}\end{array}$
Since h is only dependent on z and no longer on time, we may replace the partial derivatives in Eq. (5-1) by normal derivatives to yield

$$
\begin{equation*}
\frac{\mathrm{K}}{\mathrm{~K}-\mathrm{E}} \frac{\mathrm{dh}}{\mathrm{dz}}=1 \tag{5-2}
\end{equation*}
$$

Integrating Eq. (5-2) from $z=z_{1}, h=h_{1}$ to $z=z_{0}, h=h_{0}$ gives
$\int_{h_{1}}^{h_{0}} \frac{K}{K-E} d h=\int_{z_{1}}^{z_{0}} 1 d h=Z_{0}-Z_{1}$
For a known $\mathrm{K}(\mathrm{h})$ relationship the left hand side of Eq. (5-3) can be computed to give the steady state solution $z(h)$. For known z_{0}, z_{1} and h_{1}, the unknown h_{0} can then be computed. In FUSSIM2 the $\mathrm{K}(\mathrm{h})$ relationship of Mualem (1976) is used (see chapter 4). Since we do not know the integral of this relationship, Eq. (5-3) cannot be solved analytically. It is estimated by using the Romberg integration method (Press et al., 1992). Since E is a function of h_{0} (Figure 5-1), the solution of Eq. (5-3) is obtained iteratively. For K we use $\mathrm{K}\left(\mathrm{h}_{0}\right)$. The solution procedure is described in the Appendix at the end of this chapter.

The integration routine takes much computational time, especially when the soil becomes drier. For this reason, and the fact that this procedure is an empirical one, we have decided not to implement the computation in the simulation model FUSSIM2 during the dynamic session of the computations. Instead, we make use of pre-made two-way tables during initialization. For a given soil type and a given position z_{1}, a table file is constructed during initialization. For several values of E_{p} and several values of h_{1} the values of h_{0} are computed. The program FUSSIM2 then searches in this table the four entries of this two-way table (the two nearest E_{p} and the two nearest h_{1} values), and the estimate for h_{0} is obtained through linear interpolation. The corresponding required E_{a} then simply follows from Figure 5-1.

5.2 Example

As an illustration of evaporation reduction we give an example of a clay soil column that is exposed to an evaporative demand E_{p} of $1 \mathrm{~cm} / \mathrm{d}$. Initially, h inside the 50 cm long column is in equilibrium with h at the bottom equal to -1000 cm . Already after the first day we see that the actual evaporation is smaller than the potential evaporation, and this difference increases in time (Figure 5-2). The corresponding changes in water content profile are given in Figure 5-3.

Figure 5-2. Cumulative potential evaporation and simulated cumulative actual evaporation at the soil surface.

Figure 5-3. Simulated volumerric water ontent - depth profiles at several times during evaporation.

5.3 References

Heinen, M., and P. de Willigen. 1998. FUSSIM2 A two-dimensional simulation model for water flow, solute transport and root uptake of water and nutrients in partly unsaturated porous media, Quantitative Approaches in Systems Analysis No. 20, DLO Research Institute for Agrobiology and Soil Fertility and the C.T. de Wit G raduate School for Production Ecology, Wageningen, The Netherlands, 140 p.

Mualem Y., 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research 12: 513-522.
Press W.H., B.P. Flannery, S.A. Teukolsky and W.T. Vetterling, 1992. Numerical Recipes in Fortran 77. Second edition. The art of scientific computing. Cambridge University Press, Cambridge.
van Keulen H., 1975. Simulation of water use and herbage growth in arid regions. Pudoc, Wageningen, 176 p.
van Keulen H. and N.G. Seligman, 1987. Simulation of water use, nitrogen nutrition and growth of a spring wheat crop. Pudoc, Wageningen, 310 p.

5.4 Appendix

Step 1
Find two estimates for h_{0}, one for which the left hand side (LHS) of Eq. (5-3) is larger than $\mathrm{z}_{0}-\mathrm{z}_{1}$ and one for which the LHS is smaller than $\mathrm{z}_{0}-\mathrm{z}_{1}$.

Step 1.1
The initial estimate for h_{0} comes from Eq. (5-2) by assuming $d h=h_{0}-h_{1}$ and $d z=z_{0}-z_{1}$

$$
\begin{equation*}
\mathrm{h}_{0}=\mathrm{h}_{1}+\frac{\mathrm{K}-\mathrm{E}}{\mathrm{~K}}\left(\mathrm{z}_{0}-\mathrm{z}_{1}\right) \tag{5-5}
\end{equation*}
$$

Step 1.2

The estimate of h_{0} obtained in step 1.1 is either to high or too low. Using a bracketing method (Press et al., 1992) a second estimate of h_{0} is obtained which is too low or too high, respectively.

Step 2
In the interval of the two estimates of h_{0} as obtained in Step 1 , the true value of h_{0} is found by means of the method of false position (Press et al., 1992).

In all steps and computations E is adapted based on the current estimate of h_{0} according to Figure 5-1. The data points in Figure 5-1 are stored in a table, and for intermediate values of h_{0} the reduction value is obtained through linear interpolation.

6 Infiltration and runoff of water at the soil surface

Marius Heinen and Peter de Willigen

6.1 Introduction

Infiltration of water at the soil surface is generally modeled as a flux density boundary condition in simulation models. However, such flux boundary conditions may be ill-posed. That is, it may be possible that the physically maximum possible infiltration rate, as determined by the soil physical status at the soil surface, is less than the rainfall or irrigation rate. In that case, only the maximum possible rate will be achieved, and the water that does not enter the soil is left behind, known as ponding. On sloping surfaces, this ponded water will move down slope (overland flow). When (part) of this amount leaves the surface of interest it is called runoff. Here we describe the treatment of water infiltration, ponding, overland flow and runoff as implemented in FUSSIM2.

6.2 Overland flow and maximum infiltration rate

We start with describing the process of overland flow, which will give us an equation to describe runoff on sloping soil surfaces. For the case of non-sloping surfaces, this equation relates to ponding. We have chosen the approach of Hillel and Hornberger (1979) and Hillel (1980).

The basic equation governing the rate of flow in a channel, here applied to overland flow, is given as

$$
\begin{equation*}
\mathrm{Q}=\mathrm{VA} \tag{6-1}
\end{equation*}
$$

where Q is the flow rate, V is the average velocity, and A is the cross-sectional area of flow. The governing conservation of matter (continuity) equation requires that the change of water level y with time t is equal to the negative change of flow rate with distance x corrected for the net change due to rainfall r and infiltration I

$$
\begin{equation*}
\frac{\partial y}{\partial t}+\frac{\partial Q}{\partial x}=r-i \tag{6-2}
\end{equation*}
$$

Considering forces and shear stresses acting on the flowing water along the sloping face it can be determined that V is related to y and the slope α according to
$\mathrm{V}=\mathrm{Cy}^{1 / 2} \alpha^{1 / 2}$
where C is known as the Chezy coefficient. Experimentally it has been observed that C is not constant, but depends on y and the surface roughness n as follows

$$
\begin{equation*}
C=\frac{y^{1 / 6}}{n} \tag{6-4}
\end{equation*}
$$

Combining Eqs. (6-3) and (6-4) yields the Manning's equation
$V=\frac{y^{2 / 3} \alpha^{1 / 2}}{n}$
Multiplying by y gives the discharge per unit width
$Q=\frac{\mathrm{y}^{5 / 3} \alpha^{1 / 2}}{\mathrm{n}} \approx \frac{\mathrm{y}^{2} \alpha^{1 / 2}}{\mathrm{n}}$
In practice, the power 2 in Eq. (6-6), rather than the power 5/ 3, gave satisfactorily results for overland flow, which will be adopted here as well. The surface roughness n has been tabulated in the literature (e.g. Sellin, 1969). It ranges between 0.001 for extremely smooth channels to 0.1 for flood plains with a growth of heavy timber. For bare soil surfaces or soil surfaces with a cover of short grass, a value of $n=0.03$ seems to be reasonable.

Combining Eqs. (6-2) and (6-6) yields the following kinematic wave equation

$$
\begin{equation*}
\frac{\partial y}{\partial t}+\beta y^{m-1} \frac{\partial y}{\partial x}=r-i \tag{6-7}
\end{equation*}
$$

where $\beta=\alpha^{1 / 2} / n$, and $m=2$ for the last term in Eq. (6-6). Equation (6-7) is solved explicitly as follows (for uniform β)

$$
\begin{equation*}
\mathrm{y}^{\mathrm{t}+\Delta \mathrm{t}}=\mathrm{y}^{\mathrm{t}}-\left\{\beta \mathrm{y}^{\mathrm{t}} \frac{\mathrm{y}_{\text {right }}^{\mathrm{t}}-\mathrm{y}_{\text {let }}^{\mathrm{t}}}{\mathrm{x}_{\text {right }}-\mathrm{x}_{\text {let }}}-(\mathrm{r}-\mathrm{i})\right\} \Delta \mathrm{t} \tag{6-8}
\end{equation*}
$$

where subscripts left and right refer to the respective neighbor nodes of the node under consideration, and x is the horizontal position of the node.

Thus far, we have not considered the maximum possible infiltration rate. The maximum infiltration rate I_{m} follows simply from Darcy's law. Consider the CV method used in FUSSIM2. The node nearest to the soil surface is denoted by subscript 1 , and the node below it is denoted by subscript 2 . The pressure head h_{1} at z_{1} is the current value of the pressure head when there is no ponding, or is equal to the ponding height y when there is ponding. I_{m} follows from
$I_{m}=-K \frac{h_{2}-h_{1}}{Z_{2}-Z_{1}}+K$
For K we take the geometric average of $K\left(h_{1}\right)$ and $K_{\text {s }}$.
It now comes to decide what the true boundary condition will be at the soil surface. If the rainfall rate minus the actual evaporation rate (denoted as r) is larger than I_{m}, then $\mathrm{i}=\mathrm{I}_{\mathrm{m}}$. However, according to van Dam et al. (1997) r equals I_{m} only when the following two restrictions are met: $\mathrm{r}>\mathrm{I}_{\mathrm{m}}$ AND $\mathrm{r}>\mathrm{K}_{\mathrm{s}}$, where K_{s} is the hydraulic conductivity at saturation of the soil at the surface. If not both restrictions are met, i $=r$. This extended criterion is used here as well
if $r>I_{m}$ and $r>K_{s}$ then $\mathrm{i}=\mathrm{I}_{\mathrm{m}}$
else

$$
\begin{equation*}
\mathrm{i}=\mathrm{r} \tag{6-10}
\end{equation*}
$$

Now all parameters appearing in Eq. (6-8) are known.
For the case $\beta=0$ (no slope) or $y^{\dagger}=0$ (no ponding) (or no x-gradient in y) Eq. (6-8) reduces to

$$
\begin{equation*}
\mathrm{y}^{\mathrm{t}+\Delta \mathrm{t}}=\mathrm{y}^{\mathrm{t}}+(\mathrm{r}-\mathrm{i}) \Delta \mathrm{t} \tag{6-11}
\end{equation*}
$$

Then y increases when $r>i$. In that case, since i is always smaller than or equal to r, Eq. (6-11) does not result in lowering of y. From Eq. (6-8) it may result that y lowers due to overland flow, but not due to net infiltration. We will treat lowering of y due to infiltration as follows.

When ponding occurs, i.e. y >0, the type of boundary condition at the soil surface is no longer flux determined, but it will be pressure head determined. Thus a change of boundary type condition must occur (from Dirichlet to Neumann). The prescribed pressure head will be equal to the height of the ponded water layer, i.e. $\mathrm{h}_{\Gamma}=\mathrm{y}$. After solving the flow problem inside the soil, a new h distribution is obtained. Then the resulting flux density across the soil surface q_{20}, providing the prescribed pressure head condition, can be computed. However, q_{20} is a-priori unknown. We applied the following strategy. When in Eq. (6-10) the second rule holds, we added a new restriction: if $\mathrm{Y}>0$ AND $\mathrm{r}<\mathrm{I}_{\mathrm{m}}$, then $\mathrm{i}=\mathrm{I}_{\mathrm{m}}$. It appeared in a test case, that for not too small values of Y indeed $i=q_{z 0}$. Thus Eq. (6-10) is now written as

```
if \(r>I_{m}\) and \(r>K_{s}\) then
    \(\mathrm{i}=\mathrm{I}_{\mathrm{m}}\)
else
        if \(\mathrm{y}>0\) and \(\mathrm{r}<\mathrm{I}_{\mathrm{m}}\) then
            \(\mathrm{i}=\mathrm{I}_{\mathrm{m}}\)
        else
            \(i=r\)
```

Now it is possible that r < i (middle condition in Eq. (6-12)), so that according to Eq. (6-11) y reduces.

To prevent to large ponding heights under non-sloping conditions (but also under sloping conditions) a maximum ponding height y_{m} is introduced. Whenever y becomes larger than y_{m}, y is set to y_{m}, and the remaining amount of water is considered as (immediate) runoff. D uring computations, however, y can be larger than y_{m}.

Of course, y can not become negative, it can only become zero at the time when ponding disappears.

6.3 Implementation in FUSSIM2

Prior to the start of the iterations in FUSSIM2 to obtain new estimates for h at time $(t+\Delta t)$ the y distribution is computed using the old values for h, i.e. h^{t}. When $h^{t+\Delta t}$ is obtained, the y distribution is computed now using the newest h values. If y has changed, the top boundary condition is changed and new values for h are computed. This iterative process continues until y is constant. Convergence in y is reached whenever the condition

$$
\begin{equation*}
\frac{y_{1}-y}{y+100}<\varepsilon_{y} \tag{6-13}
\end{equation*}
$$

is reached (in analogy with convergence criteria used elsewhere in FUSSIM2, Heinen and de Willigen, 1998), where y_{l} is the previous value of y and ε_{y} is some small number, i.c. $\varepsilon_{y}=10^{-4}$.

6.4 Examples

6.4.1 Case 1

Ponding in a one-dimensional case (surface area $30 \mathrm{~cm}^{2}$) was simulated for 4 days, with rainfall rates of $1,2,20$, and $0 \mathrm{~cm} / \mathrm{d}$, respectively. No evapotranspiration was
considered. The profile depth was 100 cm , with h initially in equilibrium with $\mathrm{h}=0$ cm at the bottom. At the bottom h was kept at zero (constant ground water level at z $=100 \mathrm{~cm}$). In Figure 6-1 the cumulative amounts of rain, actual infiltration (Q top) and runoff are given. Ponding started at $t=1.007 \mathrm{~d}$ (lines of rain and Qtop start to deviate) and ended at $t=3.884 \mathrm{~d}$ (line for Q top becomes horizontal). Runoff occurred during the third day, when excessive rainfall occurred. The time course of change of y is shown in Figure 6-2. In this case the maximum ponding height was y_{m} $=1 \mathrm{~cm}$.

Figure 6-1. Cumulative rain, simulated cumulative runoff and simulated cumulative sum of net entry into the soil (Q top) and runoff for a onedimensional situation.

Figure 6-2. Simulated ponding height y as a function of time for the one dimensional situation.

6.4.2 Case 2

In a second case a sloping surface is considered (two-dimensional case). A soil profile of width 100 cm is at $\mathrm{x}=0 \mathrm{~cm} 67.5 \mathrm{~cm}$ thick, and at the right ($80<\mathrm{x}<100 \mathrm{~cm}$) it is 100 cm thick. The slope α from $\mathrm{x}=0 \mathrm{~cm}$ to $\mathrm{x}=80 \mathrm{~cm}$ is $0.5 \mathrm{~cm} / \mathrm{cm}$, and the surface roughness $n=0.03$. Simulation was carried out for 4 days with the same rainfall rates and initial and bottom conditions as used in case 1. In Figure 6-3 the cumulative amounts of rain, actual infiltration (Q top) and runoff are given. Ponding started at $t=1.0 \mathrm{~d}$ (lines of rain and Q top start to deviate) and ended at $\mathrm{t}=4.0 \mathrm{~d}$ (line for Qtop becomes horizontal). Runoff occurred during the third day, when excessive rainfall occurred. The time course of change of y for several positions x is shown in Figure 6-4. In this case the maximum ponding height was $y_{m}=1 \mathrm{~cm}$. There are only small differences in y at the different positions x.

Figure 6-3. Cumulative rain, simulated cumulative runoff and simulated cumulative sum of net entry into the soil (Q top) and runoff for a two-dimensional sloping situation.

Figure 6-4. Simulated ponding height y as a function of time at four horiz ontal positions x for the two-dimensional sloping situation.

6.5 References

Heinen, M., and P. de Willigen. 1998. FUSSIM2 A two-dimensional simulation model for water flow, solute transport and root uptake of water and nutrients in partly unsaturated porous media, Quantitative Approaches in Systems Analysis No. 20, DLO Research Institute for Agrobiology and Soil Fertility and the C.T. de Wit G raduate School for Production Ecology, Wageningen, The Netherlands, 140 p.

Hillel D., 1980. Applications of soil physics. Academic Press, New York, 385 p.
Hillel D. and G.M. Hornberger, 1979. Physical model of the hydrology of sloping heterogeneous fields. Soil Sci. Soc. Am. J. 43: 434-439.
Sellin R.H.J., 1969, Flow in channels. MacMillan and Co., New York (referenced by Hillel, 1980).
van D am J.C., J. Huygen, J.G. Wesseling, R.A. Feddes, P. Kabat, P.E.V. van Walsum, P. Groenendijk and C.A. van Diepen, 1997. Theory of Swap version 2.0. Simulation of water flow, solute transport and plant growth in the Soil-Water-Atmosphere-Plant environment Technical Document 45, SC-DLO, and Report 71, D epartment Water Resources, WAU, Wageningen, 167 p.

7 Drain according to the Vimoke concept in FUSSIM2

Marius Heinen, Falentijn Assinck, Bram de Vos

7.1 Introduction

Boundary condition have a large impact on water flow in soils. Drain tubes represent a special boundary. In literature several approaches are described to incorporate a drain in simulation models for water flow (e.g. Fipps et al., 1986). In this document we describe how a drain is incorporated in the simulation model FUSSIM2 (Heinen and de Willigen, 1998). We have chosen for the Vimoke concept (Vimoke and Taylor, 1962; Vimoke et al., 1963), which is used in other simulation models as well (e.g. Simunek et al., 1994; Nieber and Feddes, 1999).

This chapter describes how the Vimoke concept is incorporated in the FUSSIM2 simulation model of Heinen and de Willigen (1998). This chapter is not meant to discuss and describe alternatives for representing drains as a boundary (see e.g. Fipps et al., 1986). It also does not discuss all features of the Vimoke concept. This chapter also does not describe the actual concepts of the radial flow towards the drain, and the implications how this should be incorporated in the drain boundary condition.

7.2 Theory

Several decades ago, when computer simulation models were not yet used for studies of water movement in soils, electrical analog experiments were carried out instead. Vimoke and Taylor (1962) and Vimoke et al. (1963) reasoned that drains could be represented by nodal points in a regular finite element mesh (in FUSSIM2 the control volume CV), provided that adjustments are made for the hydraulic conductivity $\mathrm{K}\left(\mathrm{LT}^{-1}\right)$ of the neighboring elements. The adjustments should correspond to changes in the electrical resistance of the conducting paper, surrounding the drain node, according to

$$
\begin{equation*}
\mathrm{K}_{\text {drain }}=\mathrm{KC}_{\mathrm{d}} \tag{7-1}
\end{equation*}
$$

where
$\mathrm{K}_{\text {drain }} \quad$ the adapted hydraulic conductivity
C_{d} the Vimoke correction factor
The Vimoke correction factor C_{d} depends on the ratio of the effective radius $r(L)$ of the drain and the side length $D(L)$ of the CV surrounding the drain node, according to

$$
\begin{equation*}
C_{d}=\frac{Z_{0}^{\prime}}{Z_{0}}=\frac{\sqrt{\mu_{0} / \varepsilon_{0}}}{138 \log _{10} \rho_{d}+6.48-2.34 a-0.48 b-0.12 c} \tag{7-2}
\end{equation*}
$$

where
$\mathrm{Z}_{0}{ }^{\prime} \quad$ the characteristic impedance of vacuum
$\approx 376.7 \mathrm{Ohm}$
$\mu_{0} \quad$ the permeability of vacuum
$1.256610^{-6} \mathrm{H} \mathrm{m}^{-1}$
$\varepsilon_{0} \quad$ the permittivity of vacuum
$\mathrm{Z}_{0} \quad$ the characteristic impedance of a transmission line analog of the drain

Ohm
The coefficients in Eq. (7-2) are given by

$$
\begin{gather*}
\rho_{d}=\frac{D}{r} \tag{7-3}\\
a=\frac{1+0.405 \rho_{d}^{-4}}{1-0.405 \rho_{d}^{-4}} \tag{7-4}\\
b=\frac{1+0.163 \rho_{d}^{-8}}{1-0.163 \rho_{d}^{-8}} \tag{7-5}\\
c=\frac{1+0.067 \rho_{d}^{-12}}{1-0.067 \rho_{d}^{-12}} \tag{7-6}
\end{gather*}
$$

Real drain tubes have a limited amount of openings through which water can enter the drain. Therefore, r will be smaller than the actual drain radius. We assume that a drain is present in a single square $C V$ with side length D, i.e. $r<D$ and $\rho_{d}>1$. Figure $7-1$ shows the relationships between C_{d}, a, b, and c versus ρ_{d} for $\rho_{d} \in[1,10]$. It is obvious that C_{d} for a large range of ρ_{d} is larger than 1 , which means that $K_{\text {drain }}>K . C_{d}$ becomes less than 1 for $\rho_{d} \geq 506.1$.

Figure 7-1. $\mathrm{C}_{\mathrm{d}}, \mathrm{a}, \mathrm{b}$ and cas a fundion of ρ_{d} acoording to E qs. (7-2)-(7-6).
In the drainage literature the effective drain radius concept is discussed. There are ways to calculater from the number and size of the small openings in the drain tube (Mohammad and Skaggs, 1983). It is to the user of FUSSIM2 to decide how to interpret r. It can be seen as a calibration parameter or computed according to theories. Its value may be as small as a few millimeters (J. A. de Vos, pers. comm.). Others determine the effective drain radius from the entrance resistance of drains (see e.g. Dierckx, 1999).

Simunek et al. (1994) reported from the literature and their own experience that an additional correction on C_{d} is required, according to
$C_{d}=\frac{C_{d}}{C F}$
They suggest CF to be 2 to 4 . Comparing numerical results to an analytical solution of Kirkham (1949), Simunek et al. (1994) concluded that CF $=4$. In that case C_{d} becomes less than 1 for $\rho_{d} \geq 4.5379$. Below in section 7.5 our own experience with the factor CF is discussed.

It should be noted that single CV representation of the Vimoke concept has not been studied extensively. We like to quote Simunek et al. (1994; p. 30): "... further studies of the single grid point representation of a subsurface drain may be needed, especially for transient variably-saturated flow conditions."

The boundary condition itself is treated comparable to a seepage face. If the drain is empty (i.e. drain outlet above ditch water level), water can only flow into the drain when the soil surrounding the drain is saturated, otherwise the drain is a no-flow
boundary. In the latter case the soil surrounding the drain just acts as normal soil (with adjusted K). In case the drain is full (drain outlet below ditch water level), flow into drain can only occur when the pressure head of the CV representing the drain is larger than the ditch water level, otherwise subsurface infiltration will occur.

If at the beginning of a new time step there is net flow into the CV representing the drain, and the drain outlet is above ditch water level, the condition $\mathrm{h}=0$ is set for this CV , and the drain is running. In case the drain outlet is below the ditch water level, the condition $h=h_{\text {drain }}$ is set for this CV, with $h_{\text {drain }}$ being the ditch water level above the drain outlet. At the end of the time step, the flow into (or out of) the drain is computed as the net inflow into the CV representing the drain with h of that CV as set as described above.

7.3 Implementation in FUSSIM2

A separate subroutine is written which deals with the representation of a drain as a Vimoke boundary condition. It consists of the following important sections.

7.3.1 Initialize

Read number of Vimoke drains (if zero, all other sections in this subroutine will not be effective; currently maximum 1 drain can be used), read the coordinates of each drain (column and row numbers), read C_{d} correction factor (-), read effective drain radius $\mathrm{r}(\mathrm{cm})$, and read time table of ditch water levels above drain outlet or drain depth.

Check if the CV representing the drain is a square (if CV is not at the boundary), or half a square (if CV is at the boundary but not at the corner), or a quarter of a square (if CV is at the corner). Compute $\mathrm{Z}_{0}, \mathrm{a}, \mathrm{b}, \mathrm{c}$ and ρ_{d}. Since the boundary condition is implemented in FUSSIM2 through the existing IINTRN, ITOP, IBOTTOM, ILEFT, IRIG HT variables, the initial values of IINTRN, ITOP, IBOTTOM, ILEFT, IRIG HT are stored, so that these can be used in case the drain is not flowing. For the time being, when the Vimoke drain is on the boundary of the flow domain, it is required that the boundary condition of this CV must be a no-flow boundary.

7.3.2 Compute

Compute $\mathrm{K}_{\text {drain }}$ (Eqs. (7-1)-(7-2)), compute current net flow into CV, and determine what value h must have. Finally, set IINTRN, ITOP, IBOTTOM, ILEFT, IRIG HT.

In case the Vimoke drain is located at the boundary, the net flux into (or out of) the drain is used as the flow across that boundary (see subroutine FLUXES). As the flux
densities are computed well, the current mass balance computations remain the same.

7.4 Verification against steady-state saturated Kirkham solution

Kirkham (1949) gave an analytical solution for water flow during ponding into equally spaced drain tubes in soil overlying an impervious layer (Figure 7-2). The pressure head $\mathrm{h}(\mathrm{cm})$ at any position (x, z) can be computed from (note that Kirkham gave expressions for the total head H)

$$
\begin{equation*}
h(x, z)=t+d+q G(x, z)-z \tag{7-8}
\end{equation*}
$$

where q is a flux coefficient (cm) given by
$q=-\frac{(t+d-r)}{F}$
and the functions $G(x, z)$ and F are given by

$$
\begin{align*}
& G(x, z)=\sum_{m=-\infty}^{\infty} \ln \left[\left(\frac{\cosh \left(\frac{\pi(x-m a)}{2 h}\right)-\cos \left(\frac{\pi z}{2 h}\right)}{\cosh \left(\frac{\pi(x-m a)}{2 h}\right)+\cos \left(\frac{\pi z}{2 h}\right)}\right)\right. \tag{7-10}\\
&\left.\left(\frac{\cosh \left(\frac{\pi(x-m a)}{2 h}\right)+\cos \left(\frac{\pi(\mathrm{z}-2 \mathrm{~d})}{2 \mathrm{~h}}\right)}{\cosh \left(\frac{\pi(\mathrm{x}-\mathrm{ma})}{2 \mathrm{~h}}\right)-\cos \left(\frac{\pi(\mathrm{z}-2 \mathrm{~d})}{2 \mathrm{~h}}\right)}\right)\right]
\end{align*}
$$

and

$$
\begin{align*}
& F=\sum_{m=-\infty}^{\infty} \ln \left[\left(\frac{\cosh \left(\frac{\pi m a}{2 h}\right)-\cos \left(\frac{\pi r}{2 h}\right)}{\cosh \left(\frac{\pi m a}{2 h}\right)+\cos \left(\frac{\pi r}{2 h}\right)}\right)\left(\frac{\cosh \left(\frac{\pi m a}{2 h}\right)+\cos \left(\frac{\pi(2 d-r)}{2 h}\right)}{\cosh \left(\frac{\pi m a}{2 h}\right)-\cos \left(\frac{\pi(2 d-r)}{2 h}\right)}\right)\right] \\
& =-2 \ln \left(\frac{\tan \left(\frac{\pi(2 d-r)}{4 h}\right)}{\tan \left(\frac{\pi r}{4 h}\right)}\right)+ \tag{7-11}\\
& -2 \sum_{m=1}^{\infty} \ln \left[\left(\frac{\cosh \left(\frac{\pi m a}{2 h}\right)+\cos \left(\frac{\pi r}{2 h}\right)}{\cosh \left(\frac{\pi m a}{2 h}\right)-\cos \left(\frac{\pi r}{2 h}\right)}\right)\left(\frac{\cosh \left(\frac{\pi m a}{2 h}\right)-\cos \left(\frac{\pi(2 d-r)}{2 h}\right)}{\cosh \left(\frac{\pi m a}{2 h}\right)+\cos \left(\frac{\pi(2 d-r)}{2 h}\right)}\right)\right]
\end{align*}
$$

respectively. The parameters $\mathrm{a}, \mathrm{d}, \mathrm{h}, \mathrm{r}, \mathrm{t}, \mathrm{x}$ and z (all in cm) appearing in Eqs. (7-8)-(711) are explained in Figure 7-2. The origin of the (x, z) coordinate system is located at the center of the drain, with x positive to the right, and z positive upwards (Figure 72). The drainage outflow rate Q (cm^{3} water per cm length of the drain per day) is obtained from

$$
\begin{equation*}
\mathrm{Q}=4 \pi \mathrm{q} \mathrm{~K}_{\mathrm{s}} \tag{7-12}
\end{equation*}
$$

where
$\mathrm{K}_{\mathrm{s}} \quad$ the hydraulic conductivity at saturation $\mathrm{cm} \mathrm{d}^{-1}$

Figure 7-2. Cross sectional view of a soil with equally spaood drains with water ponding at the surface and an impermeable layer at the bottom (after Kirk ham, 1949).

This equation holds for a homogeneous soil profile only. For small drain spacing Kirkham (1949) gave alternative expressions for Eqs. (7-8)-(7-11) (see Appendix at the end of this chapter). In the example below, the two solutions gave identical results.

7.4.1 Simulation

We consider a soil profile of 51 cm deep ($=\mathrm{h}$) and 42 cm wide ($=\mathrm{a}$), with a drain located at depth $36 \mathrm{~cm}(=\mathrm{d})$ and midway between the left and right boundaries. The radius of the drain was $1 \mathrm{~cm}(=r)$. The left, right and bottom boundaries are all noflow boundaries. At the soil surface a fixed pressure head was set equal to $\mathrm{h}=0 \mathrm{~cm}$ (just ponding; $\mathrm{t}=0 \mathrm{~cm}$). Initially the soil profile is at equilibrium with $\mathrm{h}=+51 \mathrm{~cm}$ at the bottom. The dimensions of the Control Volumes were $2 \times 2 \mathrm{~cm}^{2}$ (i.e. $\mathrm{D}=2 \mathrm{~cm}$), except for the first layer which had a thickness in z of 1 cm . The hydraulic conductivity at saturation was $\mathrm{K}_{\mathrm{s}}=14.07 \mathrm{~cm} \mathrm{~d}^{-1}$. The soil profile remained saturated, and steady-state was almost directly simulated. At first, two simulations were carried out, i.e. the first with $C F=1$ and the second with $C F=4$. Later, a detailed analysis was carried out to find out which CF should be used.

7.4.2 Results

Figure 7-3 presents the simulated h distributions for CF equal to 1 or 4 (upper two graphs) as well as the analytical solution of Kirkham (1949) in the lower left graph (Eq. (7-8)). The simulated distributions are close to the analytical solutions, but not exactly the same. In the next section (section 7.5) the choice of the factor CF is elaborated on in detail. Running ahead of the result presented there, the best agreement between simulated and analytical solutions was obtained for $\mathrm{CF}=2.07$ (lower right graph in Figure 7-3). The average of the relative differences between simulated and analytical h-distributions were for $C F=1,2.07$ and 4 equal to 9.1910^{-} ${ }^{2}, 8.2010^{-4}$ and -7.6110^{-2}, respectively.

Figure 7-3. A nalytical (lower left graph) and three simulated pressure head distributions for water flow with water ponding at the soil surface with a tile drain represented as a V imoke drain using FU SSIM 2. In each of the three simulations a different correction fador CF was used: 1 (upper left graph), 4 (upper right graph), and 2.07 (lower right graph). 0 ther parameters were. $\mathrm{a}=42 \mathrm{~cm}, \mathrm{~d}=36 \mathrm{~cm}, \mathrm{~h}=51 \mathrm{~cm}, \mathrm{t}=0 \mathrm{~cm}, \mathrm{r}=1 \mathrm{~cm}, \mathrm{D}=2 \mathrm{~cm}$, and $\mathrm{K}_{\mathrm{s}}=14.07 \mathrm{~cm} \mathrm{~d}^{-1}$.

7.5 On CF

Above in section 7.2 a correction factor for C_{d} was introduced: CF (Eq. (7-7)). As was stated there, there is not yet insight in why a correction factor is needed, and, if so, what its exact value must be. Since in the first attempt in comparing simulated with analytical pressure head distributions (section 7.4), the proposed value of 4 (Simunek et al., 1994; their Figure 4.1) does not apply to the situation considered in this chapter. Therefore, we decided to carry out an analysis to determine if CF is related to r or better ρ_{d}. For the example described above we carried out simulations for $C F=1,2,3, \ldots, 20$ and for $r=1,0.5,0.2,0.1,0.05,0.02,0.01,0.005,0.002$, and $0.001 \mathrm{~cm}(\mathrm{D}=2 \mathrm{~cm})$. The analytical h distributions as well as the analytical Q values were computed. For both h and Q the (sum of) squared differences were considered
$\operatorname{ssq}_{\mathrm{h}}=\sum\left(\frac{\mathrm{h}_{\mathrm{sim}}-\mathrm{h}_{\mathrm{an}}}{\mathrm{h}_{\mathrm{an}}}\right)^{2}$
and
$\operatorname{ssq}_{\mathrm{Q}}=\sum\left(\frac{\mathrm{Q}_{\text {sim }}-Q_{\mathrm{an}}}{Q_{\mathrm{an}}}\right)^{2}$
where the summation in Eq. (7-13) refers to all nodes in the simulated soil domain. Both $\mathrm{ssq}_{\mathrm{h}}$ and Ssq_{0} showed nice minima in the ρ_{d}-CF space. As an example, the contour distribution of ssq_{0} is given in Figure 7-4; that of $\mathrm{ssq}_{\mathrm{n}}$ looked similar. Since both ssq_{0} and $\mathrm{ssq}_{\mathrm{h}}$ gave the same minima in the $\rho_{\mathrm{d}}-\mathrm{CF}$ space, the following analysis is carried out on Q only.

Figure 7-4. Contour plot of log(ssqo) for different combinations of C_{d} and ρ_{d}.
Using linear interpolation, that value of CF was obtained for which simulated Q equaled the analytical value. Next, through regression analysis a relationship between CF and $\log \left(\rho_{\mathrm{d}}\right)$ was obtained. Both a linear fit and a fourth order polynomial were determined as described by (Figure 7-5)

$$
\begin{equation*}
C F=\alpha+\beta \log \left(\rho_{d}\right)\left\{+\gamma \log \left(\rho_{d}\right)^{2}+\delta \log \left(\rho_{d}\right)^{3}+\varepsilon \log \left(\rho_{d}\right)^{4}\right\} \tag{7-15}
\end{equation*}
$$

The fitted values of the parameters for both the fourth order polynomial and for the linear fit are presented in Table 7-1 (case 1). Both fits and the computed CF values are given in Figure 7-5. Remember that the points in Figure 7-5 were estimated and are thus not exact.

For the example given above $\rho_{\mathrm{d}}=2$, so that according to Eq. (7-15) (fourth order polynomial) $\mathrm{CF}=2.07$, which was the case shown in Figure 7-3. The linear fit deviated most at $\rho_{\mathrm{d}}=1$, where it yields $\mathrm{CF}=1.80$. In general, the relative difference in Figure 7-5 for the fourth order polynomial is less than 0.1%, while for the linear fit this is less than $2 \%\left(\rho_{d}>4\right)$, except for small values of ρ_{d}, e.g. at $\rho_{d}=1$ it is 13%.

- estimated correction - polynome fit $-\cdots$ linear fit

Figure 7-5. Fitted relationship between CF and ρ_{d}.
Table 7-1. Parameters for the fourth order polynomial or linear regresion Eq. (7-15) for the two cases as deccribed in the text.

Parameter	Case 1 $4^{\text {th }}$ order polynomial	Linear	Case 2 $4^{\text {th }}$ order polynomial	Linear
α	0.738558	0.098256	0.123857	-0.11594
β	4.136663	5.664468	5.304643	5.758459
γ	1.028875		0.106783	
δ	-0.281507		-0.018366	
$\boldsymbol{\varepsilon}$	0.029084		-0.001307	

In order to see if such a relationship is dependent on the problem studied, we have carried out the same analysis for the situation of $a=66 \mathrm{~cm}, \mathrm{~d}=49 \mathrm{~cm}, \mathrm{~h}=80 \mathrm{~cm}$, and $t=10 \mathrm{~cm}$. For this case the fitted parameters of Eq. (7-15) are given in Table 7-1 (case 2). The values of the parameters differ between the two cases, but visually there
are hardly any differences. It appears that the shape of the flow domain has no effect on the relationship between CF and $\rho_{\mathrm{d} \text {. }}$ Equation (7-15) may serve as to obtain an estimate for CF. However, care must be taken, since the results are only obtained for two situations. Furthermore, it should be noted that single Control Volume representation of the Vimoke concept has not been studied extensively, especially not for variably saturated situations. We like to quote Simunek et al. (1994; p. 30): "... further studies of the single grid point representation of a subsurface drain may be needed, especially for transient variably-saturated flow conditions.". In section 7.7 we present a transient, variably saturated problem.

Finally, one simulation was carried out for the case $\mathrm{a}=1200 \mathrm{~cm}, \mathrm{~d}=95 \mathrm{~cm}, \mathrm{~h}=$ $197.5 \mathrm{~cm}, \mathrm{r}=1 \mathrm{~cm}, \mathrm{t}=0 \mathrm{~cm}, \mathrm{D}=5 \mathrm{~cm}$ and $\mathrm{K}_{\mathrm{s}}=14.07 \mathrm{~cm} \mathrm{~d}^{-1}$. From Eq. (7-15) with $\rho_{d}=5$, CF was computed as $C F=4.043$. The analytical outflow from the drain (Eq. (7-12)) was $Q=1522.0 \mathrm{~cm}^{3} \mathrm{~cm}^{-1} \mathrm{~d}^{-1}$ and the simulated outflow was $1512.3 \mathrm{~cm}^{3} \mathrm{~cm}^{-1}$ d^{-1}, thus the relative difference equals only -0.6%. The h distributions were also nearly equal with the average relative difference being 7.6810^{-4}, which is similar to the average difference observed in the section 7.4. Thus, also for a large saturated flow domain Eq. (7-15) seems to yield a good estimate for CF. In general, the differences are largest around the drain, especially above and below the drain. For a given horizontal position z there is a trend in the differences, with the differences largest at the position of the drain $\mathrm{x}=0 \mathrm{~cm}$.

7.6 Steady-state variably saturated example

The previous example described a steady-state saturated situation. Before going to a transient variably saturated situation we give here an example of steady-state variably saturated situation. We will present the position of the water table for three values of effective drain radius $\mathrm{r}(2.5 \mathrm{~cm}, 0.025 \mathrm{~cm}, 0.00025 \mathrm{~cm})$ without (i.e. $\mathrm{CF}=1$) and with correction factor CF as computed according to Eq. (7-15). For comparison we show also the ground water level according to the Hooghoudt (1940) formula. For a situation with an impermeable layer at some depth below the drain (c.f. Figure 7-2), the Hooghoudt formula reads (Hooghoudt, 1940; his equation (98) on page 593)
$\mathrm{s}=\frac{8 \mathrm{Kd}_{\mathrm{e}} \mathrm{m}_{0}+4 \mathrm{Km}_{0}^{2}}{\mathrm{~L}^{2}}$
where
$\mathrm{m}_{0} \quad$ maximum ground water level between two drains
cm
cm
L drain distance ($=\mathrm{a}$ in Figure 7-2)
s steady-state rainfall intensity $\mathrm{cm} \mathrm{d}^{-1}$
K hydraulic conductivity at saturation $\mathrm{cm} \mathrm{d}^{-1}$
$d_{e} \quad$ equivalent thickness of soil layer between drain and impermeable layer

From Eq. (7-16) it follows that m_{0} can be computed as
$m_{0}=-d_{e}+\sqrt{d_{e}^{2}+\frac{s L^{2}}{4 K}}$
The equivalent thickness of soil layer between drain and impermeable layer d_{e} (not to be confused with drain depth d used in Figure 7-2 and section 7.4) can be computed from (Wesseling, 1973; see also van der Ploeg et al., 1999)

$$
\begin{equation*}
\mathrm{d}_{\mathrm{e}}=\frac{\mathrm{L}}{8}\left[\frac{(\mathrm{~L}-\mathrm{H} \sqrt{2})^{2}}{8 \mathrm{HL}}+\frac{1}{\pi} \ln \left(\frac{\mathrm{H} \sqrt{2}}{2 \mathrm{r}}\right)\right]^{-1} \tag{7-18}
\end{equation*}
$$

where
H actual distance between drain and impermeable layer ($=\mathrm{h}-\mathrm{d}$ in Figure 7-2) cm
Hooghoudt's theory implies that the shape of the water table is elliptic. In our case the height of the water table above the impermeable layer $\mathrm{h}(\mathrm{x})(\mathrm{cm})$ is given by (e.g. Koopmans, 1995)

$$
\begin{equation*}
h(x)=\sqrt{h(0)^{2}+\frac{s}{K}\left(L x-x^{2}\right)} \tag{7-19}
\end{equation*}
$$

where
$\mathrm{x} \quad$ the horizontal distance cm
$\mathrm{h}(\mathrm{x})$ the height of the water table above the impermeable layer cm
$h(0)$ the height of the water table above the impermeable layer at the drain $=\mathrm{H}$
cm
We considered a field with drain spacing $L=12 \mathrm{~m}$, profile depth $=2 \mathrm{~m}$, drain depth $=0.975 \mathrm{~m}\left(\mathrm{H}=1.025 \mathrm{~m}, \mathrm{~d}_{\mathrm{e}}=0.7 \mathrm{~m}, \mathrm{~m}_{0}=0.6 \mathrm{~m}\right)$, physical drain radius $\mathrm{r}=0.03 \mathrm{~m}$, a hydraulic conductivity $\mathrm{K}=0.306 \mathrm{~m} \mathrm{~d}^{-1}$ and a constant rain intensity $\mathrm{s}=0.01 \mathrm{~m} \mathrm{~d}^{1}$. The six ground water levels at steady-state are shown in Figure (7-6). As can be seen from Figure (7-6) there are cases where simulated ground water level and that predicted by Hooghoudt are similar. Of course, Hooghoudt's formula is an estimation of the position of the ground water level and, therefore, cannot be regarded as an analytical solution to which we can verify the Vimoke drain concept. It is generally known that Hooghoudt's formula underestimates the ground water level near the drain. The simulation results always result in a higher ground water level nearby the drain.

Figure 7-6. Simulated (solid lines) positions of the water table for steady-state variable saturated water flow for three values of $\mathrm{r}(\mathrm{A})$ without ($\mathrm{CF}=1$) and (B) with CF computed acoording to Eq . (7-15). F or comparison the H ooghoudt prediction (E q. (7-19)) is given as well (brok en line).

It can also be seen from Figure (7-6) that the combination $\mathrm{r}=0.025 \mathrm{~cm}$ and $\mathrm{CF}=1$ and the combination $\mathrm{r}=2.5 \mathrm{~cm}$ and $\mathrm{CF}=3.5$ result in nearly the same water table positions. In other words, a certain position of the ground water level can be achieved by either changing r and/ or CF. Since both r and CF affect C_{d} and thus
affect K of the control volume where the drain is located, the question arises whether or not it is necessary to include a correction factor CF in the computations, as the same results can also be achieved by changing r .

7.7 Validation for a transient variably saturated situation

De Vos (1997) measured in detail groundwater level fluctuations and drain discharges (water volume and NO_{3} concentration) from a single drain during a leaching season. With a detailed description of a seepage drain he was able to simulate similar patterns as measured. Here we show simulation results for exactly the same situation using the Vimoke drain concept, with and without CF. We used the optimized hydraulic parameters of de Vos (1997; his Table 8.3, using extended van Genuchten-Mualem models as described in Chapter 4 of this report) for the Lovinkhoeve soil profile (de Vos, 1997; his Figure 8.2), and climatic data of de Vos (1997). The effective drain radius $\mathrm{r}_{\text {eff }}(\mathrm{cm})$ used as the drain radius in the simulation model was calculated from (D ierckx, 1999; his Eqs. (13) and (16) for circular drains)

$$
\begin{align*}
& \mathrm{r}_{\mathrm{ef}}=\mathrm{r} \exp \left(-2 \pi \alpha_{\mathrm{e}}\right) \\
& \alpha_{\mathrm{e}}=\frac{\mathrm{c}}{2 \pi^{2} \mathrm{r}}\left(\ln \left(\frac{\mathrm{c}}{\pi \beta}\right)-\frac{c}{4 \pi r}\right) \tag{7-20}
\end{align*}
$$

where

r	physical drain radius (outer)	cm
c	gap spacing	cm
β	gap width	cm

For $\mathrm{r}=3.75 \mathrm{~cm}, \mathrm{c}=30 \mathrm{~cm}$ and $\beta=1 \mathrm{~cm}, \mathrm{r}_{\mathrm{eff}}=0.06 \mathrm{~cm}$. The initial pressure head distribution was that of an equilibrium situation with $\mathrm{h}=+84 \mathrm{~cm}$ at the bottom of the soil profile, and the initial NO_{3} distribution was taken from de Vos (1997; his Figure 8.12).

Figure 7-7 shows the simulation grid used by FUSSIM. The control volume where the Vimoke drain was located had a typical dimension of $D=2.5 \mathrm{~cm}$. Figure (7-8) shows the comparison between simulated and measured water outflow, position of the ground water level midway between two drains and NO_{3} concentration of the drain water. The comparison is rather good. The deviation between simulated and measured data is of the same order as de Vos (1997) obtained with his simulation model.

Figure 7-7. G rid lay-out used in the simulation. In-set shows grid around the V imoke drain (gray rectangle).
In an earlier attempt to carry out this validation we used a coarser grid. This resulted in similar patterns, except that at three times a peak in outflow occurred at times at which the measured data did not show peaks. This must be due to numerical dispersion. Therefore, care must always been taken in choosing a representative grid when using the Vimoke drain concept.

The simulations described above used $C F=1$. In a run with $C F$ computed according to Eq. (7-14) for given r about exactly the same results were obtained. The main difference was that the run time was much larger (about 4 to 4.5 times). Combining this experience and that of section 7.6 we conclude that in future use of the Vimoke drain concept the resistance of the control volume where the drain is located can best be done by changing only the value of the effective drain radius r and have $\mathrm{CF}=$ 1, and use a fine enough grid of the soil domain. To check if the grid is dense enough, the sensitivity for this density should be tested. An acceptable grid density is found when preset criteria on accuracy are met.

Figure 7-8. Simulated (thidk line) and measured (thin line) (A) drain discharge rate, (B) groundwater level midway between two drains, and (C) N_{3} conontration of the drain water as a function of time.

7.8 References

De Vos J.A., 1997. Water flow and nutrient transport in a layered silt loam soil. PhD Thesis, Wageningen Agricultural University, The Netherlands, 287 p.
Dierckx W.R., 1999. Non-ideal drains. In: R.W. Skaggs and J. van Schilfgaarde (eds.), Agricultural Drainage, Agronomy Series No. 38, p. 297-328, ASA-CSSA-SSSA, Madison, WI
Fipps G., R. W. Skaggs and J. L. Nieber, 1986. Drains as a boundary condition in finite elements. Water Resour. Res. 22(11), 1613-1621.
Heinen M. and P. de Willigen, 1998a. FUSSIM2 A two-dimensional simulation model for water flow, solute transport and root water and root nutrient uptake in unsaturated and partly unsaturated porous media. Quantitative Approaches in Systems Analysis No. 20, DLO Research Institute for Agrobiology and Soil Fertility and the C. T. de Wit Graduate School for Production Ecology, Wageningen, The Netherlands, 140 p .
Hooghoudt, S.B. 1940. Bijdragen tot de kennis van eenige natuurkundige grootheden van den grond. No. 7. Algemeene beschouwing en de infiltratie door middel van parallel loopende drains, greppels, slooten en kanalen. Verslagen van Landbouwkundige Onderzoekingen No. 43 (13) B, p. 461-676, Algemene Landsdrukkerij, 's-G ravenhage.
Kirkham D., 1949. Flow of ponded water into drain tubes in soil overlying an impervious layer. Trans. Amer. Geophys. Union 30(3), 369-385.
Koopmans R.W.R., 1995. Vloeistofmechanica en grondwaterstroming, Dictaat, Landbouw Universiteit, Wageningen.
Mohammad F. S. and R. W. Skaggs, 1983. Drain tube opening effects on drain inflow. J. Irrig. Drain Div. Am. Soc. Civ. Eng., 109(4), 393-404.
Nieber J.L. and R.A. Feddes, 1999. Solutions for combined saturated and unsaturated flow. In: R.W. Skaggs and J. van Schilfgaarde (eds.), Agricultural Drainage, Agronomy Series No. 38, p. 145-212, ASA-CSSA-SSSA, Madison, WI
Simunek J., T. Vogel and M. Th. van Genuchten, 1994. The SWMS_2D code for simulating water flow and solute transport in two-dimensional variably saturated media. U. S. Sal. Lab., Agric. Res. Serv., U.S. D ept. Agric., Riverside, California, 197 p.
van der Ploeg R.R., R. Horton and D. Kirkham, 1999. Steady flow to drains and wells. In: R.W. Skaggs and J. van Schilfgaarde (eds.), Agricultural D rainage, A gronomy Series No. 38, p. 213-263, ASA-CSSA-SSSA, Madison, WI
Vimoke B. S. and G. S. Taylor, 1962. Simulating water flow in soil with an electrical resistance network. Report No. 41-65, 51 p. Soil and Water Conserv. Res. Div., U. S. Agric. Res. Serv., Columbus, Ohio.

Vimoke B. S., T. D. Yura, T. J. Thiel and G. S. Taylor, 1963. Improvements in construction and use of resistance networks for studying drainage problems. Soil Sci. Soc. Am. J. 26(2), 203-207.
Wesseling J. 1973. Subsurface flow into drain. ILRI Publication No. 76 Vol. 2, International Institute Land Reclamation Improvement, Wageningen, Netherlands.

7.9 Appendix

Kirkham (1949) gave also analytical solutions for the case of close drain spacing. These solutions can be written analogous to Eqs. (7-8)-(7-11). The pressure head follows from
$\mathrm{h}_{\mathrm{a}}(\mathrm{x}, \mathrm{z})=\mathrm{t}+\mathrm{d}+\mathrm{q}_{\mathrm{a}} \mathrm{G}_{\mathrm{a}}(\mathrm{x}, \mathrm{z})-\mathrm{z}$
where q_{a} is given by
$q_{a}=-\frac{(t+d-r)}{2 F_{a}}$
and the functions $\mathrm{G}_{\mathrm{a}}(\mathrm{x}, \mathrm{z})$ and F_{a} are given by
$G_{a}(x, z)=\sum_{n=-\infty}^{\infty}(-1)^{n} \ln \left(\frac{\cosh \left(\frac{2 \pi(z-2 n h)}{a}\right)-\cos \left(\frac{2 \pi x}{a}\right)}{\cosh \left(\frac{2 \pi(z-2 d-2 n h)}{a}\right)-\cos \left(\frac{2 \pi x}{a}\right)}\right)$
and
$F_{a}=\ln \left(\frac{\sinh \left(\frac{\pi(2 d-r)}{a}\right)}{\sinh \left(\frac{\pi r}{a}\right)}\right)-\sum_{n=1}^{\infty}(-1)^{n} \ln \left(\frac{\sinh ^{2}\left(\frac{2 \pi n h}{a}\right)-\sinh ^{2}\left(\frac{\pi r}{a}\right)}{\sinh ^{2}\left(\frac{2 \pi n h}{a}\right)-\sinh ^{2}\left(\frac{\pi(2 d-r)}{a}\right)}\right)$
respectively.
Kirkham (1949) also presented analytical solutions for the stream function and for the rate of intake at the soil surface.

$8 \quad$ P-adsorption and P-fixation in FUSSIM2

Peter de Willigen and Marius Heinen

8.1 Introduction

P in soil is present in the following three phases:

1. in solution
2. at the adsorption complex
3. fixated in $\mathrm{Fe}+\mathrm{Al}$ (hydr)oxides
P in phases 1 and 2 is called the labile fraction of P . Transport of P occurs in the solution phase only. Instantaneous equilibrium exists between P in phase 1 and phase 2. Fixation into phase 3 is slow process and is assumed to be dependent on the difference between amount of P in solution and P already fixated. In what follows we will describe how P transport and P distribution in soil is computed in the simulation model FUSSIM2.

8.2 The general transport equation

The governing transport equation for P is given by (f. Heinen, 1997)

$$
\begin{equation*}
\frac{\partial Q}{\partial t}=-\nabla \cdot q_{s}-S_{s}+\frac{d F}{d t} \tag{8-1}
\end{equation*}
$$

where

Q	total amount of P	$\mathrm{mg} \mathrm{cm}^{-3}$
t	time	d
∇.	divergence	cm^{-1}
q $_{s}$	solute flux density	$\mathrm{mg} \mathrm{cm}^{-2} \mathrm{~d}^{-1}$
$\mathrm{~S}_{\mathrm{s}}$	root uptake	$\mathrm{mg} \mathrm{cm}^{-3} \mathrm{~d}^{-1}$
dF/ dt	fertilization rate	$\mathrm{mg} \mathrm{cm}^{-3} \mathrm{~d}^{-1}$

The total amount Q is given by

$$
\begin{equation*}
Q=\theta c+Q_{A}+Q_{F}=P_{i, v}+Q_{F} \tag{8-2}
\end{equation*}
$$

where
C P concentration in soil solution $\mathrm{mg} \mathrm{ml}^{-1}$
θ volumetric water content $\mathrm{ml} \mathrm{cm}^{-3}$
Q_{A} amount of P at adsorption complex $\quad \mathrm{mg} \mathrm{cm}^{-3}$
Q_{F} amount of P fixated $\mathrm{mg} \mathrm{cm}^{-3}$
$P_{i, V} \quad$ labile amount of $P, P_{i, V}=\theta c+Q_{A} \quad \mathrm{mg} \mathrm{cm}^{-3}$

In general, cm^{3} refers to volume of soil, and ml to volume of solution.

8.3 Expression for the new labile amount

Substituting Eq. (8-1) in Eq. (8-2) yields

$$
\begin{equation*}
\frac{\partial \mathrm{P}_{\mathrm{i}, \mathrm{v}}}{\partial \mathrm{t}}+\frac{\partial \mathrm{Q}_{\mathrm{F}}}{\partial \mathrm{t}}=-\nabla \cdot \mathrm{q}_{\mathrm{s}}-\mathrm{S}_{\mathrm{s}}+\frac{\mathrm{dF}}{\mathrm{dt}} \tag{8-3}
\end{equation*}
$$

Rewriting yields

$$
\begin{equation*}
\frac{\partial P_{i, v}}{\partial \mathrm{t}}=\frac{\partial Q}{\partial \mathrm{t}}-\frac{\partial Q_{\mathrm{F}}}{\partial \mathrm{t}} \tag{8-4}
\end{equation*}
$$

In Eq. (8-4) we have expressed the time change of labile amount $P_{i, v}$ as a function of time change of P due to transport, uptake and fertilization $(\partial Q / \partial t)$ and time change of fixed $P\left(\partial Q_{F} / \partial t\right)$. Thus, we assume that all unknowns can be computed based on explicitly known concentration c. The new $\mathrm{P}_{\mathrm{i}, \mathrm{v}}$ at time $t+\Delta t$ follows from

$$
\begin{equation*}
P_{i, v}^{t+\Delta t}=P_{i, v}^{t}+\left(\left.\frac{\partial Q}{\partial t}\right|_{c^{t}}-\left.\frac{\partial Q_{F}}{\partial t}\right|_{c^{t}}\right) \Delta t \tag{8-5}
\end{equation*}
$$

The new concentration $d^{++\Delta t}$ is obtained by solving
$\theta^{t+\Delta t} c^{t+\Delta t}+f\left(c^{t+\Delta t}\right)-P_{i, v}^{t+\Delta t}=0$
where
$\mathrm{f}(\mathrm{c})$ adsorption isotherm $\mathrm{mg} \mathrm{cm}^{-3}$
The concentration $\mathrm{c}^{\mathrm{t}+\Delta t}$ is found using the ZBRENT method of Press et al. (1992). The value of $\mathrm{c}^{\mathrm{t}+\Delta t}$ is bounded by the range
$0 \leq c^{t+\Delta t} \leq \frac{P_{i, v}^{t+\Delta t}}{\theta^{\mathrm{t}+\Delta t}}$
The amount adsorbed then follows from the adsorption isotherm (see below).

8.4 P fixation

For the fixation process we use the three-pool Freundlich-type model of Schoumans (1995; his equation (68)), given by
$\frac{\partial Q_{F}}{\partial t}=\sum_{i=1}^{3} \alpha_{i}\left(K_{F, i} i^{N_{i}}-Q_{s, i}\right)$
where
$Q_{F} \quad$ amount of P fixated, $Q_{F}=Q_{s, 1}+Q_{s, 2}+Q_{s, 3} \quad \mathrm{mg} \mathrm{cm}^{-3}$
$Q_{s, 1} \quad$ amount of P fixated in pool $1 \quad \mathrm{mg} \mathrm{cm}^{-3}$
$Q_{s, 2} \quad$ amount of P fixated in pool $2 \quad \mathrm{mg} \mathrm{cm}^{-3}$
$Q_{s, 3} \quad$ amount of P fixated in pool $3 \quad \mathrm{mg} \mathrm{cm}^{-3}$
$\alpha \quad$ extinction coefficient
d^{-1}
N exponent coefficient
$\mathrm{K}_{\mathrm{F}} \quad$ fixation coefficient
$\mathrm{mg} \mathrm{cm}^{-3}\left(\mathrm{mg} \mathrm{ml}^{-1}\right)^{-\mathrm{N}}$
At given c and known quantities Q_{s} the rate $\mathrm{M}_{\mathrm{F}} / \mathrm{Mt}$ can be computed. The new quantities Q_{s} follow from the individual time rate of changes through integration.

The coefficients K_{F} are not read directly from an input file but are computed from other supplied parameters according to

$$
\begin{equation*}
\mathrm{K}_{\mathrm{F}}=\mathrm{b}\left(10^{3}\right)^{\mathrm{N}}[\mathrm{Al}+\mathrm{Fe}] 31 \cdot 10^{-3} \rho_{\mathrm{d}} \tag{8-9}
\end{equation*}
$$

where
$\mathrm{K}_{\mathrm{F}} \quad$ fixation coefficient $\quad \mathrm{mg} \mathrm{cm}^{-3}\left(\mathrm{mg} \mathrm{ml}^{-1}\right)^{-\mathrm{N}}$
b fixation parameter
$\left(10^{3}\right)^{\mathrm{N}} \quad$ conversion factor to transform b from $\left(\mathrm{mg} \mathrm{l}^{-1}\right)^{-\mathrm{N}}$
to $\left(\mathrm{mg} \mathrm{ml}^{-1}\right)^{-\mathrm{N}}$
$\left(\mathrm{mg} \mathrm{ml}^{-1}\right)^{-N}\left(\left(\mathrm{mg} \mathrm{l}^{-1}\right)^{-N}\right)^{-1}$
$\mathrm{N} \quad$ exponent coefficient
[$\mathrm{Al}+\mathrm{Fe}$] oxalate extractable Al and Fe
mmol kg^{-1}
31 molecular weight of $\mathrm{P} \quad \mathrm{mg} \mathrm{mmol}^{-1}$
10^{-3} conversion factor from kg to $\mathrm{g} \quad \mathrm{kg} \mathrm{g}^{-1}$

8.5 $\quad \mathrm{P}$ adsorption isotherms

We have implemented two types of adsorption isotherms, i.e. a Langmuir and a Freundlich isotherm. The Langmuir isotherm is given by

$$
\begin{equation*}
Q_{A}=\frac{a_{1} b_{1} c}{1+b_{1} c}+\frac{a_{2} b_{2} c}{1+b_{2} c} \tag{8-10}
\end{equation*}
$$

where
a Langmuir a coefficient $\mathrm{mg} \mathrm{cm}^{-3}$
b Langmuir b coefficient $\mathrm{ml} \mathrm{mg}^{-1}$

For $c \rightarrow \infty, Q_{A}=a_{1}+a_{2}$, so that $a_{1}+a_{2}$ represents the adsorption maximum. Equation (8-10) is a so-called double-Langmuir adsorption isotherm. By setting $\mathrm{a}_{2}=$ $\mathrm{b}_{2}=0$ one obtains the single-Langmuir adsorption isotherm.

The Freundlich isotherm is given by
$Q_{A}=M c^{N}$
where
$\mathrm{N} \quad$ Freundlich N coefficient
M Freundlich M coefficient $\mathrm{mg} \mathrm{cm}^{-3}\left(\mathrm{mg} \mathrm{ml}^{-1}\right)^{-\mathrm{N}}$

For completeness, a linear adsorption isotherm is available, and is given by $Q_{A}=a_{k} C$, which can be seen as a special case of the Freundlich isotherm with $M=a_{k}$ and $N=$ 1.

8.6 Computation of $\mathbf{P}_{\mathbf{w}}$

In The Netherlands the P_{w} value, based on an extraction of soil P with water, is used as a basis for P fertilizer recommendations for arable crops. Van Noordwijk et al. (1990) showed that P_{w} can be computed from the labile amount $P_{i, v} . P_{i, v}$ equals the sum of P in solution and P at the adsorption complex, according to

$$
\begin{equation*}
P_{i, v}=\theta c+Q_{A} \tag{8-12}
\end{equation*}
$$

It is assumed that during the extraction $\mathrm{P}_{\mathrm{i}, \mathrm{V}}$ does not change, that the desorption isotherm is equal to the adsorption isotherm, and that effects of background electrolyte concentration on the desorption/ adsorption process may be neglected. Thus, we have
$P_{i, v}=\theta c+Q_{A}=\frac{V_{w}}{V_{s}} c^{*}+Q_{A}^{*}$
where
$\mathrm{V}_{*} / \mathrm{V}$ s water:soil (v:v) ratio used when P_{w} is determined in soil samples $\mathrm{ml} \mathrm{cm}^{-3}$
Q^{*} amount adsorbed for given ${ }^{*}$ *

For given $\mathrm{P}_{\mathrm{i}, \mathrm{v}}$ and adsorption isotherm parameters, the value for c^{*} can be determined from Eq. $(8-13)\left(Q_{A}{ }^{*}=f\left(c^{*}\right)\right.$, d. Eq. (8-6))
$\frac{\mathrm{V}_{\mathrm{w}}}{\mathrm{V}_{\mathrm{s}}} c^{*}+\mathrm{f}\left(\mathrm{c}^{*}\right)-\mathrm{P}_{\mathrm{i}, \mathrm{v}}=0$

The concentration c* is found using the ZBRENT method of Press et al. (1992). The value of c^{*} is bounded by the range
$0 \leq c^{*} \leq \frac{\mathrm{P}_{\mathrm{i}, \mathrm{v}}}{\mathrm{V}_{\mathrm{w}} / \mathrm{V}_{\mathrm{s}}}$
Finally, the value P_{w} (in $\mathrm{mg}_{2} \mathrm{O}_{5}$ per L soil) is computed from ${ }^{*}$ according to

$$
\begin{equation*}
P_{w}=c^{*} 10^{3} \frac{V_{w}}{V_{s}} \frac{142}{2 \cdot 31} \tag{8-16}
\end{equation*}
$$

where
$\mathrm{P}_{\mathrm{w}} \quad$ water-soluble P
$10^{3} \quad$ conversion from cm^{-3} soil to L^{-1} soil
142 molecular weight of $\mathrm{P}_{2} \mathrm{O}_{5}$
31 molecular weight of P
2 number of moles P per mol $\mathrm{P}_{2} \mathrm{O}_{5}$
$m g \mathrm{P}_{2} \mathrm{O}_{5} \mathrm{~L}^{-1}$ soil $\mathrm{cm}^{3} \mathrm{~L}^{-1}$ $\mathrm{mg} \mathrm{P}_{2} \mathrm{O}_{5} \mathrm{mmol}^{-1}$ $\mathrm{mg} \mathrm{P} \mathrm{mmol}^{-1}$
$\mathrm{mmol} \mathrm{P} \mathrm{mmol}^{-1} \mathrm{P}_{2} \mathrm{O}_{5}$

8.7 The initial situation

In order to start simulation, the initial P distribution must be known. The initial $P_{w, 0}$ distribution is chosen as initial condition. From that the initial concentration, initial amount adsorbed, and initial amount fixated are computed.

The initial concentration c_{0} is computed from $P_{w, 0}$ according to the reversed pathway as described in the section 8.6. For given $P_{w, 0} c^{*}$ can be computed from Eq. (8-16). The labile amount $\mathrm{P}_{\mathrm{i}, \mathrm{V}}$ follows from c^{*} according to Eq. (8-13) and a description of the adsorption isotherm. Now we have the distribution in the diluted soil sample. The distribution of $\mathrm{P}_{\mathrm{i}, \mathrm{V}}$ over actual soil solution and adsorption complex follows from Eq. (8-13) (in analogy to Eq. (8-14); $\mathrm{Q}_{0}=\mathrm{f}\left(\mathrm{c}_{\mathrm{O}}\right)$) according to
$\theta_{0} \mathrm{c}_{0}+\mathrm{f}\left(\mathrm{c}_{0}\right)-\mathrm{P}_{\mathrm{i}, \mathrm{v}}=0$
Equation (8-17) is solved for c_{0}, knowing that c_{0} is bounded by the range
$0 \leq c_{0} \leq \frac{P_{i, v}}{\theta_{0}}$
From c_{0} the initial amount adsorbed $Q_{A, 0}$ follows from the adsorption isotherm (Eq. (8-10) or (8-11)).

The initial amount fixated $P, Q_{F, 0}$, is computed from C_{0} assuming equilibrium. $Q_{F, 0}$ is the sum of the initial amounts $Q_{s, 0}$ of the three pools, which are computed from

$$
\begin{align*}
& Q_{s, 1,0}=K_{F, 1} C_{0}^{N_{1}} \\
& Q_{s, 2,0}=K_{F, 2} C_{0}^{N_{2}} \tag{8-19}\\
& Q_{s, 3,0}=K_{F, 3} C_{0}^{N_{3}}
\end{align*}
$$

8.8 Fertilization

Fertilization is treated as follows. A fertilization rate in $\mathrm{kg} / \mathrm{ha}$ (total surface are of flow domain) is transformed into an amount that enters each of the control volumes (CV) that are fertilized expressed in $\mathrm{mg} \mathrm{cm}^{-3}$. Not all CVs at the soil surface have to be fertilized; banded fertilization or injected fertilization is also possible. The fertilization rate dF / dt in Eq. (8-1) then follows from

$$
\begin{equation*}
\frac{\mathrm{dF}}{\mathrm{dt}}=\frac{\mathrm{F}_{\mathrm{A}}}{\Delta \mathrm{t}} 10^{-2} \frac{\mathrm{~A}}{\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~V}_{\mathrm{i}}} \tag{8-20}
\end{equation*}
$$

where		
F_{A}	fertilization rate in $\mathrm{kg} /$ ha total flow domain	$\mathrm{kg} \mathrm{ha}^{-1}$
Δt	time step	t
10^{-2}	conversion factor	$\mathrm{mg} \mathrm{kg}^{-1} \mathrm{ha} \mathrm{cm}^{-2}$
A	total surface area of flow domain	cm^{2}
V_{i}	volume of control volume i where fertilization takes place	cm^{3}
n	number of control volumes where fertilization takes place	-

8.9 References

Press W.H., B.P. Flannery, S.A. Teukolsky and W.T. Vetterling, 1992. Numerical recipes in Fortran 77. Second edition. The art of scientific computing. Cambridge University Press, Cambridge.
Schoumans O.F., 1995. Beschrijving en validatie van de procesformulering van de abiotische fosfaatreacties in kalkloze zandgronden. Rapport 381, SC-DLO, Wageningen, 52 p .
van Noordwijk M., P. de Willigen, P.A.I. Ehlert and W.J. Chardon, 1990. A simple model of P uptake by crops as a possible basis for P fertilizer recommendations. Netherlands Journal of Agricultural Science 38: 317-332.

9 Non-zero sink nutrient uptake

Peter de Willigen

9.1 N on-zero sink nutrient uptake

Heinen and de Willigen (1998) considered uptake of nutrients according to the zerosink concept of de Willigen and van Noordwijk (1987, 1994a,b). The solution of de Willigen and van Noordwijk (1987, 1994a,b) can be extended for non-zero sink conditions. The solution in dimensionless parameters is given as
$\omega=-\frac{\rho^{2}-1}{2 G}\left(\bar{c}-\overline{c_{1}}\right)$
with
$\overline{c_{1}}=c_{\min } \frac{\rho^{2 v+2}-1}{(v+1)\left(\rho^{2}-1\right)}$
With Eq. (9-2), Eq. (9-1) becomes
$\omega=-\frac{\rho^{2}-1}{2 G} \bar{c}+\frac{\rho^{2 v+2}-1}{(v+1) 2 G} c_{\text {min }}$
Substituting the dimensionless parameters ω, and c by their respective dimensionbearing parameters (see Table 9.1 of de Willigen and van Noordwijk, 1987), and assuming no adsorption ($\beta=1$), one obtains finally (cf. Eq. [50] of Heinen and de Willigen, 1998)

$$
\begin{equation*}
\mathrm{S}_{\mathrm{sm}}=\pi \Delta \mathrm{z} \mathrm{~L}_{\mathrm{rv}} \mathrm{D} \frac{\rho^{2}-1}{2 \mathrm{G}}\left(\overline{\mathrm{C}}-\frac{\rho^{2 v+2}-1}{(v+1)\left(\rho^{2}-1\right)} C_{\min }\right) \tag{9-4}
\end{equation*}
$$

where
$\mathrm{S}_{\mathrm{sm}} \quad$ maximum possible uptake rate per unit surface area of substrate

$$
\mathrm{ML}^{-2} \mathrm{~T}^{-1}
$$

$\Delta z \quad$ thickness of the CV layer
$\mathrm{L}_{\mathrm{rv}} \quad$ root length density
D diffusion coefficient $\quad \mathrm{L}^{2} \mathrm{~T}^{-1}$
$\rho \quad$ dimensionless reduced radius of the cylinder surrounding each root:
$\rho=R_{1} / R_{0}$
G dimensionless geometry function

\bar{v}	dimensionless water uptake by the root	-
$\overline{\mathrm{C}}$	average concentration in the bulk substrate surrounding the root	ML^{-3}
$\mathrm{C}_{\text {min }}$	minimum concentration at the root surface above which uptake can occur	ML^{-3}

For $v<0$ the term in front of $C_{\text {min }}$ in Eq. (9-4) is less than 1. For example, for $v=-$ $0.01, \mathrm{R}_{0}=0.02 \mathrm{~cm}$, this term ranges from 0.92 at $\mathrm{L}_{\mathrm{rv}}=0.1$ to 0.96 at $\mathrm{L}_{\mathrm{rv}}=5$.

For $v=0$ (diffusion only), Eq. (9-4) becomes

$$
\begin{equation*}
\mathrm{S}_{\mathrm{sm}}=\pi \Delta \mathrm{Z} \mathrm{~L}_{\mathrm{r}} \mathrm{D} \frac{\rho^{2}-1}{2 \mathrm{G}}\left(\overline{\mathrm{C}}-\mathrm{C}_{\min }\right) \tag{9-5}
\end{equation*}
$$

For $\mathrm{C}_{\text {min }}=0$ (zero-sink), Eq. (9-4) becomes (Eq. [50] of Heinen and de Willigen, 1998)
$S_{s m}=\pi \Delta z L_{\mathrm{rv}} D \frac{\rho^{2}-1}{2 G} \bar{C}$

9.2 References

De Willigen P. and M. van Noordwijk, 1987. Roots, plants production and nutrient use efficiency. PhD. Thesis, Wageningen Agricultural University, The Netherlands, 282 p.
De Willigen P. and M. van Noordwijk, 1994a. Mass flow and diffusion of nutrients to a root with constant or zero-sink uptake. I. Constant uptake. Soil Science 157: 162-170.
De Willigen P. and M. van Noordwijk, 1994b. Mass flow and diffusion of nutrients to a root with constant or zero-sink uptake. II. Zero-sink uptake. Soil Science 157: 171-175..
Heinen M. and P. de Willigen, 1998a. FUSSIM2 A two-dimensional simulation model for water flow, solute transport and root water and root nutrient uptake in unsaturated and partly unsaturated porous media. Quantitative Approaches in Systems Analysis No. 20, DLO Research Institute for Agrobiology and Soil Fertility and the C. T. de Wit Graduate School for Production Ecology, Wageningen, The Netherlands, 140 p .

10 Expo-linear growth and demand

Peter de Willigen and Marius Heinen

10.1 Introduction

For some situations one is not interested in coupling FUSSIM2 with an existing plant growth model, and a simple growth function suffices. Here we describe a module which is integrated in FUSSIM2 that includes an expo-linear growth equation and a nutrient demand function.

10.2 Expo-linear growth

Expo-linear growth describes growth as en exponential phase for early stages of growth which for later stages of growth turns towards linear increase in dry matter. The expo-linear growth function reads (G oudriaan and van Laar, their Eq. 2.4)

$$
\begin{equation*}
\frac{d W_{T, p}}{d t}=c_{m}\left(1-\exp \left(-\frac{r_{m}}{c_{m}} W_{T}\right)\right) \tag{10-1}
\end{equation*}
$$

where

$W_{T, p}$	potential total plant weight	$\mathrm{kg} \mathrm{ha}^{-1}$
$\mathrm{~W}_{\mathrm{T}}$	actual total plant weight	$\mathrm{kg} \mathrm{ha}^{-1}$
t	time	d
C_{m}	maximum growth rate	$\mathrm{kg} \mathrm{ha}^{-1} \mathrm{~d}^{-1}$
r_{m}	maximum relative growth rate	$\mathrm{kg} \mathrm{kg}^{-1} \mathrm{~d}^{-1}$

In Eq. (10-1) the potential growth at given plant weight W_{T} is computed. The actual growth rate may be reduced, for example, due to a reduction in water uptake. Currently, only reduction to water uptake (as computed elsewhere) is implemented, so that

$$
\begin{equation*}
\frac{d W_{T}}{d t}=\frac{T_{a}}{T_{p}} \frac{d W_{T, p}}{d t} \tag{10-2}
\end{equation*}
$$

where
$\begin{array}{ll}\mathrm{T}_{\mathrm{p}} & \text { potential water uptake } \\ \mathrm{T}_{\mathrm{a}} & \text { actual water uptake }\end{array}$
$\mathrm{cm} \mathrm{d}^{-1}$ cm d ${ }^{-1}$

Equations (10-1) and (10-2) are solved explicitly, so that
$\mathrm{W}_{\mathrm{T}, \mathrm{p}}^{\mathrm{t}+\Delta \mathrm{t}}=\mathrm{W}_{\mathrm{T}, \mathrm{p}}^{\mathrm{t}}+\frac{\mathrm{dW}}{\mathrm{T}, \mathrm{p}} \mathrm{dt}_{\mathrm{t}}^{\mathrm{t}}$
$W_{T}^{t+\Delta t}=W_{T}^{t}+\frac{d W_{T}}{d t} \Delta t$
With the help of the shoot-root ratio we can compute also compute the dry matter increase in roots that can be used in the root diffusion module (see chapter 15)
$\frac{d W_{T, r}}{d t}=\frac{d W_{T}}{d t}$ SHRT
where
SH RT shoot-root ratio
$g g^{1}$
Additionally, the leaf area index (for example, to be used for transpiration computations) can be computed as (G oudriaan and van Laar, their Eq. 2.14)

$$
\begin{equation*}
\mathrm{LA} \mathrm{I}^{\mathrm{t}+\Delta \mathrm{t}}=\mathrm{W}_{\mathrm{T}}^{\mathrm{t}+\Delta \mathrm{t}} \mathrm{P}_{\mathrm{L}} \text { SLA } \tag{10-5}
\end{equation*}
$$

where
$\mathrm{P}_{\mathrm{L}} \quad$ fraction of total dry matter that are leafs $\mathrm{g} \mathrm{g}^{1}$
SLA specific leaf area ha kg ${ }^{1}$

10.3 N utrient demand

With increase in plant mass nutrients have to be taken up as well. Here we describe the G reenwood demand function that is implemented in FUSSIM2. The G reenwood function reads (G reenwood and D raycott, 1995; their Eqs. (4), (11), (12))
$N_{0}=a_{G}+b_{G} \exp \left(-c_{G} W_{T}\right)$
where
$\mathrm{N}_{0} \quad$ optimal nutrient content in the plant $\quad \mathrm{g}$ (nutrient) g^{-1} (plant)
$a_{6} \quad$ Greenwood a parameter $\quad g$ (nutrient) g^{-1} (plant)
$\mathrm{b}_{\mathrm{G}} \quad$ Greenwood b parameter $\quad \mathrm{g}$ (nutrient) g^{-1} (plant)
$\mathrm{c}_{\mathrm{G}} \quad$ Greenwood c parameter $\mathrm{ha} \mathrm{kg}^{-1}$
At any time t the actual content of the plant is known as well, e.g. it can be computed from the total uptake and the total weight
$N_{A}=\frac{U}{W_{T}}$
where

N_{A}	actual nutrient content in the plant	g (nutrient) g^{-1} (plant)
U	total uptake since start	

The demand for the coming time step is computed as follows. Three pools are considered:

1) requirement due to new growth $\left(\mathrm{kg} \mathrm{ha}^{-1}\right)$

$$
\begin{equation*}
\mathrm{N}_{\mathrm{den}, 1}=\frac{\mathrm{dW}}{\mathrm{~T}} \mathrm{dt}_{0} \Delta \mathrm{t} \tag{10-8}
\end{equation*}
$$

2) requirement due to change in $\mathrm{N}_{0}\left(\mathrm{~kg} \mathrm{ha}^{-1}\right)$

$$
\begin{equation*}
\mathrm{N}_{\mathrm{den}, 2}=-\mathrm{W}_{\mathrm{T}} \frac{\mathrm{~d} W_{\mathrm{T}}}{\mathrm{dt}} \mathrm{~b}_{\mathrm{G}} \mathrm{c}_{\mathrm{G}} \exp \left(-\mathrm{c}_{\mathrm{G}} \mathrm{~W}_{\mathrm{T}}\right) \Delta \mathrm{t} \tag{10-9}
\end{equation*}
$$

where the term $b_{G} \mathrm{c}_{\mathrm{G}} \exp \left(-\mathrm{c}_{\mathrm{G}} \mathrm{W}_{\mathrm{T}}\right)$ is the derivative $\mathrm{dN}{ }_{0} / \mathrm{dW} \mathrm{T}_{\mathrm{T}}$;
3) requirement due to restore from N_{A} to $N_{0}\left(\mathrm{~kg} \mathrm{ha}^{-1}\right)$
$\mathrm{N}_{\mathrm{den}, 3}=\mathrm{W}_{\mathrm{T}}\left(\mathrm{N}_{0}-\mathrm{N}_{\mathrm{A}}\right)$
The total demand rate $\mathrm{N}_{\mathrm{den}}\left(\mathrm{kg} \mathrm{ha}^{-1} \mathrm{~d}^{-1}\right)$ is computed as
$\mathrm{N}_{\text {den }}=\frac{\mathrm{N}_{\text {dem }, 1}+\mathrm{N}_{\text {den }, 2}+\mathrm{N}_{\text {dem }, 3}}{\mathrm{t}_{\mathrm{N}}}$
where
$\mathrm{t}_{\mathrm{N}} \quad$ time constant for nutrient uptake (typically 1 d)
Alternatively, the user may supply tabulated $N_{0}-W_{T}$ data from which the three demand-pools and their sum can be computed similarly to Eqs. (10-8)-(10-11); of course, in Eq. (10-9) the term $b_{6} c_{G} \exp \left(-\mathrm{c}_{\mathrm{G}} \mathrm{W}_{\mathrm{T}}\right)$ is replaced by the slope belonging to the tabulated data.

10.4 References

Goudriaan J. and H.H. van Laar, 1994. Modelling potential crop growth processes. Current issues in production ecology vol. 2, Kluwer Academic Publishers, D ordrecht.
Greenwood D.J. and A. Draycott, 1995. Modelling uptake of nitrogen, phosphate and potassium in relation to crop growth. In: P. Kabat, B. Marshall, B.J. van den Broek, J. Vos and H. van Keulen, Modelling and Parameterization of the Soil-Plant-Atmosphere System. A Comparison of Potato Growth Models. Wageningen Pers, Wageningen, The Netherlands, pp. 155-175.

11 Root growth described as a diffusion process

Peter de Willigen

11. Diffusive root growth in two dimensions

De Willigen et al. (2001) postulate to describe root growth as a diffusion process. In two dimensions the root growth diffusion equation reads

$$
\begin{equation*}
\frac{\partial L_{\mathrm{Nv}}}{\partial \mathrm{t}}=\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{D}_{\mathrm{L}, \mathrm{x}} \frac{\partial \mathrm{~L}_{\mathrm{rv}}}{\partial \mathrm{x}}\right)+\frac{\partial}{\partial z}\left(\mathrm{D}_{\mathrm{L}, \mathrm{z}} \frac{\partial \mathrm{~L}_{\mathrm{N}}}{\partial z}\right)-\lambda_{\mathrm{L}} \mathrm{~L}_{\mathrm{rv}}+\mathrm{Q}_{\mathrm{L}}(\mathrm{x}, \mathrm{z}, \mathrm{t}) \tag{11-1}
\end{equation*}
$$

where

L_{Vv}	root length density	LL^{-3}
t	time	T
x	horizontal coordinate	L
Z	vertical coordinate $\quad \mathrm{L}$	$\mathrm{L}^{2} \mathrm{~T}^{-1}$
$\mathrm{D}_{\mathrm{L}, \mathrm{x}}$	diffusion coefficient for root growth in the x direction	$\mathrm{L}^{2} \mathrm{~T}^{-1}$
$\mathrm{D}_{\mathrm{L}, \mathrm{z}}$	diffusion coefficient for root growth in the z direction	T^{-1}
λ_{L}	specific decay rate of roots	$\mathrm{LL}^{-3} \mathrm{~T}^{-1}$
Q_{L}	input rate of roots due to growth	

De Willigen et al. (2001) describe all features of Eq. (11-1). Here we mention only that the one-dimensional version of Eq. (11-1) results in an exponential $L_{r v}$ distribution with depth, which is commonly observed under non-limiting fieldconditions. For the two-dimensional version of Eq. (11-1) it is obvious that for different ratios of $D_{L, x} / D_{L, z}$ different distributions with respect to horizontal or vertical growth can be obtained.

11.2 Numerical solution

Equation (11-1) is solved explicitly according to where the same notation conventions are used as in Heinen and de Willigen (1998; their section 3.2.2). The diffusion coefficients and the input rate parameters are described in the two following sections.

$$
\begin{align*}
& L_{\mathrm{rv,I}, \mathrm{~J}}^{\mathrm{t}+\Delta \mathrm{t}}=\mathrm{L}_{\mathrm{rv}, \mathrm{I}, \mathrm{~J}}^{\mathrm{t}} \\
& +\left\{\frac{\left.D_{x, i} \frac{\left(L_{r, l}^{t}+1, J\right.}{\Delta x_{i}}-L_{r, I, J}^{t}\right)}{\Delta x_{i}}-D_{x, i-1} \frac{\left(L_{\mathrm{r}, 1, \mathrm{~J}}^{\mathrm{t}}-\mathrm{L}_{\mathrm{r}, \mathrm{I}-1, \mathrm{~J}}^{\mathrm{t}}\right)}{\Delta \mathrm{x}_{\mathrm{i}-1}}\right) \tag{11-2}\\
& \left.+\frac{D_{z, j} \frac{\left(L_{r v, I, J+1}^{t}-L_{r v, I, J}^{t}\right)}{\Delta z_{j}}-D_{z, j-1} \frac{\left(L_{r, I, J}^{t}-L_{r v, I, J-1}^{t}\right)}{\Delta z_{j-1}}}{\Delta x_{I}}-\lambda_{L} L_{\mathrm{rv}, \mathrm{I}, \mathrm{~J}}^{\mathrm{t}}+Q_{\mathrm{L}, \mathrm{I}, \mathrm{~J}}\right\} \Delta t
\end{align*}
$$

11.3 Diffusion coefficients

In Eq. (11-2) the diffusion coefficients at the CV interfaces are needed. They are computed as the weighted geometric average (see Heinen and de Willigen, 1998; e.g. their Eq. [63]). The diffusion coefficients of the individual CVs are in principal equal to the constant root growth diffusion coefficients in the x and z directions, $D_{L, x}$ and $\mathrm{D}_{\mathrm{L}, \mathrm{z}}$, respectively. However, to simulate that growth may be hindered in extremely wet or extremely dry regions, we have implemented a reduction factor on $D_{L, x}$ and $\mathrm{D}_{\mathrm{L}, 2}$ according to
$D_{L, x}=D_{L, x, 0} f(h)$
$\mathrm{D}_{\mathrm{L}, \mathrm{z}}=\mathrm{D}_{\mathrm{L}, \mathrm{z}, \mathrm{o}} \mathrm{f}(\mathrm{h})$
where
$D_{L, x, 0} \quad$ basic diffusion coefficient for root growth in the x direction $\quad L^{2} T^{-1}$
$D_{L, z, 0} \quad$ basic diffusion coefficient for root growth in the z direction $\quad L^{2} T^{-1}$
$\mathrm{f}(\mathrm{h}) \quad$ reduction function
The reduction function $\mathrm{f}(\mathrm{h})$, where h is the pressure head, consist of tabulated data on h and the reduction factor $f(\mathrm{~h})$ in the range [0,1]. The simulation program uses linear interpolation for intermediate values of h. In Table 11-1 an example of $f(\mathrm{~h})$ is given.

Table 13-1. E x ample of reduction function $f(h)$ (as used in E q. (11-3)).

h	$\mathrm{f}(\mathrm{h})$
-100000	0
-10000	0
-1000	1
-10	1
0	0
1000	0

11.4 Input rate of roots

The input rate of root length density $Q_{L, \text {, }}$ for each of the CVs is computed from the total input of root dry mass per time step and the location in the soil where root mass origins, i.e. mostly at the soil surface at the plant location; another location may be at a certain depth where roots originate at bulbs. So, for most $C V s Q_{L, I, J}$ will be zero as no roots originate at these CVs.

Now we only have to transform root mass input to root length input. This is done according to

$$
\begin{equation*}
Q_{L}(x, z, t)=M_{r}(x, z, t) \frac{1}{\pi R_{0}^{2} \rho_{r} D M_{r}} \frac{A}{V} \tag{11-4}
\end{equation*}
$$

where
$Q_{L} \quad$ input rate of roots due to growth $\quad \mathrm{LL}^{-3} \mathrm{~T}^{-1}$
$\mathrm{M}_{\mathrm{r}} \quad$ rate of dry mass input $\mathrm{ML}^{-2} \mathrm{~T}^{-1}$
R_{0} root radius L
$\rho_{\mathrm{r}} \quad$ bulk density of the root $\quad \mathrm{ML}^{-3}$
$\mathrm{DM}_{\mathrm{r}} \quad$ dry matter content of root $\quad \mathrm{MM}^{-1}$
A surface area occupied by the plant L^{2}
V sum of volumes of all CVs where root input occurs L^{3}

The parameters $R_{0}, \rho_{r}, D M_{r}, A$, and V are constants, and M_{r} is the time-varying root input parameter that should be supplied by some plant growth model.

11.5 Fitting parameters

A fitting program is available from the authors that fits the parameters $D_{L, x, 0}, D_{L,, 0,0}$ and λ_{L} to measured L_{rv} profiles, e.g. as obtained from needle-boards taken from the soil.

11.6 References

De Willigen P., M. Heinen, A. Mollier and M. van Noordwijk, 2001. Two dimensional growth of a root system described as diffusion. I. Analytical solutions. In prep.

12 Nitrification and denitrification module NITDEN

Sjaak Conijn and Marius Heinen

12.1 Introduction

A subroutine has been added to FUSSIM2 that simulates NITrification and DENitrification (NITDEN). This subroutine was used to simulate the dynamics in conversion and production rates of ammonium and nitrate in the soil and the gaseous losses of N_{2} and $\mathrm{N}_{2} \mathrm{O}$ due to denitrification from grassland. Most of the underlying equations have been taken from Bril et al. (1994). Below the relevant aspects will be briefly described. The reader is referred to chapter 15 'U ser's G uide' to see the structure of the input file and some typical values and ranges for values of the parameters used below.

12.2 Nitrification

The conversion of ammonium through nitrification is given by

$$
\begin{equation*}
\frac{\mathrm{dNH}_{4}^{+}}{\mathrm{dt}}=\mathrm{f}_{\mathrm{W}, 1} \mathrm{f}_{\mathrm{T}, 1} \mathrm{f}_{\mathrm{pH}, 1} \mathrm{f}_{\mathrm{CEC}} \frac{\mathrm{NH}_{4}^{+}}{\mathrm{n}_{1}+\left(\frac{10^{3} \mathrm{NH}_{4}^{+}}{14 \mathrm{M}_{\mathrm{ws}}}\right)^{2}} \tag{12-1}
\end{equation*}
$$

where

NH_{4}^{+}	ammonium concentration	$\mathrm{mg} \mathrm{cm}^{-3}$ (soil)
t	time	d
$\mathrm{M}_{\text {ws }}$	mass of wet soil	$\mathrm{g} \mathrm{cm}^{-3}$ (soil)
14	molar mass of nitrogen	$\mathrm{g} \mathrm{mol}^{-1}$
10^{3}	conversion factor	$\mathrm{g} \mathrm{kg}^{-1}$
n_{1}	parameter used to calculate a multiplication factor which represents the effect of the NH_{4} concentration in the soil on nitrification rate	
$\mathrm{mmol}^{2} \mathrm{~kg}^{-2}$		
(wet soil)		

The functional relationships f are explained below. The effect of soil water content via water filled pore space WFPS (-) on nitrification is given by the functional relationship $f_{w, 1}$

$$
\begin{equation*}
\mathrm{f}_{\mathrm{W}, 1}=\operatorname{MAX}\left[0,\left(\sin \left(\pi \mathrm{WFPS}^{\mathrm{n}_{2}}\right)\right)^{\mathrm{m}_{3}}\right] \tag{12-2}
\end{equation*}
$$

where
$n_{2} \quad$ curve shape parameter for the effect of water filled pore space on nitrification rate that determines the value of the optimum W FPS, where $f_{w, 1}=1$
$\mathrm{n}_{3} \quad$ curve shape parameter for the effect of water filled pore space on nitrification rate that determines the area underneath the optimum curve

The effect of soil temperature $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ on nitrification is given by the functional relationship $\mathrm{f}_{\mathrm{T}, 1}$

$$
\mathrm{f}_{\mathrm{T}, 1}= \begin{cases}0 & \mathrm{~T}<0 \tag{12-3}\\ \frac{\mathrm{n}_{4} \mathrm{~T}^{\mathrm{n}_{5}}}{1+\mathrm{n}_{6} \mathrm{~T}^{\mathrm{n}_{7}}} & \mathrm{~T} \geq 0\end{cases}
$$

where
$n_{4,5,6,7} \quad$ curve shape parameters
The effect of soil pH on nitrification is given by the functional relationship $f_{\mathrm{pH}, 1}$

$$
\begin{equation*}
\mathrm{f}_{\mathrm{pH}, 1}=\frac{1}{1+\mathrm{n}_{8} 10^{-\mathrm{pH}}} \tag{12-4}
\end{equation*}
$$

where
$\mathrm{n}_{8} \quad$ curve shape parameter for the effect of pH on nitrification rate, that determines the value of the pH , where $\mathrm{f}_{\mathrm{pH}, 1}=0.5$

The effect of cation exchange capacity of the soil CEC $\left(\mathrm{cmol}^{+} \mathrm{kg}^{-1}\right)$ on nitrification is given by the functional relationship $\mathrm{f}_{\mathrm{CEC}}$

$$
\begin{equation*}
\mathrm{f}_{\mathrm{CEC}}=\mathrm{n}_{9}-\mathrm{n}_{10} \log (\mathrm{CEC}) \tag{12-5}
\end{equation*}
$$

where
$\mathrm{n}_{9} \quad$ intercept of relationship between $\mathrm{f}_{\text {CEC }}$ and \log
(CEC)
slope of relationship between $f_{C E C}$ and \log (CEC)
$\mathrm{mmol}^{2} \mathrm{~kg}^{-2}$ (wet soil) d^{-1}
$\mathrm{n}_{10} \quad$ slope of relationship between $\mathrm{f}_{\mathrm{CEC}}$ and \log

Nitrification of ammonium produces not only NO_{3}, but also $\mathrm{N}_{2} \mathrm{O}$. This has been modeled by using a dimensionless partitioning factor PF_{1}, which is described as a function of soil W FPS:
$P F_{1}= \begin{cases}n_{11} & \text { WFPS }<n_{13} \\ n_{11}+n_{12}\left(\frac{\text { WFPS }-n_{13}}{1-n_{13}}\right)^{n_{14}} & \text { WFPS } \geq n_{13}\end{cases}$
where
$\mathrm{n}_{11} \quad$ minimum fraction of total nitrification that is converted into $\mathrm{N}_{2} \mathrm{O} \quad-$
n_{12} maximum fraction of total nitrification that is converted into $\mathrm{N}_{2} \mathrm{O}$
$n_{13} \quad$ W FPS threshold value below which the effect of W FPS
on $\mathrm{N}_{2} \mathrm{O}$ production
from nitrification equals zero
$\mathrm{n}_{14} \quad$ curve shape parameter that determines the steepness of the curve relating the fraction converted into $\mathrm{N}_{2} \mathrm{O}$ to W FPS
PF_{1} gives the part of the total nitrification of equation 12-1 that is converted into $\mathrm{N}_{2} \mathrm{O}$. The production of NO_{3} from nitrification is then given by the product of total nitrification and ($1-\mathrm{PF}_{1}$).

In the above equations M_{wy} W FPS and T are dynamically computed by FUSSIM2. $\mathrm{pH}, \mathrm{CEC}$ and n_{1} through n_{14} are all assumed constant and taken from the input file.

12.3 Denitrification

Decay of organic matter in the soil by aerobic micro-organisms requires oxygen. At low O_{2} levels in the soil, the oxygen can also be provided by NO_{3} and $\mathrm{N}_{2} \mathrm{O}$. In this process electrons are transferred from the organic matter to NO_{3} and $\mathrm{N}_{2} \mathrm{O} . \mathrm{NO}_{3}$ is then denitrified to $\mathrm{N}_{2} \mathrm{O}$ and $\mathrm{N}_{2} \mathrm{O}$ is denitrified to N_{2}. Total denitrification, expressed as total electron production accepted by either NO_{3} or $\mathrm{N}_{2} \mathrm{O}$, is given by

$$
\begin{equation*}
\frac{\mathrm{de}_{\mathrm{p}}}{\mathrm{dt}}=\mathrm{f}_{\mathrm{W}, 2} \mathrm{f}_{\mathrm{T}, 2} D \operatorname{PR} \frac{\left(0.8 \frac{\mathrm{NO}_{3}^{-}}{14 \mathrm{M}_{\text {ws }}}+0.4 \frac{\mathrm{~N}_{2} \mathrm{O}}{28 \mathrm{M}_{\text {ws }}}\right)}{\mathrm{d}_{1}+\left(0.8 \frac{\mathrm{NO}_{3}^{-}}{14 \mathrm{M}_{\text {ws }}}+0.4 \frac{\mathrm{~N}_{2} \mathrm{O}}{28 \mathrm{M}_{\text {ws }}}\right)} \tag{12-7}
\end{equation*}
$$

where

e_{p}	electrons produced	mmol electron cm^{-3} (soil) d^{-1}
$\mathrm{NO}_{3}{ }^{-}$	nitrate concentration	$\mathrm{mg} \mathrm{cm}{ }^{-3}$ (soil)
$\mathrm{N}_{2} \mathrm{O}$	total nitrous oxide concentration	$\mathrm{mg} \mathrm{cm}^{-3}$ (soil)
D PR	potential denitrification rate of the soil	mmol electron cm^{-3} (soil) d^{-1}
14	molar mass of N	$\mathrm{g} \mathrm{mol}^{-1}$
28	$=2 * 14$	$\mathrm{g} \mathrm{mol}^{-1}$
0.4	electron equivalent ratio of $\mathrm{N}_{2} \mathrm{O}$	
0.8	electron equivalent ratio of NO_{3}	
d_{1}	amount of source in terms of both NO for their electron-equivalents, at which equals half its maximum rate at optima denitrification (the half-value constant in a Monod function)	$\mathrm{N}_{2} \mathrm{O}$ corrected denitrification rate ditions for mol $\mathrm{N} \mathrm{kg}^{1}$ (wet soil)

D PR is defined as the maximum denitrification at a reference temperature of $20^{\circ} \mathrm{C}$ in the absence of O_{2} and unlimited supply of NO_{3}. It is thus strongly related to the decomposition rate of organic matter in the soil. Via a small adaptation of NITDEN CO_{2} production from a module that simulates organic matter decay can be used instead of DPR. The dynamics in the soil organic matter, e.g. by using organic fertilizers, then also determines the denitrification rates.

The effect of soil water content via water filled pore space WFPS (-) on total denitrification is given by the functional relationship $f_{w, 2}$

$$
\mathrm{f}_{\mathrm{W}, 2}= \begin{cases}0 & \text { WFPS }<\mathrm{d}_{2} \tag{12-8}\\ \left(\frac{\mathrm{WFPS}-\mathrm{d}_{2}}{1-\mathrm{d}_{2}}\right)^{\mathrm{d}_{3}} & \text { WFPS } \geq \mathrm{d}_{2}\end{cases}
$$

where
$\mathrm{d}_{2} \quad$ W FPS threshold value below which the denitrification rate equals zero
$d_{3} \quad$ curve shape parameter that determines the steepness of the curve for the effect of W FPS on denitrification rate

The effect of soil temperature T $\left({ }^{\circ} \mathrm{C}\right)$ on total denitrification is given by the functional relationship $\mathrm{f}_{\mathrm{T}, 2}$

$$
\mathrm{f}_{\mathrm{T}, 2}= \begin{cases}0 & \mathrm{~T}<0 \tag{12-9}\\ \frac{\mathrm{~d}_{4} \mathrm{~T}^{\mathrm{d}_{5}}}{\left(1+\mathrm{d}_{6} \mathrm{~T}^{\mathrm{d}}{ }_{7}\right) \mathrm{f}_{\mathrm{T}=20,2}} & \mathrm{~T} \geq 0\end{cases}
$$

where
$\mathrm{d}_{4,5,6,7} \quad$ curve shape parameters
In the denitrifcation process NO_{3} and $\mathrm{N}_{2} \mathrm{O}$ compete for the electrons produced during decay of organic matter. Reduction of NO_{3} is given by

$$
\begin{equation*}
\frac{\mathrm{dNO}_{\overline{3}}}{\mathrm{dt}}=\frac{\mathrm{NO}_{\overline{3}}}{\left(\frac{4 \mathrm{NO}_{3}^{-}}{14}+\frac{2 \mathrm{~N}_{2} \mathrm{O}_{2}}{28} \mathrm{~d}_{8} \mathrm{f}_{\mathrm{pH}, 2}\right)} \frac{\mathrm{de}_{\mathrm{p}}}{\mathrm{dt}} \tag{12-10}
\end{equation*}
$$

where
2 electron equivalent ratio of $\mathrm{N}_{2} \mathrm{O}$
4 electron equivalent ratio of NO_{3}
$d_{8} \quad$ parameter that accounts for the sink strength of $\mathrm{N}_{2} \mathrm{O}$ in consuming electrons relative to that of NO_{3}
and reduction of $\mathrm{N}_{2} \mathrm{O}$ is given by

$$
\begin{equation*}
\left(\frac{\mathrm{dN}_{2} \mathrm{O}}{\mathrm{dt}}\right)_{\mathrm{R}}=\frac{\mathrm{N}_{2} \mathrm{O}_{8} \mathrm{f}_{\mathrm{pH}, 2}}{\left(\frac{4 \mathrm{NO}_{3}^{-}}{14}+\frac{2 \mathrm{~N}_{2} \mathrm{O}}{28} \mathrm{~d}_{8} \mathrm{f}_{\mathrm{pH}, 2}\right)} \frac{\mathrm{de}_{\mathrm{p}}}{\mathrm{dt}} \tag{12-11}
\end{equation*}
$$

The effect of soil pH on reduction of NO_{3} and $\mathrm{N}_{2} \mathrm{O}$ is given by the functional relationship $\mathrm{f}_{\mathrm{pH}, 2}$

$$
\begin{equation*}
\mathrm{f}_{\mathrm{pH}, 2}=\mathrm{MAX}\left[\mathrm{~d}_{11}, 10^{\frac{\mathrm{pH}-\mathrm{d}_{9}}{\mathrm{~d}_{10}}}\right] \tag{12-12}
\end{equation*}
$$

where
$\mathrm{d}_{9} \quad \mathrm{pH}$ value at which the factor for the sink strength of $\mathrm{N}_{2} \mathrm{O}$ in consuming electrons relative to that of NO_{3} equals d_{8}
$\mathrm{d}_{10} \quad$ curve shape parameter
$d_{11} \quad$ minimum value for the multiplication factor for the effect of pH on the sink strength of $\mathrm{N}_{2} \mathrm{O}$ in consuming electrons relative to that of NO_{3}

The $\mathrm{N}_{2} \mathrm{O}$ production from denitrification of NO_{3} is given by $\mathrm{dNO}_{3} /$ dt and the N_{2} production equals $\left(\mathrm{dN}_{2} \mathrm{O} / \mathrm{dt}\right)_{\mathrm{R}}$.

In the above equations $M_{w s}$ WFPS and T are used as in the equations for nitrification. D PR, pH and d_{1} through d_{11} are all assumed constant and taken from the input file.

$12.4 \quad \mathrm{~N}_{2} \mathrm{O}$ emission

As gas transport is not modelled, emission of $\mathrm{N}_{2} \mathrm{O}$ from the soil surface towards the atmosphere is estimated as follows

$$
\begin{equation*}
\left(\frac{d N_{2} \mathrm{O}}{\mathrm{dt}}\right)_{\mathrm{E}}=\mathrm{EF}\left(\frac{\left(1-W F P S^{\mathrm{e}_{1}}\right)}{\phi_{\mathrm{a}}} \mathrm{~N}_{2} \mathrm{O}-\mathrm{N}_{2} \mathrm{O}_{\mathrm{air}}\right) \tag{12-13}
\end{equation*}
$$

where
$\mathrm{N}_{2} \mathrm{O}_{\text {air }} \quad \mathrm{N}_{2} \mathrm{O}$ concentration of the atmosphere
$\mathrm{mg} \mathrm{cm}{ }^{3}$ (air)
$\phi_{\mathrm{a}} \quad$ volumetric gas content
$\mathrm{cm}^{3} \mathrm{~cm}^{-3}$ (soil)
e_{1} parameter used in calculating the $\mathrm{N}_{2} \mathrm{O}$ concentration in soil air by partitioning of total $\mathrm{N}_{2} \mathrm{O}$ between soil water and soil air as a function of water filled pore space

No intrusion from atmosphere to the soil has been considered in NITDEN. The emission factor EF (d^{-1}) is given by a sigmoidal function

$$
\begin{equation*}
E F=\frac{e_{4}}{1+\left(\frac{W F P S}{e_{2}}\right)^{e_{3}}} \tag{12-14}
\end{equation*}
$$

where
$e_{2} \quad$ WFPS at which EF equals half of its maximum value e_{4}
$e_{3} \quad$ curve shape parameter for the function relating E F to W FPS
$\mathrm{e}_{4} \quad$ maximum fraction of the difference in $\mathrm{N}_{2} \mathrm{O}$ concentration
between soil air and atmosphere that leaves the soil as $\mathrm{N}_{2} \mathrm{O}$ emission at W FPS $=0$
ϕ_{a} and W F PS are dynamically computed by FUSSIM2. $\mathrm{N}_{2} \mathrm{O}_{\text {air }}$ and e_{1} through e_{4} are all assumed constant and taken from the input file.

12.5 $\quad \mathrm{N}_{2} \mathrm{O}$ dynamics in the soil

The governing $\mathrm{N}_{2} \mathrm{O}$ equation describes the net $\mathrm{N}_{2} \mathrm{O}$ rate of change in the soil as the sum of two $\mathrm{N}_{2} \mathrm{O}$ production processes minus the sum of two $\mathrm{N}_{2} \mathrm{O}$ consumption processes. The production processes are nitrification of NH_{4} to $\mathrm{N}_{2} \mathrm{O}$ and reduction of NO_{3} to $\mathrm{N}_{2} \mathrm{O}$, and the two consumption processes are $\mathrm{N}_{2} \mathrm{O}$ reduction to N_{2} and $\mathrm{N}_{2} \mathrm{O}$ emission. The governing equation reads

$$
\begin{equation*}
\underbrace{\frac{\mathrm{dN}}{2} \mathrm{O}}_{\text {net } N_{2} \mathrm{O} \text { production }} \underbrace{\mathrm{PF}_{1} \frac{\mathrm{dNH}_{4}^{+}}{\mathrm{dt}}}_{\text {nitrificat ion }}+\underbrace{\frac{\mathrm{dNO}_{3}^{-}}{\mathrm{dt}}}_{\mathrm{NO}_{3} \text { reduction }}-\underbrace{\left(\frac{\mathrm{dN}}{2} \mathrm{O}\right.}_{\mathrm{N}_{2} \mathrm{O} \text { reduction }})_{\mathrm{N}_{2} \mathrm{O} \text { emission }}-\underbrace{\left(\frac{\mathrm{dN}}{2} \mathrm{O}\right.}_{\mathrm{E}})_{\mathrm{dt}} \tag{12-15}
\end{equation*}
$$

12.6 Numerical solution

Equation (12-15) is solved numerically using a semi-implicit Euler scheme. Our experience is that using explicit Euler resulted in very small time-step requirements. The semi-implicit Euler scheme reads (Press et al, 1992; their Eq. (16.6.17))

$$
\begin{equation*}
\mathrm{y}^{\mathrm{t}+\Delta \mathrm{t}}=\mathrm{y}^{\mathrm{t}}+\frac{\Delta \mathrm{t} \frac{\mathrm{dy}^{\mathrm{t}}}{\mathrm{dt}}}{1-\Delta \mathrm{t} \frac{\mathrm{dy}^{\mathrm{t}} / \mathrm{dt}}{\mathrm{dy}}} \tag{12-16}
\end{equation*}
$$

The derivative dy/ dt is computed according to Eqs. (12-1)-(12-15), where y represents the $\mathrm{N}_{2} \mathrm{O}$ concentration in the soil. The derivative of dy/dt to y is numerically estimated by computing dy/ dt for two values of $\mathrm{N}_{2} \mathrm{O}$, one somewhat less than current $\mathrm{N}_{2} \mathrm{O}$ and one somewhat larger than current $\mathrm{N}_{2} \mathrm{O}$:

$$
\begin{equation*}
\frac{d y^{\mathrm{t}} / \mathrm{dt}}{\mathrm{dy}^{\mathrm{t}}}=\frac{\left.(\mathrm{dy} / \mathrm{dt})\right|_{\mathrm{N}_{2} \mathrm{O}(1+\alpha)}-\left.(\mathrm{dy} / \mathrm{dt})\right|_{\mathrm{N}_{2} \mathrm{O}(1-\alpha)}}{2 \alpha \mathrm{~N}_{2} \mathrm{O}} \tag{12-17}
\end{equation*}
$$

A typical value for α equals 0.01 .

12.7 The input file N ITDEN IN.DAT

In chapter 15 (section 15.4.17) an example of the input file NITDENIN.DAT is presented. Here we indicate which parameter of the Eqs. (12-1) through (12-14) corresponds to which variable in this file (Table 12-1).

Table 12-1 Correspondenoe between variables used in text and the parameter names as ocourring in the data file N ITD E N IN .D A T. F or completeness, the units of the variables are given as well.

Variable in text	Name in NITDENIN.DAT	Units	V ariable in text	Name in NITDENIN.DAT	Units
n_{1}	NitSourceParam1	$\begin{aligned} & \mathrm{mmol}^{2} \mathrm{~kg}^{-2} \\ & \text { (wet soil) } \end{aligned}$	d_{1}	DenSourceParam1	mol kg-1 (wet soil)
n_{2}	NitWaterParam1	-	d_{2}	DenWaterParam1	-
n_{3}	NitWaterParam2	-	d3	DenWaterParam2	-
n4	NitTempParam1	-	d_{4}	DenTempParam1	-
n5	NitTempParam2	-	d_{5}	DenTempParam2	-
n6	NitTempParam3	-	d6	DenTempParam3	-
n_{7}	NitTempParam4	-	d_{7}	DenTempParam4	-
n8	NitpHParam1	-	d_{8}	DenElectrParam1	-
n_{9}	NitCECParam1	$\begin{aligned} & \mathrm{mmol}^{2} \mathrm{~kg}^{-2} \\ & \text { (wet soil) } \mathrm{d}^{-1} \end{aligned}$	d9	DenpHParam1	-
n_{10}	NitCECParam2	$\begin{aligned} & \mathrm{mmol}^{2} \mathrm{~kg}^{-2} \\ & \text { (wet soil) } \mathrm{d}^{-1} \end{aligned}$	d_{10}	DenpHParam2	-
n_{11}	NitPartParam1	-	d_{11}	DenpHParam3	-
n_{12}	NitPartParam2	-	e_{1}	DenEmisParam4	-
n_{13}	NitPartParam3	-	e_{2}	DenEmisParam1	-
n_{14}	NitPartParam4	-	e_{3}	DenEmisParam2	-
			e_{4}	DenEmisParam3	d^{-1}

12.8 Acknowledgements

This module was developed with financial support from the COGANOG project (EU FAIR3 CT96-1920).

12.9 References

Bril J., H.G. van Faassen and H.Klein Gunnewiek, 1994. Modelling $\mathrm{N}_{2} \mathrm{O}$ emission from grazed grassland. Report 24, DLO Research Institute for Agrobiology and Soil Fertility, Haren, The Netherlands, 45 p.
Press W.H., S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, 1992. Numerical recipes in Fortran 77. Second edition. The art of scientific computing. Cambridge University Press.

13 Soil temperature (1-D)

Marius Heinen

13.1 Introduction

Soil temperature is one of the key parameters in nitrogen mineralization and (de)nitrification. Therefore, it is decided to include soil temperature dynamics in FUSSIM2. For simplicity, we consider here one-dimensional temperature profiles in the soil.

13.2 Heat conduction

The governing equation for heat conduction is given by

$$
\begin{equation*}
\frac{\partial T}{\partial t}=\frac{\partial}{\partial z}\left(D_{h} \frac{\partial T}{\partial z}\right) \tag{13-1}
\end{equation*}
$$

where
T temperature ${ }^{\circ} \mathrm{C}$
t time d
z vertical coordinate cm
$D_{h} \quad$ heat diffusivity $\mathrm{cm}^{2} \mathrm{~d}^{-1}$
D_{h} is the ratio of the heat conductivity $\mathrm{k}_{\mathrm{h}}\left(\mathrm{J} \mathrm{cm}^{-1} \mathrm{~d}^{-1}{ }^{0} \mathrm{C}^{-1}\right)$ and the volumetric heat capacity $\mathrm{C}_{\mathrm{h}}\left(\mathrm{J} \mathrm{cm}^{-3} \mathrm{C}^{-1}\right)$

$$
\begin{equation*}
D_{h}=\frac{k_{h}}{C_{h}} \tag{13-2}
\end{equation*}
$$

The properties $C_{h}, \mathrm{k}_{\mathrm{b}}$, and D_{h} are not constant, but depend on the composition of the porous medium; this will be discussed in a separate section below.

13.2.1 Integration of the heat conduction equation

Equation (13-1) is solved numerically, analogously to the solution of the water movement equation in FUSSIM2; details of the solution procedure can be found in Heinen and de Willigen (1998). The left hand side of Eq. (13-1) is approximated by

$$
\begin{equation*}
\int_{x}^{x+\Delta x} \int_{y}^{y+\Delta y} \int_{z_{j-1}}^{z_{j}} \int_{t}^{t+\Delta t} \frac{\partial T}{\partial t} d t d z d y d x=\left[T_{J}^{t+\Delta t}-T_{J}^{t}\right] \Delta x \Delta y \Delta z_{J} \tag{13-3}
\end{equation*}
$$

The right hand side of Eq. (13-1) is approximated by

$$
\begin{align*}
& \int_{x}^{x+\Delta x} \int_{y}^{y+\Delta y} \int_{z_{j-1}}^{z_{j}} \int_{\mathrm{t}}^{\mathrm{t}+\Delta t} \frac{\partial}{\partial t}\left(D_{h} \frac{\partial T}{\partial t}\right) \operatorname{dtdzdydx}=\left[D_{h} \frac{\partial T}{\partial t}\right]_{z_{j-1}}^{z_{j}} \Delta x \Delta y \Delta t \\
& =\left[\left.D_{h, z_{j}} \frac{\partial T}{\partial t}\right|_{z_{j}}-\left.D_{h, z_{j-1}} \frac{\partial T}{\partial t}\right|_{z_{j-1}}\right] \Delta x \Delta y \Delta t \tag{13-4}\\
& =\left[D_{h, z_{j}} \frac{T_{J+1}^{t+\Delta t}-T_{J}^{t+\Delta t}}{\Delta z_{j}}-D_{h, z_{j-1}} \frac{T_{J}^{t+\Delta t}-T_{J-1}^{t+\Delta t}}{\Delta z_{j-1}}\right] \Delta x \Delta y \Delta t
\end{align*}
$$

The heat diffusivities at the control volume (CV) boundaries are obtained from the D_{h} values at the grid points through geometric averaging

$$
\begin{align*}
& D_{h, z_{j}}=D_{J}^{1-w} D_{J+1}^{w} \tag{13-5}\\
& D_{h, z_{j-1}}=D_{J-1}^{1-w} D_{J}^{w}
\end{align*}
$$

The distance between the grid points is given by

$$
\begin{align*}
& \Delta \mathrm{z}_{\mathrm{j}}=\left(\Delta \mathrm{z}_{\mathrm{J}}+\Delta \mathrm{z}_{\mathrm{J}+1}\right) / 2 \\
& \Delta \mathrm{z}_{\mathrm{j}-1}=\left(\Delta \mathrm{z}_{\mathrm{J}-1}+\Delta \mathrm{z}_{\mathrm{J}}\right) / 2 \tag{13-6}
\end{align*}
$$

Rearranging gives the following approximation of Eq. (13-1)

$$
\begin{equation*}
A_{J} T_{J}^{t+\Delta t}-A_{S, J} T_{J+1}^{t+\Delta t}-A_{N, J} T_{J-1}^{t+\Delta t}=b_{J} \tag{13-7}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{A}_{\mathrm{J}}=\mathrm{A}_{\mathrm{S}, \mathrm{~J}}+\mathrm{A}_{\mathrm{N}, \mathrm{~J}}+\frac{\Delta \mathrm{x} \Delta \mathrm{y} \Delta \mathrm{z}_{\mathrm{J}}}{\Delta \mathrm{t}} \tag{13-8}
\end{equation*}
$$

and

$$
\begin{align*}
& \mathrm{A}_{\mathrm{S}, \mathrm{~J}}=\mathrm{D}_{\mathrm{h}, \mathrm{z}_{\mathrm{j}}} \frac{\Delta \mathrm{x} \Delta \mathrm{y}}{\Delta \mathrm{z}_{\mathrm{j}}} \tag{13-9}\\
& \mathrm{~A}_{\mathrm{N}, \mathrm{~J}}=\mathrm{D}_{\mathrm{h}, \mathrm{z}-1} \frac{\Delta \mathrm{x} \Delta \mathrm{y}}{\Delta \mathrm{z}_{\mathrm{j}-1}}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{b}_{\mathrm{J}}=\frac{\Delta \mathrm{x} \Delta \mathrm{y} \Delta \mathrm{z}_{\mathrm{J}}}{\Delta \mathrm{t}} \mathrm{~T}_{\mathrm{J}}^{\mathrm{t}} \tag{13-10}
\end{equation*}
$$

Setting-up Eq. (13-7) for all CV's yields a matrix problem

$$
\begin{equation*}
\mathbf{A T}=\mathrm{b} \tag{13-11}
\end{equation*}
$$

For the current one-dimensional problem the coefficient matrix \mathbf{A} is a three-banded matrix. The solution of Eq. (13-11) can be simply obtained using the Thomas Algorithm.

13.2.2 Boundary condition

We use only Dirichlet boundary conditions at the soil surface and at great depth. At the soil surface we set $\mathrm{T}=\mathrm{T}_{\text {air }}$ and at great depth we set T equal to the yearly average at that depth. The Dirichlet condition is modeled as follows. The solution given above is used, but the A and b parameters are given by

$$
\begin{align*}
& \mathrm{b}_{\mathrm{J}}=\mathrm{LT}_{\mathrm{b}} \\
& \mathrm{~A}_{\mathrm{J}}=\mathrm{L} \tag{13-12}
\end{align*}
$$

where L is some large number, e.g. $L=10^{25}$. Since A and b are so much larger than the other parameters, the solution will yield $T=T_{b}$, where T_{b} is the prescribed temperature at the boundary.

13.3 Verification

The solution procedure is verified by comparing simulated temperature profiles with analytical solutions.

13.3.1 Case 1

The transient temperature distribution in a finite cylinder with unit initial T, zero T at the boundaries and constant D_{h} is given by (Carslaw and Jaeger, 1959; see also example 6.1 of Heinen and de Willigen, 1998)
$T(z, t)=\frac{4}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)} \exp \left(-D_{h} \frac{(2 n+1)^{2} \pi^{2}}{Z^{2}} t\right) \cos \left(\frac{(2 n+1) \pi}{Z} z\right)$
where Z is the length of the cylinder.

Figure 13-1 shows the comparison between simulated (using constant $\Delta t=10^{-3} \mathrm{~d}$) and analytical solutions. In Table 13-1 the difference (sum of squared differences) between simulated and analytical solutions is given for different time steps used in the numerical solution procedure. Parameters used: 20 layers of unit thickness, $D_{h}=$ $724.11 \mathrm{~cm}^{2} \mathrm{~d}^{-1}$.

Figure 13-1. C omparison between simulated (mark ers) and analytical (lines) temperature profiles for case 1 at two times.

Table 13-1. Sum of squared differences (SSQ) between simulated and analytical solutions at times $t=0.1$ and 0.01 d for case 1. D ifferent time steps Δt were used: onstant $\left(\Delta t=\Delta t_{\text {max }}\right)$ or gradually increasing time steps (Δt $<\Delta t_{\text {max }}$) in which case Δt was gradually increased by a factor 1.1 until max imum allowable time step $\Delta t_{\text {max }}$ was reached.

$\Delta \mathrm{t}$	$\Delta \mathrm{t}_{\text {max }}$	SSQ, $\mathrm{t}=0.1 \mathrm{~d}$	SSQ, $\mathrm{t}=0.01 \mathrm{~d}$
10^{-1}	10^{-1}	5.810^{-1}	n.a.
10^{-2}	10^{-2}	9.310^{-3}	5.510^{-2}
10^{-3}	10^{-3}	2.210^{-5}	8.910^{-4}
10^{-4}	10^{-4}	2.410^{-5}	1.310^{-3}
10^{-5}	10^{-5}	3.410^{-5}	1.510^{-3}
10^{-6}	10^{-6}	3.510^{-5}	1.510^{-3}
10^{-2}	10^{-1}	1.710^{-2}	n.a.
10^{-3}	10^{-2}	2.610^{-3}	1.110^{-3}
10^{-4}	10^{-3}	1.810^{-5}	9.110^{-4}
10^{-5}	10^{-4}	2.410^{-5}	1.410^{-3}
10^{-6}	10^{-5}	3.410^{-5}	1.510^{-3}
10^{-6}	10^{-3}	1.710^{-5}	9.710^{-4}

13.3.2 Case 2

The transient temperature distribution in a finite cylinder with a parabolic initial T distribution, zero T at the boundaries, unit T at the center of the cylinder, and constant D_{h} is given by (Carslaw and Jaeger, 1959; see also example 6.1 of Heinen and de Willigen, 1998)

$$
\begin{equation*}
T(z, t)=\frac{4}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)} \exp \left(-D_{h} \frac{(2 n+1)^{2} \pi^{2}}{Z^{2}} t\right) \cos \left(\frac{(2 n+1) \pi}{Z} z\right) \tag{13-14}
\end{equation*}
$$

The initial T distribution is given by
$T(z)=\frac{(Z / 2)^{2}-(z-Z / 2)^{2}}{(Z / 2)^{2}}$
Figure 13-2 shows the comparison between simulated (using constant $\Delta t=10^{-3} \mathrm{~d}$) and analytical solutions. In Table 13-2 the difference (sum of squared differences) between simulated and analytical solutions is given for different time steps used in the numerical solution procedure. Parameters used: 20 layers of unit thickness, $D_{h}=$ $724.11 \mathrm{~cm}^{2} \mathrm{~d}^{-1}$.

Figure 13-2. C omparison between simulated (mark ers) and analytical (lines) temperature profiles for case 2 at two times.

Table 13-2. Sum of squared differences (SSQ) between simulated and analytical solutions at times $t=0.1$ and 0.01 d for case 2. Different time steps Δt were used: constant $\left(\Delta t=\Delta t_{\text {max }}\right)$ or gradually increasing time steps $(\Delta t$ $<\Delta \mathrm{t}_{\max }$) in which case $\Delta \mathrm{t}$ was gradually increased by a factor 1.1 until max imum allowable time step $\Delta \mathrm{t}_{\max }$ was reached.

$\Delta \mathrm{t}$	$\Delta \mathrm{t}_{\text {max }}$	SSQ, $\mathrm{t}=0.1 \mathrm{~d}$	SSQ, $\mathrm{t}=0.01 \mathrm{~d}$
10^{-1}	10^{-1}	3.910^{-1}	n.a.
10^{-2}	10^{-2}	7.110^{-3}	2.010^{-3}
10^{-3}	10^{-3}	8.810^{-5}	2.210^{-5}
10^{-4}	10^{-4}	2.510^{-6}	1.010^{-6}
10^{-5}	10^{-5}	6.510^{-7}	1.410^{-6}
10^{-6}	10^{-6}	5.410^{-7}	1.510^{-6}
10^{-2}	10^{-1}	1.310^{-2}	n.a.
10^{-3}	10^{-2}	2.310^{-3}	4.210^{-5}
10^{-4}	10^{-3}	8.110^{-5}	6.110^{-6}
10^{-5}	10^{-4}	2.410^{-6}	1.010^{-6}
10^{-6}	10^{-5}	6.510^{-7}	1.410^{-6}
10^{-6}	10^{-3}	7.910^{-5}	4.010^{-6}

13.3.3 Case 3

Although the changes in soil temperature do follow regular patterns, it is instructive to consider oscillating patterns; there are daily and annual cyclic patterns. We assume that at all depths in the soil T oscillates as a pure harmonic (sinusoidal) function of time around an average value. Despite T varies differently at different depths, we assume that at all depths the average T is the same, T_{ar} At the soil surface we assume a periodic (sinusoidal) variation of T with amplitude A_{0} and radial frequency ω, and at infinite depth T is constant and equal to $T_{a r}$. Under these circumstances Eq. (13-1) can be solved to yield (K oorevaar et al., 1983; Hillel, 1980)

$$
\begin{equation*}
T(z, t)=T_{a v}+A_{0} e^{-z / d} \sin (\omega t-z / d) \tag{13-16}
\end{equation*}
$$

where d is the damping depth defined as

$$
\begin{equation*}
d=\sqrt{\frac{2 \mathrm{k}_{\mathrm{h}}}{\omega \mathrm{C}_{\mathrm{h}}}}=\sqrt{\frac{2 \mathrm{D}_{\mathrm{h}}}{\omega}} \tag{13-17}
\end{equation*}
$$

The radial frequency ω is given as

$$
\begin{equation*}
\omega=\frac{2 \pi}{t_{c}} \tag{13-18}
\end{equation*}
$$

where t_{c} is the time needed to complete one cycle of the harmonic wave. Equation (13-16) is rewritten, such that $T=T_{a v}$ at day $t_{a y}$ yielding

$$
\begin{equation*}
T(z, t)=T_{a v}+A_{0} e^{-z / d} \sin \left(\omega\left(t-t_{a v}\right)-z / d\right) \tag{13-19}
\end{equation*}
$$

We used Eq. (13-19) analytical solution and compared it with simulated T profiles. We considered 1 year, i.e. $\mathrm{t}_{\mathrm{c}}=365 \mathrm{~d}$, $\mathrm{t}_{\mathrm{av}}=121$ (may l^{t}), $\mathrm{T}_{\mathrm{av}}=11.4^{\circ} \mathrm{C}, \mathrm{A}_{0}=8.4^{\circ} \mathrm{C}$, and a sand soil at (constant) 50% saturation with $\mathrm{k}_{\mathrm{h}}=1524.1 \mathrm{~J} \mathrm{~cm}^{-1} \mathrm{~d}^{-1} \mathrm{C}^{-1}$ and $\mathrm{C}_{\mathrm{h}}=$ $2.1 \mathrm{~J} \mathrm{~cm}^{-3}{ }^{0} \mathrm{C}^{-1}$. We considered a soil profile of 100 cm deep, divided in 20 layers of equal thickness. As boundary conditions for the simulation model we used T as computed from Eq. (13-19) at depths $z=0$ and $z=100 \mathrm{~cm}$. The simulation model used time steps of 1 d , which resulted in good comparison with the analytical solution (Figure 13-3). Note that for this particular exampled (annual) $=290 \mathrm{~cm}$, and the phase shift at depth z is given by $z /(d \omega)$; for example at $z=100 \mathrm{~cm}$ the phase shift is 20 d .

Figure 13-3. Simulated and analytical temperature profiles for case 3.

$13.4 \quad 0 \mathrm{~K}_{\mathrm{h}}, \mathrm{C}_{\mathrm{h}}$ and D_{h}

The thermal properties $\mathrm{k}_{\mathrm{b}} \mathrm{C}_{\mathrm{h}}$, and thus D_{h} are dependent on the composition of the porous medium (K oorevaar et al., 1983; Hillel, 1980).
C_{h} is defied as the change in heat content of a unit bulk volume of soil per unit change in temperature $\left(\mathrm{J} \mathrm{cm}^{-3} \mathrm{C}^{-1}\right) . \mathrm{C}_{\mathrm{h}}$ depends on the composition of the soil's solid phase (the mineral and organic constituents), bulk density, and the volumetric water content. It can be calculated as the sum of the heat capacities of the various components, weighted according to their volume fractions

$$
\begin{equation*}
C_{h}=f_{m} C_{m}+f_{0} C_{0}+\theta C_{w} \tag{13-20}
\end{equation*}
$$

where

f_{m}	volume fraction of minerals	$\mathrm{cm}^{3} \mathrm{~cm}^{-3}$
f_{0}	volume fraction of organic matter	$\mathrm{cm}^{3} \mathrm{~cm}^{-3}$
θ	volumetric water content	$\mathrm{cm}^{3} \mathrm{~cm}^{-3}$
C_{m}	heat capacity of minerals	$\mathrm{J} \mathrm{cm}^{-30} \mathrm{C}^{-1}$
C_{0}	heat capacity of organic matter	$\mathrm{J} \mathrm{cm}^{-3} \mathrm{C}^{-1}$
C_{w}	heat capacity of water	$\mathrm{J} \mathrm{cm}^{-3} \mathrm{C}^{-1}$

The contribution of air is disregarded, since it's density is much lower than that of water. Note that $f_{m}+f_{0}+\theta=1-f_{a^{\prime}}$ with f_{a} is the volume fraction of air. Values for the different C 's are listed in Table 13-3.

Table 13-3. Densities, thermal conductivities and heat capacities of different soil constituents (from Hillel, 1980, his Tables $12.1+12.2$).

Constituent	D ensity $\left(\mathrm{kg} \mathrm{m}^{-3}\right)$	Thermal conductivity k_{h} $\left(\mathrm{J} \mathrm{cm}^{-1} \mathrm{~d}^{-1} \mathrm{C}^{-1}\right)$	Heat capacity C_{h} $\left(\mathrm{J} \mathrm{cm}^{-30} \mathrm{C}^{-1}\right)$
Quartz	2660	7603.2	2.0
Other minerals (average)	2650	2505.6	2.0
Organic matter	1300	216.0	2.5
Water	1000	492.5	4.2
Air	1.25	21.6	0.00125

k_{h} is defined as the amount of heat transferred through a unit area in unit time under a unit temperature gradient. k_{h} depends on the soil's mineral composition and organic matter content as well as on the volume fractions of water and air (Table 133 gives k_{h} of different components). Since the water and air content vary with time, k_{h} varies with time. The variation in k_{h} is much greater than that of C_{h}; under field conditions C_{h} may change three- or fourfold, while k_{h} may change a hundredfold or more. Since k_{h} depends on size, shape and arrangement of the soil particles, it is difficult to compute k_{h} of a soil. We propose to determine k_{h} from tabulated data for different soil types. Van Wijk and de Vries (1963; quoted by Hillel, 1980) gave the data as presented in Table 13-4 (see also Figure 13-4).

Table 13-4. A verage thermal properties for three soil types (after van W ijk and de V ries (1963) as quoted by H illed in his Table 12.3).

Soil type	Porosity $\left(\mathrm{cm}^{3} \mathrm{~cm}^{-3}\right)$	Volumetric water content ($\mathrm{cm}^{3} \mathrm{~cm}^{-3}$)	D egree of saturation (-)	$\begin{aligned} & \text { Thermal } \\ & \text { conductivity }{ }_{\mathrm{h}} \\ & \left(\mathrm{~J} \mathrm{~cm}^{-1} \mathrm{~d}^{-1} \mathrm{~K}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { Heat capacity } \mathrm{C}_{\mathrm{h}} \\ & \left(\mathrm{~J} \mathrm{~cm}^{-3} \mathrm{~K}^{-1}\right) \\ & \hline \end{aligned}$
Sand	0.4	0.0	0.0	254.0	1.26
	0.4	0.2	0.5	1524.1	2.10
	0.4	0.4	1.0	1887.0	2.94
Clay	0.4	0.0	0.0	217.7	1.26
	0.4	0.2	0.5	1016.1	2.10
	0.4	0.4	1.0	1378.9	2.94
Peat	0.8	0.0	0.0	50.8	1.47
	0.8	0.4	0.5	254.0	3.15
	0.8	0.8	1.0	435.5	4.83

Figure 13-4. A verage thermal properties for three soil types as given in Table 13-4.

13.5 Implementation in FU SSIM2

The 1-D heat conduction equation is solved numerically according to Eqs. (13-7) -(13-12) using the Thomas Algorithm. The boundary condition at the soil surface can be either computed from Eq. (13-19) or be set equal to the average day temperature of the air (the average of measured minimum and maximum daily air temperature from meteorological data files). At the bottom of the soil profile the boundary condition is the temperature as computed from Eq.(13-19).

The thermal properties are computed s follows. For each soil layer C_{h} can be computed according to Eq.(13-20), or be linearly interpolated from data of Table 134. In the first case the dry bulk density $\rho_{\mathrm{d}}\left(\mathrm{kg} \mathrm{m}^{-3}\right)$ of the soil layer and the organic matter volume fraction $f_{0}\left(\mathrm{~cm}^{3} \mathrm{~cm}^{-3}\right)$ must be known. From these two data the volume fraction of the minerals $f_{m}\left(\mathrm{~cm}^{3} \mathrm{~cm}^{-3}\right)$ is computed as in which ρ_{0} and ρ_{m} are known from Table 13-3. Then for given θ, C_{h} can be computed from Eq. (13-20). In the second case, for each soil layer it must be indicated if it is a sand, a clay or a peat layer, and the porosity $\phi\left(\mathrm{cm}^{3} \mathrm{~cm}^{-3}\right)$ must be supplied. Then for given θ, the degree of saturation is given by θ / ϕ and C_{h} can be obtained through linear interpolation from Table 13-4.

$$
\begin{equation*}
\mathrm{f}_{\mathrm{m}}=\frac{\rho_{\mathrm{d}}-\rho_{0} \mathrm{f}_{0}}{\rho_{\mathrm{m}}} \tag{13-21}
\end{equation*}
$$

For k_{h} the second method of computing C_{h} is applied, i.e. the user supplies type of soil (sand, clay or peat) per layer and its porosity. At given $\theta, \mathrm{k}_{\mathrm{h}}$ is obtained through linear interpolation from data of Table 13-4).

The thermal diffusivity D_{h} of each layer is computed from C_{h} and k_{h} according to Eq. (13-2).

The top boundary condition is either computed from Eq. (13-19) or can be supplied by the user in the main module that is calling the routine STEMP. For example, the user may know any measured soil surface temperature, or may supply the average day temperature of the air. For the bottom boundary condition the choice exists as for the top boundary condition.

The main parameters needed by the routine STEMP should be supplied in a data file with the name STEMP.DAT, as described in chapter 16.

13.6 References

Carslaw H.S. and J.C. Jaeger, 1959. Conduction of heat in solids, $2^{\text {nd }}$ edition. Clarendon Press, Oxford.
Heinen M. and P. de Willigen, 1998. FUSSIM2. A two-dimensional simulation model for water flow, solute transport, and root uptake of water and nutrients in partly unsaturated porous media. QASA Report 20, 140 pp., AB-DLO and C.T. de Wit G raduate School of Production Ecology, Wageningen, The Netherlands.
Hillel D., 1980. Fundamentals of soil physics. Academic Press, New York, 413 p.
K oorevaar P., G. Menelik, and C. Dirksen, 1983. Elements of soil physics. Elsevier, Amsterdam.

14 Coupling with MOTOR

Peter de Willigen and Marius Heinen

14.1 Introduction

Solute transport of N in soil (or substrate) is described by a continuity equation. In such an equation sources and sinks must be considered, such as root uptake and sources or sinks due to organic matter dynamics. In this chapter we describe how the model FUSSIM2 (Heinen and de Willigen, 1998) and the model MOTOR (Rappoldt, 2001; Whitmore, 1995) are combined. The model FUSSIM2 describes water movement, solute transport and root uptake of water and solutes. The model MOTOR is a MOdule describing the Transformation of Organic matteR and nutrients in soil. We used the FSE version of Rappoldt (2001) which is totally based on the concepts of Whitmore (1995). Both versions of MOTOR produce identical results (Rappoldt, pers. comm.).

In this chapter we shortly describe how MOTOR is incorporated in FUSSIM2. Secondly we present an analytical solution for a set of transformations in order to verify the numerical solution of MOTOR.

14.2 Incorporation of MOTOR in FUSSIM2

The MOTOR version of Rappoldt (2001) is a stand-alone model. The computations are governed by a Runge-Kutta driver. For the incorporation in FUSSIM2 it was decided to retain as much as possible all statement of the driver and the model. The Runge-Kutta driver was changed such that it could be called from outside (i.e. from FUSSIM2) with four different tasks: initialization, dynamic, output, and terminal. Furthermore, it was essential that for several layers (or control volumes) in FUSSIM2 different transformation can be handled. In other words the states of MOTOR in the driver and the model must be stored. Storage is done in arrays, which are finally stored per layer (or control volume) in FUSSIM2. There are two ways of storage: a simple storage of the states only, and a complete storage of all model variables. The second method is the most flexible, but costs a large amount of memory storage (and some more computational time). The first method can only be used if for all layers considered the same transformations are used, the same transformation tables, etc., with the only difference the initial distribution of the pools.

O ther changes to the driver are: no regular output governed by the driver other than output during state and time events, time (begin and end of the simulation interval) is governed by the calling routine FUSSIM2, and the water content and temperature correction data come from the calling routine FUSSIM2.

14.3 Analytical solution to verify MOTOR

The numerical solution of the model MOTOR can be verified against an analytical solution. First we present the general procedure how an analytical solution can be obtained. Secondly, we present a comparison of the numerical and analytical solution for a simple example.

An analytical solution is presented for first-order kinetics. For N pools there are at maximum $N \mathrm{xN}$ transformations possible, but generally much less than NxN transformations occur. In general, the transformation of pool y_{i} is described by

$$
\begin{equation*}
\frac{\mathrm{dy}}{\mathrm{i}} \mathrm{dt}=\varepsilon_{\mathrm{i}, 1} \mathrm{k}_{\mathrm{i}, 1} \mathrm{y}_{1}+\ldots-\mathrm{k}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}+\ldots+\varepsilon_{\mathrm{i}, \mathrm{k}} \mathrm{k}_{\mathrm{i}, \mathrm{n}} \mathrm{y}_{\mathrm{n}} \tag{14-1}
\end{equation*}
$$

where
y pool ML^{-2} or MM^{-1}
k rate constant T^{-1}
$\varepsilon \quad$ efficiency parameter in the range [0,1]
Pool y_{i} increases due to production (+) from other pools, and decreases (-) due to transformation of y_{i} into another pool. Equation (14-1) can be set up for all N pools. The resulting set of equations can be represented by the following matrix problem

$$
\begin{equation*}
\frac{\mathrm{d} \mathbf{y}}{\mathrm{dt}}=\mathbf{k} \cdot \mathbf{y} \tag{14-2}
\end{equation*}
$$

where \mathbf{y} is the vector with the N pools, and \mathbf{k} is the coefficient matrix, which for, e.g., $\mathrm{N}=3$ has the form

$$
\mathbf{k}=\left(\begin{array}{ccc}
-\mathrm{k}_{1} & \mathrm{k}_{2,1} \varepsilon_{2,1} & \mathrm{k}_{3,1} \varepsilon_{3,1} \tag{14-3}\\
\mathrm{k}_{1,2} \varepsilon_{1,2} & -\mathrm{k}_{2} & \mathrm{k}_{3,2} \varepsilon_{3,2} \\
\mathrm{k}_{1,3} \varepsilon_{1,3} & \mathrm{k}_{2,3} \varepsilon_{2,3} & -\mathrm{k}_{3}
\end{array}\right)
$$

Equation (14-2) can be solved using Laplace transformation. The Laplace transformed version of Eq. (14-2) reads

$$
\begin{equation*}
\mathrm{sI} \cdot \mathbf{U}-\mathbf{y}_{0}=\mathbf{k} \cdot \mathbf{U} \tag{14-4}
\end{equation*}
$$

where
s the Laplace parameter
I the N xN identity matrix
$\mathbf{U} \quad$ the Laplace transformed y vector
$\mathbf{y}_{0} \quad$ the vector with initial y values.

Equation (14-4) can be solved for \mathbf{U} and the final solution \mathbf{y} is obtained via the Laplace back-transformation: $\mathbf{y}=\Lambda^{-1}(\mathbf{U})$.
$\mathbf{U}=(\mathrm{sI}-\mathbf{k})^{-1} \cdot \mathbf{y}_{0}$
We now consider an example for $\mathrm{N}=5$ with 8 transformations. The data are given in Table 14-1. The five pools are, respectively, biomass, active organic matter (ActiveOM), physically protected organic matter (PhysPOM), chemically protected organic matter (ChemPOM), and physically-chemically protected organic matter (PhChPOM). The coefficient matrix \mathbf{k} in this case reads (the columns represent the sources, and the rows represent the produce)

$$
\mathbf{k}=\left(\begin{array}{ccccc}
-810^{-3} & 1.210^{-2} & 0 & 1.210^{-6} & 0 \tag{14-6}\\
610^{-3} & -3.510^{-2} & 1.510^{-3} & 0 & 0 \\
0 & 1.510^{-2} & -1.510^{-3} & 0 & 0 \\
1.210^{-3} & 0 & 0 & -15.00210^{-2} & 1.510^{-3} \\
0 & 0 & 0 & 1.510^{-2} & -1.510^{-3}
\end{array}\right)
$$

Table 14-1. Transformation table for 5 pools of substrate indicating the produce, rate constant $\mathrm{k}\left(\mathrm{d}^{-1}\right)$, and the efficiency $\varepsilon(-)$.

Substrate	Produce	k	ε
Biomass	ActiveOM	6.010^{-3}	1.0
Biomass	ChemPOM	2.010^{-3}	0.6
ActiveOM	Biomass	2.010^{-2}	0.6
PhysPOM	ActiveOM	1.510^{-3}	1.0
ChemPOM	Biomass	2.010^{-6}	0.6
PhChPOM	ChemPOM	1.510^{-3}	1.0
ActiveOM	PhysPOM	1.510^{-2}	1.0
ChemPOM	PhChPOM	1.510^{-2}	1.0

The solution of Eq. (14-5), i.e. U, and the final solution \mathbf{y} were obtained using Mathematica (Wolfram, 1991). Figure 14-1 presents the excellent comparison between the numerically obtained (using FUSSIM2+MOTOR) and analytical solutions for the change of the five pools as a function of time. The results pertain to the carbon-fraction of the pools, with $\mathbf{y}_{0}=\{100,100,1000,4500,12000\}\left(\mathrm{kg} \mathrm{ha}^{-1}\right)$. It was taken care in the numerical model that ample nitrogen was available to let the transformations continue at the maximum rates.

Generally, the transformations are influenced by other external conditions, which in the example above were taken as optimal. The model MOTOR uses water content and temperature reductions on the rate constants, which, if constant, can be simple incorporated in the coefficient matrix \mathbf{k}.

Figure 14-1. Comparison between analytical (lines) and numerical (symbols) relative changes of the five pools $(\mathrm{y} / \mathrm{y})$ as a fundion of time.

14.4 References

Heinen, M., and P. de Willigen. 1998. FUSSIM2 A two-dimensional simulation model for water flow, solute transport and root uptake of water and nutrients in partly unsaturated porous media, Quantitative Approaches in Systems Analysis No. 20, DLO Research Institute for Agrobiology and Soil Fertility and the C.T. de Wit G raduate School for Production Ecology, Wageningen, The Netherlands, 140 p.

Rappoldt, C. 2001. Description of MOTOR under FSE4. Internal Report, Alterra, Wageningen, in preparation.
Whitmore, A.P. 1995. Modelling the mineralization and leaching of nitrogen from crop residues during three successive growing seasons. Ecological Modelling 81: 233-241.
Wolfram, S. 1991. Mathematica. A system for doing mathematics by computer, $2^{\text {nd }}$ ed. Addison-Wesley Publishing Company Inc., Redwood City, CA.

15 User's guide

Marius Heinen

15.1 Model structure

Heinen and de Willigen (1998) described the structure of the model in their chapter 5 'U ser's G uide'. Of course, the main structure has not been changed much. To facilitate the understanding for the programmer, all integrating routines have been structured so that they consist of the following main structure elements (if applicable): initialize, rate, integrate (or state), output, terminal. These have been adopted from the FSE2 structure of van Kraalingen (1995). Such a structure consisting of rate and integrate sections is applicable for explicit integrations. For the implicit solution of the Richards equation this seems not applicable. The integrate section for the solution of the Richards equation is skipped when the time step has not been changed between the rate and integrate steps. If however, the time step $\Delta \mathrm{t}$ is changed (has become lower), the new status for water is computed as
state $(t+\Delta t)=$ state $(t)+\operatorname{rate}(t+\Delta t) * \Delta t$,
in which the rate of change was stored in the rate section

15.2 FUSSIM2 and FSE4

Since the previous version of FUSSIM2 (Heinen and de Willigen 1998) FUSSIM2 has been used extensively coupled with plant growth models. For this purpose FUSSIM2 and the crop growth models were coupled (not integrated) under FSE4 (Rappoldt, 2001). This means that the old MAIN of FUSSIM2 has been adapted so that it can be used as a subroutine that is called by FSE4. It goes beyond the scope of this report to describe the new features as they are directly related to the structure of FSE4, which is described in Rappoldt (2001). It suffices to mention here that it is possible to run FUSSIM2 stand-alone, i.e. not coupled to any other model. Coupling to dummy crop growth models (e.g. models that supply data from tables, such as LAI, nutrient demand, root growth rates) is also possible (e.g. de Vos en Heinen, 1999; Assinck and Heinen, 2001). Experience has shown, so far, that it is not easy to have a single, unique main FUSSIM2 subroutine that can handle all cases of running stand-alone or coupled to different types of crop growth models. Therefore, this subroutine, with the name FUSSIM2FSE4, is to be adapted for each specific project. With FSE4 reruns (van Kraalingen and Rappoldt, 2000) are still possible (see section 15.6).

In FUSSIM2 there is a main focus upon the interaction of soil processes and root uptake. Therefore, it is likely that pure stand-alone simulation of soil processes
hardly will occur. In other words, coupling to dummy or real plant growth models will occur most frequently. However, as a special option, we have integrated a expolinear crop growth module and a nutrient demand module in FUSSIM2. These modules can be invoked by supplying some logicals and will be used each time step.

Evapotranspiration can be dealt with in several ways. The user can supply known potential transpiration T_{p} and potential evaporation $\mathrm{E}_{\mathrm{p}}($ ETMETH $=0$). Alternatively, FUSSIM2 can compute T_{p} and E_{p} according to three algorithms of van Kraalingen and Stol (1997) (ETMETH=1,2,3), or from user-supplied potential evpotranspiration rates ET_{0} (ETMETH=4). For ETMETH > 0, additional information is required (see description of input file WEATHER in section 15.4.6).

15.3 Comespondence between variables in files and variables in text

Table 15-1 lists the input parameters required by the simulation model and the (possible) output variables. Table 15-2 summarizes the correspondence between the names of variables in the different input files and the variables used in the text of this report.

Each printing time the following general information is written to the output file (see Section 15.5 for examples of output files).

W ater

- Total amount of water present in the flow domain, being the summed amounts present in each CV which is the volumetric water content in the CV times the volume of the $\mathrm{CV}(\mathrm{ml})$.
- The total change of water in the flow domain since $t=0$, which is due to net inflow of water across the boundaries (ml).
- The water balance error in absolute sense, defined as the current water storage minus the initial water storage minus the total change (ml).
- The relative balance error defined as the water balance error divided by the current water storage.
- The net amount that has entered the flow domain since $t=0$ across each of the four boundaries.
Solute
- Total amount of solute(s) present in the flow domain, being the summed amounts present in each CV ($\mathrm{kg} \mathrm{ha}^{-1}$).
- The total change of solute(s) in the flow domain since $t=0$, which is due to net inflow of solute(s) across the boundaries ($\mathrm{kg} \mathrm{ha}^{-1}$).
- Total required uptake of solute(s) by the crop since $t=0\left(\mathrm{~kg} \mathrm{ha}^{-1}\right)$
- Total uptake of solute(s) by the crop since $t=0\left(\mathrm{~kg} \mathrm{ha}^{-1}\right)$
- Total amount of fertilizer application since $t=0\left(\mathrm{~kg} \mathrm{ha}^{-1}\right)$
- The solute(s) balance error(s) in absolute sense, defined as the current solute(s) storage minus the initial solute(s) storage minus the total change of solute(s) (kg $\left.h a^{-1}\right)$.
- The relative balance error(s) defined as the balance divided by the current storage.
- The net amount that has entered the flow domain since $t=0$ across each of the four boundaries.

Table 15-1. Lists of input parameters required by the simulation model, and list of (possible) output variables which are given at user-supplied print times.
Input parameters
Water
$\mathrm{N}, \mathrm{M}, ? \mathrm{x}_{\mathrm{I}}, ? \mathrm{z}_{\mathrm{J}}$
For all (I,): ? ?, ? ${ }_{9} \mathrm{n}, a_{\mathrm{d}} a_{w,} \mathrm{~K}_{\mathrm{s}}$?
Top boundary conditions
Per (I,1) type of condition Per time unit: rain/ irrigation rate, $\mathrm{E}_{\mathrm{p}} \mathrm{T}_{\mathrm{p}}$ (only for root water uptake)
Bottom boundary conditions
Per (I, M) type of condition plus corresponding prescribed h or q
$\mathrm{h}_{0}(\mathrm{I}, \mathrm{J})$
$? \mathrm{t}_{\mathrm{i}}, ? \mathrm{t}_{\max } ? \mathrm{t}_{\text {min }} \mathrm{t}_{\mathrm{i}}, ?, \mathrm{t}_{\mathrm{m}}$
$e_{c} e_{1}$, maximum number of iterations
Initial $?_{1 \mu} e_{\text {? }}$ (see Chapter 4)
Root water uptake
$\mathrm{K}_{1}, \mathrm{R}_{0}, \mathrm{a}, \mathrm{h}_{\mathrm{r}}{ }^{1 / 2}$
$\mathrm{L}_{\mathrm{k}}(\mathrm{I}, \mathrm{J})$ (if root growth give also $\mathrm{k}_{\mathrm{L}}, \mathrm{t}^{*}$ and start time, and $\mathrm{L}_{\mathrm{wri}}(\mathrm{I}, \mathrm{J})=\mathrm{L}_{\mathrm{m}}(\mathrm{I}, \mathrm{J})$, see Chapter
7 of Heinen, 1997)
Solute transport
$c_{i j}, a_{T}, a_{L}, D{ }_{0}, f_{1}(I, J), f_{2}(I, J), ?(I, J)$
co(I, J)
Root nutrient uptake
S_{s}
Output variables (per printing time)
W ater
<optional> ? $(\mathrm{I}, \mathrm{J}), \mathrm{h}(\mathrm{I}, \mathrm{J}), \mathrm{q}_{\mathrm{x}}(\mathrm{i}, \mathrm{j}), \mathrm{q}_{\mathrm{z}}(\mathrm{i}, \mathrm{j})$
<always> total water storage, total change in water storage since $\mathrm{t}=0$, water mass balance error, total amount of water that passed the boundaries
Root water uptake
<optional> $\quad S_{w}(I, J)$ (actual rate and cumulative since $\left.t=0\right), h_{r}, T$, total water uptake by plant roots
N utrient transport
<optional> $\quad c(I, J), Q_{m}(I, J), E C(I, J), q_{s x}(i, j), q_{s z}(i, j)$,
<always> total nutrient storage, total change in nutrient storage since $\mathrm{t}=$ 0 , solute mass balance error, total amount of nutrient that passed the boundaries
Root nutrient uptake
<optional> $\quad S_{s}(I, J)$ (actual rate and cumulative since $\left.t=0\right)$, total nutrient uptake by plant roots

Table 15-2. Correspondence between variables used in input files and variables used in text with reference to equation of first occurrence in text or section of description (referenoes in italic refer to H einen and de Willigen (1998), others to aurrent report), and indication of type of variable (real (double precision), integer, charader), dimension of variable (with t indicating the user-supplied time units UNITS), and number of array entries required. D ata are grouped (alphabetically sorted) per input file, and only the most important variables are listed. Input files are described in more detail in Section 15.4.

Variable names in input files	Type of variable	Number of array entries	Variables used in text	Dimension	Equation Section
IN PUT.DAT (Section 15.4.1)					
AMMONIUMDAT	character*50				
BNAME	character*50				
EXPLINDAT	character*50				
EXTMAKEDAT	character*50				
FERTILDAT	character*50				
FLSALT	character*50				
FUS2CTR	character*50				
FUSSIM2LOG	character*50				
GWLDAT	character*50				
IONSINFODAT	character*50				
NITDENINDAT	character*50				
PHOSPHORDAT	character*50				
RNAME	character*50				
ROOTSDAT	character*50				
SLTNAM	character*50				
SNAME	character*50				
SOILSDB	character*50				
STEMPDAT	character*50				
TGENDAT	character*50				
THHFXFZDAT	character*50				
TNAME	character*50				
TRANSP	character*50				
TRANSPCTR	character*50				
UPTADAT	character*50				
VIMOKEDAT	character*50				
WETDAT	character*50				
WNAME	character*50				
FUS2.CTR (Section 15.4.2)					
ANSI	integer				
BIG	real		L		[95], [96]
DEPSAMNT	real				
DEPSLRV	real				
DEPSN	real				
DEPSP	real				
DEVDUM	real		the factor 100 in denominator of Eqs. [133],[134]	$\begin{aligned} & \mathrm{cm}(\text { Eq. [133]) or } \\ & \mathrm{cmt}^{-1}(\text { Eq. [134] }) \end{aligned}$	[133], [134]
DTFAC	real		m_{t}		[181]
DUMP	character*1				
FLSALT	character*1				
HSAT	real			cm	
IGRAV	integer				
IOFEX	integer				
IPRCT	integer				
IPRGRS	integer				
KHFACX	real				

Variable names in input files	Type of variable	Number of array entries	Variables used in text	Dimension	Equation Section
KHFACZ	real				
LOGITS	integer				
METHIR	integer				
PLGROW	character*1				
PRTINY	real			t	
QALL	logical				
REDEV	logical				
SMALDT	real		$? t_{\text {min }}$	t	3.5
STSTAT	character*1				
TOODEV	real				
TRANSP	character*1				
UPTAKE	character*1				
WET	character*7				
WTYPE	character*9				
SOIL.DAT (Section 15.4.3)					
CTREAT	integer				
DX	real	1, NC	$?{ }^{\text {l }}$	cm	[58]
DZ	real	1, NL	$? z_{J}$	cm	[59]
FILNAM	character*40				
INSIDE	integer	1, NL, NL*NC			
IS	integer				
ISOIL	integer	1, NL, NL*NC			
KWAY	integer				
NC	integer		N		3.2 .2
NL	integer		M		3.2.2
NSOILS	integer	= 5			
P	real		p	cm^{-1}	[218,220]
Q	real		q	cm^{-1}	[218,220]
SOILNS	character*20	NSOILS			
TITLE	character*72				
TRANSP	real		T	$\mathrm{cm} \mathrm{d}^{-1}$	[219,220]
BOUNDS.DAT (Section 15.4.4)					
DRRES	real			d^{-1}	[15]
FBOT	real	1, NC	$q_{\text {G }}$	$\mathrm{cm} \mathrm{d}^{-1}$	[10]
FBOTTOMBCT	real	$=100 *$ NC	q_{G}	$\mathrm{cm} \mathrm{d}^{-1}$	[10]
FINTRN	integer	1, NL, NL*NC			
FLEFT	real	1, NL	$q_{\text {G }}$	$\mathrm{cm} \mathrm{d}^{-1}$	[10]
FLEFTBCT	real	$=100 *$ NL	$q_{\text {G }}$	$\mathrm{cm} \mathrm{d}^{-1}$	[10]
FRIGHT	real	1, NL	q_{G}	$\mathrm{cm} \mathrm{d}^{-1}$	[10]
FRIGHTBCT	real	$=100 *$ NL	$q_{\text {G }}$	$\mathrm{cm} \mathrm{d}^{-1}$	[10]
FTOPBCT	real	$=100 *$ NC	q_{G}	$\mathrm{cm} \mathrm{d}^{-1}$	[10]
H0	real			cm	[15]
HBOT	real	1, NC	$h_{\text {G }}$	cm	[9]
HBOTTOMBCT	real	= 100*NC	$h_{\text {G }}$	cm	[9]
HINI	real	1, NL*NC	$h_{0 . l, J}$	cm	[17]
HINTRN	integer	1, NL, NL*NC		cm	
HLEFT	real	1, NL	$h_{\text {G }}$	cm	[9]
HLEFTBCT	real	$=100 *$ NL	$h_{\text {G }}$	cm	[9]
HRIGHT	real	1, NL	$h_{\text {G }}$	cm	[9]
HRIGHTBCT	real	$=100 *$ NL	$h_{\text {G }}$	cm	[9]
HTOP	real	1, NC	$h_{\text {G }}$	cm	[9]
HTOPBCT	real	$=100 *$ NC	$h_{\text {G }}$	cm	[9]
IBOT	integer	1, NC			
IBOTTOMBCT	integer	$=100 *$ NC			

Variable names in input files	Type of variable	Number of array entries	Variables used in text	Dimension	Equation Section
IDITCH?	integer	$=20$			
IINTRN	integer	1, NL, NL*NC			
ILEFT	integer	1, NL			
ILEFTBCT	integer	$=100 *$ NL			
IRIGHT	integer	1, NL			
IRIGHTBCT	integer	$=100 *$ NL			
ISEEP?	integer	$=20$			
ITOP	integer	1, NC			
ITOPBCT	integer	$=100 *$ NC		t	
JDITCH?	Integer	$=20$			
JSEEP?	Integer	$=20$			
MAXPND	real		y_{m}	cm	6.2
NDITCH	integer				
NSEEP	integer				
ROUGH	real		n		(6-4)
TIMBOTTOMBC	real	= 100		t	
TIMLEFTBC	real	$=100$		t	
TIMRIGHTBC	real	$=100$		t	
TIMTOPBC	real	$=100$		t	
TIMER.DAT (Section 15.4.5)					
CONDEL	integer				
CONPRI	integer				3.5
DELT	real		$? t_{i}$	t	3.5
DTMAX	real		$? t_{\text {max }}$	t	[181]
EPSIL	real		e_{c}		3.3.3
EPSILI	real		e_{i}		3.3.2
FUSOUT	logical				
HOUT	integer	$\begin{aligned} & =10 \text { (must be } \\ & \text { even) } \end{aligned}$			
ICRIT	integer				
IHYST	integer				
ISOLVE	integer				
KAPPA	integer	1 or NL*NC	${ }^{\text {? }}$		4.2,[202]
MAXIT	integer				
MAXITI	integer				
OUTYES	integer	4			
PRDEL	real			t	3.5
PRTIME	real	$=6000$		t	3.5
SUBREG	integer	4			
TAU	real		$e^{\text {? }}$		[201]
TOL	real				
UNITS	character*1				
WCOUT	integer	$\begin{aligned} & \hline=10 \text { (must be } \\ & \text { even) } \end{aligned}$			
ZETA	real		?	$\mathrm{cm}^{3} \mathrm{~cm}^{-3}$	[179]
WEATHER.DAT (Section 15.4.6)					
COUNTR	character				
ECTRSH	real			$\mathrm{dS} \mathrm{m}{ }^{-1}$	5.3.2
EPOT	real	$=527040$	$q_{\mathrm{G}}(t)$	cm^{-1}	[10]
ET0	real	$=527040$	$q_{\mathrm{G}}(t)+T_{p}(t)$	cmt^{-1}	[10]
ETMETH	integer				
ETPTH	real			$\mathrm{cm} \mathrm{t}^{-1}$	5.3.2
FCROPS	real				

Variable names in input files	Type of variable	Number of array entries	Variables used in text	Dimension	Equation Section
HTRESH	real			cm	5.3.2
IDOYFCR	integer				
IDOYLAI	integer				
IFCROP	integer				
IFLAG	integer				
IRRINT	real		q_{G}	cmt^{-1}	[10],5.3.2
ISTN	integer				
ISURF	integer				
ITRESH	integer				5.3.2
IYEAR	integer				
IYRFCR	integer				
IYRLAI	integer				
JTRESH	integer				5.3.2
KCROP	real				
LAIS	real				
LFRAC	real				5.3.2
LOGF	integer				
METHIR	integer				
PENMAN	character*2				
RAIN	real	$=527040$	$q_{\mathrm{G}}(t)$	cm^{-1}	[10]
RF	real				
TDMI	real			${ }^{0} \mathrm{C}$	
TPOT	real	$=527040$	$T_{p}(t)$	cm^{-1}	[25]
WTRDIR	character				
SOILS.DB (Section 15.4.7)					
TALP	real	= 100	a	cm^{-1}	[182]
TALPD	real	$=100$	a_{d}	cm^{-1}	[182]
TALPW	real	$=100$	a_{w}	cm^{-1}	[182]
TBNAME	character*20	$=100$			
TKK	real	$=100$	K_{k}	$\mathrm{cm} \mathrm{d}^{-1}$	(4-2)
TKS	real	$=100$	K_{S}	$\mathrm{cm} \mathrm{d}^{-1}$	[183,186]
TL	real	$=100$?		[183,186]
TND	real	$=100$	n		[182]
TNW	real	$=100$	n_{w}		[182]
TWCR	real	$=100$	$?_{r}$	$\mathrm{cm}^{3} \mathrm{~cm}^{-3}$	[182]
TWCS	real	$=100$?s	$\mathrm{cm}^{3} \mathrm{~cm}^{-3}$	[182]
WCK	real	= 100	θ_{k}	$\mathrm{cm}^{3} \mathrm{~cm}^{-3}$	(4-7)
EXTMAKE.DAT (Section 15.4.8)					
ES0	real	$=50$	E_{p}	$\mathrm{cm} \mathrm{d}^{-1}$	5.1
EXTMETHOD	character*8				
H	real	$=50$	h_{1}	cm	5.1
METHOD	character*3				
MINT	character*4				
NNTAB	integer				
PPBIG	real			cm	
PPEND	real			cm	
PPREF	real			cm	
SCRNLOG	logical				
GWL.DAT (Section 15.4.9)					
DOYGWL	real	$=1000$			
GWLS	real	$=1000$		cm	

Variable names in input files	Type of variable	Number of array entries	Variables used in text	Dimension	Equation Section
IYRGWL	integer	$=1000$			
VIMOKE.DAT (Section 15.4.10)					
CDCORR	real		CF		(7-7)
HDRAIN	real	$=1000$	$h_{\text {drain }}$	cm	7.2
IDOYDRAIN	integer	$=1000$			
IDRAIN	integer	1			
IYEARDRAIN	integer	$=1000$			
JDRAIN	integer	1			
NDRAIN	integer	1			
REFF	real		r	cm	(7-3)
THHFXFZ.DAT (Section 15.4.11)					
FX	real	NL*(NC+1)	q_{x}	$\mathrm{mL} \mathrm{cm}^{-2} \mathrm{t}^{-1}$	[1], [2]
FZ	real	($\mathrm{NL}+1$)* NC	q_{z}	$\mathrm{mL} \mathrm{cm}^{-2} \mathrm{t}^{-1}$	[1], [2]
H	real	NL*NC	h	cm	[3]
WC	real	NL*NC	θ	$\mathrm{mL} \mathrm{cm}^{-3}$	[1], [2]
WET.DAT (Section 15.4.12)					
XWET	real	= 50	h	cm	[2], [182]
YWET	real	$=50 *$ NSOILS	θ	$\mathrm{mL} \mathrm{cm}^{-3}$	[1], [182]
STEMP.DAT (Section 15.4.13)					
CMETH	character*11				
DTSTEP	real		$? t$	d	(13-4)
METH1	character*7				
METHNL	character*7				
SOIL	character*4				
TC	real		t_{c}	d	(13-18)
TIMAV	real		$t_{a v}$	d	(13-19)
TINI	real		t	d	(13-1), (13-19)
TYAMP	real		A_{0}	${ }^{0} \mathrm{C}$	(13-16)
TYAV	real		$T_{a v}$	${ }^{0} \mathrm{C}$	(13-16)

SOLUTE.DAT (Section 15.4.14) below NION ($=13$) represents the number of ions present in solution

AL	real	1, NL, NL*NC	a_{L}	cm	[33]
AMOUNT	real	NION, NION*NL, NION*NL*NC	Q_{m}	mmol or mg	[46]
AT	real	1, NL, NL*NC	a_{T}	cm	[33]
BDS	real	1, NL, NL*NC		$\mathrm{g} \mathrm{cm}^{-3}$	
CBOT	real	NION, NION*NC	$c_{\text {G }}$	mmol	2.5
CF1	real	1, NL, NL*NC	f_{1}		[34]
CF2	real	1, NL, NL*NC	f_{2}		[34]
CLEFT	real	NION, NION*NL	c_{G}	mmol	2.5
CONC	real	$\begin{array}{\|l\|} \hline \text { NION, } \\ \text { NION*NL, } \\ \text { NION*NL*NC } \\ \hline \end{array}$	C	mmol l^{-1}	[45]
CRIGHT	real	NION, NION*NL	$c_{\text {G }}$	mmol	2.5
CTOP	real	NION, NION*NC	c_{G}	mmol	2.5
FREQF	integer				
ICON	integer				
IDISP	integer				
JBOT	integer	1, NC			
JLEFT	integer	1, NL			
JRIGHT	integer	1, NL			
JTOP	integer	1, NC			
LD	real		L_{D}	cm	[172]
OUTSLT	integer	7			

Variable names in input files	Type of variable	Number of array entries	Variables used in text	Dimension	Equation Section
WCLOW	real	1, NL, NL*NC	$?_{l}$	$\mathrm{cm}^{3} \mathrm{~cm}^{-3}$	[34]
AMMONIUM.DAT (Section 15.4.15) (parameters like for phosphorus)					
A1	real	1, NL, NL*NC	a_{1}	$\mathrm{mg} \mathrm{cm}^{-3}$	(8-10)
A2	real	1, NL, NL*NC	a_{2}	$\mathrm{mg} \mathrm{cm}^{-3}$	(8-10)
AK	real		a_{k}	$\mathrm{mg} \mathrm{~cm}_{1}^{-3}\left(\mathrm{ml} \mathrm{mg}^{-1}\right)^{-}$	8.5
B1	real	1, NL, NL*NC	b_{1}	$\mathrm{ml} \mathrm{mg}^{-1}$	(8-10)
B2	real	1, NL, NL*NC	b_{2}	$\mathrm{ml} \mathrm{mg}{ }^{-1}$	(8-10)
FREUM	real		M	$\operatorname{mg~cm}_{N}^{-3}\left(\mathrm{ml} \mathrm{mg}^{-1}\right)^{-}$	(8-11)
FREUN	real		N		(8-11)
LINPAR	logical				
MODPAR	logical				
OUTNH4	integer				
ION SINFO.DAT (Section 15.4.16)					
DEBYE	integer				
DIF0	real	13	D_{0}	$\mathrm{cm}^{2} \mathrm{~d}^{-1}$	[33], [43]
IONNAM	character*5	13			
IONRAD	real	13	d_{i}	Angstrom	[37]
IONYES	integer	13			
MOBIL	real	13	μ_{m}	$\mathrm{cm} \mathrm{s}^{-1} \mathrm{~V}^{-1}$	[35], [43]
PARA	real	13	A_{f}	$\left(\mathrm{mol} \mathrm{kg}^{-1}\right)^{0.5}$	[38]
PARAB	integer				
PARB	real	13	B_{f}	$\left.(\mathrm{mol} \mathrm{kg})^{-1}\right)^{0.5} \mathrm{~m}^{-1}$	[39]
VALENC	real	13	n_{v}		$\begin{aligned} & \text { [35], [36], [37], } \\ & \text { [43] } \end{aligned}$
NITDENIN.DAT (Section 15.4.17)					
NitSourceParam1	real		n_{1}	$\begin{aligned} & \mathrm{mmol}^{2} \mathrm{~kg}^{-2}(\text { wet } \\ & \text { soil }) \end{aligned}$	(12-1)
NitWaterParam1	real		n_{2}		(12-2)
NitWaterParam2	real		n_{3}		(12-2)
NitTempParam1	real		n_{4}		(12-3)
NitTempParam2	real		n_{5}		(12-3)
NitTempParam3	real		n_{6}		(12-3)
NitTempParam4	real		n_{7}		(12-3)
NitpHParam1	real		n_{8}		(12-4)
NitCECParam1	real		n_{9}	$\begin{aligned} & \mathrm{mmol}^{2} \mathrm{~kg}^{-2}(\text { wet } \\ & \text { soil) } \mathrm{d}^{-1} \end{aligned}$	(12-5)
NitCECParam2	real		n_{10}	$\begin{aligned} & \mathrm{mmol}^{2} \mathrm{~kg}^{-2}(\mathrm{wet} \\ & \text { soil) d } \\ & \hline \end{aligned}$	(12-5)
NitPartParam1	real		n_{11}		(12-6)
NitPartParam2	real		n_{12}		(12-6)
NitPartParam3	real		n_{13}		(12-6)
NitPartParam4	real		n_{14}		(12-6)
pHDepthTabel	real		pH		(12-4), (12-12)
CECDepthTabel	real		CEC	cmol+ kg^{-1}	(12-5)
DenSourceParam1	real		d_{1}	mol kg^{-1} (wet soil)	(12-7)
DenWaterParam1	real		d_{2}		(12-8)
DenWaterParam2	real		d_{3}		(12-8)
DenTempParam1	real		d_{4}		(12-9)
DenTempParam2	real		d_{5}		(12-9)
DenTempParam3	real		d_{6}		(12-9)
DenTempParam4	real		d_{7}		(12-9)
DenElectrParam1	real		d_{8}		(12-10), (12-11)
DenpHParam1	real		d_{9}		(12-12)

Variable names in input files	Type of variable	Number of array entries	Variables used in text	Dimension	Equation Section
DenpHParam2	real		d_{10}		(12-12)
DenpHParam3	real		d_{11}		(12-12)
DenEmisParam1	real		e_{2}		(12-14)
DenEmisParam2	real		e_{3}		(12-14)
DenEmisParam3	real		e_{4}	d^{-1}	(12-14)
DenEmisParam4	real		e_{1}		(12-13)
N2OinAtmosphere	real		$\mathrm{N}_{2} \mathrm{O}_{\text {air }}$		(12-13)
GasConstant	real				
N2ODepthTabel	real				
N2DepthTabel	real				
DNPDepthTabel	real		DPR		(12-7)
PHOSPHOR.DAT (Section 15.4.18)					
A1	real	1, NL, NL*NC	a_{1}	$\mathrm{mg} \mathrm{cm}^{-3}$	(8-10)
A2	real	1, NL, NL*NC	a_{2}	$\mathrm{mg} \mathrm{cm}^{-3}$	(8-10)
AK	real		a_{k}	$\mathrm{mg} \mathrm{~cm}^{-3}\left(\mathrm{ml} \mathrm{mg}^{-1}\right)^{-}$	8.5
ALFEOX	real	1, NL, NL*NC	[Al+Fe]	mmol kg ${ }^{-1}$	(8-9)
ALPH1	real	1, NL, NL*NC	α_{1}	d^{-1}	(8-8)
ALPH2	real	1, NL, NL*NC	α_{2}	d^{-1}	(8-8)
ALPH3	real	1, NL, NL*NC	α_{3}	d^{-1}	(8-8)
B1	real	1, NL, NL*NC	b_{1}	$\mathrm{ml} \mathrm{mg}^{-1}$	(8-10)
B2	real	1, NL, NL*NC	b_{2}	$\mathrm{ml} \mathrm{mg}^{-1}$	(8-10)
BI1	real	1, NL, NL*NC	b_{1}	$\left(\mathrm{mg} \mathrm{L}^{-1}\right)^{-N 1}$	(8-9)
BI2	real	1, NL, NL*NC	b_{2}	$\left(\mathrm{mg} \mathrm{L}^{-1}\right)^{-N 2}$	(8-9)
BI3	real	1, NL, NL*NC	b_{3}	$\left(\mathrm{mg} \mathrm{L}{ }^{-1}\right)^{-{ }^{-3}}$	(8-9)
FREUM	real		M	$\operatorname{mg~cm}_{N}^{-3}\left(\mathrm{ml} \mathrm{mg}^{-1}\right)$	(8-11)
FREUN	real		N		(8-11)
LINPAR	logical				
MODPAR	logical				
N1	real	1, NL, NL*NC	N_{1}		(8-8)
N2	real	1, NL, NL*NC	N_{2}		(8-8)
N3	real	1, NL, NL*NC	N_{3}		(8-8)
OUTADS	integer	4			
PW	real	1, NL, NL*NC	P_{w}	mg $\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{~L}^{-1}$ (soil)	(8-16)
REDF	real	1, NL, NL*NC			
UPTA.DAT (Section 15.4.19)					
CMIN	real	13	$C_{\text {min }}$	mg mL ${ }^{-1}$	(9-4)
FMAX	real	13		$\mathrm{mmol} \mathrm{cm}{ }^{-2} \mathrm{~d}^{-1}$	3.4.3
IUPMAX	integer				
IUPWAY	integer				
METHODU	integer				
UPCRIT	real				
TRANSP.DAT (Section 15.4.20)					
A	real	NPLANT	a		[26]
HOSP	real	NPLANT	$h_{0, r}$	cm	[20]
HRHALF	real	NPLANT	$h_{r, 1 / 2}$	cm	[26]
K1	real	NPLANT	K_{1}	$\mathrm{cm} \mathrm{d}^{-1}$	[20]
LRVINI	real	NL*NC	$L_{r v}(t=0)$	$\mathrm{cm} \mathrm{cm}^{-3}$	[19]
LRVK	real	NPLANT	LRVK	d^{-1}	[203]
LRVT	real	NPLANT	LRVT	d	[203]
LRVTS	real	NPLANT	LRVTS	d	[203]
OUTTRA	integer	6			
R0	real	NPLANT	R_{0}	cm	[21]

Variable names in input files	Type of variable	Number of array entries	Variables used in text	Dimension	Equation Section
REDPOT	integer				
RTGROW	integer				
SIGMA	real	NPLANT	s_{r}		[20]
TRANSP.CTR (Section 15.4.21)					
FAC	real				3.2.5
NP	integer				
RDPMIN	real		e_{t}		[112]
TOL	real				
TRANS	character*7				
TRHYST	character*1				
TGEN.DAT (Section 15.4.22)					
NNTAB	integer				
PPBIG	real			cm	
PPEND	real			cm	
PPREF	real			cm	
EXPLIN.DAT (Section 15.4.23)					
A	real	NPLANT*NION	a_{G}	$\mathrm{g} \mathrm{g}^{-1}$	(10-6)
B	real	NPLANT*NION	b_{G}	$\mathrm{g} \mathrm{g}^{1}$	(10-6)
C	real	NPLANT*NION	c_{G}	ha kg^{-1}	(10-6)
CM	real	NPLANT	c_{m}	$\mathrm{kg} \mathrm{ha}^{-1} \mathrm{~d}^{-1}$	(10-1)
DEMMOD	logical				
DM	real	NDM $=10$	W_{T}	kg ha ${ }^{-1}$	10.3 (tabulated data)
FMAX	real	NPLANT*NION		$\mathrm{mmol} \mathrm{cm}^{-2} \mathrm{~d}^{-1}$	3.4.3
NPLANT	integer	= 5			
OPTC	real	$\begin{aligned} & \text { NDM*NPLANT* } \\ & \text { NION } \end{aligned}$	N_{O}	$\mathrm{g} \mathrm{g}^{-1}$	10.3 (tabulated
PL	real	NPLANT	P_{L}	$\mathrm{g} \mathrm{g}^{-1}$	(10-5)
PLNUM	integer	1, NC			
RM	real	NPLANT	r_{m}	$\mathrm{kg} \mathrm{ha}^{-1} \mathrm{~d}^{-1}$	(10-1)
SHRT	real	NPLANT	SHRT	$\mathrm{g} \mathrm{g}^{-1}$	(10-4)
SLA	real	NPLANT	SLA	ha kg^{-1}	(10-5)
TCNU	real	NPLANT*NION	t_{N}	d	(10-11)
TUPT	real	NPLANT*NION	U	kg ha ${ }^{-1}$	(10-7)
WTOT	real	NPLANT	W_{T}	$\mathrm{kg} \mathrm{ha}^{-1}$	(10-1)
ROOTS.DAT (Section 15.4.24)					
DECRAT	real	NPLANT	λ_{L}	d^{-1}	(11-1)
DMCR	real	NPLANT	$D M_{r}$	$\mathrm{g} \mathrm{g}^{-1}$	(11-4)
LRVINI	real	NPLANT*NL*NC	$L_{r v}$	$\mathrm{cm} \mathrm{cm}^{-3}$	(11-1)
QIN	integer	NPLANT*NL*NC	related to Q_{L}		(11-1), (11-4)
R0	real	NPLANT	R_{0}	cm	(11-4)
RDX0	real	NPLANT	$D_{L, x}$	$\mathrm{cm}^{2} \mathrm{~d}^{-1}$	(11-1)
RDZ0	real	NPLANT	$D_{L, z}$	$\mathrm{cm}^{2} \mathrm{~d}^{-1}$	(11-1)
REDH	real	12			
RHOR	real	NPLANT	ρ_{r}	$\mathrm{g} \mathrm{cm}^{-3}$	(11-4)
FERTIL.DAT (Section 15.4.25)					
FCOL	integer	= 50			
FERTTM	real	$=10$		d	
FFERT	real	$=10 *$ MAXION		kg ha ${ }^{-1}$	
FROW	integer	$=50$			

15.4 Description of input files

In general, the input files have the following structure
VARIABLE = <value>
where VARIABLE is a defined variable name which cannot be altered by the user. Behind the equal sign the value(s) for that variable name are listed: a single value or a character string, or an array of values. This kind of input is regulated by the TTUTIL library of Van K raalingen and Rappoldt (2000). The rules are:

- array elements should be separated by a space or a comma;
- arrays may also be given in column format with array name on separate line; e.g.

$$
\begin{array}{ccc}
\text { AR1 } & \text { AR2 } & \text { AR3 } \\
1.0 & 1.4 & 2.0 \\
3.3 & 0.5 & 1.1
\end{array}
$$

- repeated similar elements in an array may be indicated as n*value, e.g. $16 * 10.0$, 5*2.0 (21 elements in total);
- character data must be given between single quotes;
- integer values must be given as integers;
- real values must be given as reals;
- if an array consists of only 1 element it must be given as $1 *$ value, e.g. $\mathrm{A}=1 * 2.5$ and not $\mathrm{A}=2.5$
- position of variable name in data file is free;
- extra variable names may be present;
- information behind a "*" (first column) or a "!" (any column) is considered as comment, and is not read by the program.

Any violation of these rules is properly echoed to the screen followed by a halt of program execution. Moreover, in several cases additional checks on the data are done in the program, such as check on proper amount of supplied array elements. Mostly, the description in the example files given below is self-explanatory. In some cases some additional information on a specific variable is given. Table 15-3 gives the maximum values or number of array elements for some of the variables.

In the example input files described in the following sub-sections, all required and optional variables are presented. Required variables are presented first, while optional variables are listed at the bottom of the example input files. Optional variables are printed in italic, and the values given to these optional variables are the values used by FUSSIM2 as default values when the optional variable is not present in the input file. G enerally, these optional variables should be used only by experienced users.

Table 15-3. Max imum value or max imum number of array elements for several variables.

Variable	Maximum value	Maximum number of elements
EPOT, ET0, RAIN, TPOT		527040
IDITCH?, JDITCH?		100^{*} NDITCH
ISEEP?, JSEEP?	100	100^{*} NSEEP
NC, NL	5	
NDITCH	13	
NION	5	
NPLANT	5	
NSEEP	10	6000
NSOILS		$50,50 *$ NSOILS
PRTIME	100	
XWET, YWET		
TBNAME,TKK, TKS, TWCS, TWCR, TWCK, TND, TNW, TALP, TALPD TALPW, TL		

15.4.1 Input file IN PUT.DAT

FUSSIM2 reads data from input files. Some names for data files are required, in other cases names are optional or have default names if not given by the user. The user must supply the relevant names for data files in the special data file INPUT.DAT (name cannot be changed). Table 15-4 summarizes all possible data files that a user can supply, indicating which are required, which are optional and which have default names if not supplied. Also indicated are the modules of FUSSIM2 that uses the data file. Although 28 files have been listed in Table 15-4, the user is free to combine data in only a few files by giving several of the variables the same file name. For example, if the user wants to put all variables necessary for transpiration into one file named MYTRANS.DAT, then in the file INPUT.DAT the following lines must be given:

```
TRANSP = 'MYTRANS.DAT'
TRANSPCTR = 'MYTRANS.DAT'
TGENDAT = 'MYTRANS.DAT'
```

Table 15-4. E x planation of all possible files names that must or can be supplied in the file IN PU T.D A T.

```
Explanation of column required:
    R = required: name must be supplied
    RO = required, but name is optional (else default name is used)
    O = file only necessary in certain cases, name is optional (else default
        name is used)
Explanation of the abbreviation of the modules
    wa = water, sl = solute, te = temperature, tr = transpiration, up = uptake
# name required default name modules
                                (R,RO,O) wa sl te tr up
    1 ~ F U S 2 C T R ~ R O ~ F U S 2 . C T R ~
    FUSSIM2LOG RO FUSSIM2.LOG
    SOIL Or SNAME R
    BOUNDS or BNAME R
    TIMER or TNAME R
    6 WEATHER Or WNAME R +
```


Table 15-5 gives an ex ample of the data file IN PU T.D A T. N ote that a path-structure can be given as well.
Table 15-5. E xample input file IN PU T.D A T.

```
! required names
SOIL = 'input\heino_so'
BOUNDS = 'input\heino_bc'
TIMER = 'input\heino_tm'
WEATHER = 'input\heino_wh'
TRANSP = 'input\heino_tr'
SOLUTE = 'input\heino_sl'
RNAME = 'output\heino_w'
SLTNAM = 'output\heino_s'
! optional names
FUS2CTR = 'input\fus2.ctr'
FUSSIM2LOG = 'output\fussim2.log'
EXTMAKEDAT = 'input\extmake.dat'
STEMPDAT = 'input\stemp.dat'
AMMONIUMDAT = 'NONE'
IONSINFODAT = 'input\ionsinfo.dat'
NITDENINDAT = 'input\nitdenin.dat'
PHOSPHORDAT = 'NONE'
UPTADAT = 'input\upta.dat'
TRANSPCTR = 'input\transp.ctr'
TGENDAT = 'input\tgen.dat'
```

In sections 15.4.2 until 15.4.25 the input files are described.

15.4.2 Input file FUS2.CTR

The file FUS2.CTR (example in Table 15-6) contains some control data used by the program. Some of the data can be safely adapted by the user, while others are preferred not to be changed by the user (reason: requires too much inside information in the model, or not thoroughly tested by the developers). The variables that should not be changed are: DUMP, PRTINY, TOODEV, BIG, KHFACX, KHFACZ, BOTIRR.

STSTAT

Transport under steady state conditions can be considered as follows; for example, if one is interested in solute transport under steady water flow. First make a run for water only for a long period, and determine the steady state situation. If steady state is reached make a file (using the proper output data from these computations) named THHFX FZ.DAT (see section 15.4.11) in which the following information is stored: (per control volume) water content, pressure head, flux density in x direction, and flux density in z direction. Then, run the model with STSTAT $=$ ' Y^{\prime} for the situations to be considered. No computations for water flow will be carried out, since water content, pressure head, and flux densities are considered constant.

METHIR
The model has several possibilities to control water supply at the top boundary.
METHIR $=0$ User supplied times and intensities of rainfall or irrigation;
data in file WNAME (default).
METHIR = 1 Program 'controls' irrigation: water is supplied whenever a threshold value for summed potential evapotranspiration is reached. The user supplies in the file WNAME the necessary information, which is:
IRRINT irrigation intensity (cm per time units)
ETPTH threshold evapotranspiration (cm)
LFRAC leaching fraction, defined as the excess amount of water to be supplied, i.e. amount of water supplied is (1+LFRAC)*ETPTH (this is not the usual definition of leaching fraction (LF); Heinen (1997) gives the relation between LFRAC and LF: LF=LFRAC/ (1+LFRAC), or LFRAC = LF/ (1-LF))
METHIR = 2 Program 'controls' irrigation: water is supplied whenever the pressure head at a given position becomes less (more negative) than a given threshold value. The user supplies in the file WNAME the necessary information, which is:
IRRINT irrigation intensity (cm per time units)
LFRAC leaching fraction, defined as the excess amount of water to be supplied, i.e. amount of water supplied is (1+LFRAC)*ETPTH (see above)
HTRESH threshold value of pressure head (cm)
ITRESH column number of node at which pressure head is to be controlled
JTRESH row number of node at which pressure head is to be controlled
If either ITRESH or JTRESH equals zero, the program checks the complete flow domain for any pressure head being less than HTRESH.
METHIR = 3 Program 'controls' irrigation: water is supplied whenever the electrical conductivity at a given position becomes larger than a given threshold value. The user supplies in the file WNAME the necessary information, which is:
IRRINT irrigation intensity (cm per time units)
LFRAC leaching fraction, defined as the excess amount of water to be supplied, i.e. amount of water supplied is (1+LFRAC)*ETPTH (see above)
ECTRSH threshold value of electrical conductivity (dS m-1)
ITRESH column number of node at which electrical conductivity is to be controlled
JTRESH row number of node at which electrical conductivity is to be controlled

If either ITRESH or JTRESH equals zero, the program checks the complete flow domain for any electrical conductivity being larger than ECTRSH.

WET

If hysteresis is to be considered the wetting data are described by the Van G enuchten equation, with a_{w} (WET = 'GENUCHT'; default). However, it is possible to represent the wetting curve also by tabulated data. In that case intermediate data are obtained either through linear interpolation (WET = 'LINEAR') or through cubic spline interpolation (WET = 'SPLINE'). The tabulated data have to be supplied in an additional file called WET.DAT (see section 15.4.12).

Table 15-6. Example input file FU S2.CTR. Optional variables are printed in italic (see end of section 15.4 for explanation).

```
******* which processes to consider
TRANSP = 'N' ! Yes or No include TRANSP
FLSALT = 'Y' ! Yes or No include FLSALT
UPTAKE = 'N' ! Yes or No include NUTUPT
PLGROW = 'N' ! Yes or No include PLANT
******* data read by unit INIT
* Type of weather data input
* WTYPE = 'FUSSIMOWN': according to FUSSIM format
* WTYPE = `SHELL" : weather supplied by FSE4 shell
WTYPE = 'FUSSIMOWN'
* How to treat the wetting curve
        WET = GENUCHT : use Van Genuchten parameters (default)
* WET = LINEAR : use linear interpolation
* WET = SPLINE : use cubic spline interpolation
WET = 'GENUCHT'
* Yes or No consider steady state condition.
STSTAT = 'N'
* Method of irrigation control
* METHIR = 0 : times of irrigation given as input (default)
* METHIR = 1 : irrigation when sum ETpot exceeds threshold
* METHIR = 2 : irrigation when h exceeds threshold
* METHIR = 3 : irrigation when EC exceeds threshold
METHIR = 0
* Type of logging of progress in time
* IPRGRS = -1: no screen logging
* IPRGRS = 0: log current time
* IPRGRS = 1: log percentage time
IPRGRS = 0
* Print each IPRCT when IPGRS = 1
IPRCT = 5
* Yes (1) or not (0) log time and number of iterations to log file
LOGITS = 1
******* data read by unit CHDELT
* Increasing factor for time step (CONDEL <> l) if negative, time step will
not be
```

```
* increased
DTFAC = 1.5D0
* Yes (TRUE) or not (FALSE) consider expo-linear growth
ELGROW = .FALSE.
* Yes (TRUE) or not (FALSE) consider nutrient demand module
NUTDEM = .FALSE.
* Yes (TRUE) or not (FALSE) consider root growth described as a diffusion
process
RGROW = .FALSE.
* Yes (TRUE) or not (FALSE) compute evaporation reduction at soil surface
REDEV = .TRUE.
******* data read by unit SOLVE
* The factor in the denominator of Eqs. [133] or [134]
* preferably 100; alternative may be 0
DEVDUM = 100.0D0
* If convergence criterion exceeds TOODEV then time step reduction occurs
TOODEV = 50.ODO
* No longer used
HSAT = -1.ODO
* Smallest allowable time step before program halts
SMALDT = 1.OD-15
* Large number used to handle Dirichlet boundaries
BIG = 1.OD25
******* for time step regulation
DEPSN = 0.1 ! maximum allowable relative change of N processes
denitrification) ! maximum allowable relative change of P processes
denitrification) ! maximum allowable relative change of P processes
DEPSLRV = 0.1 ! maximum allowable relative change of Lrv
DEPSWTOT = 0.1 ! maximum allowable relative change of WTOT
(EXPLIN)
DEPSAMNT = 0.1 ! maximum allowable relative change of total
amount of a
! (ammonium adsorption, nitrification-
! nutrient
******* data read by unit KAVER
* increase factor for horizontal conductivity with respect to vertical
* conductivity; to simulate anisotropy
KHFACX = 1.DO
* increase factor for vertical conductivity with respect to horizontal
* conductivity; to simulate anisotropy
KHFACZ = 1.DO
******* data read by unit WROUT
DUMP = 'N' ! Yes or No use ASCII dump as output (do not
change)
PRTINY = 1.OD-10 ! print control; do not change
QALL = .TRUE. ! print cumulative flow across boundaries for each
type
    ! of boundary condition plus net totals
```

```
* Yes (1) or not (0) the DOS screen can handle ANSI escape sequence
controls.
ANSI = 0
* Yes (1) or no (0) do inquire on existence of output file.
IOFEX = 0
* Yes (1) or not (0) include gravity
IGRAV = 1
* Yes or No consider irrigation at bottom (for experienced users only).
BOTIRR = 'N'
```


15.4.3 Input file SOIL.DAT

In this input file general information about the flow domain is given (example in Table 15-7), such as soil type, number and thickness of columns, and number and thickness of rows.

INSIDE

Variable INSIDE indicates which of the NL*NC nodes are inside the flow domain. The data NC and NL define the maximum rectangular extension of the flow domain. Setting INSIDE $=0$ for some nodes, these nodes are not considered in the computations. In this way the actual irregular boundaries can be handled. See example 6.4 of Heinen and de Willigen (1998).

FILNAM

The file FILNAM contains the Van Genuchten-Mualem parameters in tabulated form for the given soil name SOILNS (see section 15.4.7). This name can be overruled by the name SOILSD B as supplied in INPUT.DAT.

NSOILS, SOILNS, ISOIL
The number of different soil types is NSOILS. These types are given a name (SOILNS) which appears in FILNAM. All control volumes should obtain a code ISOIL (from 1 through NSOILS) linking them to the hydraulic properties of the corresponding soil.

CTREAT <optional>
The variable CTREAT determines how the hydraulic conductivity is considered: computed according to the Van Genuchten-Mualem model (CTREAT = 0; default), computed according to the exponential $\mathrm{K}(\mathrm{h})$ relationship of Gardner (1958) (CTREAT = 1; used in example 6.2 of Heinen and de Willigen, 1998), or treated as a constant (CTREAT = 2; used in example 6.1 of Heinen and de Willigen, 1998). In case CTREAT $=1$, the a parameter in the exponential expression becomes equal to the a given in the Van G enuchten table. In case CTREAT $=2$ the constant hydraulic conductivity (CONCON) and constant differential moisture capacity should be supplied (CONCAP).

IS <optional>

With the variable IS = 1 (see example 6.2 of Heinen and de Willigen, 1998), it is possible to consider exponentially (both in x and z directions) distributed root water uptake (default: $I S=0$). In that case the following additional parameters should be supplied.

TRANSP transpiration rate $\left(\mathrm{cm} \mathrm{d}^{-1}\right)$
$\mathrm{P} \quad$ extinction coefficient in x direction $\left(\mathrm{cm}^{-1}\right)$
Q extinction coefficient in z direction $\left(\mathrm{cm}^{-1}\right)$
Table 15-7. E x ample input file SOIL .D A T. 0 ptional variables are printed in italic (see end of section 15.4 for explanation).

```
* data file for program FUSSIM2 containing soil parameters: dimensions, soil
* physical parameters, and if desired plant root uptake parameters for spatially
* distributed exponential root water uptake
* descriptive title of the case studied (max. 72 characters)
TITLE = 'Test run, zandb1'
* Number of columns NC and layers NL
NC = 10
NL = 26
* Inside codes
* Supply 1 (all nodes the same value), NL (all nodes per row the same value) or
* NL*NC values (supply a value for each node: first NC values for layer 1, second
* NC values for layer 2, etc.)
INSIDE = 1*1
* thickness of soil columns DX (1 or NC values) and thickness of soil layers DZ
* supply 1 (all columns (DX) or rows (DZ) the same value), or NC (columns) or NL
* (rows) values
DX = 10*10.0
DZ = 16*5.0, 10*2.0
* soil physical properties of the soil
* NSOILS : number of different soil types
* FILNAM : (path +) name of database file where properties are stored
* SOILNS : NSOILS names of soil types (which are present in FILNAM)
* ISOIL : for each control volume a soil code must be given; first NC values for
* first layer, then NC values for second layer, etc.
NSOILS = 1
* KS in FILNAM must be cm/d; program converts units corresponding to UNITS as
* supplied in timer file
FILNAM = 'C:\user\soils\SOILS.DB'
SOILNS = 1*'zandb1'
* give soil code to each control volume:
* supply 1 (all nodes the same value), NL (all nodes per row the same value) or
* NL*NC values (supply a value for each node: first NC values for layer 1, second
* NC values for layer 2, etc.)
ISOIL = 1*1
* how to treat conductivity CTREAT
* CTREAT = 0 : compute according to Van Genuchten function (default)
* CTREAT = 1 : compute according to Gardner function
* CTREAT = 2 : conductivity and capacity are constant then supply CONCON (cm/d)
    and CONCAP (1/cm)
```

```
CTREAT = 0
* KWAY determines how to average K at the faces of the control volumes
* KWAY < 0 arithmetic average
* KWAY = 0 geometric average
* KWAY > 0 harmonic average
KWAY = 0
* parameter determining whether spatially distributed exponential root water uptake
* is to be considered (IS <> 0) or not (IS = 0; default)
* If IS = 1 then supply values for P(1/cm), Q(1/cm) and TRANSP (cm/d) especially
* for example 6.2 of Heinen and de Willigen (1998)
IS = 0
```


15.4.4 Input file BOUN DS.DAT

This file contains the (time independent) boundary conditions, internal conditions, and initial h distribution (example in Table 15-8). Time variable boundary conditions, in this case rain or irrigation and evapotranspiration data, are given in the file WNAME.

HINI

The initial pressure head distribution is supplied as HINI. For all control volumes a pressure head should be supply ($\mathrm{NL} * \mathrm{NC}$ values). If the initial pressure head distribution is that of an equilibrium situation the user can supply one single value for HINI (HINI = 1*value) which represents the pressure head of the bottom layer. The program automatically computes the pressure head distribution of all other nodes. The volumetric water content and hydraulic conductivity are computed from the initial pressure head distribution based on value of KAPPA (in TIMER.DAT).

NSEEP, ISEEP, JSEEP <optional>
The variable NSEEP contains the number of seepage faces present in the flow domain (=5). For each of the seepage faces the column (ISEEP?) and row (JSEEP?) numbers should be supplied (with a maximum of 20 nodes per seepage face). The ? must refer to a seepage face number. For example, if two seepage faces are considered, the user must supply: NSEEP $=2$, and data for the arrays ISEEP1, JSEEP1, and ISEEP2, JSEEP2. Note that when considering a seepage face at the bottom you must indicate for these nodes IBOT $=0$.

NDITCH, IDITCH, JDITCH <optional>
For special cases the net outflow through ditch walls can be obtained by indicating which nodes (IDITCH?, JDITCH?; see description above for NSEEP, ISEEP, JSEEP) are involved. This results in extra output variable in the water output file RNAME.

Table 15-8. Example input file BOUN D S.D A T. Optional variables are printed in italic (see end of setion 15.4 for explanation).

* data file for program FUSSIM2 containing boundary, internal and initial
* conditions for water
* boundary conditions can either be constant or time-dependent; for constant
* boundary conditions the following variables should be supplied (if applicable):
* ITOP, HTOP, IBOT, HBOT, FBOT, ILEFT, HLEFT, FLEFT, IRIGHT, HRIGHT, FRIGHT
* for time-dependent boundary conditions the following variables should be supplied
* (if applicable):
* TIMETOPBC, ITOPBCT, HTOPBCT
* TIMEBOTTOMBC, IBOTTOMBCT, HBOTTOMBCT, FBOTTOMBCT
* TIMELEFTBC, ILEFTBCT, HLEFTBCT, FLEFTBCT
* TIMERIGHTBCT, IRIGHTBCT, HRIGHTBCT, FRIGHTBCT
* Below only examples for constant boundary conditions are given. For time-
* dependent conditions the times should be given with corresponding conditions
* which can have the values as those for the constant conditions. For example:
* TIMELEFTBC $=0.0 \quad 365.0 \quad 366.0 \quad 730.0$
* ILEFTBCT $=26 * 0 \quad 26 * 0 \quad 26 *-1 \quad 26 *-1$
* HLEFTBCT $=26 * 0.026 * 0.0$ 26*10.0 $26 * 10.0$
* FLEFTBCT $=26 * 0.026 * 0.0$ 26*0.0 $26 * 0.0$
* Which indicates that between for the time-interval [0,365] ILEFT = 0 (HLEFT and
* FLEFT have no meaning in that case), and that for the time-interval [366-730] a
* fixed pressure head HLEFT $=10.0$ is required (FLEFT has no meaning).
* Note that linear interpolation between times is done. Especially for changing
* boundary types (e.g. ILEFT) this may cause problems.
* Note that for each time NC (for top and bottom) or NL (for left or right) values
* for IxxxBCT, HxxxBCT and FxxxBCT must be supplied.
* Time dependent boundary conditions are used when TIMExxxBC is present. If not
* present, the constant boundary conditions are used.
* ITOP: pointer to boundary condition at top
* $\operatorname{ITOP}<0$: prescribed pressure head (HTOP) at top boundary
* ITOP $=0$: no flux across top boundary
* \quad ITOP $=1$: flux equal to input by rain and/or irrigation only
* \quad ITOP $=2$: flux equal to output due to evaporation only
* \quad ITOP $=3$: flux equal to difference in input and output (default)
* Supply either 1 (all columns the same condition) or NC values for ITOP
* For HTOP you must supply exactly the same amount of values as for ITOP

ITOP $=10 * 3$

* constant pressure head at bottom; only of importance if ITOP < 0
$\mathrm{HTOP}=10 * 0.0$
* IBOT: pointer to boundary condition at bottom
* IBOT $=-4$: time-dependent groundwater levels as specified in GWL.DAT (must be
* \quad IBOT <0 : prescribed pressure head (HBOT) at lower boundary (except when IBOT $=-4$)
IBOT $=0$: seepage drainage at lower boundary NB: you must also supply variable NSEEP etc.
IBOT $=1$: prescribed flux (FBOT) at lower boundary (default)
IBOT $=2$: free drainage or unit hydraulic gradient
IBOT $=3$: resistance drain at lower boundary (supply HO and DRRES)
* Supply either 1 (all columns the same condition) or NC values for IBOT
* For HBOT, FBOT you must supply exactly the same amount of values as for IBOT

IBOT $=10 * 1$

* constant pressure head at bottom; only of importance if IBOT < 0

HBOT $=10 * 0.0$

```
* known flux at bottom; only of importance if IBOT = 1 (cm/d)
* program converts units corresponding to UNITS as supplied in timer file
FBOT = 10*0.0
* left boundary conditions
* ILEFT: pointer to boundary condition at left boundary
* ILEFT < 0 : prescribed pressure head (HLEFT) at left boundary
* ILEFT = 0 : no flow at left boundary
* ILEFT > 0 : prescribed flux (FLEFT) at left boundary
* Supply either 1 (all rows the same condition) or NL values for ILEFT
* For HLEFT, FLEFT you must supply exactly the same amount of values as for ILEFT
ILEFT = 25*1,-1
* constant pressure head at bottom; only of importance if ILEFT < 0
HLEFT = 26*0.0
* known flux at bottom; only of importance if ILEFT = 1 (cm/d)
* program converts units corresponding to UNITS as supplied in timer file
FLEFT = 26*0.0
* right boundary conditions
* IRIGHT: pointer to boundary condition at right boundary
* IRIGHT < 0 : prescribed pressure head (HRIGHT) at right boundary
* IRIGHT = 0 : no flow at right boundary
* IRIGHT > 0 : prescribed flux (FRIGHT) at right boundary
* Supply either 1 (all rows the same condition) or NL values for IRIGHT
* For HRIGHT, FRIGHT you must supply exactly the same amount of values as for
* IRIGHT
IRIGHT = 10*1, 16*-1
* constant pressure head at bottom; only of importance if IRIGHT < 0
HRIGHT = 10*0.0, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, 31., 33., 35., 37.,
    39., 41., 43., 45., 47., 50.
* known flux at bottom; only of importance if IRIGHT = 1 (cm/d)
* program converts units corresponding to UNITS as supplied in timer file
FRIGHT = 26*0.0
* Initial h distribution for flow domain
* First NC values for first layer, second NC values for second layer etc.
* If only 1 value is supplied, this means that the soil profile is in equilibrium
* with this pressure head pertaining to the bottom; no horizontal gradients exist
* Supply 1 (equilibrium condition with HINI for all nodes at the bottom), or
* NL*NC values (supply a value for each node: first NC values for layer 1, second
* NC values for layer 2, etc.)
HINI =
\begin{tabular}{rrrrrrrrrr}
-100.0 & -92.5 & -87.5 & -82.5 & -77.5 & -72.5 & -67.5 & -62.5 & -57.5 & -50.0 \\
-92.5 & -85.0 & -80.0 & -75.0 & -70.0 & -65.0 & -60.0 & -55.0 & -50.0 & -42.5 \\
-87.5 & -80.0 & -75.0 & -70.0 & -65.0 & -60.0 & -55.0 & -50.0 & -45.0 & -37.5 \\
-82.5 & -75.0 & -70.0 & -65.0 & -60.0 & -55.0 & -50.0 & -45.0 & -40.0 & -32.5 \\
-77.5 & -70.0 & -65.0 & -60.0 & -55.0 & -50.0 & -45.0 & -40.0 & -35.0 & -27.5 \\
-72.5 & -65.0 & -60.0 & -55.0 & -50.0 & -45.0 & -40.0 & -35.0 & -30.0 & -22.5 \\
-67.5 & -60.0 & -55.0 & -50.0 & -45.0 & -40.0 & -35.0 & -30.0 & -25.0 & -17.5 \\
-62.5 & -55.0 & -50.0 & -45.0 & -40.0 & -35.0 & -30.0 & -25.0 & -20.0 & -12.5 \\
-57.5 & -50.0 & -45.0 & -40.0 & -35.0 & -30.0 & -25.0 & -20.0 & -15.0 & -7.5 \\
-52.5 & -45.0 & -40.0 & -35.0 & -30.0 & -25.0 & -20.0 & -15.0 & -10.0 & -2.5 \\
-47.5 & -40.0 & -35.0 & -30.0 & -25.0 & -20.0 & -15.0 & -10.0 & -5.0 & 2.5 \\
-42.5 & -35.0 & -30.0 & -25.0 & -20.0 & -15.0 & -10.0 & -5.0 & 0.0 & 7.5 \\
-37.5 & -30.0 & -25.0 & -20.0 & -15.0 & -10.0 & -5.0 & 0.0 & 5.0 & 12.5 \\
-32.5 & -25.0 & -20.0 & -15.0 & -10.0 & -5.0 & 0.0 & 5.0 & 10.0 & 17.5 \\
-27.5 & -20.0 & -15.0 & -10.0 & -5.0 & 0.0 & 5.0 & 10.0 & 15.0 & 22.5 \\
-22.5 & -15.0 & -10.0 & -5.0 & 0.0 & 5.0 & 10.0 & 15.0 & 20.0 & 27.5
\end{tabular}
```

```
\begin{tabular}{rrrrrrrrrr}
-19.0 & -11.5 & -6.5 & -1.5 & 3.5 & 8.5 & 13.5 & 18.5 & 23.5 & 31.0 \\
-17.0 & -9.5 & -4.5 & 0.5 & 5.5 & 10.5 & 15.5 & 20.5 & 25.5 & 33.0 \\
-15.0 & -7.5 & -2.5 & 2.5 & 7.5 & 12.5 & 17.5 & 22.5 & 27.5 & 35.0 \\
-13.0 & -5.5 & -0.5 & 4.5 & 9.5 & 14.5 & 19.5 & 24.5 & 29.5 & 37.0 \\
-11.0 & -3.5 & 1.5 & 6.5 & 11.5 & 16.5 & 21.5 & 26.5 & 31.5 & 39.0 \\
-9.0 & -1.5 & 3.5 & 8.5 & 13.5 & 18.5 & 23.5 & 28.5 & 33.5 & 41.0 \\
-7.0 & 0.5 & 5.5 & 10.5 & 15.5 & 20.5 & 25.5 & 30.5 & 35.5 & 43.0 \\
-5.0 & 2.5 & 7.5 & 12.5 & 17.5 & 22.5 & 27.5 & 32.5 & 37.5 & 45.0 \\
-3.0 & 4.5 & 9.5 & 14.5 & 19.5 & 24.5 & 29.5 & 34.5 & 39.5 & 47.0 \\
0.0 & 7.5 & 12.5 & 17.5 & 22.5 & 27.5 & 32.5 & 37.5 & 42.5 & 50.0
\end{tabular}
* number of seepage faces
NSEEP = 1
* for seepage face 1 column (ISEEP1) and row (JSEEP1) numbers are given
ISEEP1 = 20*1
JSEEP1 = 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
    22, 23, 24, 25
* the pressure head of the seepage face during seepage; if not present the default
* value of zero is used
HSEEP = 0.0
* number of ditch walls
* if NDITCH > O then supply also IDITCH? and JDITCH? in a similar way as for
* seepage faces
NDITCH = 0
* internal conditions (NOT FULLY TESTED)
* IINTRN: pointer to boundary condition at internal node
* INTRN < 0 : prescribed pressure head (HINTRN) at internal node
* INTRN > 0 : prescribed flux (FINTRN) at internal node
* Supply 1 (all nodes the same value), NL (all nodes per row the same value) or
* NL*NC values (supply a value for each node: first NC values for layer 1, second
* NC values for layer 2, etc.)
IINTRN = 1*0
HINTRN = 1*0.0
FINTRN = 1*0.0
```


15.4.5 Input file TIME R.DAT

Data file containing general variables controlling computations of FUSSIM2 (example in Table 15-9). These are timer data, such as initial time step, end time of simulation, print times, and control data for the solution procedure, such as convergence criteria and hysteresis control data.

UNITS

The program requires that all length units are in cm . With respect to time, the user supplies the time units UNITS, either as d (days), h (hours), m (minutes) or s (seconds). The program requires that all variables given by the user, which have time in their dimensions, are supplied with dimension d. The program automatically converts these dimensions to the user supplied UNITS. There is one exception to this rule. The time-dependent variables RAIN, TPOT, EPOT and IRRINT (all in file WNAME) MUST be given in time units UNITS.

CONPRI, PRDEL, PRTIME
Printing times at constant interval: CONPRI = 1, interval is PRDEL. Printing at user supplied times: CONPRI $=0$, print times $(=400)$ given in array PRTIME.

MAXIT

The maximum number of iterations to obtain convergence. In case the ICCG procedure is used, the number of iterations used in ICCG is $10 *$ MAXIT.

ISOLVE

The variable ISOLVE indicates which solution procedure is to be used.
ISOLVE $=0$ ICCG method (default)
ISOLVE = 9 alternative, mostly faster solution procedure taken from the IMSL library; this solution procedure has been invoked at the time this report was written and has not been fully tested; if problems arise please use ISOLVE = 0
ISOLVE $=-1$ solution procedure for one-dimensional situations (e.g. when NC $=1$, or when no water flow may occur between columns)
In the previous version of FUSSIM2 (Heinen and de Willigen, 1998) the ADI method was described. Since then the ADI method has not been maintained. We do not take any responsibilities when the user supplies a value for ISOLVE in the range 1 through 4.

ISOLVE = 1 ADI method, use Eqs. [116]-[121] of Heinen and de Willigen (1998) when unsaturated, use Eqs. [122][127] of Heinen and de Willigen (1998) when (partly) saturated; change between the two methods at pressure head HSAT as defined in file FUS2.CTR
ISOLVE $=2$ ADI method, use Eqs. [116]-[121] of Heinen and de Willigen (1998) all the times (when partly saturated conditions occur, the program generally crashes)
ISOLVE $=3$ ADI method, use Eqs. [122]-[127] of Heinen and de Willigen (1998) (large mass balance errors can be expected)
ISOLVE = 4 use ADI (as in ISOLVE = 2) when flow domain is completely unsaturated while during partly saturated conditions use ICCG (as in ISOLVE $=0$); the change between the two methods occurs near saturation at a pressure head HSAT, as given in file FUS2.CTR. This option is not thoroughly tested.

OUTYES

The variable OUTYES determines what kind of output is desired. Output in tabulated form. There is always some default output each printing time, such as mass balance information, and total flow across the boundaries.

Table 15-9. E x ample input file TIM E R.D A T. Optional variables are printed in italic (see end of setion 15.4 for explanation).

```
* Data file for program FUSSIM2 containing time control data and iterations
* stop criterion
* Time units, must be in set [d, h, min, s]
* NOTE that all input variables in which time appears in the units should be given
* with time as days; the program converts units corresponding to UNITS as supplied
* in timer file. This counts for:
* KS, KK, FBOT, FLEFT, FRIGHT, FINTRN, CONCON, TRANSP, DRRES
* K1, LRVK, LRVT, LRVTS (module TRANSP)
* FMAX, PLUPT, DIFO (module SOLUTE)
* RDXO, RDZO, DECRAT, RM, CM, TCNU, FMAX (module PLANT)
* NOTE that : RAIN, TPOT, EPOT and IRRINT must be given with time equal to UNITS!
UNITS = 'd'
* Initial time step in UNITS
DELT = 1.0E-5
* Maximum allowable time step in UNITS
DTMAX = 2.5E-1
* Is FUSSIM2 output needed (TRUE) or not (FALSE)
FUSOUT = .TRUE.
* If FUSOUT = .TRUE. then supply CONDEL, CONPRI, PRDEL, PRTIME
* CONDEL is optional; the default value when not present in this file: CONDEL = 0
* Maximum allowable change in water content used to determine new time step (if
* CONDEL = 0)
ZETA = 0.01
* Use constant print interval (CONPRI = 1) or not (CONPRI = 0)
CONPRI = 1
* Constant print interval (if CONPRI = 1) in UNITS
PRDEL = 1.0
* Times when to print results (if CONPRI = 0) in UNITS; must be in ascending order
PRTIME = 0.0 10.0 15.0 16.0 20. 300.
* Iterations stop criterion, e.g. 1.0E-4
EPSIL = 1.0E-04
* Maximum number of iterations due to non-linearity
MAXIT = 20
* Iterations stop criterion for ICCG0 method (ISOLVE = 0), e.g. 1.0E-8
EPSILI = 1.0E-08
* Maximum number of iterations for ICCGO method (ISOLVE = 0)
MAXITI = 2000
* Is hysteresis to be considered
* IHYST = 0: do not consider hysteresis
* IHYST = 1: do consider hysteresis
IHYST = 0
* Initial hysteresis status for all nodes (KAPPA)
* KAPPA = -2: start on main drying curve
* KAPPA = -1: start on scanning drying curve
```

```
* KAPPA = +1: start on scanning wetting curve
* KAPPA = +2: start on main wetting curve
* Supply 1 (all nodes the same value), NL (all nodes per row the same value) or
* NL*NC values (supply a value for each node: first NC values for layer 1, second
* NC values for layer 2, etc.)
KAPPA = 1*-2
* What output is desired
OUTYES = 0, ! print water content results: 1: yes, 0: no
    1, ! print pressure head results: idem
    1, ! print fluxes in x direction results: idem
    1 ! print fluxes in z direction results: idem
* Use constant time step (CONDEL = 1) or not (CONDEL = 0)
CONDEL = 0
* Type of convergence check
* ICRIT = 0: use H and HLAST for DEVMAX
* ICRIT = 1: use CON and KLAST for DEVMAX
* ICRIT = -1: use cases 0 and 1 together (default when ICRIT is not present)
ICRIT = -1
* What solution procedure to use
* ISOLVE = 0: use ICCG solution procedure (default)
* ISOLVE = 9: use alternative IMSL solution method (not yet fully tested)
* Note that old ISOLVE options 1, 2, 3, and 4 (see Heinen and de Willigen, 1998)
* are no longer advised, i.e. these methods have not been maintained since 1998.
ISOLVE = 0
* If IHYST = 1 then supply TAU and TOL
* TAU: control variable for change of status determination, e.g. 0.01
* TOL: convergence criterion for zero-point determination in ZBRENT
TAU = 1.OE-2
TOL = 1.OE-6
* Sub-region for which totals are to be printed.
* Must consist of four integer values which indicate the sub-region by column and
* row numbers: column (1) and row (2) numbers of upper left corner and column (3)
* and row (4) number of lower right corner
SUBREG = 1 1 1 4 4
* Nodes, defined by their column and row numbers, for which pressure head needs to
* be printed to output files (max. 5 nodes, i.e. max. 10 integer values)
HOUT = 1, 1, 3, 6
* Nodes, defined by their column and row numbers, for which water content needs to
* be printed to output files (max. 5 nodes, i.e. max. 10 integer values)
WCOUT = 1, 1, 3, 6
```


15.4.6 Input file WEATHER.DAT

The time-dependent (top) boundary conditions are given in file WNAME (example in Table 15-10). The information present depends on the choice of the variable METHIR in file FUS2.CTR (see description over there). As mentioned in the description of file TNAME, the time units for the variables in the file WNAME MUST be equal to that defined in the variable UNITS in file TNAME.

Table 15-10. E x ample input file W E A TH E R.D A T. Optional variables are printed in italic (see end of section 15.4 for explanation).

```
* Method for computation of evapotranspiration
    ETMETH = 0: user supplies RAIN, EPOT, TPOT
    ETMETH = 1: ET0 according to Penman; supply also: ISURF, RF, TDMI, PENMAN;
        PENMAN must be either 'PE' (Penman; default) or 'PM' (Penman-
        Monteith), in the latter case supply also cut-off LAIXDP
    ETMETH = 2: ET0 according to Priestley-Taylor; supply also : RF
    ETMETH = 3: ETO according to Makkink
    ETMETH = 4: ETO given as input
* ETMETH = 1,2,3: using routines of van Kraalingen and Stol (1997); see this
* reference for meaning of specific variables
* If ETMETH = 1,2,3 always supply the following data:
* IFLAG, COUNTR, ISTN, IYEAR, WTRDIR (optional), LOGF (optional)
* which refer to standardized weather files (van Kraalingen et al., 1991)
* There is some consistency check between the use of ETMETH, METHIR and WTYPE:
* illegal: WTYPE = 'Shell' and ETMETH = 1, 2, 3; WTYPE = 'Shell' and METHIR > 0
ETMETH = 0
* Supply the following information depending on the value of METHIR:
* METHIR = 0 RAIN, TPOT, EPOT
* METHIR = 1 TPOT, EPOT, IRRINT, LFRAC, ETPTH
* METHIR = 2 TPOT, EPOT, IRRINT, LFRAC, HTRESH, ITRESH, JTRESH
* METHIR = 3 TPOT, EPOT, IRRINT, LFRAC, ECTRSH, ITRESH, JTRESH
* IRRINT: irrigation intensity (mm/UNITS)
* LFRAC : additional fraction of summated evapotranspiration SUMETP that will be
                supplied as irrigation this is not equal to the well-known leaching
                fraction LF; LFRAC and LF are related by: LFRAC = LF/(1-LF) or
                                    LF = LFRAC/(1+LFRAC)
    ETPTH : threshold value for summated evapotranspiration SUMETP at which
                irrigation is initiated
    HTRESH: threshold value for pressure head at node defined by column ITRESH and
                row JTRESH at which irrigation is initiated
* ECTRSH: threshold value for electrical conductivity at node defined by column
* ITRESH and row JTRESH at which irrigation is initiated
* All variables must be in mm/UNITS, with UNITS defined in file TNAME.
RAIN = 300*1.0
EPOT = 300*0.1
TPOT = 300*0.7
ETO = 300*0.8
* In case ETMETH = 4 a LAI table must be supplied
* LAIS : list of LAI
* IDOYLAI: list of days
* IYRLAI : list of years
* Linear interpolation is used for intermediate dates
LAIS IDOYLAI IYRLAI
0.0 1 1990
0.0 120 1990
1.0 135 1990
4.0 225 1990
0.0 226 1990
0.0 365 1990
* KCROP: exponential LAI factor
KCROP = 0.525
* Need crop factor be included (IFCROP = 1) or not (IFCROP = 0; default)
IFCROP = 0
```

```
* In case ETMETH = 4 a FCROP table must be supplied (if IFCROP = 1)
* FCROPS : list of crop factors
* IDOYFCR: list of days
    IYRFCR : list of years
* Linear interpolation is used for intermediate dates
FCROPS IDOYFCR IYRFCR
0.0 1 1990
0.0 120 1990
1.0 135 1990
1.1 140 1990
1.1 200 1990
1.0 201 1990
1.0 225 1990
0.0 226 1990
0.0 365 1990
* NB: For both LAI and FCROP the year 1000 may be used as a 'standard' year, i.e.
* for each simulation year one single LAI and/or FCROP sequence can be used
* (instead of supplying the same sequence for each of the years to be simulated.
```


15.4.7 Input file SOILS.DB

The hydraulic parameters should be supplied in a separate file. It is useful to store all available parameters in a single database file (maximum 100 soil types) and store this database at a unique location on the hard disk. Table 15-11 presents an example of such a database file which is self-explanatory.

Table 15-11. E x ample of the V an G enuchten- M ualem database file.

15.4.8 Input file EXTMAKE.DAT

D uring initialization of FUSSIM2 a reduction table for evaporation at the soil surface is created. For this purpose the user must supply a range of pressure heads (H) that can be expected to occur for the top layer and a range of potential evaporation rates (ESO) that can be expected (see Table 15-12). For safety reasons these ranges should be large. However, experience shows that for extreme combinations (e.g. low H and high ESO) computations fail, so that the ranges must be decreased.

For practical reasons the file EXTMAKE.DAT must also contain values for NNTAB, PPBIG, PPREF and PPEND. These have the same meaning as those that must be supplied in the file TGEN.DAT (see section 15.4.22) and can have the same values.

Table 15-12. E x ample of the file E X TM A KE .D A T. 0 ptional variables are printed in italic (see end of section 15.4 for ex planation).

```
* Enter a range of pressure heads H (cm)
H = 1.0E20 0.0 -200. -300. -400. -500. -600. -700. -800. -900. -1000.
    -1500. -2000. -5000. -7500. -10000.
* Enter a range of potential evaporation ESO (cm/d)
```



```
* to construct intermediate TAB table (see description of TGEN.DAT)
NNTAB = 99
PPBIG = 4000000.
PPREF = 5000000.
PPEND = 0.
* EXTMETHOD: use existing EXT tables or compute EXT tables
* EXTMETHOD = 'EXISTING'
* EXTMETHOD = 'COMPUTE' (default)
EXTMETHOD = 'COMPUTE'
* log progress to screen
SCRNLOG = .FALSE.
* METHOD = 'ONE' : for total range of K integration is used
* METHOD = 'TWO' : for large K integration is used, for small K simple
* approximation is used (faster, and difference
* with ONE is very small)
METHOD = 'TWO'
* integration method
* MINT = 'GAUS' : Gaussian integration
* MINT = 'ROMB' : Romberg integration ; preferred, but slower
MINT = 'ROMB'
```


15.4.9 Input file GWL.DAT

For the special bottom boundary condition IBOT $=-4$ (see file BOUND S.DAT) a separate file GWLDAT must be supplied containing year (IYRGWL), time
(D OYGWL) of measurement of the ground water level (GWLS). GWLS must be in cm below soil surface. The time may (must be a real value) be supplied as fraction of the day, so that the actual time (instead of only day number) of measurement can be used. More than one year can be present. Years must be in ascending order, as well as times within a year. No more than 1000 data can be supplied (maximum 100 years, maximum 400 times per year).

Table 15-13. E x ample of the file G W L.D A T.

```
* Data of groundwater level (GWLS) in cm below soil surface.
* Time supplied as real DOYGWL and integer IYRGWL; for intermediate dates
* linear interpolation is used.
IYRGWL DOYGWL GWLS
1992 1.0 60.0
1992 72.0 30.0
1992 73.0 5.0
1992 281.0 86.0
1992 323.0 28.7
1992 330.0 7.6
1992 337.0 9.8
1992 366.0 30.0
* NB: The year }1000\mathrm{ may be used as a 'standard' year, i.e. for each simulation year
* one single GWL sequence can be used (instead of supplying the same sequence for
* each of the years to be simulated.
```


15.4.10Input file VIMOKE.DAT

If a Vimoke drain is to be considered the file VIMO KE.DAT must be present with the number of drains NDRAIN $=1$. If NDRAIN $=0$ no Vimoke drain is considered. At present only a single Vimoke drain can be considered. The location of the drain is given by column and row numbers ID RAIN and JD RAIN.

HD RAIN, ID OYHD RAIN, IYEARHD RAIN

Mostly the outlet of the drain is above the ditch water level. In that case the pressure head of the node of the running Vimoke drain is kept at zero. However, if the outlet is below ditch level, the pressure head of the node representing the Vimoke drain should be equal to the positive difference between ditch level and drain outlet. This difference in pressure is given as HDRAIN and the time is given as year (IYEARHDRAIN) and day (ID OYHDRAIN) number. Linear interpolation is used for intermediate times. Maximum 30 years and 366 day per year can be considered (in total no more than 1000 data). Years and, within years, day number must be in ascending order.

Table 15-14. E xample of the file V IM OKE.DA T.

```
* Number of Vimoke drains (0 or 1)
NDRAIN = 1
* Column (IDRAIN) and row (JDRAIN) numbers of Vimoke drain location
IDRAIN = 1*1
JDRAIN = 1*10
* Correction factor CF for parameter CD
CDCORR = 2.0
* Effective drain radius (cm)
REFF = 1.0
* Time table with HDRAIN: H inside drain when functioning. Time is
* specified by IYEAR and IDOY and for intermediate dates linear
* interpolation is used.
* If negative H inside drain becomes zero
HDRAIN IDOYHDRAIN IYEARHDRAIN
    -1.0 1 1992
    -1.0 366 1992
```

* NB: The year 1000 may be used as a 'standard' year, i.e. for each simulation year
* one single HDRAIN sequence can be used (instead of supplying the same sequence
* for each of the years to be simulated.

15.4.11Input file THHFXFZ.DAT

If a steady-state situation for water movement is to be considered, the steady-state distribution of volumetric water content (WC), pressure head (H), water flux density in the $x(F X)$ and z (FZ) direction must be supplied in the file THHFXFZDAT (see Table 15-15).

Table 15-15. Example of file TH H FXFZ.D A $T(N C=3, N L=3$; fictive data). N ote that for flux in x direction $\mathrm{NC}+1$ data are needed, and for flux in z direction $\mathrm{NL}+1$ data are needed.

```
* NL*NC values for water content distribution at steady state
\(\mathrm{WC}=\)
    \(0.2 \quad 0.2 \quad 0.25\)
    \(0.25 \quad 0.25 \quad 0.3\)
    \(0.3 \quad 0.31 \quad 0.35\)
* NL*NC values for pressure head distribution at steady state
\(\mathrm{H}=\)
    -100. -100. -95.
    -95. -95. -80.
    -80. -78. -50.
* \(N L^{*}(N C+1)\) values for horizontal water flux density distribution at steady state
\(\mathrm{FX}=\)
    \(\begin{array}{llll}0.0 & 0.0 & -0.1 & 0.0\end{array}\)
    \(\begin{array}{llll}0.0 & 0.0 & -0.12 & 0.0\end{array}\)
    \(0.0 \quad-0.01 \quad-0.2 \quad 0.0\)
* (NL+1)*NC values for vertical water flux density distribution at steady state
\(\mathrm{FZ}=\)
    \(-0.05-0.05-0.05\)
    \(-0.05-0.05-0.05\)
    \(-0.05-0.05-0.05\)
    \(-0.05-0.05-0.05\)
```


15.4.12Input file WET.DAT

In case the variable WET (FUS2.CTR) has the value 'LINEAR' than tabulated wetting data must be supplied in the file WETD AT. This file must contain one series of x data (XWET) and NSOILS series of y data (YWET), where XWET is the pressure head and YWET is the volumetric water content of the main wetting curve. In the example of Table 15-16 two different soil layers were used, each with a different wetting curve.

Table 15-16. E xample of file W E T.DA T.

```
XWET =
0.0, 1.0, 2.5, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 40.0, 50.0, 60.0, 80.0, 100.0,
10000000.0
YWET =
0.326, 0.326, 0.249, 0.197, 0.141, 0.0945, 0.058, 0.027, 0.0225, 0.0195,
0.0175, 0.017, 0.017, 0.017, 0.01573
0.311, 0.311, 0.244, 0.215, 0.1605, 0.1095, 0.0695, 0.0335, 0.029, 0.027,
0.0235,0.0235,0.0235,0.0235,0.02311
```


15.4.13Input file STEMP.DAT

The file STEMPDAT (Table 15-17) contains information for the computation of 1D soil temperature distribution. See chapter 14.

Table 15-17. E xample of the file STE MP.DAT.

```
* Annual average T (TYAV) and amplitude of average yearly cycle (TYAMP) (degree C)
TYAV = 11.4
TYAMP = 8.9
* Periodic time (TC), initial time (TINI) and time where T=TYAV (TIMAV) (d)
TC = 365.0
TIMAV = 121.0
TINI = 1.0
* Number of time steps to go from TIME1 to TIME2
DTSTEP = 1
* How to compute Ch
* COMPUTE (supply also FO per soil layer)
* INTERPOLATE
CMETH = 'INTERPOLATE'
* Soil type per layer: either SAND, CLAY or PEAT
* (if you supply only 1 value --> all layers are of the same type)
SOIL = 1*'SAND'
* How to handle top and bottom boundary condition (COMPUTE or INPUT)
METH1 = 'INPUT'
METHNL = 'COMPUTE'
```


15.4.14Input file SOLUTE.DAT

The input data for solute transport are given in file SNAME (example in Table 1518). Additional information for several ions to be considered are read from file IONSINFO.DAT (see below). It is assumed that the boundary conditions (JTOP, JBOT, JLEFT, JRIGHT) apply equally to all ions present in solution (see IONSINFO.DAT). However, for each ion present the concentration at boundary must be supplied (CTOP, CBOT, CLEFT, CRIG HT). For example, if only two ions, e.g. N and P are used, CTOP contains 2 times NC data: first NC values for N and second NC values for P (data for ions not present must not be supplied).

IDISP

The variable IDISP determines which dispersivity model is used. If IDISP $=0$, then a single dispersivity LD is to be supplied (Eq. [172] is used), while if IDISP = 1 (default) the longitudinal and transversal dispersivities AL and AT should be supplied (Eqs. [161]-[163] are used).

ICON

The initial distribution can be given as initial concentration (CONC: mmoll^{-1}) (ICON >0), or as initial amount (AMOUNT) per control volume (ICON $=0$). For ICON $=0$ AMOUNT is given in mmol , for ICON <0 AMOUNT is given in mg . Computations are always done in mmol; output is always in mmol .

FREQF <optional>

The variable FREQF can be used in some special cases. For example, if fertigation is controlled by a threshold EC value (METHIR $=3$, see file FUS2.CTR) the variable FREQF determines the frequency of nutrient solution that is applied, while at the other times only pure water is applied.

Table 15-18. E xample input file SOL UTE.D A T. 0 ptional variables are printed in italic (see end of section 15.4 for explanation).

```
* Top boundary condition.
* JTOP = -1 : fixed concentration CTOP
* = 0 : no flow of solutes across boundary
* = +1 : prescribed flux density: water flux density times a) CTOP
* (when flow into domain), or b) CONC (when outflow occurs)
* Supply 1 (for all columns the same condition) or NC values
JTOP = 10*0
* Fixed concentration or concentration during inflow.
* Supply NION* (number of values supplied for JTOP) values.
CTOP = 10*0.
* Bottom boundary condition.
* JBOT = -1 : fixed concentration CBOT
* = 0 : no flow of solutes across boundary
* = +1 : prescribed flux density: water flux density times a) CBOT
* (when flow into domain), or b) CONC (when outflow occurs)
* Supply 1 (for all columns the same condition) or NC values
JBOT = 10*0
* Fixed concentration or concentration during inflow.
```

```
* When CBOT < 0, inflow occurs with a concentration equal to CONC of the bottommost
* layer.
* Supply NION* (number of values supplied for JBOT) values.
CBOT = 10*0.
* Left boundary condition.
* JLEFT = -1 : fixed concentration CLEFT
* = 0 : no flow of solutes across boundary
* = +1 : prescribed flux density: water flux density times a) CLEFT
* (when flow into domain), or b) CONC (when outflow occurs)
* Supply 1 (for all rows the same condition) or NL values
JLEFT = 10*0, 16*1
* Fixed concentration or concentration during inflow.
* Supply NION*(number of values supplied for JLEFT) values.
CLEFT = 26*0.
* Right boundary condition
* JRIGHT = -1 : fixed concentration CRIGHT
* = 0 : no flow of solutes across boundary
* = +1 : prescribed flux density: water flux density times a)
    CRIGHT (inflow), or b) CONC (outflow)
* Supply 1 (for all rows the same condition) or NL values
JRIGHT = 26*1
* Fixed concentration or concentration during inflow.
* Supply NION*(number of values supplied for JRIGHT) values.
CRIGHT = 26*0.1
* IDISP : method of dispersivities
* IDISP = 0 use single dispersivity LD
* IDISP = 1 use longitudinal and transversal dispersivities AL and
AT (default)
IDISP = 1
* Longitudinal dispersion length (cm) (if IDISP = 0; single value)
LD = 10.0
* Longitudinal and transversal dispersivities AL and AT (if IDISP = 1)
* Supply 1 (all nodes the same value), NL (all nodes per row the same value) or
* NL*NC values (supply a value for each node: first NC values for layer 1, second
* NC values for layer 2, etc.)
AL = 1*2.0
AT = 1*0.2
* Three parameters describing two linear parts of the impedance (FIMP) water
* content relationship
* CF1 : slope
* CF2 : intercept
WCLOW: water content where two linear relationships intersect
* Supply 1 (all nodes the same value), NL (all nodes per row the same value) or
* NL*NC values (supply a value for each node: first NC values for layer 1, second
* NC values for layer 2, etc.)
CF1 = 1*1.58 ! sand or loam (clay: 0.99)
CF2 = 1*-0.17 ! sand, loam, or clay
WCLOW = 1*0.12 ! sand or loam (clay: 0.20)
* Dry bulk density distribution (g/cm3)
* Supply 1 (all nodes the same value), NL (all nodes per row the same value) or
* NL*NC values (supply a value for each node: first NC values for layer 1, second
* NC values for layer 2, etc.)
BDS = 1*1.35
```

```
* parameter ICON determines whether the following table contains initial
* CONCentration (ICON > 0) or AMOUNT (ICON = 0) data
ICON = 1
* Initial distribution of all NION ions.
* ICON > 0: CONC in mmol/l
* ICON = 0: AMOUNT in mmol/kg soil
* ICON < 0; AMOUNT in mgram/kg soil
* Supply NION (all nodes the same value), NION*NL (all nodes per row the same
* value) or NION*NL*NC values (supply a value for each node: first NC values for
* layer 1, second NC values for layer 2, etc.)
CONC = 1*5.0, 1*0.5
!AMOUNT = 1*20.0, 1*4.0
* what to print
OUTSLT = 1, ! yes (1) or no (0) write concentration
    0, ! yes (1) or no (0) write amount
    1, ! yes (1) or no (0) write salt fluxes in x-dir.
    1, ! yes (1) or no (0) write salt fluxes in z dir.
    0, ! yes (1) or no (0) write uptake rate
    0, ! yes (1) or no (0) write cumulative uptake
    0 ! yes (1) or no (0) write EC
* Frequency of using nutrient solution every irrigation event.
* FREQF = 3 means use nutrient solution every third irrigation event.
FREQF=1
```


15.4.15Input file AMMON IUM.DAT

If the file AMMO NIUMDAT is supplied and present, ammonium adsorption similar as described for phosphate (see Chapter 8, but without fixation) can be considered. See description of file PHO SPHORD AT for additional information.

15-19. E xample of the file A MMONIUM.DAT. Optional variables are printed in italic (see end of section 15.4 for ex planation).

```
* Type of adsorption isotherm:
* linear : LINPAR = .TRUE.
* non-linear: LINPAR = .FALSE.
LINPAR = .FALSE.
* Type of non-linear adsorption isotherm (if LINPAR = .FALSE.)
* Langmuir : MODPAR = .TRUE.
* Freundlich: MODPAR = .FALSE.
MODPAR = .TRUE.
* Constant for linear adsorption AK (ml/cm3) (if LINPAR = .TRUE.)
AK = 2.0
* Langmuir constants (if LINPAR = .FALSE. and MODPAR = .TRUE.)
* A1, A2 in mg/cm3
    B1, B2 in ml/mg
* Note that a single (with A2 = B2 = 0) or double Langmuir can be used.
* Supply 1 (all nodes the same value), NL (all nodes per row the same value) or
* NL*NC values (supply a value for each node: first NC values for layer 1, second
* NC values for layer 2, etc.)
B1 = 1*106.8
```

```
B2 = 1*0.0
A1 = 1*0.108
A2 = 1*0.0
* Freundlich constants
* FREUN: N coefficient of Freundlich isotherm (-)
* FREUM: M coefficient of Freundlich isotherm (mg/cm3.(mg/ml)^-FREUN)
FREUN = 2.0
FREUM = 1.5
* Desired output
OUTNH4 = 0 ! print NH4 adsorbed distribution
```


15.4.16Input file IONSINFO.DAT

General information about the ions possibly present in solution is given in the file IONSINFO.DAT (example in Table 15-20).

Table 15-20. E x ample input file ION SIN F0.D A T.

```
* Information of 13 individual ions, needed for EC computations in SOLUTE
* name, valence, ionic mobility [cm2/(s.V)], diameter [Angstrom = 10^-10 m],
* diffusion in free water [cm2/d], yes/no consider
* MOBIL must be in units [cm2/(s.V)] ( not using time units d, h, m !!! )
* DIFO in cm2/d: program converts units corresponding to UNITS as supplied
* in timer file
* MOLWT: molecular weight (g/mol = mg/mmol)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 'NO3' & 1 & 1 & \(7.41 \mathrm{E}-4\) & 3 . & 1.64 & 14.0067 \\
\hline 'K' & 1 & 1 & 7.62E-4 & 3. & 1.69 & 39.102 \\
\hline 'P' & 1 & 1 & \(3.42 \mathrm{E}-4\) & 4. & 0.759 & 30.9738 \\
\hline 'Ca' & 1 & 2 & \(6.17 \mathrm{E}-4\) & 6. & 0.685 & 40.08 \\
\hline 'Mg' & 1 & 2 & \(5.50 \mathrm{E}-4\) & 8. & 0.610 & 24.305 \\
\hline 'S' & 1 & 2 & \(8.29 \mathrm{E}-4\) & 4. & 0.920 & 32.064 \\
\hline 'Cl' & 0 & 1 & \(7.91 \mathrm{E}-4\) & 3. & 1.76 & 35.453 \\
\hline 'Na' & 0 & 1 & \(5.19 \mathrm{E}-4\) & 4. & 1.15 & 22.9898 \\
\hline 'NH4' & 1 & 1 & 7.62E-4 & 3. & 1.69 & 14.0067 \\
\hline ' \(\mathrm{HCO}{ }^{\prime}\) & 0 & 1 & 4.61E-4 & 4. & 1.02 & 61.01732 \\
\hline ' \({ }^{\prime} 03{ }^{\prime}\) & 0 & 2 & \(7.64 \mathrm{E}-4\) & 5. & 0.828 & 60.00935 \\
\hline 'H' & 0 & 1 & 3.63E-3 & 9. & 8.06 & 1.00797 \\
\hline ' OH ' & 0 & 1 & \(2.01 \mathrm{E}-3\) & 3. & 4.46 & 17.00737 \\
\hline
\end{tabular}
* To compute ion activity coefficient, three equations can be used:
* extended Debye-Huckel (default), approximation for dilute solutions,
approximation for concentrated solutions
* Variable DEBYE gives method to use
* DEBYE = 0 default, use extended Debye-Huckel theory)
    = 1 use approximation for dilute solutions
    = 2 use approximation for concentrated solutions
    = 3 use approximations for dilute and/or concentrated solutions
* Of course, approximation are only used when applicable, i.e. a dilute
* solution has I < 0.005, and a concentrated solution has I > 0.1; if not,
* the standard Debye-Huckel theory will always be used
DEBYE = 0
```

```
* Parameters A and B can be computed or can be constant; if constant, they
* should be given
* PARAB = 0 constant, then give PARA (mol^0.5/kg^0.5) and PARB
*
(mol^0.5/(kg^0.5 m))
* = 1 compute (not available, since temperature is not computed)
PARAB = 0 ! must be zero
PARA = 0.51 ! mol^0.5/kg^0.5
PARB = 0.33 ! mol^0.5/(kg^0.5 m); the actual value is 0.33.10^10, but
                                    the power 10^10 is left out, since
                                    IONRAD is given in Angstrom (10^-10)
```


15.4.17Input file NITDENIN.DAT

When the module NITDEN is to be considered the file NITDENINDAT must be supplied and present. Table 15-21 presents an example of the file NITDENIND AT as supplied by J.G. Conijn. It describes in detail the meaning of all parameters, and gives (where available) indications of ranges of the values for these parameters.

Table 15-21. E xample of input file NITD E N IN .D A T. This example was kindly made available by J.G . Conijn.

```
!NITDENIN.DAT: Data input file for NITDEN as used in FUSSIM2/CNGRAS
!**********************************************************************
!The data input below has been arranged per type of input data.
!Three types have been distinguished:
!1. State variables.
!The values for the state variables determine the state
!of the model system at the beginning of a simulation run.
!2. Parameters.
!Parameters have a constant value during a simulation run.
!3. Interpolation tables.
!These tables contain pairs of X,Y variables. The Y-value for any X-value
!is found by means of linear interpolation between the two nearest
!X,Y points of the input table.
!Note: NITDEN.F90 and NITDENIN.DAT have been based on earlier work of J.
! Bril et al., 1994. AB-DLO report 24, pp 21- 25 (see also references below).
! Subroutine : NITDEN (Calculation of (de)nitrification)
!*********************************************************
!1. Section NITrification
!1.1 State variables
!Note: pH and CEC are not treated as (state) variables but are assumed
! constant throughout the whole simulation run. They are read from
! interpolation tables as function of soil depth (see below)
!1.2 Parameters
NitSourceParam1 = 195.0D0 ! range: [19.5D0, 1950.0D0]
```



```
\begin{tabular}{lll} 
NitPartParam1 & \(=.002 \mathrm{D} 0\) & ! range: [0.0D0, 0.05D0] \\
NitPartParam2 & \(=0.2 \mathrm{D} 0\) & ! range: [0.0D0, (1.0D0-NitPartParam1)] \\
NitPartParam3 & \(=0.5 \mathrm{DO}\) & ! range: [0.2D0, 0.8D0] \\
NitPartParam4 & \(=3.0 \mathrm{D} 0\) & ! range \(:[1.0 \mathrm{D} 0,5.0 \mathrm{D} 0]\)
\end{tabular}
!NitPartParam1 minimum fraction of total nitrification that is converted
!
!NitPartParam2
!
!NitPartParam3
!
!
!NitPartParam4
    into N2O (- ; see equation 9 at page 23)
    maximum fraction of total nitrification that is converted
    into N2O (- ; see equation 9 at page 23)
    water filled pore space threshold value below which the
    effect of WFPS on N2O production from nitrification equals
    zero. (- ; see equation 9 at page 23)
    fourth parameter to calculate the effect of water filled
    pore space on fraction of nitrification converted into N2O
    (- ; see equation 9 at page 23). This parameter determines
    the steepness of the curve relating the fraction converted
    into N2O to WFPS.
```

!1.3 Interpolation tables
pHDepthTabel $=0.0,5.5,1000 ., 5.5$
CECDepthTabel $=0.0,15.0, \quad 1000 ., 15.0$
!pHDepthTabel table to calculate $\mathrm{pH}(-)$ per soil layer as function of
$!\quad$ soil depth (cm). This table is only used at initialisation
! CECDepthTabel table to calculate CEC (mmol+/100 g dry soil) per soil
$\begin{array}{ll}! & \text { layer as function } \\ ! & \text { at initialisation. }\end{array}$
at initialisation.
Range of $\mathrm{X}:[0 ., 1000$.$] and range of \mathrm{Y}$ depends on soil type:
sand: [1.0, 45.0], clay: [5.0, 60.0] and peat: [40.0, 260.0]

!2. Section DENitrification

!2.1 State variables

! Note: amounts of N 2 O and N 2 are state variables in the subroutine, but they ! are read from interpolation tables as function of soil depth (see below)
!2.2 Parameters

DenSourceParam1 =	
! DenSourceParam1	the amount of source in terms of both NO3 and N2O,
!	corrected for their electron-equivalents, at which
!	the denitrification rate equals half its maximum rate at
!	optimal conditions for denitrification (mol NO3/kg moist
!	soil ; see equation 10 at page 23).
!	This parameter is the half-value constant in a Monod function.
DenWaterParam1 =	$=0.5 \mathrm{D} 0!0.3 \mathrm{D} 0$! range: [0.2D0, 0.8D0]
DenWaterParam2 =	$=2.5 \mathrm{D} 0$! \quad range: [1.0D0, 5.0D0]
! DenWaterParam1	water filled pore space threshold value below which
!	the denitrification rate equals zero (- ; see equation 10 at
$!$	page 23 and page 20)
! DenWaterParam2	second parameter to calculate the effect of water filled
!	pore space on denitrification rate (- ; see equation 10 at
!	page 23 and page 20). This parameter determines the
!	steepness of the curve relating denitrification rate to WFPS.


```
!DNPDepthTabel = 0.0,5.0, 1000.,5.0
N2ODepthTabel = 0.0,0.75E-7, 1000.,0.75E-7
N2DepthTabel = 0.0,0.2, 1000.,0.2
!DNPDepthTabel table to calculate denitrification potential
    (mg N (kg dry soil)^-1 d^-1) per soil layer as function of
    soil depth (cm). This table is only used at initialisation.
    Range of X: [0., 1000.] and range of Y depends on soil type:
    sand: [0.0, 50.0], clay:[0.0, 80.0] and peat:[0.0, 200.0]
    (see below for values taken from G.L. Velthof)
!N2ODepthTabel table to calculate amount of N2O (mg/cm3) per soil layer as
    function of soil depth (cm). This table is only used at
    initialisation.
    Range of X: [0., 1000.] and Y: [0.75E-10, 0.75E-4]
    table to calculate amount of N2 (mg/cm3) per soil layer as
    function of soil depth (cm). This table is only used at
    initialisation.
    Range of X: [0., 1000.] and Y: [0.02, 2.0]
!*************************************************************************
!Data from G.L. Velthof (source: Nitrous oxide emissions from intensively
!managed grasslands ; 1997 ; page 35 (Phd thesis)
!Note: first data point and data beyond layer 40-60 cm have been estimated
! by JGConijn (1st and 3rd line) !!
! Sand
DNPDepthTabel = 0.0, 24.5,
    2.5, 19.0, 7.5, 8.0, 15.0, 3.0, 30.0, 4.0, 50., 0.0,
    70.,0.0, 1000.,0.0
!Clay
!DNPDepthTabel = 0.0, 30.0,
    2.5, 30.0, 7.5, 6.0, 15.0, 4.0, 30.0, 2.0, 50., 1.0,
    70.,0.0, 1000.,0.0
!Peat I
!DNPDepthTabel = 0.0,103.0,
    2.5,103.0, 7.5,30.0, 15.0,13.0, 30.0,12.0, 50.,13.0,
    70., 6.0, 90.,0.0, 1000.,0.0
!Peat II
!DNPDepthTabel = 0.0, 87.0,
        2.5, 87.0, 7.5,37.0, 15.0,12.0, 30.0, 4.0, 50., 5.0,
        70.,0.0, 1000.,0.0
!****************************************************************************
!**************************************************************************
!Data from B. Rutgers (source: zwarte multomap in zijn kast: 'Berekening
!D1 CEC bepaling ...' ; 1987)
!Note: only one value per soil column is measured ; thickness of soil
! layer not given ; for 3 soil types two methods of analysis have
! been used: 1 = NH4 & Ca, 2 = Ba & Mg
!Sand Droevendaal (method 1)
!CECDepthTabel = 0.0, 7.2, 1000., 7.2
!Sand Droevendaal (method 2)
!CECDepthTabel = 0.0,16.3, 1000.,16.3
!Sand Achterberg (method 1)
!CECDepthTabel = 0.0, 3.7, 1000., 3.7
!Sand Achterberg (method 2)
!CECDepthTabel = 0.0,12.7, 1000.,12.7
```

```
!Clay Minderhoudhoeve (method 1: not suited due to high Ca in clay)
!
!Clay Minderhoudhoeve (method 2)
!CECDepthTabel = 0.0,21.2, 1000.,21.2
!Peat Zegveld (method 1)
!CECDepthTabel = 0.0, 71.1, 1000., 71.1
!Peat Zegveld (method 2)
!CECDepthTabel = 0.0,130.0, 1000.,130.0
```


15.4.18Input file PHOSPHOR.DAT

When the file PHO SPHORDAT is supplied and present and when P is present in the soil solution (IONYES(P) = 1 in IO NSINFODAT) P adsorption and fixation is considered as described in chapter 8 . Table 15-22 presents an example of the file PHO SPHORDAT.

MODPAR, LINPAR

Type of adsorption isotherm is given by the logical MODPAR: TRUE -> Langmuir (supply A1, A2, B1, B2), else Freundlich (supply FREUN, FREUM). Non-linear adsorption is considered when LINPAR $=$ FALSE. For LINPAR $=$ TRUE linear adsorption can be considered (supply AK).

Table 15-22. E xample of file PH OSPH OR.D A T. 0 ptional variables are printed in italic (see end of section 15.4 for ex planation).

```
* Type of adsorption isotherm:
* linear : LINPAR = .TRUE.
* non-linear: LINPAR = .FALSE.
LINPAR = .FALSE.
* Type of non-linear adsorption isotherm (if LINPAR = .FALSE.)
* Langmuir : MODPAR = .TRUE.
* Freundlich: MODPAR = .FALSE.
MODPAR = .TRUE.
* Constant for linear adsorption AK (ml/cm3) (if LINPAR = .TRUE.)
AK = 2.0
* Langmuir constants (if LINPAR = .FALSE. and MODPAR = .TRUE.)
* A1, A2 in mg/cm3
    B1, B2 in ml/mg
* Note that a single (with A2 = B2 = 0) or double Langmuir can be used.
* Supply 1 (all nodes the same value), NL (all nodes per row the same value) or
* NL*NC values (supply a value for each node: first NC values for layer 1, second
* NC values for layer 2, etc.)
B1 = 1*106.8
B2 = 1*0.0
A1 = 1*0.108
A2 = 1*0.0
* Freundlich constants
    FREUN: N coefficient of Freundlich isotherm (-)
* FREUM: M coefficient of Freundlich isotherm (mg/cm3.(mg/ml)^-FREUN)
FREUN = 2.0
```

```
FREUM = 1.5
* Initial Pw distribution (mg P2O5 / L soil)
* Supply 1 (all nodes the same value), NL (all nodes per row the same value) or
* NL*NC values (supply a value for each node: first NC values for layer 1, second
* NC values for layer 2, etc.)
PW = 1*10.0
* Fixation rate parameters (Schoumans model, Rapport 381, 1995, SC-DLO)
    ALPH1,ALPH2,ALPH3 extinction coefficients (1/d)
    N1,N2,N3 exponents (-)
    BI1,BI2,BI3 b-parameters (mg P/l)**Ni (Ni=N1,N2 or N3)
    ALFEOX oxalate extractable Fe+Al (mmol/kg)
    REDF reduction of rate when de-fixation occurs (-)
* Supply 1 (all nodes the same value), NL (all nodes per row the same value) or
* NL*NC values (supply a value for each node: first NC values for layer 1, second
* NC values for layer 2, etc.)
ALPH1 = 1*1.1755
ALPH2 = 1*0.0334
ALPH3 = 1*0.0014382
N1 = 1*0.5357
N2 = 1*0.1995
N3 = 1*0.2604
BI1 = 1*0.009459
BI2 = 1*0.03795
BI3 = 1*0.05185
ALFEOX = 1*210.0
REDF = 1*100.0
* Desired output
OUTADS = 0 ! print Pw distribution
                    ! print P adsorbed
                    ! print P fixated
                    ! print P fixing capacity and fraction of P capacity
                    ! occupied
```


15.4.19Input file UPTA.DAT

D ata file for root solute uptake are given in the file UPTA.DAT (example in Table 15-23).

IUPWAY

When the root nutrient uptake model of section 2.6 is to be used the variable IUPWAY = 1 (default). As an alternative root nutrient uptake proportional to root length can be considered by setting IUPWAY $=0$.

METHOD

Root nutrient uptake according to the model presented in Section 2.6 is represented by METHOD >0. If METHOD $=0$, the mass flow component in the model is not considered, i.e. only diffusion to the root is considered. As a special case, METHOD <0, the model presented in Section 2.6 is used with now mass flow computed as water uptake times concentration.

NPLANT, PLUPT

The required uptake per plant (PLUPT) is multiplied by the total number of plants (NPLANT) in the flow domain to get the required uptake from the flow domain.

Table 15-23. E x ample input file U PTA .D A T. Optional variables are printed in italic (see end of section 15.4 for explanation).

```
* Maximum uptake rate of nutrient per unit root surface area (De Willigen & van
* Noordwijk 1987, PhD Thesis WAU, p. 48) (mmol/(cm2.day).
* Program converts units corresponding to UNITS as supplied in timer file values
* for all NION ions must be given.
FMAX = 13*6.05E-04
* Which uptake routine to use
* IUPWAY = 1: use root nutrient uptake model (default)
* IUPWAY = 0: consider root nutrient uptake proportional to root length
IUPWAY = 1
* Method how to treat nutrient transport after unconstrained uptake
* METHOD = 0: diffusion only
* > 0: mass flow via Eq. [46] and G-function (Eq. [48]) plus diffusion
* < 0: mass flow as water uptake times concentration plus diffusion
METHODU = 1
* Minimum concentration at root surface below which uptake cannot occur (default is
* zero).
* Supply NION values.
CMIN = 1*0.0
* Maximum number of iterations allowed during uptake distribution computations
IUPMAX = 50
* Convergence criterion for uptake distribution computations
UPCRIT = 1.0E-04
```


15.4.20Input file TRAN SP.DAT

Input data for the root water uptake module are given in the file TRANSP (example in Table 15-24).

REDPOT
Yes (REDPOT = 1) or not (REDPOT = 0) use the transpiration reduction function Eqs. [25] and [26], i.e. if RED POT $=0$ force always potential transpiration.

RTGROW

Yes (RTGROW = 1) or not (RTGROW = 0) consider logistic root growth. Logistic root growth is described by (Heinen, 1997; TIME t is the current simulation time)

$$
\mathrm{L}_{\mathrm{rv}}=\frac{\mathrm{L}_{\mathrm{rv}, \mathrm{ini}}}{1+\exp \left(-\mathrm{L}_{\mathrm{rv}, \mathrm{k}}\left(\mathrm{t}+\mathrm{L}_{\mathrm{rv}, \mathrm{ts}}-\mathrm{L}_{\mathrm{rv}, \mathrm{t}}\right)\right)}
$$

When RTG ROW $=1$, the user should supply the following data.
LRVK the inverse time constant (d^{-1})
LRVT the time of inflection of the logistic curve (d)
LRVTS start time of simulation relative to start of plant growth, i.e. the age of the roots at start of simulation (d)
LRVINI the maximum (asymptotic) root length density distribution
Table 15-24. Example input file TRA N SP.D A T. 0 ptional variables are printed in italic (see end of setion 15.4 for explanation).

```
* Solute reflection coefficient for water uptake model (-).
* Supply 1 (for all plants the same) or NPLANT values.
SIGMA = 1*0.9
* Osmotic pressure head inside plant for water uptake model (cm).
* Supply 1 (for all plants the same) or NPLANT values.
HOSP = 1*0.
* Root hydraulic conductance K1 (cm/d).
* Program converts units corresponding to UNITS as supplied in timer file.
* Supply 1 (for all plants the same) or NPLANT values.
K1 = 1*3.6D-06
* Root radius R0 (cm).
* Supply 1 (for all plants the same) or NPLANT values.
R0 = 1*0.017
* Campbell reduction function parameters (if REDPOT > 0)
* A : some plant specific parameter (-)
* HRHALF: plant potential where reduction function equals 0.5 (cm)
* Supply 1 (for all plants the same) or NPLANT values.
A = 1*10.0
HRHALF = 1*1.0D4
* Indicate which variables have to be printed
OUTTRA = 0, ! print root water uptake rate (cm/UNITS) and cumulative root
    ! water uptake since start (cm): 1: yes, else no
    0, ! print root water uptake rate per cm root length
    0, ! print relative contribution of root water uptake in relation
    ! to actual transpiration rate (-): idem
    1, ! print root pressure head (cm): idem
    1, ! print actual transpiration rate (cm/UNITS): idem
    1 ! print realized root water uptake (cm/UNITS), which should be
    ! equal to actual transpiration rate: idem
```

```
* Reduction parameter REDPOT
```

* Reduction parameter REDPOT
* REDPOT = 0: no transpiration reduction
* REDPOT = 0: no transpiration reduction
* REDPOT = 1: reduction of transpiration according to Campbell reduction
* REDPOT = 1: reduction of transpiration according to Campbell reduction
* function (default)
* function (default)
REDPOT = 1
REDPOT = 1
* Consider logistic root growth (RTGROW = 1) or not (RTGROW = 0; default)
* Consider logistic root growth (RTGROW = 1) or not (RTGROW = 0; default)
* If RTGROW then supply
* If RTGROW then supply
LRVINI: maximum LRV distribution (NPLANT*NL*NC values)
LRVINI: maximum LRV distribution (NPLANT*NL*NC values)
LRVK : k-parameter in logistic growth function (1 or NPLANT values)
LRVK : k-parameter in logistic growth function (1 or NPLANT values)
LRVT : time of inflection in logistic growth function (1 or NPLANT values)
LRVT : time of inflection in logistic growth function (1 or NPLANT values)
LRVTS : start time of simulation, i.e. time to be added to simulation time in
LRVTS : start time of simulation, i.e. time to be added to simulation time in
order to get real time to be used in logistic growth function (l or
order to get real time to be used in logistic growth function (l or
NPLANT values)
NPLANT values)
RTGROW = 0

```
RTGROW = 0
```


15.4.21Input file TRANSP.CTR

In the file TRANSP.CTR some control parameters are given used in the root water uptake module (example in Table 15-25).

TRANS
The variable TRANS indicates what kind of root water uptake model is to be used. By default the root water uptake model of Section 2.3 is used. As an alternative, root water uptake may also be considered as water uptake from a control volume proportional to root length in that control volume Eq. [113] (e.g. under wet conditions).

TRHYST

Do not change this parameter.
Table 15-25. Example input file TRA N SP.CTR. Optional variables are printed in italic (see end of section 15.4 for explanation).

```
* increase/reduction factor for finding proper minimum and maximum values for root
* pressure head
FAC = 1.25
* convergence criterion root water uptake
RDPMIN = 1.0E-4
* number of points used for interpolation in matric flux potential table
NP= = 3
* accuracy used for root finding procedure
TOL = 1.0E-4
* Method of transpiration computation.
* TRANS = 'COMPUTE' : use water uptake model (default)
* TRANS = 'PROPORT' : water uptake is proportional to root length
TRANS = 'COMPUTE'
*Yes or No use hysteretic approximation in TRANS (do not change)
TRHYST = 'N'
```


15.4.22Input file TGEN.DAT

The file TGEN.DAT contains some parameters used by the root water uptake module (example in Table 15-26). The matric flux potential needed in the root water uptake model (Section 2.3) is not at all times computed, due to the large computation time. Instead, initially a table is constructed from which the matric flux potential is obtained through linear interpolation. In the program the pressure head h is replaced by pressure P with $\mathrm{P}=-\mathrm{h}$. The number of entries in the table is NNTAB, the smallest pressure head for which the table is to be constructed is PPBIG, the largest pressure head for which the table is to be constructed is PPEND, and the reference pressure head is PPREF (PPREF > PPBIG). Note that the absolute values of
pressure head need to be given. The range [PPEND,PPBIG] must include all pressure heads that can be expected to occur during simulation. For very coarse porous media, it may be difficult to obtain the matric flux potential table when PPBIG and PPREF are very large; then, use smaller values for these variables.

Table 15-26. Example input file TG EN.D A T.

```
NNTAB = 99
PPBIG = 100000.
PPREF = 600000.
PPEND = 0.
```


15.4.23Input file EXPLIN.DAT

When the internal expo-linear plant growth module is to be used (ELGROW = TRUE in FUS2.CTR) the required data must be supplied in the data file EXPLIN.DAT (see Table 15-27). In this same file also data need to be supplied when the internal nutrient demand function is to be considered (NUTDEM = TRUE in FUS2.CTR). See descriptions of these modules in chapter 11.

PLNUM

It is possible to consider more than 1 plant. To distinguish the regions that each plant type occupies, the user must supply per column what plant type PLNUM is growing there. So values for PLNUM must be in the range 1 through NPLANT

Table 15-27. E x ample input file E X PL IN .D A T.

```
* Number of plants to consider
NPLANT = 1
* Indicate what plant number is coupled to each of the columns
* Enter 1 or NC values
PLNUM = 1*1
* Parameters for the expo-linear growth equation
* RM (g/g/d) : maximum relative growth rate
* CM (kg/ha/d): maximum growth rate
* WTOT (kg/ha) : initial dry weight of species
* SHRT (-) : shoot-root ratio
* PL (g/g) : fraction of total dry matter that are leafs
    SLA (ha/kg) : specific leaf area
* Enter NPLANT values per variable.
RM = 1*0.14 ! faba bean
CM = 1*200.0
WTOT = 1*50.0
SHRT = 1*10.0
PL = 1*0.5
SLA = 1*200.E-5 ! specific leaf area 200 cm2/g = 200E-5 ha/kg
* Parameters for demand computation
* Maximum uptake rate of nutrient per unit root surface area (p. 48 dW + vN,
* dissertation) (mmol/(cm2.day))
* Program converts units corresponding to UNITS as supplied in timer file
* Enter NPLANT*NION values
```

```
FMAX = 2*6.05E-4
* Initial amount in plants (kg/ha)
* Enter NPLANT*NION values
TUPT = 2*0.1
* Indicate how the demand is to be computed.
* DEMMOD = FALSE: use GREENWOOD formula, and additionally supply A, B, C
* DEMMOD = TRUE: do interpolation from table, and additionally supply DM and
* OPTC tables
DEMMOD = .FALSE.
* Greenwood parameters (if DEMMOD = FALSE)
* A,B in g/g; C in ha/kg
* Enter NPLANT*NION values
    = 2*0.0021
B = 2*0.00168
C = 2*0.00026
* Interpolation table (if DEMMOD = TRUE)
* DM: dry matter content of a plant (no more than lo values; g).
* Note that only 1 list of DM for all plants can be used.
* OPTC: list of optimal concentrations of ions in plant (g nutrient / g plant).
* Enter NDM*NPLANT*NION values, with NDM is the number of DM data.
DM = 0.0 1.0 10.0 100.0 250.0
OPTC = 0.04, 0.04,
* Relaxation time constant TCNU (d)
* Enter NPLANT*NION values
TCNU = 2*1.0
```


15.4.24Input file ROOTS.DAT

When diffusive root growth needs to be considered (RGROW = TRUE in FUS2.CTR) the required data must be supplied in the file ROOTSDAT (see Table 15-28).

QIN
Input of roots is presumed to occur at the bottom of the stem of the plant. The user can indicate where this occurs by supplying $\mathrm{QIN}=1$ for those control volumes, otherwise supply QIN $=0$.

Table 15-28. E xample input file R0 0 T S.D A T.

```
* Root radius (cm)
R0= = 1*0.01
* Dry matter content of roots (g/g)
DMCR = 1*0.08
* Bulk density of roots (g/cm3)
RHOR = 1*1.0
* Basic diffusion coefficient for root growth in x-direction (cm2/d) (units are
* automatically converted to program time units)
RDXO
    = 1*1.0
* Basic diffusion coefficient for root growth in z-direction (cm2/d) (units are
* automatically converted to program time units)
RDZ0
    = 1*2.0
* Specific decay rate of roots (1/d) (units are automatically converted to program
* time units)
DECRAT = 1*0.02
* CV's where roots enter from the stem into the substrate (no dimension)
* QIN = 0: no root input
    QIN = 1: root input
* Enter NPLANT*NL*NC values
QIN =
    19*0, 1
    19*0, 1
    19*0, 1
    19*0, 1
    20*0,
    120*0
* Initial distribution of LRV (cm/cm3)
* Enter NPLANT*NL*NC values
LRVINI =
    19*0.0, 2.0
    19*0.0, 2.0
    19*0.0, 2.0
    19*0.0, 2.0
    20*0.0,
    120*0.0
* Reduction function for hindering root growth.
* Enter precisely 6 (X,Y) pairs, with
* X = pressure head (cm)
* Y = reduction (no dimension)
* Y = 1 no reduction, Y = 0 no root growth; linear interpolation is done for
* intermediate values of X.
REDH = -100000.0, 0.0,
    -10000.0, 0.0,
    -1000.0, 1.0,
            -10.0, 1.0,
                        0.0, 0.0,
        1000.0, 0.0
```


15.4.25Input file FE RTIL.DAT

If the file FERTILDAT is supplied and it exists, then fertilization takes place. In this file (Table 15-29) the times of fertilization (FERTTM) are given as well as the corresponding amount for all ions (FFERT). Also present must be the column and row numbers of all nodes where fertilization takes place.

Table 15-29. Example of file FE RTIL.D A T.

```
* Times of fertilization (in time units) (max. 10 values)
FERTTM = 100.0, 130.0, 180.0, 200.0, 225.0
* Amounts of fertilizers (kg/ha) for all NION ions at all FERTTM
FFERT =
    30.0 10.0
    35.0 15.0
    30.0 10.0
    35.0 15.0
100.0 25.0
* Column numbers (FCOL) and row numbers (FROW) where fertilizer is applied (max. 50
* values per array)
FCOL = 1 2 3 4 5 6 7 8 9 10
FROW = 10*1
```


15.5 Examples of output files

A simulation run results in one or two user-supplied output files (RNAME and SNAME, see Section 15.4), a logfile (FUSSIM2.LOG), and several intermediate files not important to the user. Of these intermediate files the '.TMP' are deleted from the current directory when simulation is finished properly, and files with extension '.TAB' remain on the current directory. The latter files can be safely deleted by the user. The file FUSSIM2.LOG contains some messages from the TTUTIL reading routines, which are of no importance to the user. If supplied by the user it can contain all the time steps that were used by the model.

The water results are written to the user-supplied output file RNAME (example in Table 15-30); solute results are printed to the user-supplied file SNAME (example in Table 15-31). Examples of these two files are given below, and should be selfexplanatory.

Table 15-30. E xample of water results file RN A ME.

Example 6.4
Units of measure:

> Length in : cm (default).

Time in : d (user supplied).
$\begin{array}{ll}\text { Ouput filename } & : c-w \\ \text { Soil conditions file name } & \text { : c-so }\end{array}$
Boundary and initial conditions filename : c-bc
Weather conditions filename : c-wh
Timer data filename : c-tm
GEOMETRY
Profile width (cm) : 200.00
Profile depth (cm) : 200.00
Number of grid points in x : 20
Number of grid points in z : 24
Position gridpoints
X-coordinate gridpoints (cm)
$.0015 .00 \quad 25.00 \quad 35.00 \quad 45.00 \quad 55.00 \quad 65.00 \quad 75.00 \quad 85.00 \quad 95.00105 .00115 .00125 .00135 .00145 .00155 .00165 .00175 .00185 .00200 .00$ Thickness control-volumes in $\mathrm{x}(\mathrm{cm})$
$\begin{array}{lllllllllllllllllllllll}10.00 & 10.00 & 10.00 & 10.00 & 10.00 & 10.00 & 10.00 & 10.00 & 10.00 & 10.00 & 10.00 & 10.00 & 10.00 & 10.00 & 10.00 & 10.00 & 10.00 & 10.00 & 10.00 & 10.00\end{array}$
Z-coordinates gridpoints (cm)
$\begin{array}{lllllllllllllllllllllll}.00 & 15.00 & 25.00 & 35.00 & 45.00 & 55.00 & 65.00 & 75.00 & 85.00 & 91.00 & 93.00 & 95.00 & 97.00 & 99.00 & 105.00 & 115.00 & 125.00 & 135.00 & 145.00 & 155.00\end{array}$ $165.00175 .00185 .00 \quad 200.00$

Thickness control-volumes in $z(c m)$
$\begin{array}{lllllllllllllllllllllllllllllllllll}10.00 & 10.00 & 10.00 & 10.00 & 10.00 & 10.00 & 10.00 & 10.00 & 10.00 & 2.00 & 2.00 & 2.00 & 2.00 & 2.00 & 10.00 & 10.00 & 10.00 & 10.00 & 10.00 & 10.00\end{array}$
$10.00 \quad 10.00 \quad 10.00 \quad 10.00$

Scheme of flow domain nodes with coded boundary conditions.
R : rain or irrigation input only
E : evaporation only
$\mathrm{N}: \mathrm{R}-\mathrm{E}$
h : prescribed pressure head
f : known flow across boundary

- : f = 0
s : seepage face

[^0]r : resistance drain

Soil type codes:

Code Name
1 zavelb7
xNx
xN11-
xN1111-
xN111111-x11111111-sNNNNNN111111111-s111111111111111-s111111111111111-s111111111111111-s111111111111111-s111111111111111-s111111111111111-s111111111111111-s111111111111111-h111111111111111-h111111111111111-xhh1111111111111111-
-111111111111111111-
-111111111111111111-
-111111111111111111-
-111111111111111111-
-111111111111111111-
-111111111111111111-
x-------------------x

TIMER VARIABLES

DELT : $1.00000 \mathrm{E}-05 \mathrm{~d}$

PRDEL : $1.00000 \mathrm{E}+00 \mathrm{~d}$
 FINTIM : 1.00000E+01 d

Variable time step with:
DTMAX : $2.50000 \mathrm{E}-01 \mathrm{~d}$
ZETA : $1.00000 \mathrm{E}-02 \mathrm{a}$
Convergence based on minimal change in H and K
Maximum number of iterations $=20$
Convergence criterion EPSIL $=1.00000 \mathrm{E}-04$
Convergence criterion EPSILI = 1.00000E-08
Hydraulic properties for each of the control volumes.
van Genuchten functions used.
Averaging hydraulic conductivities : geometric
No hysteresis considered.
ICCGO solution method used.
No theoretical root water uptake considered.

TIME $=0.00000000 \mathrm{E}+00$
Total water : $1.5558535348 \mathrm{E}+04 \mathrm{ml}$ Total change water : $0.0000000000 \mathrm{E}+00 \mathrm{ml}$ Balance water : $0.0000000000 \mathrm{E}+00 \mathrm{ml}$ Relative water : $0.0000000000 \mathrm{E}+00$

Total amount that passed bottom layer	$:$	$0.0000000000 \mathrm{E}+00 \mathrm{ml}$
Total amount that passed left boundary	:	$3.7490011096 \mathrm{E}-19 \mathrm{ml}$
Total amount that passed right boundary :	$0.0000000000 \mathrm{E}+00 \mathrm{ml}$	

TIME $=1.00000000 \mathrm{E}+01$

Total water	$:$	$1.5964384250 \mathrm{E}+04 \mathrm{ml}$	
Total change water $:$	$4.0595898950 \mathrm{E}+02 \mathrm{ml}$		
Balance water	$:$	$-1.1008670507 \mathrm{E}-01 \mathrm{ml}$	
Relative water	$:$	$-6.8957689405 \mathrm{E}-06$	

Table 15-31. E xample of solute results file SN A ME.
TIME $=0.00000000 \mathrm{E}+00$
Total nutrient : $1.2078535348 \mathrm{E}+02 \mathrm{mmol}$

Total change nutrient : $0.0000000000 \mathrm{E}+00 \mathrm{mmol}$
Total uptake nutrient : $0.0000000000 \mathrm{E}+00 \mathrm{mmol}$
Balance nutrient : $-3.2684965845 \mathrm{E}-13 \mathrm{mmol}$
Relative nutrient : $\quad-2.7060371895 \mathrm{E}-15$

15.6 The remun facility

There is a special utility in the TTUTIL library (van Kraalingen and Rappoldt, 2000) which makes it possible to make reruns. For each run one or more variables can be changed. Reruns are carried out when in the current directory a file named RERUNS.DAT is present. In this file the new data for one or more variables (as appearing in any of the files discussed in Section 15.4) are given. It is required that for each run the same variables are used and in the same order. An example of a rerun file is given in Table 15-32. Note that the first run is described by the individual files, while the following runs use the same initial data, except for the new data given in the RERUNS.DAT file. In this example the user is interested in the effect of different rain intensities for two soils, and for each run a different output file for water is used.

Table 15-32. Ex ample of a RE RUN S.D A T file.

```
* run 2
soilns = 1*'zandb3'
rain = 365*1.0
wname = 'zand2'
* run 3
soilns = 1*'zandb3'
rain = 365*1.5
wname = 'zand3'
* run 4
soilns = 1*'kleib10'
rain = 365*0.5
wname = 'klei1'
* run 5
soilns = 1*`kleib10'
rain = 365*1.0
wname = 'klei2'
* run 6
soilns = 1*`kleib10'
rain = 365*1.5
wname = `klei3'
```

In this example six runs are done, three with a soil named 'zandb3' and three with a soil named 'kleib10'. For the two soils three rain regimes are considered: either 0.5 , 1.0 or $1.5 \mathrm{~cm} / \mathrm{d}$ precipitation. For each case a separate output file is used.

A RERUN.LOG file is produced in the current directory in which the adapted values are given, or where explanations for possible errors are given.

15.7 Acknowledgements

The author acknowledges Falentijn Assinck for critically reading this chapter.

15.8 References

Assinck F.B.T. en M. Heinen, 2001. Waar en wat meten met sensoren in een substraat? Modelverkenningen naar geschikte meetvariabelen en meetplekken in een zandbed- en steenwolteeltsysteem in de glastuinbouw. Rapport 264, Alterra, Wageningen, 37 p.
de Vos J.A. en M. Heinen, 1999. Afstemming van de organische bemesting op variatie in ruimte en tijd. Rapportage van Lovinkhoeve-experimenten in 1998. Rapport 110, AB, Wageningen, 44 p.
Heinen M. and P. de Willigen, 1998. FUSSIM2 A two-dimensional simulation model for water flow, solute transport and root water and root nutrient uptake in unsaturated and partly unsaturated porous media. Quantitative Approaches in Systems Analysis No. 20, DLO Research Institute for Agrobiology and Soil Fertility and the C.T. de Wit Graduate School for Production Ecology, Wageningen, The Netherlands, 140 p .
Rappoldt C, 2001. Description of the FSE4 shell. Internal Report, Alterra, Wageningen, in preparation.
van Kraalingen, D.W.G., 1995. The FSE system for crop simulation, version 2.1. Quantitative Approaches in Systems Analysis No. 1. DLO Research Institute for Agrobiology and Soil fertility and The C.T. de Wit graduate school for Production Ecology, Wageningen, The Netherlands. 58 pp .
van Kraalingen D.W.G. and C. Rappoldt, 2000. Reference manual of the FORTRAN utility library TTUTIL v. 4. Report 15, AB-D LO, Wageningen, The Netherlands.
van Kraalingen D.W.G., W. Stol, P.W.J. Uithol and M.G.M. Verbeek, 1991. User manual of CABO/TPE weather system. CABO/TPE internal communication, Wageningen, The Netherlands, 26 p.
van K raalingen D.W.G., W. Stol, 1997. Evapotranspiration modules for crop growth simulation. Implementation of the algorithms from Penman, Makkink and Priestley-Taylor. Quantitative Approaches in Systems Analysis No. 11, DLO Research Institute for Agrobiology and Soil fertility and The C.T. de Wit graduate school for Production Ecology, Wageningen, 29 p. + Appendices.

[^0]: x : two boundary conditions
 u : unit gradient or free drainage
 d : seepage drain

