

IMPACT OF ORGANIC PRACTICES ON GROWTH, YIELD, BIOLOGICAL NITROGEN FIXATION AND GREENHOUSE GAS EMISSIONS BY THREE LOCAL PEA LANDRACES

DIMITRIOS SAVVAS, VALENTINI PAPPA, DIONISIOS YFANTOPOULOS,
ANESTIS KARKANIS*, ILIAS TRAVLOS, PENELOPE BEBELI, GEORGIA
NTATSI, DIMITRIOS BILALIS

AGRICULTURAL UNIVERSITY OF ATHENS
*UNIVERSITY OF THESSALY

3rd INTERNATIONAL SYMPOSIUM ON
ORGANIC GREENHOUSE HORTICULTURE
11 - 14 APRIL 2016 / IZMIR, TURKEY

Legume Production

Legume production for consumption either as fresh pod or grains for food and feed is worldwide estimated

180 million ha

or 12% - 15% of the cultivated area

27% of the world crop production

BioGreenhouse

cost
EUROPEAN COOPERATION
IN SCIENCE AND TECHNOLOGY

**3rd INTERNATIONAL SYMPOSIUM ON
ORGANIC GREENHOUSE HORTICULTURE**
11 - 14 APRIL 2016 / IZMIR, TURKEY

Global Legume Production

BioGreenhouse

3rd INTERNATIONAL SYMPOSIUM ON
ORGANIC GREENHOUSE HORTICULTURE

11 - 14 APRIL 2016 / IZMIR, TURKEY

Main grain legumes

soybean

peas

common bean

faba bean

cowpea

spring vetch

lupine

peanuts

lentils

Benefits arising from the use of grain legumes in crop rotations systems

(a) Agronomic benefits

Improved soil structure

Pest and disease break

P mobilization

N provision

(b) Cost reduction potential

Supports reduced tillage

Biocide savings

Fertilizer savings

(c) Increased revenue

Increased yield

Increased quality

Increased gross margins

(d) Economic balance

Plant Genetic Resources for Food and Agriculture

- » Crop wild relatives
- » Landraces
- » Primitive cultivars
- » Ecotypes
- » Modern cultivars
- » Breeding lines
- » Special genetic stocks

They are heterogeneous populations
They present local adaptability
They have been developed through nature and farmer's selection
They present homoeostasis and thus resistance to biotic and abiotic stresses
They have the tendency to keep a dynamic balance
They are an evolving material

Landraces

(Stehfest and Bouwman, 2006)

3rd INTERNATIONAL SYMPOSIUM ON
ORGANIC GREENHOUSE HORTICULTURE
11 - 14 APRIL 2016 / IZMIR, TURKEY

Pea (*Pisum sativum*) Landraces

Faba Bean (*Vicia faba*) Landraces from Mani

Santorini Fava (PDO) (*Lathyrus clymenum*)

Protected Geographical Indication (PGI) for Beans

“Englowvi” Lentils (*Lens culinaris*)

3rd INTERNATIONAL SYMPOSIUM ON
ORGANIC GREENHOUSE HORTICULTURE
11 - 14 APRIL 2016 / IZMIR, TURKEY

Collected Greek Crop Landraces Populations

Lefkada
(101)

Kefallinia
(64)

Thessaloniki

Lemnos
(146)

Lesvos
(312)

Athens

Skyros
(50)

Andros
(310)

N.Karpathos
(45)

Messinia
(260) Kithira
(182)

Characterizing Pea Landraces

Characterizing faba bean and cowpea landraces

Direct environmental impacts of biological N₂ fixation

Biological N₂-fixation by rhizobia takes place at

- ambient T
- ambient atmospheric pressure

Industrial N fixation (Haber process):

- 400 - 600 °C
- 200 At

Benefits of biological N₂-fixation:

- Strong reduction of energy input
- Strong reduction of CO₂ emissions

ISHS

FAO

BioGreenhouse

COST

EUROPEAN COOPERATION
IN SCIENCE AND TECHNOLOGY

3rd INTERNATIONAL SYMPOSIUM ON
ORGANIC GREENHOUSE HORTICULTURE
11 - 14 APRIL 2016 / IZMIR, TURKEY

Common bean grown on pumice and treated with different N levels in the supplied nutrient solution

NS Treatment	$\delta^{15}\text{N}$ (‰)	Ndfa (%)	Total plant N content (kg ha ⁻¹)	Biologically-fixed N (kg ha ⁻¹)
Full N, -Rt	0.09 - 0.93	-4.8 c	212.2 a	-7.9 b
Full N, +Rt	0.23 – 0.85	-2.6 c	188.4 a	-6.2 b
1/3 of full-N, +Rt	(-1.15) - (-0.51)	58.1 b	93.0 b	54.3 a
Zero N, +Rt	(-1.93) - (-1.39)	100.0 a	48.7 c	49.2 a

Restriction in N supply (1/3 of full N) stimulates biological N₂-fixation in bean crops grown on inert media, when the plants are inoculated with *R. tropici*.

$\delta^{15}\text{N}$: Differences between the abundance of ¹⁵N in plant and atmospheric N

Ndfa: proportion of plant N derived from atmospheric N₂-fixation

Rt: inoculation with *Rhizobium tropici*, strain CIAT 899

Kontopoulou and Savvas, unpublished

Common bean crop (*Phaseolus vulgaris* L.) grown hydroponically on pumice and treated with different N levels in the supplied nutrient solution

Similar shoot N levels in plants treated with full or restricted (1/3 of the full) N supply and inoculated with Rt

BNF was able to fully cover the plant nitrogen requirements

CIAT899: inoculation with *Rhizobium tropici*, strain CIAT 899

BioGreenhouse

COST
EUROPEAN COOPERATION
IN SCIENCE AND TECHNOLOGY

3rd INTERNATIONAL SYMPOSIUM ON
ORGANIC GREENHOUSE HORTICULTURE
11 - 14 APRIL 2016 / IZMIR, TURKEY

Direct environmental impacts of biological N₂ fixation

Legumes in crop rotations substitute for inorganic N fertilizers in the following crops and improve soil fertility

The reduced use of chemical nitrogen fertilizers restricts the emissions of nitrous oxide (N₂O), which contributes to the greenhouse effect

(Stehfest and Bouwman, 2006)

BioGreenhouse

COST
EUROPEAN COOPERATION
IN SCIENCE AND TECHNOLOGY

3rd INTERNATIONAL SYMPOSIUM ON
ORGANIC GREENHOUSE HORTICULTURE
11 - 14 APRIL 2016 / IZMIR, TURKEY

“The Greenhouse effect”

Naturally occurring GHGs normally trap some of the sun's heat, keeping the planet from freezing

Human activities, e.g. burning of fossil fuels, are increasing GHG levels, leading to an enhanced greenhouse effect

BioGreenhouse

3rd INTERNATIONAL SYMPOSIUM ON
ORGANIC GREENHOUSE HORTICULTURE

11 - 14 APRIL 2016 / IZMIR, TURKEY

Impact of climate change

- Increase of average annual T

- Sea lever rise
- (Melting of Polar Ice)

- Frequent storms and floods

Measurements

Reduction of greenhouse gas emissions

3rd INTERNATIONAL SYMPOSIUM ON
ORGANIC GREENHOUSE HORTICULTURE
11 - 14 APRIL 2016 / IZMIR, TURKEY

Greenhouse Gases

CO_2

- **Natural sources:** Plant and Animal breath, decay of organic matter, volcano
- **Human Activity:** Fossil fuel use in transportation, building heating and cooling and the manufacture of cement and other goods

CH_4

- **Natural sources:** Wetlands, oceans
- **Human Activity:** agriculture, livestock, natural gas distribution and landfills.

N_2O

- **Natural sources:** Oceans, virgin forests, soil bacteria
- **Human Activity:** N fertilizers, fossil fuel combustion, industrial production using N (wastewater)

BioGreenhouse

COST
EUROPEAN COOPERATION
IN SCIENCE AND TECHNOLOGY

3rd INTERNATIONAL SYMPOSIUM ON
ORGANIC GREENHOUSE HORTICULTURE
11 - 14 APRIL 2016 / IZMIR, TURKEY

Comparative impact of CO₂, CH₄ & N₂O to the greenhouse effect

GHG	GWP (100 yrs)	GHG concentration in the air per year (ppm)				
		1800	1900	1950	1995	2008
CO ₂	1	280	297	311	361	385
CH ₄	21	0.80	0.87	1.15	1.73	1.80
N ₂ O	298	0.28	0.28	0.29	0.31	0.32

Equal amounts of emissions of GHGs have different contribution to the greenhouse effect

* GWP = Global Warming Potential

3rd INTERNATIONAL SYMPOSIUM ON
ORGANIC GREENHOUSE HORTICULTURE
Source : IPCC
11 - 14 APRIL 2016 / IZMIR, TURKEY

World GHG Emissions Flow Chart

<http://www.legumefutures.de/>

Legume-supported cropping systems for Europe

The Legume Futures Book

Welcome 8 April 2016

The Legume Futures Book: The preparation of "Legumes in Cropping Systems" from the Legume Futures consortium is now in its final stage and our publisher CABI is commencing marketing.

The aim of this book is to bring together a range of overview articles that support understanding of the role and potential of legumes in European cropping systems. We have taken an inclusive approach. The book is based on articles volunteered by the members of the Legume Futures consortium and from several guest authors. Each chapter is self-contained but the book as a whole has been coordinated by the editors to support a continuum between chapters and to help make it be more than the sum of its parts. More than sixty authors have contributed to 15 chapters.

The main audience is the general academic sector, agricultural professionals, those advising policy-makers, students, teachers, professional intermediaries between agricultural research and practice. The book is not aimed at instructing farm practice but we expect that the agricultural community is also an audience. Most importantly, the aim of each chapter is to empower the reader with understanding by providing background knowledge that supports independent decision-making. Chapters synthesise and explain issues around the development of these cropping systems. Preparations included external peer review of each chapter and an intensive editing process to bring coherence to the book. This is now being completed and the book will be published later this year to coincide with the United Nations International Year of Pulses.

The book will be published by CABI. CABI (Centre for Agriculture and Biosciences International) is an international not-for-profit organization that improves people's lives worldwide by providing information and applying scientific expertise to solve problems in agriculture and the environment. The editors see CABI's public-good business model as important for the aims of the book which is to support wider understanding of the potential of legume crops and contribute to agricultural development for the benefit of all.

Legumes in Cropping Systems

<http://www.eurolegume.com>

EUROLEGUME

EUROLEGUME (Enhancing of legumes growing in Europe through sustainable cropping for protein supply for food and feed) is an international research project funded by the 7th Research Framework Programme of the European Union.

In agreement with the tight relation between genotype and environment, root system architecture (RSA) and development has received an increased amount of attention due to advances in phenotyping capabilities. However, low focus on belowground characteristics of leguminous plants in plant breeding and limited number of high-yielding cultivars with good resistance to abiotic and biotic stresses has been obtained. Currently, broad diversity of Rhizobia and arbuscular mycorrhizal fungi is referred, although there is a lack of genotypic evaluation as well as of efficiency of particular strains in biological nitrogen fixation in diverse agro-ecological conditions. This situation has allowed to develop a research project aimed to deliver an updated biochemical, nutritional and morphological description of valuable genotypes, as well as biological methods to enhance the nutritive value of the residual biomass and the development of new feed and food products. New formulations for microbial inoculants, nitrogen availability to crops and elaborated growing technologies for sustainable use of legumes will be also assessed.

The relevance of the present venture is based on the role of legumes in the human diet and nutrition of animals and farming systems, which is increasingly important. Nowadays, a significant number of accessions of local pea, faba bean and cowpea germplasm are available across the Europe, even though the collections are not fully evaluated in terms of geno- and phenotyping as well as concerning their nutritional value. National traditions and climate conditions are influencing legume crop consumption and cultivation and there are available local genotypes not collected, evaluated and included in breeding programmes.

PARTNERS

Can organic cultivation of legumes further reduce greenhouse gas emissions?

BioGreenhouse

COST
EUROPEAN COOPERATION
IN SCIENCE AND TECHNOLOGY

3rd INTERNATIONAL SYMPOSIUM ON
ORGANIC GREENHOUSE HORTICULTURE
11 - 14 APRIL 2016 / IZMIR, TURKEY

Greenhouse gas emissions per cultivated area unit in a field crop of common bean

Maximizing yield
within organic
systems to benefit
from the reduced
 N_2O emissions

O: Organic	LS: Low salinity
C: Conventional	HS: high salinity

Kontopoulou et al, 2015. *Scientia Horticulturae* 183, 48-57

Impact of the use of local legume varieties in crop rotation with vegetables on greenhouse gas emissions

Measurements

- 1. Yield**
- 2. Biological N₂ Fixation (Natural abundance method ¹⁵N)**
- 3. Molecular characterization of Indigenous Rhizobium strains**
- 4. Variations in soil nitrogen over a 3-years rotation experiment**
- 5. N₂O, CO₂ and CH₄ emissions over a 3-year rotation experiment**

Pictures from EUROLEGUME experiments

Pictures from EUROLEGUME experiments

Determination of soil emissions of N_2O , CO_2 and CH_4 using static chambers by Gas Chromatography

Cumulative N_2O emissions and production of fresh and dry seeds from local varieties of peas in organic and conventional farming systems

Intensities: g $\text{N}_2\text{O-N}$ per ton of fresh yield

Calculated BNF for pea landraces in organic (solid fill) and conventional (line fill) system

Nodules of Greek cowpea varieties with rhizobia isolates

Nodules on the roots of local cowpea varieties in organic or conventional farming systems

Take home message (1)

High rates of inorganic N supply restrict root nodulation and biological nitrogen fixation by rhizobia

- Thus, root inoculation of legumes with efficient nodulating bacteria may enhance biological N_2 fixation and increase crop yield and quality, provided that the inorganic N supply is accordingly low

ISHS

FAO

BioGreenhouse

COST
EUROPEAN COOPERATION
IN SCIENCE AND TECHNOLOGY

3rd INTERNATIONAL SYMPOSIUM ON
ORGANIC GREENHOUSE HORTICULTURE
11 - 14 APRIL 2016 / IZMIR, TURKEY

Take home message (2)

Different genotypes of the same crop species may exhibit considerable differences in their ability to fix N₂ and reduce GHG emissions

- Consequently, selection of cultivars and landraces characterized by high N₂-fixation efficiency is of paramount importance for maximizing benefits provided by legumes in legume-supported cropping systems

3rd INTERNATIONAL SYMPOSIUM ON
ORGANIC GREENHOUSE HORTICULTURE
11 - 14 APRIL 2016 / IZMIR, TURKEY

Take home message (3)

Organic farming results in significantly lower N₂O emissions than conventional farming in terms of the overall Global Warming Potential

- N₂O emission differences between organic and conventional systems, highlighting the importance of maximising yield within organic systems in order to reduce their environmental impact

ISHS

FAO

BioGreenhouse

COST
EUROPEAN COOPERATION
IN SCIENCE AND TECHNOLOGY

3rd INTERNATIONAL SYMPOSIUM ON
ORGANIC GREENHOUSE HORTICULTURE
11 - 14 APRIL 2016 / IZMIR, TURKEY

Funded by the 7th Research Framework
Programme of the European Union

BioGreenhouse

COST
EUROPEAN COOPERATION
IN SCIENCE AND TECHNOLOGY

**3rd INTERNATIONAL SYMPOSIUM ON
ORGANIC GREENHOUSE HORTICULTURE**
11 - 14 APRIL 2016 / IZMIR, TURKEY

Convener
Prof. Dr. Yüksel TÜZEL

Co-Convener
**Assoc. Prof. Dr. Gölgen
Bahar ÖZTEKİN**

**Thank you for
your attention!**

3rd INTERNATIONAL SYMPOSIUM ON
ORGANIC GREENHOUSE HORTICULTURE
11 - 14 APRIL 2016 / IZMIR, TURKEY