

Mediterranean Agronomic Institute of Bari, Bari, Italy

3 Faculty of Agriculture, Cairo University, Egypt
${ }^{2}$ CREA, Centro di Ricerca per lo Studio delle relazioni tra Pianta e Suolo, Rome, Italy
${ }^{3}$ Faculty of Agriculture, Cairo
${ }^{4}$ Agricultural Research C
Agricultural Research Center, Egypt

(4) $\frac{n}{n}$

INTRODUCTION

Tomatoes consumption

Peat extraction
" Organic Farming should rely on on-farm resources \& self-sufficiency.
" Compost is a promising alternative for peat in growing media
" Data on substitutability vary significantly and mainly are conditions-specific.
" There is a need to validate relevant data under local conditions

AIM

The objective of the work was to evaluate the response of organic tomato seedlings to growing media amended with locally produced compost and commonly applied N liquid fertilizers in the Apulia region, southern Italy

MATERIALS AND METHODS

Mixed Waste Compost (MC)
Characterization
Germination Index

Component	Control	GC	MC		
		204570	20	457	70
		\% (v/v)			
Peat	90	704520	70	45	20
GC	0	204570	0	0	0
MC	0	$0 \quad 00$	20	457	70
Perlite	10	101010	10	101	10

Substrate Formulation

Nursery Trial. Fertilizers: Blood meal (BM) based

Hydrolyzed Protein (HP) based Algal Extract (AE) based

$1.94 \mathrm{~g} \mathrm{~N} \mathrm{~L}^{-1}$ substrate 20 and 27 DAS

Evaluation of growth parameters

RESULTS

Growth parameters of seedlings

Substrate	Fertilizer	$\begin{gathered} \mathrm{SD} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \text { SH } \\ & (\mathrm{cm}) \end{aligned}$	SI	$\begin{aligned} & \text { DW } \\ & \text { (g) } \end{aligned}$	LN	$\begin{aligned} & \text { SLA' } \\ & \left(\mathrm{cm}^{2} \mathrm{~g}^{-1}\right) \end{aligned}$	SPAD ${ }^{\text {a }}$
Control	BM	$3.20{ }^{\text {b }}$	$5.96{ }^{\text {a }}$	$18.90{ }^{\text {a }}$	$0.35{ }^{\circ}$	$3.50{ }^{\circ}$	$0.22{ }^{\text {a }}$	39.2
	HP	$3.20{ }^{\circ}$	$6.38{ }^{\text {ap }}$	$20.20{ }^{\text {a }}$	$0.35{ }^{\text { }}$	$3.75{ }^{\circ}$	$0.29{ }^{\text {D }}$	39.2
	AE	$3.10{ }^{\text {D }}$	$7.01{ }^{\text {ab }}$	$22.50{ }^{\text {b }}$	$0.34{ }^{\text {b }}$	$3.50{ }^{\text {D }}$	$0.24{ }^{\text {ab }}$	38.5
GC-20	BM	$3.35{ }^{\circ}$	$6.38{ }^{\text {ajo }}$	$19.00^{\text {a }}$	$0.51{ }^{\text {avo }}$	$3.92{ }^{\circ}$	$0.20{ }^{\text {a }}$	40.1
	HP	$3.56{ }^{\text {a }}$	$7.01{ }^{\text {ab }}$	$19.80^{\text {a }}$	$0.52{ }^{\text {ab }}$	$4.08{ }^{\circ}$	$0.25{ }^{\text {a }}$	39.5
	AE	$3.28{ }^{\circ}$	$7.27{ }^{\text {ap }}$	$22.30{ }^{\circ}$	$0.52{ }^{\text {ap }}$	$3.75{ }^{\text { }}$	$0.21{ }^{\text {a }}$	37.8
GC-45	BM	$3.50{ }^{\text {ajo }}$	$7.21{ }^{\text {av }}$	$20.80{ }^{\text {av }}$	$0.60{ }^{\text {a }}$	$3.83{ }^{\circ}$	$0.21{ }^{\text {av }}$	38.7
	HP	$3.63{ }^{\circ}$	$7.49{ }^{\text {a }}$	$20.70^{\text {ao }}$	$0.60{ }^{\text {a }}$	$4.33{ }^{\text {ap }}$	$0.23{ }^{\text {a }}$	38.7
	AE	$3.31{ }^{\text { }}$	$6.86{ }^{\text {ab }}$	$20.80{ }^{\text {a }}$	$0.54{ }^{\text {ap }}$	$3.92{ }^{\text { }}$	$0.20{ }^{\text {a }}$	38.3
GC-70	BM	$3.18{ }^{\circ}$	$7.55{ }^{\text {a }}$	24.00°	$0.52{ }^{\text {a }}$	4.00°	$0.20{ }^{\text {a }}$	38.8
	HP	$3.24{ }^{\text { }}$	$7.35{ }^{\text {ab }}$	22.90°	$0.55{ }^{\text {ab }}$	$4.17{ }^{\text {ab }}$	$0.23{ }^{\text {a }}$	39.3
	AE	$3.06{ }^{\circ}$	$7.81{ }^{\text {a }}$	$25.80{ }^{\circ}$	$0.52{ }^{\text {ap }}$	$4.25{ }^{\text {ao }}$	$0.27{ }^{\text {ad }}$	37.9
MC-20	BM	$3.54{ }^{\text {a }}$	$6.67{ }^{\text {av }}$	19.00°	$0.45{ }^{\text { }}$	$4.17{ }^{\text {aj }}$	$0.25{ }^{\text {a }}$	37.6
	HP	$3.72{ }^{\text {a }}$	$5.99{ }^{\circ}$	$16.30^{\text {a }}$	0.50 ap	$4.17^{\text {ap }}$	$0.25{ }^{\text {a }}$	37.3
	AE	$3.49{ }^{\text {ab }}$	$6.97{ }^{\text {ap }}$	$20.40{ }^{\text {a }}$	$0.55{ }^{\text {ab }}$	$4.50{ }^{\text {ad }}$	$0.22^{\text {a }}$	36.6
MC-45	BM	$3.54{ }^{\text {av }}$	$6.51{ }^{\text {av }}$	$18.60{ }^{\text {a }}$	$0.45{ }^{\circ}$	$4.25{ }^{\text {aj }}$	$0.24{ }^{\text {aj }}$	38.8
	HP	$3.73{ }^{\text {a }}$	$6.39{ }^{\text {ap }}$	$17.30^{\text {a }}$	$0.59{ }^{\text {a }}$	$4.33{ }^{\text {ap }}$	$0.23{ }^{\text {a }}$	38.6
	AE	$3.56{ }^{\text {a }}$	$6.16{ }^{\text {ap }}$	$17.50{ }^{\text {a }}$	$0.55{ }^{\text {ap }}$	$4.33{ }^{\text {ao }}$	$0.22{ }^{\text {a }}$	37.5
MC-70	BM	$3.65{ }^{\text {a }}$	$7.26{ }^{\text {ab }}$	$19.90^{\text {a }}$	$0.62{ }^{\text {a }}$	$4.42{ }^{\text {ab }}$	$0.16{ }^{\text {a }}$	39.0
	HP	$3.54{ }^{\text {ap }}$	$6.73{ }^{\text {ap }}$	$19.20{ }^{\text {a }}$	$0.59{ }^{\text {a }}$	$4.92{ }^{\text {a }}$	$0.24{ }^{\text {ao }}$	39.2
	AE	$3.42{ }^{\text {ab }}$	$7.53{ }^{\text {a }}$	$22.10{ }^{\text {D }}$	$0.54{ }^{\text {ab }}$	$4.33{ }^{\text {a }}$	$0.21{ }^{\text {a }}$	38.2
Substrate (S)		**	**	**	**	**	ns	**
Fertilizer (F)		**	ns	**	*	**	*	**
Interaction (S x F)		*	*	**	**	*	*	ns

${ }^{2}$ Insignificant interaction (fertilizer x substrate). Within a column; values followed by the same letter(s) are insignificantly different ($\mathrm{P} \leq 0.05$, Tukey); SD: seedling diameter; SH: shoot height; DW: shoot dry weight; LN: leaves number; SLA: specific leaf area; SI: sturdiness index; * $\mathrm{P} \leq 0.05$; ** $\mathrm{P} \leq 0.01$; ns: not significant.

Content ($\mathrm{g} \mathrm{kg}^{-1}$) of N, P and K in tomato seedlings shoot. Fertilizer type and the interaction had not significant effect on P and K content in seedlings.
$3^{\text {rd }}$ INTERNATIONAL SYMPOSIUM ON ORGANIC GREENHOUSE HORTICULTURE
돈ㄷ

11-14 APRIL 2016/IZMIR, TURKEY

CONCLUSION

Both composts, at any substitution rate, could be used in growing media but to reduce the salinity effects, the 45% rate of peat substitution seems to produce the best growth parameters for tomato seedlings.
" A complete technological package that should include locally produced substrate together with the commonly available fertilizers should be considered for organic seedling production.
" This is vital for taking a broader picture of the process in order to transfer with efficacy the research outcomes into the nursery industry

