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Abbreviations and terminology 

ADC antibody drug conjugate 

ADCC antibody-dependent cell-mediated cytotoxicity 

AEX anion-exchange chromatography 

AF4 asymmetrical flow field flow fractionation 

AUC analytical ultracentrifugation 

BHK baby hamster kidney 

BLI biolayer interferometry 

CCF cell culture filtrate 

CD circular dichroism 

CDC complement-dependent cytotoxicity 

CE-LIF capillary electrophoresis – laser induced fluorescence 

CE-MS capillary electrophoresis – mass spectrometry 

CE-SDS capillary electrophoresis – sodium dodecyl sulfate  

CEX cation-exchange chromatography 

CFM continuous flow microspotter 

CHO chinese hamster ovary 

cIEF capillary isoelectric focusing 

CIP cleaning-in-place 

CQA critical quality attribute 

CV column volumes 

CZE capillary zone electrophoresis 

DBC dynamic binding capacity 

DSC differential scanning calorimetry 

DSP downstream processing 

ELISA enzyme-linked immunosorbent assay 

EPO erythropoietin 

ER endoplasmic reticulum 

FcRn neonatal Fc receptor 

FTIR fourier transform infrared spectroscopy 

GC-MS gas chromatography – mass spectrometry 

HCP host cell protein 
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HDX-MS hydrogen-deuterium exchange mass spectrometry 

HEK human embryonic kidney 

HIC hydrophobic interaction chromatography 

HILIC-FLD hydrophilic liquid chromatography – fluorescence detection 

HPAEC-PAD High-performance anion exchange chromatography - pulsed amperometric 
detection 

HTS high-throughput screening 

IEC ion-exchange chromatography 

IEF isoelectric focusing 

IgG immunoglobulin G 

IMAC immobilized-metal affinity chromatography 

KCA KanCapA (protein A ligand) 

LC-FLC liquid chromatography – fluorescence detection 

LC-MS liquid chromatography – mass spectrometry 

LO light obscuration 

MALDI-MS matrix-assisted laser desorption ionization – mass spectrometry 

MFI micro-flow imaging 

MS mass spectrometry 

MS MabSelect (protein A ligand) 

MSS MabSelectSure (protein A ligand) 

NMR nuclear magnetism resonance 

NPLC-FLC normal phase liquid chromatography – fluorescence detection 

PTM post-translational modification 

Req response at equilibrium 

RP-HPLC reversed phase high-pressure liquid chromatography 

ROI region of interest 

RU resonance units 

SDS-PAGE sodium dodecyl sulfate – polyacrylamide gel electrophoresis 

SEC size-exclusion chromatography 

SPR/SPRi surface plasmon resonance, surface plasmon resonance imaging 

rhEPO recombinant human erythropoietin 

USP upstream processing 
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Abstract

Development of biopharmaceutical products requires extensive research on a multitude 

of steps that are involved in the delivery of a final product. In this chapter, a general 

introduction on biopharmaceuticals is provided, including two examples of 

biopharmaceutical products (erythropoietin and monoclonal antibodies) that have been 

studied throughout this research. The following paragraphs will highlight a typical 

production process for biopharmaceuticals consisting of both upstream and downstream 

processing. In addition, product characterization using a variety of analytical tools is 

required to determine the product quality, based on several critical quality attributes of 

biopharmaceuticals that need to be assessed. An overview of the most widely applied 

analytical tools, including the product characteristics that can be determined, is provided. 

This is followed by a more detailed description of the principles of Surface Plasmon 

Resonance (SPR) and SPR imaging (SPRi), which was the main analytical technology that 

has been applied in this research. The use and potential applications of SPRi during various 

steps in biopharmaceutical development have been explored and will be further discussed 

throughout this work. 
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Biopharmaceuticals

 The biopharmaceutical market is growing year by year, ever since the introduction of 

the very first biological therapeutics.(1,2) In 1982 recombinant human insulin was approved 

as the first therapeutic recombinant protein.(1,2) Since that date, many more products have 

been developed and approved, including hormones, growth factors and monoclonal 

antibodies.(3) Currently, biopharmaceuticals occupy approximately a quarter of the total 

pharmaceutical market, with annual sales exceeding the blockbuster status of $1 billion for 

several of them.(3) Annual sales of biologics reached $163 billion in 2016 (lamerie.com, press 

release 17 March 2017), which was a growth of 5.8% compared to 2015. Whereas in the 

early days these biological products were extracted from a natural source, today 

recombinant proteins are the main source of an ever expanding market.(3) Recombinant 

proteins are produced in living cells that were genetically modified in order to produce the 

protein of interest. The choice for a particular type of cell line is often determined by the 

required characteristics of the end product, mainly based on glycosylation, which is best 

produced in mammalian cells.  

On-going efforts are made to improve the production and purification of 

biopharmaceuticals, resulting in higher yields while reducing production costs. These 

improvements may lead to processes that alter the quality of the proteins, and therefore 

extensive monitoring of product quality during process optimization is performed.  

The following sections will briefly introduce erythropoietin and monoclonal antibodies, 

two types of therapeutic proteins that were subject for method development using SPRi in 

this research, aiming at rapid screening methodologies. 

Erythropoietin 

 Erythropoietin (EPO) was developed as a biotherapeutic to stimulate the production of 

red blood cells in patients with renal failure.(4) EPO is a glycoprotein hormone which is 

naturally synthesized by the kidney and regulates red blood cell production (Figure 1.1). The 

production of EPO by recombinant technology became available after the sequencing of the 

human gene responsible for natural EPO production(5) and transfection of this gene into 

producing mammalian cell lines. Recombinant human EPO (rhEPO) was approved in 1988 by 

the FDA as a therapeutic protein for treatment of anemia.(4,6) rhEPO acts as a medium to 

increase hemoglobin and hematocrit levels in patients with deficient red blood cell 

production. For this same reason, rhEPO has also been abused as a performance-enhancing 
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drug in sports and its use has been prohibited by the World Anti-Doping Agency (WADA) 

and the International Olympic Committee (IOC).(7,8)  

 Since the patent on the original rhEPO product has expired, a large number of 

biosimilars1 from competitors have entered the market.(3) Some of these biosimilar products 

are quite different from the natural EPO or the original rhEPO, for example in terms of 

sialylation, which may lead to faster plasma clearance, since the level of sialylation is 

directly correlated to the in vivo half-life of EPO.(9) Therefore, full characterization of 

biosimilar products and comparability with the innovator product are required to determine 

the quality.   

  

Figure 1.1 Protein structure of erythropoietin including the four potential glycosylation sites (reprinted 

from Walsh and Jefferis, Nature biotechnology (10)) 

                                                     
1 Here we refer to biosimilars as any copy of the original product. Several definitions of biosimilars / 
biosimilarity across different countries may apply. In Europe a biosimilar is a product that has been 
approved by the EMA and is comparable in safety and efficacy. 
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 Furthermore, the administration of therapeutic proteins to patients can have severe 

side-effects, such as generation of neutralizing antibodies as has been the case for 

rhEPO.(11) These neutralizing antibodies may not only block the activity of the recombinant 

protein, but also of the endogenous protein. Immunogenic responses may be influenced by 

structural differences in the protein, storage conditions, contaminants or dosage forms.(12) 

In case of rhEPO, the immunogenicity response of patients may cause a complete absence 

of red blood cell precursors in the bone marrow, known as pure red cell aplasia (PRCA). No 

explicit cause for the increase in PRCA cases could be identified, and this was most likely a 

multifactorial cause.(13) 

 One of the most important characteristics of rhEPO is proper glycosylation; the 

attachment of sugar groups to several amino acid side groups. EPO glycosylation consists of 

three N-linked glycosylation sites (Asn-24, Asn-38 and Asn-83) and one O-linked 

glycosylation site (Ser-126) (Figure 1.1).(14) The molecular weight of the EPO protein alone 

is 18 kDa, and is increased to approximately 33-39 kDa because of the heavy glycosylation 

on the four glycosites.(15) Proper glycosylation of the rhEPO molecule is important for its 

biological activity, in vivo clearance rate and determines the stability and correct folding of 

the protein.(16) Especially, sialylation of the glycans (presence of terminal sialic acid) 

significantly impacts the in vivo bioactivity. 

 Extending the in vivo half-life of rhEPO has mainly focused on ways to improve 

sialylation levels on the molecules. Zhang et al.(17) have identified the genes that are 

responsible for sialylation of rhEPO in six different cell lines. They found that BHK and CHO 

cell lines were most effective in sialylation of rhEPO. Another strategy that has been applied 

is the introduction of novel erythropoiesis-stimulating agents, such as darbepoietin alfa. 

These compounds are analogues of rhEPO, but exhibit additional N-linked glycosylation sites 

and therefore have higher sialylation content. The major benefit is an extended serum half-

life and increased in vivo activity, because of the presence of additional glycans and 

especially additional sialylation.(18) Another way to improve the sialylation of rhEPO was 

demonstrated by Meininger et al.(19) who were able to separate low-sialylated rhEPO 

variants from high-sialylated rhEPO variants by serotonin affinity chromatography.  

 In summary, sialylation of rhEPO is one of the most important characteristics of the 

molecule which can be improved at the molecular level, by amino acid mutations to include 

additional N-glycosylation sites, at the upstream processing by optimizing the culture 

conditions or during the downstream processing by applying novel selective purification 

methodologies. 
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Monoclonal antibodies 

 One of the main classes of therapeutic proteins nowadays is monoclonal antibodies, so 

far only of the immunoglobulin G (IgG) type.(10) These antibodies consist of 2 heavy and 2 

light chains, connected via disulfide bridges, resulting in a protein of approximately 150 

kDa.(20) An IgG has a typical Y-shaped protein structure, with a variable domain at both light 

chain – heavy chain connections (Fab region), and an Fc region consisting of the lower 

constant regions of the heavy chains (Figure 1.2). The main advantage of IgGs as a 

therapeutic protein is the specific binding to a target antigen by the complementary-

determining regions (CDRs) in the variable domain of the molecule.  

 

Figure 1.2 Protein structure of an IgG molecule, with light chains in purple and heavy chains in blue, 

In the Fc region two N-glycosylation sites are present and corresponding glycans are shown. 

 

 IgGs have a relatively stable structure, because of the various interchain and intrachain 

disulfide bonds. Four subclasses of IgGs exist (IgG1, IgG2, IgG3 and IgG4), with a 95% 

sequence homology. The major differences in amino acid sequence between the four IgG 

subclasses is found in the hinge region and the upper CH2 domain, which is important for 

the Fc effector functions of the antibodies, such as IgG – Fcγ receptor binding and binding 

FabFab

Fc
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to complement C1q.(21) The Fc region is involved in clearance mechanisms like antibody-

dependent cell-mediated cytotoxicity (ADCC) and phagocytosis by binding to various Fcγ 

receptors and complement-dependent cytotoxicity (CDC) by binding to C1q. Additionally, the 

relatively long half-life of antibodies in a human body is mainly due to binding of the Fc tail 

to the neonatal Fc receptor (FcRn) which is responsible for preventing lysosomal 

degradation of the antibodies.(22,23)  

 The stable expression and production of IgGs by mammalian cell lines (e.g. CHO or 

HEK cell lines) have improved the availability,(24,25) and the specific capture of IgG on 

protein A has further improved purification of these molecules.(26-28) All these factors 

combined (specificity, long serum half-life, stable production and selective capture) have 

contributed to the success of developing and manufacturing therapeutic antibodies.  

 Nowadays, many variations of the traditional IgG are being developed, such as bi-

specifics,(29,30) antibody-drug conjugates (ADCs)(31) and Fc-fusion therapeutics.(32) Bi-

specifics take advantage of the specific binding of two different Fab arms of the molecule to 

two different antigens. Antibody-drug conjugates (ADCs) combine the specificity of an 

antibody with the strong killing effect of cytotoxic drugs.(31,33,34) Fc-fusion therapeutics use 

the Fc region of an antibody fused to another specific target binding polypeptide.(32) As 

mentioned, the Fc region of an IgG molecule is responsible for the circulation and long 

serum half-life. By conjugating such an Fc region to other molecules, the serum half-life of 

these molecules can be increased as well, although Suzuki et al.(22) found that Fc-fusion 

proteins do not necessarily have a serum half-life that is comparable to that of IgG 

antibodies.  

Process development 

 Before the biopharmaceutical is available as a therapeutic product, upstream and 

downstream process development is required. The upstream development covers the choice 

of a proper organism and cell line, which is transfected with the DNA sequence of the 

desired protein, and the development and optimization of a bioreactor process, including 

medium and process parameters. The selected, transfected cell line is cultured in large scale 

bioreactors and is able to produce the protein of interest, preferably in large quantities.(25,35) 

Then the next step is the recovery of the produced protein from the bioreactor harvest, 

using a variety of purification techniques during the downstream processing. Throughout all 

these steps, the product quality and yield is monitored using analytical methods to choose 

the most optimal conditions. Product quality is defined in terms of critical quality attributes 
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HEK cell lines) have improved the availability,(24,25) and the specific capture of IgG on 

protein A has further improved purification of these molecules.(26-28) All these factors 

combined (specificity, long serum half-life, stable production and selective capture) have 

contributed to the success of developing and manufacturing therapeutic antibodies.  
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two different antigens. Antibody-drug conjugates (ADCs) combine the specificity of an 
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Process development 

 Before the biopharmaceutical is available as a therapeutic product, upstream and 

downstream process development is required. The upstream development covers the choice 

of a proper organism and cell line, which is transfected with the DNA sequence of the 

desired protein, and the development and optimization of a bioreactor process, including 

medium and process parameters. The selected, transfected cell line is cultured in large scale 

bioreactors and is able to produce the protein of interest, preferably in large quantities.(25,35) 

Then the next step is the recovery of the produced protein from the bioreactor harvest, 

using a variety of purification techniques during the downstream processing. Throughout all 

these steps, the product quality and yield is monitored using analytical methods to choose 

the most optimal conditions. Product quality is defined in terms of critical quality attributes 
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(CQAs), i.e. attributes that may affect safety and efficacy, such as purity and potency, and 

consistency between batches must always be kept within predefined ranges. 

Upstream processing 

 Upstream process development consists of cell line development and clone selection, 

bioreactor design, optimization and scale-up.(36) Selection of a proper organism (prokaryotic 

or eukaryotic system) and the selection of a high-producing and stable clonal cell line of the 

selected organism are the first steps of a successful USP process. Mammalian cell lines are 

often selected because of their ability to produce proteins with most of the desired post-

translational modifications (mainly glycosylation) and the available expertise for these cell 

types. Proteins produced in mammalian cell lines, such as CHO, BHK or HEK cells, are 

mostly human-like in structure, exhibit preferred post-translational modifications and 

meanwhile, the proteins are secreted by the cells, simplifying isolation of the product. The 

drawbacks of mammalian cell lines include slow growth, low cell densities, expensive media 

and relatively low productivity. However, recent advances have led to increased 

productivity.  

 A typical upstream process scheme (Figure 1.3) consists of the thawing of a vial of 

cells from the working cell bank, followed by pre-culturing in T-flasks or small shake 

flasks.(37) The culture is then scaled-up until inoculated into the seed bioreactor, followed by 

further scale-up into the production bioreactor, which is typically a 1000 - 15000 liter 

bioreactor in full manufacturing production. Different types of bioreactors are available 

nowadays, including stirred-tank reactors, wave reactors or orbital shaken reactors.(35) A 

new trend in bioreactors is the use of single-use bioreactor systems.(38) The bioreactor type 

at small scale has to be representative for the bioreactor at large scale, and therefore 

careful downscaling of the bioreactor is required.(39) The development of the upstream 

processes has been advanced by the introduction of micro-bioreactors, which can be 

operated simultaneously in order to rapidly screen different culture parameters.(25,39) Much 

research and development at small scale is performed, in which growth and feed medium 

and bioreactor conditions, such as temperature, pH and dissolved oxygen, have to be 

optimized.(36) Optimization further includes the establishment of the ideal culturing length in 

days; longer culture times may generate higher titers, however, cell viabilities may go down 

and these have to be balanced.  

 Furthermore, composition of the growth and feed medium, and the feed strategy may 

affect the productivity and product quality.(35) Different feed strategies exist, such as batch, 
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fed-batch, continuous or perfusion production, or combination of these.(35,36,38) In batch or 

fed-batch strategies the cells are allowed to grow and produce during a specified period, 

after which the entire bioreactor contents are harvested. In continuous or perfusion 

strategies, cells are kept in the bioreactor and are continuously supplied with nutrients, 

while the product is regularly extracted for further purification and processing.(38) The choice 

for any of these strategies has an impact on the following step, the downstream processing, 

and must therefore be evaluated. Overall, the bioreactor process and the growth and feed 

medium composition must be well-controlled, in order to guarantee a representative and 

reproducible process which generates a biopharmaceutical product with similar quality 

attributes batch after batch. 

 

Figure 1.3 Flow scheme of a typical upstream process 

Downstream processing 

 The main goal of downstream processing is to separate the protein of interest from the 

biomass, such as cells and impurities resulting in a highly pure product at high yield.(36) The 

DSP process consists of particulate removal, product isolation and concentration, various 

purification steps and a final polishing and fill/finish step (Figure 1.4). Initial clarification to 

remove cell broth (in case of batch or fed-batch processes) can be established by depth 

filtration or centrifugation, which is often still considered part of the USP process.(35) This is 

mostly followed by one or more chromatographic steps, such as affinity chromatography, 

HIC or IEC (CEX or AEX), to further purify the product. Several types of impurities may be 
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present and can be removed by applying various filtration and chromatographic steps, 

defined as unit operations. The types of impurities that can be expected are divided into 

host impurities (i.e. viruses, HCPs or DNA), product impurities (i.e. N-terminal and C-

terminal variants, denatured proteins, aggregates or fragments) and process impurities (i.e. 

medium components, metals and column leakage material).(36,40) Furthermore, virus 

inactivation and virus removal are an important aspect of the DSP process. 

 In case of IgG purification, the first choice for purification is generally protein A 

chromatography, due to its high selectivity towards IgG, high capacity and the high purity 

after this initial step.(35) Furthermore, the acidic conditions that are used for protein A 

elution are useful to immediately continue with viral inactivation at low pH, reducing the 

need for additional buffer exchange. Drawbacks of protein A chromatography are the non-

specific binding of certain impurities, such as medium components or HCPs to the resin,(41) 

the possibility of protein A leaching from the column, and the high costs for the resin. 

Further purification of antibodies, after the initial protein A step, often consist of CEX or AEX 

chromatography, or both, to further remove antibody variants (aggregates or charge 

variants) and remaining HCPs, DNA and leached protein A.  

 

Figure 1.4 Flow scheme of a typical downstream process for antibody purification (Reprinted from 

Mothes, Bioprocess international, May 11, 2016) (42)
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 The final steps of the DSP process consist of several filtration steps, to obtain a 

product in the correct formulation buffer at high protein concentrations that are used for 

therapeutic dosage. These last steps are often performed by ultrafiltration and diafiltration. 

After the DSP process, sterile filling into the final form is the last step to obtain the final 

product. 

 The development of a purification process involves a multitude of unit operations, each 

of which needs to be developed and fine-tuned. High-throughput screening technologies, 

such as the use of robo-columns and filter plate screening, are implemented to increase the 

downstream process development at small scale.(39,43-45) Only low amounts of material are 

needed, which is beneficial in early stages as often limited material is available, and a broad 

range of parameters can be rapidly explored. Miniaturization and high-throughput screening 

technologies are often used these days to increase the process knowledge and process 

development and optimization for various chromatographic steps during the purification.  

 Recent developments in the DSP process involve the implementation of continuous 

processing, in line with continuous USP processes.(38) However, continuous purification 

schemes in DSP have not yet been widely applied at manufacturing scale.(46) Continuous 

downstream processing is applied by multicolumn approaches, such as connecting multiple 

columns in series,(42) continuous annular chromatography, simulated moving bed or 

countercurrent chromatography,(38,46) among other possible set-ups.  

Product characterization 

 Traditionally, pharmaceutics were chemically synthesized and relatively easy 

characterized by a limited number of analytical methods. The complexity of modern 

biopharmaceuticals, caused by micro-heterogeneity inherent to a biological process, requires 

a broad panel of characterization methods, which are able to measure the structure, 

functional performance and other characteristics of these proteins.(47-49) The structure and 

composition of a biopharmaceutical product are analyzed and controlled throughout the 

entire process, from initial research up to manufacturing, which should give sufficient 

insights into the impact of process changes to the product quality. Generally, a certain level 

of heterogeneity is always present in a biopharmaceutical product, due to different post-

translational modifications and minor structure differences, which require a large panel of 

characterization methodology to fully define the product (Table 1.1). 
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Table 1.1 Characterization of biopharmaceuticals (47-52)

Property Purpose Analytical technique 

Primary 
structure 

Molecular weight; amino acid sequence 

verification; single amino acid mutation 

Intact MS; Peptide mapping; LC-MS 

Higher order 

structures 

Secondary, tertiary and quaternary 

structure; disulfide bridges 

Spectroscopic techniques (CD, FTIR, 

NMR, intrinsic and extrinsic 

fluorescence); X-ray crystallography; 

HDX-MS; ion mobility MS; electron 

microscopy; DSC 

Post-
translational 

modifications 
(PTMs) 

Oxidation; deamidation; C-terminal 

lysine variation; phosphorylation; 

sulphation; lipidation among many 

others 

Peptide mapping; LC-MS; LC-UV; CZE; 

cIEF; IEC 

 PTM: 

glycosylation 

Monosaccharide composition; glycan 

profiling; sialylation; fucosylation; 

galactosylation; mannosylation 

HILIC-FLD; NPLC-FLD; LC-MS; CE-LIF; 

HPAEC-PAD 

Charge

heterogeneity 

Acidic variants; basic variants IEF; cIEF; IEC; CZE 

Size
heterogeneity 

Monomer; low molecular weight 

variants; high molecular weight variants 

SEC; CE-SDS; SDS-PAGE; AF4; AUC 

Activity / 

biological 
performance 

Potency; Target binding, FcγR binding 

(IgGs); FcRn binding (IgGs) 

SPR; BLI; ELISA; cell-based assays 

(CDC, ADCC); animal studies 

Product 
impurities 

Aggregation; visible and subvisible 

particles 

SDS-PAGE; CE-SDS; SEC; RP-HPLC; 

LO; MFI; visual inspection 

Process 
impurities 

Leachables; extractables; residual 

protein A (IgG); HCP; DNA 

ELISA; SPR; LC; 2D-electrophoresis 

Stability Thermodynamic stability DSC 
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Changes to the production process and, as a consequence, potentially also to the final 

product, are carefully monitored throughout the development of biopharmaceuticals. For 

example, various post-translational modifications may impact the activity or the stability, or 

may result in higher amounts of aggregates. In turn, this may lead to adverse effects, such 

as immunogenicity.(47) Small changes in secondary, tertiary or quaternary structure can 

affect the function and activity of the molecule.(48) The secondary structure is defined by α-

helices, β-sheets and random coils, which can be studied by several spectroscopic 

techniques.(48) Tertiary structures define the folding of the protein into a three-dimensional 

structure, and quaternary structure describes the interaction of monomeric proteins, which 

is not present in all proteins. Furthermore, biological activity is measured to ensure a proper 

active protein. 

We will further focus on protein glycosylation, mainly of rhEPO, and functional target 

binding and Fc region binding of IgGs because these topics have been studied throughout 

this research. 

Glycosylation 

 Glycosylation is one of the most common post-translational modifications on proteins 

and can be one of the more critical modifications.(10,49) The functionality of a protein in 

binding to another protein, receptor or cell may be dependent on correct glycosylation. 

Mammalian cell lines that are often used to produce recombinant therapeutic proteins are 

capable of performing a cascade of reactions to glycosylate a protein (Figure 1.5). 

Glycosylation takes place in the ER and Golgi system, and many different forms of glycans 

may be attached to the protein. Various glycosidases, glycosyltransferases and other 

proteins are involved in the glycosylation process. Proper functionality depends on the type 

of glycosylation and in case of therapeutic proteins this must therefore be controlled 

conscientiously. However, the complex process of glycosylation leads to micro-heterogeneity 

in the produced protein, with potentially large impact on functionality and stability. 

Furthermore, certain non-human glycan structures should be kept at minor levels, as this 

may cause immunogenic responses.  For example, two main variants of sialylation can be 

distinguished (N-glycolylneuraminic acid – Neu5Gc and N-acetylneuraminic acid – Neu5Ac), 

of which NeuGc is not found in humans and anti-NeuGc antibodies occur in all healthy 

humans. (53,54)  

 The complicated cascade of events that determine the final glycosylation of 

recombinant proteins, requires extensive analyses of the glycan forms to monitor product 
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changes during the complete development and marketing. Especially when using non-

human cell lines, immunogenic glycans may be introduced to the protein, which can 

completely abolish the effectiveness of the therapeutic protein.(10) Additionally, proper 

glycosylation aids in protein production, protein stability, correct protein folding and 

biological activity / ligand recognition and binding. Mammalian cell lines are the first choice 

for production of glycosylated proteins, as these exhibit glycosylation patterns that are 

highly similar to those found in humans, whereas insect, yeast or plant expression systems 

may include glycans that are immunogenic to humans.(55) A large panel of analytical 

techniques is used on a regular basis to fully identify and measure glycosylation, 

glycoprofiling and individual glycans and monosaccharide composition (Table 1.2). 

 

 

Figure 1.5 Cascade of reactions to protein glycosylation (Reprinted from Hossler et al. Glycobiology 

2009  (56)) 

 

 Numerous reports have been published about the analysis of rhEPO glycosylation. A 

broad range of analytical methods and strategies is applied to fully characterize rhEPO 

glycosylation, ranging from analysis of average glycoprofiles, to site-specific glycosylation 

identification and quantitation of sialic acid, specifically the difference between the 

nonhuman sialic acid N-glycolylneuraminic acid (Neu5Gc) and the human N-

acetylneuraminic acid (Neu5Ac).(9,14)   
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Table 1.2 Glycosylation analysis  (14,49,55,57) 

Level Purpose Analytical technique 

Intact glycoprotein Charge distribution, glycoprofiling, 

identification of heterogeneity  

MS, IEF, CZE, SDS-PAGE, cIEF, 

affinity-based arrays 

Glycopeptides Correlation of glycan composition 

with glycosylation site 

AEX, HILIC, NP-HPLC, LC-MS,  

Released glycans Structural characterization, linkage LC-FLD, LC-MS, CE-MS, CE-LIF, 

HPAEC-PAD, MALDI-MS 

Monosaccharides Identity and composition of 

monosaccharides 

LC-MS, CE-MS, GC-MS 

 Current methodologies that are usually applied in the characterization of protein 

glycosylation involve the release and labeling of the glycans from the protein, followed by 

separation and detection.(9) This is a quite laborious process and development towards the 

characterization of glycosylation on intact glycoproteins has had the attention of many 

researchers during recent years. Intact glycoprotein analysis has generally been performed 

by mass spectrometric methods. Recently glycoprofiling / glycofingerprinting was performed 

with mass spectrometric methods, to compare biosimilars to innovator products.(58) 

Glycosylation site identification and site occupancy was determined by peptide mapping of 

rhEPO. The glycoforms were determined using released glycans, both with LC-MS 

methods.(59) 

 Nowadays, glycoprofiling can be performed on intact glycoproteins by a lectin array; 

however fluorescent labeling of glycoproteins is still necessary.(60) The glycoprofiling can be 

performed more rapidly and label-free using the specific binding characteristics of the N-

glycans to for example lectins and monitoring them with imaging SPR.(61-64) These 

publications focus on small glycan structures rather than the higher-order structures of N-

glycans found on glycoproteins or use a single lectin interaction to study glycan interactions. 

Target binding and Fc-mediated binding 

 Protein functionality, or bio-activity, is of major importance for its use as a therapeutic 

agent. Target binding studies are necessary to test proper bio-activity in vitro, which 

represent the function of the protein in in vivo situations. These in vitro assays can be 

divided into cell-based assays and ligand-binding assays. In cell-based assays, the actual 

processes that take place in the body are mimicked with living cells. Cell-based assays have 



Ch
ap

te
r 1

Chapter 1 

24 

changes during the complete development and marketing. Especially when using non-

human cell lines, immunogenic glycans may be introduced to the protein, which can 

completely abolish the effectiveness of the therapeutic protein.(10) Additionally, proper 

glycosylation aids in protein production, protein stability, correct protein folding and 

biological activity / ligand recognition and binding. Mammalian cell lines are the first choice 

for production of glycosylated proteins, as these exhibit glycosylation patterns that are 

highly similar to those found in humans, whereas insect, yeast or plant expression systems 

may include glycans that are immunogenic to humans.(55) A large panel of analytical 

techniques is used on a regular basis to fully identify and measure glycosylation, 

glycoprofiling and individual glycans and monosaccharide composition (Table 1.2). 

 

 

Figure 1.5 Cascade of reactions to protein glycosylation (Reprinted from Hossler et al. Glycobiology 

2009  (56)) 

 

 Numerous reports have been published about the analysis of rhEPO glycosylation. A 

broad range of analytical methods and strategies is applied to fully characterize rhEPO 

glycosylation, ranging from analysis of average glycoprofiles, to site-specific glycosylation 

identification and quantitation of sialic acid, specifically the difference between the 

nonhuman sialic acid N-glycolylneuraminic acid (Neu5Gc) and the human N-

acetylneuraminic acid (Neu5Ac).(9,14)   
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Table 1.2 Glycosylation analysis  (14,49,55,57) 

Level Purpose Analytical technique 

Intact glycoprotein Charge distribution, glycoprofiling, 

identification of heterogeneity  

MS, IEF, CZE, SDS-PAGE, cIEF, 

affinity-based arrays 

Glycopeptides Correlation of glycan composition 

with glycosylation site 

AEX, HILIC, NP-HPLC, LC-MS,  

Released glycans Structural characterization, linkage LC-FLD, LC-MS, CE-MS, CE-LIF, 

HPAEC-PAD, MALDI-MS 

Monosaccharides Identity and composition of 

monosaccharides 

LC-MS, CE-MS, GC-MS 

 Current methodologies that are usually applied in the characterization of protein 

glycosylation involve the release and labeling of the glycans from the protein, followed by 

separation and detection.(9) This is a quite laborious process and development towards the 

characterization of glycosylation on intact glycoproteins has had the attention of many 

researchers during recent years. Intact glycoprotein analysis has generally been performed 

by mass spectrometric methods. Recently glycoprofiling / glycofingerprinting was performed 

with mass spectrometric methods, to compare biosimilars to innovator products.(58) 

Glycosylation site identification and site occupancy was determined by peptide mapping of 

rhEPO. The glycoforms were determined using released glycans, both with LC-MS 

methods.(59) 

 Nowadays, glycoprofiling can be performed on intact glycoproteins by a lectin array; 

however fluorescent labeling of glycoproteins is still necessary.(60) The glycoprofiling can be 

performed more rapidly and label-free using the specific binding characteristics of the N-

glycans to for example lectins and monitoring them with imaging SPR.(61-64) These 

publications focus on small glycan structures rather than the higher-order structures of N-

glycans found on glycoproteins or use a single lectin interaction to study glycan interactions. 

Target binding and Fc-mediated binding 

 Protein functionality, or bio-activity, is of major importance for its use as a therapeutic 

agent. Target binding studies are necessary to test proper bio-activity in vitro, which 

represent the function of the protein in in vivo situations. These in vitro assays can be 

divided into cell-based assays and ligand-binding assays. In cell-based assays, the actual 

processes that take place in the body are mimicked with living cells. Cell-based assays have 
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a relatively large analytical variation due to the variation in the human pool of plasma that is 

used for these assays. Since most cellular events start with a proper binding to the receptor 

of interest, cell-based assays can partially be replaced by ligand-binding assays, where only 

the receptor or antigen of interest is used to study binding of the interaction partners (i.e. 

the biopharmaceutical protein). Label-free ligand-binding assays are often based on real-

time measurement techniques, such as SPR or biolayer interferometry (BLI). The principle of 

SPR is further explained in the next paragraph.  

 Next to target binding, or antigen binding in case of antibodies, effector functions of 

antibodies are another important characteristic of therapeutic antibodies. The Fc region of 

the antibody can bind to different types of Fcγ receptors, the neonatal Fc receptor (FcRn) 

and to complement C1q which all may be required for the mode of action, depending on the 

type of therapeutic antibody. Most therapeutic antibodies require proper Fc tail functionality 

in order to be fully efficacious. Fcγ receptors are found on effector cells, such as 

macrophages or lymphocytes, in the human body and are responsible for clearance of 

pathogens, whereas proper FcRn functionality adds to the serum half-life of antibodies. 

These binding events can also be studied by ligand-binding assays, where the Fc receptors 

act as ligands. 

Surface plasmon resonance imaging 

 Many techniques to study protein-protein interactions exist, all with their own 

advantages and drawbacks. Surface plasmon resonance (SPR) has become one of the most 

widely applied techniques ever since the availability of the first commercial instruments in 

the 1990s. Protein-protein interactions are measured in real-time and label-free using 

SPR.(65,66)  

 SPR is measured on a sensor which consists of a thin metal film, usually gold, and a 

prism or hemisphere attached to each other (Figure 1.6). Polarized light at a fixed 

wavelength shines through the prism or hemisphere, which generates surface plasmons by 

excitation of free electrons at the metal surface under a certain angle of incidence. 

Reflectivity of the incident light is measured and at a specific angle of incidence surface 

plasmons are excited and a dip in reflection occurs (the SPR angle) (Figure 1.6). The 

combination of refractive indices of both media, metal film thickness and the used 

wavelength together determine the SPR angle. The dip in the intensity of the reflected light, 

the SPR angle, will shift upon refractive index changes in an exponential decaying field at 

the metal side of the sensor, but only in the first ~ 200 nm from the surface (the 
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evanescent field). This means that only molecules (e.g. proteins) that bind to the sensor 

surface will generate a change in refractive index which changes the SPR-dip and this is 

measured. Molecules that pass the sensor surface but do not bind will not influence the 

refractive index and are not measured. This phenomenon can be followed in real-time, 

which results in kinetics data on the interaction, by measuring association and dissociation 

in time. However, a shift in refractive index, e.g. due to different buffer systems or bulk 

protein concentrations, can also be misinterpreted as binding. Therefore, SPR sensorgrams 

are normalized against a reference channel in which no ligand was immobilized and only the 

bulk effects are measured, which can be used to correct the signal.  

 

Figure 1.6 Principle of surface plasmon resonance (left) and surface plasmon resonance imaging 

(right). In SPRi an array of ligands is printed on a sensor surface, followed by a similar detection 

principle as in SPR. (Reprinted from http://elte.prompt.hu/sites/default/files/tananyagok/ 

IntroductionToPractical Biochemistry/ch08s07.html)

 

 Immobilization of one of the interaction partners (called the ligand) onto the sensor 

surface enables interaction measurements with a binding partner (the so-called analyte) 

when injected over this sensor surface. The association of analyte to ligand and dissociation 

of the formed complex is measured in real-time by SPR. The generated sensorgram, a plot 

of change in angle shift versus time, of the interaction is used to determine rate constants 

of the interaction (Figure 1.7). Injections of multiple analyte concentrations over the sensor 

surface allow the determination of association rate and dissociation rate of the complex and 

the affinity of the interaction. Complexes that have not dissociated may be broken by a 

regeneration procedure, in order to reuse the same surface for multiple sequential analyses. 



Ch
ap

te
r 1

Chapter 1 

26 

a relatively large analytical variation due to the variation in the human pool of plasma that is 

used for these assays. Since most cellular events start with a proper binding to the receptor 

of interest, cell-based assays can partially be replaced by ligand-binding assays, where only 

the receptor or antigen of interest is used to study binding of the interaction partners (i.e. 

the biopharmaceutical protein). Label-free ligand-binding assays are often based on real-

time measurement techniques, such as SPR or biolayer interferometry (BLI). The principle of 

SPR is further explained in the next paragraph.  

 Next to target binding, or antigen binding in case of antibodies, effector functions of 

antibodies are another important characteristic of therapeutic antibodies. The Fc region of 

the antibody can bind to different types of Fcγ receptors, the neonatal Fc receptor (FcRn) 

and to complement C1q which all may be required for the mode of action, depending on the 

type of therapeutic antibody. Most therapeutic antibodies require proper Fc tail functionality 

in order to be fully efficacious. Fcγ receptors are found on effector cells, such as 

macrophages or lymphocytes, in the human body and are responsible for clearance of 

pathogens, whereas proper FcRn functionality adds to the serum half-life of antibodies. 

These binding events can also be studied by ligand-binding assays, where the Fc receptors 

act as ligands. 

Surface plasmon resonance imaging 

 Many techniques to study protein-protein interactions exist, all with their own 

advantages and drawbacks. Surface plasmon resonance (SPR) has become one of the most 

widely applied techniques ever since the availability of the first commercial instruments in 

the 1990s. Protein-protein interactions are measured in real-time and label-free using 

SPR.(65,66)  

 SPR is measured on a sensor which consists of a thin metal film, usually gold, and a 

prism or hemisphere attached to each other (Figure 1.6). Polarized light at a fixed 

wavelength shines through the prism or hemisphere, which generates surface plasmons by 

excitation of free electrons at the metal surface under a certain angle of incidence. 

Reflectivity of the incident light is measured and at a specific angle of incidence surface 

plasmons are excited and a dip in reflection occurs (the SPR angle) (Figure 1.6). The 

combination of refractive indices of both media, metal film thickness and the used 

wavelength together determine the SPR angle. The dip in the intensity of the reflected light, 

the SPR angle, will shift upon refractive index changes in an exponential decaying field at 

the metal side of the sensor, but only in the first ~ 200 nm from the surface (the 

General introduction and thesis outline 

27 

evanescent field). This means that only molecules (e.g. proteins) that bind to the sensor 

surface will generate a change in refractive index which changes the SPR-dip and this is 

measured. Molecules that pass the sensor surface but do not bind will not influence the 

refractive index and are not measured. This phenomenon can be followed in real-time, 

which results in kinetics data on the interaction, by measuring association and dissociation 

in time. However, a shift in refractive index, e.g. due to different buffer systems or bulk 

protein concentrations, can also be misinterpreted as binding. Therefore, SPR sensorgrams 

are normalized against a reference channel in which no ligand was immobilized and only the 

bulk effects are measured, which can be used to correct the signal.  

 

Figure 1.6 Principle of surface plasmon resonance (left) and surface plasmon resonance imaging 

(right). In SPRi an array of ligands is printed on a sensor surface, followed by a similar detection 

principle as in SPR. (Reprinted from http://elte.prompt.hu/sites/default/files/tananyagok/ 

IntroductionToPractical Biochemistry/ch08s07.html)

 

 Immobilization of one of the interaction partners (called the ligand) onto the sensor 

surface enables interaction measurements with a binding partner (the so-called analyte) 

when injected over this sensor surface. The association of analyte to ligand and dissociation 

of the formed complex is measured in real-time by SPR. The generated sensorgram, a plot 

of change in angle shift versus time, of the interaction is used to determine rate constants 

of the interaction (Figure 1.7). Injections of multiple analyte concentrations over the sensor 

surface allow the determination of association rate and dissociation rate of the complex and 

the affinity of the interaction. Complexes that have not dissociated may be broken by a 

regeneration procedure, in order to reuse the same surface for multiple sequential analyses. 



Chapter 1 

28 

 SPR is a well-established and accepted technique nowadays, based on the numerous 

publications in biomolecular studies. The more traditional SPR instruments measure a limited 

number of interactions simultaneously (often only 4 channels of which 1 or 2 are used as 

reference). In the past 10-15 years, new SPR imaging (SPRi) systems have been 

commercialized and are becoming more popular, as they benefit from screening much more 

interactions simultaneously by immobilizing up to 100s of ligands on a single biosensor 

(Figure 1.6). This fits well in the high-throughput screening strategies that are applied more 

and more.(67) The number of publications on SPRi rapidly increased over the past five 

years.(68) Therefore, the SPRi technique has been used throughout this research, to study 

the implementation of SPRi in the development of biopharmaceuticals. 

Figure 1.7 Typical SPR sensorgram, indicating baseline, association and dissociation phase from which 

affinity and kinetics of the interaction can be determined 
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Objectives and outline 

 Innovative new technologies are required to increase rapid process and product 

development in the biopharmaceutical industry. High-throughput screening (HTS) 

technologies that study one or more characteristics of a biopharmaceutical protein are 

useful to define the critical parameters in early stage, both in product characterization but 

also in process development and support. Novel developments are required to reduce 

product development time and costs, which may lead to faster development and approval of 

therapeutic proteins. Reduction of development costs may eventually lead to earlier 

marketing of therapeutic proteins, which in turn leads to more cost-efficient products. 

Additionally, the novel therapeutic protein is protected by patents that will expire, and the 

more rapidly a product is marketed, the more the innovator can reap the benefits of the 

patent protection period. On the other hand, biosimilar companies benefit if they are first-

to-market, which may be accelerated by rapid developments using high-throughput 

screening technologies. 

 One way to achieve faster, yet fully understood, development of therapeutic proteins is 

by using innovative analytical methods. The described SPRi technology is one of the tools 

that are available to fulfil the requirement of high-throughput and label-free measurements, 

where possible directly from cell supernatant to study a variety of product characteristics 

and to support process developments. A major requirement for the reuse of SPR sensors for 

repeated analysis is the proper regeneration of the immobilized ligands at the surface. The 

choice for a suitable regeneration buffer can be quite time-consuming as certain protein-

protein interactions cannot be regenerated by standard regeneration buffers, such as glycin-

HCl. Especially in multiplexed SPR, where multiple different ligands with different types of 

interactions (i.e. electrostatic, hydrophobic or van der Waals interactions) can be 

immobilized onto a single sensor surface, it can be quite challenging to regenerate all 

ligands with a single regeneration buffer. The multiplexed capabilities of the SPRi technology 

enabled the development of a rapid regeneration buffer scouting as described in Chapter 
2, where 48 different buffers could be simultaneously tested on a single sensor surface.   

 In Chapter 3, the SPRi technology has been applied to support the rapid development 

of an affinity chromatography step during the DSP process. The SPRi was used to screen for 

proper elution buffers, wash buffers and ligand re-usability in a miniaturized protein A 

chromatography set-up as an example. This may speed up the development of a 

downstream process, since many different buffers and conditions can be simultaneously 
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screened, while only minute quantities of ligand, analyte and buffer are required. 

Downstream processing is generally composed of one or more column purification steps, of 

which affinity chromatography is a highly specific technique to generate purified proteins 

with relatively high yields. 

 During USP development, certain product characteristics such as protein glycosylation 

and protein titer may be affected by variations that are applied to the pre-culturing or to the 

bioreactor process. Direct and rapid screening of protein glycosylation and titer are used to 

steer the entire process towards the desired end-product. In Chapter 4 a glycan-

fingerprinting method based on the specific interactions between certain monosaccharides 

and lectins has been described. This fingerprinting method has been applied to different 

brands of rhEPO and enabled the quantification of relative sialylation levels on rhEPO.  

 Target binding of biopharmaceutical products is inherent to the product quality and is 

often measured by ligand-binding studies. In case of IgGs, the Fc region functional binding 

additionally adds to proper functionality of the molecule. The Fc region of an IgG binds to Fc 

receptors on effector cells, which may be one of the modes of action. An SPRi method that 

studies IgG binding to immobilized Fc receptors has been developed. In order to study these 

Fc interactions, human Fcγ receptors had to be immobilized onto the SPR sensor surface. 

However, insufficient activity and stability of directly immobilized Fcγ receptors, likely due to 

the presence of lysines in the IgG binding region, limited the assay design. Therefore, a 

minimal labeling approach, described in Chapter 5, based on biotinylation of the Fcγ 

receptors was developed in order to improve Fcγ receptor activity and stability at the sensor 

surface. The minimal labeling approach included the identification of the most vulnerable 

binding sites in the Fcγ receptor structures, to possibly prevent labeling in the active binding 

site. The resulting multiplexed Fcγ receptor sensor, in combination with two additional 

methods using SPR and BLI, was used to set up a screening approach that could rapidly 

measure the various Fc tail interactions of an IgG as outlined in Chapter 6. Stressed IgG 

samples were then measured by all three screening methods, to verify the application of the 

method during in-process controls or early development.  

  This thesis covers the applicability of multiplexed SPR throughout the entire process of 

biopharmaceutical development, from process support up to product characterization. 

Several screening methodologies based on SPRi have been developed and optimized and 

the proof-of-concept has been demonstrated in a variety of applications.

General introduction and thesis outline 

31 

References

 1.  Walsh, G. Biopharmaceutical benchmarks. Nat.Biotechnol.  2000; 18(8): 831-833  

 2.   Human insulin receives FDA approval. FDA.Drug Bull.  1982; 12(3): 18-19  

 3.  Walsh, G. Biopharmaceutical benchmarks 2014. Nat.Biotechnol.  2014; 32(10): 992-1000  

 4.  Flaharty, K. K., Grimm, A. M., and Vlasses, P. H. Epoetin: human recombinant erythropoietin. 
Clin.Pharm.  1989; 8(11): 769-782  

 5.  Lin, F. K., Suggs, S., Lin, C. H., Browne, J. K., Smalling, R., Egrie, J. C., Chen, K. K., Fox, G. 
M., Martin, F., Stabinsky, Z., and . Cloning and expression of the human erythropoietin gene. 
Proc.Natl.Acad.Sci.U.S.A  1985; 82(22): 7580-7584  

 6.  Jones, E. H. Recombinant human erythropoietin. Am.J.Hosp.Pharm.  1989; 46(11 Suppl 2): 
S20-S23  

 7.  Scott, J. and Phillips, G. C. Erythropoietin in sports: a new look at an old problem. Curr.Sports 
Med.Rep.  2005; 4(4): 224-226  

 8.  Lundby, C., Robach, P., and Saltin, B. The evolving science of detection of 'blood doping'. 
Br.J.Pharmacol.  2012; 165(5): 1306-1315  

 9.  Skibeli, V., Nissen-Lie, G., and Torjesen, P. Sugar profiling proves that human serum 
erythropoietin differs from recombinant human erythropoietin. Blood  15-12-2001; 98(13): 
3626-3634  

 10.  Walsh, G. and Jefferis, R. Post-translational modifications in the context of therapeutic 
proteins. Nat.Biotechnol.  2006; 24(10): 1241-1252  

 11.  Schellekens, H. Immunologic mechanisms of EPO-associated pure red cell aplasia. 
Best.Pract.Res.Clin.Haematol.  2005; 18(3): 473-480  

 12.  Schellekens, H. Factors influencing the immunogenicity of therapeutic proteins. 
Nephrol.Dial.Transplant.  2005; 20 Suppl 6 vi3-vi9  

 13.  McKoy, J. M., Stonecash, R. E., Cournoyer, D., Rossert, J., Nissenson, A. R., Raisch, D. W., 
Casadevall, N., and Bennett, C. L. Epoetin-associated pure red cell aplasia: past, present, and 
future considerations. Transfusion  2008; 48(8): 1754-1762  

 14.  Jiang, J., Tian, F., Cai, Y., Qian, X., Costello, C. E., and Ying, W. Site-specific qualitative and 
quantitative analysis of the N- and O-glycoforms in recombinant human erythropoietin. 
Anal.Bioanal.Chem.  31-7-2014;- 

 15.  Yang, M. and Butler, M. Effects of ammonia on CHO cell growth, erythropoietin production, 
and glycosylation. Biotechnol.Bioeng.  20-5-2000; 68(4): 370-380  

 16.  Dube, S., Fisher, J. W., and Powell, J. S. Glycosylation at specific sites of erythropoietin is 
essential for biosynthesis, secretion, and biological function. J.Biol.Chem.  25-11-1988; 
263(33): 17516-17521  

 17.  Zhang, P., Tan, D. L., Heng, D., Wang, T., Mariati, Yang, Y., and Song, Z. A functional 
analysis of N-glycosylation-related genes on sialylation of recombinant erythropoietin in six 
commonly used mammalian cell lines. Metab Eng  2010; 12(6): 526-536  

 18.  Elliott, S., Egrie, J., Browne, J., Lorenzini, T., Busse, L., Rogers, N., and Ponting, I. Control of 
rHuEPO biological activity: the role of carbohydrate. Exp.Hematol.  2004; 32(12): 1146-1155  

 19.  Meininger, M., Stepath, M., Hennig, R., Cajic, S., Rapp, E., Rotering, H., Wolff, M. W., and 
Reichl, U. Sialic acid-specific affinity chromatography for the separation of erythropoietin 
glycoforms using serotonin as a ligand. J.Chromatogr.B Analyt.Technol.Biomed.Life Sci.  15-2-
2016; 1012-1013 193-203  



Ch
ap

te
r 1

Chapter 1 

30 

screened, while only minute quantities of ligand, analyte and buffer are required. 

Downstream processing is generally composed of one or more column purification steps, of 

which affinity chromatography is a highly specific technique to generate purified proteins 

with relatively high yields. 

 During USP development, certain product characteristics such as protein glycosylation 

and protein titer may be affected by variations that are applied to the pre-culturing or to the 

bioreactor process. Direct and rapid screening of protein glycosylation and titer are used to 

steer the entire process towards the desired end-product. In Chapter 4 a glycan-

fingerprinting method based on the specific interactions between certain monosaccharides 

and lectins has been described. This fingerprinting method has been applied to different 

brands of rhEPO and enabled the quantification of relative sialylation levels on rhEPO.  

 Target binding of biopharmaceutical products is inherent to the product quality and is 

often measured by ligand-binding studies. In case of IgGs, the Fc region functional binding 

additionally adds to proper functionality of the molecule. The Fc region of an IgG binds to Fc 

receptors on effector cells, which may be one of the modes of action. An SPRi method that 

studies IgG binding to immobilized Fc receptors has been developed. In order to study these 

Fc interactions, human Fcγ receptors had to be immobilized onto the SPR sensor surface. 

However, insufficient activity and stability of directly immobilized Fcγ receptors, likely due to 

the presence of lysines in the IgG binding region, limited the assay design. Therefore, a 

minimal labeling approach, described in Chapter 5, based on biotinylation of the Fcγ 

receptors was developed in order to improve Fcγ receptor activity and stability at the sensor 

surface. The minimal labeling approach included the identification of the most vulnerable 

binding sites in the Fcγ receptor structures, to possibly prevent labeling in the active binding 

site. The resulting multiplexed Fcγ receptor sensor, in combination with two additional 

methods using SPR and BLI, was used to set up a screening approach that could rapidly 

measure the various Fc tail interactions of an IgG as outlined in Chapter 6. Stressed IgG 

samples were then measured by all three screening methods, to verify the application of the 

method during in-process controls or early development.  

  This thesis covers the applicability of multiplexed SPR throughout the entire process of 

biopharmaceutical development, from process support up to product characterization. 

Several screening methodologies based on SPRi have been developed and optimized and 

the proof-of-concept has been demonstrated in a variety of applications.

General introduction and thesis outline 

31 

References

 1.  Walsh, G. Biopharmaceutical benchmarks. Nat.Biotechnol.  2000; 18(8): 831-833  

 2.   Human insulin receives FDA approval. FDA.Drug Bull.  1982; 12(3): 18-19  

 3.  Walsh, G. Biopharmaceutical benchmarks 2014. Nat.Biotechnol.  2014; 32(10): 992-1000  

 4.  Flaharty, K. K., Grimm, A. M., and Vlasses, P. H. Epoetin: human recombinant erythropoietin. 
Clin.Pharm.  1989; 8(11): 769-782  

 5.  Lin, F. K., Suggs, S., Lin, C. H., Browne, J. K., Smalling, R., Egrie, J. C., Chen, K. K., Fox, G. 
M., Martin, F., Stabinsky, Z., and . Cloning and expression of the human erythropoietin gene. 
Proc.Natl.Acad.Sci.U.S.A  1985; 82(22): 7580-7584  

 6.  Jones, E. H. Recombinant human erythropoietin. Am.J.Hosp.Pharm.  1989; 46(11 Suppl 2): 
S20-S23  

 7.  Scott, J. and Phillips, G. C. Erythropoietin in sports: a new look at an old problem. Curr.Sports 
Med.Rep.  2005; 4(4): 224-226  

 8.  Lundby, C., Robach, P., and Saltin, B. The evolving science of detection of 'blood doping'. 
Br.J.Pharmacol.  2012; 165(5): 1306-1315  

 9.  Skibeli, V., Nissen-Lie, G., and Torjesen, P. Sugar profiling proves that human serum 
erythropoietin differs from recombinant human erythropoietin. Blood  15-12-2001; 98(13): 
3626-3634  

 10.  Walsh, G. and Jefferis, R. Post-translational modifications in the context of therapeutic 
proteins. Nat.Biotechnol.  2006; 24(10): 1241-1252  

 11.  Schellekens, H. Immunologic mechanisms of EPO-associated pure red cell aplasia. 
Best.Pract.Res.Clin.Haematol.  2005; 18(3): 473-480  

 12.  Schellekens, H. Factors influencing the immunogenicity of therapeutic proteins. 
Nephrol.Dial.Transplant.  2005; 20 Suppl 6 vi3-vi9  

 13.  McKoy, J. M., Stonecash, R. E., Cournoyer, D., Rossert, J., Nissenson, A. R., Raisch, D. W., 
Casadevall, N., and Bennett, C. L. Epoetin-associated pure red cell aplasia: past, present, and 
future considerations. Transfusion  2008; 48(8): 1754-1762  

 14.  Jiang, J., Tian, F., Cai, Y., Qian, X., Costello, C. E., and Ying, W. Site-specific qualitative and 
quantitative analysis of the N- and O-glycoforms in recombinant human erythropoietin. 
Anal.Bioanal.Chem.  31-7-2014;- 

 15.  Yang, M. and Butler, M. Effects of ammonia on CHO cell growth, erythropoietin production, 
and glycosylation. Biotechnol.Bioeng.  20-5-2000; 68(4): 370-380  

 16.  Dube, S., Fisher, J. W., and Powell, J. S. Glycosylation at specific sites of erythropoietin is 
essential for biosynthesis, secretion, and biological function. J.Biol.Chem.  25-11-1988; 
263(33): 17516-17521  

 17.  Zhang, P., Tan, D. L., Heng, D., Wang, T., Mariati, Yang, Y., and Song, Z. A functional 
analysis of N-glycosylation-related genes on sialylation of recombinant erythropoietin in six 
commonly used mammalian cell lines. Metab Eng  2010; 12(6): 526-536  

 18.  Elliott, S., Egrie, J., Browne, J., Lorenzini, T., Busse, L., Rogers, N., and Ponting, I. Control of 
rHuEPO biological activity: the role of carbohydrate. Exp.Hematol.  2004; 32(12): 1146-1155  

 19.  Meininger, M., Stepath, M., Hennig, R., Cajic, S., Rapp, E., Rotering, H., Wolff, M. W., and 
Reichl, U. Sialic acid-specific affinity chromatography for the separation of erythropoietin 
glycoforms using serotonin as a ligand. J.Chromatogr.B Analyt.Technol.Biomed.Life Sci.  15-2-
2016; 1012-1013 193-203  



Chapter 1 

32 

 20.  Schroeder, H. W., Jr. and Cavacini, L. Structure and function of immunoglobulins. J.Allergy 
Clin.Immunol.  2010; 125(2 Suppl 2): S41-S52  

 21.  Vidarsson, G., Dekkers, G., and Rispens, T. IgG subclasses and allotypes: from structure to 
effector functions. Front Immunol.  2014; 5 520- 

 22.  Suzuki, T., Ishii-Watabe, A., Tada, M., Kobayashi, T., Kanayasu-Toyoda, T., Kawanishi, T., 
and Yamaguchi, T. Importance of neonatal FcR in regulating the serum half-life of therapeutic 
proteins containing the Fc domain of human IgG1: a comparative study of the affinity of 
monoclonal antibodies and Fc-fusion proteins to human neonatal FcR. J.Immunol.  15-2-
2010; 184(4): 1968-1976  

 23.  Wang, W., Lu, P., Fang, Y., Hamuro, L., Pittman, T., Carr, B., Hochman, J., and 
Prueksaritanont, T. Monoclonal antibodies with identical Fc sequences can bind to FcRn 
differentially with pharmacokinetic consequences. Drug Metab Dispos.  2011; 39(9): 1469-
1477  

 24.  Chartrain, M. and Chu, L. Development and production of commercial therapeutic monoclonal 
antibodies in Mammalian cell expression systems: an overview of the current upstream 
technologies. Curr.Pharm.Biotechnol.  2008; 9(6): 447-467  

 25.  Li, F., Vijayasankaran, N., Shen, A. Y., Kiss, R., and Amanullah, A. Cell culture processes for 
monoclonal antibody production. MAbs.  2010; 2(5): 466-479  

 26.  Hober, S., Nord, K., and Linhult, M. Protein A chromatography for antibody purification. 
J.Chromatogr.B Analyt.Technol.Biomed.Life Sci.  15-3-2007; 848(1): 40-47  

 27.  Hahn, R., Schlegel, R., and Jungbauer, A. Comparison of protein A affinity sorbents. 
J.Chromatogr.B Analyt.Technol.Biomed.Life Sci.  25-6-2003; 790(1-2): 35-51  

 28.  Liu, H. F., Ma, J., Winter, C., and Bayer, R. Recovery and purification process development 
for monoclonal antibody production. MAbs.  2010; 2(5): 480-499  

 29.  Kontermann, R. E. and Brinkmann, U. Bispecific antibodies. Drug Discov.Today  2015; 20(7): 
838-847  

 30.  Chames, P. and Baty, D. Bispecific antibodies for cancer therapy: the light at the end of the 
tunnel? MAbs.  2009; 1(6): 539-547  

 31.  Perez, H. L., Cardarelli, P. M., Deshpande, S., Gangwar, S., Schroeder, G. M., Vite, G. D., and 
Borzilleri, R. M. Antibody-drug conjugates: current status and future directions. Drug 
Discov.Today  2014; 19(7): 869-881  

 32.  Czajkowsky, D. M., Hu, J., Shao, Z., and Pleass, R. J. Fc-fusion proteins: new developments 
and future perspectives. EMBO Mol.Med.  2012; 4(10): 1015-1028  

 33.  Ornes, S. Antibody-drug conjugates. Proc.Natl.Acad.Sci.U.S.A  20-8-2013; 110(34): 13695- 

 34.  Zolot, R. S., Basu, S., and Million, R. P. Antibody-drug conjugates. Nat.Rev.Drug Discov.  
2013; 12(4): 259-260  

 35.  Gronemeyer, P, Ditz, R, and Strube, J. Trends in upstream and downstream process 
development for antibody manufacturing. Bioengineering  1-10-2016;(1): 188-212  

 36.  Faustino Jozala, A, Costa Geraldes, D, Lacalendola Tundisi, L, de Araujo Feitosa, V, Alexandre 
Breyer, C, Leite Cardoso, S, Gava Mazzola, P, de Oliveira-Nascimento, L, de Oliveira Rangel-
Yagui, C, de Oliveira Magalhaes, P, Antonio de Oliveira, M, and Pessoa Jr, A. 
Biopharmaceuticals from microorganisms: from production to purification. Brazilian journal of 
microbiology  26-10-2016;(47): 51-63  

 37.  Read, E. K., Park, J. T., Shah, R. B., Riley, B. S., Brorson, K. A., and Rathore, A. S. Process 
analytical technology (PAT) for biopharmaceutical products: Part I. concepts and applications. 
Biotechnol.Bioeng.  1-2-2010; 105(2): 276-284  

General introduction and thesis outline 

33 

 38.  Rathore, A. S., Agarwal, H., Sharma, A. K., Pathak, M., and Muthukumar, S. Continuous 
processing for production of biopharmaceuticals. Prep.Biochem.Biotechnol.  2015; 45(8): 836-
849  

 39.  Fernandes, P., Carvalho, F., and Marques, M. P. Miniaturization in biotechnology: speeding up 
the development of bioprocesses. Recent Pat Biotechnol.  2011; 5(3): 160-173  

 40.  Read, E. K., Shah, R. B., Riley, B. S., Park, J. T., Brorson, K. A., and Rathore, A. S. Process 
analytical technology (PAT) for biopharmaceutical products: Part II. Concepts and 
applications. Biotechnol.Bioeng.  1-2-2010; 105(2): 285-295  

 41.  Lintern, K., Pathak, M., Smales, C. M., Howland, K., Rathore, A., and Bracewell, D. G. 
Residual on column host cell protein analysis during lifetime studies of protein A 
chromatography. J.Chromatogr.A  26-8-2016; 1461 70-77  

 42.  Mothes, B, Pezzini, J, Schroeder-Tittmann, K, and Villain, L. Accelerated, seamless antibody 
purification. BioProcess International  1-5-2017; 14(5): 34-58  

 43.  Rege, K., Pepsin, M., Falcon, B., Steele, L., and Heng, M. High-throughput process 
development for recombinant protein purification. Biotechnol.Bioeng.  5-3-2006; 93(4): 618-
630  

 44.  Lacki, K. M. High-throughput process development of chromatography steps: advantages and 
limitations of different formats used. Biotechnol.J.  2012; 7(10): 1192-1202  

 45.  Bergander, T., Nilsson-Valimaa, K., Oberg, K., and Lacki, K. M. High-throughput process 
development: determination of dynamic binding capacity using microtiter filter plates filled 
with chromatography resin. Biotechnol.Prog.  2008; 24(3): 632-639  

 46.  Jungbauer, A. Continuous downstream processing of biopharmaceuticals. Trends Biotechnol.  
2013; 31(8): 479-492  

 47.  Berkowitz, S. A., Engen, J. R., Mazzeo, J. R., and Jones, G. B. Analytical tools for 
characterizing biopharmaceuticals and the implications for biosimilars. Nat.Rev.Drug Discov.  
29-6-2012; 11(7): 527-540  

 48.  Crommelin, D. J., Storm, G., Verrijk, R., de, Leede L., Jiskoot, W., and Hennink, W. E. Shifting 
paradigms: biopharmaceuticals versus low molecular weight drugs. Int.J.Pharm.  6-11-2003; 
266(1-2): 3-16  

 49.  Parr, M. K., Montacir, O., and Montacir, H. Physicochemical characterization of 
biopharmaceuticals. J.Pharm.Biomed.Anal.  25-10-2016; 130 366-389  

 50.  Gahoual, R., Beck, A., Leize-Wagner, E., and Francois, Y. N. Cutting-edge capillary 
electrophoresis characterization of monoclonal antibodies and related products. 
J.Chromatogr.B Analyt.Technol.Biomed.Life Sci.  1-10-2016; 1032 61-78  

 51.  Magil, S. G. Biopharmaceutical characterization techniques for early phase development of 
proteins. BioPharm International  15-9-2015;- 

 52.  Visser, J., Feuerstein, I., Stangler, T., Schmiederer, T., Fritsch, C., and Schiestl, M. 
Physicochemical and functional comparability between the proposed biosimilar rituximab 
GP2013 and originator rituximab. BioDrugs.  2013; 27(5): 495-507  

 53.  Ghaderi, D., Taylor, R. E., Padler-Karavani, V., Diaz, S., and Varki, A. Implications of the 
presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins. 
Nat.Biotechnol.  2010; 28(8): 863-867  

 54.  Ghaderi, D., Zhang, M., Hurtado-Ziola, N., and Varki, A. Production platforms for 
biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. 
Biotechnol.Genet.Eng Rev.  2012; 28 147-175  

 55.  Costa, A. R., Rodrigues, M. E., Henriques, M., Oliveira, R., and Azeredo, J. Glycosylation: 
impact, control and improvement during therapeutic protein production. Crit Rev.Biotechnol.  
2014; 34(4): 281-299  



Ch
ap

te
r 1

Chapter 1 

32 

 20.  Schroeder, H. W., Jr. and Cavacini, L. Structure and function of immunoglobulins. J.Allergy 
Clin.Immunol.  2010; 125(2 Suppl 2): S41-S52  

 21.  Vidarsson, G., Dekkers, G., and Rispens, T. IgG subclasses and allotypes: from structure to 
effector functions. Front Immunol.  2014; 5 520- 

 22.  Suzuki, T., Ishii-Watabe, A., Tada, M., Kobayashi, T., Kanayasu-Toyoda, T., Kawanishi, T., 
and Yamaguchi, T. Importance of neonatal FcR in regulating the serum half-life of therapeutic 
proteins containing the Fc domain of human IgG1: a comparative study of the affinity of 
monoclonal antibodies and Fc-fusion proteins to human neonatal FcR. J.Immunol.  15-2-
2010; 184(4): 1968-1976  

 23.  Wang, W., Lu, P., Fang, Y., Hamuro, L., Pittman, T., Carr, B., Hochman, J., and 
Prueksaritanont, T. Monoclonal antibodies with identical Fc sequences can bind to FcRn 
differentially with pharmacokinetic consequences. Drug Metab Dispos.  2011; 39(9): 1469-
1477  

 24.  Chartrain, M. and Chu, L. Development and production of commercial therapeutic monoclonal 
antibodies in Mammalian cell expression systems: an overview of the current upstream 
technologies. Curr.Pharm.Biotechnol.  2008; 9(6): 447-467  

 25.  Li, F., Vijayasankaran, N., Shen, A. Y., Kiss, R., and Amanullah, A. Cell culture processes for 
monoclonal antibody production. MAbs.  2010; 2(5): 466-479  

 26.  Hober, S., Nord, K., and Linhult, M. Protein A chromatography for antibody purification. 
J.Chromatogr.B Analyt.Technol.Biomed.Life Sci.  15-3-2007; 848(1): 40-47  

 27.  Hahn, R., Schlegel, R., and Jungbauer, A. Comparison of protein A affinity sorbents. 
J.Chromatogr.B Analyt.Technol.Biomed.Life Sci.  25-6-2003; 790(1-2): 35-51  

 28.  Liu, H. F., Ma, J., Winter, C., and Bayer, R. Recovery and purification process development 
for monoclonal antibody production. MAbs.  2010; 2(5): 480-499  

 29.  Kontermann, R. E. and Brinkmann, U. Bispecific antibodies. Drug Discov.Today  2015; 20(7): 
838-847  

 30.  Chames, P. and Baty, D. Bispecific antibodies for cancer therapy: the light at the end of the 
tunnel? MAbs.  2009; 1(6): 539-547  

 31.  Perez, H. L., Cardarelli, P. M., Deshpande, S., Gangwar, S., Schroeder, G. M., Vite, G. D., and 
Borzilleri, R. M. Antibody-drug conjugates: current status and future directions. Drug 
Discov.Today  2014; 19(7): 869-881  

 32.  Czajkowsky, D. M., Hu, J., Shao, Z., and Pleass, R. J. Fc-fusion proteins: new developments 
and future perspectives. EMBO Mol.Med.  2012; 4(10): 1015-1028  

 33.  Ornes, S. Antibody-drug conjugates. Proc.Natl.Acad.Sci.U.S.A  20-8-2013; 110(34): 13695- 

 34.  Zolot, R. S., Basu, S., and Million, R. P. Antibody-drug conjugates. Nat.Rev.Drug Discov.  
2013; 12(4): 259-260  

 35.  Gronemeyer, P, Ditz, R, and Strube, J. Trends in upstream and downstream process 
development for antibody manufacturing. Bioengineering  1-10-2016;(1): 188-212  

 36.  Faustino Jozala, A, Costa Geraldes, D, Lacalendola Tundisi, L, de Araujo Feitosa, V, Alexandre 
Breyer, C, Leite Cardoso, S, Gava Mazzola, P, de Oliveira-Nascimento, L, de Oliveira Rangel-
Yagui, C, de Oliveira Magalhaes, P, Antonio de Oliveira, M, and Pessoa Jr, A. 
Biopharmaceuticals from microorganisms: from production to purification. Brazilian journal of 
microbiology  26-10-2016;(47): 51-63  

 37.  Read, E. K., Park, J. T., Shah, R. B., Riley, B. S., Brorson, K. A., and Rathore, A. S. Process 
analytical technology (PAT) for biopharmaceutical products: Part I. concepts and applications. 
Biotechnol.Bioeng.  1-2-2010; 105(2): 276-284  

General introduction and thesis outline 

33 

 38.  Rathore, A. S., Agarwal, H., Sharma, A. K., Pathak, M., and Muthukumar, S. Continuous 
processing for production of biopharmaceuticals. Prep.Biochem.Biotechnol.  2015; 45(8): 836-
849  

 39.  Fernandes, P., Carvalho, F., and Marques, M. P. Miniaturization in biotechnology: speeding up 
the development of bioprocesses. Recent Pat Biotechnol.  2011; 5(3): 160-173  

 40.  Read, E. K., Shah, R. B., Riley, B. S., Park, J. T., Brorson, K. A., and Rathore, A. S. Process 
analytical technology (PAT) for biopharmaceutical products: Part II. Concepts and 
applications. Biotechnol.Bioeng.  1-2-2010; 105(2): 285-295  

 41.  Lintern, K., Pathak, M., Smales, C. M., Howland, K., Rathore, A., and Bracewell, D. G. 
Residual on column host cell protein analysis during lifetime studies of protein A 
chromatography. J.Chromatogr.A  26-8-2016; 1461 70-77  

 42.  Mothes, B, Pezzini, J, Schroeder-Tittmann, K, and Villain, L. Accelerated, seamless antibody 
purification. BioProcess International  1-5-2017; 14(5): 34-58  

 43.  Rege, K., Pepsin, M., Falcon, B., Steele, L., and Heng, M. High-throughput process 
development for recombinant protein purification. Biotechnol.Bioeng.  5-3-2006; 93(4): 618-
630  

 44.  Lacki, K. M. High-throughput process development of chromatography steps: advantages and 
limitations of different formats used. Biotechnol.J.  2012; 7(10): 1192-1202  

 45.  Bergander, T., Nilsson-Valimaa, K., Oberg, K., and Lacki, K. M. High-throughput process 
development: determination of dynamic binding capacity using microtiter filter plates filled 
with chromatography resin. Biotechnol.Prog.  2008; 24(3): 632-639  

 46.  Jungbauer, A. Continuous downstream processing of biopharmaceuticals. Trends Biotechnol.  
2013; 31(8): 479-492  

 47.  Berkowitz, S. A., Engen, J. R., Mazzeo, J. R., and Jones, G. B. Analytical tools for 
characterizing biopharmaceuticals and the implications for biosimilars. Nat.Rev.Drug Discov.  
29-6-2012; 11(7): 527-540  

 48.  Crommelin, D. J., Storm, G., Verrijk, R., de, Leede L., Jiskoot, W., and Hennink, W. E. Shifting 
paradigms: biopharmaceuticals versus low molecular weight drugs. Int.J.Pharm.  6-11-2003; 
266(1-2): 3-16  

 49.  Parr, M. K., Montacir, O., and Montacir, H. Physicochemical characterization of 
biopharmaceuticals. J.Pharm.Biomed.Anal.  25-10-2016; 130 366-389  

 50.  Gahoual, R., Beck, A., Leize-Wagner, E., and Francois, Y. N. Cutting-edge capillary 
electrophoresis characterization of monoclonal antibodies and related products. 
J.Chromatogr.B Analyt.Technol.Biomed.Life Sci.  1-10-2016; 1032 61-78  

 51.  Magil, S. G. Biopharmaceutical characterization techniques for early phase development of 
proteins. BioPharm International  15-9-2015;- 

 52.  Visser, J., Feuerstein, I., Stangler, T., Schmiederer, T., Fritsch, C., and Schiestl, M. 
Physicochemical and functional comparability between the proposed biosimilar rituximab 
GP2013 and originator rituximab. BioDrugs.  2013; 27(5): 495-507  

 53.  Ghaderi, D., Taylor, R. E., Padler-Karavani, V., Diaz, S., and Varki, A. Implications of the 
presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins. 
Nat.Biotechnol.  2010; 28(8): 863-867  

 54.  Ghaderi, D., Zhang, M., Hurtado-Ziola, N., and Varki, A. Production platforms for 
biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. 
Biotechnol.Genet.Eng Rev.  2012; 28 147-175  

 55.  Costa, A. R., Rodrigues, M. E., Henriques, M., Oliveira, R., and Azeredo, J. Glycosylation: 
impact, control and improvement during therapeutic protein production. Crit Rev.Biotechnol.  
2014; 34(4): 281-299  



Chapter 1 

34 

 56.  Hossler, P., Khattak, S. F., and Li, Z. J. Optimal and consistent protein glycosylation in 
mammalian cell culture. Glycobiology  2009; 19(9): 936-949  

 57.  Hashii, N., Harazono, A., Kuribayashi, R., Takakura, D., and Kawasaki, N. Characterization of 
N-glycan heterogeneities of erythropoietin products by liquid chromatography/mass 
spectrometry and multivariate analysis. Rapid Commun.Mass Spectrom.  30-4-2014; 28(8): 
921-932  

 58.  Harazono, A., Hashii, N., Kuribayashi, R., Nakazawa, S., and Kawasaki, N. Mass spectrometric 
glycoform profiling of the innovator and biosimilar erythropoietin and darbepoetin by LC/ESI-
MS. J.Pharm.Biomed.Anal.  2013; 83 65-74  

 59.  Kawasaki, N., Ohta, M., Hyuga, S., Hyuga, M., and Hayakawa, T. Application of liquid 
chromatography/mass spectrometry and liquid chromatography with tandem mass 
spectrometry to the analysis of the site-specific carbohydrate heterogeneity in erythropoietin. 
Anal.Biochem.  1-10-2000; 285(1): 82-91  

 60.  Rosenfeld, R., Bangio, H., Gerwig, G. J., Rosenberg, R., Aloni, R., Cohen, Y., Amor, Y., 
Plaschkes, I., Kamerling, J. P., and Maya, R. B. A lectin array-based methodology for the 
analysis of protein glycosylation. J.Biochem.Biophys.Methods  10-4-2007; 70(3): 415-426  

 61.  Reuel, N. F., Mu, B., Zhang, J., Hinckley, A., and Strano, M. S. Nanoengineered glycan 
sensors enabling native glycoprofiling for medicinal applications: towards profiling 
glycoproteins without labeling or liberation steps. Chem.Soc.Rev.  7-9-2012; 41(17): 5744-
5779  

 62.  Safina, G., Duran, IuB, Alasel, M., and Danielsson, B. Surface plasmon resonance for real-
time study of lectin-carbohydrate interactions for the differentiation and identification of 
glycoproteins. Talanta  15-6-2011; 84(5): 1284-1290  

 63.  Fais M, Karamanska R, Russell D A, and Field R A. Lectin and carbohydrate microarrays: New 
high-throughput method for glycoprotein, carbohydrate-binding protein and carbohydrate-
active enzyme analysis. Journal of cereal science  26-6-2009; 50 306-311  

 64.  Foley, K. J., Forzani, E. S., Joshi, L., and Tao, N. Detection of lectin-glycan interaction using 
high resolution surface plasmon resonance. Analyst  2008; 133(6): 744-746  

 65.  de Mol, N. J. and Fischer, M. J. Surface plasmon resonance: a general introduction. Methods 
Mol.Biol.  2010; 627 1-14  

 66.  Willander, M. and Al-Hilli, S. Analysis of biomolecules using surface plasmons. Methods 
Mol.Biol.  2009; 544 201-229  

 67.  Ray, S., Mehta, G., and Srivastava, S. Label-free detection techniques for protein microarrays: 
prospects, merits and challenges. Proteomics.  2010; 10(4): 731-748  

 68.  Puiu, M. and Bala, C. SPR and SPR Imaging: Recent Trends in Developing Nanodevices for 
Detection and Real-Time Monitoring of Biomolecular Events. Sensors.(Basel)  14-6-2016; 
16(6):- 

 
 

 



Ch
ap

te
r 1

Chapter 1 

34 

 56.  Hossler, P., Khattak, S. F., and Li, Z. J. Optimal and consistent protein glycosylation in 
mammalian cell culture. Glycobiology  2009; 19(9): 936-949  

 57.  Hashii, N., Harazono, A., Kuribayashi, R., Takakura, D., and Kawasaki, N. Characterization of 
N-glycan heterogeneities of erythropoietin products by liquid chromatography/mass 
spectrometry and multivariate analysis. Rapid Commun.Mass Spectrom.  30-4-2014; 28(8): 
921-932  

 58.  Harazono, A., Hashii, N., Kuribayashi, R., Nakazawa, S., and Kawasaki, N. Mass spectrometric 
glycoform profiling of the innovator and biosimilar erythropoietin and darbepoetin by LC/ESI-
MS. J.Pharm.Biomed.Anal.  2013; 83 65-74  

 59.  Kawasaki, N., Ohta, M., Hyuga, S., Hyuga, M., and Hayakawa, T. Application of liquid 
chromatography/mass spectrometry and liquid chromatography with tandem mass 
spectrometry to the analysis of the site-specific carbohydrate heterogeneity in erythropoietin. 
Anal.Biochem.  1-10-2000; 285(1): 82-91  

 60.  Rosenfeld, R., Bangio, H., Gerwig, G. J., Rosenberg, R., Aloni, R., Cohen, Y., Amor, Y., 
Plaschkes, I., Kamerling, J. P., and Maya, R. B. A lectin array-based methodology for the 
analysis of protein glycosylation. J.Biochem.Biophys.Methods  10-4-2007; 70(3): 415-426  

 61.  Reuel, N. F., Mu, B., Zhang, J., Hinckley, A., and Strano, M. S. Nanoengineered glycan 
sensors enabling native glycoprofiling for medicinal applications: towards profiling 
glycoproteins without labeling or liberation steps. Chem.Soc.Rev.  7-9-2012; 41(17): 5744-
5779  

 62.  Safina, G., Duran, IuB, Alasel, M., and Danielsson, B. Surface plasmon resonance for real-
time study of lectin-carbohydrate interactions for the differentiation and identification of 
glycoproteins. Talanta  15-6-2011; 84(5): 1284-1290  

 63.  Fais M, Karamanska R, Russell D A, and Field R A. Lectin and carbohydrate microarrays: New 
high-throughput method for glycoprotein, carbohydrate-binding protein and carbohydrate-
active enzyme analysis. Journal of cereal science  26-6-2009; 50 306-311  

 64.  Foley, K. J., Forzani, E. S., Joshi, L., and Tao, N. Detection of lectin-glycan interaction using 
high resolution surface plasmon resonance. Analyst  2008; 133(6): 744-746  

 65.  de Mol, N. J. and Fischer, M. J. Surface plasmon resonance: a general introduction. Methods 
Mol.Biol.  2010; 627 1-14  

 66.  Willander, M. and Al-Hilli, S. Analysis of biomolecules using surface plasmons. Methods 
Mol.Biol.  2009; 544 201-229  

 67.  Ray, S., Mehta, G., and Srivastava, S. Label-free detection techniques for protein microarrays: 
prospects, merits and challenges. Proteomics.  2010; 10(4): 731-748  

 68.  Puiu, M. and Bala, C. SPR and SPR Imaging: Recent Trends in Developing Nanodevices for 
Detection and Real-Time Monitoring of Biomolecular Events. Sensors.(Basel)  14-6-2016; 
16(6):- 

 
 

 



37

CHAPTER 2

High-throughput and multiplexed regeneration 
buffer scouting for affinity-based interactions 

The contents of this chapter have been published as: 

Karin P.M. Geuijen, Richard B. Schasfoort, René H. Wijffels, Michel H.M. Eppink 

High-throughput and multiplexed regeneration buffer scouting for affinity-based interactions 

Analytical biochemistry (2014) 454, pg 38-40 



37

CHAPTER 2

High-throughput and multiplexed regeneration 
buffer scouting for affinity-based interactions 

The contents of this chapter have been published as: 

Karin P.M. Geuijen, Richard B. Schasfoort, René H. Wijffels, Michel H.M. Eppink 

High-throughput and multiplexed regeneration buffer scouting for affinity-based interactions 

Analytical biochemistry (2014) 454, pg 38-40 



Chapter 2 

38

Abstract

 Affinity-based analyses on biosensors partly depend on regeneration between 
measurements. Regeneration is performed with a buffer that efficiently breaks all 
interactions between ligand and analyte, while maintaining the active binding site of the 
ligand. We demonstrated a regeneration buffer scouting using the combination of a 
continuous flow microspotter with a surface plasmon resonance imaging platform to 
simultaneously test 48 different regeneration buffers on a single biosensor. Optimal 
regeneration conditions are found within hours and consume little amounts of buffers, 
analyte and ligand. This workflow can be applied to any ligand that is coupled through 
amine, thiol or streptavidin immobilization. 
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Introduction 

 Surface plasmon resonance (SPR) is a widely applied and accepted method to study 
protein-protein interactions in real-time. Affinity between an immobilized ligand and a 
soluble analyte is measured when a reversible binding is established between the two 
interacting compounds. One of the key parameters in a successful SPR experiment is an 
adequate regeneration of the sensor surface after analyte binding. Regeneration is 
considered efficient and robust when all bound analyte is removed from the surface, activity 
of the surface is maintained after each cycle and when it can be performed in a reproducible 
way. Binding between analyte and ligand is established through, e.g., electrostatic forces, 
hydrophobic interactions or hydrogen bonds. A regeneration buffer can be chosen 
depending on the type of interactions that take place. However, multiple types of 
interactions between ligand and analyte can play a role and may influence each other, 
complicating the selection of a proper regeneration buffer.  

 Systematic screening of sensors for optimal regeneration conditions has been 
previously performed with the Drake-Klakamp methodology.(1) Alternatively, a multivariate 
cocktail approach may be applied.(2-4) Although the Drake-Klakamp methodology is a 

strategic approach it requires multiple experiments because only one regeneration buffer is 
screened at a time, either manually or in an automated fashion. Finding the best 
regeneration buffer may thus take many experiments with different buffers to be tested 
sequentially. The cocktail approach on the other hand screens mixtures of one type of 
buffer, reducing the number of experiments for initial screening. However, this may lead to 
complicated regeneration buffer systems or extensive further fine-tuning to find the best 
regeneration buffer increasing the number of experiments to be performed again. 
Additionally, both strategies may require multiple new sensors if the tested regeneration 
buffer destroys the ligand activity.  

 Here we demonstrate the use of a continuous flow microspotter (CFM) in combination 
with an SPR imaging instrument to rapidly screen many regeneration buffers 
simultaneously. The CFM has been developed to uniformly array proteins on a biosensor 
surface.(5) Here the microfluidics channels in the CFM are used for independent multiplexed 

surface regeneration, resulting in a buffer scouting with up to 48 different regeneration 
buffers that can be tested using a single sensor surface. The multiplexed regeneration 
buffer screening is illustrated in this paper using a lectin – glycoprotein interaction as an 
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Abstract

 Affinity-based analyses on biosensors partly depend on regeneration between 
measurements. Regeneration is performed with a buffer that efficiently breaks all 
interactions between ligand and analyte, while maintaining the active binding site of the 
ligand. We demonstrated a regeneration buffer scouting using the combination of a 
continuous flow microspotter with a surface plasmon resonance imaging platform to 
simultaneously test 48 different regeneration buffers on a single biosensor. Optimal 
regeneration conditions are found within hours and consume little amounts of buffers, 
analyte and ligand. This workflow can be applied to any ligand that is coupled through 
amine, thiol or streptavidin immobilization. 
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Introduction 
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previously performed with the Drake-Klakamp methodology.(1) Alternatively, a multivariate 
cocktail approach may be applied.(2-4) Although the Drake-Klakamp methodology is a 

strategic approach it requires multiple experiments because only one regeneration buffer is 
screened at a time, either manually or in an automated fashion. Finding the best 
regeneration buffer may thus take many experiments with different buffers to be tested 
sequentially. The cocktail approach on the other hand screens mixtures of one type of 
buffer, reducing the number of experiments for initial screening. However, this may lead to 
complicated regeneration buffer systems or extensive further fine-tuning to find the best 
regeneration buffer increasing the number of experiments to be performed again. 
Additionally, both strategies may require multiple new sensors if the tested regeneration 
buffer destroys the ligand activity.  

 Here we demonstrate the use of a continuous flow microspotter (CFM) in combination 
with an SPR imaging instrument to rapidly screen many regeneration buffers 
simultaneously. The CFM has been developed to uniformly array proteins on a biosensor 
surface.(5) Here the microfluidics channels in the CFM are used for independent multiplexed 

surface regeneration, resulting in a buffer scouting with up to 48 different regeneration 
buffers that can be tested using a single sensor surface. The multiplexed regeneration 
buffer screening is illustrated in this paper using a lectin – glycoprotein interaction as an 
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example where multiple interactions between lectins and glycans need to be effectively 
broken and simple regeneration buffers are often not applicable.  

Materials and methods 

Materials and reagents 

 Soybean agglutinin (SBA) was purchased from Vector laboratories (Burlingame, 
California USA). Acetic acid, sodium hydroxide, urea, ortho-phosphoric acid, calcium chloride 
dihydrate, magnesium chloride, glycin, ethanol and hydrochloric acid were of analytical 
grade and purchased from Merck Millipore (Amsterdam, The Netherlands). Formic acid, 
Tween80, RBS neutral, manganese chloride, zinc chloride, ethanolamine, HEPES, sodium 
chloride, glycerol, fetuin, EDTA, sodium carbonate, ethylene glycol, SDS, CHAPS, Triton-
X100, guanidine hydrochloride were of analytical grade and purchased from Sigma-Aldrich 
(Zwijndrecht, The Netherlands). Ultrapure water was produced in house using a Millipore 
Milli-Q system. 

 Easy2Spot SensEye sensors were supplied by IBIS Technologies (Enschede, The 
Netherlands). Experiments were performed on an IBIS MX96 (IBIS Technologies, Enschede, 
The Netherlands) and continuous flow microspotter (CFM) (Wasatch microfluidics, Salt Lake 
City, Utah, USA).  

Buffer selection 

 A selection of 42 buffers for regeneration screening was made, based on the 
subclasses of regeneration buffers (A) acidic, (B) basic, (C) chelating, (D) detergents, (I) 
ionic and (U) non-polar water soluble solvents.(2,3) Buffers of choice were: 1% formic acid 

(A1-a); 10% formic acid (A1-b); 10 mM HCl (A2-a); 100 mM HCl (A2-b); 25 mM phosphoric 
acid (A3-a); 100 mM phosphoric acid (A3-b); 10 mM glycin-HCl pH 2.0 (AB1-a); 100 mM 
glycin-HCl pH 2.0 (AB1-b); 10 mM glycin-HCl pH 2.0 / 20 mM EDTA (ABC); 10 mM glycin-
HCl pH 2.0 / 1% SDS (ABD); 10 mM glycin-HCl pH 2.0 / 1M NaCl (ABI); 10 mM glycin-HCl 
pH 2.0 / 1% ethanol (ABU); 10 mM HCl / 1% SDS (AD1); 25 mM phosphoric acid / 1% SDS 
(AD2); 25 mM phosphoric acid / 1% SDS / 20 mM EDTA (ADC); 10 mM HCl / 3 M MgCl2
(AI1-a); 10 mM HCl / 1M NaCl (AI1-b); 25 mM phosphoric acid / 3 M MgCl2 (AI2-a); 25 mM 
phosphoric acid / 1 M NaCl (AI2-b); 25 mM phosphoric acid / 1 M NaCl / 20 mM EDTA 
(AIC); 10 mM HCl / 1% ethanol (AU1); 25 mM phosphoric acid / 1% ethanol (AU2); 10 mM 
glycin-NaOH pH 10.0 (B1); 10 mM HEPES-NaOH pH 8.5 (B2); 10 mM NaOH (B3-a); 100 mM 
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NaOH (B3-b); 200 mM Na2CO3 pH 11 (B4); 10 mM HEPES / 20 mM EDTA (BC1); 10 mM 
HEPES / 20 mM EDTA / 1 M NaCl (BCI); 25% Ethylene glycol (D1-a); 50% Ethylene glycol 
(D1-b); 1% SDS (D2-a); 20% SDS (D2-b); 0.3% CHAPS (D3); 0.3% Triton-X100 (D4); 3 M 
guanidine chloride (I1); 3 M MgCl2 (I2); 1 M NaCl (I3); 4 M urea (I4); 4 M KCl (I5); 10% 
ethanol (U1-a); 20% ethanol (U1-b). 

Scouting protocol 

 An Easy2Spot SensEye was cover coupled with Soybean agglutinin (SBA) lectin. In 
cover coupling, the entire surface of a sensor is exposed to the same ligand solution, to 
create a homogeneously immobilized surface. A baseline of 1 minute was recorded on the 
pre-activated Easy2Spot sensor followed by an injection of 100 µL of a 4 µM SBA solution in 
50 mM sodium acetate pH 4.5 / 0.05% Tween80. An association time of 10 minutes was 
programmed enabling covalent coupling of SBA lectin to the sensor surface. No dissociation, 
regeneration or wash steps were programmed. Next the sensor was deactivated with 
ethanolamine pH 8.5 for 8 minutes. 

 A 500 µg/mL fetuin solution in HEPES buffered saline pH 7.2 (20 mM HEPES, 150 mM 
NaCl, 0.05 w/v% Tween80, 1 mM ZnCl2, 1 mM CaCl2, 1 mM MnCl2 and 1 mM MgCl2) was 
injected onto the cover coupled SBA sensor. An injection volume of 100 µL was used. A 
baseline of 2 minutes was followed by an association phase of 15 minutes until sufficient 
binding of fetuin was measured (approximately 1000 RU). No dissociation, regeneration or 
wash steps were applied. Hereafter the sensor was directly transferred to the CFM for 
regeneration.

 One of the selected regeneration buffers per well was pipetted into 48 wells of a 96-
well plate, with a total volume of 150 µL per buffer. The SBA cover coupled sensor with 
fetuin bound to it was placed in the CFM printer, which was set-up to print 42 different 
regeneration buffers. Six channels of the CFM were used as reference and contained Milli-Q 
water. A pre-buffer gap of 25 µL between system buffer (Milli-Q) and regeneration buffers 
through each of the 48 channels was programmed. A print time of 5 minutes with 
regeneration buffers was used followed by a post-print wash of 2 minutes with Milli-Q 
water. Directly after regeneration the sensor was transferred to the IBIS MX96 instrument. 

 A baseline of 2 minutes, followed by an association time of 15 minutes with 500 µg/mL 
fetuin solution and 5 minutes dissociation was performed. The injection volume was 100 µL. 
A mild regeneration with 25 mM phosphoric acid in 2 steps was applied followed by a wash 
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example where multiple interactions between lectins and glycans need to be effectively 
broken and simple regeneration buffers are often not applicable.  

Materials and methods 
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subclasses of regeneration buffers (A) acidic, (B) basic, (C) chelating, (D) detergents, (I) 
ionic and (U) non-polar water soluble solvents.(2,3) Buffers of choice were: 1% formic acid 
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NaOH (B3-b); 200 mM Na2CO3 pH 11 (B4); 10 mM HEPES / 20 mM EDTA (BC1); 10 mM 
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(D1-b); 1% SDS (D2-a); 20% SDS (D2-b); 0.3% CHAPS (D3); 0.3% Triton-X100 (D4); 3 M 
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Scouting protocol 

 An Easy2Spot SensEye was cover coupled with Soybean agglutinin (SBA) lectin. In 
cover coupling, the entire surface of a sensor is exposed to the same ligand solution, to 
create a homogeneously immobilized surface. A baseline of 1 minute was recorded on the 
pre-activated Easy2Spot sensor followed by an injection of 100 µL of a 4 µM SBA solution in 
50 mM sodium acetate pH 4.5 / 0.05% Tween80. An association time of 10 minutes was 
programmed enabling covalent coupling of SBA lectin to the sensor surface. No dissociation, 
regeneration or wash steps were programmed. Next the sensor was deactivated with 
ethanolamine pH 8.5 for 8 minutes. 

 A 500 µg/mL fetuin solution in HEPES buffered saline pH 7.2 (20 mM HEPES, 150 mM 
NaCl, 0.05 w/v% Tween80, 1 mM ZnCl2, 1 mM CaCl2, 1 mM MnCl2 and 1 mM MgCl2) was 
injected onto the cover coupled SBA sensor. An injection volume of 100 µL was used. A 
baseline of 2 minutes was followed by an association phase of 15 minutes until sufficient 
binding of fetuin was measured (approximately 1000 RU). No dissociation, regeneration or 
wash steps were applied. Hereafter the sensor was directly transferred to the CFM for 
regeneration.

 One of the selected regeneration buffers per well was pipetted into 48 wells of a 96-
well plate, with a total volume of 150 µL per buffer. The SBA cover coupled sensor with 
fetuin bound to it was placed in the CFM printer, which was set-up to print 42 different 
regeneration buffers. Six channels of the CFM were used as reference and contained Milli-Q 
water. A pre-buffer gap of 25 µL between system buffer (Milli-Q) and regeneration buffers 
through each of the 48 channels was programmed. A print time of 5 minutes with 
regeneration buffers was used followed by a post-print wash of 2 minutes with Milli-Q 
water. Directly after regeneration the sensor was transferred to the IBIS MX96 instrument. 

 A baseline of 2 minutes, followed by an association time of 15 minutes with 500 µg/mL 
fetuin solution and 5 minutes dissociation was performed. The injection volume was 100 µL. 
A mild regeneration with 25 mM phosphoric acid in 2 steps was applied followed by a wash 



Chapter 2 

42

step. The analysis cycle was finished with a calibration cycle according to the IBIS 
calibration method. In short, calibration is performed with mixtures of glycerol in running 
buffer and MQ water at different levels. The RU at each spot on the sensor is measured for 
all mixtures. All experiments on the MX96 were performed at a temperature of 25°C. 

 Data were acquired in iSPR software and data analysis was performed in SPRint (IBIS 
Technologies BV, Enschede, The Netherlands). Calculations were performed in GraphPad 
Prism 6.01 (GraphPad Software, La Jolla, California, USA). 

Results and discussion 

 Scouting of regeneration buffers in multiplexed format is demonstrated with the 
interaction between soybean agglutinin (SBA) lectin as a ligand and the glycoprotein fetuin 
as the analyte, according to the workflow in Figure 2.1-a. The entire surface was covalently 
coupled with SBA lectin and activity of the surface was verified by binding with fetuin 
(Figure 2.1-b, sensorgram I). A total of 48 spots were regenerated with one of the buffers 
by exposing the SBA-fetuin complex to the buffers using the microfluidics of the continuous 
flow microspotter (CFM). Following multiplexed regeneration, fetuin was injected again to 
reestablish binding to SBA lectin (Figure 2.1-b, sensorgram II) for determination of 
regeneration efficiency. The entire surface was regenerated with a mild regeneration buffer 
(25 mM phosphoric acid) followed by another fetuin injection to determine surface activity 
(Figure 2.1-b, sensorgram III).  

 Regeneration efficiency and surface activity were calculated based on report points at 
15 minutes association, rather than comparing baseline levels. Baseline levels are usually 
evaluated to determine regeneration efficiency, but due to transfer of the sensor from MX96 
to CFM and vice versa the sensor cannot be replaced with millidegree resolution and 
baselines cannot be compared. Therefore we chose to determine regeneration parameters 
from report points after 15 minutes with the same analyte concentration after baselines 
were zeroed. Three scenarios were then observed: 1) high surface activity and proper 
regeneration; 2) high surface activity but insufficient regeneration and 3) poor surface 
activity (Figure 2.1-b). 

 A poor surface activity was measured when the third sensorgram (Figure 2.1-b (3)) did 
not reach a similar response level compared to responses on a new surface in the first 
sensorgram. The ligand was destroyed and hence the regeneration buffer was not a suitable 
candidate. Surface activity was calculated based on the signal after a two-fold regeneration.
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Figure 2.1 a) Workflow of the multiplexed regeneration buffer scouting with continuous flow 
microspotter and SPR imaging. b) Sensorgrams of regeneration efficiency and surface activity in a 
multiplexed buffer screening. Sensorgram I: Binding of analyte (fetuin) to ligand (SBA lectin) on a newly 
prepared surface. Sensorgram II: Binding of analyte to ligand after regeneration with one of the buffers 
in the screening. Sensorgram III: Binding of analyte to ligand after mild regeneration of surface with 25 
mM phosphoric acid. 1) High regeneration efficiency and high surface activity after regeneration with 25 
mM phosphoric acid / 3M MgCl2. 2) Poor regeneration efficiency but high surface activity with 10 mM 
glycin-HCl pH2.0 / 1% ethanol. 3) Poor regeneration efficiency and poor surface activity with 10 mM 
HCl / 1% SDS (see text for further explanation).

 First a regeneration cycle was performed with one of the buffers in the CFM, followed 
by a mild regeneration with 25 mM phosphoric acid in the IBIS MX96. Responses at 15 
minutes in measurement III (after mild regeneration) were divided by responses at 15 
minutes in measurement I (new surface) (Figure 2.1-b) and expressed as percentages.  
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step. The analysis cycle was finished with a calibration cycle according to the IBIS 
calibration method. In short, calibration is performed with mixtures of glycerol in running 
buffer and MQ water at different levels. The RU at each spot on the sensor is measured for 
all mixtures. All experiments on the MX96 were performed at a temperature of 25°C. 
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by exposing the SBA-fetuin complex to the buffers using the microfluidics of the continuous 
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reestablish binding to SBA lectin (Figure 2.1-b, sensorgram II) for determination of 
regeneration efficiency. The entire surface was regenerated with a mild regeneration buffer 
(25 mM phosphoric acid) followed by another fetuin injection to determine surface activity 
(Figure 2.1-b, sensorgram III).  
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evaluated to determine regeneration efficiency, but due to transfer of the sensor from MX96 
to CFM and vice versa the sensor cannot be replaced with millidegree resolution and 
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from report points after 15 minutes with the same analyte concentration after baselines 
were zeroed. Three scenarios were then observed: 1) high surface activity and proper 
regeneration; 2) high surface activity but insufficient regeneration and 3) poor surface 
activity (Figure 2.1-b). 

 A poor surface activity was measured when the third sensorgram (Figure 2.1-b (3)) did 
not reach a similar response level compared to responses on a new surface in the first 
sensorgram. The ligand was destroyed and hence the regeneration buffer was not a suitable 
candidate. Surface activity was calculated based on the signal after a two-fold regeneration.
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Figure 2.1 a) Workflow of the multiplexed regeneration buffer scouting with continuous flow 
microspotter and SPR imaging. b) Sensorgrams of regeneration efficiency and surface activity in a 
multiplexed buffer screening. Sensorgram I: Binding of analyte (fetuin) to ligand (SBA lectin) on a newly 
prepared surface. Sensorgram II: Binding of analyte to ligand after regeneration with one of the buffers 
in the screening. Sensorgram III: Binding of analyte to ligand after mild regeneration of surface with 25 
mM phosphoric acid. 1) High regeneration efficiency and high surface activity after regeneration with 25 
mM phosphoric acid / 3M MgCl2. 2) Poor regeneration efficiency but high surface activity with 10 mM 
glycin-HCl pH2.0 / 1% ethanol. 3) Poor regeneration efficiency and poor surface activity with 10 mM 
HCl / 1% SDS (see text for further explanation).

 First a regeneration cycle was performed with one of the buffers in the CFM, followed 
by a mild regeneration with 25 mM phosphoric acid in the IBIS MX96. Responses at 15 
minutes in measurement III (after mild regeneration) were divided by responses at 15 
minutes in measurement I (new surface) (Figure 2.1-b) and expressed as percentages.  
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Figure 2.2 Evaluation of multiplexed regeneration buffer screening. a) Remaining surface activity of 
ligand SBA towards binding of fetuin for 42 different regeneration buffers and six reference 
measurements (Milli-Q water. b) Regeneration efficiency of the buffers with a surface activity >70%. 
Dotted line indicates 100% level. Experiments were performed in triplicate. 
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Surface activity of the ligand was determined for each of the tested regeneration buffers 
(Figure 2.2-a) and those buffers resulting in less than 70% active ligand were considered 
too harsh regeneration conditions. The ligand, SBA, was damaged too much by SDS-
containing buffers (ABD, AD1, AD2, ADC, D2-a, D2-b), 10 mM and 100 mM glycin-HCl pH 
2.0 (A2-a, A2-b), 10 mM and 100 mM NaOH (B3-a, B3-b) and 200 mM Na2CO3 pH 11 (B4). 
Elimination of regeneration buffers that destroy the ligand (i.e. surface activity below 70%) 
resulted in a subset of mild regeneration buffers.  

 Regeneration efficiency was then evaluated for the mild regeneration buffers. 
Regeneration efficiency was expressed as the level of binding which was measured after 
regeneration in the CFM relative to the level of binding on a newly prepared surface. 
Responses at 15 minutes in measurement II (after CFM regeneration) were divided by 
responses at 15 minutes in measurement I (new surface) (Figure 2.1-b) and expressed as 
percentages. Mild regeneration buffers were either too mild or were capable of sufficient 
removal of analyte. Too mild buffers removed insufficient amounts of bound analyte (Figure 
2.1-b (2)) as indicated by sensorgram II which does not reach the same response level. Mild 
buffers that were capable of removing sufficient amounts of bound analyte (Figure 2.1-b 
(1)) resulted in similar responses in all three sensorgrams and were considered to be good 
regeneration conditions for the SBA – fetuin interaction. Regeneration efficiencies for all 
mild regeneration buffers were calculated and results of triplicate measurements are shown 
in Figure 2.2-b. Best regeneration efficiencies were measured with 25 mM phosphoric acid / 
3 M MgCl2 (AI2-a) and 25 mM phosphoric acid / 1% ethanol (AU2) for the SBA-fetuin 
complex. 

Summary

 We have demonstrated a new regeneration scouting workflow capable of testing 48 
different regeneration buffers simultaneously in affinity-based biosensor applications. The 
full experimental workflow can be performed within three hours and triplicate 
measurements within one working day. The continuous flow microspotter (CFM) is ideally 
suited for this buffer scouting, adding a novel application to the usage of the instrument. 
Furthermore the workflow is an economic alternative as it consumes minute amounts of 
ligand, analyte and buffers. Additionally all tests can be performed on a single sensor even 
when harsh regeneration conditions are to be tested.   
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(Figure 2.2-a) and those buffers resulting in less than 70% active ligand were considered 
too harsh regeneration conditions. The ligand, SBA, was damaged too much by SDS-
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2.1-b (2)) as indicated by sensorgram II which does not reach the same response level. Mild 
buffers that were capable of removing sufficient amounts of bound analyte (Figure 2.1-b 
(1)) resulted in similar responses in all three sensorgrams and were considered to be good 
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3 M MgCl2 (AI2-a) and 25 mM phosphoric acid / 1% ethanol (AU2) for the SBA-fetuin 
complex. 
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full experimental workflow can be performed within three hours and triplicate 
measurements within one working day. The continuous flow microspotter (CFM) is ideally 
suited for this buffer scouting, adding a novel application to the usage of the instrument. 
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Abstract

 Protein purifications are often based on the principle of affinity chromatography, where 
the protein of interest selectively binds to an immobilized ligand. The development of affinity 
purification requires selecting proper wash and elution conditions. In recent years, 
miniaturization of the purification process is applied to speed up the development (e.g. 
microtiterplates, robocolumns). We have studied the application of surface plasmon 
resonance imaging (SPRi) as a tool to simultaneously screen many buffer conditions for 
wash and elution steps in an affinity-based purification process. Additionally, the protein A 
ligand stability after exposure to harsh cleaning conditions often limits the reuse of resins 
and is determined at lab scale. We also used the SPRi technology to screen ligand life-time 
with respect to alkali stability and demonstrated that SPRi can successfully be applied in 
screening experiments for process developments in a miniaturized approach. The amount of 
resin, protein and buffer in these studies was reduced 30-300-fold compared to 1 mL 
column scale, and approximately 10-1000-fold compared to filter plate experiments. The 
overall development time can be decreased from several months towards days. The 
multiplexed SPRi can be applied in screening affinity chromatography conditions in early 
stage development for ligand development and recombinant protein production. 
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Introduction 

 Affinity chromatography is a highly selective capture step in the purification of many 
recombinant proteins, where the interaction is based on reversible binding.(1) Within the 
biopharmaceutical industry, protein A chromatography is often applied as the first unit 
operation to remove the majority of impurities, such as host cell proteins (HCPs), fragments, 
DNA and media components, from a cell culture harvest to purify mAbs.(2-5)

 Recombinant protein A has been engineered to obtain a more stable protein(3) that can 
withstand harsh conditions on a purification column, such as high flow rates, different wash 
buffers and additives or cleaning conditions.(6) Many different engineered protein A-based 
resins are available nowadays for efficient IgG purification,(3,7) which have a longer resin 
life-time compared to their native counterparts, mainly due to an improved alkali stability. 
Affinity columns are generally rigorously cleaned after each purification cycle to prevent 
cross-contamination, often by dilute NaOH solutions. The applied cleaning-in-place (CIP) 
solution depends on resin type and on ligand stability, and therefore ligand life-time has to 
be studied during the development of new affinity ligands.(8-11)   

 Process development of a protein A purification step for IgGs involves the selection of 
wash and elution conditions. HCP levels can vary significantly in protein A pools amongst 
different mAbs and removal thereof is dependent on the selected wash conditions.(12) In 
recent years, wash conditions have been investigated to remove a larger fraction of HCPs(13-

15) and aggregates(16) while maintaining high overall yield. A rapid screening of the various 
steps in the purification process enables a fast transfer to pilot-scale experiments where 
only a selection of conditions can be tested.(17) Especially with the development of newly 
engineered protein A ligands, or any other affinity ligand, there is a broad interest in 
miniaturized screening approaches to speed up the development process.(18,19)

 Here we describe an alternative screening technology, based on multiplexed SPRi, to 
miniaturize process development using protein A and IgG as a model system. We screened 
elution and wash buffers in a simulated Protein A affinity chromatography step and we 
performed an alkali stability test of the protein A ligands at microgram scale. The use of a 
48-channel continuous flow microspotter (CFM) to screen 48 different buffers for interaction 
analysis has been proven before(20) and we further optimized the experimental set-up to 
screen for protein A process development.
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Materials and methods 

Elution buffer screening using SPRi 

 A G-COOH sensor (SSens BV, Enschede, the Netherlands) was activated with EDC/NHS 
in 50mM MES buffer according to manufacturer’s instructions in the IBIS MX96 (IBIS 
Technologies BV, Enschede, the Netherlands). MabSelect SuRe (MSS) ligand (GE life 
sciences) was diluted to 1 µM in 50 mM sodium acetate pH 4.0 / 0.05% polysorbate 80 and 
immobilized on the entire surface of the sensor. The sensor was deactivated by 1 M 
ethanolamine pH 8.5 during 10 minutes in the IBIS MX96. 

 Recombinant human IgG (Synthon Biopharmaceuticals BV, Nijmegen, the Netherlands) 
was diluted to 1 µM in PBS buffer pH 7.4 / 0.05% polysorbate 80 and injected over the MSS 
sensor with a total association time of 10 minutes until equilibrium was reached (Req1), after 
a baseline of 1 minute. Subsequently, the sensor was transferred to the continuous flow 
microspotter (CFM, Wasatch, Salt Lake City, USA) where the surface was exposed to 48 
different buffers simultaneously for 1 minute in a 4x12 array. Elution buffers that were 
screened were prepared from a 50 mM sodium acetate stock solution at pHs of 6.0; 5.5; 
5.25; 5.0; 4.8; 4.5; 4.0; 3.5; 3.25; 3.0 or 2.7 and 2 M NaCl stock solution. Buffers were 
mixed in different ratios and diluted with MQ water to obtain 25 mM sodium acetate buffers 
at the indicated pH, with salt concentrations of 0, 250, 500 or 1000 mM NaCl. PBS pH 7.4 
was included as a reference buffer for normalization of the results. The sensor surface was 
transferred back to the IBIS MX96 and a baseline of 1 minute was followed by association of 
1 µM IgG solution for 10 minutes again (Req2), followed by a complete regeneration of the 
surface with 25 mM phosphoric acid pH 3.0. This entire procedure, except immobilization, 
was repeated four times. 

 Sensorgrams were calibrated, referenced and zeroed and the binding levels at 
equilibrium were determined. First the recovery for each condition was calculated and 
normalized against PBS buffer to correct for dissociation of IgG from MSS ligand during 
buffer flushes in the system.  

 Normalized recovery = ([1- (Req2/ Req1)]tested buffer / [1- (Req2/ Req1)]PBS) *100%. The 
normalized recovery was then translated into yield as follows: Yield = 100% - normalized 
recovery.
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Elution buffer screening using PreDictor plates 

 PreDictor plates (GE life sciences) with 50 µL MabSelect SuRe media per well were 
prepared according to manufacturer’s protocol. Equilibration and wash steps consisted of 3x 
200 µL PBS buffer pH 7.4. Purified IgG sample (Synthon Biopharmaceuticals BV) at 5 mg/mL 
was loaded to each well in 200 µL after equilibration. The wells were washed followed by 
IgG elution using buffers of 25 mM sodium acetate at pH 3.0-5.75 in 0.25 increments. IgG 
concentrations in the eluates were determined by OD280 measurements with the Infinite 
M1000 reader (Tecan, Männedorf, Switzerland).  

Wash buffer screening using SPRi 

 A pre-activated Easy2Spot G-type sensor (SSens BV) was immobilized with 12 spots of 
MabSelect SuRe ligand (GE life sciences), 12 spots of MabSelect ligand (GE life sciences) 
and 12 spots of KanCapA ligand (Kaneka, Tokyo, Japan) at concentrations between 50 and 
1.6 µg/mL in 50 mM sodium acetate pH 4.5 / 0.05% polysorbate 80. Immobilization was 
performed in the continuous flow microspotter (CFM) with a 5-minute print time. The sensor 
was deactivated by 1 M ethanolamine pH 8.5 during 10 minutes in the IBIS MX96. 

 Association of 100 µL of an IgG CCF (Synthon Biopharmaceuticals BV) to the different 
ligands was performed for 3 minutes (Req1) after a baseline of 1 minute. This was followed 
by injections of wash buffer for 3 minutes and then again an injection of the same IgG CCF 
for 3 minutes (Req2). The sensor was regenerated with 25 mM phosphoric acid pH 3 for 30 
seconds. This entire procedure was repeated three times for each wash buffer. A total of 48 
different wash buffers were selected for this screening, and one per cycle was injected.  The 
wash buffers consisted of 10, 25 or 100 mM Tris pH 8 or sodium acetate pH 5. The 25 mM 
buffers were used in combination with various additives at different concentrations. The 
tested additives in both buffers were: NaCl (0.5, 1 and 2 M), arginine (0.5, 1 and 2 M), 
CaCl2 (0.5, 1 and 2 M), Na2SO4 (0.5, 1 and 1.5 M), isopropanol (5, 10 and 20%), ethanol (5, 
10 and 20%) and urea (0.5, 1 and 2 M).  

 Sensorgrams were calibrated, referenced and zeroed and binding levels at equilibrium 
were determined. Recoveries were calculated and normalized against 10mM Tris pH8 buffer 
as follows:  

Normalized recovery = ([1- (Req2/ Req1)]tested buffer / [1- (Req2/ Req1)]10mM Tris pH8 )*100%. 
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Wash buffer screening using filter plates 

 96-well filter plates (Whatman) were filled with 40 µL resin (MabSelect SuRe or 
KanCapA) and equilibrated with 3x 200 µL PBS buffer pH 7.4. Then 6x 300 µL of IgG CCF 
was added to the wells and subsequently washed with 2x 200 µL of the following buffers: 
PBS buffer pH 7.4; either 25 mM Tris pH 8 or 25 mM sodium acetate pH 5; each of the 48 
selected wash buffers with additives (section 2.3) and at last 25 mM Tris pH 8 or 25 mM 
sodium acetate pH 5. The protein was eluted in 2x 200 µL 25 mM acetate pH 3.0. Recovery 
of IgG for the wash and elution steps was determined by OD280 nm with the Infinite M1000 
reader (Tecan, Männedorf, Switzerland).  

Alkali resistance testing using SPRi 

 A pre-activated Easy2Spot G-type sensor was prepared as described in the wash buffer 
screening. Association of 100 µL of an IgG CCF (Synthon Biopharmaceuticals BV) at 
approximately 1-2 mg/mL IgG was performed for 15 minutes after a baseline of 1 minute. 
The surface was regenerated with 25 mM sodium acetate pH 3 and then 10 cycles of 0.1 or 
0.5 M NaOH were injected during 15 minutes. Each 10th cycle, the initial IgG CCF was 
injected again. This entire procedure was repeated ten times to simulate a total of 100 
NaOH cycles. 

 Sensorgrams were referenced and zeroed; responses at equilibrium were determined 
and expressed as binding capacity. Binding capacity of the first injection was set to 100% 
and binding capacity of subsequent cycles was calculated relative to the first cycle. 

Alkali resistance testing using columns 

 Protein A columns of 1 mL with either MabSelect SuRe or KanCapA resin were used to 
determine the alkali resistance. First the dynamic binding capacity (DBC) was determined at 
10% breakthrough using purified IgG, followed by a run with IgG CCF to determine product 
quality, followed by 8 runs of sanitization with 0.5 M NaOH. This sequence of 10 runs was 
repeated 10 times to simulate 100 sanitization steps in total. The purification run with CCF 
consisted of following steps with 10 column volumes (CV) each: equilibration with PBS pH 
7.4 at 1 mL/min; sample load at 0.5 mL/min; wash in 4 steps with different wash buffers; 
IgG elution with 25 mM sodium acetate pH 3.0; regeneration with 0.5 M acetic acid (MSS) 
or 1 M acetic acid (KCA); wash with purified water; sanitization with 0.5 M NaOH during 15 
minutes and wash with purified water.  
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 The DBC of the initial run was set to 100% and every 10th cycle the DBC was 
calculated, followed by normalization relative to the initial value. 

Statistical data analysis 

 Statistical analysis of the data was performed in GraphPad Prism 6. Correlation analysis 
was used in the elution buffer and wash buffer screening. Linear regression analysis was 
performed on the alkali stability, and slopes of the regression curves were compared with 
each other. 

Results and discussion 

Comparison of elution buffer screening using SPRi or filter plates

 A screening of elution buffer conditions for the interaction between MabSelect SuRe 
(MSS) and IgG was performed on an SPRi sensor surface to prove the concept of the 
technology (Figure 3.A.1). An array of 48 elution buffers was simultaneously flushed over 
the surface, to determine the influence of the buffer on the IgG yield, similar to the set-up 
in Geuijen et al.(20) The yields obtained in SPRi experiments match closely to the yields that 
were obtained in filter plate experiments and to values reported in literature (Figure 3.1).(21)

Correlation between the SPRi results and filter plate experiments was 0.94 with P=0.005 in 
the buffers without NaCl addition. Slightly lower correlation values, of 0.67, 0.84 and 0.84 
for 1M NaCl, 0.5M NaCl and 0.25M NaCl respectively, were determined for the other elution 
buffer conditions.

 Minor differences between the different techniques were measured at pH 3.3 and pH 
3, and between pH 4 and pH 5 upon NaCl addition. The infliction point of the binding 
equilibrium between IgG and MSS is around these pH values, and this may impact the 
results. The interactions between MSS and IgG are partly based on electrostatic 
interactions(22,23) and addition of NaCl to the buffer reduces these interactions. This directly 
impacts the binding equilibrium, resulting in reduced affinity around pH 4-5, which is 
translated to increased elution in the SPRi experiments upon NaCl addition. At pH 3.3 and 
pH 3, the slightly higher recovery in filter plate experiments may be explained by the 
presence of an agarose backbone on the resin, which may stabilize the interaction between 
MSS and IgG.(23) In SPRi experiments the MSS ligand is directly immobilized onto the sensor 
surface and this may have an impact on the stability of the interaction around the infliction 
point of the equilibrium. 
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Wash buffer screening using filter plates 

 96-well filter plates (Whatman) were filled with 40 µL resin (MabSelect SuRe or 
KanCapA) and equilibrated with 3x 200 µL PBS buffer pH 7.4. Then 6x 300 µL of IgG CCF 
was added to the wells and subsequently washed with 2x 200 µL of the following buffers: 
PBS buffer pH 7.4; either 25 mM Tris pH 8 or 25 mM sodium acetate pH 5; each of the 48 
selected wash buffers with additives (section 2.3) and at last 25 mM Tris pH 8 or 25 mM 
sodium acetate pH 5. The protein was eluted in 2x 200 µL 25 mM acetate pH 3.0. Recovery 
of IgG for the wash and elution steps was determined by OD280 nm with the Infinite M1000 
reader (Tecan, Männedorf, Switzerland).  

Alkali resistance testing using SPRi 

 A pre-activated Easy2Spot G-type sensor was prepared as described in the wash buffer 
screening. Association of 100 µL of an IgG CCF (Synthon Biopharmaceuticals BV) at 
approximately 1-2 mg/mL IgG was performed for 15 minutes after a baseline of 1 minute. 
The surface was regenerated with 25 mM sodium acetate pH 3 and then 10 cycles of 0.1 or 
0.5 M NaOH were injected during 15 minutes. Each 10th cycle, the initial IgG CCF was 
injected again. This entire procedure was repeated ten times to simulate a total of 100 
NaOH cycles. 

 Sensorgrams were referenced and zeroed; responses at equilibrium were determined 
and expressed as binding capacity. Binding capacity of the first injection was set to 100% 
and binding capacity of subsequent cycles was calculated relative to the first cycle. 

Alkali resistance testing using columns 

 Protein A columns of 1 mL with either MabSelect SuRe or KanCapA resin were used to 
determine the alkali resistance. First the dynamic binding capacity (DBC) was determined at 
10% breakthrough using purified IgG, followed by a run with IgG CCF to determine product 
quality, followed by 8 runs of sanitization with 0.5 M NaOH. This sequence of 10 runs was 
repeated 10 times to simulate 100 sanitization steps in total. The purification run with CCF 
consisted of following steps with 10 column volumes (CV) each: equilibration with PBS pH 
7.4 at 1 mL/min; sample load at 0.5 mL/min; wash in 4 steps with different wash buffers; 
IgG elution with 25 mM sodium acetate pH 3.0; regeneration with 0.5 M acetic acid (MSS) 
or 1 M acetic acid (KCA); wash with purified water; sanitization with 0.5 M NaOH during 15 
minutes and wash with purified water.  

Rapid buffer and ligand screening for affinity chromatography 

55

 The DBC of the initial run was set to 100% and every 10th cycle the DBC was 
calculated, followed by normalization relative to the initial value. 

Statistical data analysis 

 Statistical analysis of the data was performed in GraphPad Prism 6. Correlation analysis 
was used in the elution buffer and wash buffer screening. Linear regression analysis was 
performed on the alkali stability, and slopes of the regression curves were compared with 
each other. 

Results and discussion 

Comparison of elution buffer screening using SPRi or filter plates

 A screening of elution buffer conditions for the interaction between MabSelect SuRe 
(MSS) and IgG was performed on an SPRi sensor surface to prove the concept of the 
technology (Figure 3.A.1). An array of 48 elution buffers was simultaneously flushed over 
the surface, to determine the influence of the buffer on the IgG yield, similar to the set-up 
in Geuijen et al.(20) The yields obtained in SPRi experiments match closely to the yields that 
were obtained in filter plate experiments and to values reported in literature (Figure 3.1).(21)

Correlation between the SPRi results and filter plate experiments was 0.94 with P=0.005 in 
the buffers without NaCl addition. Slightly lower correlation values, of 0.67, 0.84 and 0.84 
for 1M NaCl, 0.5M NaCl and 0.25M NaCl respectively, were determined for the other elution 
buffer conditions.

 Minor differences between the different techniques were measured at pH 3.3 and pH 
3, and between pH 4 and pH 5 upon NaCl addition. The infliction point of the binding 
equilibrium between IgG and MSS is around these pH values, and this may impact the 
results. The interactions between MSS and IgG are partly based on electrostatic 
interactions(22,23) and addition of NaCl to the buffer reduces these interactions. This directly 
impacts the binding equilibrium, resulting in reduced affinity around pH 4-5, which is 
translated to increased elution in the SPRi experiments upon NaCl addition. At pH 3.3 and 
pH 3, the slightly higher recovery in filter plate experiments may be explained by the 
presence of an agarose backbone on the resin, which may stabilize the interaction between 
MSS and IgG.(23) In SPRi experiments the MSS ligand is directly immobilized onto the sensor 
surface and this may have an impact on the stability of the interaction around the infliction 
point of the equilibrium. 



Chapter 3 

56

 Furthermore the intrinsic binding capacity of the filter plates and the SPRi sensor may 
be different, which can impact the results. Columns or filter plates are often loaded up to 
saturation, whereas the maximum binding capacity of MSS on the SPRi sensor is not 
reached.

Figure 3.1 Elution pH profiles of IgG on MabSelect SuRe determined by multiplexed surface plasmon 
resonance, PreDictor plate experiments and literature values of PreDictor plate experiments.(21)  Each 
value of SPRi and filter plate experiments represents the IgG yield at indicated buffer pH of four 
replicates, with error bars indicating ± one standard deviation. 

Comparison of wash buffer screening using SPRi or filter plates

 Wash buffers were screened on the SPRi platform with MabSelect (MS), MabSelect 
SuRe (MSS) and KanCapA (KCA) protein A ligand simultaneously on a single SPRi sensor 
(Figure 3.A.2). No filter plate experiments with MS were performed, so focus will be on the 
results of MSS and KCA. A total of 48 wash buffers were selected (see materials and 
methods section) and IgG recovery was determined. IgG recoveries of the different wash 
buffers between filter plate experiments and SPRi experiments were compared. Results 
between SPRi and filter plates correlate well to each other as determined by statistical 
correlation analysis (r=0.57 for pH8 and r=0.83 for pH5; both with P<0.0001). 

Rapid buffer and ligand screening for affinity chromatography 

57

Figure 3.2  Wash buffer screening on MabSelect SuRe (MSS) and KanCap A (KCA) protein A ligands 
determined by multiplexed surface plasmon resonance and in filter plates in A) 25 mM tris buffer pH8 
and B) 25 mM sodium acetate pH5. Various additives at different concentrations were tested in both 
buffer systems. Values indicate the IgG recovery in % after the wash step by elution at pH 3 (filter 
plates, n=2), or by measurement of remaining IgG on the ligands (SPRi, n=3). Error bars represent ± 
one standard deviation. 
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 Recoveries of the wash buffer screening at pH 5 were comparable between SPRi and 
filter plates for four of the tested additives and in the sodium acetate buffer without additive 
(Figure 3.2-B). Two additives (1 and 2 M arginine or CaCl2) had reduced recoveries in the 
filter plate experiments and even lower recoveries in the SPRi experiments for both ligands. 
Additionally, a reduced recovery in SPRi experiments was detected with NaCl as additive, 
which was not observed in filter plate experiments. Protein interactions are based on 
complex formation between the two binding partners, and this is influenced by the 
experimental conditions. Especially at pH 5, where the interaction between protein A and 
IgG is close to the infliction point of the equilibrium, the affinity is weaker compared to 
higher pH, and as a result dissociation will be faster. In SPRi experiments, the flow rate is 
relatively high compared to column chromatography (µL/seconds vs mL/minutes). This 
translates to residence times of 0.24 seconds in SPRi experiments, compared to 3x 1 minute 
in filter plate experiments. Since the interaction is based on equilibrium between association 
and dissociation, a higher flow rate or a shorter residence time may impact this equilibrium 
directly by preventing rebinding events and driving the equilibrium further towards 
dissociation, resulting in larger IgG loss (expressed as lower recovery). 

 The majority of wash buffers at pH 8 had recoveries of >95% (Figure 3.2-A), both in 
filter plates and SPRi experiments. Lower recoveries were determined in buffers with 1 or 2 
M arginine (MSS and KCA) and 1 or 2 M CaCl2 (MSS only) in filter plate experiments. In the 
SPRi experiments a similar trend in reduced recovery was observed with CaCl2 as additive, 
although total recovery was higher as compared to filter plates. Both are strong basic 
additives, which may not be fully washed out upon start of elution. The lower recoveries are 
only observed using the buffers with higher molarities of either arginine or CaCl2, which 
suggests that the pH during elution is possibly still too high to fully recover the IgG from the 
resin. Since flow rates in SPRi experiments are higher compared to filter plate experiments, 
and therefore residence times of the buffer are shorter, as explained earlier, those basic 
additives are washed more rapidly in the SPRi experiments, resulting in higher recoveries 
because of a proper elution pH.  

Comparison of ligand alkali resistance using SPRi or small-scale 
columns

 The resin life-time in chromatographic purifications is mainly affected by the cleaning-
in-place procedure, which is often performed with 0.1 or 0.5 M NaOH solutions, especially 
for the engineered protein A ligands. CIP cycles were simulated on 1 mL columns and on  
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Figure 3.3 Alkali resistance testing of three protein A ligands: (A) MabSelect SuRe [MSS], (B) KanCapA 
[KCA] and (C) MabSelect [MS]) determined by multiplexed surface plasmon resonance, on 1 mL 
chromatography columns and literature.(24,25) Values represent the binding capacity of the ligand, 
determined by dynamic binding capacity at 10% breakthrough in column experiments (n=1) and by IgG 
binding responses in SPRi (n=12). Twelve independent spots on a single SPRi sensor for each of the 
ligands were evaluated and error bars indicate ± one standard deviation.   



Ch
ap

te
r 3

Chapter 3 

58

 Recoveries of the wash buffer screening at pH 5 were comparable between SPRi and 
filter plates for four of the tested additives and in the sodium acetate buffer without additive 
(Figure 3.2-B). Two additives (1 and 2 M arginine or CaCl2) had reduced recoveries in the 
filter plate experiments and even lower recoveries in the SPRi experiments for both ligands. 
Additionally, a reduced recovery in SPRi experiments was detected with NaCl as additive, 
which was not observed in filter plate experiments. Protein interactions are based on 
complex formation between the two binding partners, and this is influenced by the 
experimental conditions. Especially at pH 5, where the interaction between protein A and 
IgG is close to the infliction point of the equilibrium, the affinity is weaker compared to 
higher pH, and as a result dissociation will be faster. In SPRi experiments, the flow rate is 
relatively high compared to column chromatography (µL/seconds vs mL/minutes). This 
translates to residence times of 0.24 seconds in SPRi experiments, compared to 3x 1 minute 
in filter plate experiments. Since the interaction is based on equilibrium between association 
and dissociation, a higher flow rate or a shorter residence time may impact this equilibrium 
directly by preventing rebinding events and driving the equilibrium further towards 
dissociation, resulting in larger IgG loss (expressed as lower recovery). 

 The majority of wash buffers at pH 8 had recoveries of >95% (Figure 3.2-A), both in 
filter plates and SPRi experiments. Lower recoveries were determined in buffers with 1 or 2 
M arginine (MSS and KCA) and 1 or 2 M CaCl2 (MSS only) in filter plate experiments. In the 
SPRi experiments a similar trend in reduced recovery was observed with CaCl2 as additive, 
although total recovery was higher as compared to filter plates. Both are strong basic 
additives, which may not be fully washed out upon start of elution. The lower recoveries are 
only observed using the buffers with higher molarities of either arginine or CaCl2, which 
suggests that the pH during elution is possibly still too high to fully recover the IgG from the 
resin. Since flow rates in SPRi experiments are higher compared to filter plate experiments, 
and therefore residence times of the buffer are shorter, as explained earlier, those basic 
additives are washed more rapidly in the SPRi experiments, resulting in higher recoveries 
because of a proper elution pH.  

Comparison of ligand alkali resistance using SPRi or small-scale 
columns

 The resin life-time in chromatographic purifications is mainly affected by the cleaning-
in-place procedure, which is often performed with 0.1 or 0.5 M NaOH solutions, especially 
for the engineered protein A ligands. CIP cycles were simulated on 1 mL columns and on  

Rapid buffer and ligand screening for affinity chromatography 

59

Figure 3.3 Alkali resistance testing of three protein A ligands: (A) MabSelect SuRe [MSS], (B) KanCapA 
[KCA] and (C) MabSelect [MS]) determined by multiplexed surface plasmon resonance, on 1 mL 
chromatography columns and literature.(24,25) Values represent the binding capacity of the ligand, 
determined by dynamic binding capacity at 10% breakthrough in column experiments (n=1) and by IgG 
binding responses in SPRi (n=12). Twelve independent spots on a single SPRi sensor for each of the 
ligands were evaluated and error bars indicate ± one standard deviation.   



Chapter 3 

60

SPRi up to 100 cycles. Every 10th cycle, the binding capacity expressed as the fraction of 
IgG that still bound was determined (Sensorgrams are shown in Figure 3.A.3).  

 MS is not resistant to 0.5 M NaOH and therefore the SPRi experiments were performed 
with 0.1 M NaOH, since all three ligands were tested simultaneously. An initial experiment 
with only KCA ligand at the sensor surface was performed with 0.5 M NaOH. KCA and MSS 
have a binding capacity around 75-85% of the initial binding capacity after 100 cycles of 
NaOH, with an exposure time of 15 minutes per cycle (Figure 3.3). These results are 
comparable for the different methods that were applied. MS, which is less alkali-stable, had 
a binding capacity of only 50% after 80 cycles, which is in agreement with approximately 
60% reported by the supplier.(24) Resin life-time of all three ligands (MSS, KCA and MS) is in 
agreement between column experiments, SPRi experiments and literature value.(24,25) A 
linear regression analysis on the slopes of the binding-capacity curves shows no significant 
differences between techniques for each ligand individually (P = 0.85 for MSS; P = 0.17 for 
KCA; P = 0.30 for MS). 

Concluding remarks 

 The SPR imaging technology provides an attractive alternative for screening of process 
parameters, such as wash and elution buffers or alkali stability for affinity-based purification 
strategies as demonstrated here. We have proven the concept of this screening based on 
the interaction between protein A and IgG with results comparable to filter plate and column 
experiments. The SPRi screening is economically attractive compared to filter plate 
screening or column screening (Table 3.1), as consumption of all materials can be reduced 
nearly 20-fold up to >1000-fold. Especially reduction of IgG material needed for screening is 
an important benefit during early phase process development when often only limited 
material is available. 

 In a few experiments we found differences between the tested techniques, which were 
mostly found around pH 4 to 5, where the interaction equilibrium changes.(3) The 
combination of wash buffer pH5 and certain additives led to a lower recovery in the SPRi 
experiments, and the elution profile changed around pH 4 with the addition of NaCl. 
Differences in flow rate, chemical backbone and different spacer length in the SPRi 
technology compared to column resins may account for these deviations. For example, the 
higher flow rate in SPRi reduces rebinding effects, resulting in lower yields.(26) The agarose 
backbone of a resin may have a stabilizing effect on the interaction, as shown by molecular 
modeling of the protein A – IgG interaction by Salvalaglio et al.(23)
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Table 3.1 Calculation on required materials for filter plate or column and SPRi experiments in elution 
buffer screening, wash buffer screening and alkali resistance screening

Ligand or 
resin
(mL) 

IgG
(mg) 

Buffers
(mL) n

Reduction factor 

Ligand    IgG  buffer 

Elution 
buffer

Filter plate 4.80 4 690 4 
1600 22 96 

SPR 0.003 0.18 7.2 4 

Wash 
buffer

Filter plate 5.76 104 375 3 
576 18 17 

SPR 0.01 5.76 21.6 3 

Alkali
resistance 

Column 1 544.5 2000 1 
33 330 60 

SPR 0.03 1.65 33.3 1 

   Overall column and filter plate experiments correlate well with the SPRi results. The 
major benefits of the SPRi technology are miniaturization and significant decrease in 
development time. Each of the described screenings was performed within 1 working day, 
whereas alkali stability on columns took several weeks. Buffer screening with filter plates is 
comparable in time, however much less material is needed in the SPRi screening strategy 
(Table 3.1).  

 The SPRi screening as demonstrated here can be very useful in early-phase discovery. 
The proof of concept was based on protein A – IgG interaction, but any type of interaction 
for affinity chromatography can be analyzed in this set-up. The technology is especially 
useful for screening many different ligands simultaneously, for example in selecting new 
ligands for affinity chromatography.(27)
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Appendix A Sensorgrams 

Figure 3.A.1 Sensorgrams of elution buffer screening. IgG binding on 48 MSS spots before (A) and 
after (B) elution buffer application. Each coloured line represents one of the 48 MSS spots.
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Figure 3.A.2 Sensorgrams of wash buffer screening on MSS (black) and KCA (blue). Each line 
represents one of the selected wash buffers. A) Complete wash buffer cycle with IgG binding between 
60 and 250 seconds, followed by different wash buffers between 250 and 450 seconds, followed by 
another IgG injection between 500 and 700 seconds. B) Close view of the initial IgG binding before 
wash buffer application. C) Close view of the IgG binding after wash buffer application, where baselines 
were zeroed to appropriately determine binding levels at equilibrium.
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Figure 3.A.3 Sensorgrams of alkali resistance screening on MSS (black), KCA (blue) and MS (green). 
IgG was injected each 10th NaOH cleaning cycle and these injections are shown.
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Figure 3.A.3 Sensorgrams of alkali resistance screening on MSS (black), KCA (blue) and MS (green). 
IgG was injected each 10th NaOH cleaning cycle and these injections are shown.

Rapid buffer and ligand screening for affinity chromatography 

65

References

 1.  Cuatrecasas, P. Affinity chromatography. Annu.Rev.Biochem.  1971; 40 259-278  

 2.  Huse, K., Bohme, H. J., and Scholz, G. H. Purification of antibodies by affinity chromatography. 
J.Biochem.Biophys.Methods  31-5-2002; 51(3): 217-231  

 3.  Hober, S., Nord, K., and Linhult, M. Protein A chromatography for antibody purification. 
J.Chromatogr.B Analyt.Technol.Biomed.Life Sci.  15-3-2007; 848(1): 40-47  

 4.  Liu, H. F., Ma, J., Winter, C., and Bayer, R. Recovery and purification process development for 
monoclonal antibody production. MAbs.  2010; 2(5): 480-499  

 5.  Chollangi, S., Parker, R., Singh, N., Li, Y., Borys, M., and Li, Z. Development of robust antibody 
purification by optimizing protein-A chromatography in combination with precipitation 
methodologies. Biotechnol.Bioeng.  2015; 112(11): 2292-2304  

 6.  Pabst, T. M., Palmgren, R., Forss, A., Vasic, J., Fonseca, M., Thompson, C., Wang, W. K., Wang, 
X., and Hunter, A. K. Engineering of novel Staphylococcal Protein A ligands to enable milder 
elution pH and high dynamic binding capacity. J.Chromatogr.A  3-10-2014; 1362 180-185  

 7.  Hahn, R., Schlegel, R., and Jungbauer, A. Comparison of protein A affinity sorbents. 
J.Chromatogr.B Analyt.Technol.Biomed.Life Sci.  25-6-2003; 790(1-2): 35-51  

 8.  Hahn, R., Shimahara, K., Steindl, F., and Jungbauer, A. Comparison of protein A affinity 
sorbents III. Life time study. J.Chromatogr.A  13-1-2006; 1102(1-2): 224-231  

 9.  Jiang, C., Liu, J., Rubacha, M., and Shukla, A. A. A mechanistic study of Protein A 
chromatography resin lifetime. J.Chromatogr.A  31-7-2009; 1216(31): 5849-5855  

 10.  Gronberg, A., Eriksson, M., Ersoy, M., and Johansson, H. J. A tool for increasing the lifetime of 
chromatography resins. MAbs.  2011; 3(2): 192-202  

 11.  Rathore A, Pathak M, Ma G, and Bracewell D. Re-use of Protein A Resin: Fouling and 
Economics.BioPharm International 2015; 28: 28-33  

 12.  Nogal, B., Chhiba, K., and Emery, J. C. Select host cell proteins coelute with monoclonal 
antibodies in protein A chromatography. Biotechnol.Prog.  2012; 28(2): 454-458  

 13.  Ishihara, T. and Hosono, M. Improving impurities clearance by amino acids addition to buffer 
solutions for chromatographic purifications of monoclonal antibodies. J.Chromatogr.B 
Analyt.Technol.Biomed.Life Sci.  15-7-2015; 995-996 107-114  

 14.  Shukla, A. A. and Hinckley, P. Host cell protein clearance during protein A chromatography: 
development of an improved column wash step. Biotechnol.Prog.  2008; 24(5): 1115-1121  

 15.  Bolton, G. R., Selvitelli, K. R., Iliescu, I., and Cecchini, D. J. Inactivation of viruses using novel 
protein A wash buffers. Biotechnol.Prog.  2015; 31(2): 406-413  

 16.  Yada, T., Nonaka, K., Yabuta, M., Yoshimoto, N., and Yamamoto, S. Choosing the right protein 
A affinity chromatography media can remove aggregates efficiently. Biotechnol.J.  23-9-2016; 1-
8

 17.  Lye G, Hubbuch J, Schroeder T, and Williman E. Shrinking the costs of bioprocess 
development.BioProcess International 2009;  18-22  

 18.  Fernandes, P., Carvalho, F., and Marques, M. P. Miniaturization in biotechnology: speeding up 
the development of bioprocesses. Recent Pat Biotechnol.  2011; 5(3): 160-173  

 19.  Bergander, T., Nilsson-Valimaa, K., Oberg, K., and Lacki, K. M. High-throughput process 
development: determination of dynamic binding capacity using microtiter filter plates filled with 
chromatography resin. Biotechnol.Prog.  2008; 24(3): 632-639  



Chapter 3 

66

 20.  Geuijen, K. P., Schasfoort, R. B., Wijffels, R. H., and Eppink, M. H. High-throughput and 
multiplexed regeneration buffer scouting for affinity-based interactions. Anal.Biochem.  1-6-
2014; 454 38-40  

 21.  High-throughput screening of elution pH for monoclonal antibodies on MabSelect SuRe using 
PreDictor plates.2008;  

 22.  Gedig ET. Surface chemistry in SPR technology.2008;  173-220  

 23.  Salvalaglio, M., Zamolo, L., Busini, V., Moscatelli, D., and Cavallotti, C. Molecular modeling of 
protein A affinity chromatography. J.Chromatogr.A  11-12-2009; 1216(50): 8678-8686  

 24.  MabSelect SuRe affinity chromatography user instructions.2011;  

 25.  Kaneka KanCapA Affinity Sorbent.2015;  

 26.  Schuck, P. and Zhao, H. The role of mass transport limitation and surface heterogeneity in the 
biophysical characterization of macromolecular binding processes by SPR biosensing. Methods 
Mol.Biol.  2010; 627 15-54  

 27.  Pabst, T. M., Wendeler, M., Wang, X., Bezemer, S., Hermans, P., and Hunter, A. K. Camelid VH 
H affinity ligands enable separation of closely related biopharmaceuticals. Biotechnol.J.  27-9-
2016; 1-10  



Ch
ap

te
r 3

Chapter 3 

66

 20.  Geuijen, K. P., Schasfoort, R. B., Wijffels, R. H., and Eppink, M. H. High-throughput and 
multiplexed regeneration buffer scouting for affinity-based interactions. Anal.Biochem.  1-6-
2014; 454 38-40  

 21.  High-throughput screening of elution pH for monoclonal antibodies on MabSelect SuRe using 
PreDictor plates.2008;  

 22.  Gedig ET. Surface chemistry in SPR technology.2008;  173-220  

 23.  Salvalaglio, M., Zamolo, L., Busini, V., Moscatelli, D., and Cavallotti, C. Molecular modeling of 
protein A affinity chromatography. J.Chromatogr.A  11-12-2009; 1216(50): 8678-8686  

 24.  MabSelect SuRe affinity chromatography user instructions.2011;  

 25.  Kaneka KanCapA Affinity Sorbent.2015;  

 26.  Schuck, P. and Zhao, H. The role of mass transport limitation and surface heterogeneity in the 
biophysical characterization of macromolecular binding processes by SPR biosensing. Methods 
Mol.Biol.  2010; 627 15-54  

 27.  Pabst, T. M., Wendeler, M., Wang, X., Bezemer, S., Hermans, P., and Hunter, A. K. Camelid VH 
H affinity ligands enable separation of closely related biopharmaceuticals. Biotechnol.J.  27-9-
2016; 1-10  



69

CHAPTER 4

Label-free glycoprofiling with multiplex surface 
plasmon resonance: A tool to quantify sialylation 
of Erythropoietin

The contents of this chapter have been published as: 

Karin P.M. Geuijen, Liem A. Halim, Huub Schellekens, Richard B. Schasfoort, René H. 
Wijffels, Michel H. Eppink 

Label-free glycoprofiling with multiplex surface plasmon resonance: A tool to quantify 
sialylation of Erythropoietin 

Analytical chemistry (2015) 87, pg 8115-8122



69

CHAPTER 4

Label-free glycoprofiling with multiplex surface 
plasmon resonance: A tool to quantify sialylation 
of Erythropoietin

The contents of this chapter have been published as: 

Karin P.M. Geuijen, Liem A. Halim, Huub Schellekens, Richard B. Schasfoort, René H. 
Wijffels, Michel H. Eppink 

Label-free glycoprofiling with multiplex surface plasmon resonance: A tool to quantify 
sialylation of Erythropoietin 

Analytical chemistry (2015) 87, pg 8115-8122



Chapter 4 

70

Abstract

 Protein glycosylation is among the most common and well defined post-translational 
modifications due to its vital role in protein function. Monitoring variation in glycosylation is 
necessary for producing more effective therapeutic proteins. Glycans attached to 
glycoproteins interact highly specific with lectins, natural carbohydrate-binding proteins, 
which property is used in the current label-free methodology. We have established a lectin 
micro-array for label-free detection of lectin-carbohydrate interactions allowing us to study 
protein glycosylation directly on unmodified glycoproteins. The method enables 
simultaneous measurement of up to 96 lectin-carbohydrate interactions on a multiplex 
surface plasmon resonance imaging platform within 20 minutes. Specificity determination of 
lectins succeeded by analysis of neoglycoproteins and enzymatically remodeled 
glycoproteins to verify carbohydrate binding. We demonstrated the possibilities for 
glycosylation fingerprinting by comparing different Erythropoietin sources without the need 
for any sample pretreatment and we were able to accurately quantify relative sialylation 
levels of Erythropoietin. 
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Introduction 

 Glycosylation is one of the most important and well-studied post-translational 
modifications on proteins. Glycans may affect the structure of glycoproteins, can stabilize 
the conformation of proteins and may influence the activity of the protein. Furthermore 
glycans are involved in protein-protein interactions and protein-cell communication. In 
biological samples, alterations in glycosylation are typical biomarkers of many diseases such 
as diabetes,(1,2) rheumatoid arthritis,(3) inflammatory bowel diseases,(4) or metastatic breast 
cancer.(5)

 Additionally, from a therapeutic viewpoint protein glycosylation is important as it 
influences the function and efficacy of biopharmaceutical medicines.(6,7) For example, both 
secretion and efficacy of recombinant Erythropoietin (rhEPO) are largely dependent on 
glycosylation in general.(8) More specifically, half-life of circulating erythropoietin in the 
blood and in vivo bioactivity are affected by sialylation of the various glycans. (9,10)

Erythropoietin is a glycosylated hormone that is produced in the kidneys and liver and 
regulates red blood cell (erythrocyte) production. Microheterogeneity of rhEPO products 
mainly originates from glycosylation variants at the three N-linked glycosylation and one O-
linked glycosylation sites of the molecule. Glycosylation of rhEPO is one of the Critical 
Quality Attributes (CQA’s) and many different analytical methods exist to characterize the 
glycans.(11,12)

 Current analytical methods mainly study protein glycosylation based on detached 
glycans, requiring extensive sample preparation for release and labeling of the glycans 
followed by chromatographic or electrophoretic separation.(13,14) Other methods are based 
on mass spectrometric measurements and also require several sample preparation steps. (15-

17) In the past decade glycan analysis, or glycoprofiling, has advanced to study intact 
glycoproteins by affinity-based methods. The majority of these affinity-based methods use 
lectins as ligands towards carbohydrates. Lectins are naturally occurring carbohydrate-
binding proteins that are able to non-covalently bind sugars in a highly specific manner.(18)

 Lectin-arrays are able to screen glycosylation profiles and detect differences in these 
profiles. A recent review by Hirabayashi et al.(19) emphasizes the opportunities for lectin 
microarrays in glycan analysis. Although current lectin microarrays have eliminated the time-
consuming glycan release, fluorescent protein labeling reactions are still required in lectin 
arrays as described by Hsu et al.,(20) Tao et al.,(21) Wang et al., (22) Kuno et al., (23) Pilobello 
et al.,(24) Chen et al.,(25) and Rosenfeld et al.(26)
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 Label-free methods such as quartz crystal microbalance (QCM) or surface plasmon 
resonance (SPR) have been used to study carbohydrate-lectin interactions in real-time. The 
drawbacks of these methods include monitoring a limited number of lectin-carbohydrate 
interactions simultaneously(27,28) or using indirect coupling of lectins.(29) Karamanska et al.(30)

have established a multiplex carbohydrate assay in order to analyze lectins, but glycan 
profiling of glycoproteins is not possible on such a microarray because the carbohydrates 
are immobilized. 

 We have developed a method that studies lectin-carbohydrate interactions on intact 
glycoproteins in a rapid, high-throughput, multiplex and label-free manner by surface 
plasmon resonance imaging. We are able to immobilize unmodified lectins on a sensor in 
multiplex format while they retain their active carbohydrate binding site. Lectin-glycoprotein 
interactions are measured without labeling glycoproteins before analysis. We examined the 
lectins on the array for the specific recognition of glycans and determined affinities / 
avidities of the selected lectins by means of neoglycoprotein analysis. Furthermore we used 
the lectin array to measure glycosylation fingerprints of differentially glycosylated proteins, 
such as enzymatically remodeled proteins and different sources of recombinant 
erythropoietin (rhEPO).  

 The method further demonstrated that sialylation of rhEPO could be accurately 
quantified. Relative quantitation of sialylation on rhEPO samples was performed with the 
lectin micro-array, based on the binding to erythrina cristagalli lectin (ECL) and Soybean 
agglutinin (SBA) lectins.  

Materials and methods 

Surface plasmon resonance method 

 Lectin – glycoprotein interactions were measured on an IBIS MX96 surface plasmon 
resonance (SPR) instrument (IBIS Technologies, Enschede, the Netherlands). Running 
buffer consisted of HEPES buffered saline (HBS; 20 mM HEPES and 150 mM NaCl) pH 7.2 
with 0.05 wt/vol % Tween80 and 1 mM ZnCl2, 1 mM CaCl2, 1 mM MnCl2 and 1 mM MgCl2
added. After a baseline of 2 minutes, association times of 10 to 20 minutes and dissociation 
times of 5 to 20 minutes were programmed. These were followed by a regeneration of 1 
minute in 2 steps and a wash step of 1 minute. Regeneration was performed with either 3M 
MgCl2 or 25 mM phosphoric acid. Analyses were performed at 25°C and samples were also 
kept at 25°C. Samples were analyzed in duplicate or triplicate on sensor surfaces with at 
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least three independent spots of each lectin. All samples were buffer exchanged by 10 kD 
spin filters to running buffer or directly diluted in running buffer. All chemicals were of 
analytical grade and purchased from Sigma-Aldrich (Zwijndrecht, The Netherlands) or Merck 
(Darmstadt, Germany). 

Lectin immobilization 

 Immobilization of lectins on a SensEye G-COOH (IBIS Technologies, Enschede, The 
Netherlands) was performed in 50 mM sodium formate or sodium acetate buffers pH 3.0, 
pH 3.5, pH 4.0 or pH 4.5 containing 0.05 wt/vol % Tween80. Lectins Con A and PA-I were 
purchased from Sigma-Aldrich (Zwijndrecht, The Netherlands) and all other lectins were 
purchased from Vector Laboratories (Burlingame CA, USA). Lectins were immobilized in 
series of 4 or 5 dilutions ranging from 0.01 – 1 µM. A continuous flow microspotter (CFM) 
(Wasatch microfluidics, Salt lake City, Utah, USA) was used to array the lectins on the 
sensor. Printing with the CFM was set up with a flow time of 15 minutes and a post-print 
rinse of 2 minutes. No pre-print buffer prime was used and an air gap of 25 µL was 
programmed. Printing was performed with the 4x12 printhead or with the 6x8 printhead. In 
a double print set-up, a printing time of 5 minutes was used in two sequential prints, 
resulting in 96 spots on the sensor. Before lectin printing the G-COOH sensors were 
activated with EDC/NHS activation in MES pH 5.4 buffer according to the manufacturer’s 
protocol. Sensor surfaces were deactivated with 1M ethanolamine pH 8.5 after 
immobilization of the lectins according to the manufacturer’s protocol. 

Kinetic analysis of neoglycoproteins 

 Affinity measurements of lectins were performed with neoglycoproteins. Fucose-BSA, 
Mannose-BSA and Galactose-BSA (GlycoDiag, Orleans, France), N-acetyllactosamine-BSA 
(Dextra, Reading, U.K.), N-acetylglucosamine-BSA and Sialic acid-BSA (Vector laboratories, 
Burlingame) were the neoglycoproteins of choice. A kinetic titration set-up was used, in 
which thirteen dilutions from 0.5 nM to 2 µM (0.45 - 0.9 - 1.9 - 3.9 - 7.8 - 15.6 - 31.3 - 62.5 
– 125 – 250 – 500 – 1000 - 2000 nM) of the neoglycoproteins were injected without 
regeneration between the injections. An association time of 5 minutes was followed by a 
dissociation time of 4 minutes. The sensor was regenerated with 25 mM phosphoric acid 
after an entire series of one neoglycoprotein for 0.5 minutes. Running buffer and 
temperature settings were as mentioned above. BSA was included as a control.  
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 Data analysis was performed in Scrubber software (BioLogic, Campbell, Australia). A 
1:1 binding model was used for curve fitting. A selection of the thirteen dilutions was made 
for each lectin-neoglycoprotein pair by selecting the lowest possible concentrations at which 
interaction was measured. KD, kd, ka and Rmax values were determined from 1:1 curve 
fitting models. At least three independent KD, kd or ka and Rmax values were calculated 
and plotted against each other. A KD, kd or ka at Rmax=100 RU was interpolated or 
extrapolated from a logarithmic curve for each combination to determine the affinity. No 
corrections for avidity effects have been made, as the same analyte was used for each lectin 
and the number of glycan moieties on the neoglycoproteins may vary and is an average. 

Exoglycosidase treatments 

 Approximately 2.5 mg of fetuin was sequentially treated with exoglycosidases α-2-

3,6,8,9-neuraminidase (12.5U), β -(1-4,6)-galactosidase (1U), β -N-acetylhexosaminidase 

(2U), α -mannosidase (0.5U) and β -mannosidase (0.5U). All exoglycosidases were 

purchased from Sigma-Aldrich (Zwijndrecht, The Netherlands) except β - (1-4,6)-

galactosidase which was purchased from Prozyme (Hayward CA). Reaction volumes were 
150-200 µL, and after each incubation step a fraction of the sample was removed. 
Remaining sample was buffer exchanged to the recommended buffer for each of the 
exoglycosidases with 10 kD cut-off filters. Sample concentrations were checked with 
Nanodrop after each buffer exchange. 

 Erythropoietin was desialylated with α-2-3,6,8,9-neuraminidase. Erythropoietin (100 

µL of a 0.5 µg/µL solution) was incubated with 10 µL of α-2-3,6,8,9-neuraminidase (5U) at 

37°C for 24 hrs. Sample was buffer exchanged to running buffer with 10 kD cut-off filters 
and concentration was determined with Nanodrop. The five rhEPO brands were a kind gift 
of Prof. H. Schellekens from University Utrecht, the Netherlands. 

N-UHPLC analysis of 2-AB labeled glycans 

 Native and remodeled glycoproteins were deglycosylated and labeled with 2-AB label 
using the AssayMAP® GlykoPrep kit, according to standard procedure. After clean-up of 
labeled glycans they were separated on a Shimadzu Nexera UHPLC system (Kyoto, Japan) 
using a gradient with 100 mM ammonium formate pH 4.4 and acetonitrile as mobile phases 
on an Acquity UPLC BEH Glycan column (2.1 x 150 mm, dp 1.7 µm) from Waters (Milford, 
USA). Gradient separation was performed with 26% to 33.5% mobile phase B in the first 30 
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minutes, at a flow rate of 0.6 mL/min. Over the next 30 minutes the percentage of mobile 
phase B was increased to 36%, followed by a wash step to 100% B in 2 minutes with a flow 
rate of 0.25 mL/min and kept there for 1 minute. The gradient was changed to initial 
conditions in 1 minute after which the flow rate was increased to 0.6 mL/min and kept there 
for 5 minutes to condition for the next injection. Column temperature was set to 60°C and 
fluorescence was measured at 425 nm after excitation at 360 nm. 

Quantitation of sialylation 

 Untreated and desialylated EPO (Calbiochem, Merck Millipore (Darmstadt, Germany)) 
were diluted to 7 µg/mL (200 nM) in running buffer. Sialylation levels of these standards 
were set to 100% and 0% respectively. Calibration standards at 50%, 60%, 70%, 80%, 
90% and 100% sialylation were made by mixing the two standards. Binding to four 
independent spots of both SBA and ECL lectins was measured as the response in RU after 
10 minutes association time and plotted against the theoretical sialylation level. Quadratic 
curve fitting was applied to the individual calibration curves. Unknown samples were 
interpolated from the calibration curve to determine sialylation levels. 

HSA depletion of biosimilar EPO 

 HSA depletion of some Erythropoietin batches (Brand A, B and C) was performed using 
an HSA and IgG depletion kit (GE healthcare, Uppsala). Spin traps were equilibrated three 
times with HBS buffer and centrifugated at 800 g for 30 seconds. EPO samples were diluted 
1:1 in HBS buffer and applied to the spin traps in fractions of 3 times 100 µL followed by a 5 
minutes incubation step and centrifugation at 800 g for 30 seconds. Then up to 5 times 100 
µL HBS was added to the spin traps for elution and centrifugated at 800 g for 30 seconds. 
All flow-through and elution fractions were collected separately and subjected to SDS-PAGE 
for purity analysis. None of the fractions contained HSA anymore so all fractions were 
pooled for a HSA-depleted EPO sample. 

Deglycosylation of glycoproteins 

 Fetuin was deglycosylated in a native state with protein deglycosylation mix (New 
England Biolabs) with 30 µL of a 5 mg/mL fetuin solution, 5 µL 10X reaction buffer and 15 
µL enzyme cocktail. Sample was incubated at 37°C for 6 hrs. Other proteins were 
deglycosylated with PNGase F. Mixtures containing 500 µg of glycoprotein (2 to 5 mg/mL) 
and 15 µL PNGase F enzyme were incubated at 37°C for 6 hrs. Full deglycosylation of the 



Ch
ap

te
r 4

Chapter 4 

74

 Data analysis was performed in Scrubber software (BioLogic, Campbell, Australia). A 
1:1 binding model was used for curve fitting. A selection of the thirteen dilutions was made 
for each lectin-neoglycoprotein pair by selecting the lowest possible concentrations at which 
interaction was measured. KD, kd, ka and Rmax values were determined from 1:1 curve 
fitting models. At least three independent KD, kd or ka and Rmax values were calculated 
and plotted against each other. A KD, kd or ka at Rmax=100 RU was interpolated or 
extrapolated from a logarithmic curve for each combination to determine the affinity. No 
corrections for avidity effects have been made, as the same analyte was used for each lectin 
and the number of glycan moieties on the neoglycoproteins may vary and is an average. 

Exoglycosidase treatments 

 Approximately 2.5 mg of fetuin was sequentially treated with exoglycosidases α-2-

3,6,8,9-neuraminidase (12.5U), β -(1-4,6)-galactosidase (1U), β -N-acetylhexosaminidase 

(2U), α -mannosidase (0.5U) and β -mannosidase (0.5U). All exoglycosidases were 

purchased from Sigma-Aldrich (Zwijndrecht, The Netherlands) except β - (1-4,6)-

galactosidase which was purchased from Prozyme (Hayward CA). Reaction volumes were 
150-200 µL, and after each incubation step a fraction of the sample was removed. 
Remaining sample was buffer exchanged to the recommended buffer for each of the 
exoglycosidases with 10 kD cut-off filters. Sample concentrations were checked with 
Nanodrop after each buffer exchange. 

 Erythropoietin was desialylated with α-2-3,6,8,9-neuraminidase. Erythropoietin (100 

µL of a 0.5 µg/µL solution) was incubated with 10 µL of α-2-3,6,8,9-neuraminidase (5U) at 

37°C for 24 hrs. Sample was buffer exchanged to running buffer with 10 kD cut-off filters 
and concentration was determined with Nanodrop. The five rhEPO brands were a kind gift 
of Prof. H. Schellekens from University Utrecht, the Netherlands. 

N-UHPLC analysis of 2-AB labeled glycans 

 Native and remodeled glycoproteins were deglycosylated and labeled with 2-AB label 
using the AssayMAP® GlykoPrep kit, according to standard procedure. After clean-up of 
labeled glycans they were separated on a Shimadzu Nexera UHPLC system (Kyoto, Japan) 
using a gradient with 100 mM ammonium formate pH 4.4 and acetonitrile as mobile phases 
on an Acquity UPLC BEH Glycan column (2.1 x 150 mm, dp 1.7 µm) from Waters (Milford, 
USA). Gradient separation was performed with 26% to 33.5% mobile phase B in the first 30 

Label-free glycoprofiling with multiplex surface plasmon resonance

75

minutes, at a flow rate of 0.6 mL/min. Over the next 30 minutes the percentage of mobile 
phase B was increased to 36%, followed by a wash step to 100% B in 2 minutes with a flow 
rate of 0.25 mL/min and kept there for 1 minute. The gradient was changed to initial 
conditions in 1 minute after which the flow rate was increased to 0.6 mL/min and kept there 
for 5 minutes to condition for the next injection. Column temperature was set to 60°C and 
fluorescence was measured at 425 nm after excitation at 360 nm. 

Quantitation of sialylation 

 Untreated and desialylated EPO (Calbiochem, Merck Millipore (Darmstadt, Germany)) 
were diluted to 7 µg/mL (200 nM) in running buffer. Sialylation levels of these standards 
were set to 100% and 0% respectively. Calibration standards at 50%, 60%, 70%, 80%, 
90% and 100% sialylation were made by mixing the two standards. Binding to four 
independent spots of both SBA and ECL lectins was measured as the response in RU after 
10 minutes association time and plotted against the theoretical sialylation level. Quadratic 
curve fitting was applied to the individual calibration curves. Unknown samples were 
interpolated from the calibration curve to determine sialylation levels. 

HSA depletion of biosimilar EPO 

 HSA depletion of some Erythropoietin batches (Brand A, B and C) was performed using 
an HSA and IgG depletion kit (GE healthcare, Uppsala). Spin traps were equilibrated three 
times with HBS buffer and centrifugated at 800 g for 30 seconds. EPO samples were diluted 
1:1 in HBS buffer and applied to the spin traps in fractions of 3 times 100 µL followed by a 5 
minutes incubation step and centrifugation at 800 g for 30 seconds. Then up to 5 times 100 
µL HBS was added to the spin traps for elution and centrifugated at 800 g for 30 seconds. 
All flow-through and elution fractions were collected separately and subjected to SDS-PAGE 
for purity analysis. None of the fractions contained HSA anymore so all fractions were 
pooled for a HSA-depleted EPO sample. 

Deglycosylation of glycoproteins 

 Fetuin was deglycosylated in a native state with protein deglycosylation mix (New 
England Biolabs) with 30 µL of a 5 mg/mL fetuin solution, 5 µL 10X reaction buffer and 15 
µL enzyme cocktail. Sample was incubated at 37°C for 6 hrs. Other proteins were 
deglycosylated with PNGase F. Mixtures containing 500 µg of glycoprotein (2 to 5 mg/mL) 
and 15 µL PNGase F enzyme were incubated at 37°C for 6 hrs. Full deglycosylation of the 
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samples was checked by CE-SDS analysis on a PA800 plus instrument (Beckman-Coulter, 
Brea California, USA). Samples were analyzed using the SDS molecular weight kit (Beckman-
Coulter) in the default CE-SDS method according to supplier after incubation with SDS 
sample buffer for 5 minutes at 73°C. 

Results and discussion 

Immobilization and activity of lectins 

 A panel of lectins displaying recognition towards glycan epitopes on mammalian 
glycoproteins was selected based on their specificity indicated by the supplier (Table 4.1). 
Lectins were immobilized after optimization of the immobilization pH (Table 4.1) and ligand 
densities. A sensor with eighteen different lectins in five dilutions including six reference 
spots (blanks) was successfully applied using two sequential 48 spot prints, enabling 
monitoring of glycan binding to eighteen different lectins on a total of 96 spots 
simultaneously. The number of lectins to be studied can even be extended further using 
fewer dilutions or replicates per lectin. 

 Glycan-binding domains of the lectins could become inaccessible for interaction 
analysis when lectins are immobilized, especially when the binding site is positioned next to 
the reactive primary amine with which the lectin will be immobilized with EDC/NHS coupling. 
Activity of the lectins after covalent coupling to the sensor surface was checked using 
glycoproteins; Transferrin (Appendix A, Figure 4.A.1), Fetuin and RNAse B (data not shown) 
were checked for dose-dependent responses. Dose-dependency of glycoproteins was 
measured on each of the lectins, indicating that lectins can be immobilized using EDC/NHS 
coupling chemistry on carboxyl sensors without loss of the carbohydrate-binding function. 

Specificity and apparent affinity determination by 
neoglycoproteins 

 Although the specific binding of certain monosaccharides or glycan epitopes by lectins 
is known, this specificity is not always consistent between different publications(18,19,23-

25,31,32) and the specificity indicated by the supplier. To verify the specificity of the selected 
lectins, we examined neoglycoproteins as model compounds after immobilization of the 
lectins. After that, we used the SPR to determine apparent affinities for each lectin-
neoglycoprotein pair. Neoglycoproteins are chemically glycosylated bovine serum albumin 
(BSA) proteins carrying 20-30 homogeneous glycan residues per molecule. Neoglycoproteins 
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modified with sialic acid, galactose, N-acetylglucosamine (GlcNAC), N-acetyllactosamine 
(LacNAc), mannose or fucose residues were chosen to determine apparent affinity and 
specificity of the immobilized lectins. 

Table 4.1 Lectins selected for immobilization, pI value, immobilization pH and their reported and 
determined specificity

abbre-
viation

lectin name pI immobili-
zation pH 

primary
specificity I

others
epitopes

binding in our 
study II

AAL Aleuria aurantia 
lectin 

9.0 4.5 Fuc - Fuc 

LTA Lotus
tetragonolobus 
agglutinin 

7.3 - 
8.2

4.5 Fuc - Fuc 

UEA Ulex europaeus 
agglutinin 

4.5 - 
5.1

4.0 Fuc - Fuc 

Con A Concanavalin A 4.5 - 
5.5

4.5 Man Glu Man 

GNL Galanthus nivalis 
lectin 

3.5 - 
4.0

3.5 Man - Man 

HHL Hippeastrum
hybrid lectin 

4.7 - 
5.1

3.0 Man - Man 

LCA Lens culinaris 
agglutinin 

7.6 - 
8.4

4.5 Man Glu, Fuc Man 

NPA Narcissus 
pseudonarcissus 
agglutinin 

4.2 - 
4.6

3.5 Man - Man 

PSA Pisum sativum 
agglutinin 

6.0 - 
6.7

4.5 Man Glu Man 

GSL II Griffonia 
(Bandeiraa) 
simplicifolia lectin 
II 

5.0 - 
6.0

4.5 GlcNAc - GlcNAc, Man 

WGA Wheat germ 
agglutinin 

>
9.0

4.5 GlcNAc SA GlcNAc (also 
LacNAc was bound 
via GlcNAc) 

SBA Soybean
agglutinin 

5.8 - 
6.0

4.5 GalNAc Gal Gal (also LacNAc 
was bound via Gal) 

PA-I Pseudomonas 
aeruginosa lectin 

- III - III Gal - n.d. 

RCA I Ricinus communis 
agglutinin 

7.8 4.5 Gal - Gal, LacNAc, Man, 
Fuc

Ricin B Ricinus communis 
agglutinin B chain 

4.5 4.0 Gal - n.d. 

ECL Erythrina
cristagalli lectin 

6.3 - 
6.5

4.5 LacNAc - Gal, LacNAc 

MAL I Maackia 
amurensis lectin I 

4.7 4.0 LacNAc - LacNAc 

ACL Amaranthus 
caudatus lectin 

6.7 - 
7.7

4.5 Gal-GalNAc SA SA 
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samples was checked by CE-SDS analysis on a PA800 plus instrument (Beckman-Coulter, 
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Coulter) in the default CE-SDS method according to supplier after incubation with SDS 
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simultaneously. The number of lectins to be studied can even be extended further using 
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 Although the specific binding of certain monosaccharides or glycan epitopes by lectins 
is known, this specificity is not always consistent between different publications(18,19,23-

25,31,32) and the specificity indicated by the supplier. To verify the specificity of the selected 
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modified with sialic acid, galactose, N-acetylglucosamine (GlcNAC), N-acetyllactosamine 
(LacNAc), mannose or fucose residues were chosen to determine apparent affinity and 
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- III - III Gal - n.d. 

RCA I Ricinus communis 
agglutinin 

7.8 4.5 Gal - Gal, LacNAc, Man, 
Fuc

Ricin B Ricinus communis 
agglutinin B chain 

4.5 4.0 Gal - n.d. 

ECL Erythrina
cristagalli lectin 

6.3 - 
6.5

4.5 LacNAc - Gal, LacNAc 

MAL I Maackia 
amurensis lectin I 
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Table 4.1 continued
abbre-
viation

lectin name pI immobili-
zation pH 

primary
specificity I

others
epitopes 

binding in our 
study II

MAL II Maackia 
amurensis lectin 
II 

4.7 4.0 SA  
(– gal – GalNAc) 

- SA, LacNAc 

SNA Sambucus nigra 
agglutinin 

5.4 - 
5.8

4.5 SA (– gal)  - All tested glycan 
moieties 

PHA-E Phaseolus 
vulgaris 
Erythroagglutinin 

6.0 - 
8.0

4.5 LacNAc-man - SA, Gal, Man 

PHA-L Phaseolus 
vulgaris 
Leucoagglutinin 

4.2 - 
4.8

3.5 LacNAc-man in 
triantennary 
structures 

- no binding with 
neoglycoproteins 

IPrimary specificity according to suppliers’ information (www.vectorlabs.com/data/brochure/ 
VectorCatalogue2012.pdf) and Sigma-Aldrich website, and according to CFG website 
(www.functionalglycomics.org). Fuc: fucose; Man: mannose; Glu: glucsose; Gal: galactose; GlcNAc: N-
acetylglucosamine; GalNAc: N-acetylgalactosamine; LacNAc: N-acetyllactosamine; SA: sialic acid 

II n.d.: not determined 

III No pI of PA-I lectin was specified by the supplier (Sigma-Aldrich); lectin was not immobilized in any of the 
tested buffers 

 We used a 20-plex lectin microarray with lectins in two dilutions to measure 
neoglycoprotein binding and apparent affinity or avidity. Neoglycoproteins were injected 
between 0.5 nM and 2 µM in a kinetic titration.(33) Apparent affinity, association rates and 
dissociation rates of each lectin-neoglycoprotein combination was determined by curve 
fitting with a 1:1 binding model and determination of lectin specificity was derived from the 
apparent affinity values (Figure 4.1-a) and compared to the indicated specificities.(23,24,31) At 
least three independent curve fittings were applied to each lectin-neoglycoprotein pair, from 
which KD and Rmax values were determined.

 Residual plots were visually checked for correct distribution of residuals (Figure 4.1-a). 
Apparent affinities at Rmax=100 RU were interpolated or extrapolated from plotting the 
individual KD and Rmax determinations (Figure 4.1-b). The same interpolation or 
extrapolation was performed for association and dissociation rates (Appendix B, Figure 4.B.1 
and Figure 4.B.2 respectively). 

 Many lectins have a highly defined primary specificity and our results are in accordance 
with the supplier’s specificity. However, on a number of lectins also cross-reactivity with 
non-target neoglycoproteins was measured at lower apparent affinities. Apparent affinities 
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of the specific binders are in general in the low nM range (Figure 4.1-b). However, since the 
neoglycoproteins carry 20-30 glycan residues per molecule, the reported affinities reflect 
mostly the avidity of the interaction. The fucose-binding lectins AAL, LTA and UEA are all 
very specific and bind to fucose-BSA with high apparent affinity (1-10 nM). Only LTA shows 
cross-reactivity towards unmodified BSA with an apparent affinity around 200 nM. Also the 
mannose-binding lectins (Con A, GNL, HHL, LCA, NPA and PSA) are all very specific towards 
mannose, as no cross-reactivity could be measured. Con A has the highest apparent affinity 
of these lectins, at approximately 16 nM, while the other lectins bind mannose-BSA at 
apparent affinities between 66 and 230 nM. Specifity for GlcNAc-binding lectins WGA and 
GSL II can also be confirmed with these data, showing that WGA is the stronger binder of 
the two with an apparent affinity close to 2 nM. WGA also has a strong apparent affinity 
towards LacNAc-BSA (9 nM), which may be explained by the GlcNAc residue that is part of 
this LacNAc structure. Cross-reactivity of mannose-BSA was measured on GSL II, indicating 
that WGA is the favourable lectin for measuring GlcNAc binding based on stronger apparent 
affinity and no cross-reactivity. In addition to confirmation of lectin specificity (Table 4.1), 
many neoglycoproteins bound to RCA I and SNA. RCA I binds galactose-BSA and LacNAc-
BSA with highest apparent affinities (1 nM) but cross-reactivity of unmodified BSA (10 nM), 
mannose-BSA and fucose-BSA (both 100 nM) was found. SNA lectin, selected for its sialic 
acid binding properties, is the least specific lectin of all lectins tested on our array. All of the 
analytes, including the BSA control, bind to SNA lectin at apparent affinities between 50 nM 
and 1 µM. The strongest binding is measured for non-modified BSA, while the binding of 
sialic acid is much weaker compared to unmodified BSA and apparent affinities of fucose-
BSA and LacNAc-BSA. 

 SBA seems to be the lectin of choice for monitoring galactose-binding, with an 
apparent affinity of approximately 20 nM and only cross-reactivity towards LacNAc which 
contains a galactose residue in its structure. Lectins that were selected for their specific 
binding towards LacNAc (ECL and MAL I) are quite specific, but have rather low apparent 
affinities (30 –100 nM). ECL binds galactose-BSA at similar apparent affinity compared to 
LacNAc-BSA, which indicates that ECL does not only recognize the LacNAc moiety, but is 
able to bind a single galactose as well. ACL is the most specific lectin towards sialic acid, of 
the lectins that were included in this study. Both ACL and MAL II have apparent affinities for 
sialic acid in the 5-10 nM range. However, MAL II cross-reacts with unmodified BSA and 
LacNAc-BSA. As already discussed previously, SNA is the least specific lectin and is not 
recommended to use for sialic acid binding.  
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Table 4.1 continued
abbre-
viation

lectin name pI immobili-
zation pH 

primary
specificity I

others
epitopes 

binding in our 
study II

MAL II Maackia 
amurensis lectin 
II 

4.7 4.0 SA  
(– gal – GalNAc) 

- SA, LacNAc 

SNA Sambucus nigra 
agglutinin 

5.4 - 
5.8

4.5 SA (– gal)  - All tested glycan 
moieties 
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Erythroagglutinin 

6.0 - 
8.0

4.5 LacNAc-man - SA, Gal, Man 

PHA-L Phaseolus 
vulgaris 
Leucoagglutinin 

4.2 - 
4.8

3.5 LacNAc-man in 
triantennary 
structures 

- no binding with 
neoglycoproteins 

IPrimary specificity according to suppliers’ information (www.vectorlabs.com/data/brochure/ 
VectorCatalogue2012.pdf) and Sigma-Aldrich website, and according to CFG website 
(www.functionalglycomics.org). Fuc: fucose; Man: mannose; Glu: glucsose; Gal: galactose; GlcNAc: N-
acetylglucosamine; GalNAc: N-acetylgalactosamine; LacNAc: N-acetyllactosamine; SA: sialic acid 

II n.d.: not determined 

III No pI of PA-I lectin was specified by the supplier (Sigma-Aldrich); lectin was not immobilized in any of the 
tested buffers 

 We used a 20-plex lectin microarray with lectins in two dilutions to measure 
neoglycoprotein binding and apparent affinity or avidity. Neoglycoproteins were injected 
between 0.5 nM and 2 µM in a kinetic titration.(33) Apparent affinity, association rates and 
dissociation rates of each lectin-neoglycoprotein combination was determined by curve 
fitting with a 1:1 binding model and determination of lectin specificity was derived from the 
apparent affinity values (Figure 4.1-a) and compared to the indicated specificities.(23,24,31) At 
least three independent curve fittings were applied to each lectin-neoglycoprotein pair, from 
which KD and Rmax values were determined.

 Residual plots were visually checked for correct distribution of residuals (Figure 4.1-a). 
Apparent affinities at Rmax=100 RU were interpolated or extrapolated from plotting the 
individual KD and Rmax determinations (Figure 4.1-b). The same interpolation or 
extrapolation was performed for association and dissociation rates (Appendix B, Figure 4.B.1 
and Figure 4.B.2 respectively). 

 Many lectins have a highly defined primary specificity and our results are in accordance 
with the supplier’s specificity. However, on a number of lectins also cross-reactivity with 
non-target neoglycoproteins was measured at lower apparent affinities. Apparent affinities 
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of the specific binders are in general in the low nM range (Figure 4.1-b). However, since the 
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cross-reactivity towards unmodified BSA with an apparent affinity around 200 nM. Also the 
mannose-binding lectins (Con A, GNL, HHL, LCA, NPA and PSA) are all very specific towards 
mannose, as no cross-reactivity could be measured. Con A has the highest apparent affinity 
of these lectins, at approximately 16 nM, while the other lectins bind mannose-BSA at 
apparent affinities between 66 and 230 nM. Specifity for GlcNAc-binding lectins WGA and 
GSL II can also be confirmed with these data, showing that WGA is the stronger binder of 
the two with an apparent affinity close to 2 nM. WGA also has a strong apparent affinity 
towards LacNAc-BSA (9 nM), which may be explained by the GlcNAc residue that is part of 
this LacNAc structure. Cross-reactivity of mannose-BSA was measured on GSL II, indicating 
that WGA is the favourable lectin for measuring GlcNAc binding based on stronger apparent 
affinity and no cross-reactivity. In addition to confirmation of lectin specificity (Table 4.1), 
many neoglycoproteins bound to RCA I and SNA. RCA I binds galactose-BSA and LacNAc-
BSA with highest apparent affinities (1 nM) but cross-reactivity of unmodified BSA (10 nM), 
mannose-BSA and fucose-BSA (both 100 nM) was found. SNA lectin, selected for its sialic 
acid binding properties, is the least specific lectin of all lectins tested on our array. All of the 
analytes, including the BSA control, bind to SNA lectin at apparent affinities between 50 nM 
and 1 µM. The strongest binding is measured for non-modified BSA, while the binding of 
sialic acid is much weaker compared to unmodified BSA and apparent affinities of fucose-
BSA and LacNAc-BSA. 

 SBA seems to be the lectin of choice for monitoring galactose-binding, with an 
apparent affinity of approximately 20 nM and only cross-reactivity towards LacNAc which 
contains a galactose residue in its structure. Lectins that were selected for their specific 
binding towards LacNAc (ECL and MAL I) are quite specific, but have rather low apparent 
affinities (30 –100 nM). ECL binds galactose-BSA at similar apparent affinity compared to 
LacNAc-BSA, which indicates that ECL does not only recognize the LacNAc moiety, but is 
able to bind a single galactose as well. ACL is the most specific lectin towards sialic acid, of 
the lectins that were included in this study. Both ACL and MAL II have apparent affinities for 
sialic acid in the 5-10 nM range. However, MAL II cross-reacts with unmodified BSA and 
LacNAc-BSA. As already discussed previously, SNA is the least specific lectin and is not 
recommended to use for sialic acid binding.  
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Figure 4.1 Specificity measurements of 20 tested lectins. a) Sensorgrams from a kinetic titration of 
fucose-BSA binding to RCA I, AAL, LTA, UEA and SNA respectively including the results of 1:1 Langmuir 
model global fitting and the corresponding residuals for each global fit. The residuals indicate how 
closely the modeled curves match with the measured curves and should be randomly distributed over 
the time axis and over the various concentrations that are analyzed. b) Apparent affinity of 
neoglycoproteins at Rmax values of 100 RU after kinetic fitting are plotted for each lectin (n=4, 
measurements on two different arrayed sensors). Closed data points refer to specific binding, open data 
poins refer to cross-reactants. Data labels were added for clarity; Fuc: Fucose-BSA, Man: Mannose-BSA, 
GN: N-acetylglucosamine-BSA, LN: N-acetyllactosamine-BSA, Gal: Galactose-BSA, SA: Sialic acid-BSA, 
BSA: unmodified BSA.

a

Label-free glycoprofiling with multiplex surface plasmon resonance

81

 Furthermore PHA-E bound all neoglycoproteins, but we were only able to determine 
apparent affinities for sialic acid-BSA, galactose-BSA and mannose-BSA, which makes it non-
specific for glycosylated BSA proteins (Figure 4.1-b). On the other hand, PHA-L bound none 
of the neoglycoproteins which may be explained by its specificity towards triantennary 
glycans carrying the gal-GlcNAc-man epitope. This epitope is not present at tested 
neoglycoproteins and therefore no binding could be measured with these models. All of the 
lectins that show specific binding do so in the nM range, which may be considered strong 
binding. Non-specific binding is generally not measured, and if measured it is in the µM 
range or the high nM range, which is relatively weak binding when compared to the specific 
binding.

Specificity determination by glycan remodeling 

 Specificity of the lectins was further investigated using enzymatically remodeled fetuin 

and transferrin. Both glycoproteins were sequentially treated with α -2-3,6,8,9-

neuraminidase, β-(1-4,6)-galactosidase, β-N-acetylhexosaminidase and α-mannosidase to 

cleave the N-glycans (Figure 4.2). Fetuin also carries O-glycans that are cleaved off by 

exoglycosidases such as neuraminidase and β-N-acetylhexosaminidase. Full cleavage of 

monosaccharides by exoglycosidases was checked with N-UHPLC analysis after release and 
2-AB labeling as a reference method (Appendix C, Figure 4.C.1). As a control, a fully 
deglycosylated sample was included in the analysis.

 Remodeled fetuin (Appendix C, Figure 4.C.2) and transferrin (data not shown) were 
analyzed on the lectin microarray to measure differential binding related to the specificity of 
the lectins based on the exposed glycan moiety. Due to the complexity of the protein 
glycosylation compared to the neoglycoproteins, it was decided to only evaluate the 
specificity in a qualitative fashion by comparing binding intensities in equilibrium state. 
Overall the specificity measured with remodeled fetuin and transferrin confirmed the results 
of neoglycoprotein analysis and is in agreement with suppliers’ information. Only for a 
minority of lectins we have found differences in lectin specificity. The deglycosylated control 
was used to determine background binding on each lectin as no specific glycan binding is 
expected in the fully deglycosylated samples. Signals of glycosylated samples that were at 
least three times the response level of the control sample were considered to be true glycan 
binding. We based this evaluation on the limit of detection qualification in the EMEA 
guidelines, where a signal-to-noise ratio of 3 is applied.(34)    
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of the neoglycoproteins which may be explained by its specificity towards triantennary 
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binding. Non-specific binding is generally not measured, and if measured it is in the µM 
range or the high nM range, which is relatively weak binding when compared to the specific 
binding.

Specificity determination by glycan remodeling 

 Specificity of the lectins was further investigated using enzymatically remodeled fetuin 

and transferrin. Both glycoproteins were sequentially treated with α -2-3,6,8,9-

neuraminidase, β-(1-4,6)-galactosidase, β-N-acetylhexosaminidase and α-mannosidase to 
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monosaccharides by exoglycosidases was checked with N-UHPLC analysis after release and 
2-AB labeling as a reference method (Appendix C, Figure 4.C.1). As a control, a fully 
deglycosylated sample was included in the analysis.

 Remodeled fetuin (Appendix C, Figure 4.C.2) and transferrin (data not shown) were 
analyzed on the lectin microarray to measure differential binding related to the specificity of 
the lectins based on the exposed glycan moiety. Due to the complexity of the protein 
glycosylation compared to the neoglycoproteins, it was decided to only evaluate the 
specificity in a qualitative fashion by comparing binding intensities in equilibrium state. 
Overall the specificity measured with remodeled fetuin and transferrin confirmed the results 
of neoglycoprotein analysis and is in agreement with suppliers’ information. Only for a 
minority of lectins we have found differences in lectin specificity. The deglycosylated control 
was used to determine background binding on each lectin as no specific glycan binding is 
expected in the fully deglycosylated samples. Signals of glycosylated samples that were at 
least three times the response level of the control sample were considered to be true glycan 
binding. We based this evaluation on the limit of detection qualification in the EMEA 
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Figure 4.2 Glycosylation fingerprints of remodeled fetuin samples expressed as SPR response units 
after 10 minutes association on fifteen different lectins. Treated samples (n=9) were analyzed three 
times on two different sensors containing triplicate spots of each lectin (n=6 on sensor 1, n=3 on 
sensor 2); the untreated sample (n=6) was analyzed once on two different sensor containing triplicate 
spots of each lectin (n=3 on sensor 1 and on sensor 2). The deglycosylated sample, where N- and O-
glycans were removed, was analyzed on one sensor with triplicate spots of each lectin (n=3). The inset 
schematically shows the remodeling of a N-glycan.

 Clear elevated responses of sialidase-treated fetuin, exposing the galactose, were 
measured on SBA and ECL lectins (Figure 4.2). This binding decreased again in samples 
cleaved with galactosidase and N-acetylhexosaminidase which verifies its binding towards 
galactose and N-acetylgalactosamine. Signals did not decrease to zero because O-glycans of 
fetuin contain N-acetylgalactosamine which can also bind to SBA lectin. The binding 
measured after galactosidase treatment predominantly originates from N- 
acetylgalactosamine on O-glycans which are removed after N-acetylhexosaminidase 
treatment resulting in further decrease. 

 Increasing response on AAL lectin, a fucose-binder, was measured after N-
acetylhexosaminidase and α -mannosidase treatment (Figure 4.2). Core fucose may be 

shielded or sterically hindered by sialic acids and galactoses on N-glycan structure and 
therefore may not be well recognized by AAL lectin. Upon exoglycosidase treatments the 
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glycan structure is reduced and the fucose residue may become more accessible for AAL to 
bind to. 

 Responses of fetuin after treatment with N-acetylhexosaminidase increased on 
mannose-specific lectins Con A, GNL and PSA lectins confirming mannose recognition as 
mannose becomes the terminal monosaccharide. A more pronounced increase in signal is 
measured with GNL and PSA lectins compared to Con A (Figure 4.2).  

 An increase in binding of fetuin on GSL II lectin was measured after treatment with 
galactosidase which decreased again after treatment with N-acetylhexosaminidase. These 
changes clearly verify the specificity towards GlcNAC. Specificity towards GlcNAC was 
assigned to WGA with neoglycoproteins (Figure 4.1-b), whereas in the remodeling 
experiments with fetuin hardly any binding to WGA was measured for the different treated 
samples (Figure 4.2). Possibly the cross-reaction of fetuin itself, demonstrated with 
deglycosylated fetuin (data not shown), prevents binding of exposed GlcNAc residues to 
WGA lectin. 

 Sialic acid binders ACL and SNA bound all variants of remodeled fetuin at similar levels 
compared to untreated, i.e. sialylated, fetuin and were not considered as sialic acid specific 
(Figure 4.2). In the neoglycoprotein experiments we already determined that SNA binds to 
all tested monosaccharides. On the other hand, MAL II lectin bound untreated, i.e. 
sialylated, fetuin at higher levels than the remodeled samples, although response of 
deglycosylated fetuin was comparable to sialylated fetuin again. Cross-reactivity of 
deglycosylated fetuin, where N- and O-glycans were enzymatically removed, was measured 
on each lectin. Certain lectins (e.g. PHA-E, MAL II) had a higher cross-reactivity towards 
deglycosylated protein than others. Potentially these lectins specifically bind to exposed 
glycan moieties, but are able to strongly cross-react with non-glycosylated fetuin, in 
absence of glycans, as well.  

 Binding of untreated and sialidase-treated fetuin, both of which display the LacNAc 
epitope, on MAL I lectin was measured whereas further cleaved samples displayed lower 
levels of binding (Figure 4.2). Upon cleavage with galactosidase, the LacNAc epitope is 
broken which caused the reduction in signals. Responses of fetuin samples after 
galactosidase treatment and further treatments were comparable to the response measured 
for deglycosylated fetuin and can thus be attributed to cross-reactivity of the protein. 
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Erythropoietin analysis with lectin micro-array 

 The developed lectin micro-array was validated on erythropoietin (rhEPO). 
Erythropoietin is a highly glycosylated protein. rhEPO N-glycosylation is mainly present as 
tri- and tetra-antennary glycans terminating with up to four sialic acids linked to the N-
acetyllactosamine chains.(15,35) rhEPO O-glycosylation is of the mucin-type and carries up to 
two sialic acids connected to either galactose or N-acetylgalactosamine (15,35,36). The relation 
between sialylation of rhEPO and its in vivo activity has been proven by Dubé et al.(8) and 
can therefore be an important critical quality attribute (CQA) of rhEPO therapeutics. 

 We measured five different brands of rhEPO and tested the lectin micro-array to 
discriminate between the batches based on a glycosylation fingerprint. Three of the batches 
contained HSA as a stabilizer, which caused a high background signal. The HSA was 
removed with a HSA depletion kit in less than 30 minutes (see materials and methods 
section). The glycosylation fingerprints of the five rhEPO batches were quite distinct from 
each other, especially on those lectins that bind to LacNAc (MAL I), sialic acid (ACL and MAL 
II) or higher order structures, i.e. tri- and tetra-antennary glycans (PHA-E) (Figure 4.3-a). 
None of the tested brands bound to fucose, mannose and N-acetylglucosamine specific 
lectins (not shown). rhEPO was desialylated in order to further characterize these 
differences. Binding of the sialylated (Figure 4.3-a) and desialylated (Figure 4.3-b) rhEPO 
batches to lectins specific towards terminating galactose and sialic acids indicates that there 
are differences in terms of glycosylation on these rhEPO batches. The rhEPO samples were 
all diluted to the same concentration in activity (IU/mL), since large differences in responses 
were measured when all brands were diluted to the same protein concentration in µg/mL. 

 Brands A and E have highly similar glycosylation fingerprints on the selected lectins. 
Sialylated samples of both brands only bind to MAL I and PHA-E lectins, whereas 
desialylated samples bind to SBA and ECL. Brand B has a different glycosylation fingerprint 
compared to the other four batches, especially with respect to binding to MAL I, SNA and 
PHA-E. It hardly binds to MAL I and PHA-E lectins and has the highest response on SNA 
lectin. However, desialylated brand B is highly comparable to the brands A, C and E, 
whereas brand D has a very distinct glycosylation fingerprint after desialylation.  Binding to 
MAL II, SNA and MAL I remains only for batch D after desialylation. Although no complete 
identification of glycans on each of the batches can be performed with the current results, 
we can clearly demonstrate that the lectin sensor is capable of measuring differences 
between different rhEPO brands based on a glycan fingerprint. The relevance of these 
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differences should be demonstrated by comparison with an in vivo study. The method was 
further evaluated for relative quantitation of sialylation.  

Figure 4.3 Glycosylation fingerprints of five different EPO brands (1000 IU/mL) on a subset of lectins 
on the lectin micro-array of a) native EPO samples and b) desialylated EPO samples. Desialylated 
“Brand B” was analyzed at 733 IU/mL instead of 1000 IU/mL. Samples were analyzed on a sensor with 
three independent spots of each lectin and repeated on two days with independent sample dilutions 
(n=6).

The quantitation was evaluated by comparing binding of desialylated rhEPO and untreated 
rhEPO to galactose-binding lectin SBA and LacNAc-binding lectin ECL, which both increased 
upon desialylation. Optimization of sample concentrations resulted in analysis of EPO 
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samples down to 1.4 µg/mL (Appendix D, Figure 4.D.1), which corresponds to a total EPO 
consumption of no more than 200 ng. At this concentration, both SBA and ECL lectin were 
still capable of measuring clear differences in untreated EPO and desialylated EPO. Higher 
sensitivity, i.e. larger differences in responses between desialylated EPO and untreated EPO, 
is obtained at higher sample concentrations and therefore 7 µg/mL was chosen for relative 
quantitation.

Table 4.2 Relative quantification of EPO sialylation on SBA and ECL lectins a

SBA ECL

rhEPO
sample 

Theoretical 
% sialylation 

avg % 
sialylation %CV

Deviation 
(% sialylation) 

avg % 
sialylation %CV

Deviation 
(% sialylation) 

1 66.7 70.0 1.1 3.3 70.1 3.2 3.4 

2 98.3 97.0 0.8 -1.4 98.6 1.3 0.2 

3 75.0 76.6 2.0 1.6 76.4 1.0 1.4 

4 96.7 95.8 1.4 -0.9 96.7 1.3 0.0 

5 88.7 88.3 0.8 -0.3 87.9 0.6 0.7 

aEPO samples 1 to 5 are mixtures of untreated (100% sialylated) and sialidase-treated (0% sialylated) EPO to 
known relative sialylation levels. 

 Calibration standards from Calbiochem rhEPO at different sialylation levels were 
measured and responses at equilibrium were plotted against the theoretical sialylation level 
(Appendix D, Figure 4.D.2). We used a relative quantitation method to proof the 
quantitative capabilities of the lectin sensor. Next to the calibration standards, we prepared 
five samples by mixing untreated and desialylated rhEPO from the same brand in different 
ratios and determined the sialylation by interpolation of the calibration curves. Sialylation of 
five different rhEPO samples were accurately quantified (Table 4.2). Relative quantification 
on SBA lectin resulted in no more than 3.3% deviation between determined and theoretical 
level of sialylation, with a %CV of 2.0% or less on an average of four independent lectin 
spots. Slightly higher deviations between determined and theoretical level of sialylation were 
detected on ECL lectin, with a maximum deviation of 3.4%. Variation on ECL lectin was 
3.2% CV or lower on an average of four independent lectin spots.
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Conclusions

 The broad diversity and general occurrence of glycans as post-translational 
modification on proteins requires rapid and sensitive methods to profile and monitor 
glycosylation. We demonstrated that surface plasmon resonance imaging can be employed 
to study lectin-carbohydrate interactions in a multiplexed manner. Glycan fingerprints are 
measured in a high-throughput set-up as up to 96 lectin-carbohydrate interactions are 
measured simultaneously generating a glycoprofile which can be used for comparative 
purposes. Screening of up to seventy samples can be performed within one day as each 
analysis only takes up to 20 minutes. Intact glycoproteins can be analyzed after diluting into 
the corresponding system buffer without any laborious sample pre-treatment steps. In case 
of the rhEPO analyses, we needed to remove HSA which is added as a stabilizer in certain 
rhEPO brands. The depletion step that we applied took less than 30 minutes. Multiple 
samples can be depleted simultaneously and are directly buffer exchanged to running 
buffer. Lectins can be directly immobilized on the SPR sensor while maintaining their 
carbohydrate-recognition properties. Different glycosylation patterns on a panel of fifteen 
lectins were measured for distinctly glycosylated proteins which could be related to the 
expected glycans. Glycan alterations on the proteins, deliberately applied by exoglycosidase 
cleavages, were effectively detected by the created lectin microarray. Binding to the lectins 
was enhanced or decreased after sequential cleavage of the glycan structure and was in 
accordance with the specificity of the lectins. Specificity of the lectins on the microarray was 
checked by neoglycoprotein analysis in this study and verified the reported specificities for 
nearly all studied lectins. Affinities of the lectins binding to defined carbohydrates on 
neoglycoproteins could easily be determined with the multiplex SPR method. We used these 
affinities to verify the specificity of the lectins and determine the strong and weak binders. 
Few lectins bound all neoglycoproteins or remodeled proteins regardless of the exposed 
glycan epitope and were considered rather non-specific. In many cases of high cross-
reactivity also binding of non-glycosylated proteins was measured and these lectins were no 
further included on our array. 

 The presented method is able to measure lectin-carbohydrate interactions in real-time 
and label-free. The method has no prerequisites for labeling as SPR measures differences in 
refractive index at a sensor surface; both ligand and analyte can be successfully analyzed in 
their native state. Furthermore it is a true multiplex method since 96 interactions are studied 
simultaneously on a single sensor with sufficient possibilities to apply negative, positive 
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controls and controls for normalization of the responses, whereas in other SPR-based 
methods the number of different ligands is limited.  

 The power of the method was further proven by relative quantitation of EPO 
sialylation. We optimized measurements on two lectins specific towards galactose to 
quantify sialylation levels on EPO. Relative EPO sialylation can be accurately determined at 
levels between 50% and 100% with the developed lectin micro-array, consuming only 700 
ng of EPO for a single measurement. The deviation between actual and measured sialylation 
levels is no more than 3.4%. Furthermore, a %CV of 3.2 or less was measured based on 
four independent lectin spots. Different brands of EPO were analyzed on the lectin micro-
array and distinct glycosylation fingerprints were obtained. Especially large differences in 
both N- and O-sialylation were measured for the different batches. The relevance of these 
differences should be proven with in vivo data, which is currently on-going. 

 The combination of label-free, multiplex and real-time measurements opens up new 
prospects for rapid glycosylation fingerprinting. The lectin micro-array has many advantages 
over existing glycoprofiling methods, such as the ability to measure intact glycoproteins, the 
low sample consumption, the high accuracy, sensitivity and the possibility to quantitatively 
determine specific glycan moieties. 
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Appendix A Transferrin analysis on lectin sensor 
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controls and controls for normalization of the responses, whereas in other SPR-based 
methods the number of different ligands is limited.  

 The power of the method was further proven by relative quantitation of EPO 
sialylation. We optimized measurements on two lectins specific towards galactose to 
quantify sialylation levels on EPO. Relative EPO sialylation can be accurately determined at 
levels between 50% and 100% with the developed lectin micro-array, consuming only 700 
ng of EPO for a single measurement. The deviation between actual and measured sialylation 
levels is no more than 3.4%. Furthermore, a %CV of 3.2 or less was measured based on 
four independent lectin spots. Different brands of EPO were analyzed on the lectin micro-
array and distinct glycosylation fingerprints were obtained. Especially large differences in 
both N- and O-sialylation were measured for the different batches. The relevance of these 
differences should be proven with in vivo data, which is currently on-going. 

 The combination of label-free, multiplex and real-time measurements opens up new 
prospects for rapid glycosylation fingerprinting. The lectin micro-array has many advantages 
over existing glycoprofiling methods, such as the ability to measure intact glycoproteins, the 
low sample consumption, the high accuracy, sensitivity and the possibility to quantitatively 
determine specific glycan moieties. 
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Appendix B Kinetic data of neoglycoproteins 
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Figure 4.C.2 Sensorgrams of fetuin samples (125 µg/mL) in the different steps of the remodeling 
expressed as binding on GSL II lectin immobilized at 0.56 µM. 
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Figure 4.C.2 Sensorgrams of fetuin samples (125 µg/mL) in the different steps of the remodeling 
expressed as binding on GSL II lectin immobilized at 0.56 µM. 
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Appendix D EPO analysis on SBA and ECL lectins 

Figure 4.D.1 Discriminatory power of the lectins SBA and ECL between untreated and sialidase-treated 
EPO at different concentrations (n=3). Concentrations down to 1.4 µg/mL can be used to measure 
differences in sialylation.

Figure 4.D.2 Calibration curves of the response in RU after 10 minutes association plotted against the 
level of sialylation using quadratic curve fitting measured on (a) SBA lectin and (b) ECL lectin. EPO 
measurements at 7 µg/mL with sialylation levels between 50 and 100%. Measurements were performed 
at four individual spots of both SBA and ECL lectin; calibration curves of a single lectin spot is shown. 
R2 on SBA lectin was between 0.990 and 0.996; R2 on ECL lectin was between 0.990 and 0.998 on the 
independent calibration curves. 
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Appendix D EPO analysis on SBA and ECL lectins 

Figure 4.D.1 Discriminatory power of the lectins SBA and ECL between untreated and sialidase-treated 
EPO at different concentrations (n=3). Concentrations down to 1.4 µg/mL can be used to measure 
differences in sialylation.

Figure 4.D.2 Calibration curves of the response in RU after 10 minutes association plotted against the 
level of sialylation using quadratic curve fitting measured on (a) SBA lectin and (b) ECL lectin. EPO 
measurements at 7 µg/mL with sialylation levels between 50 and 100%. Measurements were performed 
at four individual spots of both SBA and ECL lectin; calibration curves of a single lectin spot is shown. 
R2 on SBA lectin was between 0.990 and 0.996; R2 on ECL lectin was between 0.990 and 0.998 on the 
independent calibration curves. 

Label-free glycoprofiling with multiplex surface plasmon resonance

95

References

 1.  Katahira, M., Hanakita, M., Ito, T., and Suzuki, M. The ratio of glycosylated albumin to 
glycosylated hemoglobin differs between type 2 diabetic patients with low normoalbuminuria 
and those with high normoalbuminuria or microalbuminuria. Diabetes Care  2013; 36(12): e207-
e208

 2.  Bunn, H. F., Gabbay, K. H., and Gallop, P. M. The glycosylation of hemoglobin: relevance to 
diabetes mellitus. Science  7-4-1978; 200(4337): 21-27  

 3.  Bertok, T., Klukova, L., Sediva, A., Kasak, P., Semak, V., Micusik, M., Omastova, M., Chovanova, 
L., Vlcek, M., Imrich, R., Vikartovska, A., and Tkac, J. Ultrasensitive impedimetric lectin 
biosensors with efficient antifouling properties applied in glycoprofiling of human serum 
samples. Anal.Chem.  6-8-2013; 85(15): 7324-7332  

 4.  Shinzaki, S., Kuroki, E., Iijima, H., Tatsunaka, N., Ishii, M., Fujii, H., Kamada, Y., Kobayashi, T., 
Shibukawa, N., Inoue, T., Tsujii, M., Takeishi, S., Mizushima, T., Ogata, A., Naka, T., Plevy, S. 
E., Takehara, T., and Miyoshi, E. Lectin-based immunoassay for aberrant IgG glycosylation as 
the biomarker for Crohn's disease. Inflamm.Bowel.Dis.  2013; 19(2): 321-331  

 5.  Fry, S. A., Afrough, B., Lomax-Browne, H. J., Timms, J. F., Velentzis, L. S., and Leathem, A. J. 
Lectin microarray profiling of metastatic breast cancers. Glycobiology  2011; 21(8): 1060-1070  

 6.  Raju, T. S. Terminal sugars of Fc glycans influence antibody effector functions of IgGs. 
Curr.Opin.Immunol.  2008; 20(4): 471-478  

 7.  Arnold, J. N., Wormald, M. R., Sim, R. B., Rudd, P. M., and Dwek, R. A. The impact of 
glycosylation on the biological function and structure of human immunoglobulins. 
Annu.Rev.Immunol.  2007; 25 21-50  

 8.  Dube, S., Fisher, J. W., and Powell, J. S. Glycosylation at specific sites of erythropoietin is 
essential for biosynthesis, secretion, and biological function. J.Biol.Chem.  25-11-1988; 263(33): 
17516-17521  

 9.  Egrie, J. C. and Browne, J. K. Development and characterization of novel erythropoiesis 
stimulating protein (NESP). Br.J.Cancer  2001; 84 Suppl 1 3-10  

 10.  Elliott, S., Egrie, J., Browne, J., Lorenzini, T., Busse, L., Rogers, N., and Ponting, I. Control of 
rHuEPO biological activity: the role of carbohydrate. Exp.Hematol.  2004; 32(12): 1146-1155  

 11.  Schriebl, K., Trummer, E., Lattenmayer, C., Weik, R., Kunert, R., Muller, D., Katinger, H., and 
Vorauer-Uhl, K. Biochemical characterization of rhEpo-Fc fusion protein expressed in CHO cells. 
Protein Expr.Purif.  2006; 49(2): 265-275  

 12.  Harazono, A., Hashii, N., Kuribayashi, R., Nakazawa, S., and Kawasaki, N. Mass spectrometric 
glycoform profiling of the innovator and biosimilar erythropoietin and darbepoetin by LC/ESI-MS. 
J.Pharm.Biomed.Anal.  2013; 83 65-74  

 13.  Skibeli, V., Nissen-Lie, G., and Torjesen, P. Sugar profiling proves that human serum 
erythropoietin differs from recombinant human erythropoietin. Blood  15-12-2001; 98(13): 
3626-3634  

 14.  Le, Floch F., Tessier, B., Chenuet, S., Guillaume, J. M., Cans, P., Marc, A., and Goergen, J. L. 
HPCE monitoring of the N-glycosylation pattern and sialylation of murine erythropoietin 
produced by CHO cells in batch processes. Biotechnol.Prog.  2004; 20(3): 864-871  

 15.  Jiang, J., Tian, F., Cai, Y., Qian, X., Costello, C. E., and Ying, W. Site-specific qualitative and 
quantitative analysis of the N- and O-glycoforms in recombinant human erythropoietin. 
Anal.Bioanal.Chem.  31-7-2014;- 

 16.  Kawasaki, N., Ohta, M., Hyuga, S., Hyuga, M., and Hayakawa, T. Application of liquid 
chromatography/mass spectrometry and liquid chromatography with tandem mass spectrometry 



Chapter 4 

96

to the analysis of the site-specific carbohydrate heterogeneity in erythropoietin. Anal.Biochem.  
1-10-2000; 285(1): 82-91  

 17.  Hashii, N., Harazono, A., Kuribayashi, R., Takakura, D., and Kawasaki, N. Characterization of N-
glycan heterogeneities of erythropoietin products by liquid chromatography/mass spectrometry 
and multivariate analysis. Rapid Commun.Mass Spectrom.  30-4-2014; 28(8): 921-932  

 18.  Ambrosi, M., Cameron, N. R., and Davis, B. G. Lectins: tools for the molecular understanding of 
the glycocode. Org.Biomol.Chem.  7-5-2005; 3(9): 1593-1608  

 19.  Hirabayashi, J., Yamada, M., Kuno, A., and Tateno, H. Lectin microarrays: concept, principle and 
applications. Chem.Soc.Rev.  29-4-2013; 42(10): 4443-4458  

 20.  Hsu, K. L., Pilobello, K. T., and Mahal, L. K. Analyzing the dynamic bacterial glycome with a 
lectin microarray approach. Nat.Chem.Biol.  2006; 2(3): 153-157  

 21.  Tao, S. C., Li, Y., Zhou, J., Qian, J., Schnaar, R. L., Zhang, Y., Goldstein, I. J., Zhu, H., and 
Schneck, J. P. Lectin microarrays identify cell-specific and functionally significant cell surface 
glycan markers. Glycobiology  2008; 18(10): 761-769  

 22.  Wang, H., Li, H., Zhang, W., Wei, L., Yu, H., and Yang, P. Multiplex profiling of glycoproteins 
using a novel bead-based lectin array. Proteomics.  2014; 14(1): 78-86  

 23.  Kuno, A., Uchiyama, N., Koseki-Kuno, S., Ebe, Y., Takashima, S., Yamada, M., and Hirabayashi, 
J. Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. 
Nat.Methods  2005; 2(11): 851-856  

 24.  Pilobello, K. T., Krishnamoorthy, L., Slawek, D., and Mahal, L. K. Development of a lectin 
microarray for the rapid analysis of protein glycopatterns. Chembiochem.  2005; 6(6): 985-989  

 25.  Chen, S., LaRoche, T., Hamelinck, D., Bergsma, D., Brenner, D., Simeone, D., Brand, R. E., and 
Haab, B. B. Multiplexed analysis of glycan variation on native proteins captured by antibody 
microarrays. Nat.Methods  2007; 4(5): 437-444  

 26.  Rosenfeld, R., Bangio, H., Gerwig, G. J., Rosenberg, R., Aloni, R., Cohen, Y., Amor, Y., 
Plaschkes, I., Kamerling, J. P., and Maya, R. B. A lectin array-based methodology for the 
analysis of protein glycosylation. J.Biochem.Biophys.Methods  10-4-2007; 70(3): 415-426  

 27.  Safina, G., Duran, IuB, Alasel, M., and Danielsson, B. Surface plasmon resonance for real-time 
study of lectin-carbohydrate interactions for the differentiation and identification of 
glycoproteins. Talanta  15-6-2011; 84(5): 1284-1290  

 28.  Yakovleva, M. E., Safina, G. R., and Danielsson, B. A study of glycoprotein-lectin interactions 
using quartz crystal microbalance. Anal.Chim.Acta  23-5-2010; 668(1): 80-85  

 29.  Foley, K. J., Forzani, E. S., Joshi, L., and Tao, N. Detection of lectin-glycan interaction using high 
resolution surface plasmon resonance. Analyst  2008; 133(6): 744-746  

 30.  Karamanska, R., Clarke, J., Blixt, O., Macrae, J. I., Zhang, J. Q., Crocker, P. R., Laurent, N., 
Wright, A., Flitsch, S. L., Russell, D. A., and Field, R. A. Surface plasmon resonance imaging for 
real-time, label-free analysis of protein interactions with carbohydrate microarrays. Glycoconj.J.  
2008; 25(1): 69-74  

 31.  Safina, G. Application of surface plasmon resonance for the detection of carbohydrates, 
glycoconjugates, and measurement of the carbohydrate-specific interactions: a comparison with 
conventional analytical techniques. A critical review. Anal.Chim.Acta  27-1-2012; 712 9-29  

 32.  Iskratsch, T., Braun, A., Paschinger, K., and Wilson, I. B. Specificity analysis of lectins and 
antibodies using remodeled glycoproteins. Anal.Biochem.  15-3-2009; 386(2): 133-146  

 33.  Karlsson, R., Katsamba, P. S., Nordin, H., Pol, E., and Myszka, D. G. Analyzing a kinetic titration 
series using affinity biosensors. Anal.Biochem.  1-2-2006; 349(1): 136-147  

 34.   ICH Topic Q2 (R1) Validation of Analytical Procedures: Text and Methodologies. ICH Topic Q2 
(R1) Validation of Analytical Procedures: Text and Methodologies  2015;- 

Label-free glycoprofiling with multiplex surface plasmon resonance

97

 35.  Nimtz, M., Martin, W., Wray, V., Kloppel, K. D., Augustin, J., and Conradt, H. S. Structures of 
sialylated oligosaccharides of human erythropoietin expressed in recombinant BHK-21 cells. 
Eur.J.Biochem.  1-4-1993; 213(1): 39-56  

 36.  Tran, D. T. and Ten Hagen, K. G. Mucin-type O-glycosylation during development. J.Biol.Chem.  
8-3-2013; 288(10): 6921-6929  



Ch
ap

te
r 4

Chapter 4 

96

to the analysis of the site-specific carbohydrate heterogeneity in erythropoietin. Anal.Biochem.  
1-10-2000; 285(1): 82-91  

 17.  Hashii, N., Harazono, A., Kuribayashi, R., Takakura, D., and Kawasaki, N. Characterization of N-
glycan heterogeneities of erythropoietin products by liquid chromatography/mass spectrometry 
and multivariate analysis. Rapid Commun.Mass Spectrom.  30-4-2014; 28(8): 921-932  

 18.  Ambrosi, M., Cameron, N. R., and Davis, B. G. Lectins: tools for the molecular understanding of 
the glycocode. Org.Biomol.Chem.  7-5-2005; 3(9): 1593-1608  

 19.  Hirabayashi, J., Yamada, M., Kuno, A., and Tateno, H. Lectin microarrays: concept, principle and 
applications. Chem.Soc.Rev.  29-4-2013; 42(10): 4443-4458  

 20.  Hsu, K. L., Pilobello, K. T., and Mahal, L. K. Analyzing the dynamic bacterial glycome with a 
lectin microarray approach. Nat.Chem.Biol.  2006; 2(3): 153-157  

 21.  Tao, S. C., Li, Y., Zhou, J., Qian, J., Schnaar, R. L., Zhang, Y., Goldstein, I. J., Zhu, H., and 
Schneck, J. P. Lectin microarrays identify cell-specific and functionally significant cell surface 
glycan markers. Glycobiology  2008; 18(10): 761-769  

 22.  Wang, H., Li, H., Zhang, W., Wei, L., Yu, H., and Yang, P. Multiplex profiling of glycoproteins 
using a novel bead-based lectin array. Proteomics.  2014; 14(1): 78-86  

 23.  Kuno, A., Uchiyama, N., Koseki-Kuno, S., Ebe, Y., Takashima, S., Yamada, M., and Hirabayashi, 
J. Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. 
Nat.Methods  2005; 2(11): 851-856  

 24.  Pilobello, K. T., Krishnamoorthy, L., Slawek, D., and Mahal, L. K. Development of a lectin 
microarray for the rapid analysis of protein glycopatterns. Chembiochem.  2005; 6(6): 985-989  

 25.  Chen, S., LaRoche, T., Hamelinck, D., Bergsma, D., Brenner, D., Simeone, D., Brand, R. E., and 
Haab, B. B. Multiplexed analysis of glycan variation on native proteins captured by antibody 
microarrays. Nat.Methods  2007; 4(5): 437-444  

 26.  Rosenfeld, R., Bangio, H., Gerwig, G. J., Rosenberg, R., Aloni, R., Cohen, Y., Amor, Y., 
Plaschkes, I., Kamerling, J. P., and Maya, R. B. A lectin array-based methodology for the 
analysis of protein glycosylation. J.Biochem.Biophys.Methods  10-4-2007; 70(3): 415-426  

 27.  Safina, G., Duran, IuB, Alasel, M., and Danielsson, B. Surface plasmon resonance for real-time 
study of lectin-carbohydrate interactions for the differentiation and identification of 
glycoproteins. Talanta  15-6-2011; 84(5): 1284-1290  

 28.  Yakovleva, M. E., Safina, G. R., and Danielsson, B. A study of glycoprotein-lectin interactions 
using quartz crystal microbalance. Anal.Chim.Acta  23-5-2010; 668(1): 80-85  

 29.  Foley, K. J., Forzani, E. S., Joshi, L., and Tao, N. Detection of lectin-glycan interaction using high 
resolution surface plasmon resonance. Analyst  2008; 133(6): 744-746  

 30.  Karamanska, R., Clarke, J., Blixt, O., Macrae, J. I., Zhang, J. Q., Crocker, P. R., Laurent, N., 
Wright, A., Flitsch, S. L., Russell, D. A., and Field, R. A. Surface plasmon resonance imaging for 
real-time, label-free analysis of protein interactions with carbohydrate microarrays. Glycoconj.J.  
2008; 25(1): 69-74  

 31.  Safina, G. Application of surface plasmon resonance for the detection of carbohydrates, 
glycoconjugates, and measurement of the carbohydrate-specific interactions: a comparison with 
conventional analytical techniques. A critical review. Anal.Chim.Acta  27-1-2012; 712 9-29  

 32.  Iskratsch, T., Braun, A., Paschinger, K., and Wilson, I. B. Specificity analysis of lectins and 
antibodies using remodeled glycoproteins. Anal.Biochem.  15-3-2009; 386(2): 133-146  

 33.  Karlsson, R., Katsamba, P. S., Nordin, H., Pol, E., and Myszka, D. G. Analyzing a kinetic titration 
series using affinity biosensors. Anal.Biochem.  1-2-2006; 349(1): 136-147  

 34.   ICH Topic Q2 (R1) Validation of Analytical Procedures: Text and Methodologies. ICH Topic Q2 
(R1) Validation of Analytical Procedures: Text and Methodologies  2015;- 

Label-free glycoprofiling with multiplex surface plasmon resonance

97

 35.  Nimtz, M., Martin, W., Wray, V., Kloppel, K. D., Augustin, J., and Conradt, H. S. Structures of 
sialylated oligosaccharides of human erythropoietin expressed in recombinant BHK-21 cells. 
Eur.J.Biochem.  1-4-1993; 213(1): 39-56  

 36.  Tran, D. T. and Ten Hagen, K. G. Mucin-type O-glycosylation during development. J.Biol.Chem.  
8-3-2013; 288(10): 6921-6929  



  
 

99 

CHAPTER 5 

Characterization of low affinity Fcγ receptor 

biotinylation under controlled reaction conditions 

by mass spectrometry and ligand binding analysis 

 

 

 

 

 

 

 

 

 

 

 

The contents of this chapter have been published as: 

Karin P.M. Geuijen, David F. Egging, Stefanie Bartels, Jan Schouten, Richard B. Schasfoort, 

Michel H. Eppink 

Characterization of low affinity Fcγ receptor biotinylation under controlled reaction 
conditions by mass spectrometry and ligand binding analysis 

Protein Science (2016) 10, 1841-1852 



  
 

99 

CHAPTER 5 

Characterization of low affinity Fcγ receptor 

biotinylation under controlled reaction conditions 

by mass spectrometry and ligand binding analysis 

 

 

 

 

 

 

 

 

 

 

 

The contents of this chapter have been published as: 

Karin P.M. Geuijen, David F. Egging, Stefanie Bartels, Jan Schouten, Richard B. Schasfoort, 

Michel H. Eppink 

Characterization of low affinity Fcγ receptor biotinylation under controlled reaction 
conditions by mass spectrometry and ligand binding analysis 

Protein Science (2016) 10, 1841-1852 



Chapter 5 

100 

Abstract 

 Chemical protein biotinylation and streptavidin or anti-biotin based capture is regularly 

used for proteins as a more controlled alternative to direct coupling of the protein on a 

biosensor surface. Upon biotinylation an interaction site of interest may be blocked by the 

biotin groups, diminishing apparent activity of the protein. Minimal biotinylation can 

circumvent the loss of apparent activity, but still a binding site of interest can be blocked 

when labeling an amino acid involved in the binding. Here we describe reaction condition 

optimization studies for minimal labeling. We have chosen low affinity Fcγ receptors as 

model compounds as these proteins contain many lysines in their active binding site and as 

such provide an interesting system for a minimal labeling approach. We were able to 

identify the most critical parameters (protein:biotin ratio and incubation pH) for a minimal 

labeling approach in which the proteins of choice remain most active towards analyte 

binding. Localization of biotinylation by mass spectrometric peptide mapping on minimally 

labeled material was correlated to protein activity in binding assays. We show that only 

aiming at minimal labeling is not sufficient to maintain an active protein. Careful fine-tuning 

of critical parameters is important to reduce biotinylation in a protein binding site. 

  

Characterization of low affinity Fcγ receptor biotinylation  

101 

Introduction 

 Protein binding analysis in biosensor experiments relies in many cases on appropriate 

immobilization or capture of one of the interaction partners on a solid surface. Many 

different approaches for protein immobilization are generally applied throughout ligand 

binding studies. However, a key requirement in such a study is that the immobilized or 

captured ligand remains active, in other words, the interaction site involved in binding 

should not be blocked or masked.(1)  

 A commonly used immobilization strategy is based on amine coupling of the ligand 

directly to the sensor surface.(2) Coupling through amine groups is considered to be a 

random process, hence orientation and cross-linking of the ligand on the sensor surface is 

less well controllable. For ligands that have many lysines in or around the interaction site of 

interest, this may result in a marginally active or inactive surface. Other direct coupling 

chemistries, such as thiol coupling, may face similar problems, as any amino acid that is 

directly coupled to a sensor surface may have an impact on the protein binding 

characteristics. 

 Alternative approaches are mainly based on protein capture, in which a protein can be 

captured to the surface in a highly selective manner. The orientation of the ligand to the 

surface will be more site-directed and when carefully constructed one can design the 

capture in such a way that the interaction site is not blocked. Capture approaches that are 

often used include the capture of his-tagged proteins by an anti-histidine antibody(3,4) or the 

capture of biotinylated proteins by a streptavidin surface.(2) A disadvantage of most capture 

approaches is that in general the ligand will be regenerated after interaction measurements, 

and ligand capture has to be repeated with each analysis. The regeneration and recapture 

of ligand is not necessary when the biotin-streptavidin capture is chosen, because the 

affinity of biotin to streptavidin is high(5,6) and virtually no dissociation takes place. Next to 

this high affinity, the capture is specific, therefore only biotinylated proteins will be captured 

in most well-defined buffer systems. 

 Biotinylation of proteins is most elegantly performed by incorporating an AviTagTM into 

the protein,(7) a peptide sequence that can then be specifically biotinylated by bacterial 

biotin ligase (BirA) in vitro or in vivo. However, when a protein is not expressed with such a 

tag, chemical biotinylation provides a robust alternative. Chemical biotinylation can generally 

be performed on primary amines, where similar considerations are applicable as in direct 

coupling on a sensor surface. A number of groups have shown that controlling the pH 
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during the coupling reaction may drive preference for reactions on α-amino groups or ε-

amino groups.(8,9) Selo et al.(9) were able to selectively biotinylate α-amino groups over ε-

amino groups, which then results in biotinylation at a peptide’s N-terminus instead of 

randomly on various lysines in the peptide sequence. However, these experiments were 

performed on small peptides with a limited number of amine groups on lysines present and 

may therefore differ from reaction conditions in entire proteins with a large number of 

lysines. Papalia and Myszka(10) have reported a minimal labeling approach, in which they 

chose the reaction conditions in such a way that only a limited number of lysines in a 

protein is biotinylated, thereby reducing the chance of biotinylation in the binding site of 

interest in a protein. Furthermore, they concluded that low levels of biotinylation lead to less 

cross-linking of the ligand on the surface, resulting in high-density surfaces with optimal 

activity. 

 Here we describe the biotinylation of Fcγ receptors, a class of cell surface receptors 

that is important in the binding of IgG to effector cells in a human body.(11-13) Five different 

subclasses of Fcγ receptors are known, with different isoforms and natural variants,(14,15) all 

of which carry many lysines in or close to the IgG binding site.(16-22) As an alternative to 

amine groups (lysines), coupling may be performed on carbohydrates, however the 

presence of carbohydrates depends on the expression platform(23,24) and moreover Fcγ 

receptor glycosylation plays a crucial role in IgG binding.(25) 

 Hence these receptors provide an interesting group of proteins in which the impact of 

minimal biotin labeling may be studied. A minimal degree of biotinylation is defined here as 

a maximum of one biotin attached to a single protein molecule, which corresponds to a 

degree of labeling of approximately 1. A subset of Fcγ receptors was selected to explore the 

influence of the biotinylation reaction conditions on IgG binding, which included the factors 

protein:biotin ratio, reaction pH and reaction time based on previous publications.(9,10) 

Experimental setup and analyses of the data were executed under a statistical design of 

experiments (DoE). Furthermore, using FcγRIIb as a model system, we investigated 

whether certain reaction conditions could be correlated to remaining ligand binding activity, 

defined as binding to IgG and to biotinylation at certain lysine residues (ε-amines) or at the 

N-terminus (α-amine) within the protein. Therefore, surface plasmon resonance (SPR) 

binding assays and mass spectrometry (MS) analyses were performed respectively. Results 

of the different SPR and MS analysis were used to identify the most critical parameters in 

chemical biotinylation impacting Fcγ receptor activity after minimal labeling. 
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Materials and methods 

Expression and purification of Fcγ receptors 

 Fcγ receptors were expressed and purified at Synthon Biopharmaceuticals BV 

(Nijmegen, the Netherlands). The amino acid sequences of the extracellular domains of the 

human Fcγ receptors were derived from Uniprot: FcγRIIIa (FCGR3A) from entry P08637 

amino acids 17-208, FcγRIIIb (FCGR3B) from entry O75015 amino acids 20-208, FcγRIIa 

(FCGR2A) from entry P12318 amino acids 36-218 and FcγRIIb (FCGR2B) from entry P31994 

amino acids 46-217. A leader sequence and a hexa-histidine-tag were included at the N-

terminus and C-terminus respectively. DNA synthesis was performed by GeneArt (part of 

Thermo Fisher Scientific (Waltham, MA USA)). The synthesized DNA fragments were cloned 

into a pcDNA3.1 (Life Technologies, part of Thermo Fisher Scientific) based vector. Plasmid 

preparations were made using the EndoFree Plasmid Maxi Kit (QIAGEN (Hilden, Germany)). 

The Fcγ receptors were expressed using the Expi293 Expression System (Life Technologies). 

Transient transfections were performed according to the manufacturer’s protocol.  

 Histidine-tagged Fcγ receptors were purified from cell cultures by Immobilized Metal 

Affinity Chromatography (IMAC) on a 5 mL Chelating Sepharose Fast Flow column on an 

ÄKTA explorer 100 system (GE life sciences (Eindhoven, the Netherlands)). The column was 

charged with 100 mM copper(II)sulfate after which the supernatants were loaded. The 

column was washed with PBS pH 7.4 / 20 mM imidazole after which the target protein was 

eluted in a gradient elution with PBS pH 7.4 / 20mM imidazole to PBS pH 7.4 / 500 mM 

imidazole. 

Biotinylation 

 Biotinylation reactions were performed with EZ-link Sulfo-NHS-LC biotin (Thermo 

Scientific (Waltham, MA USA)) which was dissolved in MQ water. Multiple factor levels of 

incubation time (30, 135 and 240 minutes), incubation pH (pH 6.5, pH 7.0 and pH 7.5 in 

case of FcγRIIa and FcγRIIb; pH 6.5, pH 7.5 and pH 8.5 in case of FcγRIIIa and FcγRIIIb) 

and protein:biotin ratios (1:0.5; 1:1.25 and 1:2) were applied as per DoE based setup 

(Table 5.1). Fcγ receptors were diluted to 1 mg/mL in PBS buffer at the indicated pH. The 

reaction volumes were kept constant at 200 µL and 10 µL biotin stock solution was added to 

the desired protein:biotin ratio. Biotinylation reactions were performed on ice and after 

incubation free biotin was removed using PD G-25 minitraps (GE life sciences) according to 
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manufacturer’s instructions. The degree of labeling was determined by FluoReporter Biotin 

quantitation kit (Invitrogen (Waltham, MA USA)) according to manufacturer’s protocol. 

Surface Plasmon Resonance analysis 

 Biotinylated Fcγ receptors were immobilized on G-Strep SensEye® sensors (Ssens BV 

(Enschede, The Netherlands)) in the continuous flow microspotter (CFM) (Wasatch 

Microfluidics, Salt Lake City, UT, USA) using a print time of 5 minutes and a 50 mM sodium 

acetate buffer pH 4.5/0.05 w/v% Tween 80. Interaction measurements between Fcγ 

receptors and monoclonal antibody (Synthon Biopharmaceuticals BV, Nijmegen, The 

Netherlands) were performed on an IBIS MX96 SPRi instrument (IBIS Technologies BV, 

Enschede, The Netherlands) in HBS buffer pH7.2 / 0.05 w/v% Tween 80. A baseline of 1 

minute was followed by an association time of 5 to 20 minutes and dissociation at 1 

µL/second in 1 step for 4 minutes. Regeneration was performed with 25 mM phosphoric 

acid pH 3.0 in a single step of 30 seconds. 

Mass spectrometry analysis 

 An UPLC-ESI-qTOF (Waters, Milford USA) was used to analyze intact proteins and for 

peptide mapping. Intact mass analysis was performed on a polymeric reversed phase 

column (PLRP-S, 50x4.6mm, 5µm (Agilent, Santa Clara, CA, USA) operated at 60°C and a 

flow rate of 400 µL/min was used. Mobile phase A and B consisted of 0.05% TFA in Milli-Q 

and 0.05% TFA in 50% acetonitrile respectively. A linear gradient from 60% A to 1% A in 

35 minutes after a baseline of 2 minutes at 60% A was followed by 1% A for 3 minutes and 

an equilibration step at 60% A for 2 minutes. Online UV detection was measured at 280 nm. 

Online MS detection with an MS scan method was used from 400 to 4500 m/z with a scan 

time of 0.98 seconds and an interscan time of 0.02 seconds. The following conditions were 

used for the MS: capillary voltage of 3 kV, sample cone of 25 V, source temperature of 

120°C, desolvation temperature of 200°C and a desolvation gas flow of 600L/hr. Intact 

mass analysis was performed on Fcγ receptors, that were deglycosylated by overnight 

incubation with PNGase F at 37°C. 

 A reversed phase C18 column (Shim-pack XR-ODS II, 150 x 2.1 mm, 2.2 µm 

(Shimadzu, Kyoto, Japan)) at 30°C and a flow rate of 250 µL/min was used for the peptide 

mapping analysis. Trypsin digestion of Fcγ receptors was performed at 37°C overnight and 

chymotrypsin digestion of Fcγ receptors was performed in the presence of CaCl2 at 35°C for 

4 hrs after deglycosylation, reduction and alkylation of the protein. The separation was 
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performed with a baseline at 96% A for 2 minutes followed by a linear gradient from 96% A 

to 30% A in 30 minutes. Then the %A decreased to 1% in 2 minutes and was kept at 1% 

for 5 minutes, followed by returning to 96% A in 3 minutes and equilibration for 3 minutes. 

Online UV detection was measured at 214 nm and 280 nm. Online MS detection with an 

MSE method was used from 100 to 1700 m/z mass scan and a scan time of 0.5 seconds and 

interscan time of 0.1 seconds. The second mass scan was from 100 to 2000 m/z with a scan 

time of 0.5 seconds and interscan time of 0.1 seconds using a collision energy ramp from 19 

to 30 eV for peptide fragmentation. The same MS settings as described before were used 

for the peptide mapping analysis. Data acquisition and data analysis was performed in 

MassLynx software (version 4.1) (Waters, Milford, MA, USA).  

Statistical analysis 

 A 2-level full factorial Design of Experiments (DoE) was created in Minitab v17 (Minitab 

Ltd, Coventry, UK) which consisted of three factors at 2 levels and three replicates of center 

points (Table 5.1). In total the DoE consisted of eleven independent runs (a run is defined 

as a biotinylation reaction on one Fcγ receptor) for each Fcγ receptor (a total of 44 runs). 

Statistical analysis of data for output variables was performed in Minitab. Output variables 

included the degree of labeling, ligand density on the sensor surface, IgG binding to 

immobilized Fcγ receptor and in addition for FcγRIIb, biotin distribution and relative amount 

of biotinylated residues from peptide mapping quantification. 

Results and discussion 

IgG binding studies to biotinylated Fcγ receptors 

 The Fcγ receptors were biotinylated under controlled conditions (Table 5.1) to be used 

as ligands in IgG binding studies. Our previous experiences showed that direct 

immobilization of the Fcγ receptors minimizes their activity for IgG binding and only a 

limited stability on the surface is obtained (data not shown). The IgG binding sites of Fcγ 

receptors contain a number of lysines,(16-22) hence, upon amine coupling on a sensor surface 

the interaction with IgG will be affected. In our experiments degrees of labeling of the 

different samples were determined at values between 0.36 and 1.78 indicating that on 

average a minimal amount of biotins had been attached to the proteins.  

 Immobilization of all samples to a streptavidin SensEye® sensor surface was 

performed, followed by analysis of IgG binding to the Fcγ receptors. The ligand density on  
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manufacturer’s instructions. The degree of labeling was determined by FluoReporter Biotin 
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an equilibration step at 60% A for 2 minutes. Online UV detection was measured at 280 nm. 

Online MS detection with an MS scan method was used from 400 to 4500 m/z with a scan 

time of 0.98 seconds and an interscan time of 0.02 seconds. The following conditions were 

used for the MS: capillary voltage of 3 kV, sample cone of 25 V, source temperature of 

120°C, desolvation temperature of 200°C and a desolvation gas flow of 600L/hr. Intact 

mass analysis was performed on Fcγ receptors, that were deglycosylated by overnight 

incubation with PNGase F at 37°C. 

 A reversed phase C18 column (Shim-pack XR-ODS II, 150 x 2.1 mm, 2.2 µm 

(Shimadzu, Kyoto, Japan)) at 30°C and a flow rate of 250 µL/min was used for the peptide 

mapping analysis. Trypsin digestion of Fcγ receptors was performed at 37°C overnight and 

chymotrypsin digestion of Fcγ receptors was performed in the presence of CaCl2 at 35°C for 

4 hrs after deglycosylation, reduction and alkylation of the protein. The separation was 
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as a biotinylation reaction on one Fcγ receptor) for each Fcγ receptor (a total of 44 runs). 

Statistical analysis of data for output variables was performed in Minitab. Output variables 
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Results and discussion 

IgG binding studies to biotinylated Fcγ receptors 

 The Fcγ receptors were biotinylated under controlled conditions (Table 5.1) to be used 

as ligands in IgG binding studies. Our previous experiences showed that direct 

immobilization of the Fcγ receptors minimizes their activity for IgG binding and only a 

limited stability on the surface is obtained (data not shown). The IgG binding sites of Fcγ 

receptors contain a number of lysines,(16-22) hence, upon amine coupling on a sensor surface 

the interaction with IgG will be affected. In our experiments degrees of labeling of the 

different samples were determined at values between 0.36 and 1.78 indicating that on 

average a minimal amount of biotins had been attached to the proteins.  

 Immobilization of all samples to a streptavidin SensEye® sensor surface was 

performed, followed by analysis of IgG binding to the Fcγ receptors. The ligand density on  
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Table 5.1 Experimental conditions for biotinylation  

Run no Protein:biotin ratio Incubation pH I Incubation time (min) 

1 1:2 6.5 240 

2 1:2 6.5 30 

3 1:0.5 6.5 30 

4 1:0.5 6.5 240 

5 1:2 7.5 / 8.5 30 

6 1:1.25 7.0 / 7.5 135 

7 1:1.25 7.0 / 7.5 135 

8 1:0.5 7.5 / 8.5 30 

9 1:2 7.5 / 8.5 240 

10 1:1.25 7.0 / 7.5 135 

11 1:0.5 7.5 / 8.5 240 

I pH 6.5-7.0-7.5 in case of FcγRIIa and FcγRIIb; pH 6.5-7.5-8.5 in case of FcγRIIIa and FcγRIIIb 

The “Run no” column shows the order of experiments after randomization by Minitab software 

  

the sensor surface expressed in resonance units (RU) was plotted against the degree of 

labeling (Figure 5.1-a). The amount of ligand that was immobilized on the sensor surface is 

independent of the degree of biotinylation indicated by the apparent random distribution of 

points in this plot. This was verified by a regression analysis of the ligand density versus the 

degree of labeling where no significant effect on the slope of the regression was found 

(P=0.58, P=0.12, P=0.63 and P=0.19 for FcγRIIIa, FcγRIIIb, FcγRIIa and FcγRIIb 

respectively). As a control, non-labeled proteins were also applied to the surface under the 

same conditions resulting in no immobilization of ligand with FcγRIIIa. In case of the other 

three ligands, the RU determination from the camera image calculated 36 to 60 RU of 

ligand, which is too low for proper functional ligand coupling. This was confirmed by 

injecting IgG samples over these spots which resulted in no measurable interaction (Figure 

5.1-b). This indicates that no relevant amount of functional ligand adheres non-specifically 

to the surface. The immobilization levels in each of the biotinylated samples are higher 

compared to the control samples, except for 1 sample which was present in a blocked 

flowchannel.  
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Figure 5.1 Effect of biotinylation on ligand immobilization and remaining activity for four Fcγ receptors. 

a) Ligand density in resonance units (RU) is plotted against the level of biotinylation expressed as 

degree of labeling. b) Maximum IgG binding response in RU plotted against the level of biotinylation 

expressed as degree of labeling.   
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 Papalia and Myszka(10) have shown that similar surface densities are reached at 

different degrees of labeling, but that the chance of cross-linking at the surface becomes 

higher at higher labeling degrees. We were interested to see whether possible cross-linking 

at the surface could have an influence on the remaining activity of the receptors on the 

surface. Binding of IgG to immobilized Fcγ receptors at similar ligand densities was 

measured in an SPR measurement (Appendix A; Figure 5.A.1). The binding of IgG is 

expressed as the maximum response after 20 minutes association time and this value is 

plotted against the degree of labeling (Figure 5.1-b). An actual steady state is not reached 

in any of the sensorgrams which is related to the biphasic binding of IgG to Fcγ 

receptors.(25,26) Hence, for comparison of the remaining activity under different biotinylation 

conditions the maximum response at 20 minutes post injection was chosen as measure for 

binding. 

 Higher responses are measured on those receptors with a lower degree of labeling and 

lower responses are measured at higher degrees of labeling (Figure 5.1-b). No IgG binding 

is measured on the spots where we immobilized non-labeled control samples. It must be 

noted that non-labeled protein contributes to the calculated degree of labeling, yet is not 

immobilized and henceforth does not contribute to either immobilized ligand response or 

IgG binding response. The significant factors contributing to this trend were found in a 

statistical analysis of the IgG binding as an output in the DoE analysis (example of FcγRIIb 

shown in Figure 5.2). The statistical analysis indicated that significant factors on the IgG 

binding response are the protein:biotin ratio during biotinylation (P<0.0005), the interaction 

between the protein:biotin ratio with the incubation pH (P=0.001) and the interaction 

between protein:biotin ratio with the incubation time (P=0.015). The main driver for 

significant differences in remaining ligand activity is the protein:biotin ratio. Within each of 

the different protein:biotin ratio conditions that were tested, also the combination with 

either of the two other input variables has a significant influence. However, the incubation 

pH and incubation time on its own do not have a significant influence on the IgG binding to 

biotinylated Fcγ receptors. The adjusted model where non-significant interactions of factors 

were excluded has a predictive R2 of 98%. Appropriateness of the statistical model was 

evaluated by analysis of the normalized residuals (Appendix B, Figure 5.B.1).  

 These data suggest that either cross-linking of the ligand at the surface may occur, as 

proposed by Papalia and Myszka(10) or that the biotins are present at lysines in or near the 

interaction site involved in IgG binding.  

 

Characterization of low affinity Fcγ receptor biotinylation  

109 

 

Figure 5.2 Pareto chart of the factors used in the design of experiments (DoE) for IgG binding activity 

to FcγRIIb as output variable. Significant factors for the IgG binding response are identified. 

   

Biotin distribution by mass spectrometry 

 In the paper by Papalia and Myszka(10) high degrees of labeling are related to more 

ligand cross-linking at the sensor surface. For cross-linking at the surface, the biotin loading 

on a single protein molecule should be at least two or more. To determine whether more 

cross-linking may occur under certain biotinylation conditions, we determined the biotin 

distribution on the protein molecules by intact mass spectrometry analysis. An average 

degree of labeling of 1 can be obtained when exactly each protein carries a single biotin, 

however in theory it may as well be possible that a percentage of the proteins carry two or 

more biotins and the other percentage is not labeled at all. On average, both samples may 

give a degree of labeling of 1. Subsequently, unlabeled protein molecules will not be 

immobilized on a streptavidin sensor and only the proteins with multiple biotins will be 

immobilized in the latter case, which may be prone to cross-linking in contrast to a protein 

that only carries a single biotin. FcγRIIb was taken as a model system for further 

investigation. 

 In the intact mass analysis of FcγRIIb after deglycosylation we could distinguish peaks 

that correspond to the mass of the intact protein (Figure 5.3-a) and to masses of the intact 

protein with one, two or three biotins attached (the peak with three biotins attached not 

being visible in the mass spectra that are shown). The calculations of biotin distribution on  
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Figure 5.2 Pareto chart of the factors used in the design of experiments (DoE) for IgG binding activity 

to FcγRIIb as output variable. Significant factors for the IgG binding response are identified. 

   

Biotin distribution by mass spectrometry 

 In the paper by Papalia and Myszka(10) high degrees of labeling are related to more 

ligand cross-linking at the sensor surface. For cross-linking at the surface, the biotin loading 

on a single protein molecule should be at least two or more. To determine whether more 

cross-linking may occur under certain biotinylation conditions, we determined the biotin 

distribution on the protein molecules by intact mass spectrometry analysis. An average 

degree of labeling of 1 can be obtained when exactly each protein carries a single biotin, 

however in theory it may as well be possible that a percentage of the proteins carry two or 
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that only carries a single biotin. FcγRIIb was taken as a model system for further 

investigation. 
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Figure 5.3 Biotin distribution under various biotinylation conditions. a) Deconvoluted mass spectra of 

the control sample (unlabeled FcγRIIb; top) and one of the biotinylated samples (pH 7.5, 240 minutes, 

1:2 protein:biotin ratio; bottom). b) Relative intensities of the peaks in the mass spectra corresponding 

with the number of biotins on the protein. The X-axis represents the degree of labeling (DOL) as 

determined in the fluorescence assay (FR) and as determined by mass spectrometry (MS) and the run 

number of the DoE (Run). C) Correlation between the percentage of modified protein and the IgG 

binding response in SPR binding assay for species with 1 or 2 biotin molecules attached. 

 

FcγRIIb were based on the ion intensities of the corresponding peaks in the mass spectra 

which were then used for a relative quantitation (Figure 5.3-b). Similar experiments were 

performed on the other three Fcγ receptors and data are shown in supporting information 

(Appendix C, Figure 5.C.1, Figure 5.C.2 and Figure 5.C.3). The ion intensities of the 

unmodified proteins may be overestimated compared to the biotinylated proteins due to 

differences in ionization efficiency between the different species. This leads to lower degrees 

of labeling based on the MS data compared to the fluorescent biotin quantitation kit (both 

values are indicated inFigure 5.3-b). Although the percentage of unmodified protein may be 

overestimated, the distribution of the peaks among the different samples can be compared 

to each other from species to species as all samples were analyzed with the same settings 

and in a single analysis. The degrees of labeling from fluorescent determination by the 
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FluoReporter kit are used for quantitation purposes and MS data are only used for 

comparison of biotin distribution on the proteins. 

 The distribution of biotins on the protein molecules is different between the eleven 

biotinylation conditions (Figure 5.3-b). Highest biotin loading is reached in the samples with 

the highest protein:biotin ratio. Only under these conditions a substantial percentage of 

protein with two biotins attached is formed and only very limited protein with 3 or more 

biotins are found overall (<0.5%). The distribution of protein species with only a single 

biotin and without biotin modification varies between the applied reaction conditions and 

only a minor difference in IgG binding is measured in these samples (Figure 5.3-c) whereas 

lowest IgG binding is measured for the samples with double-biotinylated species. Together 

these data suggest that a decrease in IgG binding is most likely not dependent on ligand 

cross-linking at the surface, or at best plays a minor role under the investigated conditions.   

Biotin localization by peptide mass mapping 

 Our second hypothesis for the reduced ligand activity considered biotinylation of 

lysines that are present in or near the interaction site involved in IgG binding. The Fcγ 

receptors have many lysines in their IgG binding site(19,20) (Figure 5.4), and consequently we 

were interested to identify the actual positions that are biotinylated to determine whether 

this IgG binding site is influenced upon biotinylation. As the four low affinity Fcγ receptors 

are relatively similar proteins we chose FcγRIIb as a model to identify the biotinylated 

residues by peptide mass mapping analysis.   

 The biotinylated samples and a non-modified sample of FcγRIIb were subjected to 

deglycosylation, reduction, alkylation and trypsin or chymotrypsin digestion to generate 

short peptides of the proteins. We chose a chymotrypsin digestion over a trypsin digestion 

for quantitation, because the biotin modification is expected on lysines. The more commonly 

used trypsin enzyme cleaves at lysines, but does not recognize biotinylated lysines(27) which 

would complicate the calculation of modified residues. Chymotrypsin on the other hand 

cleaves a protein into relatively small peptides because it cleaves at several different amino 

acids (Tyr, Trp, Phe, Met, Leu and His(28)). The use of chymotrypsin prevents the presence 

of lysines at the C-terminus of the peptide which simplifies the data analysis for quantitation 

compared to a tryptic digestion. Chymotryptic peptides on the other hand are less facile to 

fragment in MS/MS analysis, which is necessary to identify the exact location of the biotins. 

A trypsin digestion for the localization at specific residues was therefore included. 
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Figure 5.4 Three-dimensional protein model of FcγRIIb with lysine residues indicated as colored amino 

acids. Below is the amino acid sequence of FcγRIIb with the IgG binding site from Hulett et al21 in red 

and underlined and the lysine residues in blue. 

   

 First of all we used MS/MS fragmentation data of the tryptic digests to determine 

which lysines were biotinylated and whether the N-terminal alanine was biotinylated as well 

(Appendix D). The tryptic peptides T112-117 (DKPLVK) and T112-125 (DKPLVKVTFFQNGK), 

which contain the lysines that are present in one of the active binding sites of FcγRIIb, are 

modified at Lys113 and Lys117 (Appendix D, Figure 5.D.1 to Figure 5.D.7). In the MS/MS 

fragmentation spectra we could localize the biotin at Lys113 in peptide T112-117 and at 

Lys117 in peptide T112-125. The latter one explains the missed trypsin cleavage of this 

peptide, as trypsin does not recognize the lysine upon biotinylation and cannot cleave at this 

lysine.(27) The MS/MS fragmentation spectra of biotinylated peptides T1-4 and T1-8 were 

used to determine whether the lysine or the N-terminal alanine was biotinylated (Appendix 

D, Figure 5.D.8 and Figure 5.D.9). MS/MS fragmentation of biotinylated T1-4 proves that 

the N-terminal alanine of this peptide is biotinylated and trypsin cleaves at the non-modified 

lysine (Lys4) (Appendix D, Figure 5.D.8). Fragmentation of biotinylated peptide T1-8, which 

contains a missed trypsin cleavage site, matches with the expected fragment ions of the 



Ch
ap

te
r 5

Chapter 5 

112 

FluoReporter kit are used for quantitation purposes and MS data are only used for 

comparison of biotin distribution on the proteins. 

 The distribution of biotins on the protein molecules is different between the eleven 

biotinylation conditions (Figure 5.3-b). Highest biotin loading is reached in the samples with 

the highest protein:biotin ratio. Only under these conditions a substantial percentage of 

protein with two biotins attached is formed and only very limited protein with 3 or more 

biotins are found overall (<0.5%). The distribution of protein species with only a single 

biotin and without biotin modification varies between the applied reaction conditions and 

only a minor difference in IgG binding is measured in these samples (Figure 5.3-c) whereas 

lowest IgG binding is measured for the samples with double-biotinylated species. Together 

these data suggest that a decrease in IgG binding is most likely not dependent on ligand 

cross-linking at the surface, or at best plays a minor role under the investigated conditions.   

Biotin localization by peptide mass mapping 

 Our second hypothesis for the reduced ligand activity considered biotinylation of 

lysines that are present in or near the interaction site involved in IgG binding. The Fcγ 

receptors have many lysines in their IgG binding site(19,20) (Figure 5.4), and consequently we 

were interested to identify the actual positions that are biotinylated to determine whether 

this IgG binding site is influenced upon biotinylation. As the four low affinity Fcγ receptors 

are relatively similar proteins we chose FcγRIIb as a model to identify the biotinylated 

residues by peptide mass mapping analysis.   

 The biotinylated samples and a non-modified sample of FcγRIIb were subjected to 

deglycosylation, reduction, alkylation and trypsin or chymotrypsin digestion to generate 

short peptides of the proteins. We chose a chymotrypsin digestion over a trypsin digestion 

for quantitation, because the biotin modification is expected on lysines. The more commonly 

used trypsin enzyme cleaves at lysines, but does not recognize biotinylated lysines(27) which 

would complicate the calculation of modified residues. Chymotrypsin on the other hand 

cleaves a protein into relatively small peptides because it cleaves at several different amino 

acids (Tyr, Trp, Phe, Met, Leu and His(28)). The use of chymotrypsin prevents the presence 

of lysines at the C-terminus of the peptide which simplifies the data analysis for quantitation 

compared to a tryptic digestion. Chymotryptic peptides on the other hand are less facile to 

fragment in MS/MS analysis, which is necessary to identify the exact location of the biotins. 

A trypsin digestion for the localization at specific residues was therefore included. 

Characterization of low affinity Fcγ receptor biotinylation  

113 

 

Figure 5.4 Three-dimensional protein model of FcγRIIb with lysine residues indicated as colored amino 

acids. Below is the amino acid sequence of FcγRIIb with the IgG binding site from Hulett et al21 in red 

and underlined and the lysine residues in blue. 

   

 First of all we used MS/MS fragmentation data of the tryptic digests to determine 

which lysines were biotinylated and whether the N-terminal alanine was biotinylated as well 

(Appendix D). The tryptic peptides T112-117 (DKPLVK) and T112-125 (DKPLVKVTFFQNGK), 

which contain the lysines that are present in one of the active binding sites of FcγRIIb, are 

modified at Lys113 and Lys117 (Appendix D, Figure 5.D.1 to Figure 5.D.7). In the MS/MS 

fragmentation spectra we could localize the biotin at Lys113 in peptide T112-117 and at 

Lys117 in peptide T112-125. The latter one explains the missed trypsin cleavage of this 

peptide, as trypsin does not recognize the lysine upon biotinylation and cannot cleave at this 

lysine.(27) The MS/MS fragmentation spectra of biotinylated peptides T1-4 and T1-8 were 

used to determine whether the lysine or the N-terminal alanine was biotinylated (Appendix 

D, Figure 5.D.8 and Figure 5.D.9). MS/MS fragmentation of biotinylated T1-4 proves that 

the N-terminal alanine of this peptide is biotinylated and trypsin cleaves at the non-modified 

lysine (Lys4) (Appendix D, Figure 5.D.8). Fragmentation of biotinylated peptide T1-8, which 

contains a missed trypsin cleavage site, matches with the expected fragment ions of the 



Chapter 5 

114 

peptide with the biotin conjugated to the lysine at position 4. In this peptide the N-terminal 

alanine is not biotinylated as expected fragment ions for this modification are absent 

(Appendix D, Figure 5.D.9).   

 After we confirmed that the N-terminal alanine and each of the lysines in the amino 

acid sequence were biotinylated, we quantified the percentage of biotinylation at each 

position from the chymotrypsin digestion. A short cleavage time was used for chymotrypsin 

to maintain moderately sized peptides which are generally well ionized in mass spectrometry 

analysis (Appendix E, Table 5.E.1). A few peptides contained more than one lysine in the 

amino acid sequence of the chymotryptic peptides. Quantitation of these peptides was 

performed on the masses corresponding to peptides with one, two or three biotins attached. 

The exact location of biotin on a particular lysine could not be determined in these 

chymotryptic peptides, but trypsin data proved that all of the lysines and the N-terminal 

alanine in FcγRIIb were biotinylated, only not all to the same extent. Quantitation was 

based on the peak area in extracted ion chromatograms of the unmodified and modified 

peptides in the chymotrypsin digestion. Ionization efficiencies of non-modified peptides and 

of biotinylated peptides are most likely different, due to the modification. The calculated 

percentages of modification should therefore only be used to compare the reaction 

conditions among each other, rather than as absolute numbers. The extracted ion 

chromatograms of peptides C1-7 (APPKAVL) and C111-120 (KDKPLVKVTF) in the non-

modified sample and one of the biotinylated samples are used to illustrate the quantitation 

(Appendix E, Figure 5.E.1 and Figure 5.E.2). 

 Peak area percentages of biotinylated peptides were calculated for each of the eleven 

DoE runs (Figure 5.5-a). Two peptides, C1-7 and C111-120, have the highest levels of 

biotinylation irrespective of the labeling conditions that were applied, as the highest 

percentage of modification is detected at both peptides in each of the eleven samples that 

have been analyzed. In DoE runs 1 and 9 (lowest IgG binding), these peptides are modified 

at levels over 30%. These peptides contain residues Ala1 and Lys4 and residues Lys111, 

Lys113 and Lys117 respectively. All other lysines that are present in the amino acid sequence 

are modified with biotin to some extent, but modification levels are below 10% in each of 

the reaction conditions. To quantify biotinylation levels at Ala1 we used the trypsin digestion. 

Only for this position the tryptic peptide mapping could be used, as we measured both the 

non-modified tryptic peptide T1-4 and the biotinylated peptide T1-4, which was biotinylated 

at Ala1 as previously shown in the MS/MS fragmentation spectrum. We expected a higher 

level of biotinylation at Ala1 in  
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Figure 5.5 a) Biotinylation levels on the different modified residues. Extracted ion chromatograms from 

peptide mass mapping chromatograms were integrated. The peak area of the modified peptide relative 

to the total peak area of a particular peptide was used to calculate the percentage of biotinylation at 

each position. Run numbers correspond to the different DoE samples and reaction conditions areas 

indicated in Table 1 and the degrees of labeling are indicated between brackets. b) Correlation between 

IgG binding in the SPR assay and % of modified peptides C1-7 and ,C111-120 and T1-4 (representing 

total biotin modifications, i.e. 1 and 2 biotins per peptide relative to total peptide). 
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the DoE runs incubated at pH 6.5 since other groups(8,9) have published that incubation at 

lower pH (e.g. pH 6.5) would preferentially incorporate the biotins at α-amines (i.e. the N-

terminus). If the reaction would shift to the α-amine at pH 6.5, we would expect an increase 

in biotinylation levels at peptide T1-4 (Ala1) or peptide C1-7 (Ala1/Lys4) and a decrease in 

biotinylation levels at any of the other peptides when incubated at pH 6.5. However, we do 

not see a shift of biotinylation at ε-amines (i.e. lysines) towards biotinylation at the α-amine 

when incubating at lower pH. The biotinylation levels at peptides T1-4, C1-7 and C111-120 

are similar when compared between each of the tested conditions (Figure 5.5-a). Runs 1 to 

4 have been incubated at pH 6.5 and no increase in biotinylation level at peptide C1-7 or 

peptide T1-4 compared to e.g. peptide C111-120 is observed in one of these runs. Both 

groups(8,9) have performed the experiments on short peptides rather than on intact proteins, 

which may explain the apparent discrepancies with our results as the environment of the 

biotinylation site is different. 

 Lysines at positions 111, 113 and 117 in the protein are present in one of the 

interaction sites known for IgG binding (Figure 5.4).(19,20) The samples with highest 

biotinylation levels on Lys111, Lys113 and Lys117 have a higher degree of labeling and lowest 

responses in the IgG binding assay on SPR. We hypothesized that the lysines that are more 

prone towards biotinylation may be easier accessible, for example because they are more 

surface exposed. The three dimensional model of FcγRIIb (Figure 5.4) displays all lysine 

residues which are all present on the outside of the protein model, making all of them easily 

accessible for modifications. This does not explain the preference of biotinylation at certain 

residues. Possibly the local electrostatic environment around Lys111, Lys113 and Lys117 is 

preferred for the biotinylation reaction. 

 The percentage of biotinylation at peptide C111-120 (KDKPLVKVTF), containing Lys111, 

Lys113 and Lys117, was used as an output in a statistical analysis of the DoE. Both 

protein:biotin ratio (P<0.0005) and the incubation pH (P<0.0005) have a significant impact 

on the level of biotinylation at this specific position, as well as the interaction between the 

two parameters (P=0.004) (Figure 5.6). Appropriateness of the statistical model was 

evaluated by analysis of the normalized residuals (Appendix B, Figure 5.B.2). However, 

similar significance in these factors was observed for the other peptides e.g. C1-7 

(P<0.0005 for ratio and for incubation time, P=0.002 for the interaction between both). The 

same factors that have significant influence on the degree of labeling at individual peptide 

level drive the total degree of labeling (Figure 5.6). 
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Figure 5.6 Pareto chart of the factors used in the DoE based on the percentage of modified peptide 

C111-120 (a) and total degree of labeling (b). 

 

 This suggests that these factors relate to the degree of labeling, in other words the 

pattern of labeled peptides is the same for each of the tested conditions (Figure 5.5-a). This 

is also illustrated by the co-linearity of the IgG binding and % modified peptide (Figure 5.5-
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b) of peptides C1-7, C111-120 and T1-4. All three peptides show similar correlation between 

IgG binding and the percentage of modification which is in line with the correlation found in 

the degree of labeling and IgG binding presented in Figure 5.1. Linear regression analysis of 

percentage of modified peptides versus IgG binding (Figure 5.5-b) shows that there is a 

significant deviation from zero, i.e. correlation between the two variables (P=0.048, 

P=0.051 and P=0.0093 for C111-120, C1-7 and T1-4 respectively). However, when we 

exclude the two highest levels of modification, then the linear regression is not significantly 

different from zero (P=0.35, P=0.31 and P=0.53 respectively). These highest two points 

originate from the only two reaction conditions where a substantial amount of double-

biotinylated species are formed (Figure 5.3-b). These results suggests that reaction 

conditions that lead to a substantial percentage of FcγRIIb protein with 2 biotin molecules 

attached most likely have a reduced binding activity. 

Steady state equilibrium affinity determination 

 Minimally labeled material for each of the four low-affinity Fcγ receptors was taken for 

further assay development. The receptors were biotinylated at a protein:biotin ratio of 

1:0.75, incubation time of 30 minutes and an incubation pH of 6.5. Degrees of labeling were 

determined between 0.38 and 0.59. No mass spectrometry analyses were performed on 

these newly prepared ligands, but based on results in Figure 5.3-b we assumed that there 

are no substantial amount of double-biotinylated species present in these preparations. 

IgG1 samples between 9 nM and 20 µM were injected for steady state equilibrium (SSE) 

affinity determination (Figure 5.7). Affinities determined from these minimally labeled 

samples were compared with values from literature(15,29) (Table 5.2) determined at 25°C. 

The paper of Bruhns et al.(15) reports KA values which were converted to KD values for our 

comparison (KD=1/KA). Both references used the steady state equilibrium determination for 

affinity. Bruhns et al.(15) directly immobilized the Fcγ receptors with an amine coupling; Patel 

et al.(29) immobilized the IgG on the sensor surface by amine coupling and used the Fcγ 

receptors as analyte. 

 Affinities that we determined with the minimally labeled material are highly similar 

compared to the two references; all three values are of the same order of magnitude (Table 

5.2). These results indicate that a minimal labeling of ligands provides a robust alternative 

for routine use of ligands that are problematic to immobilize by direct coupling. 
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Figure 5.7 Steady state equilibrium (SSE) affinity determination of IgG1 on four low affinity Fcγ 

receptors immobilized on a streptavidin sensor after minimal biotinylation. FcγRIIa in black, FγRIIb in 

blue, FcγRIIIa in green and FcγRIIIb in red. Sensorgrams of a triplicate concentration series between 9 

nM and 20 µM are shown on the left side, concentration vs response curves for SSE affinity 

determination are shown on the right side. Analyses were performed at 25°C for comparison with 

values from literature. 
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Table 5.2 Steady state equilibrium affinity determinations 

Receptor KD (µM) (this paper) KD (µM)(29)  KD (µM)(15) 

FcγRIIa 0.79 ± 0.11 0.80 0.19 

FcγRIIb 4.07 ± 0.21 3.10 8.33 

FcγRIIIa 0.38 ± 0.03 0.85 0.85 

FcγRIIIb 2.70 ± 0.17 1.90 4.55 

  

Conclusions 

 Protein biotinylation is applied in many cases where a protein needs to be immobilized 

on a sensor surface for protein interaction measurements. In certain cases, direct 

immobilization is not preferred because the protein becomes partially inactive or the protein 

conformation changes upon direct coupling. One of the possibilities to overcome these 

issues is by capturing a protein by the high affinity biotin-streptavidin interaction. However, 

chemical biotinylation of one of the interaction partners may be required, which may 

interfere with the binding site and reduce activity. Here we have shown that aiming at a 

minimal protein labeling is successful to maintain protein activity. In the examples of Fcγ 

receptors that we showed here, we were able to obtain low levels of biotinylation while 

similar ligand densities were obtained on the sensor surface. Statistical evaluation of a 

design of experiments revealed that a very low protein:biotin ratio is a key parameter to 

obtain the most active protein on the surface while still sufficient amounts of protein are 

labeled in order to immobilize these. 

 However, even when low levels of biotinylation (between 0.3 and 1.8) were obtained 

under various conditions, differences in protein binding were measured while similar ligand 

densities were obtained. This is likely due to partial inactivity of the captured ligand. Further 

characterization of biotinylated Fcγ receptors by mass spectrometry showed that proteins 

that have two or more biotins attached on a relatively large fraction of the total protein 

resulted in less active proteins on the sensor surface. This may be due to ligand cross-

linking at the surface, however, the highest biotin loading that we found was two biotins on 

a protein and only very little cross-linking is expected. On the other hand, localization of the 

biotins in the protein sequence of FcγRIIb by peptide mapping mass spectrometry showed 

that under all of the tested reaction conditions one of the lysine containing peptides is 

preferentially biotinylated. The lysines at positions 111, 113 and 117 in the protein sequence 

(peptide C111-120), which are present at one of the IgG binding sites of FcγRIIb, were 
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most prone towards biotinylation. We have shown here that biotinylation of these residues 

has a direct impact on the remaining activity of the protein on the sensor surface.  

 The level of biotinylation at these positions can be minimized, most notably by 

choosing conditions in which limited proteins with two coupled biotins are formed. Although 

the reaction cannot be directed to the α-amine at the N-terminus, biotinylation at the IgG 

binding site can be minimized by selection of reaction conditions that will mainly result in a 

single biotin on each protein, simply by reducing the chance of attaching a biotin in the IgG 

binding site. The aim should be to have the lowest amount of double-biotinylated species to 

have the most active ligand, while at the same time the highest amount of proteins is 

labeled with a single molecule to keep an efficient labeling procedure. In our example with 

FcγRIIb, the level of biotinylation is mainly driven by protein:biotin ratio and incubation pH. 

Most active ligand is mainly achieved by protein:biotin ratios of 1:0.5 and to a lesser extent 

at protein:biotin ratios of 1:1.25. However, this only impacts the total level of biotinylation 

and not the position of the coupled biotin. This supports the finding that minimizing the 

amount of proteins with two biotins attached is key in retaining activity. In addition, 

although pH was found to influence the degree of labeling, it was not found to be a 

significant factor in IgG binding. These conditions may vary from protein to protein, and 

therefore it is recommended to perform a small design of experiments study on other 

proteins. 

 In the end we tested whether the minimally labeled material will give us reliable 

affinity data in an IgG binding experiment. Steady state affinity measurement on minimally 

labeled Fcγ receptors matched with values that have been reported in literature. This finding 

strengthens our conclusion that a very minimal labeling of protein is recommended to retain 

the most active ligand on a sensor surface and excludes random immobilization by a direct 

amine coupling method. 
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Appendix A IgG binding to biotinylated Fcγ receptors 
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Appendix B Statistical data analysis 

 

 

Figure 5.B.1 Normal probability plot (a) and plot of standardized residuals versus fits (b) are shown to 

support the appropriateness of the statistical analysis of the DoE for IgG binding to FcγRIIb. The 

standardized residuals in the normal probability plot (a) are linearly distributed and the standardized 

residuals plotted against the fitted values are randomly distributed (b). Both graphs indicate a proper 

statistical evaluation of the peptide biotinylation 
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Figure 5.B.2 Normal probability plot (a) and plot of standardized residuals versus fits (b) are shown to 

support the statistical analysis of the DoE for peptide biotinylation on C111-120. The standardized 

residuals in the normal probability plot (a) are linearly distributed and the standardized residuals plotted 

against the fitted values are randomly distributed (b). Both graphs indicate a proper statistical 

evaluation of the peptide biotinylation 
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Appendix C Biotin distribution results 

Figure 5.C.1 Biotin distribution on FcγRIIIa expressed as relative intensities of the peaks in the mass 

spectra corresponding with the number of biotins on the protein. The X-axis represents the degree of 

labeling (DOL) as determined in the fluorescence assay (FR) and as determined by mass spectrometry 

(MS) and the run number of the DoE.  
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Figure 5.C.3 Biotin distribution on FcγRIIa expressed as relative intensities of the peaks in the mass 

spectra corresponding with the number of biotins on the protein. The X-axis represents the degree of 

labeling (DOL) as determined in the fluorescence assay (FR) and as determined by mass spectrometry 

(MS) and the run number of the DoE.  
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Appendix D MS and MS/MS results 

 

Figure 5.D.1 Part of the tryptic peptide mapping chromatogram (10-30 minutes) of the control sample 

(red) and a biotinylated sample (green) showing the same peptide T112-117 without biotin (11.2 

minutes), T112-117 with a biotin (21.4 minutes) and in a missed cleavage site T112-125 with a biotin 

(28.4 minutes).  

 

Figure 5.D.2 Mass spectrum corresponding to the peaks at 11.2 minutes of the control sample (red) 

and the biotinylated sample (green), showing a decrease in peak intensity of the unmodified peptide 

T112-117 in the biotinylated sample, and no peaks of the biotinylated peptides T112-117 and T112-125 

in the control sample.  
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Figure 5.D.3 Mass spectra corresponding to the peaks at 21.4 minutes of the control sample (red) and 

the biotinylated sample (green), showing no peaks of the biotinylated peptide T112-117 in the control 

sample.  

 

Figure 5.D.4 Mass spectra corresponding to the peaks at 28.4 minutes of the control sample (red) and 

the biotinylated sample (green), showing no peaks of the biotinylated peptide T112-125 in the control 

sample.  
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Figure 5.D.5 MS/MS fragmentation spectrum of the unmodified peptide T112-117 including the 

expected fragment table with b- and y- ions for this peptide are shown at the right side. Green bullets 

indicate the fragment ions that are detected. The unmodified peptide T112-117 is confirmed by the full 

y-series that is detected.  

 

Figure 5.D.6 MS/MS fragmentation spectrum of the biotinylated peptide T112-117 including the 

expected fragment tables with b- and y- ions for the different potential biotinylation sites are shown at 

the right side. Green bullets indicate the fragment ions that are detected. Biotinylation in peptide T112-

117 is confirmed at Lys113 by the full y-series and 4 out of 6 b-series ions. The alternative biotinylation 

site (Lys117) can be eliminated as only 2 y-ions are detected, which are equal to the Lys113 

biotinylation.  
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Appendix E Chymotrypsin digestion 

Table 5.E.1 Chymotryptic peptides of FcγRIIb which are modified with biotin, the corresponding 

masses and retention time in the EIC chromatograms 

Peptide Amino acid 
sequence 

Residue(s) Modifi-
cation 

[M+H]+ m/z charge tR 
(min) 

C1-7 APPKAVL Ala1 

Lys4 

- 695.4 695.4 1 16.4 

1 biotin 1034.6 517.8 2 23.5 

C8-24 KLEPQWINVLQED
SVTL 

Lys8 - 2012.0 1006.5 2 29.8 

1 biotin 2351.2 1176.1 2 32.7 

C57-66 KANNNDSGEY Lys57 - 1112.4 556.7 2 10.1 

1 biotin 1451.6 726.3 2 17.4 

C111-120 KDKPLVKVTF Lys111 

Lys113 

Lys117 

- 1174.8 587.9 2 20.0 

1 biotin 1513.8 757.4 2 23.7 

1 biotin 1513.8 757.4 2 24.3 

1 biotin 1513.8 757.4 2 24.6 

2 biotin 1853.0 927.0 2 27.3 

2 biotin 1853.0 927.0 2 27.9 

2 biotin 1853.0 927.0 2 28.3 

C121-129 FQNGKSKKF Lys125 

Lys127 

Lys128 

- 1083.6 542.3 2 12.3 

1 biotin 1422.8 711.9 2 18.7 

1 biotin 1422.8 711.9 2 19.6 

C161-173 SSKPVTITVQAPH Lys163 - 1364.8 682.9 2 16.6 

1 biotin 1704.0 852.5 2 21.5 
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Figure 5.E.1 Chymotryptic digestion of FcγRIIb control sample. Total ion current chromatogram (1) 

and extracted ion chromatograms of peptide C1-7 without biotin (2) at 16.4 minutes and C1-7+biotin 

(3) where no peak with the correct mass is detected, peptide C111-120 without biotin (4) at 19.9 

minutes and C111-120+biotin (5) where no peak with the correct mass is detected. 
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Figure 5.E.2 Chymotryptic digestion of FcγRIIb biotinylated sample. Total ion current chromatogram 

(1) and extracted ion chromatograms of peptide C1-7 without biotin (2) at 16.4 minutes and C1-

7+biotin (3) at 23.5 minutes, peptide C111-120 without biotin (4) at 19.9 minutes and C111-120+biotin 

(5) at 23.9, 24.3 and 24.6 minutes. Peptide C111-120 contains three lysines that can possibly be 

biotinylated and these can be resolved on the reversed phase C18 column, appearing as three separate 

peaks with the same mass. 
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Figure 5.E.2 Chymotryptic digestion of FcγRIIb biotinylated sample. Total ion current chromatogram 

(1) and extracted ion chromatograms of peptide C1-7 without biotin (2) at 16.4 minutes and C1-

7+biotin (3) at 23.5 minutes, peptide C111-120 without biotin (4) at 19.9 minutes and C111-120+biotin 

(5) at 23.9, 24.3 and 24.6 minutes. Peptide C111-120 contains three lysines that can possibly be 

biotinylated and these can be resolved on the reversed phase C18 column, appearing as three separate 

peaks with the same mass. 
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Abstract 

Fcγ receptor and neonatal Fc receptor (FcRn) interactions of therapeutic antibodies are 

measured in vitro as indicators of antibody functional performance. The Fc tail interactions 

are important for the efficacy and safety of therapeutic antibodies. High-throughput binding 

studies on each of the human Fcγ receptor classes (FcγRI, FcγRIIa, FcγRIIb, FcγRIIIa and 

FcγRIIIb) as well as FcRn have been developed and performed with human IgG after stress-

induced modifications to identify potential impact in vivo. Interestingly we found that 

asparagine deamidation reduced the binding to the low affinity Fcγ receptors (FcγRIIa, 

FcγRIIb, FcγRIIIa and FcγRIIIb), while FcγRI and FcRn binding were not impacted. 

Deglycosylation completely abolished the binding to all Fcγ receptors, but showed no impact 

on the binding to FcRn. On the other hand, afucosylation only impacted the binding to 

FcγRIIIa and FcγRIIIb. Methionine oxidation at levels below 7%, multiple freeze-thaw cycles 

and short-term thermal/shake stress did not influence binding to any of the Fc receptors. 

The presence of high molecular weight species, or aggregates, disturbed measurements in 

these binding assays, i.e. a few percent (up to 5%) of aggregates in IgG samples changed 

the binding and kinetics to each of the Fc receptors. Overall, the screening assays as 

designed in this manuscript prove that rapid and multiplexed binding assays may be a 

valuable tool for lead optimization, process development, in-process controls and for 

biosimilarity assessment of IgGs during development and manufacturing of therapeutic 

IgGs.  
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Introduction 

Therapeutic antibodies, like IgGs, are one of the largest classes of modern 

biopharmaceuticals and the market for these products continues to grow year by year.(1) 

Interactions of IgGs with effector cells through Fcγ receptors are often considered a mode 

of action of therapeutic antibodies.(2-4) Fcγ receptors are cell surface receptors that can be 

found on innate immune effector cells such as natural killer cells and macrophages. A 

therapeutic IgG binds to a membrane-bound antigen on target cells by its complementary 

determining regions (CDRs) in the variable domain, while the Fc region in the constant 

domain of that same IgG can bind to various Fcγ receptors on effector cells, which could 

lead to effector function, like antibody-dependent cellular cytotoxicity (ADCC) or 

phagocytosis (ADCP). Therefore, binding of therapeutic antibodies to Fcγ receptors should 

be evaluated as part of the critical quality attribute assessment.(2)  

Different Fcγ receptor subclasses are known to be present on human effector cells: the 

high affinity FcγRI (CD64) and the low affinity receptors FcγRIIa (CD32a), FcγRIIb (CD32b), 

FcγRIIIa (CD16a) and FcγRIIIb (CD16b).(5,6) Within these five subclasses different 

polymorphic variants exist, which, in some cases, influence binding of IgG to these 

receptors.(7) Furthermore, the neonatal Fc receptor (FcRn) determines the half-life of IgGs in 

the bloodstream. Binding of FcRn to IgG takes place in the endosome at acidic pH, and the 

IgG is then recycled back into plasma at neutral pH, thereby preventing lysosomal 

degradation. Recent studies have investigated the correlation between the in vitro binding 

of IgGs to FcRn and their corresponding serum half-life.(8,9) Datta-Mannan et al.(10) suggest 

that the in vitro – in vivo correlation of the FcRn binding cannot always directly be made, 

since IgG target binding may influence elimination of the IgG from the system as well. FcRn 

does not belong to the Fcγ receptor subclasses and binds to a different region in the IgG (11) 

than IgG regions recognized by Fcγ receptors. We will refer to Fc interactions as a general 

term, which includes both the Fcγ interactions and FcRn interactions. 

Therapeutic IgGs are prone to many different post-translational modifications during 

production and processing, which may have an impact on the Fc tail functionality. 

Monitoring the levels of modifications throughout the entire development, production and 

marketing of IgGs are required from a regulatory perspective. Several modifications on IgGs 

are known to affect the binding to Fc receptors, such as aglycosylation (12-16), differential 

glycosylation (i.e. galactosylation (12,14,15), sialylation (12) and fucosylation (13,16-19), methionine 

oxidation (20-23) and aggregation (15,23-27). We investigated the effects of these modifications, 
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Introduction 

Therapeutic antibodies, like IgGs, are one of the largest classes of modern 
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found on innate immune effector cells such as natural killer cells and macrophages. A 
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polymorphic variants exist, which, in some cases, influence binding of IgG to these 

receptors.(7) Furthermore, the neonatal Fc receptor (FcRn) determines the half-life of IgGs in 

the bloodstream. Binding of FcRn to IgG takes place in the endosome at acidic pH, and the 

IgG is then recycled back into plasma at neutral pH, thereby preventing lysosomal 

degradation. Recent studies have investigated the correlation between the in vitro binding 

of IgGs to FcRn and their corresponding serum half-life.(8,9) Datta-Mannan et al.(10) suggest 

that the in vitro – in vivo correlation of the FcRn binding cannot always directly be made, 

since IgG target binding may influence elimination of the IgG from the system as well. FcRn 

does not belong to the Fcγ receptor subclasses and binds to a different region in the IgG (11) 

than IgG regions recognized by Fcγ receptors. We will refer to Fc interactions as a general 

term, which includes both the Fcγ interactions and FcRn interactions. 

Therapeutic IgGs are prone to many different post-translational modifications during 

production and processing, which may have an impact on the Fc tail functionality. 

Monitoring the levels of modifications throughout the entire development, production and 

marketing of IgGs are required from a regulatory perspective. Several modifications on IgGs 

are known to affect the binding to Fc receptors, such as aglycosylation (12-16), differential 

glycosylation (i.e. galactosylation (12,14,15), sialylation (12) and fucosylation (13,16-19), methionine 

oxidation (20-23) and aggregation (15,23-27). We investigated the effects of these modifications, 
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and additionally looked into effects of asparagine deamidation, heat/shake stress and 

repeated freeze-thaw cycles on IgGs to Fc receptor binding. Stress studies were performed 

to accelerate modifications on an IgG1 and these were measured on all Fc receptors and 

quantified by HPLC, CE or mass spectrometry as a reference method. Modifications that 

were introduced were kept at levels that are likely to be expected during actual in-process 

measurements or shelf-life studies. i.e. generally not higher than 10% modification. 

The aim of our study is to develop a screening assay that would rapidly measure IgG 

binding to the different Fcγ receptors and FcRn as part of critical quality attribute (CQA) 

assessments during lead optimization studies and in-process control. However, the biological 

differences in binding properties between Fc receptors prevented the development of a 

single screening sensor. Affinity ranges of FcRn and FcγRI (nM) compared to FcγRIIIa, 

FcγRIIIb, FcγRIIa and FcγRIIb (µM) limited the analysis of IgGs in proper concentration 

ranges for each of the Fc receptor in a single measurement. On top of that, kinetics of IgG 

binding to FcRn follow a completely different profile (association at pH 6, dissociation at 

both pH 6 and pH 7.4) compared to the other Fcγ receptors (association and dissociation at 

pH 7.4) and this could not be combined into a single assay. Therefore, Fcγ receptor 

interactions of FcγRIIa, FcγRIIb, FcγRIIIa and FcγRIIIb were simultaneously measured in an 

SPR imaging set-up, while a separate SPR method for FcγRI binding and a BLI method for 

FcRn binding were developed, all aimed at rapid measurements of IgG samples for high 

throughput screening purposes.  

Two possible assay set-ups were considered: Fc receptor or IgG immobilization as 

ligand at the sensor surface. Preferably the Fc receptors are used as ligand at the sensor 

surface, as this may best reflect the binding of Fc receptor to IgG in vivo, with Fc receptors 

present at cell surfaces. However, limited receptor stability of Fcγ receptors at the sensor 

surface (unpublished results) is most likely the reason why most literature about SPR-based 

or BLI-based Fcγ receptor binding studies is based on either capture approaches where 

fresh ligand is captured each cycle (12,15,16,24,25) or where IgG is immobilized at the sensor 

surface followed by Fcγ receptor injections.(12,28) We have developed a rapid multiplexed 

SPR sensor with the Fcγ receptors captured by biotin-streptavidin capture where ligand 

instability was mitigated. This method was qualified for proper performance, followed by 

analysis of stressed IgG samples to investigate the effects of IgG degradation on previously 

mentioned stress conditions on Fcγ receptor binding. The same stressed IgG samples were 

furthermore analyzed on the screening assays for FcγRI and FcRn. We found effects of 
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deamidation on Fc receptor binding that, to the author’s knowledge, have not been 

described previously in literature. 

Materials and methods 

Recombinant proteins 

The monoclonal antibody, a human IgG1, was produced and purified by Synthon 

Biopharmaceuticals BV. IgG1 samples with aberrant fucosylation profiles were a kind gift 

from Bioceros BV. The IgG samples from both sources have the same amino acid sequence 

and were produced in CHO cells. 

Human Fcγ receptors FcγRIIIa, FcγRIIIb, FcγRIIa and FcγRIIb were produced in a 

HEK293 expression system at Synthon Biopharmaceuticals BV. Receptors were expressed 

with a C-terminal His-tag followed by IMAC purification as previously described (29). Human 

FcRn (Human FCGRT & B2M heterodimer) and human FcγRI with a C-terminal AVI-tag and 

C-terminal His-tag were purchased from Sino Biological.  

Preparation of stressed human IgG samples 

IgG1 samples were exposed to accelerated oxidation by mixing 200 µL of 25 mg/mL 

IgG1 with 4 µL (0.1%); 10 µL (0.25%) or 20 µL (0.5%) 5% H2O2 (Sigma-Aldrich) and kept 

at room temperature for 10 minutes. Then, 5 µL catalase (4 U) (Sigma-Aldrich) was added 

and kept at room temperature for 5 minutes. Accelerated deamidation was induced on the 

IgG1 by keeping the protein in 50 mM sodium phosphate buffer pH 8 at 20 mg/mL for 48, 

72 or 96 hours at 40°C. Samples were neutralized to pH 7.2 after incubation. As a control, 

samples were placed at the same temperature and time in neutral pH (HEPES-buffered 

saline (HBS) buffer pH 7.2). 

Thermal/shake stress was performed on the IgG1 samples by placing them at 40°C at 

1000 rpm in HBS buffer pH 7.2 for 1, 4, 24, 32, 48 or 72 hours. Another thermal/shake 

stress was applied by placing the IgG1 samples at 70°C or 75°C for 15 minutes at 300 rpm. 

Freeze-thaw stress was applied by placing 250 µL of IgG1 at 25 mg/mL in HBS pH 7.2 

buffer at -80°C. Samples were thawed and frozen again from 1 up to 10 freeze-thaw cycles 

in total. 

The IgG1 sample was deglycosylated by mixing 50 µL sample (25 mg/mL) with 130 µL 

200 mM sodium phosphate buffer pH 6.8. Then, 20 µL PNGase F solution was added and 

the solution was incubated at 37°C for 24 hours. 
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Characterization of stressed samples 

The levels of methionine oxidation and asparagine deamidation in the stressed 

samples were determined using a tryptic peptide mapping followed by separation on a 

reversed phase C18 column and either UV or MS detection was used for quantitation.  

Aggregation levels were determined based on a SEC-HPLC separation. The 

deglycosylated sample was checked for complete removal of glycans using CE-SDS under 

non-reducing conditions. 

Antigen target binding was verified on a Biacore T200 instrument (GE Life Sciences). 

Recombinant human antigen (R&D systems) was immobilized on a CM5 chip (GE life 

sciences) at 2.5 µg/mL in sodium acetate pH 4.0. MabSelectSure (GE Life Sciences) was 

immobilized on the same sensor at 40 µg/mL in sodium acetate pH 4.5 for total IgG1 

determination. A contact time of 1200 seconds and 360 seconds were applied respectively 

and immobilization was performed at 25°C. IgG1 binding to antigen target and 

MabSelectSure were determined at 37°C with an association time of 42 seconds and 

dissociation time of 30 seconds and a flow rate of 10 µL/min. Regeneration was performed 

with 10 mM glycin-HCl pH 1.5 with a contact time of 30 seconds and flow rate of 30 µL/min. 

Antigen target binding was expressed as binding relative to a reference sample which was 

set at 100% binding. Data of the MabSelectSure surface were only included to verify 

appropriate IgG concentrations in case of reduced antigen target binding. All sensorgrams 

were referenced and zeroed during data analysis. 

Antigen target binding of the aberrant fucosylated samples were measured in an ELISA 

format. The antigen was coated in flat-bottom half-area 96-well clear polystyrene plates at 

0.75 µg/mL in PBS pH 7.2. After blocking with 1% w/v BSA, serially diluted IgG samples and 

references were added followed by a detection step with 1:5000-diluted HRP-labeled goat 

anti-human IgG Fc-specific antibodies. Optical densities were read at 450 nm after 

development with a ready-to-use tetramethylbenzidine solution according manufacturer’s 

instructions (Thermo Fisher Scientific Inc) using an ELISA reader (BioRad Laboratories). All 

binding reactions were performed at room temperature in the presence of 1% w/v BSA and 

0.05% v/v Tween-20 detergent. 

Fucosylation levels of aberrantly fucosylated samples were determined by mass 

spectrometry. Samples were partially reduced with 100 mM dithiotreitol in 100 mM Tris-HCl 

pH 8.0 at a concentration of 0.21 mg/mL. Samples were desalted online using a reversed-

phase cartridge prior to injection into the MS system (Agilent 6540 Q-ToF equipped with 
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Jetstream ESI source). Approximately 945 ng of each sample was loaded onto the column. 

The mass spectra of light and heavy chains were deconvoluted using maximum entropy 

algorithm. 

Covalent aggregates 

An IgG1 sample after protein A purification was taken for the preparation of covalent 

aggregates. Five milliliter of IgG1 sample at 4 mg/mL was placed at pH 3 for 1 hour to 

create additional aggregates, followed by neutralization to pH 5 and a pre-concentration on 

30 kD spin filters to > 100 mg/mL and a final volume of approximately 75 µL. Fifty 

microliters of this high concentration sample was mixed with 2 µL 100 mM DSS stock 

solution (Thermo Scientific) and incubated at room temperature for 15 minutes. The 

reaction was quenched with 2 µL 1M Tris pH 7.8 and kept at room temperature for 15 

minutes. Samples were diluted with 500 µL MQ water to a concentration of approximately 9 

mg/mL. This sample was separated into fractions by preparative size exclusion 

chromatography (SEC). 

Preparative SEC purification 

A preparative SEC purification was performed on the covalent aggregate sample and 

on the deamidated sample with elevated aggregate levels. A Superdex 200 10/30 column 

(24 ml) column was equilibrated with PBS pH 7.4 buffer using an ÄKTA explorer 100 system 

(GE life sciences) at a flow rate of 1 mL/min. An isocratic run in PBS pH 7.4 was performed 

on 0.5 mL of each sample and fractions were collected based on UV280 nm signal. Collected 

fractions were analyzed on SDS-PAGE to determine the monomer, dimer and higher 

oligomeric species in each fraction. Fractions with similar SDS-PAGE profiles were pooled for 

further analysis. 

Low affinity Fcγ receptors relative binding determination 

Recombinant human FcγRIIa, FcγRIIb, FcγRIIIa and FcγRIIIb were biotinylated as 

previously reported.(29) Fcγ receptors were then immobilized on a G-Strep SensEye® sensor 

(Ssens BV) at 5 µg/mL or 10 µg/mL in 50 mM sodium acetate pH 4.5 / 0.05% Tween80 with 

a print time of 5 minutes.  

Samples were analyzed in a relative binding approach on IBIS MX96 SPRi (IBIS 

Technologies BV) with HBS buffer pH 7.2 / 0.05% Tween80 as running buffer. A baseline of 

1 minute was followed by an association time of 2 minutes and a dissociation time of 1 



Ch
ap

te
r 6

Chapter 6 

146 

Characterization of stressed samples 

The levels of methionine oxidation and asparagine deamidation in the stressed 

samples were determined using a tryptic peptide mapping followed by separation on a 

reversed phase C18 column and either UV or MS detection was used for quantitation.  

Aggregation levels were determined based on a SEC-HPLC separation. The 

deglycosylated sample was checked for complete removal of glycans using CE-SDS under 

non-reducing conditions. 

Antigen target binding was verified on a Biacore T200 instrument (GE Life Sciences). 

Recombinant human antigen (R&D systems) was immobilized on a CM5 chip (GE life 

sciences) at 2.5 µg/mL in sodium acetate pH 4.0. MabSelectSure (GE Life Sciences) was 

immobilized on the same sensor at 40 µg/mL in sodium acetate pH 4.5 for total IgG1 

determination. A contact time of 1200 seconds and 360 seconds were applied respectively 

and immobilization was performed at 25°C. IgG1 binding to antigen target and 

MabSelectSure were determined at 37°C with an association time of 42 seconds and 

dissociation time of 30 seconds and a flow rate of 10 µL/min. Regeneration was performed 

with 10 mM glycin-HCl pH 1.5 with a contact time of 30 seconds and flow rate of 30 µL/min. 

Antigen target binding was expressed as binding relative to a reference sample which was 

set at 100% binding. Data of the MabSelectSure surface were only included to verify 

appropriate IgG concentrations in case of reduced antigen target binding. All sensorgrams 

were referenced and zeroed during data analysis. 

Antigen target binding of the aberrant fucosylated samples were measured in an ELISA 

format. The antigen was coated in flat-bottom half-area 96-well clear polystyrene plates at 

0.75 µg/mL in PBS pH 7.2. After blocking with 1% w/v BSA, serially diluted IgG samples and 

references were added followed by a detection step with 1:5000-diluted HRP-labeled goat 

anti-human IgG Fc-specific antibodies. Optical densities were read at 450 nm after 

development with a ready-to-use tetramethylbenzidine solution according manufacturer’s 

instructions (Thermo Fisher Scientific Inc) using an ELISA reader (BioRad Laboratories). All 

binding reactions were performed at room temperature in the presence of 1% w/v BSA and 

0.05% v/v Tween-20 detergent. 

Fucosylation levels of aberrantly fucosylated samples were determined by mass 

spectrometry. Samples were partially reduced with 100 mM dithiotreitol in 100 mM Tris-HCl 

pH 8.0 at a concentration of 0.21 mg/mL. Samples were desalted online using a reversed-

phase cartridge prior to injection into the MS system (Agilent 6540 Q-ToF equipped with 

Rapid screening of IgG quality attributes: effects on Fc receptor binding 

147 

Jetstream ESI source). Approximately 945 ng of each sample was loaded onto the column. 

The mass spectra of light and heavy chains were deconvoluted using maximum entropy 

algorithm. 

Covalent aggregates 

An IgG1 sample after protein A purification was taken for the preparation of covalent 

aggregates. Five milliliter of IgG1 sample at 4 mg/mL was placed at pH 3 for 1 hour to 

create additional aggregates, followed by neutralization to pH 5 and a pre-concentration on 

30 kD spin filters to > 100 mg/mL and a final volume of approximately 75 µL. Fifty 

microliters of this high concentration sample was mixed with 2 µL 100 mM DSS stock 

solution (Thermo Scientific) and incubated at room temperature for 15 minutes. The 

reaction was quenched with 2 µL 1M Tris pH 7.8 and kept at room temperature for 15 

minutes. Samples were diluted with 500 µL MQ water to a concentration of approximately 9 

mg/mL. This sample was separated into fractions by preparative size exclusion 

chromatography (SEC). 

Preparative SEC purification 

A preparative SEC purification was performed on the covalent aggregate sample and 

on the deamidated sample with elevated aggregate levels. A Superdex 200 10/30 column 

(24 ml) column was equilibrated with PBS pH 7.4 buffer using an ÄKTA explorer 100 system 

(GE life sciences) at a flow rate of 1 mL/min. An isocratic run in PBS pH 7.4 was performed 

on 0.5 mL of each sample and fractions were collected based on UV280 nm signal. Collected 

fractions were analyzed on SDS-PAGE to determine the monomer, dimer and higher 

oligomeric species in each fraction. Fractions with similar SDS-PAGE profiles were pooled for 

further analysis. 

Low affinity Fcγ receptors relative binding determination 

Recombinant human FcγRIIa, FcγRIIb, FcγRIIIa and FcγRIIIb were biotinylated as 

previously reported.(29) Fcγ receptors were then immobilized on a G-Strep SensEye® sensor 

(Ssens BV) at 5 µg/mL or 10 µg/mL in 50 mM sodium acetate pH 4.5 / 0.05% Tween80 with 

a print time of 5 minutes.  

Samples were analyzed in a relative binding approach on IBIS MX96 SPRi (IBIS 
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minute. Then the sensor surface was regenerated with 25 mM phosphoric acid pH 3.0 in a 

single step of 30 seconds. Sensorgrams were referenced and zeroed. Binding levels at 

equilibrium (2 minutes) were used to determine relative binding levels. Relative binding was 

defined as the level of binding with respect to a reference sample which is set to 100% 

binding activity. Relative binding was determined at 50 µg/mL IgG1 and 250 µg/mL IgG1 

(FcγRIIa and FcγRIIIa) or 250 µg/mL IgG1 and 1000 µg/mL IgG1 (FcγRIIb and FcγRIIIb). 

Activity of Fcγ receptors at the sensor surface reduced over time and we corrected for the 

decaying surface by applying a correction factor. Four calibration curves were injected 

distributed over the sample sequence. The decay in binding of these calibration curves was 

used to determine the correction factor for each sample, depending on the injection cycle 

number.  

FcγRI kinetic determination 

Single cycle kinetics of IgG1 on FcγRI was performed on a CAPchip (GE life sciences) 

with HBS-EP+ as running buffer on a Biacore T200 instrument (GE Life Sciences). The 

CAPchip was used according to manufacturers’ protocol. Recombinant FcγRI was captured 

on a CAPchip at 0.5 µg/mL for 60 seconds at 2 µL/min. Five increasing sample 

concentrations of IgG1 were injected (0.06, 0.19, 0.56, 1.67 and 5 nM). The association 

time was set at 120 seconds, the dissociation time at 900 s (flow rate 30 µl/min). 

Regeneration was performed for 60 seconds (flow rate 5 µl/min) according to CAPchip 

protocol. Analyses were performed at 37°C. Data analysis was performed in the 

BiaEvaluation software (GE life sciences) and fitted to a 1:1 kinetic model to determined ka, 

kd and KD observed. 

FcRn kinetic determination 

Multi-cycle kinetics of IgG1 on FcRn was performed on AR2G sensor tips in an Octet 

Red384 (Pall ForteBio). AR2G sensor tips were activated by EDC/NHS according to 

manufacturers’ protocol, followed by immobilization of 6 µg/mL recombinant human 

neonatal Fc receptor (FcRn) in sodium acetate pH 5.0. After immobilization the sensor tips 

were deactivated by ethanolamine pH 8 according to manufacturers’ protocol.  

IgG1s were analyzed in 50 mM phosphate / 150 mM NaCl buffer / 0.1% Tween 20 pH 

6 at concentrations of 320 nM and 80 nM down to 2.5 nM. The samples at 320 nM were 

dissociated in 50 mM phosphate buffer / 150 mM NaCl / 0.1% Tween 20 pH 7.2, while 

dissociation for the remaining dilutions was performed in 50 mM phosphate / 150 mM NaCl 
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buffer / 0.1% Tween 20 buffer pH 6. Regeneration of the sensor tips was performed with 

100 mM Tris / 200 mM NaCl / 0.1% Tween 20 buffer pH 8. Data analysis was performed in 

corresponding software (Pall ForteBio) and sensorgrams were referenced and zeroed, 

followed by fitting to a heterogeneous ligand model to determine ka, kd and KD observed at 

pH 6. Additionally, the highest IgG concentration, dissociated at pH 7.2, was analyzed for kd 

and fraction bound at 5 seconds after start of dissociation. Fraction bound was determined 

at 5 seconds after the start of dissociation, with the response at t=0 seconds after start of 

dissociation was normalized to 100%. 

Fcγ receptor analysis on immobilized IgG1 

Stressed IgG1 samples and reference samples were immobilized on a G-COOH 

SensEye® sensor (Ssens BV) after activation with EDC/NHS according to manufacturers’ 

protocol. Immobilization of the samples at 1 µg/mL dilutions in 10 mM sodium acetate pH 

4.5 / 0.05% Tween80 was performed in the continuous flow microspotter (CFM) (Wasatch 

Microfluidics) using a print time of 5 minutes. Next, the sensor was deactivated with 1M 

ethanolamine pH 8.5 to manufacturers’ protocol. 

Interaction measurements between monoclonal antibody and various recombinant 

human Fcγ receptors (FcγRI from R&D systems, Minneapolis, MN, USA, others from Synthon 

Biopharmaceuticals BV) were performed on an IBIS MX96 SPRi instrument (IBIS 

Technologies BV). Fcγ receptors were diluted into HBS buffer pH 7.2 / 0.05 w/v% Tween80 

running buffer. The following start concentrations were used: FcγRI: 40 nM, FcγRIIa: 20 

µM, FcγRIIb: 25 µM, FcγRIIIa: 20 µM, FcγRIIIb: 24 µM and for each eight 2-fold dilutions 

were made. A baseline of 2 minutes was followed by an association time of 5 minutes and 

dissociation at 1 µL/second in 1 step for 4 minutes. The instrument was kept at 37°C during 

analysis. Regeneration was performed with 25 mM phosphoric acid pH 3.0 in a single step of 

30 seconds. Sensorgrams were referenced and zeroed, followed by steady state equilibrium 

affinity determination in Scrubber (BioLogic). 

Statistical data analysis 

The results for each of the binding assays were statistically evaluated in Minitab. 

Duplicate or triplicate measurements were performed for each of the samples and methods. 

The relation between binding or affinity and the percentage of modification was performed 

with regression analysis. 
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kd and KD observed. 

FcRn kinetic determination 

Multi-cycle kinetics of IgG1 on FcRn was performed on AR2G sensor tips in an Octet 

Red384 (Pall ForteBio). AR2G sensor tips were activated by EDC/NHS according to 

manufacturers’ protocol, followed by immobilization of 6 µg/mL recombinant human 

neonatal Fc receptor (FcRn) in sodium acetate pH 5.0. After immobilization the sensor tips 

were deactivated by ethanolamine pH 8 according to manufacturers’ protocol.  

IgG1s were analyzed in 50 mM phosphate / 150 mM NaCl buffer / 0.1% Tween 20 pH 

6 at concentrations of 320 nM and 80 nM down to 2.5 nM. The samples at 320 nM were 

dissociated in 50 mM phosphate buffer / 150 mM NaCl / 0.1% Tween 20 pH 7.2, while 

dissociation for the remaining dilutions was performed in 50 mM phosphate / 150 mM NaCl 
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buffer / 0.1% Tween 20 buffer pH 6. Regeneration of the sensor tips was performed with 

100 mM Tris / 200 mM NaCl / 0.1% Tween 20 buffer pH 8. Data analysis was performed in 

corresponding software (Pall ForteBio) and sensorgrams were referenced and zeroed, 

followed by fitting to a heterogeneous ligand model to determine ka, kd and KD observed at 

pH 6. Additionally, the highest IgG concentration, dissociated at pH 7.2, was analyzed for kd 

and fraction bound at 5 seconds after start of dissociation. Fraction bound was determined 

at 5 seconds after the start of dissociation, with the response at t=0 seconds after start of 

dissociation was normalized to 100%. 

Fcγ receptor analysis on immobilized IgG1 

Stressed IgG1 samples and reference samples were immobilized on a G-COOH 

SensEye® sensor (Ssens BV) after activation with EDC/NHS according to manufacturers’ 

protocol. Immobilization of the samples at 1 µg/mL dilutions in 10 mM sodium acetate pH 

4.5 / 0.05% Tween80 was performed in the continuous flow microspotter (CFM) (Wasatch 

Microfluidics) using a print time of 5 minutes. Next, the sensor was deactivated with 1M 

ethanolamine pH 8.5 to manufacturers’ protocol. 

Interaction measurements between monoclonal antibody and various recombinant 

human Fcγ receptors (FcγRI from R&D systems, Minneapolis, MN, USA, others from Synthon 

Biopharmaceuticals BV) were performed on an IBIS MX96 SPRi instrument (IBIS 

Technologies BV). Fcγ receptors were diluted into HBS buffer pH 7.2 / 0.05 w/v% Tween80 

running buffer. The following start concentrations were used: FcγRI: 40 nM, FcγRIIa: 20 

µM, FcγRIIb: 25 µM, FcγRIIIa: 20 µM, FcγRIIIb: 24 µM and for each eight 2-fold dilutions 

were made. A baseline of 2 minutes was followed by an association time of 5 minutes and 

dissociation at 1 µL/second in 1 step for 4 minutes. The instrument was kept at 37°C during 

analysis. Regeneration was performed with 25 mM phosphoric acid pH 3.0 in a single step of 

30 seconds. Sensorgrams were referenced and zeroed, followed by steady state equilibrium 

affinity determination in Scrubber (BioLogic). 

Statistical data analysis 

The results for each of the binding assays were statistically evaluated in Minitab. 

Duplicate or triplicate measurements were performed for each of the samples and methods. 

The relation between binding or affinity and the percentage of modification was performed 

with regression analysis. 
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Results and discussion 

Assay development and method performance 

Low affinity Fcγ receptors were minimally biotinylated (29) followed by immobilization 

on a single streptavidin sensor. Degrees of labeling were between 0.3 and 0.5 for the 

different Fcγ receptors and proper IgG binding was measured on each of the Fcγ receptors. 

Decay in IgG binding responses, indicative of receptor instability at the sensor surface, was 

measured. A 30-60% reduction in Rmax values was determined during 60 regeneration 

cycles. A regeneration buffer scouting as described in Geuijen et al. (30) showed that a 

regeneration buffer of 25 mM phosphoric acid adjusted to pH 3.0 was most suitable., Use of 

this regeneration buffer improved receptor stability, although still decay in binding was 

observed (Figure 6.1). The fast on and off-rate of the receptors at the surface prevented the 

use of kinetic data. As the method was intended as a fast screening method, a relative 

binding approach was chosen.  

The decay in IgG binding response to the receptor may be described by a logarithmic 

function (Figure 6.1) which was used to correct for reduced binding. In an analytical run 

four separate calibration curves of reference standard were injected distributed throughout 

the run, which were used to determine the values of the logarithmic function, with which 

the concentration of a sample at any cycle may be calculated. The validity of such a 

mathematical correction for the decay in response was verified in a method qualification, 

where range, accuracy, precision, specificity (Table 6.1) and model fit were assessed. Model 

fits to a logarithmic function had a R2 > 0.995 in all experiments, and residuals were 

randomly distributed over the fitted curve. Specificity was assessed by injecting two 

different batches of IgA molecules, which should not bind to Fcγ receptors. Relative binding 

compared to an IgG reference was measured and was acceptable, although slightly higher 

values were measured on FcγRIIIb. Accuracy and precision data were analyzed in a general 

linear model in an ANOVA analysis, and none of the parameters that were included 

(operator, run number, spot number) were significant factors that contributed to the 

variance. Intermediate precision of test samples from the qualification were 12% or lower 

(Table 6.1), which is comparable to or below variability in binding studies based on kinetics 

(e.g. Katsamba et al.(31), Navratilova et al.(32) and Rich et al.(33)) and therefore variability 

was found acceptable for the intended purpose of the method.  
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Figure 6.1 IgG binding response at 500 µg/mL to the four low affinity Fcγ receptors (A: FcγRIIIa and 

FcγRIIIb; B: FcγRIIa and FcγRIIb) during 90 sequential analyses. Each curve followed a logarithmic 

decay, which was used to correct for decay according to injection cycle number. 

 

As previously mentioned, separate assays for FcγRI and FcRn were used. FcγRI 

interactions were measured in a single cycle kinetics measurement where five dilutions of 

IgG were injected on captured biotinylated FcγRI with an intermediate precision in KD of 

9.6%. A multi-cycle kinetics measurement based on BLI was developed for FcRn, where 

association was performed at pH 6 and dissociation of the highest IgG concentration was 

performed at pH 7.4 and dissociation of the other IgG concentrations measured at pH 6. 

Intermediate precision of 11.0% on KD and 14.0% on fraction bound at neutral pH were 

determined. Method performance of both methods was found acceptable. Sample 

throughput of the FcγRIIa/b / FcγRIIIa/b and FcRn methods was high, with only 5 minutes 

analysis time per sample. Unfortunately, the throughput of the FcγRI method was 

somewhat lower compared to the other two methods, with 45 minutes per sample but still 

acceptable for the high-throughput screening purpose of this study. In the end, three 

separate screening methods for full Fc tail functionality of IgGs were available which all 

passed the set qualification criteria.  

Characterization of stressed samples 

A selection of the most common degradations in IgGs was made to measure the 

impact on Fc effector function, by studying binding to Fc receptors on the three screening 

assays. IgG1 samples were subjected to accelerated oxidation, accelerated deamidation, 

thermal/shake stress, freeze-thaw cycles and deglycosylation. Additionally, a few IgG 

samples with aberrant/different fucosylation levels were available for Fc effector binding, 

induced by applying variations in bioreactor process parameters. The stressed IgG samples 

were modified at the level of oxidation (mainly H:Met252), asparagine deamidation (three 
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Results and discussion 

Assay development and method performance 

Low affinity Fcγ receptors were minimally biotinylated (29) followed by immobilization 

on a single streptavidin sensor. Degrees of labeling were between 0.3 and 0.5 for the 

different Fcγ receptors and proper IgG binding was measured on each of the Fcγ receptors. 

Decay in IgG binding responses, indicative of receptor instability at the sensor surface, was 

measured. A 30-60% reduction in Rmax values was determined during 60 regeneration 

cycles. A regeneration buffer scouting as described in Geuijen et al. (30) showed that a 

regeneration buffer of 25 mM phosphoric acid adjusted to pH 3.0 was most suitable., Use of 

this regeneration buffer improved receptor stability, although still decay in binding was 

observed (Figure 6.1). The fast on and off-rate of the receptors at the surface prevented the 

use of kinetic data. As the method was intended as a fast screening method, a relative 

binding approach was chosen.  

The decay in IgG binding response to the receptor may be described by a logarithmic 

function (Figure 6.1) which was used to correct for reduced binding. In an analytical run 

four separate calibration curves of reference standard were injected distributed throughout 

the run, which were used to determine the values of the logarithmic function, with which 

the concentration of a sample at any cycle may be calculated. The validity of such a 

mathematical correction for the decay in response was verified in a method qualification, 

where range, accuracy, precision, specificity (Table 6.1) and model fit were assessed. Model 

fits to a logarithmic function had a R2 > 0.995 in all experiments, and residuals were 

randomly distributed over the fitted curve. Specificity was assessed by injecting two 

different batches of IgA molecules, which should not bind to Fcγ receptors. Relative binding 

compared to an IgG reference was measured and was acceptable, although slightly higher 

values were measured on FcγRIIIb. Accuracy and precision data were analyzed in a general 

linear model in an ANOVA analysis, and none of the parameters that were included 

(operator, run number, spot number) were significant factors that contributed to the 

variance. Intermediate precision of test samples from the qualification were 12% or lower 

(Table 6.1), which is comparable to or below variability in binding studies based on kinetics 

(e.g. Katsamba et al.(31), Navratilova et al.(32) and Rich et al.(33)) and therefore variability 

was found acceptable for the intended purpose of the method.  

Rapid screening of IgG quality attributes: effects on Fc receptor binding 

151 

 

Figure 6.1 IgG binding response at 500 µg/mL to the four low affinity Fcγ receptors (A: FcγRIIIa and 

FcγRIIIb; B: FcγRIIa and FcγRIIb) during 90 sequential analyses. Each curve followed a logarithmic 

decay, which was used to correct for decay according to injection cycle number. 

 

As previously mentioned, separate assays for FcγRI and FcRn were used. FcγRI 

interactions were measured in a single cycle kinetics measurement where five dilutions of 

IgG were injected on captured biotinylated FcγRI with an intermediate precision in KD of 

9.6%. A multi-cycle kinetics measurement based on BLI was developed for FcRn, where 

association was performed at pH 6 and dissociation of the highest IgG concentration was 

performed at pH 7.4 and dissociation of the other IgG concentrations measured at pH 6. 

Intermediate precision of 11.0% on KD and 14.0% on fraction bound at neutral pH were 

determined. Method performance of both methods was found acceptable. Sample 

throughput of the FcγRIIa/b / FcγRIIIa/b and FcRn methods was high, with only 5 minutes 

analysis time per sample. Unfortunately, the throughput of the FcγRI method was 

somewhat lower compared to the other two methods, with 45 minutes per sample but still 

acceptable for the high-throughput screening purpose of this study. In the end, three 

separate screening methods for full Fc tail functionality of IgGs were available which all 

passed the set qualification criteria.  

Characterization of stressed samples 

A selection of the most common degradations in IgGs was made to measure the 

impact on Fc effector function, by studying binding to Fc receptors on the three screening 

assays. IgG1 samples were subjected to accelerated oxidation, accelerated deamidation, 

thermal/shake stress, freeze-thaw cycles and deglycosylation. Additionally, a few IgG 

samples with aberrant/different fucosylation levels were available for Fc effector binding, 

induced by applying variations in bioreactor process parameters. The stressed IgG samples 

were modified at the level of oxidation (mainly H:Met252), asparagine deamidation (three 

0

200

400

600

800

1000

1200

0 20 40 60 80 100

Ig
G 
bi
nd

in
g 
re
sp
on

se
 (R

U)

Injection cycle #

FcRIIIa

FcRIIIb

AA

0
20
40
60
80

100
120
140
160
180

0 20 40 60 80 100

Ig
G 
bi
nd

in
g 
re
sp
on

se
 (R

U)

Injection cycle #

FcRIIa

FcRIIb

BB



Chapter 6 

152 

main sites in this IgG1), aggregation levels and the percentages of deglycosylation. These 

IgG samples were analyzed for antigen target binding by SPR or ELISA in case of aberrantly 

fucosylated samples (Table 6.2). Peptide mapping-based methods were used to quantify the 

levels of oxidation and deamidation and HP-SEC to determine the aggregate levels (Table 

6.2). Next, the IgG samples were analyzed on SPR and BLI to measure the binding to Fc 

receptors (Table 6.3).  

Table 6.1 Range, accuracy, intermediate precision and specificity of relative binding assay 

Fcγ 
receptor 

Range 
(µM) 

Test 
sample 

Nominal 
value [IgG] 

(µM) 

Accuracy 
(%) 

Intermediate 
precision 

(%) 

Specificity: 
% binding 

of IgA 

FcγRIIIa 0.104 – 
3.33 

LLOQ 0.11 96.6 7.75  
LQC 0.20 97.6 5.59 0.5 
MQC 0.89 106.0 5.33 1.8 
HQC 2.67 84.4 8.08  
ULOQ 3.11 93.8 5.13  

FcγRIIIb 0.832 – 
26.67 

LLOQ 0.89 110.6 4.48  
LQC 3.11 87.1 2.70 9.9 
MQC 6.67 91.5 5.79 13.2 
HQC 20.00 104.4 7.12  
ULOQ 22.22 104.3 11.99  

FcγRIIa 0.104 – 
3.33 

LLOQ 0.11 111.4 7.99  
LQC 0.20 90.6 4.09 1.4 
MQC 0.89 92.0 7.50 3.3 
HQC 2.67 101.5 12.11  
ULOQ 3.11 101.4 7.33  

FcγRIIb 0.832 – 
26.67 

LLOQ 0.89 106.2 5.93  
LQC 3.11 90.3 3.64 14.3 
MQC 6.67 96.1 4.45 27.9 
HQC 20.00 101.5 6.81  

ULOQ* 22.22 101.0 6.83  
* One sample was excluded due to an air bubble in the injection; n=17. All other results are based on 

n=18. 

LLOQ: lower limit of quantitation, LQC: low quality control, MQC: middle quality control, HQC: high 

quality control, ULOQ: upper limit of quantitation 

 

Asparagine deamidation was measured on all potential deamidation sites, and three 

major sites were detected. Two deamidation sites are present in the CDR of the antibody 

(referred to as HC-CDR and LC-CDR) and one site is present in the Fc region of the antibody 

(referred to as HC-Fc). Deamidation levels increased up to approximately 15% and 40% for 

the two sites in the CDR respectively. In the Fc region, asparagine deamidation increased up 

to 10%. High molecular weight (HMW) species increased during forced deamidation for 96 
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hours to 4.5% which may influence the measurements and this was further investigated by 

separating HMW species from monomer (see below).  

Table 6.2 Results of reference analyses to determine stress levels and antigen target binding 

Stress 
condition* 

Ox 
Met255 

D-N 
HC 
CDR 

D-N 
LC 
CDR 

D-N 
HC 
Fc 

% 
HMW

% 
insoluble 
HMW 

% 
Degly
cosyl
ation 

% 
Afuco
sylati
on 

Antigen 
target 
binding 
(%) 

Reference 2.5 9.8 9.7 3.8 1.3 n.d. n.d. 11 100.0 

H2O2_0.1% 3.7 9.6 9.6 n.d. 1.2 n.d. n.d. 11 100.9 

H2O2_0.25% 5.1 9.6 9.7 n.d. 1.3 n.d. n.d. 11 100.7 

H2O2_0.5% 7.1 9.6 9.6 n.d. 1.3 n.d. n.d. 11 99.3 

pH7.2_48h 2.8 10.1 13.5 5.7 1.7 n.d. n.d. 11 97.6 

pH7.2_72h 2.9 10.0 15.3 5.3 2.1 n.d. n.d. 11 96.5 

pH7.2_96h 2.9 10.4 17.4 5.1 2.3 n.d. n.d. 11 94.9 

pH8.0_48h 3.2 12.5 27.5 9.4 2.3 n.d. n.d. 11 85.3 

pH8.0_72h 3.4 13.7 34.6 10.1 2.2 n.d. n.d. 11 80.9 

pH8.0_96h 3.7 15.7 40.6 10.6 4.5 n.d. n.d. 11 75.5 

40C-24h n.d. n.d. n.d. n.d. 1.6 n.d. n.d. 11 96.4 

40C-48h n.d. n.d. n.d. n.d. 2.0 n.d. n.d. 11 95.2 

40C-72h n.d. n.d. n.d. n.d. 2.0 n.d. n.d. 11 94.1 

70C_15m n.d. n.d. n.d. n.d. 1.7 1.15 n.d. 11 103.0 

75C_15m n.d. n.d. n.d. n.d. 1.5 51.4 n.d. 11 61.9 

F-T 1 n.d. n.d. n.d. n.d. 1.2 n.d. n.d. 11 101.9 

F-T 5 n.d. n.d. n.d. n.d. 1.2 n.d. n.d. 11 100.4 

F-T 10 n.d. n.d. n.d. n.d. 1.3 n.d. n.d. 11 101.6 

DG 0 n.d. n.d. n.d. n.d. n.d. n.d. 0 11 92.2 

DG 100 n.d. n.d. n.d. n.d. n.d. n.d. 100 11 95.9 

AF 3 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 3 103.1 

AF 8 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 8 100.8 

AF 70 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 70 115.6 

*Ox: oxidation; D-N: aspargine deamidation; F-T: freeze-thaw cycles; DG: deglycosylation; AF: 
afucosylation 

HC: heavy chain; LC: light chain; CDR: Complementarity-determining region; Fc: fragment 
crystallizable; HMW: high molecular weight species. n.d.: Not determined 

 

Increased HMW species were also detected in the samples that were heated to 70ºC and 

75ºC. In all other stressed IgG samples the levels of HMW species remained similar to the 
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main sites in this IgG1), aggregation levels and the percentages of deglycosylation. These 

IgG samples were analyzed for antigen target binding by SPR or ELISA in case of aberrantly 
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6.2). Next, the IgG samples were analyzed on SPR and BLI to measure the binding to Fc 
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hours to 4.5% which may influence the measurements and this was further investigated by 

separating HMW species from monomer (see below).  
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HC 
Fc 
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HMW

% 
insoluble 
HMW 

% 
Degly
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ation 

% 
Afuco
sylati
on 

Antigen 
target 
binding 
(%) 

Reference 2.5 9.8 9.7 3.8 1.3 n.d. n.d. 11 100.0 

H2O2_0.1% 3.7 9.6 9.6 n.d. 1.2 n.d. n.d. 11 100.9 

H2O2_0.25% 5.1 9.6 9.7 n.d. 1.3 n.d. n.d. 11 100.7 

H2O2_0.5% 7.1 9.6 9.6 n.d. 1.3 n.d. n.d. 11 99.3 

pH7.2_48h 2.8 10.1 13.5 5.7 1.7 n.d. n.d. 11 97.6 

pH7.2_72h 2.9 10.0 15.3 5.3 2.1 n.d. n.d. 11 96.5 

pH7.2_96h 2.9 10.4 17.4 5.1 2.3 n.d. n.d. 11 94.9 

pH8.0_48h 3.2 12.5 27.5 9.4 2.3 n.d. n.d. 11 85.3 

pH8.0_72h 3.4 13.7 34.6 10.1 2.2 n.d. n.d. 11 80.9 

pH8.0_96h 3.7 15.7 40.6 10.6 4.5 n.d. n.d. 11 75.5 

40C-24h n.d. n.d. n.d. n.d. 1.6 n.d. n.d. 11 96.4 

40C-48h n.d. n.d. n.d. n.d. 2.0 n.d. n.d. 11 95.2 

40C-72h n.d. n.d. n.d. n.d. 2.0 n.d. n.d. 11 94.1 

70C_15m n.d. n.d. n.d. n.d. 1.7 1.15 n.d. 11 103.0 

75C_15m n.d. n.d. n.d. n.d. 1.5 51.4 n.d. 11 61.9 

F-T 1 n.d. n.d. n.d. n.d. 1.2 n.d. n.d. 11 101.9 

F-T 5 n.d. n.d. n.d. n.d. 1.2 n.d. n.d. 11 100.4 

F-T 10 n.d. n.d. n.d. n.d. 1.3 n.d. n.d. 11 101.6 

DG 0 n.d. n.d. n.d. n.d. n.d. n.d. 0 11 92.2 

DG 100 n.d. n.d. n.d. n.d. n.d. n.d. 100 11 95.9 

AF 3 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 3 103.1 

AF 8 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 8 100.8 

AF 70 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 70 115.6 

*Ox: oxidation; D-N: aspargine deamidation; F-T: freeze-thaw cycles; DG: deglycosylation; AF: 
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Increased HMW species were also detected in the samples that were heated to 70ºC and 

75ºC. In all other stressed IgG samples the levels of HMW species remained similar to the 
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references. Oxidation levels in IgG samples that were exposed to H2O2 increased to 

approximately 7%. Antigen target binding remained unaffected under the applied stress 

conditions, except for (1) the deamidated IgG samples due to two deamidation sites that 

are present in the CDR, and (2) thermal/shake stressed IgG samples at 75C/300 rpm for 

15 minutes. No altered binding to any of the Fc receptors was measured for the IgG 

samples that were subjected to thermal/shake stress and freeze-thaw cycles (Table 6.3), 

and therefore these results are not further discussed. 

Low affinity Fc receptors screening 

Binding to the low affinity Fcγ receptors (FcγRIIIa, FcγRIIIb, FcγRIIa and FcγRIIb) was 

measured in a relative binding set-up, where a reference standard was set to 100% activity 

and stressed IgG samples were measured relative to this standard.  

Asparagine deamidation reduced binding to the low affinity Fcγ receptors to 

approximately 50-80% binding relative to the reference (Table 6.3 and Figure 6.2). A 

regression analysis of the percentage of deamidation against relative binding showed that 

these differences are statistically significant (P < 0.0005 for each of the Fcγ receptors). An 

increase in HMW species was observed in the deamidated samples next to increased 

deamidation levels. The lower relative binding on the low affinity Fcγ receptors of these 

samples may therefore also be induced by aggregates. The deamidated sample (72 hrs) was 

separated into a monomer and aggregated fraction by preparative SEC. The monomeric 

deamidated peak was analyzed on analytical SEC and was found to be pure monomer 

directly after separation. After short term overnight storage, the sample contained 

approximately 0.5% HMW species which cannot be avoided due to the intrinsic property of 

IgGs to form a small fraction of aggregates (Figure 6.A.1). However, this low aggregate 

level is comparable to the reference sample and therefore this sample was considered a 

representative sample to study the effect of deamidation only. Measurement of relative 

binding to FcγRIIIa/b and FcγRIIa/b resulted in approximately 50-80% relative binding of 

the monomeric deamidated sample, compared to approximately 60% of the non-purified 

sample (Figure 6.B.1). These data indicate that deamidation alone reduces binding to Fcγ 

receptors. 

No difference in binding was observed after oxidative stress (Table 6.3), which is 

generally found in literature as well.(14,20) Only Bertolotti-Ciarlet et al.(20) found a decrease in 

binding (roughly 20% decrease) on FcγRIIa with IgG oxidized on Met252 to 80%. However, 
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the methionine oxidation levels in our stressed samples did not exceed 7% of oxidation, 

which may explain this difference in results. 

Table 6.3 Summarized results of stressed IgG1 samples on Fc receptor binding 

 

 
Relative binding (%) Affinity (nM) Fraction 

bound (%) 

Stress 
condition* FcγRIIIa FcγRIIIb FcγRIIa FcγRIIb FcγRI FcRn FcRn 

Reference 100.0 100.0 100.0 100.0 0.56 5.7 8.3 

H2O2_0.1% 103.6 93.1 103.9 107.4 0.93 n.d. n.d. 

H2O2_0.25% 102.8 101.1 104.5 103.5 0.53 6.2 6.4 

H2O2_0.5% 97.4 94.9 100.1 100.1 0.42 6.2 7.7 

pH7.2_48h 97.4 89.6 140.3 92.9 0.59 5.5 7.6 

pH7.2_72h 92.7 86.5 143.9 92.9 0.48 6.1 8.3 

pH7.2_96h 96.9 88.3 132.1 94.7 0.58 5.6 7.9 

pH8.0_48h 59.5 52.5 76.6 54.4 0.52 6.0 7.8 

pH8.0_72h 53.2 53.8 64.5 53.6 0.55 5.5 6.5 

pH8.0_96h 61.8 65.9 78.2 61.8 0.55 5.3 10.0 

40C-24h 96.8 106.1 92.5 101.1 0.53 5.5 7.9 

40C-48h 101.8 105.9 91.8 100.1 0.45 5.0 7.3 

40C-72h 102.9 107.1 97.5 103.1 0.53 5.4 8.6 

70C_15m 72.7 126.7 62.5 93.4 n.d. 34.2 # n.d. # 

75C_15m 388.7 > 1000 > 1000 > 1000 n.d. 0.4 # n.d. # 

F-T 1 80.1 106.5 102.2 102.3 0.52 5.7 8.4 

F-T 5 103.0 104.7 92.3 97.2 0.42 5.7 8.1 

F-T 10 98.7 102.0 85.9 95.9 0.48 5.2 7.4 

DG 0 106.2 104.9 99.5 105.3 0.52 4.9 8.5 

DG 100 6.5 10.5 10.3 15.3 No fit 6.3 4.1 

AF 3 79.7 83.9 101.5 90.6 0.44 3.7 14.3 

AF 8 87.7 93.0 97.6 84.2 0.43 3.7 14.1 

AF 70 158.6 186.3 103.5 110.5 0.33 3.8 15.7 

* F-T = freeze-thaw cycles; DG = deglycosylation; AF = afucosylation. n.d.: not determined 

# Non-specific binding to reference channels was measured; kinetics on FcRn could not be determined  

 

Lack of binding of deglycosylated IgG to the low affinity Fcγ receptors has been 

described extensively (12-16) and was confirmed in our study. Fully deglycosylated IgG1 had a 

maximum of 15% binding response relative to the reference (P < 0.0005 for all low affinity  



Ch
ap

te
r 6

Chapter 6 

154 

references. Oxidation levels in IgG samples that were exposed to H2O2 increased to 

approximately 7%. Antigen target binding remained unaffected under the applied stress 

conditions, except for (1) the deamidated IgG samples due to two deamidation sites that 

are present in the CDR, and (2) thermal/shake stressed IgG samples at 75C/300 rpm for 

15 minutes. No altered binding to any of the Fc receptors was measured for the IgG 

samples that were subjected to thermal/shake stress and freeze-thaw cycles (Table 6.3), 

and therefore these results are not further discussed. 

Low affinity Fc receptors screening 

Binding to the low affinity Fcγ receptors (FcγRIIIa, FcγRIIIb, FcγRIIa and FcγRIIb) was 

measured in a relative binding set-up, where a reference standard was set to 100% activity 

and stressed IgG samples were measured relative to this standard.  

Asparagine deamidation reduced binding to the low affinity Fcγ receptors to 

approximately 50-80% binding relative to the reference (Table 6.3 and Figure 6.2). A 

regression analysis of the percentage of deamidation against relative binding showed that 

these differences are statistically significant (P < 0.0005 for each of the Fcγ receptors). An 

increase in HMW species was observed in the deamidated samples next to increased 

deamidation levels. The lower relative binding on the low affinity Fcγ receptors of these 

samples may therefore also be induced by aggregates. The deamidated sample (72 hrs) was 

separated into a monomer and aggregated fraction by preparative SEC. The monomeric 

deamidated peak was analyzed on analytical SEC and was found to be pure monomer 

directly after separation. After short term overnight storage, the sample contained 

approximately 0.5% HMW species which cannot be avoided due to the intrinsic property of 

IgGs to form a small fraction of aggregates (Figure 6.A.1). However, this low aggregate 

level is comparable to the reference sample and therefore this sample was considered a 

representative sample to study the effect of deamidation only. Measurement of relative 

binding to FcγRIIIa/b and FcγRIIa/b resulted in approximately 50-80% relative binding of 

the monomeric deamidated sample, compared to approximately 60% of the non-purified 

sample (Figure 6.B.1). These data indicate that deamidation alone reduces binding to Fcγ 

receptors. 

No difference in binding was observed after oxidative stress (Table 6.3), which is 

generally found in literature as well.(14,20) Only Bertolotti-Ciarlet et al.(20) found a decrease in 

binding (roughly 20% decrease) on FcγRIIa with IgG oxidized on Met252 to 80%. However, 
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the methionine oxidation levels in our stressed samples did not exceed 7% of oxidation, 

which may explain this difference in results. 

Table 6.3 Summarized results of stressed IgG1 samples on Fc receptor binding 

 

 
Relative binding (%) Affinity (nM) Fraction 

bound (%) 

Stress 
condition* FcγRIIIa FcγRIIIb FcγRIIa FcγRIIb FcγRI FcRn FcRn 

Reference 100.0 100.0 100.0 100.0 0.56 5.7 8.3 

H2O2_0.1% 103.6 93.1 103.9 107.4 0.93 n.d. n.d. 

H2O2_0.25% 102.8 101.1 104.5 103.5 0.53 6.2 6.4 

H2O2_0.5% 97.4 94.9 100.1 100.1 0.42 6.2 7.7 

pH7.2_48h 97.4 89.6 140.3 92.9 0.59 5.5 7.6 

pH7.2_72h 92.7 86.5 143.9 92.9 0.48 6.1 8.3 

pH7.2_96h 96.9 88.3 132.1 94.7 0.58 5.6 7.9 

pH8.0_48h 59.5 52.5 76.6 54.4 0.52 6.0 7.8 

pH8.0_72h 53.2 53.8 64.5 53.6 0.55 5.5 6.5 

pH8.0_96h 61.8 65.9 78.2 61.8 0.55 5.3 10.0 

40C-24h 96.8 106.1 92.5 101.1 0.53 5.5 7.9 

40C-48h 101.8 105.9 91.8 100.1 0.45 5.0 7.3 

40C-72h 102.9 107.1 97.5 103.1 0.53 5.4 8.6 

70C_15m 72.7 126.7 62.5 93.4 n.d. 34.2 # n.d. # 

75C_15m 388.7 > 1000 > 1000 > 1000 n.d. 0.4 # n.d. # 

F-T 1 80.1 106.5 102.2 102.3 0.52 5.7 8.4 

F-T 5 103.0 104.7 92.3 97.2 0.42 5.7 8.1 

F-T 10 98.7 102.0 85.9 95.9 0.48 5.2 7.4 

DG 0 106.2 104.9 99.5 105.3 0.52 4.9 8.5 

DG 100 6.5 10.5 10.3 15.3 No fit 6.3 4.1 

AF 3 79.7 83.9 101.5 90.6 0.44 3.7 14.3 

AF 8 87.7 93.0 97.6 84.2 0.43 3.7 14.1 

AF 70 158.6 186.3 103.5 110.5 0.33 3.8 15.7 

* F-T = freeze-thaw cycles; DG = deglycosylation; AF = afucosylation. n.d.: not determined 

# Non-specific binding to reference channels was measured; kinetics on FcRn could not be determined  

 

Lack of binding of deglycosylated IgG to the low affinity Fcγ receptors has been 

described extensively (12-16) and was confirmed in our study. Fully deglycosylated IgG1 had a 

maximum of 15% binding response relative to the reference (P < 0.0005 for all low affinity  
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Fcγ receptors). The glycans in the Fc region of an antibody have a stabilizing (i.e. IgG 

folding) effect and are required for a proper interaction with these Fcγ receptors.(34) 

 Apart from full deglycosylation of the IgG1, we analyzed IgG1s with aberrant/different 

fucosylation levels. A different feed strategy in the bioreactor was applied, which resulted in 

IgGs with afucosylation levels of 3, 8 and 70% respectively. Variation of afucosylation only 

affected binding to FcγRIIIa and FcγRIIIb; a significant difference in relative binding 

between the three samples is measured from low to high corresponding to the afucosylation 

levels (P < 0.0005 in regression analysis for both receptors). A binding of 158-186% on 

FcγRIIIa and FcγRIIIb of the sample that was afucosylated for 70% was measured relative 

to the reference. The 3% and 8% afucosylated samples had a relative binding of 80-93%, 

which is due to the slightly lower afucosylation level compared to the reference sample 

(11% afucosylation). Binding to FcγRIIa and FcγRIIb was unaffected by the lower 

afucosylation levels (Table 6.3). 

FcγRI 

The high affinity interactions on FcγRI were measured in a single cycle kinetic 

determination at pH 7.4. To our knowledge, no literature is available that describes the 

effect of IgG deamidation and FcγRI binding. We found no effect of deamidation of IgG1 on 

binding to FcγRI as shown in Figure 6.3. No effect of oxidation or fucosylation degree of IgG 

was measured on FcγRI binding, confirming earlier results in literature on FcγRI binding for 

oxidized IgG1 (20) and fucosylation.(17,18) 

Deglycosylated IgG almost completely prevented binding to FcγRI (Figure 6.4), as 

shown by the maximum response of approximately 5 RU compared to 80 RU of the 

reference sample. A 1:1 kinetic fit was applied to the sensorgrams, which resulted in poor 

fits of the fully deglycosylated sample. The resulting kinetic parameters cannot be reliably 

determined and are not reported. Our results do not fully confirm earlier findings in 

literature, as approximately 60% binding to FcγRI remained in earlier studies.(12,13) 

Hence we investigated binding of FcγRI to deglycosylated IgG1 by inverting the 

experimental set-up. Deglycosylated and glycosylated IgG1 were immobilized on the sensor 

surface and their binding to FcγRI in solution was analyzed. Virtually no binding to FcγRI 

was found (Figure 6.C.1-E), confirming our results as presented in Figure 6.4. 
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Fcγ receptors). The glycans in the Fc region of an antibody have a stabilizing (i.e. IgG 

folding) effect and are required for a proper interaction with these Fcγ receptors.(34) 

 Apart from full deglycosylation of the IgG1, we analyzed IgG1s with aberrant/different 

fucosylation levels. A different feed strategy in the bioreactor was applied, which resulted in 

IgGs with afucosylation levels of 3, 8 and 70% respectively. Variation of afucosylation only 

affected binding to FcγRIIIa and FcγRIIIb; a significant difference in relative binding 

between the three samples is measured from low to high corresponding to the afucosylation 

levels (P < 0.0005 in regression analysis for both receptors). A binding of 158-186% on 

FcγRIIIa and FcγRIIIb of the sample that was afucosylated for 70% was measured relative 

to the reference. The 3% and 8% afucosylated samples had a relative binding of 80-93%, 

which is due to the slightly lower afucosylation level compared to the reference sample 

(11% afucosylation). Binding to FcγRIIa and FcγRIIb was unaffected by the lower 

afucosylation levels (Table 6.3). 

FcγRI 

The high affinity interactions on FcγRI were measured in a single cycle kinetic 

determination at pH 7.4. To our knowledge, no literature is available that describes the 

effect of IgG deamidation and FcγRI binding. We found no effect of deamidation of IgG1 on 

binding to FcγRI as shown in Figure 6.3. No effect of oxidation or fucosylation degree of IgG 

was measured on FcγRI binding, confirming earlier results in literature on FcγRI binding for 

oxidized IgG1 (20) and fucosylation.(17,18) 

Deglycosylated IgG almost completely prevented binding to FcγRI (Figure 6.4), as 

shown by the maximum response of approximately 5 RU compared to 80 RU of the 

reference sample. A 1:1 kinetic fit was applied to the sensorgrams, which resulted in poor 

fits of the fully deglycosylated sample. The resulting kinetic parameters cannot be reliably 

determined and are not reported. Our results do not fully confirm earlier findings in 

literature, as approximately 60% binding to FcγRI remained in earlier studies.(12,13) 

Hence we investigated binding of FcγRI to deglycosylated IgG1 by inverting the 

experimental set-up. Deglycosylated and glycosylated IgG1 were immobilized on the sensor 

surface and their binding to FcγRI in solution was analyzed. Virtually no binding to FcγRI 

was found (Figure 6.C.1-E), confirming our results as presented in Figure 6.4. 
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Figure 6.3 Overlay of single cycle kinetics sensorgrams of deamidated and control IgG samples on 

FcγRI binding 

 

 

Figure 6.4 Single cycle kinetics sensorgrams of glycosylated (A) and deglycosylated (B) IgG samples 

on FcγRI binding. Measured sensorgrams shown in red and fitted curves shown in black. 
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FcRn 

The mechanism of FcRn mediated IgG recycling is complex and encompasses IgG 

association at pH 6 and dissociation at pH 6 and pH 7.4. Most cited references only studied 

kinetics on FcRn at pH 6. Here, FcRn interactions were measured in a multi-cycle kinetics 

experiment of eight IgG1 dilutions. The lowest seven dilutions were used for kinetics 

determination at pH 6 by fitting both the association and dissociation phase to a 

heterogeneous ligand model, as proposed by Vaughn and Bjorkman.(35) The highest IgG 

dilution was associated at pH 6 and dissociation was measured at neutral pH. The 

dissociation rate and fraction bound at neutral pH were determined from this injection only. 

No effect of IgG on FcRn binding at pH 6 was measured after deamidation in our assay 

and no differences in dissociation and fraction bound at neutral pH were measured (Figure 

6.5). FcRn affinity and the fraction bound at neutral pH did not change depending on the 

fucosylation levels (Table 6.3). Deglycosylation resulted in a minor reduction in FcRn binding 

in a linear regression analysis (P=0.005). Additionally, measurements at neutral pH indicate 

a significantly lower fraction bound and a faster dissociation rate after deglycosylation 

(Figure 6.6 and Table 6.3). Deglycosylated IgG is still able to bind to FcRn, but dissociation 

at neutral pH is faster compared to the glycosylated counterpart, which may be important 

for the serum half-life. 

 

Figure 6.5 Overlay of sensorgrams of deamidated samples on FcRn binding (reference in black; t=48 

hours / pH 8 in green; t=72 hours / pH 8 in red and t=96 hours / pH 8 in blue). IgG concentrations 

between 2.5 and 10 nM.  
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FcRn 

The mechanism of FcRn mediated IgG recycling is complex and encompasses IgG 

association at pH 6 and dissociation at pH 6 and pH 7.4. Most cited references only studied 

kinetics on FcRn at pH 6. Here, FcRn interactions were measured in a multi-cycle kinetics 

experiment of eight IgG1 dilutions. The lowest seven dilutions were used for kinetics 

determination at pH 6 by fitting both the association and dissociation phase to a 

heterogeneous ligand model, as proposed by Vaughn and Bjorkman.(35) The highest IgG 

dilution was associated at pH 6 and dissociation was measured at neutral pH. The 

dissociation rate and fraction bound at neutral pH were determined from this injection only. 

No effect of IgG on FcRn binding at pH 6 was measured after deamidation in our assay 

and no differences in dissociation and fraction bound at neutral pH were measured (Figure 

6.5). FcRn affinity and the fraction bound at neutral pH did not change depending on the 

fucosylation levels (Table 6.3). Deglycosylation resulted in a minor reduction in FcRn binding 

in a linear regression analysis (P=0.005). Additionally, measurements at neutral pH indicate 

a significantly lower fraction bound and a faster dissociation rate after deglycosylation 

(Figure 6.6 and Table 6.3). Deglycosylated IgG is still able to bind to FcRn, but dissociation 

at neutral pH is faster compared to the glycosylated counterpart, which may be important 

for the serum half-life. 

 

Figure 6.5 Overlay of sensorgrams of deamidated samples on FcRn binding (reference in black; t=48 

hours / pH 8 in green; t=72 hours / pH 8 in red and t=96 hours / pH 8 in blue). IgG concentrations 
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Figure 6.6 Sensorgrams of IgG1 binding to FcRn of glycosylated (A) and deglycosylated (B) IgG1. 

Fitted curves are shown in red. C) The fraction bound at neutral pH of glycosylated (red) and 

deglycosylated (blue) IgG. 
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found that only one of the two heavy chains is oxidized when oxidation levels are around 

50% or lower, and the other heavy chain of the antibody is still able to bind to FcRn. This 

agrees well with our results as no impact is measured at 7% oxidation. 

 Presence of HMW species 

As mentioned above, the presence of aggregates in our stressed IgG samples could 
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species increased with a few percent. Additionally, samples were heated to 70°C and 75°C 

to induce larger fractions of HMW species. HMW species impact binding to all of the Fc 

receptors. IgG samples were heated for 15 minutes at temperatures close to the first Tm 

(melting temperature) of the IgG1, which resulted in differential binding to the low affinity 

Fcγ receptors (Figure 6.7). Heating to 70°C, which is just below the Tm, decreased the 

relative binding to the low affinity receptors, except for FcγRIIIb where an increase was 

observed. However, heating to 75°C resulted in at least 4x more binding (relative binding 

400% or higher), likely due to avidity effects of large aggregates that were present in these 

samples (Figure 6.7).  

Heating of the IgG samples, especially to 75°C, resulted in a large fraction of insoluble 

aggregates, which behave completely different from monomers in our binding assay. A 

more controlled approach for aggregate preparation was performed by covalent coupling of 

IgG1s to each other using a chemical linker. Preparative SEC was used to separate the 

monomer from dimers, trimers and higher aggregates (Figure 6.A.2). The covalent dimers 

and oligomers that were separated by SEC showed similar behavior in the relative binding 

measurement on low affinity Fcγ receptors compared to the heated samples (results not 

shown). Relative binding up to 400-800% on each of the low affinity Fcγ receptors was 

measured.  

Furthermore, the covalent dimers were analyzed in the FcγRI and FcRn binding assays. 

FcγRI binding with dimeric samples resulted in an apparent slower off-rate (Figure 6.D.1) 

and as a consequence an apparent higher affinity is measured with the covalent aggregate 

samples (Table 6.4). In case of FcRn, kinetic evaluation of the binding curves results in a 

1:1 binding model at pH 6 for the dimer/oligomer sample, whereas the monomeric samples 

were fitted with a heterogenous ligand model (Figure 6.D.2). The dimeric sample could be 

equally well fitted with a 1:1 binding model and a heterogeneous ligand model. We have 

chosen to fit the 1:1 binding model for this sample. A difference in observed KD and fraction 

bound at neutral pH was measured between monomer and dimer or oligomer samples 

(Table 6.4). However, the curve fitting was not corrected for a difference in molecular 

weight of the complex, because these were a mixture of monomers, dimers and trimers and 

no actual molecular mass could be determined. Assuming a molecular weight of 300 kDa for 

dimers instead of 150 kDa still resulted in an equally good fit with the 1:1 binding model 

and the heterogeneous ligand fit, still with different kinetic parameters compared to the 

monomeric reference. 
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species increased with a few percent. Additionally, samples were heated to 70°C and 75°C 

to induce larger fractions of HMW species. HMW species impact binding to all of the Fc 

receptors. IgG samples were heated for 15 minutes at temperatures close to the first Tm 

(melting temperature) of the IgG1, which resulted in differential binding to the low affinity 

Fcγ receptors (Figure 6.7). Heating to 70°C, which is just below the Tm, decreased the 

relative binding to the low affinity receptors, except for FcγRIIIb where an increase was 

observed. However, heating to 75°C resulted in at least 4x more binding (relative binding 

400% or higher), likely due to avidity effects of large aggregates that were present in these 

samples (Figure 6.7).  

Heating of the IgG samples, especially to 75°C, resulted in a large fraction of insoluble 

aggregates, which behave completely different from monomers in our binding assay. A 

more controlled approach for aggregate preparation was performed by covalent coupling of 

IgG1s to each other using a chemical linker. Preparative SEC was used to separate the 

monomer from dimers, trimers and higher aggregates (Figure 6.A.2). The covalent dimers 

and oligomers that were separated by SEC showed similar behavior in the relative binding 

measurement on low affinity Fcγ receptors compared to the heated samples (results not 

shown). Relative binding up to 400-800% on each of the low affinity Fcγ receptors was 

measured.  

Furthermore, the covalent dimers were analyzed in the FcγRI and FcRn binding assays. 

FcγRI binding with dimeric samples resulted in an apparent slower off-rate (Figure 6.D.1) 

and as a consequence an apparent higher affinity is measured with the covalent aggregate 

samples (Table 6.4). In case of FcRn, kinetic evaluation of the binding curves results in a 

1:1 binding model at pH 6 for the dimer/oligomer sample, whereas the monomeric samples 

were fitted with a heterogenous ligand model (Figure 6.D.2). The dimeric sample could be 

equally well fitted with a 1:1 binding model and a heterogeneous ligand model. We have 

chosen to fit the 1:1 binding model for this sample. A difference in observed KD and fraction 

bound at neutral pH was measured between monomer and dimer or oligomer samples 

(Table 6.4). However, the curve fitting was not corrected for a difference in molecular 

weight of the complex, because these were a mixture of monomers, dimers and trimers and 

no actual molecular mass could be determined. Assuming a molecular weight of 300 kDa for 

dimers instead of 150 kDa still resulted in an equally good fit with the 1:1 binding model 

and the heterogeneous ligand fit, still with different kinetic parameters compared to the 

monomeric reference. 
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The purified covalent aggregates contained approximately 73-77% dimers and 5-14% 

trimers and higher oligomers, which resulted in a 6 to 8-fold increase in apparent affinity on 

FcγRI and 2-fold increase in apparent affinity and fraction bound on FcRn. The increased 

apparent affinity is most likely an avidity effect than a true difference in affinity. 

As an additional verification of the results, we measured all FcR interactions in the 

opposite set-up, where we immobilized the various stressed samples on a single SPR sensor 

and analyzed the binding to the different Fcγ receptors subsequently. In this set-up no 

differences in aggregated samples compared to the references was measured (Figure 

6.C.1). Affinities that were determined on FcγRI in the opposite set-up matched closely to 

affinities that were measured for the aggregated samples in solution (0.2 nM for 

immobilized IgG vs 0.08 nM for dimeric IgG in solution), whereas the monomeric IgG in 

solution has an affinity of approximately 0.56 nM under tested conditions. Upon 

immobilization of the IgGs onto the sensor surface, pseudo-aggregates are created when 

the IgG molecules are immobilized in close proximity to each other, and this may mask the 

differences that are caused by actual aggregates. 

Table 6.4 Comparison of the effect of aggregate levels in IgG1 samples with respect to FcγRI and FcRn 

binding 

 
% 

dimers 

% trimers 

and higher 

KD (nM) 

FcγRI 

KD (nM) 

FcRn 

Fraction bound 

(%) FcRn 

IgG1 reference 1.2 n.d. 0.66 6.3 7.5 

Monomer IgG1 1.8 n.d. 0.52 7.0 8.9 

Dimer IgG1 76.7 5.1 0.08 3.1 * 17.3 

Oligomer IgG1 73.4 14.0 0.07 3.0 * 17.7 

* 1:1 binding model applied instead of heterogeneous ligand model. N.d. = not detected 

 

Discussion 

We assessed Fc tail functionality of IgG1 after exposure to various stress conditions 

using binding assays. Stress conditions that were applied and that did impact Fc tail 

functionality, included asparagine deamidation, deglycosylation, aberrant fucosylation or 

aggregation (Table 6.5). Importantly, no effects were measured after methionine oxidation, 

thermal/shake stress or repeated freeze-thaw cycles. Furthermore, we determined FcRn 

binding at pH 6 (kinetics) and at neutral pH (dissociation rate and fraction bound). 

Dissociation at neutral pH may be an important predictor for serum half-life of 
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The purified covalent aggregates contained approximately 73-77% dimers and 5-14% 

trimers and higher oligomers, which resulted in a 6 to 8-fold increase in apparent affinity on 

FcγRI and 2-fold increase in apparent affinity and fraction bound on FcRn. The increased 

apparent affinity is most likely an avidity effect than a true difference in affinity. 

As an additional verification of the results, we measured all FcR interactions in the 

opposite set-up, where we immobilized the various stressed samples on a single SPR sensor 

and analyzed the binding to the different Fcγ receptors subsequently. In this set-up no 

differences in aggregated samples compared to the references was measured (Figure 

6.C.1). Affinities that were determined on FcγRI in the opposite set-up matched closely to 

affinities that were measured for the aggregated samples in solution (0.2 nM for 

immobilized IgG vs 0.08 nM for dimeric IgG in solution), whereas the monomeric IgG in 

solution has an affinity of approximately 0.56 nM under tested conditions. Upon 

immobilization of the IgGs onto the sensor surface, pseudo-aggregates are created when 

the IgG molecules are immobilized in close proximity to each other, and this may mask the 

differences that are caused by actual aggregates. 

Table 6.4 Comparison of the effect of aggregate levels in IgG1 samples with respect to FcγRI and FcRn 

binding 

 
% 

dimers 

% trimers 

and higher 

KD (nM) 

FcγRI 

KD (nM) 

FcRn 

Fraction bound 

(%) FcRn 

IgG1 reference 1.2 n.d. 0.66 6.3 7.5 

Monomer IgG1 1.8 n.d. 0.52 7.0 8.9 

Dimer IgG1 76.7 5.1 0.08 3.1 * 17.3 

Oligomer IgG1 73.4 14.0 0.07 3.0 * 17.7 

* 1:1 binding model applied instead of heterogeneous ligand model. N.d. = not detected 

 

Discussion 

We assessed Fc tail functionality of IgG1 after exposure to various stress conditions 

using binding assays. Stress conditions that were applied and that did impact Fc tail 

functionality, included asparagine deamidation, deglycosylation, aberrant fucosylation or 

aggregation (Table 6.5). Importantly, no effects were measured after methionine oxidation, 

thermal/shake stress or repeated freeze-thaw cycles. Furthermore, we determined FcRn 

binding at pH 6 (kinetics) and at neutral pH (dissociation rate and fraction bound). 

Dissociation at neutral pH may be an important predictor for serum half-life of 
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antibodies,(9,36) however, most publications described the binding to FcRn at pH 6 alone. 

Instead, dissociation at pH 7.4 after association at pH 6 was analyzed here, resulting in a 

faster dissociation and lower fraction bound at pH 7.4 for a deglycosylated IgG sample. 

Other stress conditions did not influence FcRn dissociation at pH 7.4. 

The impact of asparagine deamidation of IgG on FcRn binding was previously reported by 

Gandhi et al.(27), and no impact of deamidation on FcRn binding at pH 6 was found. Here, 

no impact of deamidation on FcγRI (pH 7.4) and FcRn (both pH 6 and pH 7.4) was 

measured. On the other hand, relative binding on the low affinity Fcγ receptors was reduced 

after asparagine deamidation (50-70% of reference). Upon deamidation, also the 

percentage of high molecular weight species increased and therefore the deamidated 

sample was purified into a monomeric fraction. In the purified monomeric deamidated 

sample, reduced binding was still measured on the low affinity Fcγ receptors, which could 

only be attributed to asparagine deamidation. The main deamidation site of this IgG is 

present in the CDR at the light chain (up to 40% modified), which is positioned relatively far 

away from the Fc interaction site (lower hinge, upper CH2 domain (37,38)). Deamidation at 

this position is not likely to change the folding of the protein in such a way that it would 

have a large impact on Fc receptor binding. 3D models of both structures do not point in the 

direction of altered Fc binding induced by CDR deamidation (Figure 6.E.1). In the lower 

hinge and upper CH2 domain no potential deamidation sites are present. In the Fc region 

(CH2 and CH3 domains) other deamidation sites are present, which are less vulnerable 

towards deamidation, but are affected after stress conditions. The major deamidation site in 

the Fc region of the heavy chain (amino acid sequence SNGQPENNY) was deamidated at 

levels around 10%. Shields et al. (11) have studied binding behavior on all Fc receptors by 

point mutation of amino acids in the Fc region and did not find any influence of the amino 

acids in this deamidation site (altered binding defined as reduction of 40% or more). Here, 

the reduced binding of the deamidated samples was 30-50%. After all three incubations 

(48, 72 and 96 hours), relatively similar binding levels and deamidation levels (around 10%) 

were found, whereas deamidation levels on the other two main deamidation sites in the 

CDR steadily increased over time. Collectively, this suggests that the HC-Fc deamidation is 

most likely responsible for reduced binding to low affinity Fcγ receptors after deamidation. 

Asparagine residues sensitive towards deamidation may differ between different IgGs as 

these may be present in the CDR region and can therefore be specific towards the studied 

antibody. However, our results suggest that the major deamidation site which affects Fc 

receptor binding is present in the conserved residues of the Fc region (SNGQPENNY). These 
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results indicate, together with data from Shields et al.(11), that the effects of deamidation on 

Fc receptor binding are not IgG dependent. 

Table 6.5 Summary of Fc tail interactions to monitor for changes in product characteristics 

IgG 

modification 
FcγRIIIa FcγRIIIb FcγRIIa FcγRIIb FcγRI FcRn 

Deamidation 

(10-50%) 

Reduced 

relative 

binding* 

Reduced 

relative 

binding* 

Reduced 

relative 

binding* 

Reduced 

relative 

binding* 

No 

impact*

No 

impact* 

Deglycosylation 

(100%) 

Hardly any 

binding 

Hardly any 

binding 

Hardly any 

binding 

Hardly any 

binding 

Hardly 

any 

binding 

Slightly 

faster off-

rate. 

Lower 

fraction 

bound at 

neutral 

pH* 

Aberrant 

fucosylation  

(3-70%) 

Increased 

binding 

with lower 

fucosy-

lation 

Increased 

binding 

with lower 

fucosy-

lation 

No impact No impact 
No 

impact 

No 

impact* 

Aggregation  

(5-75%) 

Higher 

relative 

binding 

(>400%) 

Higher 

relative 

binding 

(>400%) 

Higher 

relative 

binding 

(>400%) 

Higher 

relative 

binding 

(>400%)*

Slower 

off-rate, 

increase 

KD 

Slower off-

rate, 

increased 

KD, 1:1 

binding 

model 

Oxidation  

(<7% on 

 Met252) 

No impact No impact No impact No impact 
No 

impact 
No impact 

Thermal/shake 

stress 

No 

impact* 

No 

impact* 

No 

impact* 

No 

impact* 

No 

impact*

No 

impact* 

Freeze-thaw 

cycles 

No 

impact* 

No 

impact* 

No 

impact* 

No 

impact* 

No 

impact*

No 

impact* 

* Results marked with an asterisk and in bold indicate results that have not been reported in literature 

to authors’ knowledge 
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antibodies,(9,36) however, most publications described the binding to FcRn at pH 6 alone. 

Instead, dissociation at pH 7.4 after association at pH 6 was analyzed here, resulting in a 

faster dissociation and lower fraction bound at pH 7.4 for a deglycosylated IgG sample. 

Other stress conditions did not influence FcRn dissociation at pH 7.4. 

The impact of asparagine deamidation of IgG on FcRn binding was previously reported by 

Gandhi et al.(27), and no impact of deamidation on FcRn binding at pH 6 was found. Here, 

no impact of deamidation on FcγRI (pH 7.4) and FcRn (both pH 6 and pH 7.4) was 

measured. On the other hand, relative binding on the low affinity Fcγ receptors was reduced 

after asparagine deamidation (50-70% of reference). Upon deamidation, also the 

percentage of high molecular weight species increased and therefore the deamidated 

sample was purified into a monomeric fraction. In the purified monomeric deamidated 

sample, reduced binding was still measured on the low affinity Fcγ receptors, which could 

only be attributed to asparagine deamidation. The main deamidation site of this IgG is 

present in the CDR at the light chain (up to 40% modified), which is positioned relatively far 

away from the Fc interaction site (lower hinge, upper CH2 domain (37,38)). Deamidation at 

this position is not likely to change the folding of the protein in such a way that it would 

have a large impact on Fc receptor binding. 3D models of both structures do not point in the 

direction of altered Fc binding induced by CDR deamidation (Figure 6.E.1). In the lower 

hinge and upper CH2 domain no potential deamidation sites are present. In the Fc region 

(CH2 and CH3 domains) other deamidation sites are present, which are less vulnerable 

towards deamidation, but are affected after stress conditions. The major deamidation site in 

the Fc region of the heavy chain (amino acid sequence SNGQPENNY) was deamidated at 

levels around 10%. Shields et al. (11) have studied binding behavior on all Fc receptors by 

point mutation of amino acids in the Fc region and did not find any influence of the amino 

acids in this deamidation site (altered binding defined as reduction of 40% or more). Here, 

the reduced binding of the deamidated samples was 30-50%. After all three incubations 

(48, 72 and 96 hours), relatively similar binding levels and deamidation levels (around 10%) 

were found, whereas deamidation levels on the other two main deamidation sites in the 

CDR steadily increased over time. Collectively, this suggests that the HC-Fc deamidation is 

most likely responsible for reduced binding to low affinity Fcγ receptors after deamidation. 

Asparagine residues sensitive towards deamidation may differ between different IgGs as 

these may be present in the CDR region and can therefore be specific towards the studied 

antibody. However, our results suggest that the major deamidation site which affects Fc 

receptor binding is present in the conserved residues of the Fc region (SNGQPENNY). These 
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results indicate, together with data from Shields et al.(11), that the effects of deamidation on 

Fc receptor binding are not IgG dependent. 

Table 6.5 Summary of Fc tail interactions to monitor for changes in product characteristics 

IgG 

modification 
FcγRIIIa FcγRIIIb FcγRIIa FcγRIIb FcγRI FcRn 

Deamidation 

(10-50%) 

Reduced 

relative 

binding* 

Reduced 

relative 

binding* 

Reduced 

relative 

binding* 

Reduced 

relative 

binding* 

No 

impact*

No 

impact* 

Deglycosylation 

(100%) 

Hardly any 

binding 

Hardly any 

binding 

Hardly any 

binding 

Hardly any 

binding 

Hardly 

any 

binding 

Slightly 

faster off-

rate. 

Lower 

fraction 

bound at 

neutral 

pH* 

Aberrant 

fucosylation  

(3-70%) 

Increased 

binding 

with lower 

fucosy-

lation 

Increased 

binding 

with lower 

fucosy-

lation 

No impact No impact 
No 

impact 

No 

impact* 

Aggregation  

(5-75%) 

Higher 

relative 

binding 

(>400%) 

Higher 

relative 

binding 

(>400%) 

Higher 

relative 

binding 

(>400%) 

Higher 

relative 

binding 

(>400%)*

Slower 

off-rate, 

increase 

KD 

Slower off-

rate, 

increased 

KD, 1:1 

binding 

model 

Oxidation  

(<7% on 

 Met252) 

No impact No impact No impact No impact 
No 

impact 
No impact 

Thermal/shake 

stress 

No 

impact* 

No 

impact* 

No 

impact* 

No 

impact* 

No 

impact*

No 

impact* 

Freeze-thaw 

cycles 

No 

impact* 

No 

impact* 

No 

impact* 

No 

impact* 

No 

impact*

No 

impact* 

* Results marked with an asterisk and in bold indicate results that have not been reported in literature 

to authors’ knowledge 
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The structure of an IgG, with two heavy chains that both can potentially bind to Fc 

receptors complicates analysis of these molecules. Fc tail interactions are not necessarily 

impacted by modifications on one of the heavy chains alone. If only one heavy chain is 

involved in an interaction and one heavy chain remains unaffected, this does not necessarily 

impact Fc effector binding, as shown for methionine oxidation. In the Fc region of an IgG 

two main oxidation sites (H252 and H428) are present, of which H252 is the most vulnerable 

oxidation site. Houde et al.(14) found that the conformation of IgGs is changed upon 

methionine oxidation, although this is not reflected in an altered binding to FcγRIIIa, which 

may be a result of one Fc tail that can still bind to the Fcγ receptor. No difference in relative 

binding of IgG on FcγRIIIa, neither on any of the other low affinity Fcγ receptors was 

measured with oxidation levels up to 7% after H2O2 stress in our study. Furthermore, no 

differences in affinity and kinetics of oxidized IgG to FcγRI or FcRn (pH 6 and pH 7.4) were 

detected. This is in agreement with results published by Bertolotti-Ciarlet et al.(20) who 

studied the interaction of IgGs to each of the Fcγ receptors. A few publications described 

the effect of methionine oxidation on FcRn binding measured at pH 6 (21,39). In these 

studies, it was demonstrated that a single Met252 oxidation (i.e. one heavy chain modified) 

has no impact on FcRn binding kinetics. IgG with both heavy chains oxidized alter the 

binding kinetics to FcRn significantly, resulting in faster plasma clearance. However, these 

measurements were only performed at pH 6. Therefore we additionally measured 

dissociation rate and fraction bound at neutral pH and no differences in FcRn binding with 

oxidation levels up to 7% were shown. The average methionine oxidation of the studied IgG 

during production and processing did not exceed 2-3%. Hence, no impact on Fc tail 

functionality was expected. Wang et al.(39) analyzed IgG samples with a shelf-life of three 

years under refrigerated or frozen conditions. Even then, IgG oxidation levels did not exceed 

13% and no effect on FcRn binding at pH 6 was detected. In summary, we postulate that 

both heavy chains should be oxidized in order to affect Fc tail functionality. 

Hardly any IgG binding to the low affinity Fcγ receptors and FcγRI was measured after 

deglycosylation, which is in agreement with results from others.(12,13,15,40) The binding to 

FcRn receptor is not or only moderately influenced by the glycan occupancy, as similar 

affinity at pH 6 was measured using deglycosylated IgG1 compared to the glycosylated 

reference IgG However, dissociation at neutral pH was impacted by glycan occupancy, as 

the fraction bound at neutral pH significantly decreased after deglycosylation. Furthermore, 

fucosylation levels of the antibody have an impact on the binding to FcγRIIIa and FcγRIIIb, 

whereas no differences in binding were measured on any of the other Fc receptors. These 
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results are in agreement with literature.(13,16-19) None of the cited references studied the 

effect of deglycosylation on fraction bound at neutral pH, and we have demonstrated that 

there is a significant impact. A decrease in fucosylation induces stronger binding to FcγRIIIa 

and as such increases the antibody-dependent cellular cytotoxicity of the antibody. This 

increased affinity is caused by carbohydrate-carbohydrate interactions of both the IgG and 

the Fcγ receptor.(19) IgG glycosylation is important as it adds to the stability of the protein(41) 

and to maintain its effector binding characteristics(12), both in glycan site occupancy as well 

as glycosylation pattern differences (e.g. fucosylation levels). IgGs are more prone to 

aggregation when glycans are absent, which in turn has an effect on Fc effector functions. 

Furthermore glycans stabilize IgGs against proteases that may cleave the protein during 

harvesting or purification and as such proper glycan occupancy is critical for the quality of a 

therapeutic antibody, especially when effector function of the immune system are involved 

in the mode of action.(40,42)  

The results for each of the Fcγ receptors indicate that dimers and oligomers, or 

aggregates, of IgGs bind stronger to the various types of Fc receptors and can therefore 

have a significant impact on affinity determinations. The binding of dimeric and oligomeric 

IgGs to low affinity Fcγ receptors changes, due to avidity effects and is reflected in an 

increase in relative binding to 400% or higher. Comparable increased affinities have been 

measured by Luo et al.(24) Similarly, Bajardi-Taccioli et al.(23) demonstrated an increase in 

relative activity on an FcRn binding assay when aggregates were spiked into the measured 

samples. A slower off-rate was measured with samples that contained up to 86% of 

aggregation. These results were all obtained with samples that contained a significant 

amount of aggregates (more than 80%). On the other hand, samples that contain no more 

than 2.5% of aggregates have no altered relative binding in our study, whereas Dorion-

Thibaudeau et al. (15) found that HMW levels of only 2% already affected the binding to 

FcγRIIIa in their assay. Due to the avidity effects of aggregates, the impact of a small 

fraction of dimers and higher oligomers in samples can alter binding to Fc receptors and can 

therefore not be neglected. Protein aggregates may consist of reversible and irreversible 

aggregates(43). Aggregates that are artificially created (heating or chemically coupling) can 

generally be well characterized by other analytical assays,(26,43,44) whereas reversible 

aggregates of IgGs which naturally occur, may fall apart upon dilution(43) and are therefore 

difficult to characterize. The nature of aggregates in stressed IgG samples may be different 

compared to naturally occurring aggregates, which complicates the assignment of the 

impact these have in binding assays. Still, we strongly recommend controlling the aggregate 
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The structure of an IgG, with two heavy chains that both can potentially bind to Fc 

receptors complicates analysis of these molecules. Fc tail interactions are not necessarily 

impacted by modifications on one of the heavy chains alone. If only one heavy chain is 

involved in an interaction and one heavy chain remains unaffected, this does not necessarily 

impact Fc effector binding, as shown for methionine oxidation. In the Fc region of an IgG 

two main oxidation sites (H252 and H428) are present, of which H252 is the most vulnerable 

oxidation site. Houde et al.(14) found that the conformation of IgGs is changed upon 

methionine oxidation, although this is not reflected in an altered binding to FcγRIIIa, which 

may be a result of one Fc tail that can still bind to the Fcγ receptor. No difference in relative 

binding of IgG on FcγRIIIa, neither on any of the other low affinity Fcγ receptors was 
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studies, it was demonstrated that a single Met252 oxidation (i.e. one heavy chain modified) 

has no impact on FcRn binding kinetics. IgG with both heavy chains oxidized alter the 

binding kinetics to FcRn significantly, resulting in faster plasma clearance. However, these 

measurements were only performed at pH 6. Therefore we additionally measured 

dissociation rate and fraction bound at neutral pH and no differences in FcRn binding with 

oxidation levels up to 7% were shown. The average methionine oxidation of the studied IgG 

during production and processing did not exceed 2-3%. Hence, no impact on Fc tail 

functionality was expected. Wang et al.(39) analyzed IgG samples with a shelf-life of three 

years under refrigerated or frozen conditions. Even then, IgG oxidation levels did not exceed 

13% and no effect on FcRn binding at pH 6 was detected. In summary, we postulate that 

both heavy chains should be oxidized in order to affect Fc tail functionality. 

Hardly any IgG binding to the low affinity Fcγ receptors and FcγRI was measured after 

deglycosylation, which is in agreement with results from others.(12,13,15,40) The binding to 

FcRn receptor is not or only moderately influenced by the glycan occupancy, as similar 

affinity at pH 6 was measured using deglycosylated IgG1 compared to the glycosylated 

reference IgG However, dissociation at neutral pH was impacted by glycan occupancy, as 

the fraction bound at neutral pH significantly decreased after deglycosylation. Furthermore, 
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whereas no differences in binding were measured on any of the other Fc receptors. These 
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results are in agreement with literature.(13,16-19) None of the cited references studied the 

effect of deglycosylation on fraction bound at neutral pH, and we have demonstrated that 

there is a significant impact. A decrease in fucosylation induces stronger binding to FcγRIIIa 

and as such increases the antibody-dependent cellular cytotoxicity of the antibody. This 

increased affinity is caused by carbohydrate-carbohydrate interactions of both the IgG and 

the Fcγ receptor.(19) IgG glycosylation is important as it adds to the stability of the protein(41) 

and to maintain its effector binding characteristics(12), both in glycan site occupancy as well 

as glycosylation pattern differences (e.g. fucosylation levels). IgGs are more prone to 

aggregation when glycans are absent, which in turn has an effect on Fc effector functions. 

Furthermore glycans stabilize IgGs against proteases that may cleave the protein during 

harvesting or purification and as such proper glycan occupancy is critical for the quality of a 

therapeutic antibody, especially when effector function of the immune system are involved 

in the mode of action.(40,42)  

The results for each of the Fcγ receptors indicate that dimers and oligomers, or 

aggregates, of IgGs bind stronger to the various types of Fc receptors and can therefore 

have a significant impact on affinity determinations. The binding of dimeric and oligomeric 

IgGs to low affinity Fcγ receptors changes, due to avidity effects and is reflected in an 

increase in relative binding to 400% or higher. Comparable increased affinities have been 

measured by Luo et al.(24) Similarly, Bajardi-Taccioli et al.(23) demonstrated an increase in 

relative activity on an FcRn binding assay when aggregates were spiked into the measured 

samples. A slower off-rate was measured with samples that contained up to 86% of 

aggregation. These results were all obtained with samples that contained a significant 

amount of aggregates (more than 80%). On the other hand, samples that contain no more 

than 2.5% of aggregates have no altered relative binding in our study, whereas Dorion-

Thibaudeau et al. (15) found that HMW levels of only 2% already affected the binding to 

FcγRIIIa in their assay. Due to the avidity effects of aggregates, the impact of a small 

fraction of dimers and higher oligomers in samples can alter binding to Fc receptors and can 

therefore not be neglected. Protein aggregates may consist of reversible and irreversible 

aggregates(43). Aggregates that are artificially created (heating or chemically coupling) can 

generally be well characterized by other analytical assays,(26,43,44) whereas reversible 

aggregates of IgGs which naturally occur, may fall apart upon dilution(43) and are therefore 

difficult to characterize. The nature of aggregates in stressed IgG samples may be different 

compared to naturally occurring aggregates, which complicates the assignment of the 

impact these have in binding assays. Still, we strongly recommend controlling the aggregate 
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level of samples when assessing Fc interactions in binding assays such as those described 

here. 

No difference in binding was observed when aggregates were immobilized on the 

sensor surface. Most likely, the effects of aggregation are masked upon immobilization of 

IgGs in close proximity to each other. The immobilization of IgGs on the surface can cause 

the IgGs to behave as aggregates rather than monomeric molecules as they are covalently 

linked to the sensor surface in close proximity to each other, and therefore the differences 

between monomer and aggregate are no longer measured.  

High-throughput analytical screening technologies are used more and more to rapidly 

identify critical process parameters and to monitor critical product quality attributes. Here 

we have shown that Fc binding assays can be applied for a rapid screening of product 

quality. Understanding the effects of process variation on Fc tail functionality early in the 

development can be beneficial for further process development, in lead optimization studies 

and in process characterization studies. Although ideally the Fc receptors screening should 

be performed on a single SPR assay, the differences in binding characteristics between the 

various receptors prevented such a multiplexed measurement. However, three separate 

high-throughput screening methods were developed and used to explore the total Fc region 

binding of stressed IgGs. Low affinity Fcγ receptors and FcRn binding were measured in 

only 5 minutes per sample, whereas the FcγRI assay takes 45 minutes per sample. 

Especially the screening of multiple Fcγ receptors in a single assay with only 5 minutes per 

sample dramatically increases sample throughput, and therefore such multiplexed methods 

are highly recommended to use.  

Although the various stress-induced modifications are considered to be crucial for 

product quality, we here show that surprisingly most of those factors had only minor effects 

on Fc receptor binding within the range that is often found during development. This is 

relevant for the development of novel antibodies but has even more impact on the 

development of biosimilar antibodies. During the development of biosimilars, due to process 

difference with the innovator, small differences occur in e.g. level of oxidation or 

deamidation, for which the question always remains whether they are relevant for product 

quality. Biosimilarity assessment can be rapidly performed using such high-throughput 

screening assays. Here we show that only significant differences in these parameters 

impacted Fc receptor binding and minute changes had no impact at all, except for minor 

differences in the presence of HMW species.   
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Figure 6.A.2 Preparative SEC chromatogram at 280 nm of collected fractions (A) and corresponding 

SDS-PAGE analysis of the collected fractions (B). The fractions from B1 to C4, indicated in the 

chromatogram, were collected and analyzed. 
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Appendix B Low affinity Fcγ receptor binding 

 

Figure 6.B.1 Relative binding on the four low affinity Fcγ receptors with the deamidated sample before 

and after SEC purification 

  

0

20

40

60

80

100

120

Reference pH8 72 hrs pH8 72 hrs monomer

Ac
tiv

e 
 c
on

te
nt
 (%

)

FcγRIIIa

FcγRIIIb

FcγRIIa

FcγRIIb

Rapid screening of IgG quality attributes: effects on Fc receptor binding 

173 

Appendix C Statistical results 
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Figure 6.C.1 Boxplots of apparent affinity of stressed samples immobilized on the sensor surface and 

Fcγ receptors injected as analytes. Steady state equilibrium affinity determined for (A) FcγRIIIa, (B), 

FcγRIIIb, (C) FcγRIIa, (D) FcγRIIb. Kinetic 1:1 fit to determine affinity for (E) FcγRI. Note that the Y-

axis for graph E, FcγRI, is on logarithmic scale. 
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Figure 6.C.1 Boxplots of apparent affinity of stressed samples immobilized on the sensor surface and 
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axis for graph E, FcγRI, is on logarithmic scale. 
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Appendix D Additional sensorgrams 

   

Figure 6.D.1 Single cycle kinetics sensorgrams of purified monomer (A), dimer (B) and oligomer (C) 

fractions on FcγRI binding. Measured curves in green or red, fitted curves in black.  
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Figure 6.D.2 Sensorgrams of a monomeric IgG1 sample (40 nM) in overlay with covalent dimer and 

multimer samples on FcRn binding 
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Appendix D Additional sensorgrams 

   

Figure 6.D.1 Single cycle kinetics sensorgrams of purified monomer (A), dimer (B) and oligomer (C) 

fractions on FcγRI binding. Measured curves in green or red, fitted curves in black.  
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Appendix E Three-dimensional model of IgG 

 

Figure 6.E.1 Three-dimensional model of an IgG1 with the residues that are involved in Fc interactions 

indicated in yellow, pink and blue. The asparagine in the Fc region of the IgG that is most prone 

towards deamidation is indicated in red. 
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Abstract 

 In the preceding chapters applications of multiplexed surface plasmon resonance 

imaging during the process development and product characterization of biopharmaceuticals 

have been highlighted.  

 Two different buffer screening applications have been developed for process 

development and described: screening for most optimal regeneration conditions for SPR-

based applications and a similar approach where SPRi was used to optimize affinity 

chromatography conditions during process development. 

 Product characterization applications that have been developed included a 

glycoprofiling method of erythropoietin, which was applied to quantify sialylation levels of 

rhEPO. Additionally, a multiplexed method for characterization of Fcγ receptor binding of 

monoclonal antibodies was described, which is used to support in-process control 

measurements by rapidly screening product quality. This latter method could only be 

established after exploring the optimal conditions for minimal biotinylation. These were 

determined in a design of experiments, and labeling positions were identified by mass 

spectrometry methods. 

 In this chapter the general findings of how the SPRi platform is beneficial for process 

and product characterization during biopharmaceutical development are being discussed. 

We will also highlight a few applications that have been investigated but did not meet 

requirements for high-throughput screening. An outlook on SPRi applications and SPR-like 

technologies that have potential for future applications will further be discussed.   
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Introduction 

 Surface plasmon resonance (SPR) has emerged as a powerful analytical tool in food, 

environmental and pharmaceutical research over the past three decades. The technique is 

now generally accepted in research and development as well as in quality control analyses. 

More recently SPR imaging, or SPRi, has been developed and used in a number of 

applications, such as antibody affinity ranking,(1) epitope binning (2) or biomarker 

identification, (3-5) among many others. 

 In this work we have applied the SPRi platform to several process support and product 

characterization steps of biopharmaceutical proteins as outlined in previous chapters. The 

main findings from these studies will be further discussed including examples of a few 

applications that were not further developed after initial evaluation. In Figure 7.1 an 

overview of a general process for biopharmaceutical development is shown and the major 

opportunities for SPRi application are indicated, of which several have been tested and 

demonstrated in this work. Furthermore, an outlook to future applications of SPRi is 

provided, as well as an overview of other potential techniques that may be used for 

characterization of therapeutic proteins.  

 

Figure 7.1 Overview of biopharmaceutical development process including the different developments 

and indications where SPRi can be applied  
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Process development  

Upstream processing  

 During the upstream process, the protein titer in the bioreactor is monitored to verify 

the production. Often, samples are taken daily to be measured off-line, but novel at-line 

methods using SPR have been developed in recent years to quantify the protein titer directly 

from the bioreactor (indicated in step 4, 8 and 10 in Figure 7.1).(6,7) Additionally, one aspect 

of the bioactivity of the proteins can directly be measured based on target binding (step 7 in 

Figure 7.1), whereas off-line measurements only provide the protein titer but cannot 

guarantee if this is functional product. Protein expression monitoring from crude cell lysates 

in biological samples has been determined by multiplexed SPR in other research as well.(8,9)  

 A similar titer determination assay was developed on the SPRi platform, using different 

experimental set-ups. The instrumental set-up of the IBIS MX96 system does not allow 

multiple samples to be analyzed simultaneously, unless these are immobilized or captured 

on the sensor surface in the CFM printer. Therefore, the following experimental set-up was 

investigated first: 1) immobilization of protein A / MabSelectSure (MSS) on the entire sensor 

surface (cover coupling), 2) 48-plex application of IgG to the MSS surface in the CFM 

printer, 3) read-out in the IBIS MX96 instrument (Figure 7.2-A). The read-out was based on 

the measurement of baseline levels before and after IgG application, or by ligand density 

measurement, which is an optical determination of surface spot intensity in the software. In 

both cases, the sensor was taken out of the instrument and placed back after IgG 

application, which introduced too much variation in the results. The regions of interest 

(ROIs) define the exact position of a sample, which is used for quantification. The ROIs that 

were placed before IgG application were not always at exactly the same position as after 

IgG application in the CFM, resulting in analytical variation.  

 A second approach used the same set-up, but instead of measuring baseline elevation, 

a secondary kappa-Fab fragment (KappaSelect) was used to measure the amount of IgG 

that was captured on each spot (Figure 7.2-B). This approach was successfully applied, 

although the amounts of KappaSelect needed to obtain quantitative data were too high to 

be economically feasible. The alternative of using an anti-kappa antibody is not feasible, as 

this antibody will also bind to the initial protein A surface and cannot be used quantitatively.  
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Figure 7.2 Experimental set-up for IgG titer determination using the IBIS MX96 system and CFM 

printer. A) direct approach, measuring elevated baselines after IgG application. B) Use of secondary 

anti-kappa Fab fragment as read-out 
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are immobilized on the same sensor, although the multiplexing capabilities of the instrument 

are not fully utilized since only two of the 96 available ligand spots will be used. Any SPR 

instrument can as well be used for such an approach, and therefore such application is not a 

unique opportunity for SPRi instrumentation.  

………………………………
…………

Protein A  or  
MSS surface

IgG application
48-plex

Elevated 
baseline levels

………………………………
…………

Protein A  or  
MSS surface

IgG application
48-plex

Elevated 
baseline levels

………………………………
…………

Anti-kappa Fab
(KappaSelect)

A

B



Ch
ap

te
r 7

Chapter 7 

188 

Process development  

Upstream processing  

 During the upstream process, the protein titer in the bioreactor is monitored to verify 

the production. Often, samples are taken daily to be measured off-line, but novel at-line 

methods using SPR have been developed in recent years to quantify the protein titer directly 

from the bioreactor (indicated in step 4, 8 and 10 in Figure 7.1).(6,7) Additionally, one aspect 

of the bioactivity of the proteins can directly be measured based on target binding (step 7 in 

Figure 7.1), whereas off-line measurements only provide the protein titer but cannot 

guarantee if this is functional product. Protein expression monitoring from crude cell lysates 

in biological samples has been determined by multiplexed SPR in other research as well.(8,9)  

 A similar titer determination assay was developed on the SPRi platform, using different 

experimental set-ups. The instrumental set-up of the IBIS MX96 system does not allow 

multiple samples to be analyzed simultaneously, unless these are immobilized or captured 

on the sensor surface in the CFM printer. Therefore, the following experimental set-up was 

investigated first: 1) immobilization of protein A / MabSelectSure (MSS) on the entire sensor 

surface (cover coupling), 2) 48-plex application of IgG to the MSS surface in the CFM 

printer, 3) read-out in the IBIS MX96 instrument (Figure 7.2-A). The read-out was based on 

the measurement of baseline levels before and after IgG application, or by ligand density 

measurement, which is an optical determination of surface spot intensity in the software. In 

both cases, the sensor was taken out of the instrument and placed back after IgG 

application, which introduced too much variation in the results. The regions of interest 

(ROIs) define the exact position of a sample, which is used for quantification. The ROIs that 

were placed before IgG application were not always at exactly the same position as after 

IgG application in the CFM, resulting in analytical variation.  

 A second approach used the same set-up, but instead of measuring baseline elevation, 

a secondary kappa-Fab fragment (KappaSelect) was used to measure the amount of IgG 

that was captured on each spot (Figure 7.2-B). This approach was successfully applied, 

although the amounts of KappaSelect needed to obtain quantitative data were too high to 

be economically feasible. The alternative of using an anti-kappa antibody is not feasible, as 

this antibody will also bind to the initial protein A surface and cannot be used quantitatively.  

  

General discussion 

189 

 

Figure 7.2 Experimental set-up for IgG titer determination using the IBIS MX96 system and CFM 

printer. A) direct approach, measuring elevated baselines after IgG application. B) Use of secondary 

anti-kappa Fab fragment as read-out 

 

 Other alternative approaches may be available, but have not been investigated further, 

since it would never lead to a direct approach and a secondary reagent will be necessary. In 

conclusion, the instrumental set-up of the IBIS system in combination with the CFM limited 

the use of a multiplexed titer determination. The sensor has to be transferred from IBIS to 

CFM and back, which is performed manually and is therefore not preferred in a rapid 

measurement. Direct measurements were not accurate enough due to variation in sensor 

position after transfer. If only a method for titer determination is required, other 

instruments or techniques (e.g. BLI / Octet, protein-A UPLC) are easily applied and are 

preferred. Titer determination in combination with bioactivity as described by Chavane et 

al.(6) and Jacquemart et al.(7) is feasible at the IBIS MX96 when antigen target and protein A 

are immobilized on the same sensor, although the multiplexing capabilities of the instrument 

are not fully utilized since only two of the 96 available ligand spots will be used. Any SPR 

instrument can as well be used for such an approach, and therefore such application is not a 

unique opportunity for SPRi instrumentation.  

………………………………
…………

Protein A  or  
MSS surface

IgG application
48-plex

Elevated 
baseline levels

………………………………
…………

Protein A  or  
MSS surface

IgG application
48-plex

Elevated 
baseline levels

………………………………
…………

Anti-kappa Fab
(KappaSelect)

A

B



Chapter 7 

190 

Downstream processing 

 In addition to support during the upstream process, the SPRi platform is an attractive 

alternative for high-throughput screening during downstream processing, mainly in the 

development of affinity chromatography. In case of process development for IgGs, protein A 

affinity chromatography is the method of choice as the primary purification step. Since SPR 

measures the affinity between two proteins based on their interaction, this technique is well 

suited for process simulation at a miniaturized scale.  

 In Chapter 3 we have proven that SPRi can be used to simulate an affinity 

chromatography process. Finding optimal wash or elution buffer conditions is easily 

performed within a few hours to days. The screening technology is further interesting to 

ligand developers that want to test the stability of new ligands including the optimal buffer 

conditions for using those new ligands. In this protein A chromatography simulation several 

different instrumental set-ups have been applied for the elution buffer screening (Figure 

7.3), wash buffer screening and ligand reusability screening (Figure 7.4). The wash buffer 

screening was performed using a similar approach as for the ligand reusability, but instead 

of injecting the buffer 10 times between two IgG injections, a new IgG injection was 

performed after each buffer injection. The elution buffer screening was performed in a 

similar set-up as the regeneration buffer scouting described in Chapter 2. The instrumental 

design of the IBIS MX96 in combination with the CFM requires manual transfer of the sensor 

from one instrument to the other as demonstrated in Figure 7.3, which introduces additional 

analytical variation because the sensor cannot be placed back at exactly the same position 

after transfer, as already discussed earlier.  

 The direct approach that was used for the wash buffer screening and ligand reusability 

(Figure 7.4) results in much less analytical variation because all measurements are 

performed in the IBIS MX96, without transfer of the sensor in between measurements. The 

drawback of this approach is that all buffers have to be tested sequentially in the SPR 

system, which increases experimental time compared to the indirect approach because the 

multiplexing capabilities are not fully utilized (Table 7.1). However, this can be automatically 

performed overnight or over a weekend without the need for an analyst to be present at the 

lab, whereas the indirect set-up requires an operator to manually transfer the sensor in 

between each measurement. Another benefit is that the wash buffer screening can then be 

performed on up to 96 different ligands at the same time for the number of wash buffer 

conditions or reusability cycles to be tested, to virtually unlimited numbers of test 
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conditions. This is often not necessary in a biopharmaceutical setting, as the choice of 

ligands for a chromatographic step is limited and often only one particular resin has to be 

screened. On the other hand, for ligand developers to test multiple new ligands the 

proposed screening approach is a valuable technology, which requires only minute amounts 

of material.  

 

Figure 7.3 Examples of elution buffer screening as performed in Chapter 3. In case of full elution of 

IgG from the surface, a similar response is measured in the second injection (example I), while in case 

of no elution of IgG, the surface is still saturated and no binding is measured in the 2nd injection of IgG 

(example II) 
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Downstream processing 
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suited for process simulation at a miniaturized scale.  
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performed within a few hours to days. The screening technology is further interesting to 

ligand developers that want to test the stability of new ligands including the optimal buffer 

conditions for using those new ligands. In this protein A chromatography simulation several 
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conditions or reusability cycles to be tested, to virtually unlimited numbers of test 
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conditions. This is often not necessary in a biopharmaceutical setting, as the choice of 

ligands for a chromatographic step is limited and often only one particular resin has to be 

screened. On the other hand, for ligand developers to test multiple new ligands the 

proposed screening approach is a valuable technology, which requires only minute amounts 

of material.  

 

Figure 7.3 Examples of elution buffer screening as performed in Chapter 3. In case of full elution of 

IgG from the surface, a similar response is measured in the second injection (example I), while in case 

of no elution of IgG, the surface is still saturated and no binding is measured in the 2nd injection of IgG 

(example II) 
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time and consume somewhat more ligand, analyte and buffers in comparison to the indirect 

approach. 

 

Figure 7.4 Ligand reusability simulation on the SPRi platform, with 10 sequential NaOH injections (B) 

between each of the 10 IgG injections (A) to simulate in total 100 steps of NaOH cleaning on 36 

individual ligand spots simultaneously 

 

 Another part of the downstream process, or at least after protein purification, is the 

development of a formulation in which the protein is stable over prolonged time periods. 

One of the characteristics to determine during formulation development is the likelihood of a 

protein to interact with itself, because high levels of self-interactions may induce 

aggregates, which in turn lead to a lower product stability and may cause immunogenic 

reactions. Self-interaction chromatography is generally used to determine the self-
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interaction of proteins in buffer of interest, and has in recent year already been miniaturized 

to microchip self-interaction studies.(13,14) Since self-interaction is based on protein-protein 

interactions, between the same protein, it can be studied in SPR methods. Self-interaction 

measurements on the SPRi platform have been investigated but with limited success. The 

low tendency of self-interaction of the studied IgG could not be measured with the SPR 

method, similar as self-interaction determinations by Patel et al.(15) Furthermore, in SPR 

measurements, often NaCl is added to the running buffer, which to some extent may 

prevent certain levels of non-specific binding to the sensor surface. No NaCl is present in 

most potential formulation buffers, which lead to relatively high levels of non-specific 

binding to the sensor surface. Other sensor types, which are developed to reduce non-

specific binding, have been tested as well, but still no self-interaction could be measured. If 

present at all, the self-interaction is likely relatively weak and may therefore not be 

measurable under the investigated conditions. 

 

Table 7.1 Consumables for two approaches for buffer screening and ligand lifetime studies based on 

SPRi and the filter plate screening technology in comparison to conventional column screening 

Approach Indirect Direct Filter plate* Column  
(1 mL) 

Applied in 

Regeneration buffer 
(Chapter 2)  
Elution buffer 
(Chapter 3) 

Wash buffer 
(Chapter 3) 
Ligand reusability 
(Chapter 3) 

n.a. n.a 

Experiment time 
(n=1) 3 hours 24 - 48 hours 2-8 hours Days - weeks 

Amount of 
ligand/resin 3 µL 10 – 30 µL 2 – 4 mL 1 mL 

Amount of sample 50 µg 1 – 2 mg 2 – 30 mg > 500 mg 

Amount of buffers 2 mL 5 – 40 mL 125-175 mL 2000 mL 

Advantage 

Very fast results 
Dynamic binding is 
measured; 
continuous flow 

Automated 
performance 
Less analytical 
variation 
Dynamic binding is 
measured; 
continuous flow 

Can be 
automated on 
pipetting 
robots 

Dynamic 
binding is 
measured; 
continuous 
flow 

Drawback 

Manual sensor 
transfer; operator 
must be present.        
Analytical variation 
due to sensor 
transfer from IBIS to 
CFM 

Test conditions 
must be 
sequentially 
injected; 
additional 
experiment time 
required 

Static 
approach; no 
flow 
measurements 

Takes many 
manual steps 

* Based on a single 96-well plate  
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Product characterization 

Glycosylation fingerprinting 

 The characterization of protein glycosylation of biotherapeutics is of importance for the 

quality of the product, because it may determine the efficacy, half-life, stability and 

biological function of that protein. As already emphasized in the introduction, several 

methods to determine protein glycosylation are regularly used and are based on 

monosaccharide or glycan analysis, or more globally on the glycosylation fingerprint of a 

protein. The glycosylation fingerprint is a rough indication of the type of glycans that are 

present and the level of each, in a semi-quantitative measure, whereas full monosaccharide 

or glycan analyses provide accurate quantitative data on the carbohydrate compositions of 

glycoproteins.  

 Glycoprofiling or glycofingerprinting has been mainly determined on lectin arrays, by 

defining a panel of lectins to which the glycoprotein can specifically bind based on the 

glycan moieties that are present. Most of these lectin arrays are based on fluorescence 

detection, which requires the glycoprotein to be fluorescently labeled.(16-20) A similar 

glycoprofiling on a lectin array based on SPRi has been developed (Chapter 4), which 

prevents elaborate fluorescent labeling preparation. The described SPRi-based lectin array 

was able to measure glycofingerprints of different rhEPO biosimilar brands and showed 

differences between the brands.  

 The specificity of lectins is not always as high as needed for a proper glycoprofiling, as 

demonstrated by analyses of neoglycoproteins (Chapter 4 and Figure 7.5, derived from 

Figure 4.1-B). Cross-reactivity with different glycan moieties or with non-glycosylated 

proteins, although at lower apparent affinities, may lead to difficulties in interpretation of 

the data. The high specificity that would be desired for such a profiling method would likely 

only be achieved by anti-glycan or anti-monosaccharide antibodies, because antibodies have 

a high specificity to the target against which they were raised. Additionally, high-affinity 

antibodies are easily selected from a pool of antibodies. However, antibodies against a 

specific glycan moiety are not readily available or not available at all. The natural occurrence 

of N-linked glycosylation in most animals that are generally used to raise antibodies limits 

the immunogenic potential of these glycan moieties.(21) Furthermore, the structural 

homology between the different N-glycan structures complicates a selective recognition for 

certain moieties even more.(21) A few anti-glycan antibodies have appeared in publications, 
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but the quality of these proteins is often lacking, which is another limitation for their 

widespread use, at least in case of N-glycosylation studies.(21) Last but not least, the costs 

for antibody generation against specific targets are high, while lectins can be relatively easy 

purified. 

 

Figure 7.5 Specificity of four selected lectins as demonstrated by neoglycoproteins (Chapter 4) 

 

 These drawbacks of anti-glycan antibodies, and the natural occurrence of glycan-

binding lectins, probably have led to the preference for lectins in fingerprinting methods, 

despite the cross-reactivity of some lectins. The glycoprofiling method on SPRi is an 

attractive tool in comparability studies for example in biosimilar assessments, or as an assay 

for in-process control. Fingerprint-like methods and orthogonal methods are becoming more 

important in biosimilarity assessments as indicated by the FDA, even though these methods 

are not necessarily validated.(22) 

Fcγ receptor screening 

 Functionality of monoclonal antibodies partially depends on the binding of the Fc tail to 

various Fcγ receptors and serum half-life of IgGs is related to neonatal Fc receptor (FcRn) 

binding. The Fab region binds to the antigen target, and then effector cells which exhibit 
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one or more Fcγ receptors are responsible for clearance of pathogens or tumor cells, for 

example by antibody-dependent cell-mediated cytotoxicity (ADCC). The occurrence of 

various Fcγ receptors on human cells was used to design a screening tool based on SPRi to 

measure various Fcγ interactions simultaneously as part of critical quality attribute (CQA) 

assessment of antibodies, which was demonstrated in Chapter 6.  

 However, the broad range of affinities of the different Fcγ receptors (nM range for 

FcγRI and µm range for FcγRIIa/b and FcγRIIIa/b) prevented the application of all Fcγ 

receptors on the same multiplexed sensor surface. In addition to that, the FcRn could not be 

included in the same measurement, due to the different affinity range (nM range) and the 

interaction mechanism, which occurs at different pH compared to the Fcγ receptors. 

Therefore, separate methods were used to measure FcγRI and FcRn binding, whereas the 

different low affinity Fcγ receptors were immobilized on a single sensor surface, all with the 

aim for rapid characterization. Three different platforms were used to screen IgG binding to 

the various Fc receptors after stress-induced modifications on the IgGs in Chapter 6. 

 The developed screening method consisted of a sensor with four different immobilized 

Fcγ receptors, which is not the most optimal multiplexing capability that is possible on the 

IBIS MX96 instrument. However, different polymorphisms of these Fcγ receptors exist, 

which can have different affinity and binding properties for IgG compared to the natural 

variants.(23) For example, FcγRIIIa has a phenylalanine at position 158 (F158) in the natural, 

canonical sequence (Uniprot entry P08637), which has a weaker IgG binding than the allelic 

variant with valine at position 158 (V158).(24)  

 Another abundant, well-known mutation in the FcγRIIIa sequence is the presence of 

histidine or arginine at position 48, which replaces the leucine at position 48 in the canonical 

sequence and which is related to the allelic variant at position 158. Many more examples of 

amino acid mutations in the different Fcγ receptors have been identified (Table 7.2). The 

multiplexing capabilities of the IBIS MX96 can be fully exploited when the entire range of 

polymorphic variants is immobilized at the sensor surface, which is beneficial to screen IgG 

products for differential binding to each of these. This can be relevant for therapeutic 

antibodies, since different patients can have one or more of the different allelic variants 

expressed at their cells, which may affect the efficacy of the product and therefore it is 

important to chart possible effects on the different allelic variants.(25-29)  
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Table 7.2 Known isoforms and polymorphic variants of the different Fcγ receptors from uniprot 

entrances 

Fcγ receptor Isoform / mutation Known effects on IgG binding 

FcγRIIIa / 

CD16a  

(Uniprot 

P08637) 

L48H  

L48R  

G139D  

Y140H  

F158V Higher binding of hIgG1, hIgG3 and hIgG4.(24) 

F185S  

FcγRIIIb / 

CD16b 

(Uniprot 

O75015) 

NA1  Similar binding for the three allelic variants (31,32) 

NA2 Similar binding for the three allelic variants (31) 

SH Similar binding for the three allelic variants (31,33)  

FcγRIIa / 

CD32a 

(Uniprot 

P12318) 

AA35 missing  

Q27R  

M104V  

Q127K Clear interaction with hIgG2 (34) 

H131R Minimal binding of IgG2 (31,35) 

I182V  

FcγRIIb / 

CD32b  

(Uniprot 

P31994) 

AA 39-45 missing  

AA 46 missing  

AA 254-272 missing  

Q83P  

Y205F  

I232T  

Y258D  

FcγRI / CD64a 

(Uniprot 

P12314) 

AA333-374 different  

L105P  
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 The multiplexed Fcγ receptor screening sensor can furthermore be extended with 

receptors from various species, such as mouse, rabbit or monkey; species that are often 

used in preclinical tox studies and xenograft studies. Including receptors from these species 

on a single sensor would facilitate the translation or extrapolation of preclinical data from 

animal studies to human Fcγ receptor binding in clinical studies. Since up to 96 ligands can 

be immobilized onto a single sensor surface, and all these Fcγ receptors are structurally 

comparable, this should be feasible, but has not been performed in this work so far. 

Cell applications  

 Recently several researchers published results on cell-based and cellular analyses using 

SPRi. Successful applications of living cell sensing have been proven. The following set-ups / 

applications of cell-based SPRi were published:  

‐ Cell binding to specific capture ligands (cell receptor – ligand interactions), for example 

as a diagnostic tool,(36-39) among others 

‐ Cellular responses to stimulation or inhibition of agents(40-43) 

‐ Molecule secretion of captured cells(39,44,45) 

‐ Blood group typing(46,47) 

 An attempt to implement the SPRi technique for high-throughput characterization of 

IgGs, in a similar way as the Fcγ receptor screening in Chapter 6, was investigated, but 

with limited success. HEK293F cells that were modified to express the different Fcγ 

receptors and FcRn individually on their cell surface were available. Fc receptor – IgG 

interactions can be studied in a more natural environment on whole cells using SPRi, with 

the Fc receptors attached to a cell surface followed by IgG injections.  

 The size of HEK293 cells is roughly 13-20 µm (determined by cell counting on 

Countess), whereas macrophages for example have a size of 20-30 µm,(48) which was 

considered an acceptable comparable cell size for these types of experiments. HEK293F cells 

(wild type or with any of the Fc receptors) could be captured on the sensor surface by anti-

HLA antibodies. HLA, human leukocyte antigen, is present on the HEK293F cells and as such 

this capture was successful. The cells could also be regenerated from the sensor surface 

again, using 5 mM CHAPS as a regeneration agent, which eventually would lead to a re-

usable sensor surface.  

 However, IgG binding to the Fc receptors on the captured cells could not be measured 

with the proposed set-up. Blank injections of buffer resulted in an increasing SPR signal 
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(Figure 7.6), which even continued during the dissociation phase (indicated by dotted line in 

Figure 7.6) on both WT and FcγRI cells. The signal that was measured with an injection of 

250 nM IgG was lower compared to the blank (Figure 7.6-B). 

   

Figure 7.6 Sensorgrams of blank and 250 nM IgG injections on captured HEK293F-WT cells (a) and 

HEK293F-CD64 cells (b). Dotted line indicates start of dissociation phase. 

   

 The signal increment was possibly a result of cell movement on the sensor surface, 

since in blanks the signal steadily increases even during dissociation. Most likely the 

movements will be reduced after a long settling time (for example 30-60 minutes). Even 

then, after three blank injections, still no IgG binding to the HEK293F cells could be 

measured by SPR. Hypotheses for the lack of IgG binding measurements are:  

1) IgG binding to the cells is outside of the evanescent field due to the large cell size 

(Figure 7.7); IgGs cannot reach the bottom of the flow cell / sensor surface due to 
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receptors and FcRn individually on their cell surface were available. Fc receptor – IgG 
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 However, IgG binding to the Fc receptors on the captured cells could not be measured 

with the proposed set-up. Blank injections of buffer resulted in an increasing SPR signal 
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(Figure 7.6), which even continued during the dissociation phase (indicated by dotted line in 

Figure 7.6) on both WT and FcγRI cells. The signal that was measured with an injection of 

250 nM IgG was lower compared to the blank (Figure 7.6-B). 

   

Figure 7.6 Sensorgrams of blank and 250 nM IgG injections on captured HEK293F-WT cells (a) and 

HEK293F-CD64 cells (b). Dotted line indicates start of dissociation phase. 
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the presence of cells. The evanescent field determines where the SPR signal is 

most sensitive, which is approximately up to 400 nm from the surface. 

2) Upon sedimentation the cell may spread out on the sensor surface, thereby 

blocking the accessibility of the Fcγ receptors at the cell close to the sensor surface 

(Figure 7.7-B). Experiments have been performed on a P-type SensEye sensor 

(SSens, Enschede), which consist of a planar, 2D-like sensor surface. Theoretically, 

cells will be captured closer to the sensor surface in comparison to more 3D-like 

sensor structures. Similar experiments on the G-type SensEye sensors did not 

improve the results, as still no IgG binding to captured cells was measured. 

 The proposed experimental set-up may be feasible using SPRi, although some 

improvements or changes are necessary. First, the number of receptors at a single cell may 

be reduced to overcome crowding effects at the top of the cell and force the IgG molecules 

further down the flow cell, closer to the sensor surface. The number of Fcγ receptors on 

each HEK293F cell is relatively large (approximately 170000 FcγRI receptors/cell, 

determined by FACS), while Richards et al.(49) determined approximately 50000 FcγRI 

receptors on macrophages, which is significantly lower. Macrophages and dendritic cells 

carry the highest number of FcγRI receptors on human effector cells;(50,51) for example 6-

fold lower expression of FcγRI on monocytes was found by Jungi et al.(52) The HEK293F cells 

have much higher receptor densities compared to those naturally occurring effector cells, 

which may influence the IgG binding that can be measured. 

 

Figure 7.7 Visualization of cell capture on the sensor surface. A) IgG mainly bind outside of the 

evanescent field due to the large cell size. B) Cell is spread out during sedimentation, thereby blocking 

the receptor accessibility at the cell – flow cell interface  
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 Secondly, the use of long-range SPR (LRSPR) may solve some of the issues with the 

sensitivity as the evanescent field is enlarged. LRSPR uses a sensor surface that is extended 

with 650 nm teflon layer,(53) 1200 nm teflon layer(54) or 950 nm Cytop fluoropolymer(41) 

between the glass and gold layer. This additional layer in the sensor enhances the 

penetration depth of the evanescent wave from approximately 200-400 nm in conventional 

SPR to 1–1.5 µm in LRSPR. The sensitivity of LRSPR is increased as a much sharper SPR 

reflectance angle is achieved. The combination of sensitive measurements further down the 

evanescent field may improve measurements of IgG binding to captured cells.  

 Another approach would be to fixate the cells onto the sensor surface to reduce 

cellular movements which possibly disturb SPR measurements. However, this limits the 

flexibility of the method, and hampers the development of a high-throughput screening. 

Lastly, it would be possible to immobilize or capture the cell membranes with Fc receptors 

instead of whole cells. In this approach, the problem with measuring outside of the 

evanescent field should be overcome, at least partially, and the Fcγ receptors would still be 

in a more native state in the lipid bilayer of the cell membrane compared to immobilization 

of only the extracellular part of the receptors which is now applied in SPR measurements.  

SPRi equipment design 

 Surface plasmon resonance is relatively straightforward: interactions between two 

molecules of interest are measured in real-time and kinetics of the interaction can be 

determined. However, several practical aspects for the design of an experiment should be 

taken into consideration, in order to obtain high quality data. Most of these practical aspects 

are generally known and described in literature, but when developing multiplexed SPR 

methods these aspects can become challenging due to the fact that multiple, different 

ligands are used on a single sensor surface. We will briefly highlight a few of the most 

important aspects that should be taken into account for SPRi developments, including 

examples from the experiments that have been performed. 

Ligand immobilization 

 A major benefit of SPR is the real-time measurement of protein binding, which is used 

to determine kinetic constants of protein interactions. Even though SPR is essentially label-

free, still one of the proteins needs to be immobilized to the sensor surface, which may lead 

to similar limitations as in labeling methods, such as blocking the active binding site or 

changing the affinity of the ligand.(55) The choice of which of the two interaction partners 
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 Another approach would be to fixate the cells onto the sensor surface to reduce 

cellular movements which possibly disturb SPR measurements. However, this limits the 

flexibility of the method, and hampers the development of a high-throughput screening. 

Lastly, it would be possible to immobilize or capture the cell membranes with Fc receptors 

instead of whole cells. In this approach, the problem with measuring outside of the 

evanescent field should be overcome, at least partially, and the Fcγ receptors would still be 

in a more native state in the lipid bilayer of the cell membrane compared to immobilization 

of only the extracellular part of the receptors which is now applied in SPR measurements.  

SPRi equipment design 

 Surface plasmon resonance is relatively straightforward: interactions between two 

molecules of interest are measured in real-time and kinetics of the interaction can be 

determined. However, several practical aspects for the design of an experiment should be 

taken into consideration, in order to obtain high quality data. Most of these practical aspects 

are generally known and described in literature, but when developing multiplexed SPR 

methods these aspects can become challenging due to the fact that multiple, different 

ligands are used on a single sensor surface. We will briefly highlight a few of the most 

important aspects that should be taken into account for SPRi developments, including 

examples from the experiments that have been performed. 

Ligand immobilization 

 A major benefit of SPR is the real-time measurement of protein binding, which is used 

to determine kinetic constants of protein interactions. Even though SPR is essentially label-

free, still one of the proteins needs to be immobilized to the sensor surface, which may lead 

to similar limitations as in labeling methods, such as blocking the active binding site or 

changing the affinity of the ligand.(55) The choice of which of the two interaction partners 
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will be immobilized, depends on the purpose of the assay, the ease of immobilization of the 

intended ligand, and the remaining activity after immobilization. Generally, there are two 

options for immobilizing one of the proteins: covalent coupling or capture. Either way, the 

chance to inactivate the ligand is inherent to ligand immobilization, regardless of which 

immobilization strategy is chosen. Therefore, a proper immobilization strategy needs to be 

chosen and evaluated carefully.  

 Covalent coupling is stable, robust, easy to apply and a wide range of chemistries are 

available for coupling ligands to the surface (e.g. amine, thiol, aldehyde, carboxyl, 

hydroxyl).(56) Drawbacks of covalent coupling include the possibility of blocking the active 

binding site, similar to labeling approaches. Furthermore, proteins may be inactivated or 

become unstable or denaturate at the surface or can lose their natural conformation.(55,57) In 

addition, shielding effects or steric hindrance of ligands for analyte binding may occur if too 

many proteins are coupled close to each other. Particularly in multiplexed assays, it can be 

challenging to couple all ligands with the same chemistry, because all of the intended 

ligands must have the same reactive groups available for coupling, without affecting any of 

the binding properties.  

 Amine coupling is most widely applied in SPR, and was used to couple protein A to the 

sensor surface (Chapter 3) and to couple lectins to the sensor surface (Chapters 2 and 

Chapter 4). In the protein A coupling, the entire sensor surface was covered with protein A 

to create binding sites for IgG without prerequisites for ligand density, other than 

sufficiently amount of protein A that had to be captured. In the lectin array on the other 

hand (Chapter 4), the surface densities and immobilization pH for each lectin was 

optimized in order to create an active surface for glycoprotein binding. Not all lectins could 

be preconcentrated to the sensor surface at the same pH, which resulted in a total of four 

different immobilization buffer pHs. Glycoprotein binding was verified with several model 

proteins (transferrin, ovalbumin, fetuin) and by neoglycoproteins for kinetic determinations. 

These experiments proved that the covalent amine coupling of lectins could be applied 

without major activity losses or protein inactivation. In case of the Fcγ receptor assay 

(Chapter 6), a direct covalent coupling was not suitable, as the active binding sites in the 

Fcγ receptors were partially blocked and resulted in a low active surface. A capture 

approach was chosen for the Fcγ receptor assay. 

 In capture approaches the immobilization can be more uniformly applied, as most 

capture approaches can be site-directed when properly designed. The most common 

capture approaches include biotin-streptavidin, His-tag capture on Ni-NTA surface or 
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antibody-based capture.(56) Drawbacks of capture approaches are the loss of ligand during 

wash or regeneration conditions if the affinity is too weak(57) and then re-usability of the 

sensor may become an issue. In case of biotin-streptavidin this is not an issue, since the 

strong affinity between these two is virtually as strong as a covalent bond. Capture by tags 

ideally results in uniform presentation of the ligand on the sensor surface, which may add in 

kinetic evaluation as surface heterogeneity is low. All ligands are similarly oriented to the 

sensor surface when inclusion of a tag is carefully designed.(56)  

 

Figure 7.8 Sensorgrams of IgG binding on FcγRIIa (left panels), biotinylated at lysines under minimal 

labeling approach (A) and biotinylated at carbohydrates (B), and the corresponding steady state 

equilibrium affinity determination (right panels)  
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coupling were also used to biotinylate the proteins. Initially a carbohydrate biotinylation was 
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glycans of Fcγ receptors are a major contributor to the interaction with IgGs (Figure 7.8, 

Table 7.3).(58,59) Therefore, lysine biotinylation was chosen, and the biotinylation reactions 

were optimized to achieve a minimal labeling on the Fcγ receptors. We were able to 

minimize the number of biotins on a single Fcγ receptor protein and elucidated the major 

biotinylation sites by mass spectrometry (Chapter 5). Two lysines in the Fcγ receptor 

amino acid sequences were preferentially biotinylated, of which one is present in the active 

binding sites for IgG binding. Active ligands could be generated by minimizing the labeling 
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to maximum one biotin per protein, which was on either of these two preferred sites. The 

activity of the Fcγ receptors could be maintained to a certain extent, and affinity values 

close to reported values in literature were obtained (Table 7.3). 

Table 7.3 Affinity values of lysine biotinylation and carbohydrate biotinylation of Fcγ receptors 

Fcγ 
receptor 

Lysine biotinylation Carbohydrate 
biotinylation Literature 

KD (µM) Rmax (RU) KD (µM) Rmax (RU) KD(µM)(15) KD (µM)(31) 

FcγRIIIa 0.36 793 0.55 489 0.80 0.19 

FcγRIIIb 2.21 1450 n.d.* n.d.* 3.10 8.33 

FcγRIIa 0.45 145 7.0 230 0.85 0.85 

FcγRIIb 2.5 230 0.89 359 1.90 4.55 

* n.d.: not determined: no binding of IgG could be measured on immobilized Fcγ receptor 

  

 An even more elegant biotinylation approach would be the use of an AVI-tag,(60) which 

is a small amino acid sequence that is added to the N-terminal or C-terminal of the protein 

of interest upon expression, followed by in vivo or in vitro biotinylation specifically at this 

position. This approach will generate a biotinylated ligand which is not affected in terms of 

binding properties, and allows for a site-directed immobilization on the sensor surface. 

However, the inclusion of this AVI-tag requires the development of a different expression 

vector, which was not available for the Fcγ receptors that were used during these studies. 

 In general, amine coupling is the most widely applied immobilization strategy, and can 

be applied in multiplexed SPR experiments as well. However, differences in immobilization 

properties of a wide variety of ligands may hamper the general applicability of this 

immobilization. Since streptavidin-biotin capture is nearly as strong as covalent coupling, 

and nowadays various elegant ways of incorporating biotins into proteins exist, this would 

be an attractive approach in ligand immobilization for multiplexed assays. 

Regeneration conditions 

 Regeneration of the sensor surface is often applied to reuse the same ligands for 

multiple sequential analyses. Regeneration conditions should be mild, such that the binding 

capacity of the ligand is not destroyed, while capable of removing all bound analyte from 

the ligand. In most cases the immobilized ligands are proteins, that may be vulnerable to 
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harsh regeneration conditions, and therefore it is key to develop a mild, yet efficient 

regeneration strategy. Multiplexed SPR adds another difficulty, since finding regeneration 

conditions for tens to hundreds of ligands without destroying any of these may be quite 

challenging. Binding characteristics may be based on completely different types of 

interaction, which complicates finding the optimal yet simplest regeneration buffer. The 

protein-protein interactions that are studied are often a combination of electrostatic 

interactions, hydrophobic interactions and Van der Waals interactions, which are not 

necessarily broken under the same conditions. This was encountered on the lectin array 

(Chapter 4), where most default regeneration solutions (e.g. 10 mM glycin-HCl) were able 

to regenerate a few of the lectins, although none of the investigated solutions was able to 

regenerate all lectins sufficiently. The regeneration buffer scouting approach (Chapter 2) 

offered are an elegant way to screen many different buffers simultaneously, which 

eventually lead to a regeneration buffer cocktail (25 mM phosphoric acid / 3M MgCl2) that 

was able to regenerate all lectins without destroying their binding properties. In Chapter 2 

only the initial steps of the screening are described, where a single ligand is coupled to the 

entire surface and a panel of 48 different regeneration buffer conditions was investigated. 

Then a new sensor was prepared where 8 ligands were immobilized in six replicate spots 

(48 spots in total), followed by screening the 12 most effective regeneration buffers from 

the first screening, in two sequential analyses. In case more ligands have to be investigated, 

less replicates per ligand can be spotted and only the most effective buffers can then be 

included in subsequent experiments. Overall, this may result in a single regeneration buffer 

for tens of ligands in only 2 experiments. 

 The regeneration buffer screening approach was also applied to the Fcγ receptor assay 

in Chapter 6 (although not described in detail), as these receptors are vulnerable proteins 

that are easily destroyed at the sensor surface. The regeneration buffer screening for that 

assay resulted in 25 mM phosphoric acid pH 3 as a regeneration buffer. A 25 mM phosphoric 

acid buffer with a pH of 2.4 (by default) reduced the binding capacity of the receptors at the 

surface after each cycle, while only a slight pH increase to 3.0 was sufficient to efficiently 

remove the bound analytes and improved receptor stability at the sensor surface. This 

regeneration buffer was found after a single experiment performed in triplicate, using the 

multiplexed regeneration buffer scouting. 
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Non-specific binding and bulk effects 

 Non-specific binding and cross-reactivity can be an issue in protein interaction 

measurements.(56) Non-specific binding is mainly an issue in complex biological matrices, 

such as bioreactor harvest, urine, blood or plasma samples. Non-specific binding refers to 

compounds in the complex matrix interacting with the sensor surface or the chemistry at the 

sensor surface. The screening assays that were developed (Chapter 4 and Chapter 6) 

were mainly based on purified sample material, where the chances for non-specific binding 

are marginal. The buffer screening approach for affinity chromatography (Chapter 3) used 

bioreactor harvest material and was carefully evaluated for non-specific binding. No harvest 

material bound to the reference spots, which are non-modified sensor surface areas, 

indicating that non-specific binding was not an issue during these experiments. However, 

bulk effects of harvest material were observed. Bulk effects appear when there is a 

mismatch in refractive index of the running buffer and the sample matrix or buffer. The 

refractive index of bioreactor harvest is different from the running buffer, resulting in bulk 

shifts, which could be corrected by reference subtraction. 

Concluding remarks and future perspectives 

Multiplexed high-throughput screening 

 Several multiplexed and label-free instruments are available nowadays (Table 7.4), of 

which the IBIS MX96 is one. Each of these systems has its own advantages and limitations, 

based on the instrumental design, such as, but not limited to: flexibility, sensitivity, 

temperature-control and ease-of-use.  

 High-throughput screening is often applied in areas where multiple samples need to be 

screened for several characteristics, or during process developments, as outlined throughout 

preceding chapters. SPRi can be applied in high-throughput profiling or fingerprinting 

methods, and as such can be an added value to those fields of research where many 

different samples or targets need to be screened. The choice for an array system (Figure 

7.9) or a ‘multiple-injector’ system (Figure 7.10) depends on the requirements for the 

application that is developed.  

 In case of the lectin array screening (Chapter 4) an array system works best, since 

the large number of ligands is immobilized on a single sensor and samples are analyzed 

sequentially. However, the Fcγ receptor screening method in its current state (Chapter 6)  
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Table 7.4 Overview of several commercial SPR instruments with multiplexing capabilities 

System Vendor Multiplexing # Remarks 

Array systems / imaging systems 

SPRimager II GWCtechnologies 25 ROIs* Many manual handling required 

IBIS MX96 IBIS / Wasatch 96 ROIs Off-line ligand spotting 

OpenPlex Horiba Scientific 400 ROIs Direct coupling to MALDI-MS 
Off-line ligand spotting 

XelPlex Horiba Scientific 400 ROIs 
Direct coupling to MALDI-MS 
Up to 6 running buffers 
Off-line ligand spotting 

PlexArray Plexera 5000 ROIs Off-line ligand spotting 

Multiple injector / flowchannel systems 

404pi BiOptix 4 flow channels  

Simultaneous injection of up to 4 
different analytes 
Only 2 or 3 detection channels 
available when referencing is needed 

NanoSPR8 NanoSPR 8 flow channels 

Very small, portable instrument 
Can be coupled to electrochemical 
detection 
Many manual handling when running 
experiments 

MASS-1 Sierra Sensors 
8: 8 flow channels 
with 2 spots, of 
which 1 is reference 

Automated switching between 5 
running buffers 
Only single running buffer possible 

8k Biacore 
8: 8 flow channels 
with 2 spots of 
which 1 is reference 

 

4000 Biacore 
16: 4 flow channels 
with 5 spots, of 
which 1 is reference 

 

MASS-2 Sierra Sensors 
16: 8 flow channels 
with 4 spots, of 
which 1 is reference 

Up to 4 different running buffers 

Proteon 
XPR36 BioRad 

36: 6 flow channels 
with 6 spots + 42 
reference spots 

 

#Criteria for multiplexing: at least 4 independent interactions have to be measured simultaneously in a 
single interaction; either by multiplexing the ligand, or by injecting multiple analytes simultaneously  

* No specifications by vendor could be found; number of ROIs based on publications  

  

would possibly be more efficiently performed on one of the “multiple-injector” systems, due 

to the limited number of receptors that are screened (only 6 receptors, 5 Fcγ receptors and 

FcRn), while the sample concentration and buffer requirements would allow simultaneous 

injection in different concentrations and buffer pH by a “multiple-injector” system in a single 

run such as the MASS-2 instrument. In the end, most applications can be designed on any 
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Non-specific binding and bulk effects 
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of the multiplexed instruments, since all rely on the same principle of multiplexing protein-

protein interaction measurements although the highest possible throughput of the systems 

may not be fully utilized. 

 

Figure 7.9 Camera image of IBIS MX96 array with 4x12 immobilized spots. Red squares indicate the 

‘region of interest’ (ROI) in which measurements are recorded. White squares indicate the reference 

ROIs used for correction  

 

Figure 7.10 Example of multiple injector/flow channel system with 8 flow channels and 4 detection 

spots per channel  

   

 On the IBIS MX96 platform, a straightforward approach for comparability assessments 

would be to immobilize up to 96 samples onto a single sensor, and use the receptor or 

antigen (or any intended ligand) as analyte. Reversing the experimental set-up can 

significantly increase the throughput on the IBIS MX96 instrument, although it should be 

carefully assessed how representative the data from a reversed set-up are. Some of the 
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other array systems allow immobilization of even more ligands compared to the IBIS MX96 

system (400 up to 5000). However, for applications such as those described here, a larger 

number of ligand spots is often not required and the available spots in the IBIS MX96 

system already allows for screening many ligands simultaneously. 

Future applications 

 Ideally, a multiplexed high-throughput screening method capable of simultaneously 

studying different characteristics of a biopharmaceutical would dramatically increase sample 

throughput. A combinatorial assay which directly links glycoprofiling to target-binding is a 

valuable addition. No further efforts in EPO receptor binding together with EPO 

glycoprofiling have further been, but it could be interesting for a multi-parameter profiling. 

The lectin array was not functional for glycoprofiling of IgGs and as such no target binding 

of IgGs has been included. 

 Looking one step further ahead would result in a combined glyco-profiling, target 

binding, titer determination and Fcγ receptor binding (only for IgGs) assay, measured all 

together on a single SPR sensor. However, combining multiple different protein-protein 

interaction measurements onto a single sensor surface brings along some other practical 

difficulties that need to be addressed. Practical aspects like differences in affinity between 

various ligands, differences in preferred running buffer and optimal regeneration conditions 

for a broad range of ligands should be aligned. It will be challenging to find optimal 

conditions for tens to hundreds of different ligands, such as buffer pH, optimal salt 

concentration or which additives to use (e.g. metal ions or surfactants) or regeneration 

conditions.(57) In the lectin array method (Chapter 4) already four different metal ions were 

added to the running buffer, since some lectins are only binding glycoproteins under 

influence of one or more of those metal ions.  

 Measurements of ligands that have a different affinity for the tested analyte will add 

another difficulty to assay development, as other requirements in minimum and maximum 

sample concentrations are expected. This was one of the issues for the Fc receptor 

screening, where the high affinity FcγRI and FcRn could not be included on a single 

biosensor with the low affinity Fcγ receptors (Chapter 6). The IgG concentrations that are 

needed for the low affinity receptors exceed the maximum level of analyte for the high 

affinity receptors; hence these receptors would become saturated. Furthermore, interactions 

with FcRn have a different mechanism for binding which requires a different buffer pH. 

Possible solutions to overcome the problem of a broad affinity range is by analyzing low 
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concentrations of analyte, which fall in the range of the high affinity interactions, followed 

by high concentration injections to measure the other interactions. However, the benefit of 

multiplexed analysis is no longer utilized and two separate methods would be able to 

generate similar data in equal analysis time. Another approach would be to use signal 

enhancers for the low-affinity interactions on that particular sensor surface.(57) However, 

label-enhanced measurements require other experimental optimization again and add 

complexity to the assay. The benefits of direct and label-free measurements are then no 

longer valid. 

 SPRi measurements on the array platforms are most effective in applications where a 

large number of ligands with similar binding behavior for similar proteins are screened (for 

example using antibodies against specific targets as ligands). SPRi measurements are less 

suitable in methods with a broad variety of different types of ligands and binding properties, 

since it is challenging to find the optimal experimental conditions for each. The other 

multiplexed SPR systems, with multiple separate injectors and flow channels may increase 

throughput in such applications. 

Advanced SPR technologies 

 Several adaptations to conventional SPR have been proposed and described to improve 

sensitivity or increase the evanescent field for biosensing. So far these applications have not 

been applied into commercial instrumentation and remain a research or diagnostic tool for 

academic environments. However, commercialization of these advanced SPR techniques 

would create a broad field of research in biosensing. So far, several publications have 

appeared, but the general applicability is still not achieved. 

 Long-range SPR (LRSPR) was mentioned as a potential alternative for cell sensing 

experiments. LRSPR has been successfully applied in cell sensing experiments, for example 

by cell stimulation under influence of lipopolysaccharides(53) or cellular responses to osmotic 

stress.(41) Furthermore, applications for blood group typing(61,62), leukemia biomarker 

detection in serum(63) or diagnosis of dengue infection by virus sensing in blood(64) have 

recently been described based on LRSPR. The principle of long-range SPR is to increase the 

propagation of surface plasmons further down the sensing solution, thereby increasing the 

sensitivity and evanescent field for measurements. The range increment is obtained by 

applying an additional layer onto the sensor surface, which allows for further propagation of 

the SP waves. 
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 Localized SPR (LSPR) uses metallic nanoparticles or nanostructures, for example gold-

covered nanoparticles, for SPR measurements.(65) Excitation of surface plasmons is generally 

done by fiber optics or waveguides.(66) Sensitivity is increased since the measurement is 

localized exactly on the gold nanoparticle where the interaction takes place.(67) However, 

this increased sensitivity can only be achieved when the light is positioned exactly on a 

single nanoparticle, rather than measuring the entire nanoparticle solution. On the other 

hand, LSPR allows for a portable SPR device which may be beneficial for several applications 

that require direct analysis in the field. LSPR has been applied to measure cell metabolites 

by immobilization of specific antibodies on a LSPR-nanochip. Cells are added to the 

antibody-immobilized sensor and the excretion of cell metabolites upon cell stimulation was 

measured in real-time.(67) Also functional immunoassays have been successfully developed 

with LSPR, even down to single molecule detection.(68) 

 A very interesting approach of sensor preparation is the in situ protein microarray first 

described by Ramachandran et al.(69) and more recently applied by Nand et al.(70), where the 

protein that is used as ligand is expressed in a cell-free system on the sensor surface and is 

instantly captured onto the sensor surface. The in situ expressed proteins were fused with a 

Tus-tag in the plasmid, which is directly captured by a Ter-DNA-oligo that is immobilized on 

the sensor surface. The high affinity Tus-Ter complex formation allows direct and specific 

capture of the expressed protein,(71,72) after which protein-protein interactions were 

measured on an SPRi platform. Such an approach is most interesting for proteins that are 

difficult to express and purify in the well-known expression systems. Also stability of the 

protein is less of an issue, since interaction measurements are directly performed after 

which the sensor is regenerated or discarded. Wide-spread applications of such in situ 

protein microarrays are most likely still far away from routine analysis, although it may be 

an interesting alternative for difficult applications. 

 One SPR-like technique was described by Rosman et al.(73) which encompasses a 

multiplexed sensor with aptamer functionalized gold nanorods, followed by measurement of 

spectral position of plasmon resonance of individual nanorods by dark-field spectroscopy. 

Although strictly speaking not exactly the same as SPR, it uses the same physical principles 

of creating surface plasmons at the interface of a dielectric interface. Randomly deposited 

nanorods result in an unmapped sensor which records all binding events, and only after 

analyte injection the target nanoparticle is identified. In our opinion, this technology can 

only be applied when absolutely no cross-reactivity or a-specific binding is observed. 

Furthermore, plasmon shifts showed a relatively large variation, which still lacks the general 
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use for a precise and reliable sensor based on these types of nanorods. Nevertheless, 

further miniaturization from microscale down to nanoscale will probably be further improved 

in the future. 

Other promising label-free techniques 

 So far the focus was on SPR and SPRi, although other techniques, based on label-free 

measurements, are available nowadays. Label-free measurements are most often based on 

a transducer that generates an optical or electrical signal, which can be measured. Quite a 

few label-free techniques for protein interaction measurements or cell interactions 

measurements exist; we will highlight only a few recently introduced techniques for label-

free interaction measurements. 

 Probably the most commonly used technique next to SPR is interferometry, which is 

for example applied in biolayer interferometry (BLI) in the Octet systems. Interferometry-

based methods rely on the interference of light waves that are sent out.(74) In BLI two 

propagating waves from a white light source are simultaneously shone on a biosensor 

surface. When these two waves are in phase with each other, the total amplitude of the 

wave is doubled. Upon binding of a protein to the biosensor, one of the two waves has a 

different path length and the two waves will become out of phase, causing an interference 

that can be measured by an optical detector. 

 In imaging reflectrometric interferometry a change in optical thickness of the biosensor 

is measured based on a change in amplitude and phase of reflected polarized beams, similar 

to BLI / interferometry.(75) An array of proteins with up to thousands of spots is prepared, 

and light of a single defined wavelength is used followed by measurement of the intensity 

change of the reflected light due to mass accumulation. The technique is less sensitive to 

temperature shifts and the detection range is much wider, up to several micrometers 

compared to the few nanometers evanescent field in SPR. The system has been tested on 

an aptamer-protein interaction system and has been demonstrated on multistep antigen-

antibody interactions, both providing kinetic data which were in agreement with previously 

published data on these interactions.(75)  

 Multi-parametric cell profiling on a dual biosensor has been demonstrated by Michaelis 

et al.(76) The combination of SPR and impedance measurements on a single biosensor was 

employed to study cell shape changes (by impedance measurements) and mass 

accumulation (by SPR) simultaneously. To this end, an SPR biosensor was modified in such 
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a way that is holds two electrodes that are needed for impedance measurements. In this 

set-up the settling and spreading of cells on the sensor surface have been studied, followed 

by intracellular events (i.e. cytoskeleton disruption) after introduction of a toxin. 

 Photonic crystal optical biosensors are plastic plates in the bottom of well microplates 

designed in such a way that normal white light is shone onto the bottom of the plate. When 

properly designed a single wavelength is reflected which is detected by a 

spectrophotometer. Binding events (association of molecules or cells) influence the reflected 

wavelength, and this wavelength shift is measured as binding. This principle can be applied 

in high-throughput, by using 96, 384 or 1536-well microplates, which can for example be 

illuminated by normal white light and detected by multiple detection heads. An 8-detection 

head system was available through SRU biosystems (the BIND reader), although in the past 

5-6 years no more publications have appeared for this system. A review by Shamah et al.(77) 

describes several applications of the technique, ranging from receptor activation to cellular 

adhesion assays, stem cell differentiation and even to single-cell measurements.  

 Ellipsometry is another label-free technique for measuring protein interactions. It uses 

monochromatic light which is linearly polarized followed by transformation to elliptically 

polarized light. When reflecting from a sensor surface the light becomes linearly polarized 

again and can be detected by a CCD camera for example. The intensity of the reflected light 

changes upon binding events. This change can be translated to a quantitative binding 

signal. The technique has been applied in imaging format as well, where a microfluidic 

system is used to increase the throughput. The technique has been applied in a variety of 

detections, such as antigen-antibody binding and biomarker detection.(74) 

Portable devices 

 SPR measurements on cell phones have been explored in recent years.(78,79) 

Preechaburana et al.(79) were the first to report on the use of a smart phone for SPR 

measurements. A disposable device was attached to the screen of the smart phone and the 

camera of the phone was used for detection. Binding of β-microglobulin to an immobilized 

anti-β-microglobulin antibody could be detected in this set-up, either directly or by using a 

secondary antibody for signal enhancement. Liu et al.(78) applied fiber-optics that were 

connected to the cell phones’ flash light as a light source and to the camera as the detector 

for SPR measurements. A measurement, control and reference channel were created in a 

silica capillary that was coated with a gold film to obtain the generation of surface plasmons. 

Protein A – IgG binding events have been measured with this portable set-up. 
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anti-β-microglobulin antibody could be detected in this set-up, either directly or by using a 

secondary antibody for signal enhancement. Liu et al.(78) applied fiber-optics that were 

connected to the cell phones’ flash light as a light source and to the camera as the detector 

for SPR measurements. A measurement, control and reference channel were created in a 

silica capillary that was coated with a gold film to obtain the generation of surface plasmons. 

Protein A – IgG binding events have been measured with this portable set-up. 
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of the most interesting point-of-care testing devices in the near future. Although SPR 

measurements on disposable platforms have been proven, using cell phones for illumination 

and detection, the general applicability in a biopharmaceutical environment will probably not 

be possible in the near future. Sensitivity, reproducibility and robustness probably have to 

be improved in order to comply with regulatory guidelines in biopharmaceutical 

development. 
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 The rapid developments in the biopharmaceutical market, both for new biological 

entities and biosimilars, require the use of innovative analytical technologies to comply with 

demands for development of high-quality products and fast market approval. A typical 

biopharmaceutical process includes the following stages: discovery, early development, late 

development and manufacturing. During each of these stages, high-throughput screening 

technologies may be used to support those rapid developments. Surface plasmon resonance 

imaging (SPRi) is an example of such a high-throughput screening technology, which was 

demonstrated in several applications throughout the entire process development.  

 Analytical method development can be speeded up by SPRi screening technologies, 

such as finding the most optimal regeneration conditions for SPR-based methods as 

presented in Chapter 2. The most optimal regeneration buffer was determined from a total 

of 48 different buffers in a single measurement within 2 hours time. Especially in 

multiplexed SPR arrays it can be challenging to find the right regeneration buffer for a 

multitude of different ligands, which may all have different binding properties for the 

analytes. The buffer screening can dramatically speed up the method development for SPR 

analyses as a selection of potential regeneration buffers is determined with only a single 

SPR sensor in a single experiment. 

 The same principle of buffer screening was then applied to affinity chromatography 

screening, as presented in Chapter 3, where a protein A purification process was simulated 

and miniaturized. Rapid screening of the most optimal elution and wash buffers was 

performed within 1-2 days, which would normally require weeks to develop on small scale 

column. Furthermore, the ligand lifetime of the affinity chromatography was simulated in a 

miniaturized set-up and compared to lab scale column experiments. Results were highly 

comparable between the lab scale experiments and SPRi-based methods and demonstrated 

the applicability of such screening technology during process development. Especially the 

consumption of analyte and buffers was reduced up to 200-fold and on top of that the 

experimental time was reduced from several weeks to only 2 days. 

  Other important applications of the SPRi technology were demonstrated for 

biopharmaceutical product characterization, such as glycosylation and Fcγ receptor binding. 

Chapter 4 describes the development of a lectin array to screen glycosylation fingerprints 

of recombinant human erythropoietin, which included the quantification of sialylation levels 

of rhEPO. Sialylation of rhEPO is one of the major Critical Quality Attributes (CQAs) of 

rhEPO, since the serum half-life largely depends on proper sialylation. Glycosylation 

 

225 

fingerprinting of five different brands of rhEPO was compared with the label-free lectin 

array. Development of the lectin array included the proper immobilization of lectins on a 

multiplexed sensor chip, followed by specificity and cross-reactivity determination for each 

of the selected lectins by analyses of neoglycoproteins and enzymatically remodeled 

glycoproteins such as transferrin and fetuin.   

 Proper Fc receptor binding is a CQA for most IgGs that are being developed as a 

biopharmaceutical, as it may influence the mechanism of action of the IgG (Fcγ receptors) 

and serum half-life (FcRn binding). A multiplexed screening assay for Fc receptor 

interactions of therapeutic IgGs was set up. Activity and stability at the sensor surface of 

low affinity Fcγ receptors (FcγRIIIa, FcγRIIIb, FcγRIIa and FcγRIIb) were relatively low in a 

direct coupling approach based on amine coupling. Therefore, in Chapter 5 a more 

controlled and site-directed immobilization was developed, based on a minimal biotinylation 

of Fcγ receptors. A statistical design of experiments was performed to find the most optimal 

labeling conditions for Fcγ receptor biotinylation, resulting in active ligands at the surface 

with representative IgG binding properties. Mass spectrometric characterization of the 

biotinylated Fcγ receptors revealed that mainly double-biotinylated proteins reduced the 

ligand activity. Identification of the labeled amino acids showed that two major biotinylation 

sites are present in the Fcγ receptors, one of which is part of the active binding site for IgG 

binding. Labeling conditions could not be chosen such that this active binding site is not 

blocked by biotins, but by preventing the presence of a substantial amount of double-

biotinylated fractions the chance of biotinylating in the active binding site was reduced. The 

major effect for double-biotinylation was due to a protein:biotin ratio of 1:2, as determined 

from the statistical design of experiments, and therefore protein:biotin ratio should be kept 

at 1:1 or even lower, e.g. 1:0.5. Incubation pH and incubation time, which were also part of 

the DoE, were not statistically significant for reduced ligand binding activity. 

 The optimized labeling approach was then applied to all low affinity Fcγ receptors and 

these were immobilized on a multiplexed SPRi sensor to screen for IgG quality based on Fc 

receptor binding in Chapter 6. The screening method was based on an active content 

measurement, where a reference sample was set to 100% activity and binding of stressed 

samples was calculated relative to this reference. Method optimization included the 

determination of IgG concentration range, accuracy and precision. The optimal IgG 

concentration range for FcγRI was different from the low affinity Fcγ receptors due to large 

differences in affinity for IgG binding. Furthermore, FcRn binding was not included on the 
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same screening sensor, because association of IgG to FcRn occurs at pH 6, while the other 

receptors bind at neutral pH (pH 7 - 7.5). Three separate screening methods were therefore 

used to profile the entire Fc region binding of IgGs; one multiplexed SPRi assay for the low 

affinity Fcγ receptors, an SPR single cycle kinetics method for FcγRI and a multi-cycle 

kinetics method for FcRn binding based on BLI. This combination of Fc receptor binding 

assays on three platforms provided the most optimal screening for IgG – Fc tail interactions. 

Differences in binding to one or more of the Fc receptors were detected under several 

stressed conditions. The main findings from stressed IgG samples showed that IgG 

deamidation reduced the binding to low affinity Fcγ receptors, while the binding to FcγRI 

and FcRn was not affected. Methionine oxidation at levels up to 7% did not impact binding 

to any of the Fcγ receptors. Deglycosylation of IgG affected the binding to each of the Fc 

receptors, while an aberrant fucosylation only changed the binding to FcγRIIIa and 

FcγRIIIb. The presence of aggregates in the samples had an avidity effect on each of the 

Fcγ receptors and altered the relative binding or binding kinetics. Together these results 

showed the applicability of these methods for CQA screening of IgGs in terms of Fc region 

binding. 

 In Chapter 7 the main results are discussed and some applications that did not meet 

the requirements for high-throughput screening are included. An overview of the application 

of SPRi in the biopharmaceutical development process is provided, including examples of 

methods that have been successfully developed and methods that have been tested. 

Furthermore, an outlook on novel applications of SPRi that need more research was 

summarized. It was concluded that SPRi can be a valuable tool during process development 

and product characterization to increase sample throughput and to increase product 

knowledge in rapid screening methods. Other multiplexed SPR platforms, which are not 

based on the imaging of an entire sensor array, may be useful for several applications, 

whereas true screening arrays are best performed on SPRi systems. All results together 

show that there is not a single multiplexed SPR system, or other label-free instrument, that 

is the best for all intended applications. Depending on the purpose and the method set-up, 

a different instrument may be beneficial to use. However, in general, it will be possible to 

develop most applications on a SPRi system, although the multiplexing capabilities may not 

always be fully utilized. As with any analytical method, the instrumental possibilities and 

limitations should be balanced against the requirements for an intended application.  
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 De huidige snelle ontwikkelingen in de biofarmaceutische wereld, zowel voor nieuwe 

biologische medicijnen als de zogenoemde “biosimilars”, vereisen het gebruik van 

innovatieve analytische technieken om te voldoen aan de eisen voor producten van goede 

kwaliteit en voor snelle goedkeuring tot de markt. Een typisch biofarmaceutisch proces 

bestaat uit de volgende fasen: ontdekking, vroege ontwikkeling, late ontwikkeling en 

productie. Tijdens alle fasen kunnen ‘high-throughput screening’ technieken gebruikt 

worden om deze snelle ontwikkelingen te ondersteunen. Surface plasmon resonance 

imaging (SPRi) is een voorbeeld van zo’n screening-techniek, en het gebruik hiervan is 

aangetoond in diverse applicaties tijdens het gehele ontwikkelingstraject. 

 Analytische methodeontwikkeling kan versneld worden door het gebruik van de SPRi 

screening-techniek, bijvoorbeeld bij het vinden van de meest optimale regeneratiecondities 

voor methoden gebaseerd op SPR zoals beschreven in Hoofdstuk 2. De meest optimale 

regeneratiebuffer uit een totaal van 48 verschillende buffers werd gevonden in een enkele 

meting in 2 uur tijd. Zeker in multiplex SPR-methoden kan het een uitdaging zijn om de 

juiste regeneratiebuffer voor een groot aantal verschillende liganden te vinden, omdat deze 

allemaal andere bindingseigenschappen voor het product (analiet) kunnen hebben. De 

buffer screening zoals omschreven kan daardoor een grote tijdswinst opleveren voor de 

methode ontwikkeling van SPR analyses omdat een selectie van potentiële 

regeneratiebuffers snel is gemaakt met een enkele SPR meting op een sensor. 

 Ditzelfde principe van bufferscreening is daarna toegepast op een 

affiniteitschromatografiescreening in Hoofdstuk 3, waarbij een protein A zuiveringsproces 

is gesimuleerd en geminiaturiseerd. Een snelle screening van de meest optimale 

elutiebuffers en wasbuffers is uitgevoerd binnen 1-2 dagen, terwijl dit weken zou duren 

wanneer dit op kleine kolomschaal ontwikkeld moet worden. Daarnaast is er een simulatie 

uitgevoerd om de levensduur van het affiniteitsligand te testen in een geminiaturiseerde 

opzet en deze is vergeleken met kolom experimenten op labschaal. De resultaten tussen de 

kolommen en de SPRi methode waren vergelijkbaar en dit toont de toegevoegde waarde 

aan van de screening-techniek tijdens procesontwikkelingen voor biofarmaceutische 

producten. Daarnaast moet er benadrukt worden dat de hoeveelheid materiaal die nodig 

was met een factor 200 is gereduceerd, en dat bovendien de experimentele tijd kon worden 

teruggebracht van enkele weken tot 2 dagen.  

 Andere belangrijke toepassingen van SPRi zijn aangetoond voor de product 

karakterisatie van biofarmaceutische middelen, bijvoorbeeld voor glycosylering en Fcγ 

receptor-binding. In Hoofdstuk 4 is een lectine-array ontwikkeld om het 
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“glycosyleringsprofiel” van recombinant humaan erythropoietin (rhEPO) te kunnen screenen. 

Deze methode kon bovendien de sialyleringsniveau’s van rhEPO kwantificeren, wat 

belangrijk is voor de kwaliteit van het product. Sialylering van rhEPO is een van de ‘kritische 

kwaliteitskarakteristieken’ (CQAs) omdat de halfwaardetijd van rhEPO in bloed mede wordt 

bepaald door de juiste sialylering. Glycosyleringsprofielen van vijf verschillende merken 

rhEPO zijn met elkaar vergeleken op de lectine-array. De ontwikkeling van de lectine array 

omvatte verder de juiste immobilisatie van lectines op de multiplex sensor, gevolgd door 

een bepaling van specificiteit en kruisreactiviteit voor elk van de geselecteerde lectines door 

middel van neoglycaan-eiwit-analyse en enzymatisch gemodelleerde glycaan-eiwitten zoals 

transferrine en fetuine. 

 Een juiste Fc receptorbinding is een van de CQAs voor de meeste IgGs die ontwikkeld 

worden als biofarmaceutisch middel, omdat deze het werkingsmechanisme van het IgG 

kunnen beïnvloeden (in geval van Fcγ receptoren) of omdat deze belangrijk zijn voor de 

halfwaardetijd in bloed (in geval van FcRn). Daartoe is een multiplex screeningassay voor Fc 

receptor-interacties voor therapeutische IgGs opgezet. De activiteit en stabiliteit op het 

sensoroppervlak van de laag-affiene Fcγ receptoren (FcγRIIIa, FcγRIIIb, FcγRIIa en 

FcγRIIb) zijn relatief laag wanneer ze gekoppeld worden door middel van directe amine-

koppelingschemie. Daarom is in Hoofdstuk 5 een meer gecontroleerde en gerichte 

immobilisatie ontwikkeld, die gebaseerd is op een minimale biotinylering van Fcγ receptoren. 

Een statistisch experiment ontwerp (“design of experiments”, ofwel DoE) is uitgevoerd om 

de meest optimale labeling condities voor Fcγ receptor biotinylering te bepalen, wat 

uiteindelijk resulteerde in actieve liganden op het oppervlak met representatieve IgG-

bindingseigenschappen. Karakterisatie van de gebiotinyleerde Fcγ receptoren met behulp 

van massaspectrometrie liet zien dat voornamelijk dubbel-gebiotinyleerde eiwitten voor een 

reductie in ligand activiteit zorgden. Identificatie van de gelabelde aminozuren resulteerde in 

twee locaties op de Fcγ receptoren die voornamelijk gebiotinyleerd werden, en waarvan één 

onderdeel uitmaakt van een van de actieve bindingsplekken voor IgG. De labelingcondities 

konden niet zodanig worden aangepast dat deze specifieke locatie niet geblokkeerd werd 

door biotine, maar door labeling condities zodanig te kiezen kon wel worden voorkomen dat 

er substantiële hoeveelheden dubbel-gebiotinyleerd materiaal werden gevormd en hiermee 

werd wel de kans om de actieve plek te blokkeren verminderd. Het belangrijkste effect voor 

dubbele biotinylering in een eiwit werd veroorzaakt door de eiwit:biotine ratio van 1:2 te 

gebruiken, dat bepaald is uit het DoE, en daarom wordt aangeraden om deze ratio op 1:1 of 

lager (bijvoorbeeld 1:0.5) te houden. De incubatie-pH en incubatietijd, die ook werden 
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meegenomen in het experimenteel ontwerp, gaven statistisch geen significant effect op 

verminderde bindingsactiviteiten van de Fcγ receptoren. 

 De geoptimaliseerde labelingcondities zijn vervolgens toegepast op alle laag-affiene 

Fcγ receptoren om deze te kunnen immobiliseren op een multiplex SPRi-sensor, die in 

Hoofdstuk 6 gebruikt is om de IgG-kwaliteit te kunnen screenen gebaseerd op Fc 

receptorbinding. De screeningmethode was gebaseerd op een meting van actieve 

hoeveelheid, waarbij een referentiemonster op 100% activiteit werd gezet en de binding 

van gestreste monsters berekend is relatief aan dit referentiemonster. De 

methodeoptimalisatie die is uitgevoerd omvatte onder andere de bepaling van de optimale 

concentratiespanne van IgG, accuratesse en precisie. De optimale IgG concentratie voor 

FcγRI was anders dan die voor de laag-affiene Fcγ receptoren door grote verschillen in 

affiniteit voor IgG-binding. Daarnaast kon de FcRn-binding niet worden toegevoegd op 

dezelfde sensor omdat associatie van IgG aan FcRn plaatsvindt bij pH 6, terwijl dit op pH 7 

– 7.5 ligt voor de overige laag-affiene Fcγ receptoren. Daarom waren er drie aparte 

screening methoden nodig om het volledige Fc bindingsprofiel van IgGs te kunnen meten; 

een multiplex SPRi-assay voor laag-affiene Fcγ receptoren, een SPR ‘single-cyclus kinetiek’ 

methode voor FcγRI en een ‘multi-cyclus kinetiek’ methode voor FcRn binding gebaseerd op 

biolayer interferometrie (BLI) metingen. De combinatie van deze Fc bindingsassays gaf de 

meest optimale screening wanneer men kijkt naar efficiënt instrument gebruik en de 

methode-kwalificaties. Verschillen in binding aan een of meerdere Fc receptoren kon worden 

gemeten bij diverse vormen van stress op het IgG. De belangrijkste bevindingen van 

gestreste IgG-monsters lieten zien dat deamidatie voor een afname in binding op de laag-

affiene Fcγ receptoren zorgt, terwijl binding aan FcγRI en FcRn niet beïnvloed werd. 

Methionine-oxidatie tot een maximum van 7% had geen invloed op de binding aan alle Fc 

receptoren. Deglycosylatie van IgG veranderde de binding aan alle Fc receptoren, terwijl 

afwijkende fucosyleringspatronen alleen voor verschillen in binding op FcγRIIIa en FcγRIIIb 

zorgen. De aanwezigheid van aggregaten in de monsters resulteerde in aviditeitseffecten op 

alle Fcγ receptoren en veranderde daardoor de relatieve binding of de bindingskinetiek. Al 

deze resultaten samen geven duidelijk de meerwaarde aan voor deze screeningstechnieken 

om snel de CQAs van IgGs te kunnen bepalen als het gaat om Fc receptorbinding. 

 In Hoofdstuk 7 zijn vervolgens de belangrijkste resultaten besproken en werden 

daarnaast enkele mogelijkheden genoemd die hier niet tot de gewenste kwaliteitseisen voor 

high-throughput-screening hebben geleid. Een overzicht van de toepasbaarheid van SPRi 

gedurende het gehele proces van biofarmaceutische ontwikkeling is geschetst, waarbij 
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voorbeelden zijn genoemd van de beproefde methoden en van de overige methoden die zijn 

getoetst. Daarnaast is er een visie op de toekomst gegeven met betrekking tot verdere 

ontwikkelingen voor vernieuwende applicaties voor SPRi die nog verder onderzocht dienen 

te worden. De conclusie luidt dan ook dat SPRi een heel waardevolle techniek kan zijn om 

procesontwikkeling te versnellen en meer inzicht te geven in productkarakterisatie. Andere 

multiplex SPR-platformen, die niet gebaseerd zijn op het imaging-principe, kunnen 

daarnaast prima gebruikt worden voor diverse van de genoemde toepassingen, waarbij voor 

echte screening-analysemethodes toch zeker uitgeweken moet worden naar SPRi-systemen. 

Al deze resultaten samen laten zien dat er niet een enkel multiplex SPR-systeem is dat de 

beste keuze zal zijn voor alle mogelijke applicaties. Afhankelijk van de vraagstelling en hoe 

de methode opgezet dient te worden, dient een afweging gemaakt te worden voor het type 

instrument dat het beste gebruikt kan worden. Ondanks dat in het algemeen de meeste 

toepassingen op ieder SPRi-instrument ontwikkeld kunnen worden, zal er niet altijd volledig 

gebruik gemaakt worden van de capaciteiten van het systeem en kan het zinvol zijn een 

ander systeem te gebruiken. Zoals voor iedere analytische techniek nodig is, zullen 

mogelijkheden en beperkingen van het systeem afgewogen moeten worden en getoetst 

moeten worden aan de vereisten voor de uiteindelijke toepassing. 
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Na al die jaren werken aan mijn promotieonderzoek en het afronden van het 
proefschrift, is het dan eindelijk tijd om ook het dankwoord op papier te gaan zetten. Want 
het resultaat van al mijn werk was mij nooit in mijn eentje gelukt, en daarom is dit het 
moment om iedereen te bedanken die een bijdrage heeft geleverd en mij gesteund heeft. 

Als eerste zijn dat natuurlijk mijn drie begeleiders die een bedankje verdienen. Michel,
dankzij jou kwam er 4,5 jaar geleden de mogelijkheid om dit prachtige project binnen 
Synthon uit te gaan voeren. Jouw eeuwige optimisme en energie zorgden ervoor dat ik zelf 
ook bleef geloven in een succesvol einde van dit project. In jouw drukke agenda is altijd 
plek voor een extra overleg of een snel antwoord op een stuk wat ingediend moet worden. 
Waar haal je toch al die tijd vandaan! Richard, ondanks de afstand met Enschede, nam je 
regelmatig de tijd om te bellen en te vragen hoe een en ander vorderde. In het begin heb je 
me direct de diepgaande technische kennis van SPR proberen bij te brengen, ondanks dat ik 
niet altijd meteen begreep wat je bedoelde. Door jou heb ik heel veel geleerd van de 
technische kant van de SPR techniek en het IBIS instrument. David, officieel pas in het 
laatste jaar mijn derde begeleider geworden, maar stiekem al ruim 2 jaar langer heel nauw 
betrokken bij al mijn plannen en de uitvoering daarvan. Jij zorgde er voor dat ik nooit 
genoegen nam met de data en de tekst die ik al op papier had staan (101 comments op een 
draft paper van 9 A4-tjes, need I say more…). Jouw kritische blik op alles wat ik gedaan heb 
heeft ervoor gezorgd dat ik nu hopelijk ook nog een stuk kritischer ben geworden op mijn 
eigen werk, op een goede manier dan toch.  

Roel, heel erg bedankt dat je vanaf het begin af aan mij de mogelijkheid hebt 
geboden om binnen Synthon een promotieonderzoek te gaan starten. Dankzij jouw 
overtuiging en enthousiasme, heb ik de stap durven nemen om samen met Michel te gaan 
kijken wat er mogelijk was binnen Synthon.  

Uiteraard wil ik alle collega’s van de vakgroep bioproceskunde bedanken. Ondanks 
dat ik nauwelijks ooit aanwezig ben geweest op Biotechnion en later Radix, heb ik wel de 
nodige input gehad op AIO-dagen. Uiteraard wil ik hier ook René nog even een extra woord 
van dank geven. Jij was in het begin mijn begeleider naast Michel, maar nadat Michel 
professor werd ben jij gestopt als begeleider voor mijn project. Ik heb wel de nodige hulp 
uit jouw hoek gehad in de eerste 2 jaar waarvoor dank. Miranda en Marina, dank jullie 
wel voor jullie snelle antwoorden op al mijn ‘moeilijke’ administratieve vragen. Als je, zoals 
ik, je promotie niet binnen de vakgroep doet, zijn er toch de nodige dingen die lastig te 
vinden zijn, zeker zonder jullie hulp. 

Dankwoord
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Het ‘ACCESS’-project team, Louis, Mathieu, Dirk, Marc, Ciska, Xiao, verdient hier 
ook een warm dankjewel. Tijdens alle bijeenkomsten door de jaren heen hebben jullie 
ervoor gezorgd dat ik af en toe ook op een andere manier naar mijn onderzoek en 
resultaten ging kijken; vanuit andere invalshoeken zagen jullie dingen die ik als 
vanzelfsprekend aannam. Verder wil ik mijn vier studenten (Jeroen, George, Mark en 
Eef) bedanken voor hun bijdrages aan mijn onderzoek en daarbij natuurlijk ook voor hun 
eigen studie de nodige ervaring hebben opgedaan. Daarnaast zijn er ook nog enkele 
studenten die helemaal niet mijn student waren maar wel voor mooie resultaten hebben 
gezorgd die ik kon gebruiken voor mijn publicaties. Dankjewel Sanne en Eefje.

In mijn beginjaren bij Synthon ben ik begonnen bij de Bioanalytische groep, en tijdens 
alle jaren dat ik met mijn promotie bezig was, mocht ik toch gezellig met jullie koffiepauze 
blijven houden. Bedankt voor de afleiding van de serieuze zaken als ik dat nodig had: Jaap, 
Peter, Wietske, Robbin, Sjoerd, Husniye, Vera, Edgar, Marijn, Marieke, Marius, 
Raymond, Dongyuan, Petra en Chiel. En een extra bedankje voor Eline en Wendy die 
een heleboel analyses voor mij gedaan hebben als dat nodig was. Daarnaast nog een 
speciaal bedankwoord voor Mark, voor het meedenken bij de uitdagingen die ik moest zien 
te overwinnen, en voor de hulp bij de diverse MS experimenten en hoe ik die het beste kon 
gebruiken in mijn publicaties.  

Verder wil ik ook nog Stefanie en Jan bedanken voor het meehelpen bij het maken 
van de Fc receptoren. Daarnaast had ik in de laatste paar maanden nog even een uitstapje 
naar de USP afdeling omdat ik zo nodig zelf cellen wilde gaan kweken. Dank je wel USPers
dat ik jullie lab mocht gebruiken. En daarbij ook mijn enorme dank aan Rob en Lisette
voor het goed verzorgen van mijn cellen op de woensdagen en met Kerst, want ja… ik was 
wel vrij met de feestdagen. Zeban, ik waardeer je interesse in mijn cellenwerk en dat je 
direct openstond voor mogelijkheden binnen jullie groep. Helaas is het niet meer verder van 
de grond gekomen maar hopelijk kunnen we in de toekomst hier nog aan verder werken. 

Dan is er nog een afdeling binnen Synthon die ik graag wil bedanken, namelijk de 
protein interaction groep van de preklinische afdeling: Karin, Cindy, Ellen, Jochem, Jos, 
Tinie, Myrthe, Rachel, Benny, Ingrid en Ruud. De laatste 2,5 jaar mocht ik te gast zijn 
in jullie werkoverleg wat mij enorm heeft geholpen bij het beter begrijpen en opzetten van 
mijn eigen SPR analyses.  

Natuurlijk wil ik al mijn DSP collega’s van Synthon hier bedanken voor alle steun door 
de jaren heen. Alhoewel ik weinig met de diverse DSP-werkzaamheden van doen had, 
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zorgden de praatjes met velen van jullie ervoor dat ik ook steeds beter de DSP-kant van ons 
werk ben gaan begrijpen, maar ook de nodige niet-werkgerelateerde dingen kon bespreken. 
Kim, Maria, Bram, Bram en Bram, Bas, Guy, Shadee, Diane, Thomas, Man, Meng, 
Hetty, Ruud, Sanne, Susana, Walter, Xiaonan, Yorick, Niels, Ernst, Rien, Bert en
Erik. En natuurlijk onze ex-DSP’ers die een andere uitdaging hebben gevonden: Manfred 
en Ferdi. En ook nog even een speciaal woord van dank aan Daniëlle, voor het luisterende 
oor wanneer ik dat nodig had (zeker in de moeilijkere tijden), voor je enthousiasme om de 
buffers op de IBIS te gaan testen, wat uiteindelijk tot een mooi resultaat heeft geleid.  

Een extra dankjewel voor Lonnie, Jozefi en Judith voor de gezellige wandelingen 
tijdens de lunchpauzes, waardoor ik ook elke dag even mijn gedachten kon verzetten in de 
buitenlucht. Judith, jammer dat je bent weggegaan bij Synthon; ik vond je een leuke, 
gezellige collega. Maar ik ben blij dat je een nieuwe uitdaging hebt gevonden, en we blijven 
ook in de toekomst gewoon regelmatig bijkletsen buiten werktijd. 

Dan wil ik ook alle volleybalmaatjes die ik in vijf jaar bij Invicta heb gehad (23 in 
totaal…. Zou het aan mij liggen?, een volleybalteam bestaat toch uit 8-10 personen….), 
maar in het bijzonder nog even een extra dankjewel voor Annet, Marike, Maringa, 
Astrid, Anne, Carolien, Paula, Ellen die het wel het langste hebben volgehouden met 
mij . Dank jullie wel voor alle gezellige volleybal-uurtjes waarin ik even niet aan mijn werk 
hoefde te denken. 

Vivian, alle leuke dingen buiten werk en promotie om zorgden ervoor dat ik in de 
weekenden weer kon opladen. De gezellige avondjes uit, bioscoop-bezoekjes, feestjes en 
spelletjes-avonden zorgen ervoor dat ik niet altijd met werk bezig ben. En uiteraard ook 
voor mijn vriendinnen uit home-town America; ondanks dat we elkaar nog maar weinig 
spreken en zien sinds ik verhuisd ben, vind ik het altijd weer gezellig als we samen zijn: 
Annelies, Marloes, Ivon, Mieke, Lieke, Esther, Jenny, Marloes en Thea. Daarnaast 
wil ik ook mijn schoonouders Theo en Angelika bedanken voor de oprechte interesse in 
mijn onderzoek en de voortgang gedurende alle jaren.  

Mark, Jeroen, pap en mam, ondanks dat jullie vaak de vraag moesten stellen hoe 
het ging met mijn ‘studie’ en ‘afstuderen’ en jullie het inhoudelijk hebben opgegeven wat ik 
nu eigenlijk doe, hebben jullie me wel altijd weten te steunen en interesse getoond in hoe 
het allemaal ging. Juist doordat het niet altijd over mijn werk hoeft te gaan maar we ook 
gewoon gezellige familie-dingen konden doen; dat werkt altijd beter om je werk even los te 
laten.

Dankwoord

239

Als laatste mijn allerliefste Frank, jij bent altijd een steunpilaar als het nodig is en jij 
had er vertrouwen in dat ik kon doen wat ik moest doen. Dank je wel voor alle lieve 
woorden, humor en steun, en dat je er voor me was in de moeilijkste tijden. Nu jij nog je 
studie afronden en dan hebben we straks weer alle tijd voor elkaar. En niet te vergeten, 
mijn grootste kleine vriendje, Jesper, en binnenkort je nieuwe ‘partner-in-crime’ die we 
hopelijk snel gaan leren kennen. Door jou besef ik elke dag weer dat er nog een leven is 
naast het promoveren. Je maakt me aan het lachen om de stomste, kleinste dingen, omdat 
dat nu eenmaal is wat peuters doen. Heerlijk om zo zonder zorgen naar de wereld te 
kunnen kijken en die te ontdekken, en er zo voor te zorgen dat ik ook even alle zorgen 
vergeet na een drukke werkdag. 
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