Skip to main content
Log in

Trichomes: interaction sites of tomato leaves with biotrophic powdery mildew pathogens

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The present study aimed to explore the possibility of using the type I trichomes of tomato (Solanum lycopersicum) to monitor the infection processes of powdery mildews by microscopy. Individual trichome cells of two tomato genotypes were inoculated with pathogenic and non-pathogenic powdery mildew species, Pseudoidium neolycopersici, Erysiphe trifoliorum and Podosphaera xanthii. On the trichome cells of the tomato cultivar Moneymaker, hyphae of the pathogenic Pseudoidium neolycopersici (isolates KTP-03 and KTP-04) grew vigorously; whereas hyphal growth of the non-pathogenic Erysiphe trifoliorum and Podosphaera xanthii ceased after appressorium formation, which was associated with papilla formation and hypersensitive cell death, respectively. Similar infection processes of the tested powdery mildews were seen in Moneymaker epidermal cells. Therefore, tomato trichomes are suitable for analysing, at individual cell level, the infection processes of different pathotypes of powdery mildews and for observing the cytological responses of plants by non-pathogenic powdery mildews. On the other hand, it was observed that both isolates KTP-03 and KTP-04 failed to produce conidiophores on the hyphae elongating on Moneymaker trichomes. Similarly, no conidiophores were produced on the hyphae elongating on trichomes of Solanum peruvianum LA2172, which is resistant to KTP-03 and susceptible to KTP-04. Interestingly, delayed cell death occurred in LA2172 epidermal cells, which were attacked by KTP-03 hyphae elongating from trichomes and conidiophores were formed on new hyphae growing from the leaf epidermal cells. Thus, leaf trichomes and epidermal cells of the wild tomato species LA2172 reacted differently to the avirulent isolate KTP-03.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bai, Y., van der Hulst, R., Huang, C.-C., Wei, L., Stam, P., & Lindhout, P. (2004). Mapping Ol-4, a gene conferring resistance to Oidium neolycopersici and originating from Lycopersicon peruvianum LA2172, requires multi-allelic, single locus makers. Theoretical and Applied Genetics, 109, 1215–1223.

    Article  CAS  Google Scholar 

  • Chandran, D., Inada, N., Hather, G., Kleindt, C. K., & Wildermuth, M. C. (2010). Laser microdissection of Arabidopsis cells at the powdery mildew infection site reveals site-specific processes and regulators. Proceedings of the National Academy of Sciences of the United States of America, 107, 460−465.

  • Duffey, S. S. (1986). Plant glandular trichomes: Their partial role in defense against insects. In B. E. Juniper & T. E. Southwood (Eds.), Insects and the plant surface (pp. 151–172). London: Arnold.

    Google Scholar 

  • Ellis, J. (2006). Insights into nonhost disease resistance: Can they assist disease control in agriculture? The Plant Cell, 18, 523–528.

    Article  CAS  Google Scholar 

  • Fujita, K., Matsuda, Y., Wada, M., Hirai, Y., Mori, K., Moriura, N., Nonomura, T., Kakutani, K., & Toyoda, H. (2004). Powdery mildew pathogens can suppress the chitinase gene expression induced in detached inner epidermis of barley coleoptile. Plant Cell Reports, 23, 504–511.

    Article  CAS  Google Scholar 

  • Glover, B. J. (2000). Differentiation in plant epidermal cells. Journal of Experimental Botany, 51, 497–505.

    Article  CAS  Google Scholar 

  • van der Hoorn, R. A. L., & Kamoun, S. (2008). From guard to decoy: A new model for perception of plant pathogen effectors. The Plant Cell, 20, 2009–2017.

    Article  Google Scholar 

  • Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444, 323–329.

    Article  CAS  Google Scholar 

  • Jones, H., Whipps, J. M., & Gurr, S. J. (2001). The tomato powdery mildew fungus Oidium neolycopersici. Molecular Plant Pathology, 2, 303–309.

    Article  CAS  Google Scholar 

  • Kang, J.-H., Liu, G., Shi, F., Jones, A. D., Beaudry, R. M., & Howe, G. A. (2010). The tomato odorless-2 mutant is defective in trichome-based production of diverse specialized metabolites and broad-spectrum resistance to insect herbivores. Plant Physiology, 154, 262–272.

    Article  CAS  Google Scholar 

  • Kashimoto, K., Matsuda, Y., Matsutani, K., Sameshima, T., Kakutani, K., Nonomura, T., Okada, K., Kusakari, S., Nakata, K., Takamatsu, S., & Toyoda, H. (2003). Morphological and molecular characterization for a Japanese isolate of tomato powdery mildew Oidium neolycopersici and its host range. Journal of General Plant Pathology, 69, 176–185.

    Article  CAS  Google Scholar 

  • Kennedy, G. G., & Sorenson, C. F. (1985). Role of glandular trichomes in the resistance of Lycopersicon hirsutum f. glabratum to Colorado potato beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 78, 547–551.

    Article  Google Scholar 

  • Kessler, A., & Baldwin, I. T. (2001). Defensive function of herbivore-induced plant volatile emissions in nature. Science, 291, 2141–2144.

    Article  CAS  Google Scholar 

  • Lemke, C. A., & Mutschler, M. A. (1984). Inheritance of glandular trichomes in crosses between Lycopersicon esculentum and L. pennellii. Journal of the American Society for Horticultural Science, 109, 592–596.

    Google Scholar 

  • Lindeberg, M., Cunnac, S., & Collmer, A. (2012). Pseudomonas syringae type III effector repertoires: Last words in endless arguments. Trends in Microbiology, 20, 199–208.

    Article  CAS  Google Scholar 

  • Matsuda, Y., Kakutani, K., Nishimura, M., Wada, M., Nonomura, T., & Toyoda, H. (2003). Direct RT-PCR amplification of mature mRNAs in single trichome cells of plant leaves. Recent Research Developments in Cell Biology, 1, 145–153.

    CAS  Google Scholar 

  • Matsuda, Y., Sameshima, T., Moriura, N., Inoue, K., Nonomura, T., Kakutani, K., Nishimura, H., Kusakari, S., Takamatsu, S., & Toyoda, H. (2005). Identification of individual powdery mildew fungi infecting leaves and direct detection of gene expression by single conidium polymerase chain reaction. Phytopathology, 95, 1137–1143.

    Article  CAS  Google Scholar 

  • McDowell, E. T., Kapteyn, J., Schmidt, A., Li, C., Kang, J.-H., Descour, A., Shi, F., Larson, M., Schilmiller, A., An, L., Jones, A. D., Pichersky, E., Soderlund, C. A., & Gang, D. R. (2011). Comparative functional genomic analysis of Solanum glandular trichome types. Plant Physiology, 155, 524–539.

    Article  CAS  Google Scholar 

  • Nonomura, T., Matsuda, Y., Xu, L., Kakutani, K., Takikawa, Y., & Toyoda, H. (2009a). Collection of highly germinatve pseudochain conidia of Oidium neolycopersici from conidiophores by electrostatic attraction. Mycological Research, 113, 364–372.

    Article  Google Scholar 

  • Nonomura, T., Xu, L., Wada, M., Kawamura, S., Miyajima, T., Nishitomi, A., Kakutani, K., Takikawa, Y., Matsuda, Y., & Toyoda, H. (2009b). Trichome exudates of Lycopersicon pennellii form a chemical barrier to suppress leaf-surface germination of Oidium neolycopersici conidia. Plant Science, 176, 31–37.

    Article  CAS  Google Scholar 

  • Nonomura, T., Nishitomi, A., Matsuda, Y., Soma, C., Xu, L., Kakutani, K., Takikawa, Y., & Toyoda, H. (2010). Polymorphic change of appressoria by the tomato powdery mildew Oidium neolycopersici on host tomato leaves reflects multiple unsuccessful penetration attempts. Fungal Biology, 114, 917–928.

    Article  Google Scholar 

  • Nonomura, T., Matsuda, Y., Takikawa, Y., Kakutani, K., & Toyoda, H. (2014). Successional changes in powdery mildew pathogens prevailing in common and wild tomato plants rotation-cultivated in a greenhouse. Annual Report of the Kansai Plant Protection Society, 56, 17–20.

    Article  Google Scholar 

  • Peter, A. J., & Shanower, T. G. (1998). Plant glandular trichomes: Chemical factories with many potential uses. Resonance, 3, 41–45.

    Article  Google Scholar 

  • Pichersky, E., & Gershenzon, J. (2002). The formation and function of plant volatiles: Perfumes for pollinator attraction and defense. Current Opinion in Plant Biology, 5, 237–243.

    Article  CAS  Google Scholar 

  • Sameshima, T., Kashimoto, K., Kida, K., Matsuda, Y., Nonomura, T., Kakutani, K., Nakata, K., Kusakari, S., & Toyoda, H. (2004). Cytological events in tomato leaves inoculated with conidia of Blumeria graminis f. sp. hordei and Oidium neolycopersici KTP-01. Journal of General Plant Pathology, 70, 7–10.

  • Schweizer, P. (2007). Nonhost resistance of plants to powdery mildew - new opportunities to unravel the mystery. Physiological and Molecular Plant Pathology, 70, 3–7.

    Article  CAS  Google Scholar 

  • Seifi, A., Kaloshian, I., Vossen, J., Che, D. D., Bhattarai, K. K., Fan, J. M., Naher, Z., Goverse, A., Tjallingii, W. F., Lindhout, P., Visser, R. G. F., & Bai, Y. (2011). Linked, if not the same, Mi-1 homologues confer resistance to tomato powdery mildew and root-knot nematodes. Molecular Plant-Microbe Interactions, 24, 441–450.

    Article  CAS  Google Scholar 

  • Seifi, A., Nonomura, T., Matsuda, Y., Toyoda, H., & Bai, Y. (2012). An avirulent tomato powdery mildew isolate induces localized acquired resistance to a virulent isolate in a spatiotemporal manner. Molecular Plant-Microbe Interactions, 25, 372–378.

    Article  CAS  Google Scholar 

  • Simmons, A. T., & Gurr, G. M. (2005). Trichomes of Lycopersicon species and their hybrids: Effects on pests and natural enemies. Agricultural and Forest Entomology, 7, 265–276.

    Article  Google Scholar 

  • Takikawa, Y., Kakutani, K., Nonomura, T., Matsuda, Y., & Toyoda, H. (2011). Conidia of Erysiphe trifoliorum attempt penetration twice during a two-step germination process on non-host barley leaves and an artificial hydrophobic surface. Mycoscience, 52, 204–209.

    Article  Google Scholar 

  • Takikawa, Y., Nonomura, T., Miyamoto, S., Okamoto, N., Murakami, T., Matsuda, Y., Kakutani, K., Kusakari, S., & Toyoda, H. (2015). Digital microscopic analysis of developmental process of conidiogenesis by powdery mildew pathogens isolated from melon leaves. Phytoparasitica, 43, 517–530.

    Article  CAS  Google Scholar 

  • Tooker, J. F., Peiffer, M., Luthe, D. S., & Felton, G. W. (2010). Trichomes as sensors detecting activity on the leaf surface. Plant Signaling and Behavior, 5, 73–75.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant for Scientific Research from Faculty of Agriculture, Kindai University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuling Bai or Teruo Nonomura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Open Access

This article is distributed under the terms of the Creative Commons Attibution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, T., Murakami, T., Takizumi, Y. et al. Trichomes: interaction sites of tomato leaves with biotrophic powdery mildew pathogens. Eur J Plant Pathol 150, 115–125 (2018). https://doi.org/10.1007/s10658-017-1257-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1257-y

Keywords

Navigation