>>>

OPTIMISING FRUIT LOAD AND STEM DENSITY OF ORGANIC TOMATO GROWN UNDER A SEMI-CLOSED GREENHOUSE

BÉATRICE PERRON¹, DAMIEN DE HALLEUX², MARISE VALLIÈRES², FRANÇOIS BÉLANGER³ AND MARTINE DORAIS¹⁴

¹CENTRE DE RECHERCHE ET D'INNOVATION SUR LES VÉGÉTAUX, DEPT. OF PLANT SCIENCE, LAVAL UNIVERSITY, QUEBEC, QC, CANADA, G1V 0A6 <u>BEATRICE.PERRON.1@ULAVAL.CA</u>

²CENTRE DE RECHERCHE ET D'INNOVATION SUR LES VÉGÉTAUX, DEPT. OF SOIL AND AGRI-FOOD ENGINEERING, LAVAL UNIVERSITY, QUEBEC, QC, CANADA, G1V 0A6 <u>DAMIEN.DE.HALLEUX@FSAA.ULAVAL.CA</u>
³LES SERRES JARDIN-NATURE, NEW RICHMOND, QC, CANADA, G0C 2B0 <u>FBELANGER@JARDINSNATURE.CA</u>
⁴AGRICULTURE AND AGRI-FOOD CANADA, PACIFIC AGRI-FOOD RESEARCH CENTRE, AGASSIZ, CANADA, VOM 1A0 MARTINE.DORAIS@AGR.GC.CA

INTRODUCTION

■ ↑ Greenhouse microclimate : ↑ Productivity

Development of new systems: closed and semi-closed greenhouses

Climate control (temperature, humidity, CO_2) using geothermal systems to ensure cooling and/or heating (Nederhoff et al., 2010); \downarrow Rate of CO_2 supply (Opdam, 2005)

Heuvelink et al. (2007) suggested that the density could be increased by at least 17% in a closed greenhouse

No study has previously focused on stem density and fruit load control in semi-closed greenhouse.

Compare density and fruit load treatments in a semi-closed greenhouse context by analysing yield, fruit size, crop growth, climate parameters and fruit quality.

BioGreenhouse

MATERIAL AND METHODS

- > Two semi-closed double polyethylene 225 m² compartments (R2 and R3) located at Les Serres Jardins-Nature, Qc, Canada (48.15°N, 65.84°W)
- > Cooled using water from the water table (12°C) which was directed in a heat exchanger
- Polyethylene tubes located above the canopy to ensure the airflow
- > 2015 growing season (January-October)
- Three stem density treatments (3.0, 3.3 and 3.6 plants/m²) in R2
- > Three fruit load treatments (70, 85 and 90 fruits per m²) in R3
- Climate monitoring, crop growth, yield, fruit size and truit quality

Cooling capacity R2 > R3

RESULTS

- 24h T°C, day T°C, relative humidity higher in R3 compartment (lower cooling capacity)
- \blacksquare CO $_2$ concentration was 46 μL L $^{-1}$ higher in the R2 than in R3 compartment

Table 1. Climate parameters for the two semi-closed compartments for 2015 growing season.

Compartment	Day temperature (°C)	Night temperature (°C)	24h temperature (°C)	Day relative humidity (%)	24h temperatu re (°C)	24h relative humidity (%)
R2	20.7 ± 2.4	18.4 ± 2.3	19.6 ± 2.1	85.6 ± 5.3	85.8 ± 7.4	85.5 ± 6.2
R3	21.7 ± 2.5	18.5 ± 2.1	20.2 ± 2.1	86.2 ± 8.9	85.8 ±10.8	86.5 ± 9.4

Table 4. Air CO_2 concentration and injected CO_2 in the two semiclosed compartments for 2015 growing season.

Composition out	CO2	CO ₂ injected
Compartment	(µL L ⁻¹)	(g/m ²)
R2	681 ± 138 (†	7%) 97±41 (↓13%)
R3	635 ± 136	111 ± 43

- For the density treatments in R2, both week yield and cumulative yield were higher at density 3.0 plants/m² than at 3.3 or 3.6 plants/m²
- In the R3 compartment, it was the lowest fruit load that presented the highest yield and fruit size. This is consistent with the dry matter results, where the percentage of dry matter was decreasing with the increase of the fruit load as showed in Fig. 1.

Table 2. Production results in terms of fruit yield andfruit size for 2015 growing season in two semi-closed compartments

Trea	atment	Fruit size (g)	Yield (kg/m²/week)	Cumulative yield (kg/m²)	
R2	D. 3.0	238 ± 32	1.92 ± 0.87	58.76 ± 7.23	
R2	D. 3.3	237 ± 32	1.77 ± 0.68	54.14 ± 1.98	
R2	D. 3.6	223 ± 36	1.77 ± 0.72	54.38 ± 4.85	
R3	C. 70	228 ± 21	1.87 ± 0.82	57.83 ± 2.70	
R3	C. 80	224 ± 26	1.81 ± 0.84	56.08 ± 4.72	
R3	C. 90	223 ± 28	1.73 ± 0.70	53.53 ± 3.16	

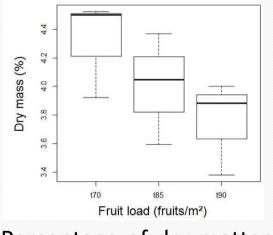


Fig. 1. Percentage of dry matter for the three fruit load treatments for August 2015 harvest

BioGreenhouse

RESULTS

 Growth parameters as plant stem elongation, stem diameter, and apex-flower cluster distance were higher in R3 than in R2 compartment (3.6 plant/m² and fruit load between 70-90 fruit/plant depending on the treatment)

ble 3. Growth parameters for the six treatments means for 2015 growing season in two semi-closed compartments(D= stem density; C= fruit load)

Treatment	Elongation (cm)	Stem diameter (mm)	Mature leaf length (cm)	Apex-flower cluster distance (cm)	Flower set	Fruit set (cluster/week)
R2 D. 3.0	19.5 ± 4.4	10.7 ± 1.5	53 ± 6	11 ± 3	0.75 ± 0.47	0.75 ± 0.39
R2 D. 3.3	19.2 ± 4.7	10.7 ± 2.2	53 ± 7	10 ± 4	0.76 ± 0.38	0.74 ± 0.39
R2 D. 3.6	19.3 ± 4.7	10.7 ± 1.5	53 ± 6	10 ± 3	0.73 ± 0.40	0.71 ± 0.40
R3 C. 70	21.1 ± 4.6	11.2 ± 1.6	53 ± 5	11 ± 4	0.80 ± 0.41	0.78 ± 0.44
R3 C. 80	21.3 ± 4.8	11.0 ± 1.5	52 ± 6	11 ± 4	0.79 ± 0.41	0.78± 0.44
R3 C. 90	21.1 ± 4.8	11.3 ± 4.4	53 ± 5	11 ± 4	0.75 ± 0.41	0.73 ± 0.41

3rd INTERNATIONAL SYMPOSIUM ON ORGANIC GREENHOUSE HORTICULTURE 11 - 14 APRIL 2016 / IZMIR, TURKEY

CCOSE

BioGreenhouse

CONCLUSION

Climate and CO₂ differences: different system efficiencies

- > Lowest fruit density treatment in R2 and lowest fruit load treatment in R3 both showed the best agronomic performance
- Semi-closed systems improved with a heat pump (night temperature/humidity control)
- > Higher yield was achieved under semi-closed greenhouse growing conditions as compared to the commercial yield performance

> Soil \rightarrow Soilless organic growing system (*Verticillium*)

•Heuvelink, E., M. Bakker, L.F.M. Marcelis, and M. Raaphorst. 2007. Climate and Yield in a Closed Greenhouse. Acta Horticulturae. 801: 1083–1092.

•Nederhoff, E., A. de Gelder, A. Dieleman, J. Janse. Future Proofing [online]. Practical Hydroponics and Greenhouses, No. 113, Jul/Aug 2010: 47-55.

Availability: http://search.informit.com.au/documentSummary;dn=265837582554760;res=IE LHSS>ISSN: 1321-8727 [cited 29 Oct 15].

•Opdam, J.J.G., G.G. Schoonderbeek, and E.M.B. Heller. 2005. Closed Greenhouse : a Starting Point for Sustainable Entrepreneurship in Horticulture. Acta Horticulturae. 691: 517–524.

ACKNOWLEDGEMENTS

This research is funded by the Canadian Organic Science Cluster which is funded by the Canadian Initiative on Canadian Agri-Science Clusters, the Growing Forward Policy Framework for Agriculture and Agri-Food Canada and its industry partners. Thanks to Serres Jardins-Nature, Réjean Bacon and Claudine Ménard for technical advice.

