

EFFICACY OF TWO PREDATORY MITE SPECIES TO CONTROL WHITEFLIES INFESTING POINSETTIA PLANTS COMPARED TO THE STANDARD PARASITOID ENCARSIA FORMOSA

Ellen Richter ¹, Martin Hommes²

¹ Chamber of Agriculture North Rhine-Westphalia, Plant Protection Service, Bonn, Germany

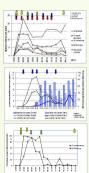
² Julius Kuhn-Institute (JKI), Institute for Plant Protection in Horticulture and Forests, Braunschweig, Germany

INTRODUCTION AND AIM

- » Biological pest control of the greenhouse whitefly Trialeurodes vaporariorum in poinsettia with the endoparasitic wasp Encarsia formosa is a common system, which is challenged by Bemisia tabaci and changing climate strategies.
- » Two predatory phytoseid mite species Amblydromalus limonicus and Transeius (syn. Typhlodromips) montdorensis (Acari: Phytoseiidae) were tested as alternative or addition tool to foster biological control.

MATERIAL METHODS

- » Whitefly species included: *T. vaporariorum* (2013) and *B. tabaci* (2014). Beneficial species included: *E. formosa, T. montdorensis* and *A. limonicus*.
- » Greenhouses (500 plants and 500 adult whiteflies each) contained either an untreated control, a chemical control or one beneficial species to exclude interfering effects.
- » In the chemical control plants were sprayed at 6-8 dates with five different registered insecticides (pymetrozine, flonicamide, spirotetramat, acetamiprid, and rape seed oil).
- » To control *T. vaporariorum* in total 3 *E. formosa*, 40 *A. limonicus* and 40 *T. montdorensis* were released per plant.
- » For *B. tabaci*, the number of beneficials had to be increased to 5 *E. formosa*, 50 *A. limonicus* and 50 *T. montdorensis* per plant.
- » Monitoring: Whitefly nymphs and adults as well as parasitized larvae of *E. formosa* were weekly counted on 25 marked plants per treatment. Mite occurrence was checked as plants hosting mites (2013) or number of mites per plant (2014).



RESULTS

Control of Trialeurodes vaporariorum

Efficacy of all beneficials was comparable to the chemical regime. All treatments provided good pest control without significant differences.

Control of Bemisia tabaci

- ◆ All beneficial species controlled of *B. tabaci* only sufficiently.
- ◆ Efficacy of *E. formosa* and *T. montdorensis* was similar followed by A. limonicus.
- ◆ Mites were found on nearly each plant with up to seven mites. Mite numbers decreased after three to four weeks.
- ◆ Larvae parasitized by *E. formosa* were found on 70% of the plants.
- ◆ Releases of all beneficial species should continue until November.

CONCLUSION

- » Both mite species may be a good addition or even alternative to *E. formosa*, since mites are less susceptible to poor weather conditions.
- » All species have the potential for successful control of *B. tabaci* but the numbers have to be considerably increased compared to the number needed for the control of *T. vaporariorum*.
- » Further investigations are needed particularly with pollen as a potential food source to enhance mite propagation and reduce costs.

