

Summer green manuring in OGH under French Mediterranean climate

Hélène Védie

GRAB – Avignon, France

Why growing cover crops in OGH ?

One solution to some of the problems in greenhouses: crop rotation, soil structure, SOM improvement, crop nutrition, weed management, sanitary problems...

In the Mediterranean regions

- Low levels of SOM
- Increased SOM mineralization (soil tillage, climate, solarization...)
- Limited resources of animal manure
- Limited resources in good quality compost

→ a green manure can be used as a « soil building crop » to produce OM for incorporation into the soil between 2 crops

When cultivating GM in OGH ?

Greenhouse occupation		Autumn	Winter	Spring	Summer
Cash crop					
Inter cropping					
	Cover crop	60 to 100 days			
			100 to 120 days		
				60 to 80 days	
	Solarization				40 days
					45 days

→ SUMMER is a good option : some greenhouses are empty – short cultivation period

Summer experiments conducted at the GRAB experimental farm

Screening of different families/species: 2001-2002

To select those adapted to the high temperatures and short available period under GH

Evaluation of legume species: 2013 to 2015

Idem... with the goal to enhance nitrogen availability and farmers self-sufficiency

Effect of legume GM on a subsequent lettuce crop

Summer experiments conducted at the GRAB experimental farm

Trials conditions

- Plastic tunnels in Southern France (Avignon)
- Sprinkler irrigation
- Soil : Deep calcareous clay loam with 2,5% organic matter, pH=8.1
- Sowing : may to july, 41 to 55 days

Performances

- Above ground fresh and dry biomass production
- N and C:N ratio as an indication of N availability
- Weed suppressiveness (weed cover and % in the biomass)
- Susceptibility to pests and deseases

1. Evaluation of GM species

Species	Scientific name	Seeding rates (kg.ha ⁻¹)		
		2001 28/5 to 18/7 (50 days)	2002-A 7/6 to 18/7 (41 days)	2002-B 24/7 to 17/9 (55 days)
<i>GM from the Poaceae family</i>				
Sudangrass	<i>Sorghum sudanense</i>	50	50	
Sorghum-sudangrass	<i>Sorghum bicolor x Sorghum sudanense</i>	50	50	70
Sorghum	<i>Sorghum bicolor</i>		20	
German Foxtail Millet	<i>Setaria italica (L.) Beauv.</i>	30	30	40
Rye	<i>Secale cereale L.</i>	60		
Italian ryegrass	<i>Lolium multiflorum Lam.</i>	30	30	
Ryegrass	<i>Lolium perenne L.</i>		30	
<i>GM from the Brassicaceae family</i>				
White mustard	<i>Sinapis alba</i>	20	20	
Fodder radish	<i>Raphanus sativus var. oleiformis</i>	20	20	
<i>GM from the Polygonaceae family</i>				
Buckwheat	<i>Fagopyrum esculentum Moench</i>	60	60	80
<i>GM from the Asteraceae family</i>				
Mexican marigold	<i>Tagetes minuta</i>	5		
<i>GM from the Hydrophyllaceae family</i>				
Phacelia	<i>Phacelia tanacetifolia</i>	15		
<i>GM mixtures</i>				
Wheat + Fenugreek	<i>Triticumsp. + Trigonella foenum-graecum</i>	30 + 30		
Wheat + sweetclover	<i>Triticumsp. + Melilotus officinalis (L.) Lam</i>		80 + 20	
Wheat + berseem clover	<i>Triticumsp. + Trifolium alexandrinum</i>		80 + 20	
Oat + common vetch	<i>Avena sativa L. + Vicia sativa</i>	60 + 50	80 + 50	

1. Evaluation of GM species

Poaceae Family

Species	Dry Biomass (t/ha)	Weeds (%)	C:N ratio
Sorghum-sudangrass	6 to 10	0 to 2	17 -18
Sudangrass	5 to 13 (2013)	0 to 15	15 to 57 (2013)
Pearl Millet (2013-2015)	6 to 16 (2013)	4 to 10	28 (2013)
Foxtail millet	4 to 7	2 to 22	16-27
Rye, Italian ryegrass, ryegrass, wheat, oat...		Outcompeted by weeds	

1. Evaluation of GM species

Brassicaceae Family

Fast growth

High biomass (3 to 7 t Dry biomass/ha)

Lower C:N (16-18)

Weed suppression

Diseases (rhizoctonia) and pests (flea beetle [*delia radicum*], diamondback moth [*plutella xylostella*], slugs...) risks

1. Evaluation of GM species

Polygonaceae Family : buckwheat

Fast growth

Good biomass (3.5 to 5 t Dry biomass/ha)

C:N (20-26)

Weed suppression

Short cycle : flowers in 30 days

1. Evaluation of GM : conclusions

- The **best results** were obtained with species from the **poaceae** and **polygonaceae** families, which are not cultivated in the vegetable systems : real break in the crop rotation
- The above ground Biomass can reach 60 tonnes of fresh biomass (7-9 dry) with quite high C:N ratio → interesting level of OM
- Species of the **brassicaceae** family have good results but too risky because of the sanitary problems
- Species of the **fabaceae** family tested in the first round of trials are not adapted : fenugreek, sweetclover, berseem clover, vetch

2. Evaluation of legume species

FAMILY	Specie	Scientific name	Seeding rates (kg.ha ⁻¹)		40 %
			Alone	in mixtures	
Poacea sp.	Sudangrass	<i>Sorghum sudanense</i>	50	20	40 %
	Pearl millet	<i>Pennisetum glaucum</i>	30	12	
	Bristle oat	<i>Avena strigosa</i>	60		
	German Foxtail Millet	<i>Setaria italica (L.) Beauv.</i>		15	
Polygonaceae sp.	Buckwheat	<i>Fagopyrum esculentum</i>		30	
Fabaceae sp.	Cowpea	<i>Vigna unguiculata, Vigna sinensis</i>	80	60	75 %
	Lablab	<i>Lablab purpureus, Dolichos lablab</i>	80	60	
	Field pea	<i>Pisum arvense</i>		90	
	Grass pea	<i>Lathyrus sativus</i>		18	
	Sweet clover	<i>Melilotus arvensis</i>		11	
	Common vetch	<i>Vicia sativa</i>		40	
	Purple vetch	<i>Vicia benghalensis</i>		18	
	Berseem clover	<i>Trifolium alexandrinum</i>		20	
	Persian clover	<i>Trifolium resupinatum</i>		10	

Species evaluated in summer 2013

2. Evaluation of legume species

Results in summer 2013 (50 d)

Species	Above ground fresh biomass		Dry biomass		C/N	Nitrogen kg.ha ⁻¹
	t.ha ⁻¹	% weeds	t.ha ⁻¹	% N		
Sudangrass	77,3	5,4	13,4	0,8	57	107
Cowpea	22,2	40,7	3	1,3	44	39
Lablab	48,4	31,1	6,8	1,4	32	96
Pearl millet (+ pea)	127,9	4,0	16,5	1,5	28	247
Foxtail millet (+clover)	31,5	39,3	6,6	1,2	37	79
Buckwheat (+ vetch)	22,9	48,0	3,8	1,1	42	42

- Weed competition is very high when legumes alone
- Low legume rates (<10%) in mixtures with 40 % grasses
- Low N contents and high C:N ratio : limited nitrogen supply ?
- No nodules on the roots...

2. Evaluation of legume species

Results in summer 2014 (42 d)

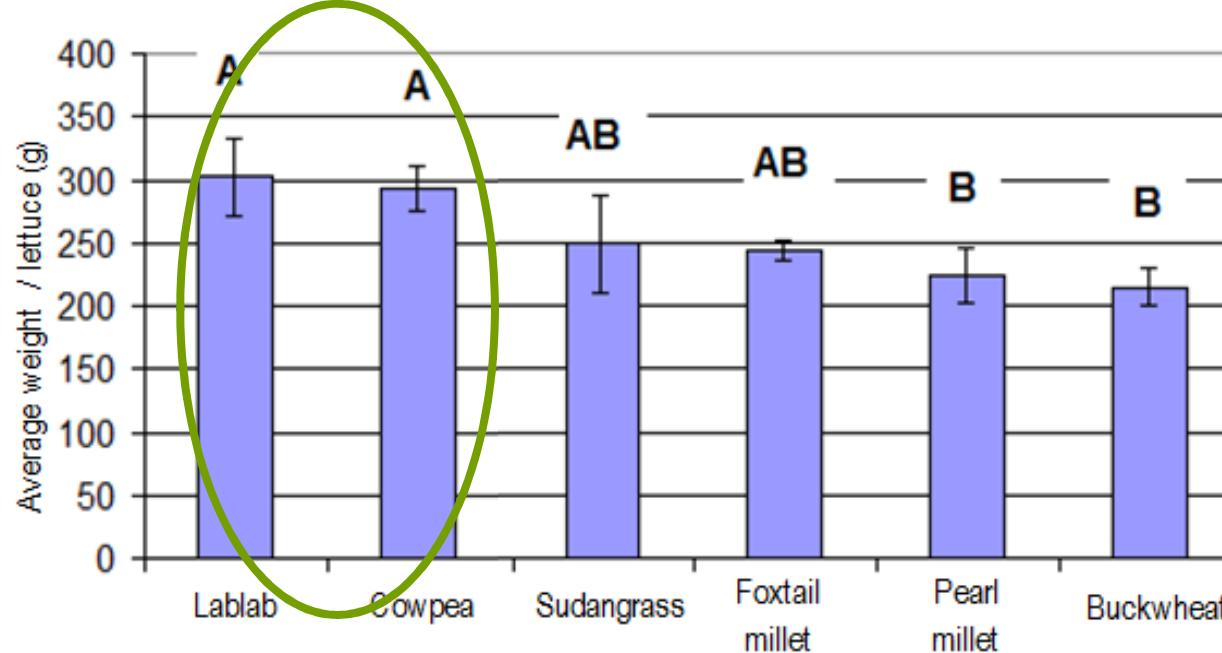
- Higher legume rates (10-27%) in mixtures with 20 % grasses and full seeding rates for legumes
- % legumes: Cowpea > Lablab > Field pea
- nodules on the roots...
- Pearl millet 6kg/ha in mixtures : limited weed control

Sudangrass+ FIELD PEA
(*Pisum sativum arvense*)

Sudangrass + COWPEA
(*Vigna sinensis*)

Buckwheat + LABLAB
(*Dolichos lablab*)

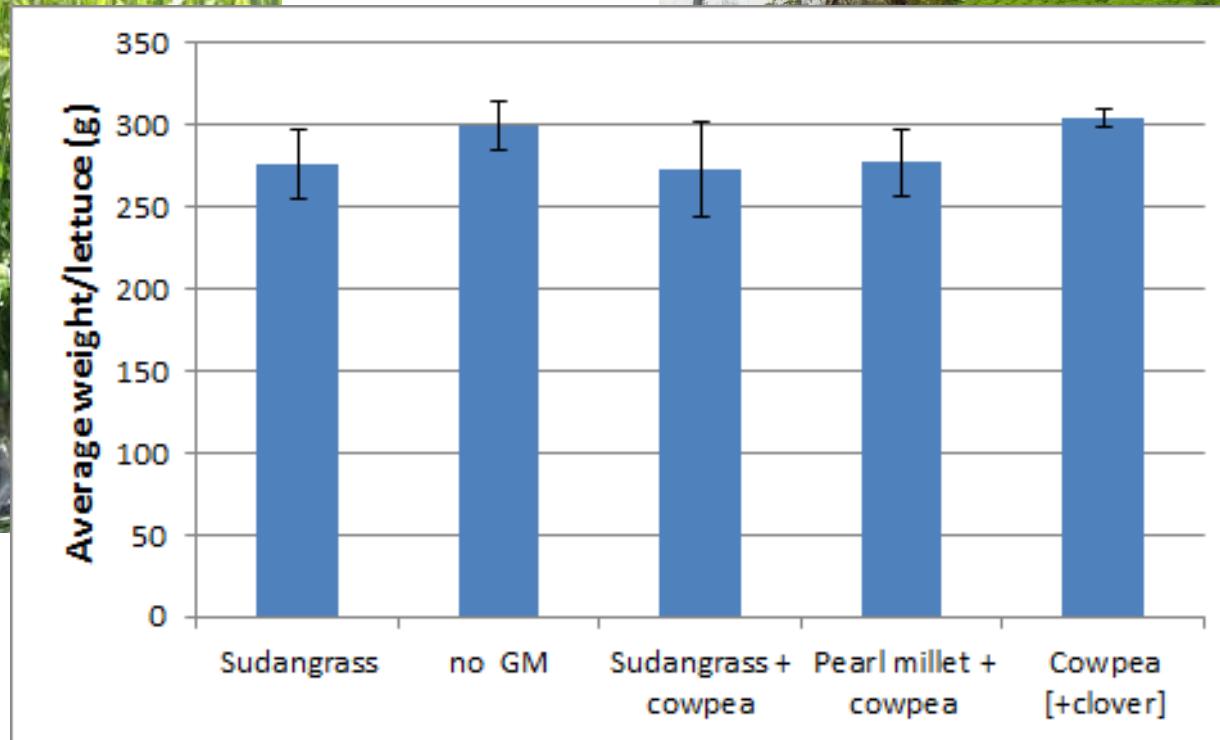
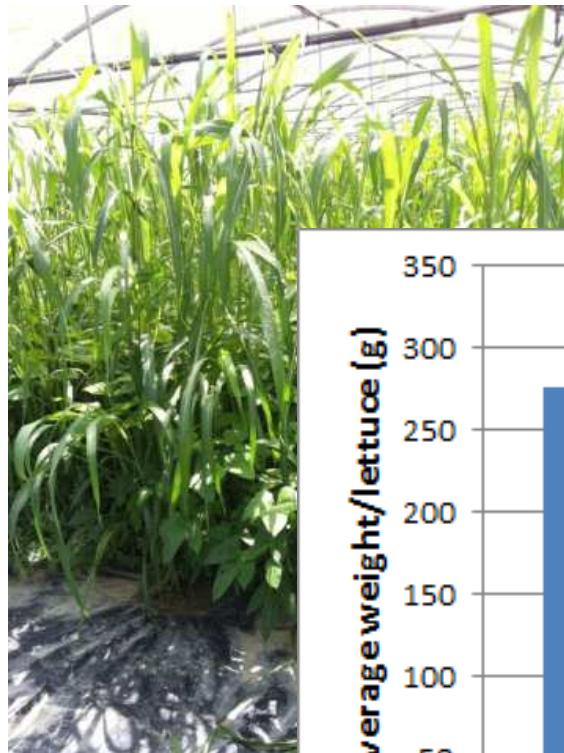
2. Evaluation of legume species


Results in summer 2015 (42 d)

Species	Seeding rates (kg.ha ⁻¹)	Above ground fresh biomass			Dry biomass t.ha ⁻¹	C : N	Nitrogen (kg.ha ⁻¹)
		t.ha ⁻¹	% weeds	% legume			
Sudangrass	50	53.3	3.4		7.1	34	92.5
Cowpea + sudangrass	80 + 10	46.7	20.4	26.6	6.6	28	107.5
Cowpea + pearl millet	110 + 10	54.6	4.2	31	5.9	27	91.7
Cowpea (+ berseem clover)	110 + 10	48.7	24.5	75.5	4.9	22	94.9

- Good legume rates in mixtures with 10 kg/ha grasses and full seeding rates⁺ for legumes
- Similar nitrogen contents in the above ground biomass control
- Very few nodules...

3. Effect on lettuce crop's productivity




2013 (1st oct ->5th dec)

- Potential interest of legumes
- No relationship between lettuce weight and GMs' N content or C:N ratio... or $[\text{NO}_3^-]$ in the soil

3. Effect on lettuce crop's productivity

2015(1st oct -> 1st dec)

Similar GMs' characteristics → Similar N mineralization ?

No nutrient deficiencies / control without GM (higher $[NO_3^-]$ in the soil)

Conclusions

- Tropical species of grasses (sudangrass, sorghum, pearl millet) or legumes perform much better
- Some temperate species (Buckwheat, foxtail millet, field pea) are also adapted but their cycle is fast
- High biomasses can be produced in 40-50 days : a summer GM can improve SOM and soil fertility
- Legumes have to be mixed with other plants to ensure a good weed control
- Interest of short cycle-summer legumes to improve subsequent crop N nutrition ??? (nodules ?)

Thank you for your attention !

