

Organic greenhouse soil-less growing systems for vegetables : a sustainable approach that respect organic principles

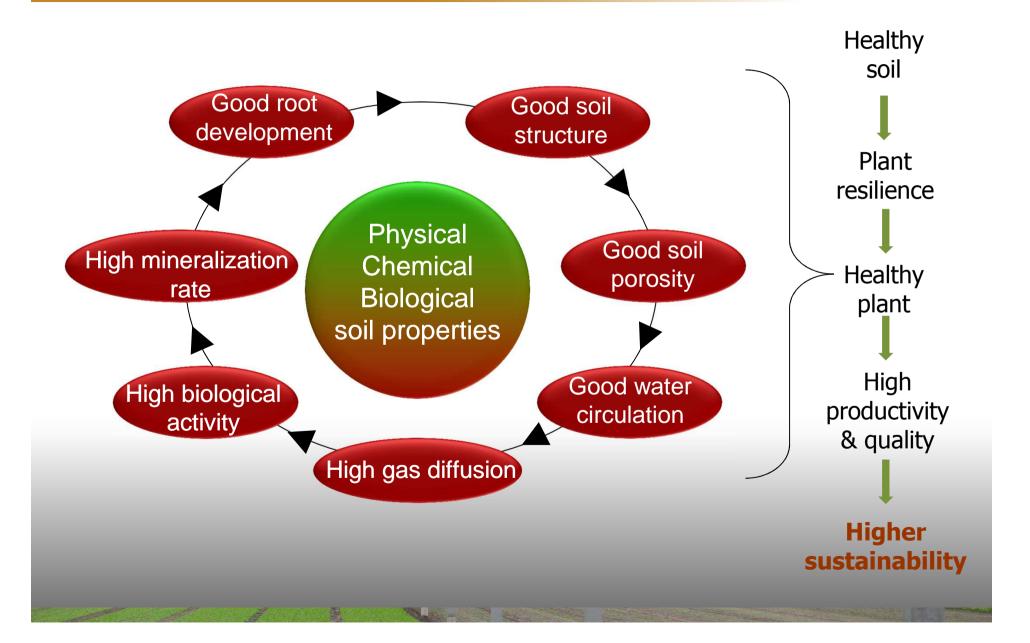
COST is supported by the EU Framework Programme Horizon 2020

Martine Dorais Agriculture and Agri-Food Canada Agassiz Research & Development Centre

Organic farming - principles

Production systems that sustain the health of soils, ecosystems, and people

No GMO No pesticides No synthetic fertilizers No growth hormones or antibiotics No sewage sludge


✓ 87 countries have adopted organic standards
 ✓ 283 organic certification bodies worldwide
 ✓ 172 countries

To regulate the use of the term "organic," protect consumers, and facilitate trading between countries Minimize system inputs & Environmental burdens

- Sustainable waste management
- Balanced nutrient
 approaches
- Soil and water conservation practices
- Mechanical and biological control of pests

Sustainable production system **Sustainability** Productivity Economic Energy Profitability Irrigation **Fertilization** Pest management *Crop production systems* Waste management Packaging/Processing Transport Quality Social Environment Safety Equity Traceability *Food security* « system development that meets the needs of the present without comprising the ability of future generations to meet their own needs »

Optimal soil characteristics

Challenge of organic horticulture farming

Soil nutrient release that will perfectly match plant nutrient uptake, without any leaching or emissions into the environment

✓ Balanced fertilizers/amendments

Plant nutrient uptake

High mineralization rate
 High nutrient plant demand

✓ Optimal fertilization → Limit salinization + GHG emission

✓ Optimal irrigation → No nutrient leaching (*e.g.* N, Ca, Mg)

Organic farming – productivity

Commercial level : Yield in organic growing systems is generally **20%** lower than in conventional crops

In the **scientific literature** yields of organic field fruits and vegetables reached on average **90%** of conventional yields, and yields of **organic high-tunnel and greenhouse crops** are slightly higher or **similar** of conventional yields

- Suitable cultivars and rootstocks adapted to organic
- Long-term beneficial effects on soil
- New biological control agents (e.g. predators, biopesticides)
- Appropriate know-how (fertilization, innovative growing systems)
- Demarcated bed-grown growing systems

Productivity of organic fruits and vegetables may perform as conventional crops

Organic farming – productivity

Examples of relative organic greenhouse vegetable yields of organic and conventional agricultural practices

Crop	Unit	Organic	Conventional	Org/Conv	Country
Pepper	g/fruit	176	200	0.88	Spain ¹
Tomato	Kg/m ²	45	65	0.69	NL ²
Tomato	g/plant/wk	373–376	313–442	0.85–1.19	NL ³
Tomato	g/plant/wk	690–948	707–1,168	0.81–1.00	Canada ⁴
Tomato	kg/m²	49–53	52–53	0.94–1.02	Canada ⁵
Tomato	g/plant	3.5–2.0	3.0–1.8	1.15–1.18	USA ⁶

Footprint of organic farming

Meta-analyses Life cycle assessment

Higher biodiversity

Water & soil conservation May reduce soil CO₂ emission Increase C sequestration

Per unit cultivated area

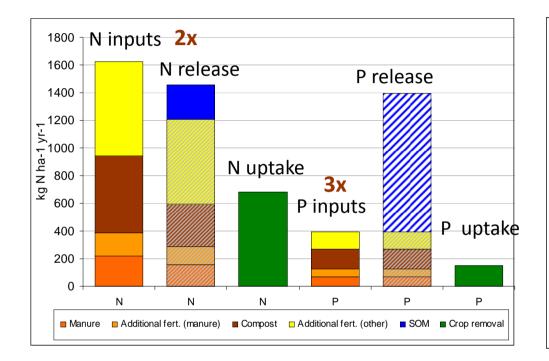
- Higher soil organic content
- Lower nutrient losses
 - N leaching
 - N₂O & NH₃ emission

Per product unit

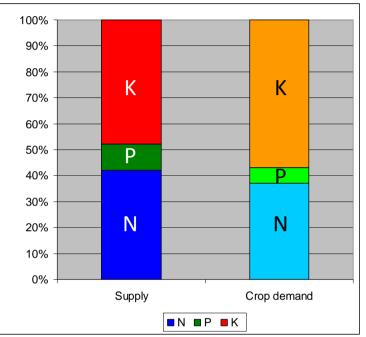
• Higher N losses

Energy analysis

Decision support systems


Lower land-use efficiency

- lower yield


Environmental disavantage

- Lower energy requirement (field)
- Higher energy requirement (greenhouse)
 - ✓ Prevent foliar disease
 - ✓ Control higher air humidity

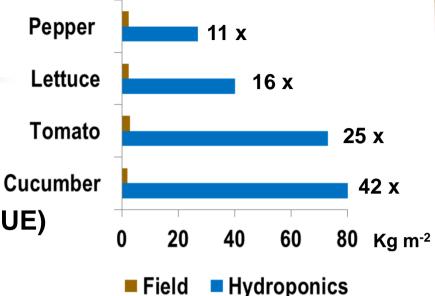
Soil fertility – Organic greenhouse fruit vegetables

Average yearly N and P inputs and uptake, in eight organic vegetable greenhouses (2002– 2009). Inputs are divided over total manure, compost and additional fertilizers, compared with the estimated available N and P by fertilizer mineralization and soil organic matter (SOM) and the soil buffer (for P the hatched bar). The uptake is the result of the monitored crop N and P removal.

Mutual ratios of the N P and K supplied in total by fertilizers and soil amendments and of the crop demand, based on the crop removal, at the eight monitored greenhouses.

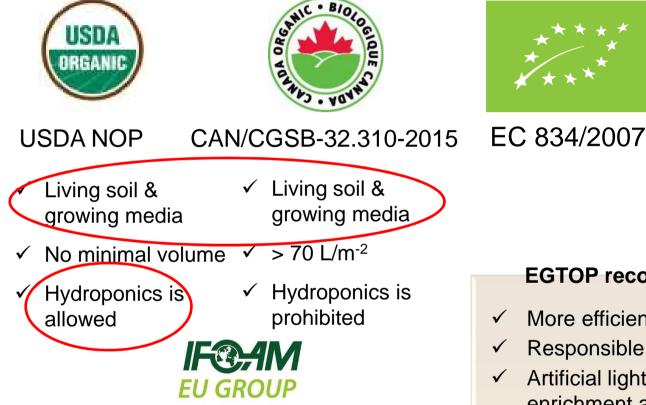
Soilless organic growing systems

Why?


- To reduce any risk related to soil-borne diseases
- To achieve high yield & high fruit quality
- To reduce nutrient run off into ground water
- To recycle crop effluent
- To achieve optimal nutrient crop management

Soilless hydroponics

⇒ Up to 108 900 ha (23%)


Sustainability improvement:

- Use 70 to 90% less water (>WUE)
- Limited nutrient run off
- Higher nutrient use efficiency
- Better control of root diseases
- No culture limitation on unproductive soils
 ⇒ salinized, contaminated, degraded or arid soils
- Substrate moisture content uniformity
- Higher yield & higher fruit and vegetable quality

Main organic greenhouse regulation

 \Rightarrow Soil fertility : based on crop rotation and green

⇒ Max of 50% of nutrients provided after planting

⇒ Max of 25% of fertilizers allowed in liquid form

 \Rightarrow Energy analysis if > 130 kWh/m² fossil fuels

 \Rightarrow CO₂ coming from by-product

manure – plan on soil fertility : NUE, soil health

Max supply of animal manure 170 kg N /ha \neq 1,250 kg N/ha

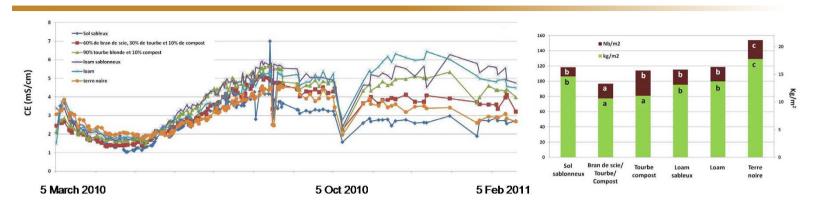
No EU regulation for:

- water use leaching
- energy use (country-specific)
- CO₂ & light (country-specific

EGTOP recommendations (2013)

- More efficient use of external inputs
- Responsible energy use
- Artificial lighting (max. 12h) and CO₂ enrichment are acceptable
- Nutrients from slow release fertilizers - \checkmark input/output balance
- \checkmark Sustainable water management
- Irrigation to flush surplus nutrients is not \checkmark acceptable
- Peat should not be use for soil conditioner

Organic growing system using raised bed containers and nutrient recycling


\Rightarrow 70-100 L soil per m ²	Yi	eld	Marketable fruits #1
Treatment	Fruit size (g)	Total (kg m ⁻²)	(kg m ⁻²)
Organic 1 th crop	140c	44.6b	38.3b (86%)
Organic 2 nd crop	158a	53.5a	45.2a (84%)
Conventional	147b	52.6a	47.2a (90%)
P value	0.001	0.003	0.009

Values within a column followed by the same letter are not significantly different (Tukey test $P \le 0.05$). Values are a mean of 3 replicates.

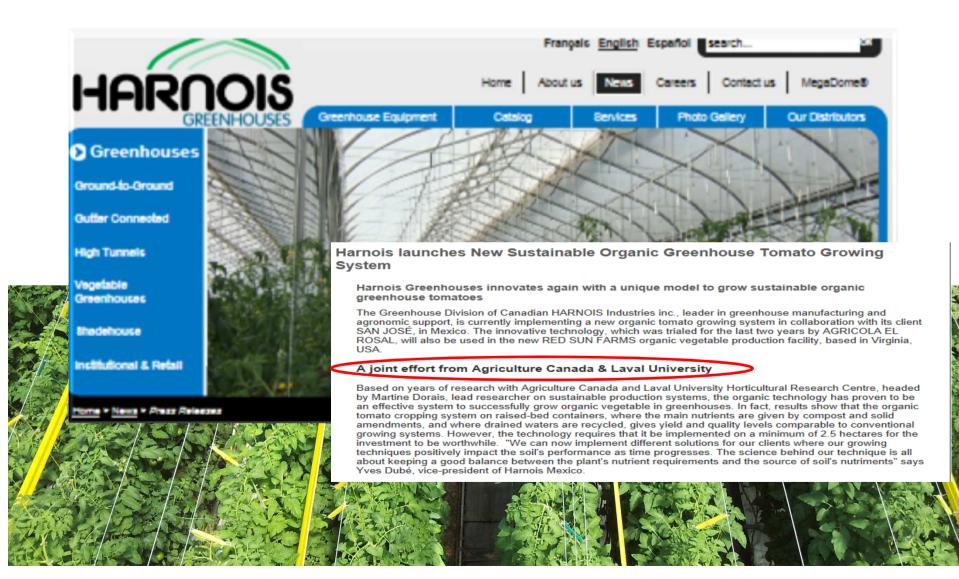
	% Dry matter	Lycopene (mg/kg)	b*	Titratable acid	Antioxidant capacity
Organic 1th year	4.8 a	42.7 a	18.0 b	0.41 ab	22 <u>9</u> a
Organic 2nd year	4.4 a	45.5 a	18.8 b	0.39 b 🖡	18.1 b ㅣ
Conventional	4.7 a	45.8 a	27.2 a	0.44 a	23.8 a
P value	0.074	0.366	0.002	0.006	0.002

Effluent recycling – build-up of salinity

Increase in anion concentration in the soil solution sampled using suction lysimeters during the production period.

	Ani	on accumulatio	on increase (x-	fold) ¹
	Cl	SO4 ⁻²	PO ₄	NO_3^-
Sandy soil	3.8±3.6	6.2±3.5	0.4±0.22	17.8±14.1
Peat, sawdust, compost	2.6±1.8	5.0±3.1	0.4±0.27	36.8±33.3
Peat, compost	3.5±0.8	5.5±1.7	0.2±0.04	14.2±6.7
Sandy loam	3.4±0.5	6.4±3.1	0.5±0.01	12.7±3.9
Loam	3.2±0.8	7.0±1.4	0.7±0.19	7.2±1.4
Muck soil	2.4±1.5	9.6±4.7	0.8±0.04	5.2±3.6
SO ₄ : 24 to 1157 mg L	-1 — F	eather meal		

⇒ Selection of organic amendments/fertilizers is really


Shrimp meal

important to limit the buildup of salinity

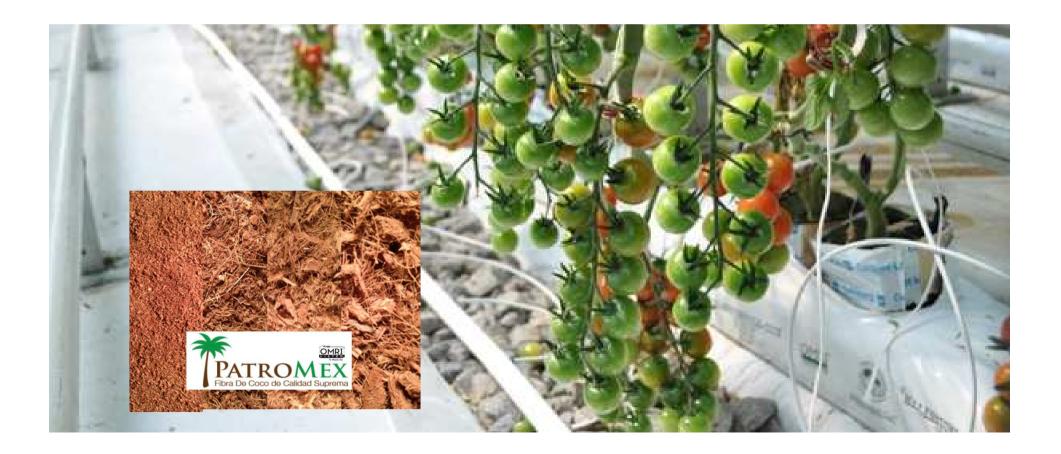
NO₃: 180 to 1385 mg L⁻¹

CI: 130 to 330 mg L⁻¹

Commercial soilless organic growing systems

Demarcated beds

Commercial greenhouse – soil to demarcated beds



High yield of high quality fruit

• Up to 1.6 kg/m²/wk TOV Up to 1.9 kg/m²/wk beef 15,000 joules/cm²/wk Photos: L. Martin, Agrisys

Other types of soilless organic growing systems

Other types of soilless organic growing systems

Factor Very Low Nedium Optimum Very High - Olsen 5 ppm 0 Medium Optimum Very High - Olsen 238 ppm 0.3 - 0.3 - Very Low Very High - Olsen 238 ppm 0.3 - 0.3 - 0 Medium Very High ext. 6.2 med/L 2.6 -	Tort	Postula	Sufficiency		SC	SOIL TEST RATINGS	GS		NO3-N
5 ppm 0 0 5 ppm 0.3 Excl (7) - Olsen 238 ppm 0.3 0 <	Ical	IIIICON	Factor	Very Low	Low	Medium	Optimum	Very High	N-DON
(P)-Olsen 238 ppm 0.3 0.3 () 4128 ppm 2.6	Available-N	5 ppm	0						
() 4128 ppm 2.6 sat ext. 6.2 meq/L () 247 ppm 0.1 () 247 ppm 0.1 t ext. 0.3 meq/L 1 ext. 0.3 meq/L () 363 ppm 0.6 (Mg) 363 ppm 0.6 (Mg) 363 ppm 0.6 sat ext. 0.4 meq/L () 0.8 ppm 0.6 sat ext. 0.4 meq/L () 3 ppm 0.9 () 3 ppm 0.9 () 1 ppm 0.1 () 1 ppm 0.1 () 0.12 ppm 0.1 () 0.12 ppm 0.1 () 0.1 0.1 () 0.1 0.1 () 0.1 0.1	Phosphorus (P) - Olsen	238 ppm	0.3						
satt ext. 6.2 meq/L) 247 ppm 0.1 t. ext. 0.3 meq/L 0.1 Mg) 363 ppm 0.6 Mg) 363 ppm 0.6 ext. 0.4 meq/L 1 0.8 ppm 0.8 1 • all ext. 0.8 1 (Mn) 0.8 1 (Mn) 0.8 1 (Mn) 0.9 1 (Mn) 0.9 1 (Mn) 0.9 1 (Mn) 0.1 0.4 (Mn) 0.2 1 (Mn) 0.2 1 (Mn) 0.3 1 (Mn) 0.4 1 (Mn) 0.4 1 (Mn) 0.4 1	Potassium (K)	4128 ppm	2.6						NH4-N
) 247 ppm 0.1 Excl t. ext. 0.3 meq/L 1.0 1.0 t. ext. 0.3 meq/L 1.0 1.0 (Mg) 363 ppm 0.6 1.0 . sat ext. 0.4 meq/L 1.0 1.0 . sat ext. 0.8 ppm 0.8 1.0 . sat ext. 0.8 ppm 0.8 1.0 (Mh) 3 ppm 0.9 1.0 ist ext. 0.14 1.0 1.0 (Mh) 3 ppm 0.2 1.0 ist ext. 0.12 ppm 0.1 1.0 um 0.1 0.1 1.0 1.0	Potassium - sat. ext.	6.2 meq/L							2 ppm
t ext. 0.3 meq/L 0.1 meq/L 0.2 meq/L December 2000 Mg) 363 ppm 0.6 0.6 0.6 satt ext. 0.4 meq/L 0.6 0.6 0.6 satt ext. 0.8 ppm 0.6 0.6 0.6 i 10.8 ppm 0.8 0.8 0.8 0.6 (Mn) 0.3 ppm 0.9 0.8 0.8 0.8 (Mn) 0.1 ppm 0.9 0.9 0.9 0.1 att ext. 0.12 ppm 0.14 0.1 0.1 0.1 ext. 0.3 meq/L 0.1 0.1 0.1 0.1 um 0.3 meq/L 0.1 0.1 0.1 0.1	Calcium (Ca)	247 ppm	0.1						
(Mg) 363 ppm 0.6 -satt ext. 0.4 meq/L 0.6 -satt ext. 0.4 meq/L 0.6 -satt ext. 0.8 ppm 0.8 0.8 ppm 0.8 0 10.8 ppm 0.8 0 10.8 ppm 0.8 0 10.8 ppm 0.8 0 10.8 ppm 0.8 0 10.9 ppm 0.9 0 (Mn) 3 ppm 0.4 (Mn) 0.3 ppm 0.4 (Mn) 0.2 0 att ext. 0.12 ppm 0.1 ott 0.3 meq/L 0.1 ott 0.3 meq/L 0.1	Calcium - sat. ext.	0.3 meq/L							Total
-sat. ext. 0.4 meq/L -sat. ext. 0.8 ppm 0.8 ppm 0.8 1 3 ppm (Mn) 3 ppm (Mn) 0.9 (Mn) 0.1 (Mn) 0.2 (Mn) 0.2 (Mn) 0.3 (Mn) 0.4 (Mn) 0.3 (Mn) 0.4 (Mn) 0.4	Magnesium (Mg)	363 ppm	0.6						Exchangeable Cations/TEC)
0.8 ppm 0.8 3 ppm 0.9 (Mn) 3 ppm 7 ppm 0.9 at. ext. 0.12 ppm ot.12 ppm 0.4 ext. 0.13 meq/L ot.12 ppm 0.1	Magnesium - sat. ext.	0.4 meq/L							
3 ppm 0.9 se (Mn) 3 ppm 0.4 se (Mn) 3 ppm 0.4 T ppm 0.4 Ppm - sat. ext. 0.12 ppm 0.2 - sat. ext. 0.12 ppm 0.4 at. ext. 0.3 meq/L 0.1 ninum 0.3 meq/L 0.1	Copper (Cu)	0.8 ppm	0.8						77 mea/ka
3 ppm 7 ppm 0.12 ppm 0.3 meq/L	Zinc (Zn)	3 ppm	0.9						Suball of
7 ppm 0.12 ppm 0.3 meq/L	Manganese (Mn)	3 ppm	0.4						
0.12 ppm 0.3 meq/L	Iron (Fe)	7 ppm	0.2						
0.3 meq/L	Boron (B) - sat. ext.	0.12 ppm	0.4						
Exch Aluminum	Sulfate - sat. ext.	0.3 meq/L	0.1						
	Exch Aluminum								

EXTRACTABLE NUTRIENTS

Cu, Zn, Mn and Fe were analyzed by DTPA extract.

PARTICLE SIZE ANALYSIS

				Wei	ght Percen	eight Percent of Sample Passing 2mm Screen	2mm Screen		
Half Sat	Organic Matter	Gravel Coarse 5-12	vel Fine 2-5	Very Coarse 1-2	Sand Coarse 0.5-1	Med. to Very Fine 0.05-0.5	Silt .00205	Clay 0002	USDA Soil Classification
574 %									

-	
6	
9	17)
~	

Soil & Plant Laboratory, Inc.

4741 E. Hunter Ave, Suite A. Anaheim, CA 92807 714-282-9777 (phone) 714-282-8575 (fax) www.soilandplantiaboratory.com

SOIL ANALYSIS

Send To :	Project :	Report No :	13-030-0006
Patromex	Agrococo	Cust No :	01298
29425 Crown Ridge		Date Printed :	02/11/2013
Laguna Niguel CA 92677		Date Received	01/30/2013
)		Page :	1 of 1
		Lab Number :	91637

Sample Id : PTM/M/00-Medium Grade

SATURATION EXTRACT - PLANT SUITABILITY

			ETT	Effect on Plant Growth	5	
Test	Result	Negligible	Sensitive Crops Restricted	Many Crops Restricted	Only Tolerant Crops Satisfactory	Few Crops Survive
Salinity (ECe)	1.3 dS/m					
Sodium Adsorption Ratio (SAR) *	5.37					
Boron (B)	0.12 ppm					
Sodium (Na)	3.3 meq/L					
Chloride (CI)	-					
Carbonate (CO3)						
Bicarbonate (HCO3)						
Fluoride (F)						

Slightly Neutral Slightly Moderately Strongly Acidic Neutral Alkaline Alkaline Alkaline	Neutral Slightly Moderately Alkaline Alkaline	erately Slightly Neutral Slightly Moderately sidic Acidic Acidic Alkaline Alkaline	/ Moderately Slightly Neutral Slightly Moderately Acidic Acidic Acidic Acidic
Neutral	erately Slightly Neutral	/ Moderately Slightly Neutral	Strongly Moderately Slightly Neutral
	cidic Acidic	Acidic Acidic	Acidic Acidic Acidic
	erately Slightly h	/ Moderately Slightly	Strongly Moderately Slightly
	cidic Acidic h	Acidic Acidic	Acidic Acidic Acidic I
Slightly	erately	/ Moderately Acidic	Strongly Moderately
Acidic	cidic		Acidic Acidic
	Moderately Acidic	ž	Strongly Mo Acidic

Biochar soil amendment to improve soil of

"Charcoal from the thermal decomposition (pyrolysis) of C-rich biomass materials"

- Promote microbial activity
- High capacity of nutrient retention
- Reduce the GHG

- 1. Sandy Soil
- 2. Sandy Loam
- 3. Loam
- 4. Muck Soil
- 5. Peat & Compost & Clay (9:1:0.3)
- 6. Sawdust & Peat & Compost & Clay (6:3:1:0.3)

- cv Trust grafted on Beaufort
- 0.62 m³ container (2.4 plants/m²)
- With or without biochar (10% v/v)
- Irrigation : φm -20 to -40 kPa

Biochar effects on soil quality

Limiting Factor	Parameter	Problem	Role of biochar
Physical	Structure	Compaction	 Decreases bulk density
	Erosion	Erodibility	Higher infiltration capacity
	Humidity	Soil drying	 Increases soil water retention

Summary – after 3 years of biochar amendment (10%, 10% and 20%)

Biochar had little or **no significant effect** on :

- Plant growth & total yield
- Root mycorrhization
- Leaf nutrient content

Significant effect of biochar on :

- Higher soil biological activity (FDA)
- Higher soil nutrient content (except Ca and Zn)
- Reduction of CO₂ flux (1st and 2nd years)
- Reduction of 30 to 50% N leaching
- Reduction of fruit cuticle cracking (2nd year)
- Reduction of nb earthworms per m²

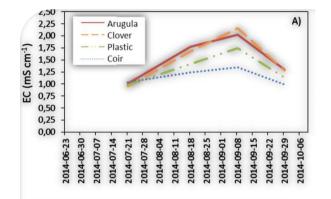
Three year experiment – biochar amendment

Adding 10% to 20% (v/v) biochar to soils of organic greenhouse tomato **increased soil biological activity** and **nitrogen retention** resulting in **lower nitrogen leaching and** improved crop system sustainability

Different types of soil

No significant effect on productivity fruit cracking

Organic cucumber grown in demarcated beds


2014-2015 trials Les Serres Lefort & Laval University

 Living mulches would increase soil activity and plant nutrient availability;

2. Weekly application of amendments would better match plant nutrient requirement compared to bi-monthly, three week-interval and monthly applications.

Effects of mulch treatments

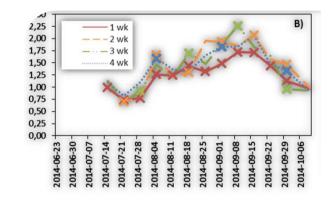
No effect:

- crop productivity
- fruit quality

Had an effect on:

• soil EC

Coir < leaving mulches


microbial activity

plastic > clover living mulch

				Mulch tr	reatments			
Vari	ables (n=8)		Plastic	Coir	Arugula	Clover	SEM	P value
FDA	(µg fluorescein	n per g soil h ⁻¹)	166.9ª	154.9 ^{ab}	160.0 ^{ab}	151.0 ^b	6.6	0.0520
CO_2	efflux (µmol m	$({}^{2} s^{-1})$	11.7	11.2	8.2	7.3	1.4	0.1408
Weel	kly apex growth	n (length, cm)	65.0 ^{ab}	65.8 ^{ab}	67.1 ^b	64.8ª	2.0	0.0347
Stem	diameter (cm)		0.75	0.76	0.75	0.75	0.01	0.8942
Leng	th of mature lea	af (cm)	24.5	24.8	25.1	24.9	0.6	0.2163
Fruit	size (g)		402	400	397	396	7	0.9111
Yield	1	(kg plant ⁻¹)	5.9	6.1	5.8	5.7	0.2	0.5629
		(fruits plant ⁻¹)	15.0	15.5	15.0	14.6	0.3	0.4329
Mark	cetable fruits (N	Ib fruits m ⁻²)	35.1	36.3	34.8	34.0	0.3	0.3617
Fruit	quality	Dry matter (%)	3.6	3.5	3.6	3.6		NS
		Soluble sugars (Brix)	2.9	2.9	2.9	2.9		NS
	Electrical	conductivity (mS cm ⁻¹)	4.8	4.7	4.7	4.7		NS
	Titratab	le acids (% citric acid)	0.12	0.12	0.12	0.12		NS

Effects of fertilization frequency treatments

Increasing the number of fertilization events did not have any effect on :

- ✓ Soil biological activity
- ✓ Plant growth
- ✓ Productivity
- ✓ Fruit quality

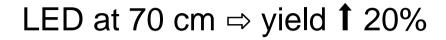
		Fertil	Fertilization frequency treatments			
K	Variables (n=8)	1 week	2 weeks	3 weeks	4 week.	
P	FDA (µg fluorescein per g soil h ⁻¹)	160.4	147.2	139.2	154.7	
H	Root mycorrhization (%)	8.9	10.1	19.5	8.6	
	$CO_2 \text{ efflux } (\mu \text{mol } \text{m}^{-2} \text{ s}^{-1})$	11.5	10.6	14.3	13.0	
	Apex growth (length, cm)	60.1	60.5	60.3	57.6	
	Stem diameter (cm)	0.73	0.74	0.74	0.73	
	Length of mature leaf (cm)	25.1	24.8	24.3	24.3	
	Fruit size (g)	396	392	395	388	
	Yield (kg plant ⁻¹)	5.5	5.4	5.4	5.3	
	(fruits plant ⁻¹)	14.3	14.0	13.9	13.8	
	Marketable fruits (Nb fruits m ⁻²)	33.4	32.6	32.7	32.0	
	Fruit quality Dry matter (%)	4.0	4.0	4.0	3.9	
	Soluble sugars (Brix)	3.0	3.0	3.0	3.0	
4	Electrical conductivity (mS cm ⁻¹)	4.5	4.4	4.5	4.4	
	Titratable acids (% citric acid)	0.11	0.11	0.11	0.11	

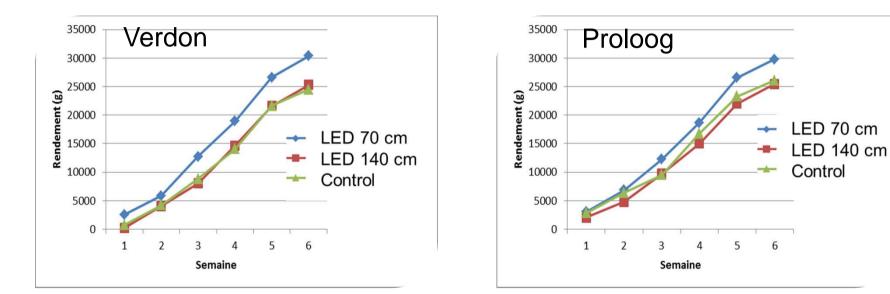
Soilles organic cucumber under SL

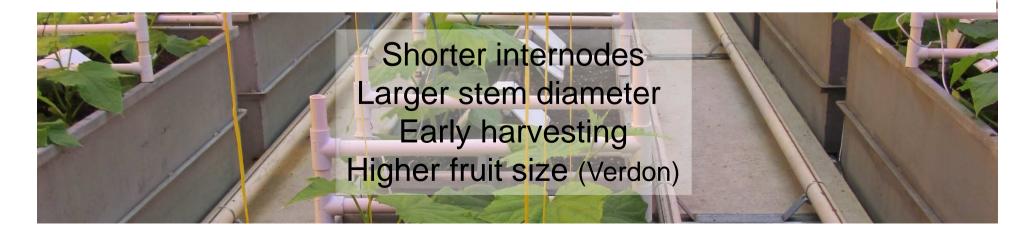
Treatments:

Control with HPS
 LED at 70 cm + HPS
 LED at 140 cm + HPS

120 μmol/m²/s HPS 80 μmol/m²/s LED (6h to 22h - 16 h)

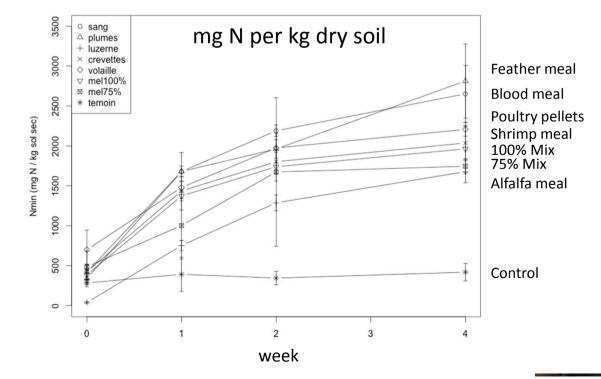



Verdon Proloog

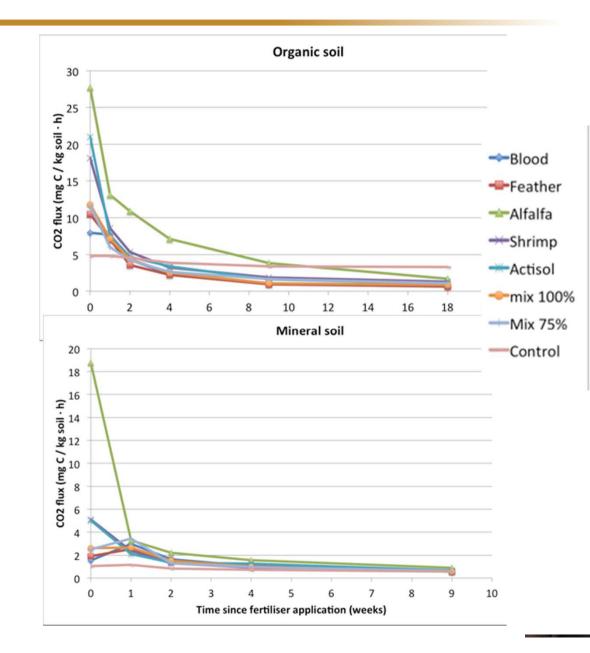

⇒ Peat based substrate
 ⇒ 1.3 plants per m²
 ⇒ Plantation - October 23

Actisol (5-3-2)Feather meal (13-0-0)Blood meal (12-0-0)Shrimp meal SulpoMag KSO₄ + CaCl₂

Soilles organic cucumber under SL



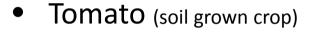
One year soil incubation – mineralization rate

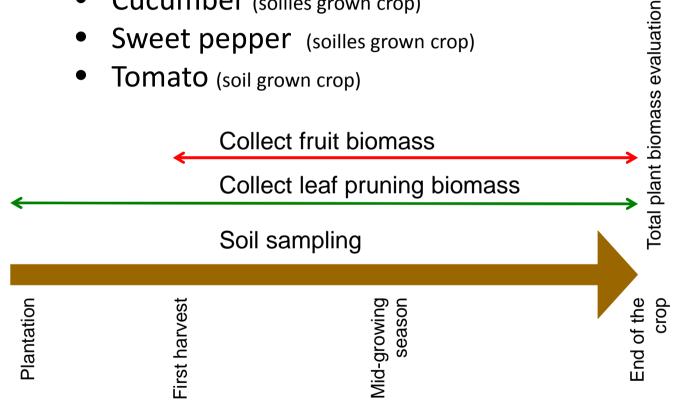

- 1. Blood meal
- 2. Feather meal
- 3. Alfalfa meal
- 4. Shrimp meal
- 5. Poultry pellet
- 6. Mix 100%
- 7. Mix 75%
- 8. Control

- 2:1 water extraction (pH, EC, soluble ions)
- Extraction KCl 2M (ions)
- CaCl₂ 5 mM (total N, dissolved organic)
- K₂SO₄ 0.5M (before and after chloroform fumigation microbial N and C)
- Gaz flux (CO₂, CH₄ and N₂O)
- Mehlich-3 (ions) and total N

°C, 90% RH ganic & mineral soils 1, 2, 4 weeks 4, 6**, <u>9, 12 months</u>** Model development NLOS Bittman et al. 2001

One year soil incubation – CO₂ emission


°C*,* 90% RH ganic & mineral soils 1, 2, 4 weeks 4, 6**, <u>9, 12 months</u>**


12-500

Mineralization rate model

\Rightarrow Validation at the commercial site

- Cucumber (soilles grown crop)
- Sweet pepper (soilles grown crop)

- Comparison with the values predicted by the model
- Model adjustment

Biostimulants

humic substances
 hormone containing products
 amino acid containing products
 PGPR

"any substance or microorganism applied to plants with the aim to enhance **nutrition efficiency, abiotic stress** tolerance and/or **crop quality** traits, regardless of its nutrients content " (Du Jardin 2015)

- Humic and fulvic acids
- Seaweed extracts
- Chitosan
- Protein hydrolysates
- Inorganic compounds (si)
- Beneficial fungi (mycorrhiza)
- Beneficial bacteria (PGPRs)

Commercial products :

Mixtures

improves plant performance by activating molecular, biochemical and physiological responses

"any substance/microorganism beneficial to plants with-out being nutrients,

pesticides, or soil improvers"

Humic substances – Quality attributes

 \Rightarrow interplay between the organic matter, microbes and plant roots

- Increased uptake of macro- Stress protection by • and micronutrients promoting the production of phenolic compounds
 - \Rightarrow **1** essential oil Basil
 - \Rightarrow **1** fruit firmness, S.S. • Strawberry
 - ⇒ **1** fruit acidity, S.S., vitamin C Tomato
 - \Rightarrow **1** fruit size, S.S. Sweet pepper
 - Cucumber
 - Melon

- \Rightarrow **f** fruit S.S.
 - \Rightarrow **1** fruit size, firmness, S.S.

Seaweed extracts - Quality attributes

⇒ increase the nutritional value ⇒ Fe, Zn, Cu, Mg, K, S

Plant	⇒ hormonal effects
Growing media	⇒ + effects on CEC, microflora (PGPB)

- Spinach ⇒ 1 leaf size , post-harvest, Fe
 1 flavonoids, phenolic content, antioxidant
- Lettuce ⇒ **1** Ca, K, Mg
- Strawberry ⇒ **1** fruit size, total anthocyanin
- Tomato ⇒ Î fruit size, Î fruit acidity, S.S., vitamin C
 Î Fe, Zn, Mn, Ca, K, P
- Sweet pepper ⇒ **1** fruit size, vitamin C

Chitin & Chitosan - Quality attributes

⇒ involved in defense gene activation

- Plant protection against fungal pathogens
- Tolerance to abiotic stress
- Quality traits
- Spinach ⇒**1** leaf size
- Basil ⇒↑ phenol contents, antioxidant activity
- Oregano ⇒↑ polyphenols
- Tomato ⇒ **1** fruit size, phenolic compounds
- Sweet pepper ⇒ **1** fruit self-life

Biostimulants – yield & quality

Biostimulants N	lechanism	Species	Quality attributes
Protein hydrolysates	Modulation of N uptake Plant hormone balance hormone-like activities Tolerance to abiotic stress	Sweet pepper	1 fruit size, capsaicin, chlorogenic acid, p- hydroxybenzoicacid , p- coumaric acid
•	Soil microbial activity	Lettuce Leafy vegetables	Î P, antioxidant activity ↓NO ₃
Si •	Tolerance to abiotic stress	Tomato Cucumber	1 β-carotene, lycopene dull exterior appearance (Si trichomes)
Phosphite •	Improve nutrient uptake Tolerance to abiotic stress	Tomato Strawberry	f fruit S.S.
•	Quality traits	Rasberry	f fruit firmness, dark red color
Beneficial fungi	Improve nutrient uptake	Tomato	1 sugars, P, Zn, lycopene
 Trichoderma & Mycorrhiza 	Tolerance to biotic and abiotic stresses	Lettuce	1 anthocyanins, carotenoids, phenolics
		Strawberry Basil	<pre>1 anthocyanins 1 antioxidant compounds</pre>

Biostimulants – cucumber on going project

"any substance or microorganism applied to plants with the aim to enhance **nutrition efficiency, abiotic stress** tolerance and/or **crop quality** traits, regardless of its nutrients content " (Du Jardin 2015)

Soil application

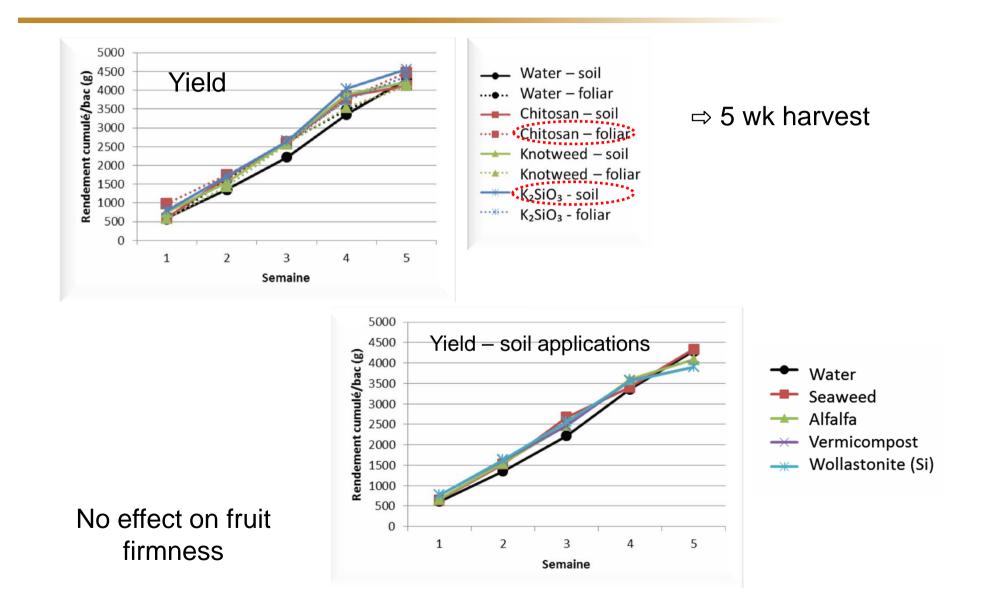
- 1. Control (water)
- 2. Seaweed Ascophyllum nodosum extract (ASCO-SSP, OrganicOcean)
- 3. Chitosan (Soft Guard, Leily, Canada Oceanic)
- 4. Alfalfa extract (Triacontanol, Nutri-stim, Agriculture Solutions)
- 5. Vermicompost (Turitek Croissance, Ferme Eugénia)
- 6. Knotweed extract (Regalia Maxx, Marrone Bio Innovation)
- 7. Silicate of K (AgSil25, 20.8% SiO₂) Control Si
- 8. Wollastonite CaSiO₃ (2% Si plant available)

Foliar application

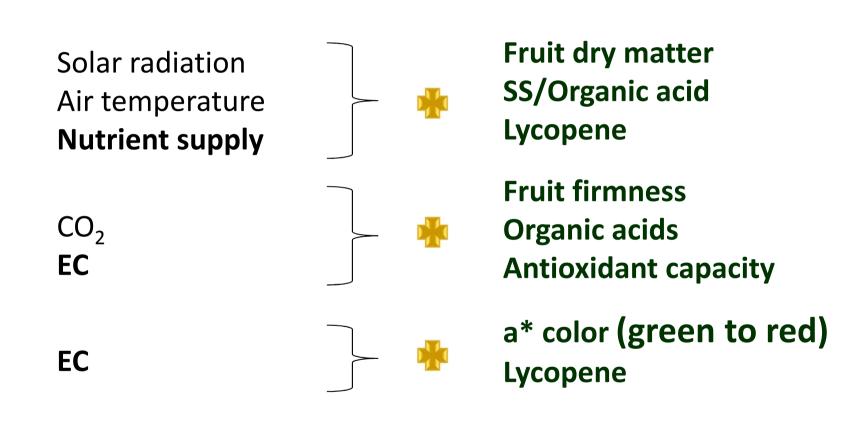
- 1. Control (eau)
- 2. Chitosan (Soft Guard, Leily, Canada Oceanic)
- 3. Knotweed extract (Regalia Maxx, Marrone Bio Innovation)
- 4. Silicate of K (AgSil25, 20.8% SiO₂) Control Si

cv Proloog

- OM1, Les tourbières Berger
- Application every 1-2 wk
- October 23 to December 18
- First harvest November 16
- Two plants per unit


Yield Fruit quality

Biostimulants – cucumber on going project


Treatments	Appli	Height (m)	Growth (cm)	Stem diam (mm)	Leaf length (cm)	Internode nb	SPAD (Chl)
Control	S	3.86	61.6	8.0	24.7	5.9	37
	F	3.90	62.6	7.9	24.9	6.2	37
Seaweed	S	3.84	61.4	8.2	24.9	5.9	38
Chitosan	S	3.89	62.2	8.0	24.4	6.2	37
	F	3.99	64.1	8.0	25.1	6.1	38
Alfalfa	S	3.84	61.2	8.0	24.2	6.2	37
Vermicompost	S	3.87	62.1	8.0	24.3	6.0	38
Knotweed	S	3.90	62.3	8.0	25.1	6.0	36
	F	3.96	64.2	8.0	24.8	6.1	38
K₂SiO₃	S	3.87	61.2	7.9	24.6	6.0	37
	F	3.92	62.4	7.9	25.1	5.9	37
Wollastonite	S	3.91	62.2	8.2	24.9	5.9	38

⇒ Plantation October 23 - data until December 18

Biostimulants – cucumber on going project

Most important factors affecting tomato fruit quality

Integrated farming – sustainable production systems

Greenhouse Production Systems

Nutrient need

Tomato nutrient uptake per day

Ν	114 mg plant ⁻¹
Ρ	25 mg plant ⁻¹
K	252 mg plant ⁻¹

- Ca 91 mg plant⁻¹
- Mg 17 mg plant⁻¹

Recirculating Aquaculture Systems

Nutrient release

Fish effluent nutrient content

N	135-145 mg L ⁻¹
Ρ	35-106 mg L ⁻¹
K	17-31 mg L ⁻¹
Ca	193-311 mg L ⁻¹
Mg	33-44 mg L ⁻¹

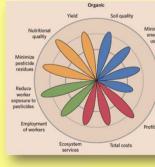
Integrated farming – sustainable production systems

- ✓ Lower NO₃: NH₄ ratios had no negative effect on growth of organically-grown tomato
- ✓ Stimulating effect of fish effluent on :
 - plant height
 - leaf area
 - root dry biomass
- \checkmark Higher soil microbial activity
- ✓ Fish effluent nutrients fulfilled plant macronutrient requirement, except for K
- Suppressiveness effect against *P. ultimum* and *F. oxysporum*

Concluding remarks

- Organic soilless growing systems fulfill North American organic certification
- Respect the organic principles
 soil feed the plants - active soil - sustainable
- Yield similar to conventional systems
- High quality products
- Reduce risks for growers
- Lower environmental footprint
- No conversion waiting period
 - ↑ Profitability

Concluding remarks


Organic soilless growing systems contribute significantly to the expansion of OGH

to fulfill increasing demand by consumers for organic fruits &

vegetables

⇒ Global benefits

(Reganold and Wachter, 2016)

Production Environment Economic Wellbeing

Thank you very much

Agriculture and Agri-Food Canada

Agriculture et Agroalimentaire Canada

.

Martine.Dorais@agr.gc.ca

Gestion de l'eau – recyclage des effluents

Charge nutritive des effluents de serre - tomate

Tomate	NH ₄	NO ₃	К	Р	Са	Mg	SO ₄	Na	Cl
biologique	mg L ⁻¹	mg L⁻¹	mg L ⁻¹						
Sol									
10 cm	5	46	45	0.9	48	25	-	20	-
30 cm	0.7	18	36	0.6	51	25	-	22	-
50 cm	0.0	15	24	<0.5	47	21	-	18	-
Bacs									
Site 1		9	-	2.4	-	-	-	-	-
Site 2	12	590	198	21	352	91	747	144	153
Site 3	nd	13	488	26	268	81	945	81	293
Site 4	. nd	400	111	26	90	31	743	375	4