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General introduction



Chapter 1

Nutrition-related chronic disease

Non-communicable disease, such as obesity, diabetes and cardiovascular disease were the
cause of 38 million deaths in 2012, which is 68% of the total global deaths (1). The main
modifiable metabolic risk factors for these diseases are high blood pressure, overweight/
obesity, raised blood glucose and raised blood lipids (1). All these risk factors have been
shown to be sensitive to dietary changes both in beneficial as well as detrimental ways (2).
One of the components of the diet that is thought to play a large part in the progression of
these non-communicable diseases is dietary fat. Changes in dietary fat intake may help in
the prevention of these diseases. Recommendations of the World Health Organization are to
reduce intake of saturated fatty acids by replacing them with unsaturated fatty acids, replace

transfats with unsaturated fats, and to limit excess total calorie intake (3).

Types of fatty acids

Dietary fats can have beneficial or detrimental health effects in relation to metabolic diseases
such as diabetes and cardiovascular disease. In this respect, it is not the total amount of fat as a
percent of energy that is found to be important, but it is the specific types of dietary fatty acids
that matter most in the pathophysiology of type 2 diabetes and cardiovascular disease (4, 5).

Fatty acids all have the same basic structure, consisting of a chain hydrogenated carbon atoms
with an acid group on one end and a methyl group on the other. Nevertheless, different types of
fatty acids have been shown to have widely varying beneficial or detrimental effects on human
health. These different types of fatty acids can be distinguished based on two biochemical
characteristics of the carbon chain, which are 1.) the carbon chain length and 2.) the degree

of saturation.

Carbon chain length

Most fatty acids contain an even number of carbon atoms in their chain, ranging from 4 to
28. They can be divided into long-chain, medium-chain and short-chain fatty acids. Long-
chain fatty acids have 13 or more carbon atoms in their chain. They are the most abundant
type of fatty acids in food. The most common dietary long-chain fatty acids are 16 and 18
carbon atoms long. These include the saturated fatty acids palmitic (C16:0) and stearic acid
(C18:0) and the monounsaturated palmitoleic acid (C16:1) and oleic acid (C18:1). Dietary
polyunsaturated fatty acids include the essential n-3 fatty acid a-linolenic acid (C18:3) and n-6
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fatty acid linoleic acid (C18:2), as well as eicosapentaenoic acid (C20:5) and docosahexaenoic
acid (C22:6).

Medium-chain fatty acids have 6-12 carbon atoms in their chain. The main dietary sources of
these fatty acids are coconut oil, palm oil and dairy (6). Replacement of long-chain triglycerides
with medium-chain triglycerides in the diet has been shown to lead to improvements in body

weight and body composition (7, 8).

Short-chain fatty acids (SCFAs) have fewer than 6 carbon atoms in their chain. For humans,
the major source of SCFAs are the gut microbiota, which produce mainly acetate (C2:0),
propionate (C3:0) and butyrate (C4:0) through the fermentation of dietary fibers. These
SCFAs have been shown to affect human and mouse immune cells at the molecular level,
specifically by having anti-inflammatory effects (9), though there is also evidence for pro-
inflammatory action of SCFAs under some conditions (9). Furthermore, SCFAs produced by
the gut microbiota are implicated in the progression of several diseases, including metabolic
disease (10-12).

Degree of saturation

Saturated fatty acids (SFAs) have a carbon chain in which all carbon atoms are connected
by single bonds. Reducing intake of dietary saturated fat was shown to reduce the risk of
cardiovascular events in a meta-analysis of 15 large randomized clinical trials (13). This
finding is controversial, as not all meta-analyses show this effect (14). However, replacement
of saturated fat with polyunsaturated fat in the diet has been shown to reduce the risk of
cardiovascular disease (15). Not all saturated fat is considered potentially detrimental, as
medium-chain saturated fatty acids have been shown to have beneficial effects on body weight

and body composition (7, 8).

Monounsaturated fatty acids (MUFAs) lack 2 hydrogen atoms in their carbon chain, which
is caused by one double bond between 2 carbon atoms. Foods containing high amounts of
MUFA are mostly plant-derived and include olive oil, high oleic sunflower oil and nuts. The
number of studies that have examined the health effects of MUFAs is much lower than that
of PUFAs. Nevertheless, strong evidence exists that replacing SFA and carbohydrates with
MUFA improves various cardiovascular risk factors, as several meta-analyses and systematic
reviews show that high-MUFA diets lead to increases in plasma high density lipoprotein
(HDL)-cholesterol and reductions in plasma triglycerides and systolic and diastolic blood

pressure (16).
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Polyunsaturated fatty acids (PUFAs) have two or more double bonds. PUFAs are found in
seeds, nuts, vegetable oils and fatty fish. In general, the human intake of PUFAs is lower than
that of SFAs and MUFAs in the diet. A meta-analysis of 11 European and American cohort
studies found that dietary intake of PUFAs was between 2.2% and 9.0% of total energy intake,
whereas for SFAs (between 9.4% and 21.3%) and MUFAs (between 10.2% and 16.5%) this
was much higher (15). Nevertheless, PUFAs are found to be relatively important for human
health, as increasing energy intake of PUFA in exchange for SFA was found to decrease the
risk of coronary events and coronary death (15). Of special interest are the omega-3 fatty
acids EPA and DHA, which are mainly found in fatty fish. Beneficial health effects of these
fatty acids have been described, such as anti-inflammatory effects, decreased risk of coronary

events and improved cognitive functioning in patients with mild Alzheimer’s disease (17).

Fatty acid metabolism

Most fatty acids do not occur in their free form in foods or in the body. They are incorporated
in triglycerides, which consist of three fatty acids bound to one glycerol molecule. Triglycerides
from food are hydrolyzed in the small intestine, leading to the release of individual fatty acids.
Small- and medium-chain fatty acids pass the external membrane of intestinal cells and are
taken up directly into the bloodstream and are transported via the portal vein to the liver.
Long-chain fatty acids are repacked into triglycerides in intestinal cells and travel via the
lymphatic system to the circulation in chylomicron particles. Besides chylomicrons, several
other lipoproteins are present in the circulation and play a major role in the transport of
triglycerides. These lipoproteins consist of an interior of triglycerides and cholesterol, and an
exterior phospholipid membrane with embedded apolipoproteins. These apolipoproteins are
a structural part of lipoproteins and can also act as a cofactor or by binding to receptors on the
surface of cells. Apolipoprotein C2, for example, is found on chylomicrons and VLDL and is
a cofactor for lipoprotein lipase, which is the enzyme that is responsible for the hydrolysis of
triglycerides (18). Apolipoprotein E (APOE) is found on several lipoproteins including VLDL,
HDL and chylomicrons (19). It functions by binding receptors of the low density lipoprotein
(LDL) receptor family on cells (20), and, consequently, plays a large role in cholesterol and
lipid homeostasis. Of this apolipoprotein, three major isoforms exist: APOE2, APOE3 and
APOEA4, which have allele frequencies of 6%, 15% and 78% respectively (21). APOE4 is most
commonly known for its relation with Alzheimer’s disease, as APOE4 is the most important

genetic risk factor for this disease (22, 23). However, APOE has been shown to be associated

10
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with cardiovascular disease as well, as carriers of APOE4 have a modestly increased risk of
coronary heart disease (24, 25) and stroke (26) compared with individuals with the APOE3/
APOE3 genotype.

Transcriptomics

Transcriptomics is the study of the transcriptome, which is the full set of messenger RNAs
produced by a cell, cells or tissue. Frequently used methods in transcriptomics are two
high-throughput techniques, microarrays and RNA-seq. For microarray analysis RNA is
reverse transcribed to cDNA. Microarrays work by hybridization of this cDNA to probes on
microarray-chips. As a consequence, a requirement of microarrays is that gene sequences are
known. On the other hand, RNA-seq is a much newer technique and relies on sequencing
of the entire RNA-sequence. As a consequence, it doesn't require gene-specific probes and
can be used to detect novel transcripts or single nucleotide polymorphisms. Furthermore,
RNA-SEQ has a higher dynamic range, as it does not suffer from background noise or signal
saturation. However, using microarrays over RNA-sequencing has several advantages as
well. Firstly, the financial costs of microarrays are much lower than RNA-seq. Moreover,
microarrays have been used for several years and proven to be both sensitive and reliable.
Lastly, the bioinformatics pipelines for the analysis of microarrays have been well established

and tools for microarray analysis are quite user-friendly, even for non-bioinformaticians.

Transcriptomics in nutrition research

Part of the health effects of fatty acids are thought to be derived from the ability of fatty acids
to regulate gene expression. The peroxisome proliferator-activated receptors (PPARs) are the
best recognized sensor system for fatty acids (27). Several PPAR subtypes exist that are all able
to bind to fatty acids with a special preference for PUFAs. Saturated fatty acids may promote
inflammation by direct activation of toll-like receptor 4. Other fatty acid sensors mediating
gene expression regulation include SREBP1, HNF4a, NRF2, and several G-protein coupled

receptors.

A drawback of the application of transcriptomics in human dietary intervention studies
is the availability of tissue samples. The invasiveness of tissue biopsies makes it hard to get
samples from most tissues, as the required tissue biopsies may be too much of a burden on

the relatively healthy individuals that are usually participating in these studies. Tissue samples

11
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can therefore only be taken from easily accessible tissues. Therefore, muscle, intestine,
subcutaneous adipose tissue and blood are the only feasible sources of cells to use for
transcriptomics in dietary intervention studies. Blood-based cell sources, such as whole blood
or subpopulations or peripheral blood mononuclear cells (PBMCs) are interesting to study in
nutritional interventions studies, as they are constantly exposed to food-derived metabolites
as well as endocrine signals from peripheral tissues. Microarray analyses in PBMC and whole
blood have been used to characterize the molecular effects of nutritional interventions,
including several with dietary fatty acids. For example, Bouwens et al. (28) studied the effects
of 6 months fish-oil supplementation on whole genome gene expression profiles in PBMCs.
In this study, fish-oil supplementation was found to alter gene expression in the direction of a
more anti-inflammatory and anti-atherogenic profile. Another study also examined effects of
fish-oil supplementation on PBMC gene expression and found increased expression of genes
related to cell cycle, ER stress and apoptosis after a 7-week supplementation period (29). Van
Dijk et al. (30) examined the effects of a Mediterranean diet and the replacement of SFA with
MUFA in a Western-type diet for 8 weeks on PBMC whole genome gene expression. They
found a decreased expression of oxidative phosphorylation genes with the Mediterranean
and MUFA diets compared to the SFA diet. Furthermore, compared to the MED and SFA
diets, the MUFA diet changed the expression of genes involved in B-cell receptor signaling

and endocytosis signaling.

It is increasingly recognized that the adipose may play a large role in the pathogenesis of
chronic non-communicable diseases, such as obesity, diabetes and cardiovascular disease (31).
Adipose tissue is not only a lipid-storage tissue, but also influences the immune system and is
a significant source of inflammatory signals (31, 32). Macrophage infiltration and an increase
in pro-inflammatory signaling in the adipose tissue may be a first step in the process leading
to metabolic disease (33). In support of this, in the previously mentioned study by van Dijk
et al. (34), the SFA diet was found to cause an increase in pro-inflammatory gene expression
compared to the MUFA diet, which caused a more anti-inflammatory gene expression profile
in the adipose tissue. These altered gene expression profiles were found in the absence of
changes in adipose tissue morphology or insulin sensitivity, indicating that they may be one
of the first hallmarks of the nutritional effects of saturated fats and the possible subsequent

metabolic disease.

Besides long-term dietary interventions, microarrays were also used to studies the acute

response to dietary fatty acids. In a cross-over study by Esser et al. (35) 17 lean and 15

12



General Introduction

obese men (50-70 years) received two 95 g fat shakes, high in SFAs or MUFAs. PBMC gene-
expression profiles were assessed fasted and 4 hours post-prandially. High-SFA decreased
expression of cholesterol biosynthesis and cholesterol uptake genes and increased expression
of cholesterol efflux genes. MUFA increased inflammatory genes and PPAR-a targets involved
in B-oxidation. Another cross-over study (36) compared the response to a PUFA and a
SFA shake in young healthy men. They found that PUFA intake decreased the expression
of genes in liver X receptor signaling, whereas SFA intake increased the expression of these
genes. Furthermore, PUFA intake increased the expression of genes related to cellular stress
responses. Matone et al. (37) studied the response to a MUFA challenge and observed an

increase in expression of inflammation-related genes after 6 hours.

Challenge tests

Relatively new in nutrition research is the measurement of an individual’s capacity to adapt
to dietary challenges, which is called ‘phenotypic flexibility’ (38). Dietary challenges, such as
oral glucose tolerance tests, mixed meal challenges and the previously mentioned high-fat
challenges are used to examine the adaptation capacity of individuals. It is thought that using
this approach may reveal subtle differences in health status that may not be detectable using
conventional biomarkers of health measured in a fasted state. Combining challenge tests with
—omics techniques, such as transcriptomics may enlarge differences in health status, as was
observed in the previously mentioned study by Esser et al. (35). In this study, 294 genes were
differentially expressed between lean and obese subjects in the fasted state. However, when
comparing the response to the high-fat challenge between lean and obese subjects, 607 genes
were differentially expressed upon the SFA and 2516 genes upon the MUFA challenge. These
results indicate that high-fat challenges magnify differences in health, based on gene expression
changes. Furthermore, several studies have shown that using transcriptome analyses to
characterize the response to a high-fat challenge can provide insight into mechanisms that

are involved in coping with nutrition (35-37).

Individual differences in dietary responses

Differences between individuals in the whole genome gene expression response to dietary
interventions have been described. For example, the study by Esser et al. (35) examined

differences between lean and obese individuals and the study by Matone et al. (37) examined

13
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the effect of BMI on the response to dietary challenges. Several other characteristics that may
influence the transcriptomics response to dietary interventions have been studied. These
include gender (39, 40), age (41), BMI (35, 37, 42, 43), body composition (44), blood lipids
(45) and gut microbial composition (46, 47). In these studies, transcriptome analyses were
performed with the aim of increasing our understanding of the effect of these characteristics
and the mechanisms underlying the differences in the response to diet. In chapter 2, we
review these studies and discuss the effects of these characteristics on the whole genome gene

expression response to diet.

Outline of this thesis

In this thesis, we aimed to increase our understanding of the molecular mechanisms underlying
the effect of dietary fatty acids. To do this, changes in whole genome gene expression profiles
upon both acute as well as chronic dietary interventions with fatty acids were examined. We
gave specific emphasis to differences in gene expression responses between groups of subjects

that had different genotypic or phenotypic characteristics.

Chapter 2 gives an overview of all currently published studies that examined the role of
genotypic and phenotypic characteristics on the whole genome gene expression response to
dietaryinterventions. A genotypic characteristic that has not been studied before in this context
is examined in chapter 3. Here, we used the PBMC transcriptome to study differences between
carriers and non-carriers of APOE4 in PBMCs and we examined the differences between
carriers and non-carriers in the response to a 6-month fish-oil supplementation intervention.
In chapter 4, we elucidated potential mechanisms that may explain the beneficial effects of
medium-chain saturated fatty acids on body fat accumulation. We used transcriptomics in
the adipose tissue to examine differences between a 12-week high medium-chain SFA and
a low medium-chain SFA intervention. Chapter 5 and chapter 6 were focused on high-fat
challenges in combination with whole genome gene expression measurements. In chapter
5, we examined the potential use of high-fat challenges combined with transcriptomics to
measure subtle changes in metabolic flexibility. Specifically, we studied if healthy subjects
showed a shift in challenge response after a 4 week high-fat high-calorie diet towards a more
metabolic syndrome-like challenge response. In chapter 6, we studied whether a general gene
expression response to a high-fat challenge can be identified. This was done by performing a

meta-analysis of several previously published high-fat challenge studies that performed whole
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genome gene expression measurements in white blood cells. In chapter 7 the results described

in chapter 2-6 are discussed.
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Chapter 2

New concepts in nutrition research

The role of nutrition in the pathogenesis of metabolic diseases, such as type 2 diabetes and
cardiovascular disease, is clearly recognized. In the past, nutritional research has aimed to
provide general dietary advice aimed at improving population health. Problematic with this
approach is that even though dietary changes may be of great benefit at population level, the
effects on individual level are very small and hardly noticeable (1). The ultimate way to improve
health is by providing personalized dietary advice. New approaches and methodologies are
essential if we want to demonstrate nutritional effects on health at the individual level. The
main challenges we are facing within the nutrition field are the high variability in response to
nutrition between subjects, the relative small effects of nutrition and the long period it may
take before effects become evident. One of the key issues in the high variability in response is
that not only non-mutable factors such as age, gender and genotype are affecting the response.
Changeable factors such as health status are also affecting response to nutrition. The drawback
with the latter is the lack of appropriate biomarkers to characterize individual health status.
The markers used to show efficacy of interventions are often late single biomarkers of disease
state. These biomarkers are relevant to demonstrate efficacy of pharmacological interventions
but are less applicable to show efficacy of nutritional interventions, that are mostly performed

in a relatively healthy population.

Comprehensive phenotyping

A new concept in nutrition research is the measurement of a wide range of markers
to characterize health, which is called ‘comprehensive phenotyping’ (2). The arrival of
comprehensive genomics techniques in the last decade drove this development, as it enabled
measurement of expression of thousands of genes, proteins and metabolites in one sample.
These techniques can be applied in a range of samples including blood, urine, cells and tissue
biopsies, that can quite easily be collected during dietary intervention studies in healthy
volunteers. The last couple of years we have demonstrated the sensitivity of these techniques by
showing nutritional effects on health where classical approaches failed (3, 4). Comprehensive
phenotyping not only includes -omics techniques but also requires the measurement of
classical markers and intermediary endpoint measures that have been shown to be associated
with disease. Better characterization of health status by using a comprehensive phenotyping
approach not only helps to demonstrate efficacy of a nutritional intervention, it also supports

the identification of people at risk for disease development that still can profit from dietary
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advice.

Comprehensive phenotyping is still in an early phase. Very few studies have been published
so far that integrated omics techniques with functional and classical markers in the field
of nutrition. Very recently, a study has been published in which a huge amount of data
has been integrated to characterize individual responses to nutrition (5). The ultimate goal
was to develop a machine-learning algorithm that predicts personal postprandial glycemic
responses to real-life meals. Week-long glucose levels and responses to 46,898 meals were
continuously measured in a cohort of 800 people. This study adopted a comprehensive
phenotyping approach by integrating the glucose responses with blood parameters, dietary
habits, anthropometrics, physical activity, and gut microbiota. The predictions of postprandial
glycemic responses were validated in an independent 100-person cohort. Furthermore,
a blinded randomized controlled dietary intervention based on this algorithm resulted in
significantly lower postprandial glucose responses and consistent alterations to gut microbiota
composition. This study shows that with the use of comprehensive phenotyping and adequate

data integration, personalized nutrition is potentially within our reach.

Phenotypic flexibility

Another new development within the nutrition field is the measurement of an individual’s
capacity to adapt to dietary challenges, which is called ‘phenotypic flexibility’ (2, 6, 7). A
dietary challenge, such as a high-fat challenge or an oral glucose tolerance test (OGTT),
triggers the adaptation capacity of organs, cells and tissues, and challenges metabolic and
inflammatory homeostasis. For example, oral high-fat challenges have been used to study
postprandial lipid metabolism showing a high variation in individual responses. Individuals
with a more pronounced postprandial response were at an increased risk of developing CVD.
Similarly, an OGTT is used to evaluate insulin resistance. At fasting, insulin insensitivity
maybe not detectable, but after an OGGT insulin insensitivity becomes apparent. Phenotypic
flexibility can be an important indicator of individual health status, as it might reflect the
(dys-)functioning of metabolic organs, such as liver and adipose tissue. It might therefore be
able to better characterize health status or reveal effects of nutrition on health that otherwise

would have remained undetected.

The combination of both approaches, i.e. comprehensive phenotyping and phenotypic
flexibility, will result in a dynamic biomarker profile as outcome measure. This profile

is expected to provide more information on health status and thus efficacy of dietary
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interventions than the static single biomarkers that have been used so far.

Studies using a comprehensive phenotyping approach to characterize individual responses to
diet are rare. Most studies that examined individual responses to diet using comprehensive
omics techniques performed these analyzes retrospectively and only few studies stratified
groups beforehand. The same scarcity accounts for studies that used challenge tests in

combination with omics techniques to characterize individual responses based on phenotype.

In this chapter we will summarize the studies that either used non-mutable factors such as
age, gender and genotype or mutable factors such as health status to characterize individual
response to diet, long or medium-term or after a nutritional challenge. Specific focus will
be on papers that used the comprehensive -omics technique transcriptomics as outcome

measure.

Factors that influence the transcriptome response to diet

Transcriptomics is one of the first of the omics-technologies that was used in nutrition-
related research in humans. Much of the research has focused on examining changes in gene
expression patterns using microarrays, either upon acute challenges or upon longer-term
dietary interventions. One of the types of cells that is frequently used to asses transcriptome
profiles are blood cells, which are easy and non-invasive to harvest in humans. A subpopulation
of blood immune cells regularly studied are peripheral blood mononuclear cells (PBMCs).
Subcutaneous adipose tissue is also often studied in human nutrigenomics studies, because
it is relatively non-invasive to take biopsies from this tissue and adipose tissue is known to
play a key role in the pathogenesis of metabolic diseases. Lastly, skeletal muscle has also been

examined in some studies.

Several studies that investigated the change in whole-genome gene expression upon a
nutritional intervention observed large inter-individual differences in response to a dietary
intervention (8-11). The reasons for these large inter-individual differences are not yet fully
understood, but can range from genetic, phenotypic or environmental differences between
individuals. Of particular interest in the context of personalized nutrition are the studies that
identified factors that have an interaction effect on the response to diet. This chapter will focus
on studies that examined this interaction effect using transcriptomics as outcome measure.
Factors that will be discussed are gender, age, genotype, anthropometric measurements,

plasma biochemical markers and gut microbiota. Furthermore, we will discuss some studies
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that used other outcome measures to identify responders and non-responders to diet and
subsequently used transcriptomics to mechanistically examine the differences between these

two groups.

Gender

Gender is one of the most obvious phenotypes of which a difference in response to diet can
be expected. Still, the number of studies that investigated the difference in gene expression
response to diet between men and women is limited. One study examined the postprandial
changes in PBMC gene expression after a breakfast based on olive oil with a high or low
amount of phenol compounds (12). Microarray analysis demonstrated a significant change in
expression of 98 genes between the high-phenol and the low-phenol breakfast. However, when
performing additional separate analyses for men and women, they found a higher number of
differentially expressed genes; 250 and 143, respectively. Only 32 genes were differentially
expressed in both men and women, indicating that the effect of the phenols on PBMC gene

expression might be affected by gender.

A study by Rudkowska et al. (2013) (13) examined the effects of 6 weeks of n-3 polyunsaturated
fatty acids (PUFAs) supplementation on PBMC gene expression in 29 overweight and obese
men and women. Microarrays showed that 170 transcripts were differentially expressed
upon n-3 PUFA when examining gene expression changes in the total study population.
However, when separate analyses for men (n=12) and women (n=17) were performed, 610
transcripts were differentially expressed in men and 205 in women. Only nine transcripts
overlapped between men and women, indicating that the gene expression response in PBMCs
to n-3 PUFAs may be different between men and women. Pathways differentially expressed
between men and women were related to oxidative stress, PPAR-alpha signaling and NF-kB
signaling. Expression of genes in the oxidative stress and PPAR-alpha signaling pathways were
downregulated in men and upregulated in women, whereas genes in the NF-kB signaling

pathway were downregulated in men only.

Taken together, these two studies indicate that the gene expression response to certain
nutrients is influenced by gender. Even though this seems to be a very plausible assertion,
many studies do not differentiate between men and women and the two above-mentioned

studies only did this in a secondary analysis.

Age
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Another obvious factor that may cause a difference in response to diet is age. Many studies
already take age into account by only selecting subjects in certain age groups. We identified
only one study that actually examined the effect of age on the whole genome gene expression
response to diet. In this study, Thalacker-Mercer et al (2010) (14) performed a cross-over
trial in which 12 younger (21-43 years) and 10 older (63-79 years) healthy men were given a
controlled diet containing a high, medium or low amount of protein for three 18-day periods.
Microarrays were performed on skeletal muscle biopsies that were taken on day 12 of each
intervention period. A significant interaction between diet and age was observed for 853
genes. With increasing protein in the diet, expression of genes related to protein metabolism
was found to increase in younger subjects and decrease in older subjects. Moreover, older
men had an increased expression of genes related to protein catabolism on the low-protein
diet. Previously, older subjects showed a reduced anabolic response in skeletal muscle to
increased protein intake compared to younger subjects (15). It is known that protein needs are
indeed different between young and old. Using transcriptomics, Thalacker-Mercer et al tried
to identify processes that take place in the muscle that may be responsible for this. Besides
the effects of protein in muscle, it is conceivable that age may also affect the response to other

nutrients and on other tissues.

Genotype

One of the most studied feature of personalized nutrition is gene-diet interactions, where
researchers examine the effects of gene variants on the response to diet. This area of research
is referred to as nutrigenetics in the scientific literature. It is clear that part of the individual
differences in the response to diet are caused by genetic differences. Research has focused on
examining the effects of gene variants of several genes, some of the most-studied genes being:
APOAS5, APOE, GST, MTHEFR and PLIN (16). These studies, however, focus mostly on the
effects of these gene variants on blood biomarkers or disease outcomes. Omics technologies
may be very useful for better characterization of the effects of some of these gene variants
and to understand underlying mechanisms (17). However, to our knowledge, no studies have

investigated gene-diet interactions using a transcriptomics approach.

Anthropometric measurements

Besides non-changeable phenotypes such as gender, age and genotype, other factors may also
affect the response to diet. One of these factors is BMI. We performed a study in which we

examined the effect of BMI on the postprandial transcription response to a high-fat shake
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(18). In a cross-over design, 17 lean and 15 obese subjects consumed shakes containing 95g of
fat, enriched in either saturated fatty acids (SFAs) or monounsaturated fatty acids (MUFAs).
Microarrays were used to examine changes in whole-genome gene expression in PBMCs
before and after intake of the two shakes. We observed marked differences in the response
to these high-fat challenges when comparing obese to lean subjects, with 607 and 2516 genes
being differentially expressed after the SFA-shake and the MUFA-shake respectively. In
response to the SFA-challenge, genes related to platelet activation were upregulated in obese
and downregulated in lean subjects. In response to the MUFA-challenge, genes related to
post-translational protein modification were upregulated in obese and downregulated in
lean subjects. Genes related to G-protein coupled receptors were downregulated in obese and

upregulated in lean subjects.

Another study also examined the effect of BMI on postprandial gene expression response to
a high-fat challenge and a high-glucose challenge (19). In this cross-over study, a subgroup
of 23 subjects underwent both the high-fat as well as the high-glucose challenge. PBMC gene
expression profiles were determined before and after both challenges. The authors found that
some genes showed a consistent response regardless of BMI. However, quite a large amount
of genes responded in a BMI-dependent manner: 760 genes for the high-fat and 269 for the
high-glucose challenge. These genes were related to T-cell receptor-mediated inflammatory
signaling and cell adhesion pathways, with some of these genes being downregulated and
some upregulated with increasing BMI. Moreover, the effect of BMI on the gene expression

profiles was largest on the high-fat compared to the high-glucose challenge.

Besides these acute challenge studies, the effects of BMI on mid- to long-term dietary
interventions were investigated as well. Pasman et al. (2013) (20) studied the effects of
BMI on adipose tissue gene expression profiles upon 4 weeks of high versus low vegetable
consumption. Ten lean and ten obese subjects consumed 200 or 50g of vegetables daily in
a cross-over study design. When comparing the high to the low vegetable intake, 532 genes
were found to be differentially expressed in lean subjects and 323 genes in obese subjects.
In lean subjects, enriched pathways were related to inflammation, with an increase in gene
expression of IL8 and NFKB2 and a decrease in gene expression of complement component 3
and NFKB inhibitor. In the group of obese subjects, inter-individual variation in response was

found to be high and consequently no pathways were found to be enriched.

In one study, a short-term intervention was performed to examine the effect of BMI on

the gene expression response in adipose tissue to a 9-day nutritional intervention (21). In
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a crossover study design, subjects consumed 40g/day of either an intervention spread,
containing increased amounts of medium-chain triglycerides, PUFAs and conjugated linoleic
acid, or a control spread. The intervention decreased expression of genes related to energy
metabolism in lean subjects only. Obese subjects showed a downregulation of inflammatory
genes and an upregulation of lipid metabolism-related genes. Interestingly, inter-individual
variation in the gene expression response in the obese subjects was found to be quite high. The
authors performed an additional analysis, in which they found that expression of genes related
to mitochondrion, cell adhesion, extracellular matrix, immune response and inflammatory

response correlated better to waist-to-hip ratio and fat percentage than BMI.

In addition to BMI, the amount of fat tissue or body fat distribution may be important in
determining the response to diet. In a small cross-over study, Radonjic et al. (2009) (22)
studied the effect of body fat distribution on the whole genome gene expression response to
two dietary fat interventions. Microarrays were performed on adipose tissue samples before
and after interventions. The authors compared subjects with upper body obesity (waist-to-
hip ratio > 1) to those with lower body obesity (waist-to-hip ratio < 1). The intervention
diets contained either predominantly long-chain PUFAs or medium-chain fatty acids. When
comparing the effects of the two interventions on gene expression, they found more genes to
be differentially expressed in upper body obese subjects; 239 genes, compared to lower body
obese subjects; 73 genes. A subsequent analysis on pathway level showed that with increasing
waist-to-hip ratio, expression of immune response and apoptosis-related genes increased and
metabolism-related genes decreased, when comparing the medium chain fatty acid vs the
PUFA-enriched diet. This study shows that there may be differences in the gene expression
response to dietary fatty acids between upper body obese and lower body obese subjects.
However, the number of subjects in this study was low with 5 upper body obese subjects and

6 lower body obese subjects, so care should be taken with interpretation of the results.

In summary, BMI has been shown to affect acute postprandial gene expression response to
different types of acute challenges in PBMCs. These effects were mainly observed in pathways
related to inflammation and cell adhesion. Moreover, the effect of BMI on gene expression
changes was found to be stronger for a fatty acid challenge compared to a glucose challenge.
For short to medium-term dietary interventions, there is some evidence that BMI as well
as body fat distribution may affect the response of the subcutaneous adipose tissue to diets
containing different types and amounts of fatty acids. Lastly, waist-to-hip ratio and fat

percentage may explain a larger percentage of the inter-individual differences in response to
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nutritional interventions than BMI.

Plasma biochemical markers

High levels of triglycerides, LDL-cholesterol and total cholesterol as well as low HDL-
cholesterol levels in the blood are associated with an increased risk of CVD. Understanding
how persons with different levels of these biomarkers respond to dietary interventions could
be very useful in preventing disease. One study used a transcriptomic approach to examine
the effects of a 12-week fish-oil and corn-oil supplementation in normo- and dyslipidemic
men (total cholesterol > 200mg/dl, LDL cholesterol > 130 mg/d], triglycerides > 150 mg/
dl) (23). Microarrays were used to study whole blood cell gene expression. Substantially
more genes were differentially expressed by 12-week consumption of both types of oils in
dyslipidemic men compared to normolipidemic men. Fish-oil supplementation regulated
genes related to immune system, inflammation, lipid metabolism and cardiovascular disease
in the dyslipidemic subjects. Expression of several genes related to fatty acid metabolism were
downregulated, emphasizing the potential beneficial value of n-3 PUFAs in dyslipidemic

persons.

Gut microbiota

The link between the gut microbiota and the development of obesity, cardiovascular disease
and type 2 diabetes has received much attention in recent years (24). It has become clear that
the microbes in our gut can affect the way we respond to nutrients. One of the nutrients that
has been studied in relation to the gut microbiome are isoflavones. Isoflavones are compounds
that are naturally present in soy and are structurally very similar to the 17p-estradiol hormone.
The effects of isoflavones are, in part, mediated by their binding to estrogen receptors (25).
Therefore, isoflavone supplemention might be of interest during and after menopause. In
women, isoflavones are thought to have positive health effects on menopausal complaints,
such as hot flashes (26). One of the major soy isoflavones, daidzein, is converted to equol by
intestinal bacteria. Of all humans, 30-60% carry these bacteria and are equol producers. Equol
has a higher estrogenic and antioxidant activity compared to daidzein and other isoflavones.
Due to these properties, it is hypothesized that isoflavones supplementation is especially

beneficial in equol producers (27).

Niculescu et al. (2006) (28) performed a study, which was designed to examine the effect of
equol producer status on isoflavone supplementation-induced changes in gene expression in

blood lymphocytes. Postmenopausal equol-producing and non-producing women showed a
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similar number of differentially expressed genes after 84 days of soy isoflavone supplementation
compared to placebo, 319 versus 322 respectively. However, equol-producing women had an
increased expression of estrogen-responsive genes compared to non-producers, illustrating

the importance of equol-producer status in modulating estrogen-related actions of isoflavones.

We also studied the effect of equol-producer status on whole-genome gene expression in
the adipose tissue of post-menopausal women upon 8 weeks consumption of two different
commercially available isoflavone supplements that were either low or high in genistein
(29). For the low-genistein supplements, 883 and 1169 genes were differentially regulated
in non equol-producers and equol producers respectively, whereas for the high-genistein
supplements, 547 and 631 genes were differentially regulated for non equol-producers
and equol producers respectively. Independent of supplement type, expression of energy
metabolism-related genes was downregulated in equol producers and upregulated in non-
producers after supplementation. Furthermore, equol producers showed an anti-inflammatory
gene expression response to the two types of isoflavone supplements whereas this response

was not observed in non-producers.

In summary, the effects of the gut microbiome on whole-genome gene expression have been
studied only in the specific case of equol producing bacteria. The transcriptomics studies
point towards more pronounced effects of isoflavones in equol producing postmenopausal

women. Much remains to be studied with regard to gut microbiome-diet interactions.

Using transcriptomics to explain the mechanism behind
differences in response to diet

Transcriptomics has also been used to better understand the differences between responders
and non-responders to interventions. Shike et al. (2014) (30) studied the effects of soy
supplementation on gene expression in patients with invasive breast cancer. Patients were
randomly assigned to soy supplementation (n=70) or placebo (n=70) for the period from
diagnosis until surgery, which ranged from 7 to 30 days. Genome-wide gene expression was
measured post-treatment in surgically resected tumor samples of a larger group (n=35) of
patients using microarrays. In a secondary analysis, the authors compared the gene expression
response between high and low responders to the intervention based on serum genistein
levels. They compared tumor gene expression of a high-genistein level subset of patients

(n=12) to a subset of patients with low genistein levels (n=23). 126 genes were differentially
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expressed between these two groups and pathway analysis revealed an increased expression of
pathways related to cell growth and proliferation in the tumors of the high-genistein patients.
Moreover, expression of FGFR2, a known oncogene and marker of poor prognosis in breast
cancer (31), was increased in the high-genistein compared to the low genistein group. Taken
together, this study provides indications that soy supplementation may not be beneficial in
all breast cancer patients and identifies a subgroup of patients that show a high-genistein

response in which soy supplementation may actually be harmful.

Rudkowska et al. (2012) (32) compared PBMC transcriptomic profiles of responders and
non-responders to a 6 week n-3 PUFA supplementation. Six subjects in which plasma
triglycerides were lowered by n-3 PUFAs (responders) were matched to 6 subjects in which
they were not (non-responders). Several genes related to lipid metabolism were differentially
expressed between responders and non-responders. These results indicate that there may be

some differences in the way lipids are handled between the two groups.

A study by Mutch et al. (2011) (33) investigated differences in gene expression profiles
between subjects that maintained weight loss versus those that regained weight after a period
of caloric restriction. They compared changes in whole genome gene expression profiles
in subcutaneous adipose tissue upon caloric restriction in the two groups and found 1291
and 1298 genes differentially expressed by caloric restriction within weight maintainers and
weight regainers respectively. Weight maintainers showed decreases in expression of genes
related to extracellular matrix, whereas the weight regainers showed increased expression
in these genes. Moreover, weight maintainers increased their expression of genes related to
apoptosis and p53, whereas the weight regainers showed no change in expression of these
genes. In conclusion, this study reveals differences in gene expression profiles between weight
maintainers and regainers and provides some leads in understanding the causes of successful

weight maintenance.

In summary, these studies show that gene expression profiles can be used to better understand

why some persons do respond favorably to a dietary intervention and others do not.

Conclusion

In this chapter, we have discussed studies that used transcriptomics for studying differences in
responses to diet. These studies point towards clear differences in the gene expression response

to diet based on phenotypic measurements. In summary, transcriptomics-based studies
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have shown that several factors can influence the gene expression response to diet, which
are gender, age, genotype, anthropometric measurements, plasma biochemical markers and
gut microbiota. Besides using the transcriptome itself as an outcome measure, some studies
have used transcriptomics to examine mechanistic differences between responders and non-
responders to dietary interventions on other outcome measures. This approach provides
insight into which genes and pathways are involved and provides mechanistic understanding

on the response to nutrients and diets.

BMI is the most extensively studied factor and substantial evidence shows that BMI affects
the transcriptome responses to diet, both in acute challenge studies as well as in short- to
medium-term dietary interventions. However, for the other factors, too few studies were
performed to draw definitive conclusions. Furthermore, most of these studies were designed
with a different primary research question and only examined these interaction-factors in
secondary analyses. As a consequence, the numbers of subjects is generally very low, leading

to underpowered studies.

Future perspectives

What is missing so far are studies that are specifically designed to study factors that may
explain differences in response to diet. Only for BMI such studies could be identified. In the
future, studies with stratification by these factors on forehand could help in unraveling the

role of these factors in diet-induced personal responses on the transcriptome.

Designing studies that specifically address one of these factors may be useful, though a
major drawback with this approach is that numerous factors influence the response to diet
and the most important interaction-factors may not be known in advance. A more complete
approach would be to perform large studies that use a combination of the two new concepts,
i.e. phenotypic flexibility and comprehensive phenotyping. This will enable advanced
characterization of personal responses to diets, especially if applied before and after a dietary
intervention. These type of studies allow identification of a combination of characteristics
responsible for a personal dietary response. Transcriptomics may play an additional role
by mechanistically explaining the individual differences in response to diet, which was also

shown in the studies discussed above.

However, before we are able to characterize personal response to diet we first need to know

how robust the personal response to diet is. Studies measuring the response to the same
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repeated dietary exposure are missing but are essential for personalized dietary advice. Many
variables known to affect the transcriptome response, may influence this personal response to
diet such as sleep deprivation, stress, or physical activity. Standardization and comprehensive
measurements of relevant factors are key in this respect. Once the robustness of a personal
response to diet is defined, the next question is whether a health status profile of or signature
can be identified that can predict this response to diet, using approaches such as the machine-
learning algorithm method performed by Zeevi et al. (2015) (5). The last phase is to unravel
what the best diet is to improve the personal health status as defined by the health status profile
or signature, i.e. personalized dietary advice. For the latter (issue), extensive evaluation of the
profile is of high importance; what kind of biomarkers are in the profile, what do they reflect,
where do they derive from and which metabolic routes or pathways in the body might be
affected. In addition, what is known about the effects of nutrients and diet on these pathways
and routes in these organs or cells, and how can we influence these routes or pathways by
nutrition? It is known that nutrients can very subtly regulate gene expression of metabolic
routes and pathways via binding to and activation of transcription factors (34). Integration
and interpretation of the data enables the discovery and quantification of processes important

for health that can be targeted by nutrition.

In summary, although a lot of research needs to be done before we are able to give personalized
dietary advice based on the health status of a person, the techniques are available. They have
been applied and have also shown to be sensitive enough to identify personal responses to
diet. Application of the phenotypic flexibility concept in combination with comprehensive
phenotyping both before and after dietary interventions is promising, as it might deliver more
information on individual responses to diet and health status markers. The biggest challenge
for the future is the integration of all data available and the biological interpretation of the

data with the ultimate goal to provide personalized dietary advice.
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Abstract

Background

People who carry the apolipoprotein E4 (APOE4) SNP have an increased risk of cardiovascular
disease (CVD). Fish-oil supplementation may help in the prevention of CVD, though inter-
individual differences in the response to n-3 PUFAs have been observed. We aimed to assess
the impact of APOE genotype on peripheral blood mononuclear cell (PBMC) whole genome

gene expression at baseline and following a fish-oil intervention.
Methods

Participants received 6 months of fish-oil supplementation containing 1800 mg of
eicosapentaenoic acid and docosahexaenoic acid per day. APOE genotype and PBMC whole
genome gene expression before and after supplementation were measured. We characterized
the differences in gene expression profiles in carriers of APOE4 (N=8) compared to non-
carriers (N=15).

Results

At baseline, 1320 genes were differentially expressed and the fish-oil supplementation
differentially regulated 866 genes between APOE4 carriers and non-carriers. Gene set
enrichment analysis showed that carriers had a higher gene expression of cholesterol
biosynthesis and interferon (IFN) signaling pathways. Fish-oil supplementation reduced

expression of IFN-related genes in carriers only.
Conclusion

The increased expression of IFN signaling and cholesterol biosynthesis pathways might
explain part of the association between APOE4 and CVD. Fish-oil supplementation may
particularly benefit APOE4 carriers by decreasing expression of IFN-related genes.
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Introduction

Apolipoprotein E (APOE) is part of several types of lipoproteins including VLDL, HDL and
chylomicrons (1). Three major isoforms exist: APOE2, APOE3 and APOE4, which have
allele frequencies of 6%, 15% and 78% respectively (2). Large meta-analyses have shown that
carriers of APOE4 have a modestly increased risk of coronary heart disease (3, 4) and stroke
(5) compared with individuals with the APOE3/APOE3 genotype, though the magnitude of
this finding differs between studies and it is not always significant (4). Furthermore APOE4 is
associated with increased levels of LDL cholesterol (4-6) and triglycerides (7) in the plasma.

For prevention of CVD, the European Society of Cardiology recommends two fatty fish-
containing meals a week (8). A meta-analysis of randomized controlled trials showed that
supplementary n-3 polyunsaturated fatty acids (PUFAs) decreases the risk of CVD (9).
However, this positive impact on CVD is not reported consistently; several studies find no
association between n-3 PUFA supplementation and CVD risk (10). Furthermore, inter-
individual differences in the response to n-3 PUFAs have been observed. This inter-individual

variability may, in part, be caused by genetic factors (11).

Several studies have shown that APOE genotype influences the plasma lipid response to fish-
oil supplementation. Minihane et al. 2000 (12) found a significant increase in total cholesterol
and a trend toward a reduction in HDL-Cholesterol in APOE4 carriers relative to APOE3/
APOES3 subjects after fish-oil supplementation. In line with this, Olano-martin et al. 2010 (13)
found increased total cholesterol concentrations in APOE4 carriers in response to 4 weeks
docosahexaenoic acid (DHA) supplementation. Caslake et al 2008 (14) found the greatest

decrease in plasma triglyceride concentration in APOE4 men after fish-oil supplementation.

We previously showed that 6 months fish-oil supplementation decreased gene expression of
genes involved in inflammatory and atherogenic pathways in peripheral blood mononuclear
cells (PBMCs) (15). PBMCs are a subpopulation of circulating immune cells mainly
consisting of monocytes and lymphocytes. These circulating immune cells are important
players in the pathogenesis of CVD, especially atherosclerosis, and, therefore, are a suitable
target for studying inflammatory and CVD mechanisms (16). APOE genotype has been
shown to affect immune cell response (17-19). For example, mice monocytes/macrophages
showed an increased inflammatory response when transfected to produce human APOE4
compared to APOE3 (17). Moreover, signaling via the APOE receptors promotes conversion

of macrophages from the pro-inflammatory M1 to the anti-inflammatory M2 phenotype (18),
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which may be decreased in APOE4 carriers because of the lower APOE concentrations that
are observed with APOE4 (19). From these results, it is thought that the altered inflammatory
response of APOE4-expressing monocytes/macrophages may contribute to the higher CVD

risk observed in APOE4 carriers.

By measuring PBMC whole genome gene expression with microarrays and combining this

with APOE genotyping, we are able to unbiasedly study genotype-specific phenotype effects.

In this study, we aimed to gain more insight in the pathways affected by APOE4 and the effect
of fish-oil supplementation on these pathways by studying gene-diet interactions between
APOE4 and fish-oil supplementation on whole genome gene expression. To do this, we
conducted a secondary retrospective analysis according to APOE4 carrier status of the above-
mentioned study (15, 20). Firstly, we studied the effect of APOE4 on whole genome PBMC
gene expression at baseline and, secondly, we studied how APOE4 influences the effects of 6

months of fish-oil supplementation on gene expression.

Methods

Study design

This study is a secondary retrospective analysis of a randomized, double-blind, placebo-
controlled trial conducted by van de Rest et al. (2008) (20) that was originally designed to
examine the effects of 6 months fish-oil supplementation on cognitive performance in 302
participants aged > 65 years. In this secondary analysis, we examine differences in whole
genome gene expression between APOE4 carriers and APOE4 non-carriers before and
following the fish-oil intervention. Microarray data was available in 23 subjects from the high
dose fish-oil group (15), with RNA available in 92 participants. To validate findings of the

microarray analyses, we performed targeted QPCR measurements in these 92 participants

Design and methods of the original study were described in detail previously (20). Briefly,
participants were randomly allocated to receive a daily dose of fish-oil containing either 1800
mg or 400 mg eicosapentaenoic acid (EPA) and DHA, or a placebo oil (high-oleic sunflower
oil (HOSF)) for 26 weeks. The high daily dose of fish oil provided 1093 + 17 mg EPA and 847
+ 23 mg DHA, and the low daily dose provided 226 + 3 mg EPA and 176 + 4 mg DHA. The
oils were administered in 6 soft gelatin capsules daily, each of which contained 900 mg oil and

2.7 mg tocopherol as antioxidant (Banner Pharmacaps Europe BV, Tilburg, Netherlands).
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Participants were recruited according to the following exclusion criteria: current or recent
(<4 weeks) use of fish-oil supplements or intake of fish >4 times/week or >800 mg fish-oil/d
from fish as estimated by using a fish-consumption questionnaire, serious liver disease,
consumption of >4 glasses of alcohol-containing beverages per day, unable to participate as
judged by the responsible medical physician, allergy to fish or fish-oil, swallowing problems,
or participation in another clinical trial <2 mo before the start of the trial or at the same time.
Cognitive exclusion criteria were also used and were described previously (20). Additionally,
compliance with capsule use during a 2-week placebo run-in period had to be 280% on the
basis of self-report. All participants gave written informed consent to participate in the study
and the study protocol was approved by the Medical Ethical Committee of Wageningen
University, Wageningen, the Netherlands. The study was registered at clinicaltrials.gov as
NCT00124852.

Blood sampling and PBMC isolation

Fasting venous blood samples were collected at baseline and after 26 weeks of intervention.
Plasma free fatty acids and triglycerides were measured by gas-liquid chromatography,
and C-reactive protein (CRP) concentrations were determined from measurements of
high-sensitivity CRP (hsCRP). For PBMC isolation, 4 mL blood was collected into Becton
Dickinson Vacutainer Cell Preparation Tubes with sodium citrate. PBMCs were isolated
immediately after blood collection according to the manufacturer’s instructions. For APOE
genotyping, a second blood sample was collected into a 4.5-mL EDTA Vacutainer and stored
at -80°C.

APOE genotyping

APOE genotyping was done by the PCR-based restriction fragment length polymorphism
method and restriction enzyme digestion with Hhal (21). We retrospectively determined

APOE genotype in 301 of the participants of the original study.

RNA extraction and microarray

RNA extraction and microarray methods were previously described by Bouwens et al. (15)
and data can be found in Gene Expression Omnibus under accession number GSE12375. We
reanalyzed the data using the current gene definitions (NuGOHs1a520180_Hs_ENTREZG
MBNI custom CDF version 19.0.0) and grouped the samples based on the APOE genotyping
results (Supplementary Table S3-1).
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Microarray analysis was performed on baseline samples and on samples after 26 weeks of
intervention, using human whole-genome NuGO GeneChip arrays designed by the European
Nutrigenomics Organization and manufactured by Affymetrix (Affymetrix Inc, Santa Clara,
CA). Microarrays were analyzed using MADMAX (Management and Analysis Database for
Multiplatform Microarray Experiments) (22). Expression values were normalized using the
RMA (robust multichip average method) (23). Genes with normalized expression values >20
on at least 5 arrays were defined as expressed and selected for further analysis. Expression
values were log2-transformed. LIMMA (24) was used to calculate P-values and false discovery
rate (FDR) g-values for each gene using t-tests with Bayesian correction. At baseline, genes
were defined as differentially expressed between APOE4 carriers and non-carriers if they had
P-values < 0.05. The differences in response to fish-oil supplementation were calculated using
the individual log ratios. Differences in genes expression changes between APOE4 carriers

and non-carriers were defined as significantly different if they had P-values < 0.05.

Pathway analysis and upstream transcription regulators analyses were performed using
QIAGEN’s Ingenuity Pathway Analysis (IPA, QIAGEN Redwood City, www.giagen.com/
ingenuity). We also performed pathway analysis using gene set enrichment analysis (GSEA;
http://www.broad.mit.edu/gsea) (25). Briefly, genes were ranked based on the t-statistic and
analyzed for over- or underrepresentation in predefined gene sets. Gene sets were derived
from Biocarta, KEGG, Reactome and Wikipathways pathway databases. Genesets with a false
discovery rate < 0.1 were considered significantly enriched (Supplementary Table S$3-2 - §3-
5).

QPCR

For qPCR, RNA was available of PBMCs of 92 participants of which 31 were carriers and
61 were non-carriers of APOE4. RNA was reverse transcribed using a cDNA synthesis kit
(RevertAid First Strand cDNA Synthesis kit, Thermo Scientific, Leusden, the Netherlands)
and analyzed by qPCR (SensiMix SYBR No-ROX, Bioline, London, UK) on a CFX384 Real-
Time System (C1000 Thermal Cycler, Biorad, Veenendaal, The Netherlands). qPCR data were
normalized using the RPLPO housekeeping gene. Genes for gPCR were selected from the
differentially expressed pathways between APOE4 carriers and non-carriers. Genes needed
to be differently expressed between APOE4 carriers and non-carriers and have an expression

value above 200. Primers sequences are shown in Table 3-1.

Statistics
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Statistical analysis of subject characteristics and qPCR findings was performed using IBM
SPSS Statistics, Version 22.0.0.1. A two-sided P < 0.05 was considered significant. Subject
characteristics were reported as mean + sd. Baseline characteristics of APOE4 carrier and
non-carrier groups were compared using independent t-tests. QPCR results were analyzed

using independent t-tests.

Power calculations were performed retrospectively for the HMGCS1 gene. Power was
calculated to be 83%, using the mean expression values and standard deviations as observed

(218.7 and 184.8 for APOE4 carriers; and 28.2 and 23.5 for APOE4 non-carriers).

Results

Participant characteristics

The original study consisted of 302 participants. Here, we focused on a subgroup of participants
who received 1800 mg fish-oil and on whom PBMC whole genome gene expression microarray
analysis was performed (N=23). APOE genotyping showed that 8 of the 23 participants were
carriers of APOE4. Baseline characteristics of carriers and non-carriers are presented in Table
3-2. We found no differences in any parameters between the groups. Participants received
daily fish-oil supplementation containing 1800 mg of EPA and docosahexaenoic acid (DHA)
for 6 months. We found no difference in the changes in any parameters between APOE4

carriers and non-carriers (Table 3-2).

Baseline

To determine the effects of APOE4 on gene expression, baseline expression profiles were
compared between APOE4 carriers and non-carriers. Of the 13027 genes found to be
expressed, 1320 genes were differentially expressed between carriers and non-carriers of the

APOE4 SNP at P < 0.05 (Figure 3-1). No genes showed an FDR q < 0.05.

To gain further insight into the biological processes affected by APOE4, we performed
pathway analysis using Ingenuity Pathway Analysis on the set of differentially expressed genes
at baseline. Figure 3-2 shows the top 10 pathways that were enriched in the comparison of
APOEA4 carriers and non-carriers. Several of these pathways were related to either cholesterol
biosynthesis or interferon (IFN) signaling. Furthermore, GSEA showed several gene sets
related to cholesterol biosynthesis or IFN signaling as upregulated. (Supplementary Table
$3-2).
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Further inspection of the function of the genes related to cholesterol biosynthesis, showed
that many of these genes are encoding enzymes involved in de novo synthesis of cholesterol.
These genes were found to be more highly expressed in APOE4 carriers than in non-carriers.
Genes involved in cholesterol uptake (LDLR and CD36) and efflux (ABCA1, ABCG1 and

SCARBI1) showed no difference in expression in APOE4 carriers compared to non-carriers.

We observed a higher expression of genes involved in IFN signaling in carriers compared
to non-carriers of APOE4. These genes included IFN (alpha, beta and omega) receptor 1
(IFNARI) as well as the intracellular signaling molecules Signal Transducers and Activator
of Transcription (STAT)1 and STAT2. Besides IFN signaling genes, we also found a higher
expression of many IFN target genes in carriers of the APOE4 SNP compared to non-carriers
(Table 3-3 and Figure 3).

To examine potential regulators of the observed gene expression differences between carriers
and non-carriers, we performed Ingenuity upstream regulator analysis. IFNLI, IFNA2 and
IFNG were identified as potential transcriptional regulators of the observed gene expression
differences. These regulators and their targets are shown in Figure 3. Additionally, several
other molecules that are involved in IFN signaling were identified as potential upstream

regulators (Table 3-4).

Fish-oil intervention effect

To examine the effect of APOE4 on the gene expression response to fish-oil supplementation,
we determined the genes that were differentially regulated in response to fish-oil
supplementation in carriers compared to non-carriers of APOE4. We found that 866 genes
showed a different change in expression caused by fish-oil supplementation between carriers

and non-carriers at P < 0.05 (Figure 3-1). No genes showed an FDR q < 0.05.

Figure 3-4 shows the enriched pathways when comparing the response to fish-oil
supplementation between carriers and non-carriers of APOE4. The top 2 pathways are both
related to IFN signaling. Furthermore, GSEA showed several gene sets related to IFN signaling
as downregulated when comparing the response to fish-oil supplementation between carriers

and non-carriers of APOE4 (Supplementary Table S$3-5).

In carriers of the APOE4 allele, genes in these IFN signaling pathways were found to be
mostly downregulated, whereas non-carriers mostly showed an upregulation in response
to n-3 PUFA supplementation when comparing gene expression after supplementation to

expression at baseline.
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To examine potential regulators of the differentially expressed genes, we performed Ingenuity
upstream regulator analysis. This revealed many IFN-related genes as potential upstream
transcriptional regulators, including IFNLI, IFNA2 and IFNG (Table 3-5). The genes
regulated by these cytokines were found to be largely downregulated in APOE4 carriers and

largely upregulated in non-carriers, as shown in Figure 3-5.

Comparison of gene expression profiles after 6 months fish-oil supplementation between
carriers and non-carriers of APOE4 showed that both cholesterol biosynthesis as well as IFN
signaling pathways were no longer enriched in the comparison between carriers and non-

carriers of APOE4 (data not shown).

QPCR validation of the microarray findings

QPCR was used to determine the expression of five genes selected from the cholesterol
biosynthesis and IFN signaling pathways in all available RNA samples. We determined gene
expression of HMGCR, HMGCS]1, IFITM1, STAT1 and TAP1 in a total of 92 participants, of
which 31 were APOEA4 carriers and 61 were APOE4 non-carriers. We found that expression of
HMGCS1 and STAT1 was significantly higher in APOE4 carriers compared to non-carriers at
baseline (Figure 3-6). Mean expression of HMGCR, IFITM1 and TAP1 was higher in APOE4

carriers compared to non-carriers, though these differences were not significant.

Discussion

This study examined the effect of APOE4 on whole genome gene expression in PBMCs
at baseline and in response to fish-oil supplementation. Expression of genes involved in
cholesterol biosynthesis as well as IFN signaling and IFN target genes was found to be higher in
APOE4 carriers compared to non-carriers. Interestingly, 6 months of fish-oil supplementation

decreased IFN-related gene expression in APOE4 carriers.

The increased expression of genes in the IFN signaling pathway and IFN-regulated genes in
PBMCs of APOE4 carriers at baseline may point towards a systemic pro-inflammatory state.
Consistent with our findings, APOE4 has been linked to increased systemic inflammation
as carriers of the APOE4 allele have been shown to have higher plasma levels of the pro-
inflammatory cytokines IL-8 and TNF-a (26), and lower levels of the anti-inflammatory
cytokine IL-10 (27). Furthermore, IFNG produced by T-lymphocytes is highly expressed

in atherosclerotic lesions and affects many processes involved in the pathogenesis of
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atherosclerosis (28). Increased expression of genes in the IFN signaling pathway as well as
increased expression of IFN targets in PBMCs of APOE4 carriers may unfavorably prime
these cells and may increase the risk of atherosclerosis. The question remains whether the
observed increase in IFN-related gene expression is caused by APOE4 directly, or whether it

is a consequence of indirect factors that are affected by APOEA4.

Literature on the role of fish-oil or n-3 PUFAs on IEN pathways and IFN-regulated genes
is scarce. It is possible that previous studies that did not take APOE genotype into account
found no effects, as we show in the current study that IFN signaling-related gene expression
is either upregulated or downregulated dependent on APOE genotype. We identified one
mouse study, in which a high intake of n-3 PUFAs was shown to lead to diminished STAT1
phosphorylation after ex-vivo stimulation of immune cells with IFN-gamma (29). A similar
mechanism could be present in our APOE4 carriers, though, to our knowledge, no studies
exist that have examined the role of APOE genotype in this context. One relatively small study
in 35 Alzheimer’s disease patients examined the interaction between APOE genotype and 6
months of fish-oil supplementation on several inflammatory cytokines in the plasma, but
found no effects of APOE genotype (30).

In contrast to APOE4 carriers, non-carriers showed an upregulation of IFN pathways.
Previously, we examined the effects of fish-oil supplementation in this population and found
anti-inflammatory and anti-atherogenic gene expression changes when not taking APOE
genotype into account (15). These changes were not found in genes related to IFN signaling
pathways. This indicates that fish-oil supplementation may have pro-inflammatory as well
as anti-inflammatory effects in APOE4 non-carriers. Further research is required to fully
understand the APOE genotype-specific effects of fish-oil supplementation on inflammatory

signaling.

APOEH4 is associated with an increased risk of CVD (4). Partly, this is thought to be mediated
by increased LDL-cholesterol and triglyceride plasma concentrations in APOE4 carriers
(31). In the full study group of 301 participants, we also observed significantly higher LDL-
cholesterol levels in the plasma of APOE4 carriers compared to non-carriers. Our microarray
data point towards an increase in cholesterol synthesis as reflected by a higher expression of
several genes encoding enzymes involved in the synthesis of cholesterol, including HMG-
CoA reductase (HMGCR), the enzyme catalyzing the rate-limiting step in the synthesis of
cholesterol (32). Expression of this gene and other genes involved in cholesterol biosynthesis

is known to be controlled by the SREBP-2 transcription factor through a negative feedback
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system (33). Therefore, the higher expression of cholesterol biosynthesis genes in APOE4
carriers might suggests a lower intracellular cholesterol concentration and, consequently,
a reduced activity of SREBP-2. However, the SREBP-2 gene itself was not differentially
expressed between APOE4 carriers and non-carriers and, based on the increased LDL-
cholesterol concentrations in APOE4 carriers that we observed in the full study group of 301
participants and is consistently reported in literature, one might expect increased intracellular
cholesterol levels. Whether cholesterol levels are actually increased in the cell requires further

investigation.

The role of increased cholesterol synthesis in monocytes remains unclear. It may promote
cholesterol accumulation in these cells, which is an important first step in foam cell formation
and may, therefore, potentially be related to the increased CVD risk in APOE4 carriers.
Additionally, in a study by Gerdes et al. (2000) (34), treatment with simvastatin, an inhibitor
of the HMGCR protein, abolishes the APOE4-related 2-fold increase in mortality after
a previous myocardial infarction. This study indicates that persons carrying a copy of the
APOEH4 allele are especially sensitive to cholesterol synthesis altering interventions. HMGCR
gene expression in PBMCs has been shown to closely parallel liver gene expression (35). If the
higher expression of this gene and other SREBP-2-regulated cholesterol biosynthesis genes is
present in liver as well, it may possibly explain why APOE4 carriers are especially sensitive to

cholesterol synthesis altering interventions with respect to CVD risk.

In this study, we describe changes in two pathways that may potentially contribute to the
increased CVD risk that is observed in carriers of APOE4: (1) increased expression of IFN
signaling and IFN target genes, and (2) increased expression of cholesterol biosynthesis
genes. Several studies have examined a possible link between inflammation and cholesterol
synthesis. Chen et al. (36) found that inflammatory stress causes intracellular cholesterol
accumulation, and increases HMGCR gene and protein expression via the SREBP-2 pathway
in mice both in vitro as well as in vivo. Furthermore, Zhao et al. (37) induced inflammatory
stress in mice and in a human cell line and found increased cholesterol synthesis and SREBP-2
and HMGCR gene and protein expression. Taking these findings and our gene expression
results together, it might be possible that increased inflammatory stress, as indicated by
increased IFN signaling in APOE4 carriers may have affected cholesterol biosynthesis gene
expression. Further research is required, however, to explore the role of inflammatory stress
and cholesterol biosynthesis as potential mechanisms for the increased CVD risk in APOE4

carriers as well as the relationship between these processes.
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Although the expression of genes in the cholesterol biosynthesis pathway was significantly
higher in APOE4 carriers compared to non-carriers, we did not observe a significant response
to fish-oil supplementation in either group. When comparing carriers and non-carriers after
supplementation the cholesterol biosynthesis pathway is no longer significantly differently
expressed, suggesting that fish-oil might have affected gene expression of these genes to some
extent. Possibly, these changes may have gone undetected due to the relatively low number of

participants, especially in the APOE4 group.

A limitation of this study is that, due to the fact that it was not originally designed to answer
the current research question, the groups are relatively small and not of the same size. We
performed power calculations, which showed that we had sufficient power for the microarray
analyses. Distinct differences in gene expression between carriers and non-carriers of the
APOQOEA4 allele, both at baseline as well as in the response to a 6-month fish-oil intervention
were observed. Furthermore, several of the differences at baseline were confirmed in a larger
group using qPCR. For our microarray analyses, we used a relatively high P-value cut-oft of
0.05. Using FDR g-values for selecting the differentially expressed genes did not yield results

in several comparisons. For this reason, we focused our analyses mainly on the pathway level.

In this study, we opted not to include to placebo group in the analysis (15). Firstly, because
our study is focused on the differences between APOE4 carriers and non-carriers in the
response to fish-oil. Secondly, adding this group, would further complicate this already quite

complicated analysis and, as a consequence, reduce the readability of the paper.

The opposite effect of fish-oil supplementation in APOE4 carriers and non-carriers that
we found, can partially explain the heterogeneity that is seen in the responses to fish-oil
supplementation on gene expression profiles and illustrates the importance of research on

diet-gene interactions and research into personalized nutrition in general.

Our findings related to IFN signaling and cholesterol biosynthesis might explain part of the
association between APOE4 and the increased risk of CVD that is observed in carriers of this
allele. Additionally, with respect to our IFN signaling gene expression results we hypothesize

that fish-oil supplementation may particularly benefit APOE4 carriers.
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Tables

Table 3-1. Primer sequences used to quantify gene expression by qPCR

Gene Forward primer Reverse Primer

HMGCR TGATTGACCTTTCCAGAGCAAG CTAAAATTGCCATTCCACGAGC
HMGCS1 CAGAAGAACTTACGCTCGGC TCTTGGCAGGGCTTGGAATA
IFITM1 AGGGACAGGAAGATGGTTGG AATCAGGGCCCAGATGTTCA
RPLPO CAGATTGGCTACCCAACTGTT GGGAAGGTGTAATCCGTCTCC
STAT1 GAGAGTCTGCAGCAAGTTCG GGAAAAGACTGAAGGTGCGG
TAP1 ATTTGAGTACCTGGACCGCA GCCCCTGTAGCACTAAGACA

Table 3-2. Baseline characteristics of the 23 participants of the high fish-oil supplementation group in
which PBMC gene expression microarrays were performed.?

APOE4 carriers (N=8) APOE4 non-carriers (N=15)
Age 69+3 69+3
M/F 5/3 10/5
M/F % 62/38 67/33
Heigth (cm) 170+£8 173+£6
Weight (kg) 77+7 78+ 14
BMI (kg/m2) 27.1+£30 26.1+34
Waist circumference (cm) 96 +6 96 + 14
Total cholesterol (mmol/l) 6.0+0.6 54+0.9
Triglycerides (mmol/l) 1.2+£0.2 09+04
LDL-cholesterol (mmol/l) 4.1+05 35+08
HDL-cholesterol (mmol/I) 1.5+04 1.5+03
hsCRP (mg/L)b 20+19 33%£32

2 Data presented as mean = sd. Baseline values were not significantly different between carriers and non-carriers

at P <0.05.

b hsCRP, high sensitivity C-reactive protein.
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Table 3-3. Baseline comparison of APOE4 carriers and non-carriers of genes involved in cholesterol
biosynthesis, IFN signaling and IFN targets. ?

Gene :EI; trez Description P-value® ::Iac:\ge
Cholesterol synthesis
DHCR24 1718 24-dehydrocholesterol reductase 0.02 1.24
GGPS1T 9453 geranylgeranyl diphosphate synthase 1 0.05 1.21
oA 3030 DIShepeoiCondehydiogenase Betoagi Contiolse/ o111z
HADHE 3032 DIy CoRdetydiogenase Betoncy CoRtioe/ o4 103
HMGCR 3156 3-hydroxy-3-methylglutaryl-CoA reductase 0.02 1.24
HMGCS1 3157 3-hydroxy-3-methylglutaryl-CoA synthase 1 (soluble) <0.01 1.18
DI 3422 isopentenyl-diphosphate delta isomerase 1 <0.01 1.14
IFN signaling
IFNAR1 3454 interferon (alpha, beta and omega) receptor 1 <0.01 1.26
IRF9 10379 interferon regulatory factor 9 <0.01 1.26
MX1 4599 MX dynamin-like GTPase 1 0.02 1.73
PSMB8 5696 proteasome (prosome, macropain) subunit, beta type, 8 <0.01 1.13
IFN targets
IFI35 3430 interferon-induced protein 35 0.01 133
IFIT1 3434 interferon-induced protein with tetratricopeptide repeats 1 <0.01 2.54
IFIT3 3437 interferon-induced protein with tetratricopeptide repeats 3 0.01 2.01
IFITM1 8519 interferon induced transmembrane protein 1 <0.01 1.17
IFNAR1 3454 interferon (alpha, beta and omega) receptor 1 <0.01 1.26
IRF9 10379 interferon regulatory factor 9 <0.01 1.26
MX1 4599 MX dynamin-like GTPase 1 0.02 1.73

a Genes selection is based on Ingenuity canonical pathways.

b P-values and fold changes for the comparison between APOE4 carriers and non-carriers are shown. P-values
were considered significant when P < 0.05.
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Table 3-4. Top 10 potential upstream regulators® explaining the baseline differences in gene expression
between APOE4 carriers and non-carriers.

Predicted

z:gs::;::: Fold Change Molecule Type Activation Iz\-cstci::etion :;vear::: of
State
PRL -1.17 cytokine Activated 6.76 3.77E-33
IFNL1 1.02 cytokine Activated 6.21 2.14E-29
IFNA2 -1.03 cytokine Activated 6.17 3.06E-23
MAPK1 -1.02 kinase Inhibited -6.13 2.13E-18
CNOT7 1.03 ﬁg‘uﬁgt‘gr“m Inhibited 243 131E-15
ILTRN 1.13 cytokine Inhibited -4.64 1.89E-15
IFNG 1.32 cytokine Activated 5.45 5.33E-12
EIF2AK2 1.49 kinase Activated 3.75 1.92E-09
Interferon alpha group Activated 4.01 2.90E-08
IFNB1 cytokine Activated 3.44 1.86E-06

2 Ingenuity upstream regulator analysis identifies transcriptional regulators that can potentially explain the
observed changes in gene expression.

b The 10 regulators with the lowest P-value and a significant Z score are shown. Fold change for the upstream
regulator is shown if significantly differentially expressed. Z scores predict the activation state of the regulator
and are based on the gene expression of its downstream genes. Upstream regulators with z scores > 2 are
considered activated and regulators with z scores < 2 are considered inhibited. P-values of overlap are calculated
using Fisher’s exact test.
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Figures

Figure 3-1. Flow chart of gene selection methods and number of significantly differentially expressed

genes.

17380 genes on microarray

!

13027 genes expressed
(>20 on 5 arrays)

l

Baseline
APOE4 vs non -APOE4
genes: 1320

Supplementation response
APOE4 (End vs Baseline)
genes: 1356

Supplementation response
non-APOE4 (End vs Baseline)
genes: 2450

End
APOE4 vs non -APOE4
genes: 1608

Difference in response
APOE4 vs non -APOE4
genes: 866

Genes were found to be significantly different if P < 0.05
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Pathway P value Total genes Up Down
Activation of IRF by Cytosolic Pattern Recognition 8.48E-08 60 181
Receptors

Interferon Signaling 3.64E-05 34 11 0
Role oflRIGl—Ilke Receptors in Antiviral Innate 4.97E-05 a1 111
Immunity

Death Receptor Signaling 7.16E-05 91 17 2
Superpathway of Cholesterol Biosynthesis 1.44E-04 27 72
Protein Ubiquitination Pathway 4.17E-04 254 297
Role of PKR in Interferon Induction and Antiviral 8.43E-04 14 91
Response

S_uperpathv_vay of_ Geranylgeranyldiphosphate 0.47E-04 60 42
Biosynthesis I (via Mevalonate)

Mevalonate Pathway I 1.49E-03 12 32
PPAR Signaling 1.64E-03 90 97

Figure 3-2. Top 10 differentially expressed pathways at baseline between APOE4 carriers and non-
carriers.

Top 10 was based on the lowest P-value. Total genes: total number of genes in the pathway, up (red): number of
genes with significantly higher expression in APOE4 carriers compared to non-carriers, down (green): number of
genes with significantly lower expression in APOE4 carriers compared to non-carriers.
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Figure 3-3. Genes of which the expression is known to be regulated by IFNA2, IFNG and IFNL1 that are
significantly differentially expressed at baseline in APOE4 carriers compared to non-carriers.

Red indicates a significantly higher expression, green indicates a significantly lower expression (P <0.05). Orange
arrow, gene is predicted to be activated by regulator; blue arrow, gene is predicted to be inhibited by regulator;
yellow arrow, gene expression of downstream gene is inconsistent with predicted state.
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APOE4 carriers APOE4 non-carriers
Ingenuity Canonical Pathways P value Total genes Up Down Up Down
Interferon Signaling 6.26E-10 34 27 93
Activation of IRF by Cytosolic Pattern Recognition 7. 67E-06 60 36 11
Receptors
Protein Ubiquitination Pathway 1.05E-04 254 10 14 28 19
Role of _P_attern Recog_mtlon Re_:ceptors in 1.79E-04 119 710 912
Recognition of Bacteria and Viruses
Salvage_ Pathways_ of Pyrimidine >.07E-04 8 04 12
Deoxyribonucleotides
Role of Osteoblasts, Osteoclasts and Chondrocytes 5
in Rheumatoid Arthritis 9:58E-04 214 S §
UVA-Induced MAPK Signaling 1.23E-03 87 4 4 68
Death Receptor Signaling 1.78E-03 91 68 127
Epoxysqualene Biosynthesis 1.85E-03 2 01 01
Aldosterone Signaling in Epithelial Cells 2.20E-03 151 65 12 19

Figure 3-4. Top 10 pathways differentially regulated by fish-oil supplementation in APOE4 carriers
compared to non-carriers.

The 10 canonical pathways with the lowest P-value are shown. The number of significantly up-regulated and
down-regulated genes by fish-oil supplementation in APOE4 carriers and APOE4 non-carriers are shown. Total
genes: total number of genes in the pathway, up (red): number of genes with significantly higher expression
after intervention compared to before, down (green): number of genes with significantly lower expression after
intervention compared to before.
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gene symbol  Entrez ID APOEA4 carriers APOE4 non-carriers
APOL6 80830
BST2 684
C190rf66 55337
c1a8 713
ciac 714
CELSR1 9620
CXCL10 3627
CXCR4 7852
DDX58 23586
DDX60 55601
FCER1G 2207
FPR2 2358
GBP1 2633
GBP2 2634
HERCS 51191
HERC6 55008
HIRA 7290
HSH2D 84941
IFI35 3430
IFI44 10561
IFI44L 10964
IFI6 2537
IFIH1 64135
IFIT1 3434
IFIT2 3433
IFIT3 3437
IFITM1 8519
IL17A 3605
IL17RB 55540
IRF7 3665
IRF9 10379
I1SG15 9636
LAMP3 27074
LGALS3BP 3959
LGALS9 3965
LY6E 4061
MMP11 4320
MX1 4599
MX2 4600
NMmI 9111
OAS1 4938
OAS2 4939
OAS3 4940
PARP12 64761
PELI1 57162
PLSCR1 5359
PML 5371
PSMB8 5696
PSMB9 5698
RSAD2 91543
RTP4 64108
SAMD9 54809
STAT1 6772
STAT2 6773
TAP1 6890
TNF 7124
TNFRSF12A 51330
TNFSF10 8743
TRIM22 10346
TYMP 1890
UBE2L6 9246
USP6NL 9712

VIPR1 7433

Log-ratio of expression after and before supplementation

03 0 -0.3

Figure 3-5. Heatmap depicting individual gene expression changes by fish-oil supplementation of genes
that are significantly differently changed between carriers and non-carriers of APOE4 in response to fish-
oil supplementation and are known to be regulated by IFNL1, IFNA2 and IFNG.

Log-ratios of the expression after and before supplementation are shown.

62



APOE4 and fish-oil

1.0

0.8

0.6

0.4

Log ratio

0.2

0.0

&«
&
8

Figure 3-6. QPCR results of a selection of genes showing the log ratio of expression in APOE4 carriers
compared to non-carriers.

Values are mean + SEM. * p<0.05 in carriers compared to non-carriers. HMGCR, 3-hydroxy-3-methylglutaryl-CoA
reductase; HMGCS1, 3-hydroxy-3-methylglutaryl-CoA synthase 1; IFITM1, IFN induced transmembrane protein 1;
STAT1, signal transducer and activator of transcription 1; TAP1, transporter 1, ATP-binding cassette, sub-family B.
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Supplemental Tables

Supplementary Table S3-1. CEL-file names, APOE genoype and subject IDs used in microarray analysis

Filename APOE genotype Subject ID
A101_003_8030_EPADHA_base.CEL APOE4 carrier 8030
A101_004_8169_EPADHA_base.CEL APOE4 non-carrier 8169
A101_005_8253_EPADHA_base.CEL APOE4 non-carrier 8253
A101_006_8263_EPADHA_base.CEL APOE4 non-carrier 8263
A101_007_8282_EPADHA_base.CEL APOE4 non-carrier 8282
A101_008_ 8299 EPADHA_base.CEL APOE4 non-carrier 8299
A101_009_8300_EPADHA_base.CEL APOE4 non-carrier 8300
A101_010_8337_EPADHA_base.CEL APOE4 carrier 8337
A101_011A_8345_EPADHA_base.CEL APOE4 carrier 8345
A101_012A_8346_EPADHA _base.CEL APOE4 non-carrier 8346
A101_013_8363_EPADHA_base.CEL APOE4 carrier 8363
A101_014_8364_EPADHA_base.CEL APOE4 carrier 8364
A101_015_8037_EPADHA_base.CEL APOE4 non-carrier 8037
A101_016_8145_EPADHA_base.CEL APOE4 non-carrier 8145
A101_017_8186_EPADHA_base.CEL APOE4 carrier 8186
A101_018_8200_EPADHA_base.CEL APOE4 non-carrier 8200
A101_019A_8233_EPADHA_base.CEL APOE4 carrier 8233
A101_020_8289_EPADHA_base.CEL APOE4 non-carrier 8289
A101_021_8294 EPADHA_base.CEL APOE4 non-carrier 8294
A101_022_8303_EPADHA_base.CEL APOE4 non-carrier 8303
A101_023_8305_EPADHA_base.CEL APOE4 non-carrier 8305
A101_024 8320_EPADHA_base.CEL APOE4 non-carrier 8320
A101_025_8331_EPADHA_base.CEL APOE4 carrier 8331
A101_054_8030_EPADHA_end.CEL APOE4 carrier 8030
A101_055_8169_EPADHA_end.CEL APOE4 non-carrier 8169
A101_056_8253_EPADHA_end.CEL APOE4 non-carrier 8253
A101_057_8263_EPADHA_end.CEL APOE4 non-carrier 8263
A101_058_8282_EPADHA_end.CEL APOE4 non-carrier 8282
A101_059_8299_EPADHA_end.CEL APOE4 non-carrier 8299
A101_060_8300_EPADHA_end.CEL APOE4 non-carrier 8300
A101_061A_8337_EPADHA_end.CEL  APOE4 carrier 8337
A101_062_8345_EPADHA_end.CEL APOE4 carrier 8345
A101_063_8346_EPADHA_end.CEL APOE4 non-carrier 8346
A101_064_8363_EPADHA_end.CEL APOE4 carrier 8363
A101_065_8364_EPADHA_end.CEL APOE4 carrier 8364
A101_066_8037_EPADHA_end.CEL APOE4 non-carrier 8037
A101_067_8145_EPADHA_end.CEL APOE4 non-carrier 8145
A101_068_8186_EPADHA_end.CEL APOE4 carrier 8186
A101_069_8200_EPADHA_end.CEL APOE4 non-carrier 8200
A101_070_8233_EPADHA_end.CEL APOE4 carrier 8233
A101_071_8289_EPADHA_end.CEL APOE4 non-carrier 8289
A101_072_8294 EPADHA_end.CEL APOE4 non-carrier 8294
A101_073_8303_EPADHA_end.CEL APOE4 non-carrier 8303
A101_074_8305_EPADHA_end.CEL APOE4 non-carrier 8305
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Filename APOE genotype Subject ID

A101_075_8320_EPADHA_end.CEL APOE4 non-carrier 8320
A101_076_8331_EPADHA_end.CEL APOE4 carrier 8331

Supplementary Table S3-2. Overrepresented gene sets at baseline when comparing APOE4 carriers to

non-carriers using GSEA.

NAME FDR Q-value
INTERFERON.ALPHA.BETA.SIGNALING 0.00
WP1835.INTERFERON.ALPHA.BETA.SIGNALING 0.00
INTERFERON.SIGNALING 0.00
GENERIC.TRANSCRIPTION.PATHWAY 0.00
HSA05162 0.00
ANTIVIRAL.MECHANISM.BY.IFN.STIMULATED.GENES 0.00
S.PHASE 0.00
ISG15.ANTIVIRAL.MECHANISM 0.00
SYNTHESIS.OF.DNA 0.00
DNA.REPLICATION 0.00
HSA05168 0.00
WP384.APOPTOSIS.MODULATION.BY.HSP70 0.00
METABOLISM.OF.NON.CODING.RNA 0.00
CYTOKINE.SIGNALING.IN.IMMUNE.SYSTEM 0.00
ANTIGEN.PROCESSING.UBIQUITINATION.PROTEASOME.DEGRADATION 0.00
WP2715.METABOLISM.OF.NON.CODING.RNA 0.00
WP1925.SYNTHESIS.OF.DNA 0.00
SNRNP.ASSEMBLY 0.00
DNA.STRAND.ELONGATION 0.00
ACTIVATION.OF.ATR.IN.RESPONSE.TO.REPLICATION.STRESS 0.00
INTERFERON.GAMMA.SIGNALING 0.00
CELL.CYCLE 0.00
WP2757.MITOTIC.METAPHASE.AND.ANAPHASE 0.00
WP2772.S.PHASE 0.00
TRAF6.MEDIATED.IRF7.ACTIVATION 0.00
MITOTIC.METAPHASE.AND.ANAPHASE 0.01
CELL.CYCLE.MITOTIC 0.00
CLASS.I.MHC.MEDIATED.ANTIGEN.PROCESSING.PRESENTATION 0.01
WP2785.M.G1.TRANSITION 0.01
MITOTIC.ANAPHASE 0.01
WP1775.CELL.CYCLE.CHECKPOINTS 0.01
HSA05164 0.01
HSA03460 0.01
HSA04622 0.01
WP2752.MYD88.INDEPENDENT.CASCADE. 0.01
HSA05160 0.01
RIG..LMDAS5.MEDIATED.INDUCTION.OF.IFN.ALPHA.BETA.PATHWAYS 0.01
HSA04623 0.01
WP197.CHOLESTEROL.BIOSYNTHESIS 0.01
G1.S.TRANSITION 0.01
CHOLESTEROL.BIOSYNTHESIS 0.01
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NAME FDR Q-value
SEPARATION.OF.SISTER.CHROMATIDS 0.01
WP1904.RIG..MDA5.MEDIATED.INDUCTION.OF.IFN.ALPHA.BETA.PATHWAYS 0.01
MITOTIC.M.M.G1.PHASES 0.01
PROCESSING.OF.CAPPED.INTRONLESS.PRE.MRNA 0.01
REMOVAL.OF.LICENSING.FACTORS.FROM.ORIGINS 0.01
POST.ELONGATION.PROCESSING.OF.INTRONLESS.PRE.MRNA 0.01
CYCLIN.A.CDK2.ASSOCIATED.EVENTS.AT.S.PHASE.ENTRY 0.01
HSA03008 0.01
POST.ELONGATION.PROCESSING.OF.THE.TRANSCRIPT 0.01
HSA03050 0.01
EXPORT.OF.VIRAL.RIBONUCLEOPROTEINS.FROM.NUCLEUS 0.01
PPARA.ACTIVATES.GENE.EXPRESSION 0.01
M.G1.TRANSITION 0.01
WP1898.REGULATION.OF.DNA.REPLICATION 0.01
METABOLISM.OF.RNA 0.01
WP2733.REGULATION.OF.MRNA.STABILITY.BY.PROTEINS.THAT.BIND.AU.RICH.ELEMENTS 0.01
REGULATION.OF.MITOTIC.CELL.CYCLE 0.01
APC.C.MEDIATED.DEGRADATION.OF.CELL.CYCLE.PROTEINS 0.01
REGULATION.OF.GLUCOKINASE.BY.GLUCOKINASE.REGULATORY.PROTEIN 0.01
MITOTIC.G1.G1.S.PHASES 0.01
G2.M.CHECKPOINTS 0.01
CELL.CYCLE.CHECKPOINTS 0.01
WP619.TYPE.ILINTERFERON.SIGNALING.IFNG. 0.01
WP183.PROTEASOME.DEGRADATION 0.01
LAGGING.STRAND.SYNTHESIS 0.01
APC.C.CDH1.MEDIATED.DEGRADATION.OF.CDC20.AND.OTHER.APC.C.CDH1.TARGETED. 0.01
PROTEINS.IN.LATE.MITOSIS.EARLY.G1

TELOMERE.C.STRAND.LAGGING.STRAND.SYNTHESIS 0.01
DNA.REPLICATION.PRE.INITIATION 0.01
TRANSPORT.OF.MATURE.TRANSCRIPT.TO.CYTOPLASM 0.01
REGULATION.OF.APC.C.ACTIVATORS.BETWEEN.G1.S.AND.EARLY.ANAPHASE 0.01
RNA.POLYMERASE.ILTRANSCRIPTION.TERMINATION 0.01
SCF.BETA.TRCP.MEDIATED.DEGRADATION.OF.EMI1 0.01
AUF1.HNRNP.DO.DESTABILIZES.MRNA 0.01
BIOC_CASPASEPATHWAY 0.01
HSA04612 0.01
NEGATIVE.REGULATORS.OF.RIG..MDAS5.SIGNALING 0.01
SWITCHING.OF.ORIGINS.TO.A.POST.REPLICATIVE.STATE 0.01
REV.MEDIATED.NUCLEAR.EXPORT.OF.HIV.RNA 0.01
CYCLIN.E.ASSOCIATED.EVENTS.DURING.G1.S.TRANSITION 0.01
WP1782.APC.C.MEDIATED.DEGRADATION.OF.CELL.CYCLE.PROTEINS 0.01
TRANSPORT.OF.THE.SLBP.DEPENDANT.MATURE.MRNA 0.01
M.PHASE 0.01
ORC1.REMOVAL.FROM.CHROMATIN 0.01
HSA04940 0.01
NEP.NS2.INTERACTS.WITH.THE.CELLULAR.EXPORT.MACHINERY 0.01
WP2672.1SG15.ANTIVIRAL.MECHANISM 0.01
TRANSPORT.OF.MATURE.MRNAS.DERIVED.FROM.INTRONLESS.TRANSCRIPTS 0.01
EXTENSION.OF.TELOMERES 0.01
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NAME FDR Q-value
HSA03030 0.01
APC.C.CDC20.MEDIATED.DEGRADATION.OF.SECURIN 0.01
ER.PHAGOSOME.PATHWAY 0.01
WP1795.CHOLESTEROL.BIOSYNTHESIS 0.01
CLEAVAGE.OF.GROWING.TRANSCRIPT.IN.THE.TERMINATION.REGION 0.01
REGULATION.OF.CHOLESTEROL.BIOSYNTHESIS.BY.SREBP.SREBF. 0.01
WP75 TOLL.LIKE.RECEPTOR SIGNALING.PATHWAY 0.01
BIOC_ATRBRCAPATHWAY 0.01
TRANSPORT.OF.THE.SLBPINDEPENDENT.MATURE.MRNA 0.01
WP2796.CLASS.|. MHC.MEDIATED.ANTIGEN.PROCESSING.AMP.PRESENTATION 0.01
WP2797 REGULATION.OF.LIPID.METABOLISM.BY.PEROXISOME.PROLIFERATOR ACTIVATED. 0.01
RECEPTOR.ALPHA.PPARALPHA.

AUTODEGRADATION.OF.CDH1.BY.CDH1.APC.C 0.01
REGULATION.OF.DNA.REPLICATION 0.7
VIF.MEDIATED.DEGRADATION.OF.APOBEC3G 0.01
SCF.SKP2.MEDIATED.DEGRADATION.OF.P27.P21 0.01
REGULATION.OF.LIPID.METABOLISM.BY.PEROXISOME.PROLIFERATOR ACTIVATED.RECEPTOR. ) 10
ALPHA.PPARALPHA.

REGULATION.OFMRNA STABILITY.BY.PROTEINS THAT.BIND.AU.RICH.ELEMENTS 0.01
TRANSPORT.OF. MATURE.MRNA.DERIVED.FROM.AN.INTRONLESS. TRANSCRIPT 0.01
HSA00900 0.01
HSA04120 0.01
IKK.COMPLEX.RECRUITMENT.MEDIATED.BYRIP1 0.01
WP1858 MITOTIC.G1.G1.5.PHASES 0.01
TRANSPORT.OF. MATURE.MRNA.DERIVED.FROM.AN.INTRON.CONTAINING. TRANSCRIPT 0.01
TRANSPORT.OF RIBONUCLEOPROTEINS.INTO.THE.HOSTNUCLEUS 0.01
BIOC_PROTEASOMEPATHWAY 0.7
HSA05330 0.01
WP466.DNA.REPLICATION 0.02
HSA00970 0.02
HSA04620 0.02
CDK.MEDIATED.PHOSPHORYLATION.AND.REMOVAL.OF.CDC6 0.02
CDC20.PHOSPHO.APC.C.MEDIATED.DEGRADATION.OF.CYCLIN.A 0.02
CDT1.ASSOCIATION.WITH.THE.CDC6.ORC.ORIGIN.COMPLEX 0.02
APC.C.CDC20.MEDIATED.DEGRADATION.OF.MITOTIC.PROTEINS 0.02
GLI3.IS.PROCESSED.TO.GLI3R.BY.THE.PROTEASOME 0.02
WP2659.DEADENYLATION.DEPENDENT.MRNA.DECAY 0.02
DEGRADATION.OF.AXIN 0.02
WP2706.ACTIVATION.OF.GENE.EXPRESSION.BY.SREBP.SREBF. 0.02
WP314.FAS.PATHWAY.AND.STRESS.INDUCTION.OF.HSPREGULATION 0.02
RNA.POLYMERASE.I.TRANSCRIPTION 0.02
WP254.APOPTOSIS 0.02
WP2773.DEGRADATION.OF.BETA.CATENIN.BY.THE.DESTRUCTION.COMPLEX 0.02
NUCLEAR.IMPORT.OF. REV.PROTEIN 0.02
ACTIVATION.OF.GENE.EXPRESSION.BY.SREBF.SREBP. 0.02
RNA.POLYMERASE..PROMOTER ESCAPE 0.02
RESOLUTION.OF.SISTER.CHROMATID.COHESION 0.02
P53.DEPENDENT.G1.5.DNA.DAMAGE.CHECKPOINT 0.02
AUTODEGRADATION.OF.THE.E3.UBIQUITIN.LIGASE.COP1 0.02
ASSEMBLY.OF THE.PRE.REPLICATIVE.COMPLEX 0.02
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NAME FDR Q-value
ACTIVATION.OF.THE.PRE.REPLICATIVE.COMPLEX 0.02
G1.5.DNA.DAMAGE.CHECKPOINTS 0.02
INTERACTIONS.OF REV.WITH.HOST. CELLULAR.PROTEINS 0.02
WP2652.MITOTIC.PROMETAPHASE 0.02
WP1896.REGULATION.OF APOPTOSIS 0.02
CROSS.PRESENTATION.OF.SOLUBLE.EXOGENOUS. ANTIGENS.ENDOSOMES. 0.02
MITOCHONDRIAL. TRANSLATION.INITIATION 0.02
BIOC_DEATHPATHWAY 0.02
DEGRADATION.OF.GLI1.BY.THE.PROTEASOME 0.02
P53.INDEPENDENT.DNA.DAMAGE.RESPONSE 0.02
P53.DEPENDENT.G1.DNA.DAMAGE.RESPONSE 0.02
DEADENYLATION.DEPENDENT.MRNA.DECAY 0.02
POST.ELONGATION.PROCESSING.OF.INTRON.CONTAINING.PRE.MRNA 0.02
DEGRADATION.OF.DVL 0.02
HSA05332 0.02
MITOTIC.PROMETAPHASE 0.02
$37.MUTANTS.OF BETA.CATENIN.AREN.T.PHOSPHORYLATED 0.02
PHOSPHORYLATION SITE.MUTANTS.OF.CTNNB1.ARENOT.TARGETED.TO.THEPROTEASOME. 1,
BY.THE.DESTRUCTION.COMPLEX

METABOLISM.OF.MRNA 0.02
P53 INDEPENDENT.G1.5.DNA.DAMAGE.CHECKPOINT 0.02
STABILIZATION.OF P53 0.02
AMER1.MUTANTS.DESTABILIZE. THE.DESTRUCTION.COMPLEX 0.02
REGULATION.OF ACTIVATED.PAK.2P34.BY.PROTEASOME.MEDIATED.DEGRADATION 0.02
WP1890.PROCESSING.OF CAPPED.INTRONLESS.PRE.MRNA 0.02
DELETIONS.IN.THE.AMER1.GENE.DESTABILIZE THE.DESTRUCTION.COMPLEX 0.03
UBIQUITIN.DEPENDENT.DEGRADATION.OF.CYCLIN.D1 0.03
WP1807.DOUBLE.STRAND.BREAK REPAIR 0.03
MRNA.3.END.PROCESSING 0.03
ACTIVATION.OF.APC.C.AND.APC.C.CDC20.MEDIATED.DEGRADATION.OF MITOTIC.PROTEINS ~ 0.03
ACTIVATION.OF.NFKAPPAB.IN.B.CELLS 0.03
UBIQUITIN.MEDIATED.DEGRADATION.OF. PHOSPHORYLATED.CDC25A 0.03
CHROMOSOME.MAINTENANCE 0.03
WP2507.NANOMATERIALINDUCED.APOPTOSIS 0.03
T41.MUTANTS.OF BETA.CATENIN.AREN.T.PHOSPHORYLATED 0.03
$33.MUTANTS.OF.BETA.CATENIN.AREN.T.PHOSPHORYLATED 0.03
AXIN.MISSENSE.MUTANTS.DESTABILIZE. THE.DESTRUCTION.COMPLEX 0.03
DELETIONS.IN.THE.AXIN.GENES.IN.HEPATOCELLULAR.CARCINOMA RESULT.IN.ELEVATED.WNT.
SIGNALING 0.03
DEGRADATION.OF.GLI2.BY.THE.PROTEASOME 0.03
MISSPLICED.GSK3BETA.MUTANTS.STABILIZE.BETA.CATENIN 0.03
TRUNCATIONS.OF AMER1.DESTABILIZE. THE.DESTRUCTION.COMPLEX 0.03
DEGRADATION.OF BETA.CATENIN.BY.THE.DESTRUCTION.COMPLEX 0.03
RNA.POLYMERASE.| TRANSCRIPTION.INITIATION 0.03
VPRMEDIATED.NUCLEAR IMPORT.OF PICS 0.03
HSA05161 0.03
MITOCHONDRIAL TRANSLATION. TERMINATION 0.03
545 MUTANTS.OF.BETA.CATENIN.AREN.T.PHOSPHORYLATED 0.03
HSA03022 0.03
TRUNCATED.APC.MUTANTS.DESTABILIZE THE.DESTRUCTION.COMPLEX 0.03
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NAME FDR Q-value
HH.LIGAND.BIOGENESIS.DISEASE 0.03
AXIN.MUTANTS.DESTABILIZE.THE.DESTRUCTION.COMPLEX.ACTIVATING.WNT.SIGNALING 0.03
TCF7L2.MUTANTS.DON.T.BIND.CTBP 0.03
NUCLEAR.PORE.COMPLEX.NPC.DISASSEMBLY 0.03
WP1906.RNA.POLYMERASE.IL.TRANSCRIPTION 0.03
UBIQUITIN.DEPENDENT.DEGRADATION.OF.CYCLIN.D 0.03
APC.TRUNCATION.MUTANTS.ARE.NOT.K63.POLYUBIQUITINATED 0.03
WP1816.FANCONI.ANEMIA.PATHWAY 0.03
BIOC_IL12PATHWAY 0.03
FANCONI.ANEMIA.PATHWAY 0.03
APC.TRUNCATION.MUTANTS.HAVE.IMPAIRED.AXIN.BINDING 0.03
HSA03440 0.03
PROCESSIVE.SYNTHESIS.ON.THE.LAGGING.STRAND 0.03
MITOCHONDRIAL.TRANSLATION.ELONGATION 0.04
PROCESSING.DEFECTIVE.HH.VARIANTS.ABROGATE.LIGAND.SECRETION 0.04
HIV.LIFE.CYCLE 0.04
DOUBLE.STRAND.BREAK.REPAIR 0.04
CONVERSION.FROM.APC.C.CDC20.TO.APC.C.CDH1.IN.LATE.ANAPHASE 0.04
MITOCHONDRIAL.TRANSLATION 0.04
TRNA.AMINOACYLATION 0.04
REGULATION.OF.HSF1.MEDIATED.HEAT.SHOCK.RESPONSE 0.04
HSA03013 0.04
LATE.PHASE.OFHIV.LIFE.CYCLE 0.05
ORGANELLE.BIOGENESIS.AND.MAINTENANCE 0.05
HEDGEHOG.LIGAND.BIOGENESIS 0.05
WP391.MITOCHONDRIAL.GENE.EXPRESSION 0.05
WP2751.TRANSCRIPTIONAL.REGULATION.OF.WHITE.ADIPOCYTE.DIFFERENTIATION 0.05
REGULATION.OF.PLK1.ACTIVITY.AT.G2.M.TRANSITION 0.05
WP2794.CYTOSOLIC.SENSORS.OF.PATHOGEN.ASSOCIATED.DNA. 0.05
WP2328.ALLOGRAFT.REJECTION 0.05
G2.M.TRANSITION 0.05
WP2658 HIV.LIFE.CYCLE 0.05
WP1982.SREBP.SIGNALLING 0.05
VPU.MEDIATED.DEGRADATION.OF.CD4 0.05
WP45.G1.TO.S.CELL.CYCLE.CONTROL 0.05
RNA.POLYMERASE.II.PROMOTER.ESCAPE 0.05
HSA04710 0.05
GAPFILLING.DNA.REPAIR.SYNTHESIS.AND.LIGATION.IN.TC.NER 0.05
ANTIGEN.PRESENTATION.FOLDING.ASSEMBLY.AND.PEPTIDE.LOADING.OF.CLASS..MHC 0.05
REGULATION.OF.APOPTOSIS 0.05
NOD1.2.SIGNALING.PATHWAY 0.05
GLOBAL.GENOMIC.NER.GG.NER. 0.05
ACTIVATION.OF.IRF3.IRF7.MEDIATED.BY.TBK1.IKK.EPSILON 0.05
HIV.INFECTION 0.05
RNA.POLYMERASE.ILTRANSCRIPTION.PRE.INITIATION.AND.PROMOTER.OPENING 0.05
BIOC_MITOCHONDRIAPATHWAY 0.05
HSA04668 0.05
TELOMERE.MAINTENANCE 0.05
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NAME FDR Q-value
BIOC_NKTPATHWAY 0.05
TRANSCRIPTIONAL.REGULATION.OF.WHITE.ADIPOCYTE.DIFFERENTIATION 0.06
RNA.POLYMERASE.II.HIV.PROMOTER.ESCAPE 0.06
RNA.POLYMERASE.IL.TRANSCRIPTION.INITIATION.AND.PROMOTER.CLEARANCE 0.06
WP1859.MITOTIC.G2.G2.M.PHASES 0.06
RNA.POLYMERASE.I.TRANSCRIPTION.INITIATION 0.06
GAPFILLING.DNA.REPAIR.SYNTHESIS.AND.LIGATION.IN.GG.NER 0.06
HIV.TRANSCRIPTION.INITIATION 0.06
HSA03018 0.06
REGULATION.OF.ORNITHINE.DECARBOXYLASE.ODC. 0.06
RNA.POLYMERASE.L.TRANSCRIPTION.TERMINATION 0.06
WP2363.GASTRIC.CANCER.NETWORK.2 0.06
WP2446.RB.IN.CANCER 0.06
CHEMOKINE.RECEPTORS.BIND.CHEMOKINES 0.07
NUCLEAR.ENVELOPE.BREAKDOWN 0.07
ANTIGEN.PROCESSING.CROSS.PRESENTATION 0.07
DNA.REPAIR 0.07
APOPTOSIS 0.07
ASYMMETRIC.LOCALIZATION.OF.PCP.PROTEINS 0.07
BUTYRATE.RESPONSE.FACTOR.1.BRF1.DESTABILIZES.MRNA 0.07
PROCESSING.OF.CAPPED.INTRON.CONTAINING.PRE.MRNA 0.07
HSA05142 0.07
TRANSCRIPTION.OF.THE.HIV.GENOME 0.07
WP1822.GENERIC. TRANSCRIPTION.PATHWAY 0.07
WP2746.SIGNALING.BY.THE.B.CELL.RECEPTOR.BCR. 0.07
WP2717.MITOCHONDRIAL.PROTEIN.IMPORT 0.07
VIRAL.MESSENGER.RNA.SYNTHESIS 0.07
MITOTIC.G2.G2.M.PHASES 0.08
WP1928. TELOMERE.MAINTENANCE 0.08
WP2654.MITOTIC.PROPHASE 0.08
FATTY.ACID.TRIACYLGLYCEROL.AND.KETONE.BODY.METABOLISM 0.08
WP405.EUKARYOTIC.TRANSCRIPTION.INITIATION 0.08
BIOC_VEGFPATHWAY 0.08
TRANSCRIPTION 0.08
WP1449.REGULATION.OF.TOLL.LIKE.RECEPTOR.SIGNALING.PATHWAY 0.08
WP1785.ASPARAGINE.N.LINKED.GLYCOSYLATION 0.09
HSA05321 0.09
CYTOSOLIC.SENSORS.OF.PATHOGEN.ASSOCIATED.DNA 0.09
PERK.REGULATES.GENE.EXPRESSION 0.10
WP1938.TRNA.AMINOACYLATION 0.10

Supplementary Table S3-3. Underrepresented gene sets at baseline when comparing APOE4 carriers to

non-carriers using GSEA.

NAME FDR Q-value
OLFACTORY.SIGNALING.PATHWAY 0.00
HSA04740 0.00
VOLTAGE.GATED.POTASSIUM.CHANNELS 0.01
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NAME FDR Q-value
WP2669.POTASSIUM.CHANNELS 0.01
HSA04080 0.01
POTASSIUM.CHANNELS 0.01
ACTIVATION.OF.MATRIX.METALLOPROTEINASES 0.01
STRIATED.MUSCLE.CONTRACTION 0.01
WP383.STRIATED.MUSCLE.CONTRACTION 0.02
WP129.MATRIX.METALLOPROTEINASES 0.02
WP1602.NICOTINE.ACTIVITY.ON.DOPAMINERGIC.NEURONS 0.03
HSA05034 0.03
AMINE.COMPOUND.SLC.TRANSPORTERS 0.05
COLLAGEN.FORMATION 0.06
PLATELET.DEGRANULATION 0.06
NEURONAL.SYSTEM 0.06
WP1911.SIGNALING.BY.FGFR 0.07
WP1811.EUKARYOTIC.TRANSLATION.ELONGATION 0.07
RESPONSE.TO.ELEVATED.PLATELET.CYTOSOLIC.CA2. 0.07
MUSCLE.CONTRACTION 0.09
ASSEMBLY.OF.COLLAGEN.FIBRILS.AND.OTHER.MULTIMERIC.STRUCTURES 0.09
WP2001.MIR.TARGETED.GENES.IN.ADIPOCYTES.TARBASE 0.09
SIGNALING.BY.GPCR 0.09
WP1864.MUSCLE.CONTRACTION 0.09
WP325.TRIACYLGLYCERIDE.SYNTHESIS 0.09
WP2267.SYNAPTIC.VESICLE.PATHWAY 0.09
CLASS.B.2.SECRETIN.FAMILY.RECEPTORS. 0.09
STIMULI.SENSING.CHANNELS 0.10
COLLAGEN.DEGRADATION 0.10
WP2855.DOPMINERGIC.NEUROGENESIS 0.10
AMYLOIDS 0.10
GPCR.DOWNSTREAM.SIGNALING 0.10

Supplementary Table S3-4. Overrepresented gene sets when comparing the response to fish-oil
supplementation in APOE4 carriers to non-carriers using GSEA

NAME FDR Q-value
WP1811.EUKARYOTIC.TRANSLATION.ELONGATION 0.01
FORMATION.OF.A.POOL.OF.FREE.40S.SUBUNITS 0.01
PEPTIDE.CHAIN.ELONGATION 0.01
X3.UTR.MEDIATED.TRANSLATIONAL.REGULATION 0.01
WP477.CYTOPLASMIC.RIBOSOMAL.PROTEINS 0.01
WP1813.EUKARYOTIC.TRANSLATION.TERMINATION 0.01
EUKARYOTIC.TRANSLATION.ELONGATION 0.01
L13A.MEDIATED.TRANSLATIONAL.SILENCING.OF.CERULOPLASMIN.EXPRESSION 0.01
GTP.HYDROLYSIS.AND.JOINING.OF.THE.60S.RIBOSOMAL.SUBUNIT 0.01
EUKARYOTIC.TRANSLATION.TERMINATION 0.02
VIRAL.MRNA.TRANSLATION 0.02
BIOC_RAC1PATHWAY 0.02
BIOC_CTLA4PATHWAY 0.02
CONSTITUTIVE.PI3K.AKT.SIGNALING.IN.CANCER 0.02
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NAME FDR Q-value
NONSENSE.MEDIATED.DECAY.NMD.INDEPENDENT.OF.THE.EXON.JUNCTION.COMPLEX.EJC. 0.02
WP2677 .SIGNALING.BY.TYPE.1.INSULIN.LIKE.GROWTH.FACTOR.1.RECEPTOR.IGF1R. 0.04
PIP3.ACTIVATES.AKT.SIGNALING 0.04
WP1812.EUKARYOTIC.TRANSLATION.INITIATION 0.04
PI3K.AKT.ACTIVATION 0.05
PI3K.EVENTS.IN.ERBB4.SIGNALING 0.05
NEPHRIN.INTERACTIONS 0.05
P1.3K.CASCADE 0.05
PI3K.EVENTS.IN.ERBB2.SIGNALING 0.05
PI3K.AKT.SIGNALING.IN.CANCER 0.05
WP2261.SIGNALING.PATHWAYS.IN.GLIOBLASTOMA 0.06
BIOC_EIF4PATHWAY 0.07
EFFECTS.OF.PIP2.HYDROLYSIS 0.07
WP1867.NEPHRIN.INTERACTIONS 0.07
GAB1.SIGNALOSOME 0.07
WP2583.T.CELL.RECEPTOR.AND.CO.STIMULATORY.SIGNALING 0.07
CAP.DEPENDENT.TRANSLATION.INITIATION 0.07
WP2710.NONSENSE.MEDIATED.DECAY 0.08
ROLE.OF.LAT2.NTAL.LAB.ON.CALCIUM.MOBILIZATION 0.08
DOWNREGULATION.OF.SMAD2.3.SMAD4.TRANSCRIPTIONAL.ACTIVITY 0.08
FC.EPSILON.RECEPTOR.FCERI.SIGNALING 0.08
WP1868.NETRIN.1.SIGNALING 0.08
WP2737.SRP.DEPENDENT.COTRANSLATIONAL.PROTEIN.TARGETING.TO.MEMBRANE 0.08
WP1911.SIGNALING.BY.FGFR 0.08
EUKARYOTIC.TRANSLATION.INITIATION 0.08
WP2804.HAIR.FOLLICLE.DEVELOPMENT.INDUCTION.PART.1.0F.3. 0.08
BIOC_IGF1PATHWAY 0.08
SRP.DEPENDENT.COTRANSLATIONAL.PROTEIN.TARGETING.TO.MEMBRANE 0.08
PI3K.CASCADE 0.09
WP2653.PIP3.ACTIVATES.AKT.SIGNALING 0.09
NONSENSE.MEDIATED.DECAY.NMD.ENHANCED.BY.THE.EXON.JUNCTION.COMPLEX.EJC. 0.10
BASIGIN.INTERACTIONS 0.10

Supplementary Table S3-5. Underrepresented gene sets when comparing the response to fish-oil

supplementation in APOE4 carriers to non-carriers using GSEA

NAME FDR Q-value
INTERFERON.ALPHA.BETA.SIGNALING 0.00
WP1835.INTERFERON.ALPHA.BETA.SIGNALING 0.00
INTERFERON.SIGNALING 0.00
WP619.TYPE.ILINTERFERON.SIGNALING.IFNG. 0.00
INTERFERON.GAMMA .SIGNALING 0.00
TRAF6.MEDIATED.IRF7.ACTIVATION 0.01
HSA05162 0.01
HSA05164 0.02
CYTOKINE.SIGNALING.IN.IMMUNE.SYSTEM 0.02
BIOC_PROTEASOMEPATHWAY 0.02
HSA05168 0.02
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NAME FDR Q-value
HSA04623 0.02
WP2796.CLASS..MHC.MEDIATED.ANTIGEN.PROCESSING.AMP.PRESENTATION 0.03
WP183.PROTEASOME.DEGRADATION 0.03
HSA05160 0.04
WP2784.BINDING.AND.UPTAKE.OF.LIGANDS.BY.SCAVENGER.RECEPTORS 0.05
AUF1.HNRNP.DO.DESTABILIZES.MRNA 0.05
ANTIGEN.PROCESSING.CROSS.PRESENTATION 0.05
RIG.LMDA5.MEDIATED.INDUCTION.OF.IFN.ALPHA.BETA.PATHWAYS 0.05
VIF.MEDIATED.DEGRADATION.OF.APOBEC3G 0.06
ER.PHAGOSOME.PATHWAY 0.06
WP2794.CYTOSOLIC.SENSORS.OF.PATHOGEN.ASSOCIATED.DNA. 0.06
CDK.MEDIATED.PHOSPHORYLATION.AND.REMOVAL.OF.CDC6 0.07
HSA03050 0.07
WP455.GPCRS.CLASS.A.RHODOPSIN.LIKE 0.07
WP1904.RIG..LMDA5.MEDIATED.INDUCTION.OF.IFN.ALPHA.BETA.PATHWAYS 0.09
CROSS.PRESENTATION.OF.SOLUBLE.EXOGENOUS.ANTIGENS.ENDOSOMES. 0.10
HSA04612 0.10
GLI3.IS.PROCESSED.TO.GLI3R.BY.THE.PROTEASOME 0.10
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Abstract

Background

Dietary medium-chain saturated fatty acids (MC-SFAs) have been shown to reduce total body
fat. Previously, we showed that MC-SFAs prevent body fat accumulation, despite weight gain.
Here, we aim to explore potential molecular mechanisms underlying the protective effect of
MC-SFAs on body fat gain.

Methods

The DairyHealth study examined the long-term effects of milk protein and milk fat with a
low or high content of MC-SFA. In this 12 week, randomized, double-blind, diet intervention
study, participants consumed 60g milk protein (whey or casein) and 63g milk fat (high MC-
SFA or low MC-SFA) daily in a 2 by 2 factorial design. We used microarrays to measure whole
genome gene expression changes in subcutaneous adipose tissue in a subpopulation of 12
participants, 6 in the low MC-SFA + casein group and 6 in the high MC-SFA + casein group.
Gene expression of several genes that were found to be changed by MC-SFAs was confirmed

in the full study population using qPCR.
Results

High MC-SFA resulted in an upregulation of gene expression related to citric acid cycle,
oxidative phosphorylation and a downregulation of gene expression related to complement

system and inflammation.
Conclusions

We hypothesize that the beneficial effects of MC-SFAs on prevention of fat accumulation are
mediated via increased gene expression related to energy metabolism in the adipose tissue.
Decreases in inflammation-related gene expression may have beneficial effects in relation to

cardiometabolic diseases.
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Introduction

Medium-chain saturated fatty acids (MC-SFAs) are present in several types of foods including
dairy products. Two recent meta-analyses show beneficial effects of intake of MC-SFAs
on body weight and body composition and conclude that consumption of medium-chain
triglycerides in exchange of long-chain triglycerides as part of a diet results in a reduction in

total,[1] visceral and subcutaneous body fat.[2]

In contrast to long-chain saturated fatty acids, MC-SFAs from foods are not incorporated
into chylomicrons, but are transported directly to the liver as free fatty acids. In the liver,
most of the MC-SFAs are oxidized directly[3]. This is thought to be the cause of the post-
prandial increase in energy expenditure observed after consumption of MC-SFAs.[4, 5] A
smaller fraction of the MC-SFAs is distributed via the circulation to peripheral tissues such as
the adipose tissue.[3, 6] In humans, MC-SFAs have been shown to be present in adipose tissue
after a diet enriched in MC-SFAs.[7] Moreover, in rats, medium chain fatty acids (MCFAs)
from the diet were shown to be incorporated into adipose tissue triglycerides.[8] Furthermore,
in this rat study a reduction in fat mass and a downregulation of adipogenic genes, including
peroxisome proliferator activated receptor gamma (PPARy) and CCAAT/enhancer-binding
protein alpha (C/EBPa) was observed after the MCFA-diet compared to an isocaloric high-
fat control diet. Moreover, in cultured murine and human adipocytes, incubation with the
MC-SFA octanoic acid, inhibited adipogenesis and expression of adipogenic genes.[9] Taken
together, these studies indicate that the effects dietary MC-SFAs on body weight and body
composition are not only achieved by increased fatty acid oxidation in the liver, but suggest
that MC-SFAs can affect adipose tissue as well. However, knowledge on the precise effects
of dietary MC-SFAs on adipose tissue in humans is lacking. To investigate the effects of
MC-SFAs on human adipose tissue, we studied whole genome gene expression profiles on
subcutaneous adipose tissue biopsies of the DairyHealth study . This dietary intervention
study examined the long-term effects of intake of milk fat with a low or high content of MC-
SFAs and milk protein in abdominally obese participants.[10] In this study, all intervention
groups increased their body weight, though an increase in total body fat was only observed in
the low MC-SFAs groups. The high MC-SFA groups were protected against this body fat gain

and these individuals displayed a gain in lean body mass.[11]

We aim to increase our understanding of the effects of MC-SFAs on the adipose tissue that

may explain the observed differences in body fat accumulation. To do this, we investigated the
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effects of a 12-week high MC-SFA versus a low MC-SFA diet on subcutaneous adipose tissue

gene expression profiles.

Materials and Methods

Participants

Participant recruitment procedures were described in detail previously.[10] In short,
participants were eligible for inclusion if >18 y of age, had an abdominal circumference of
>80 cm for women or 294 cm for men, and were weight stabile for > 3 months. Exclusion
criteria were diagnosis with diabetes, pregnancy, lactating, or severe cardiovascular, renal,
endocrine, or psychiatric disease. Fifty-two participants completed the study. Adipose tissue
samples were not collected from three participants (2 because of bleeding and 1refrained
from the post-intervention biopsy) and adipose tissue samples from two participants are

missing because of early defrosting.

Study design

This study is a secondary analysis of a randomized, parallel-controlled, double-blinded,
12-week diet intervention study that was designed to examine the effects of milk fat, with a
high or low MC-SFA content, and of milk protein, whey or casein, on post-prandial lipemia.
Design of the original study was described in detail previously.[10] Briefly, 52 participants
were randomized in a 2 x 2 factorial design to one of 4 diets: high MC-SFA + casein, low MC-
SFA + casein, high MC-SFA + whey, and low MC-SFA + whey. In this paper, we examined
the effects of MC-SFAs on whole genome gene expression in subcutaneous adipose tissue in
a subpopulation of 12 subjects, 6 in the high MC-SFA + casein group and 6 in the low MC-
SFA + casein groups. We chose to perform the microarray analysis in the casein groups, as
the MC-SFA-induced prevention of body fat accumulation was most pronounced in these
groups.[11] To validate findings of the microarray analyses and to examine gene expression
changes in the whey groups, we performed targeted quantitative real-time polymerase chain

reaction (QPCR) measurements on all adipose tissue samples.

All participants gave written informed consent to participate in the study and the study
protocol was approved by the Central Denmark Region Committees on Health Research

Ethics. The study was registered at clinicaltrials.gov as NCT01472666.
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Dietary intervention

Participants consumed food products containing 63g of milk fat and 60g of milk protein daily.
The milk fat contained 8.5g and 6.9g of MC-SFAs in the high MC-SFA and the low MC-SFA
groups respectively. Protein was either whey or casein. The milk fats were produced at the
Danish Cattle Research Center (Foulum, Denmark) by feeding cattle high- or low-fat diets
in order to produce low and high MC-SFA- containing milk respectively (16). Butter was
produced from these two types of milk and used as spread and in the production of rolls and
cakes. Protein powder containing whey (Lacprodan DI-9224) or casein (Miprodan 30) was

provided by Arla Foods Ingredients Group P/S (Viby ], Denmark).

The daily food products were 2 rolls, 1 cake, and 25 g of butter (corresponding to a total of
63 g of milk fat/day) and two protein shakes (a total of 60 g/day of protein). Daily energy
intake from the test products was 6,200 kJ with 42 energy percentage (E%) as fat, 37 E% as
carbohydrate, and 21 E% as protein.

A clinical dietician used the participants’ dietary registrations and their calculated energy
requirement to instruct the participants on how to incorporate the dietary supplementation

into their habitual diet.

Dual-energy X-ray absorption scan

Whole body composition, total body fat, android fat percentage, gynoid fat percentage, and
lean mass were measured by DEXA scan (Hologic Discovery A scanner, serial nr. 83986,
Hologic Inc., Danbury, USA). To generate DEXA scan output we used the Hologic software
Apex (Version 13.1.1:3).

Fat biopsies

Before and after intervention, fat biopsy specimens were taken from the abdominal
subcutaneous adipose tissue. The biopsy specimens were taken with Bergstrom needle
through a small skin incision under local analgesia with 10-15 mL lidocaine (20 g/L). The
adipose tissue was cleaned for blood with sterile saline, snap-frozen in liquid nitrogen, and
stored at -80 °C.

RNA isolation

Adipose tissue samples were homogenized in TRIzol® Reagent (Invitrogen, Breda, the

Netherlands). RNA was extracted using chloroform and purified using Qiagen RNeasy Mini
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Kit (Qaigen, Venlo, the Netherlands). RNA concentration was measured on a Nanodrop
ND 1000 spectrophotometer (Nanodrop) and integrity was assessed using an Agilent 2100
Bioanalyzer (Agilent). Samples with RIN values above 7.5 were considered suitable for

microarray and qPCR analysis.

Microarray processing

Six subjects from the high MC-SFA + casein group and six from the low MC-SFA + casein
group were selected for microarray analysis, so that each group contained the same number
of males/females and subjects with the metabolic syndrome. Microarrays were performed
before and after the intervention, resulting in a total of 24 microarrays. Total RNA was labelled
using a one-cycle cDNA labeling kit (MessageAmp II-Biotin Enhanced Kit; Ambion) and
hybridized to Genechip Human Gene 1.1 ST arrays, containing 803487 probes (Affymetrix,
Santa Clara, CA). Sample labelling, hybridization to chips and image scanning was performed

according to the manufacturers’ instructions.

Microarray analysis

Microarray analysis was performed using MADMAX pipeline for statistical analysis of
microarray data.[12] A custom annotation was used based on reorganized oligonucleotide
probes, which combines all individual probes for a gene (custom CDF[13]). This resulted
in a total of 19,621 genes. Expression values were calculated using robust multichip average
method, which includes quantile normalization.[14] Probe sets with unlogged expression
values higher than 20 on at least 1 array were selected for further statistical analysis.
Significant differences in expression were assessed using limma.[15] For all comparisons
genes were defined as significantly different when the P-value was < 0.05. The response to
the intervention in the high MC-SFA + casein and the low MC-SFA + casein groups was
determined using paired t-tests with Bayesian correction as applied in limma. Differences
in gene expression changes between the two groups were calculated from the individual log
ratios and was calculated as the response to high MC-SFA + casein compared to the response
to low MC-SFA + casein using unpaired t-tests with Bayesian correction as implemented in

limma. Microarray data are registered as GSE87382 in the Gene Expression Omnibus.

Pathway analyses

We performed pre-ranked gene set enrichment analysis (GSEA; http://www.broad.mit.

edu/gsea).[16] Briefly, genes were ranked based on the t-statistic and analyzed for over- or
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underrepresentation in predefined gene sets. Gene sets were derived from Biocarta, KEGG,
Reactome and Wikipathways databases. To increase the strength of our findings, we used a
relatively strict cut-off of FDR q < 0.1. The significant gene sets were visualized in Cytoscape

using Enrichment Map.[17]

Upstream regulator analysis

Upstream transcription regulators analyses were performed using QIAGEN’s Ingenuity
Pathway Analysis (IPA, QIAGEN Redwood City, www.qiagen.com/ingenuity). A P-value
cutoff of 0.05 was used determine differentially expressed genes. Upstream regulators were
defined significant when the P-value was below 0.05 and the z score was > 2 or < -2. Upstream
regulators with z scores > 2 were considered activated and regulators with z scores < 2 were

considered inhibited.

QPCR

To confirm microarray results, we performed qPCR in samples in the full study population.
RNA was reverse transcribed using a cDNA synthesis kit (First Strand ¢cDNA Synthesis
kit, Thermo Scientific, Leusden, the Netherlands) and analyzed by qPCR (SensiMix SYBR
No-ROX, Bioline, London, UK) on a CFX384 Real-Time System (C1000 Thermal Cycler,
Biorad, Veenendaal, The Netherlands). qPCR data were normalized using ACTB and PPIA
as housekeeping genes. A calibration curve was created from 1:10 serial dilutions of a pool of
all samples. Using this calibration curve, relative starting quantities were determined for each
gene in each sample. Expression of genes of interested were normalized by calculating log2-
ratios of relative starting quantity between gene of interest and the housekeeping genes. Genes
for qPCR were selected from the differentially expressed pathways in the microarray analysis
using several criteria. Genes were required to have P-value < 0.05 in the comparison between
the high MC-SFA + casein and the low MC-SFA + casein group, have a raw expression value
above 200 (which leads to ct-values < 34), and have primers available in the PrimerBank

database.[18] Primer sequences are shown in Supplementary Table S4-1.

Statistical analysis

Differences in baseline characteristics were analyzed using independent t-tests using IBM
SPSS Statistics, version 22.0.0.1. Body weight changes, body composition changes and qPCR
data were analyzed using one sample t-tests and independent t-tests with GraphPad Prism

version 5.04. For all analyses P-values < 0.05 were considered statistically significant.
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Results

Participant characteristics

In total, 52 subjects completed the original study. Baseline characteristics of the total
population have been reported previously.[10] In this study, we performed microarrays in
adipose tissue samples of 6 subjects in the high MC-SFA + casein group and 6 subjects in
the low MC-SFA + casein group. Baseline characteristics of these subgroups are shown in

Supplementary Table S$4-2.

Change in body weight and composition

Subjects consumed butter containing 63g of milk fat (high or low in MC-SFAs) and 60g of
protein (whey or casein) daily for twelve weeks. Changes in body weight and composition
for the full study population were reported in detail previously.[11] Briefly, body weight was
increased after intervention, though there was no difference between groups or difference
depending on MC-SFA content and protein type. Total fat percentage and gynoid fat
percentage increased when consuming the butter low in MC-SFA, whereas lean mass
increased in the participants consuming the butter high in MC-SFA. The changes in body
weight and composition in our microarray subgroups were similar to those in the full study
population (Figure 4-1 and [11]). In our subgroups, body weight increased significantly in
the low MC-SFA + casein group only (P = 0.024), though body weight changes were not
different compared to the high MC-SFA + casein group. Furthermore, only the low MC-SFA
+ casein group showed an increased total body (P = 0.045) and android fat percentage (P =
0.028). Changes in total body and android fat percentage were also different between the two
groups (P = 0.028 and P = 0.018, respectively).

Differentially expressed genes

We compared whole genome gene expression profiles after intervention to those before
intervention in the high MC-SFA + casein and the low MC-SFA + casein groups. To examine
the effects of MC-SFAs on adipose tissue, we compared the changes in gene expression
between the high MC-SFA + casein and the low MC-SFA + casein group and found 986 genes
to be differentially changed between these two groups (Figure 4-2). Principal component
analysis on the changes in expression of these 986 genes revealed a clear separation between

the low MC-SFA + casein and high MC-SFA + casein groups (Supplementary Figure S4-1).
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Pathway analysis

To gain further insight into the biological processes affected by MC-SFAs, we performed GSEA
for the difference in response between both groups and for the response within the groups.
GSEA showed that 68 gene sets were significantly upregulated and 31 were significantly
downregulated when comparing the response on high MC-SFA to the response on low MC-
SFA (Supplementary Table S4-3). These gene sets are clustered on overlapping genes and are
visualized in Supplementary Figure S4-2 and summarized in Table 4-1. Gene sets related to
citric acid cycle, oxidative phosphorylation and adipogenesis were significantly upregulated
in the high MC-SFA + casein group and significantly downregulated in the low MC-SFA +
casein group. Gene sets related to inflammation and complement cascade were significantly
downregulated by intake of high MC-SFA + casein and significantly upregulated after intake
of low MC-SFA + casein. For each of these gene set clusters, we selected the genes that were
significantly differentially changed when comparing the high MC-SFA + casein group and the
low MC-SFA + casein group. Individual expression changes upon both interventions of these

genes are visualized in Figure 4-3.

Upstream regulator analysis

To examine potential regulators of the differentially expressed genes, we performed Ingenuity
upstream regulator analysis (Table 4-2). Two transcription factors regulating lipid metabolism
and oxidative phosphorylation, PPARa and PPARGCla, were predicted to be activated by
MC-SFAs. Likewise, transcriptional regulators involved in inflammation STAT6, NFKB1 and
IKBKB were predicted to be inhibited by MC-SFAs.

QPCR validation of the microarray findings

To examine the expression changes of several selected genes of the microarray analysis in the
total study population, we performed qPCR. Genes were selected from the inflammation,
complement cascade, citric acid cycle, oxidative phosphorylation and adipogenesis pathways.
Gene expression changes in the 4 intervention groups are shown in Figure 4-4. Expression
changes of ACOX1, SLC25A10, SDHB, and IDH3B were significant for MC-SFA independent
of protein type. Within the casein groups we observed changes in similar directions as the
microarray results for both high and low MC-SFA groups for all genes, except CFH. An MC-
SFA and protein interaction effect was observed for the SLC25A10, DLAT and SDHB genes,

indicating differences in response to the MC-SFAs between the casein and the whey groups.

83



Chapter 4

Discussion

In this study, we showed that 12 weeks consumption of butter high in MC-SFA + casein in
subjects with central obesity had marked effects on subcutaneous adipose tissue gene expression
profiles compared to consumption of butter low in MC-SFA + casein. MC-SFAs induced
gene expression in energy metabolism-related pathways such as oxidative phosphorylation
and citric acid cycle as well as lipid metabolism-related pathways. Furthermore, MC-
SFAs decreased pathways related to inflammation and complement system. These effects
were observed with a simultaneous protection against body fat accumulation and provide
valuable insight into the potential mechanism behind the beneficial effects of MC-SFAs on fat

accumulation and adipose tissue metabolism.

The increase in gene expression in the citric acid cycle and oxidative phosphorylation
pathways in the high MC-SFA group could be indicative of an increase in oxidative energy
metabolism in the adipose tissue. Moreover, PPARGCla, which is the key regulator of the
oxidative phosphorylation pathway,[19] was identified as a likely upstream regulator pointing
to a potential activation of this pathway via this transcription factor. To our knowledge, these
effects of MC-SFAs on energy metabolism pathways in the adipose tissue are novel findings. In
the liver, dietary medium chain fatty acids do not require carnitine to reach the mitochondria,
but passively cross the mitochondrial membrane and are beta-oxidized rapidly. Subsequently,
the produced acetyl-CoA enters the citric acid cycle and is oxidized [3], resulting in a post-
prandial increase in energy expenditure after consumption of MC-SFAs (4, 5). MC-SFAs
have been shown to reach the adipose tissue,[7, 8] where they may be rapidly beta-oxidized.
We observed an MC-SFA-induced increase in expression of ACOX1, which codes for an
enzyme involved in fatty acid beta-oxidation. ACOXI is a target gene of PPARa, an important
regulator of fatty acid B-oxidation,[20] which was identified as a predicted upstream
regulator in our analysis. In line with this, in a study in rats, fatty acid oxidation measured as
carnitine palmitoyl transferase activity was higher when the animals were fed triglycerides
containing medium- and long-chain fatty acids compared to triglycerides containing long
chain fatty acids only.[21] In these rats, this change in fatty acid oxidation was combined with
a concurrent decrease in body fat accumulation. Another interesting PPARa-target gene of
which the expression was upregulated upon high MC-SFA is APOC3. APOCS3 inhibits LPL
activity resulting in a decreased triglyceride hydrolysis and hence a reduced uptake of fatty
acids in the adipose tissue. The potential MC-SFAs-induced increase in fatty acid oxidation,

increase in energy metabolism and decrease in uptake of fatty acids in the adipose tissue may
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result in a reduced fat storage which may explain the observed preventive effect of MC-SFAs

on body fat accumulation.

We did not observe a downregulation in expression of genes involved in adipogenesis upon
MC-SFA, which is in contrast with findings from rat studies. Sinahara et al.[21] reported a
suppressing effect of triglycerides containing medium and long-chain fatty acids compared
to triglycerides containing long chain fatty acids on adipogenesis in adipose tissue in rats, as
shown by lower fatty acid synthase (FAS) enzyme activity, though gene expression of FAS
was not affected. Similarly, another study in rats showed a downregulation in expression of
the adipogenic genes PPARy and C/EBPa in adipose tissue in response to medium chain
triglycerides.[8] We did not observe changes in adipogenesis-related gene expression,
including FAS, PPARy and C/EBPa, though it is still possible that FAS enzyme activity
may have been increased. Taken together, based on these findings, we hypothesize that the
preventive effects of MC-SFAs on body fat accumulation were not caused by a decrease in

adipogenesis.

The MC-SFA-induced downregulation in pathways related to inflammation, and especially
in genes related to the complement system may point towards a decreased inflammatory
state of the adipose tissue. Complement components are produced in adipose tissue and
are involved in both adipose tissue inflammation as well as adipose tissue metabolism.[22,
23] The MC-SFAs-induced decrease in inflammation-related pathways may be beneficial
considering the deleterious role of inflammatory pathways in the adipose tissue in initiating
and sustaining the low-grade inflammatory state that is associated with obesity.[24] To our
knowledge, no previous studies have observed effects of MC-SFAs on inflammation-related
gene expression in adipose tissue in humans. In mice, a high-fat diet supplemented with
medium chain triglycerides resulted in significantly lower serum IL-6 levels and higher IL-10
levels compared to an isocaloric high-fat diet. In addition, hepatic activation of NF-kB and
p38 MAPK was reduced.[25] Our upstream regulator analysis identified NF-kB and IKBKB
as potential inhibited upstream regulators in the adipose tissue, indicating that an increased
MC-SFA intake may inhibit the NF-«xB pathway.

The changes in inflammation-related gene expression were not paralleled by a reduction in
plasma inflammatory markers as no changes in IL-6, IL-1RA, high-sensitive CRP, adiponectin
and MCP-1 between the four groups were found in this study.[26] It should be noted that gene
expression of none of these markers were altered in our microarray analyses. However, gene

expression changes in the adipose tissue may be one of the first changes induced by dietary
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interventions,[27] and a reflection of this on circulating inflammation markers may only

develop after a prolonged exposure.

The qPCR analyses confirmed the described effects of MC-SFAs on gene expression in the full
casein groups. However, in the two whey groups, we did not observe the same effect of MC-
SFA. Accordingly, the changes in body fat percentage also appear less pronounced in the whey
groups.[11] One study in mice showed that whey reduced high-fat diet-induced body weight
and body fat gain compared to casein.[28] They used qPCR to measure gene expression of
a limited number of genes in adipose tissue and, inconsistent with our findings, found no
effects of whey protein on expression of genes related to energy metabolism, adipogenesis
or inflammation. It should be noted, that the genes reported in the mice study were different
from the genes observed to be differentially expressed in our study. Furthermore, differences
between species, length of the dietary intervention and dietary composition may also explain

the differential findings between this mouse study and our study.

We have used a relatively small number of subjects for the microarray analysis with 6 subjects
in the high MC-SFA + casein group and 6 subjects in the low MC-SFA + casein group.
Because of this, we found no differentially expressed genes when using FDR q-value < 0.05
as significance cutoff. Instead, we used a p-value cut-oft of 0.05 for selecting the differentially
expressed genes. For this reason, we focused this discussion mostly on the GSEA analyses and
less on individual genes. To increase the strength of our GSEA findings, we used a strict cut-
off of FDR q < 0.1. Despite the small sample size and the use of stringent cut of values, we still
observed a robust gene expression pathway effect of 12 weeks of supplementation with butter
high in MC-SFAs. Furthermore, we used qPCR to validate our findings for several genes in
the total study population and found that our microarray findings in the high or low MC-SFA

+ casein groups were largely confirmed in the full groups.

In the DairyHealth study,[10] subjects with abdominal obesity were protected from an increase
in body fat accumulation by a 12 week high MC-SFA dietary intervention compared to low
MC-SFA.[11] We investigated the underlying mechanism behind this protective effect of MC-
SFAs on adipose tissue using whole genome gene expression analyses. Our findings on gene
expression point towards an MC-SFA-induced increase in energy metabolism, an increase
in fatty acid oxidation and a decrease in fatty acid uptake in adipose tissue that is potentially
responsible for the protective effect on body fat accumulation. In addition, a decrease in
expression of genes involved in inflammation and complement system pathways may reflect

a decreased inflammatory state of the adipose tissue. Taken together, these findings indicate
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that the beneficial effects of MC-SFAs are not only achieved in the liver, but suggest that the

adipose tissue could play a key role in mediating the effects of MC-SFAs as well.
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Tables

Table 4-1. Results of the gene set enrichment analysis.

Gene set cluster High MC-SFA + casein Low MC-SFA + casein

Citric acid cycle ) l
Oxidative phosphorylation
Lipid metabolism

Inflammation

—

T
T
1
!

Complement system

2 Gene sets differentially changed in the high MC-SFA + casein compared to the low MC-SFA + casein group were
clustered and visualized using Enrichment Map in Cytoscape (Supplementary Figure S4-1). From this, gene
set clusters were selected and changes in expression in each group are shown. Full GSEA results are shown in
Supplementary Table S4-3. T, significantly upregulated; |, significantly downregulated.

Table 4-2. Top 10 potential upstream regulators explaining the differences in gene expression changes
between the high MC-SFA + casein and the low MC-SFA + casein groups.®

Upstream Molecule Type Prefiictfed Activation p-value of overlap
Regulator Activation State z-score

PPARA ligand-dependent nuclear receptor Activated 2.049 4.28E-04
ESR1 ligand-dependent nuclear receptor Inhibited -3.285 9.53E-04
PDLIM2 other Activated 2111 1.27E-03
PPARGC1A  transcription regulator Activated 2.24 3.47E-03
NFKB1 transcription regulator Inhibited -2.377 2.03E-03
STAT6 transcription regulator Inhibited -2.35 3.18E-03
MITF transcription regulator Inhibited -3.727 3.78E-03
IKBKB kinase Inhibited -2.358 3.88E-03
BID other Inhibited -2.000 5.29E-03
HRG other Inhibited -2.000 7.85E-03

2 The 10 regulators with the lowest P-value and a z-score > 2 or < -2 are shown for the difference in gene
expression changes in response to a 12-week dietary intervention containing high MC-SFA + casein compared to
low MC-SFA + casein. Z-scores predict the activation state of the regulator and are based on the gene expression
of its downstream genes. Upstream regulators with z scores > 2 are considered activated and regulators with
z-scores < 2 are considered inhibited. P-values of overlap measure the significance of the overlap between
the differentially expressed genes and the genes reported to be regulated by the upstream regulator and are
calculated using Fisher’s exact test.
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Figures

Figure 4-1. Change in total body weight, lean body weight, total fat percentage, android fat percentage
and gynoid fat percentage in the subgroups (high MC-SFA + casein and low MC-SFA + casein) selected for

Total body weight

31 *

N
1

T

Change (kg)

o
1

Change (kg)

Lean body weight

Total fat percentage

4_.

3_. #
— | p— |
§ *
o 27
oo
C
2 1
|9)

0-

-1

-1

Android fat percentage

Change (%)

the microarray analysis in this study.

Data were analysed using paired t-tests (within group changes) and independent t-tests (between groups
differences in changes) and are presented as mean + SEM. P < 0.05 is considered significant. *Significantly
different change within group. # Significantly different change between groups. Data for the full study population

was previously published in Bohl et al.[11].
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19715 genes on microarray

v

15461 genes expressed
(>20o0n 1 array)

High MC-SFA Low MC-SFA
(After — Before intervention) Overlapping (After — Before intervention)
genes: 849 genes:75 genes: 819
gene sets: 38 gene sets: 155

Difference in response
High MC-SFA Vs Low MC-SFA
genes: 986
gene sets: 99

Figure 4-2. Flow chart of gene selection methods and number of significantly differentially expressed
genes.

Genes were considered significantly different if P < 0.05.
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gene symbol  Entrez ID

High MC-SFA + casein

Low MC-SFA + casein

gene symbol  Entrez ID

High MC-SFA + casein

Low MC-SFA + casein

Complement system

C3AR1 719
c1a8 713
c1ac 714
2 717
c6 729
Cs 727
CFH 3075
PROS1 5627
CD59 966
Inflammation
ATP6VOD2 245972
ACP5 54
C3AR1 719
ALCAM 214
FPR3 2359
IL18 3606
c1a8 713
cc3 6348
CTSK 1513
c1ac 714
TNFSF13 8741
2 717
HLA-DMB 3109
ITGB8 3696
c6 729
BRCA2 675
cs 727
ATP6VOAL 535
CFH 3075
SLC40A1 30061
CcD40 958

HIST1H4E 8367
CNTNAP1 8506

H2AF) 55766
SLC11A2 4891
TRIM21 6737
CLDN19 149461
CCR10 2826
CLDN23 137075
LTB 4050
RNASE3 6037

Oxidative phosphorylation
uss 7314
NDUFB7 4713
SDHB 6390
NDUFS6 4726
cYes 54205
Citric acid cycle

DLAT 1737
DLST 1743
SDHB 6390
IDH3B 3420
PDK4 5166
Lipid metabolism
SREBF1 6720
0oDC1 4953
ACOT1 641371
SLC25A10 1468
ECHDC1 55862
VLDLR 7436
GLS2 27165
ACOX1 51
HSD17B10 3028
APOC3 345
SLC27A4 10999
ACOT7 11332
AGPAT4 56895
PDK4 5166
PLTP 5360

LIPA 3988

-0.3

Log ratio

|_EEEEEes |

0

0.3

Figure 4-3. Heatmap showing log ratios per individual of the differentially expressed genes in gene sets
related to a) complement system and inflammation, and b) oxidative phosphorylation, citric acid cycle
and lipid metabolism.
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Supplemental Tables

Supplementary Table S4-1. Primer sequences used to quantify gene expression by qPCR.

Gene Forward primer Reverse Primer

ACTB GAAGAGCTACGAGCTGCCTGA GAACCGCTCATTGCCAATG
PPIA TCTTTGGGACCTTGTCTGCAA CCCACCGTGTTCTTCGACAT
cias AGGTGAATCGGGAGACTACAA CACTGCGGGGCTCATAATTG
C3AR1 CCCTACGGCAGGTTCCTATG GACAGCGATCCAGGCTAATGG
CFH GTGAAGTGTTTACCAGTGACAGC AACCGTACTGCTTGTCCAAAA
ACOX1 ACTCGCAGCCAGCGTTATG AGGGTCAGCGATGCCAAAC
SLC25A10 ACCTGCTCAAGGTGCATCTG CAGGGAGTAGGTCATCTGTCTG
DLAT CGGAACTCCACGAGTGACC CCCCGCCATACCCTGTAGT
SDHB ACAGCTCCCCGTATCAAGAAA GCATGATCTTCGGAAGGTCAA
IDH3B TAGTGCAGAATACGCAGTCTTTG CAGCATGTTGGAAGCCGAC

Supplementary Table S4-2. Baseline characteristics of the 12 participants in the high MC-SFA + casein and
the low MC-SFA + casein groups in which subcutaneous adipose tissue gene expression microarrays were

performed.®

High MC-SFA + casein (N=6) Low MC-SFA + casein (N=6) P-value

Male/female ratio 4/2 4/2

Age (years) 63+6 64+ 16 0.91
Total cholesterol (mmol/L) 6.3%1.1 51=x1 0.69
LDL cholesterol (mmol/L) 4.1+0.9 3+0.8 <0.05
HDL cholesterol (mmol/L) 1.5+04 1.6+04 0.83
Triglycerides (mmol/L) 1.6+1 1+04 0.22
Waist circumference (cm) 1042+9.8 103.9+9.3 0.96
Hip circumference (cm) 1069 +3.7 107.2+7.6 0.95
Waist to hip ratio 0.97 £ 0.06 0.97 £0.08 0.97
Weight (kg) 85.5+15.2 85.1+11.7 0.96
Height (cm) 1.78 £ 6.84 1.74 £ 6.08 0.31
BMI (kg/m2) 27 +£49 28+33 0.68
Systolic blood pressure (mmHg) 126 + 14 136+ 13 0.20
Diastolic blood pressure (mmHg) 76+7 80+8 0.39

2 Data presented as mean = sd. Means were compared using independent t-tests and corresponding P-values

are shown.
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Supplemental Figures

20

PC2: 11% expl. var

® High MC-SFA
Low MC-SFA

-20 0 20
PC1: 44% expl. var

Supplementary Figure S4-1. Principal component analysis of changes (log2-ratios) in expression of genes
differentially regulated between the high MC-SFA + casein (black dots) and low MC-SFA + casein group

(grey dots).
Every dot represent one subject.
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Supplementary Figure S4-2. Enrichment map showing gene sets significantly differentially changed in
the high MC-SFA + casein compared to the low MC-SFA + casein group.

Nodes represent gene sets, whereas the size of the node reflects the number of genes in the gene set. Dotted
lines indicate overlapping genes between gene sets. Node color indicates up-regulation (red), down-regulation
(blue) or not affected (white) in the high MC-SFA + casein group (inside node) or the low MC-SFA + casein (outer
node) subjects. Clusters of related gene sets were assigned a label based on the gene sets present in the cluster.
Abbreviations: BIOC, BioCarta Pathway Diagrams; KEGG, Kyoto Encyclopedia of Genes and Genomes database;
NCI, Nature Pathway Interaction database; REACT, Reactome knowledgebase; WIP_HS, WikiPathways Homo
Sapiens.
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Chapter 5

Abstract

Background

Differences in white blood cell whole genome gene expression responses to a high-fat challenge
have been observed between lean and obese individuals. It is unknown if a high fat challenge
combined with transcriptomics is able to distinguish smaller changes in health status, such
as those induced by a short-term high-calorie diet. We aimed to identify the additional value
of determining whole genome gene expression changes in response to a high-fat challenge
compared to assessment at fasting only upon a 4-week high-fat high-calorie diet. In addition,
we aimed to identify whether this diet can induce a shift in gene expression profiles in healthy

subjects towards metabolic syndrome-like gene expression profiles.
Methods

Healthy subjects underwent a 4-week high-fat high-calorie diet. High-fat challenges were
performed in these subjects before and after the diet and in subjects with the metabolic
syndrome. Whole blood gene expression was measured at fasting and at 120 and 360 min

after the high-fat challenges.
Results

After the high-fat high-calorie diet, the number of probes and pathways changed was ~2 and
~3 times higher, respectively, at fasting compared to post-prandial after the high fat challenge.
Moreover, upon the high-fat high-calorie diet, a shift in gene expression profiles towards
the metabolic syndrome was observed in 10 pathways at fasting, whereas after the high fat
challenge this shift towards the metabolic syndrome was observed in one pathway at 120 min

and one pathway at 360 min.
Discussion

Compared to gene expression responses upon a high fat challenge, fasting gene expression
profiles are more responsive to a 4-week high-fat high-calorie diet and show a larger shift

towards the metabolic syndrome.
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Introduction

One of the main challenges in nutritional science is the measurement of diet-induced health
effects. As the effects of nutrition are relatively small and may take decades to become
apparent, researchers are focusing on developing more sensitive measurements of health
status than conventional static measurements at fasting. A new approach to detect early
and small disturbances in metabolic health is to examine the ability of a person to adapt
to a metabolic challenge, which is known as phenotypic flexibility (1). Metabolic challenge
tests are increasingly being used in nutritional research and are hypothesized to enlarge the
relatively small effects of nutrition on health. Several types of challenge tests are used, such as
the oral glucose tolerance test, the mixed meal test and the high-fat test. In the latter, subjects
consume a large amount of fat, usually as a shake, and measurements are performed in the

fasted state and at several time points post-prandially over the course of several hours.

Combining these high-fat challenge tests with high-throughput -omics tools, such as
transcriptomics, has proven valuable for magnifying differences in health status. Esser et al.
(2) showed that differences in white blood cell gene expression profiles between lean and
obese individuals were larger after a high-fat challenge compared to the fasted state. In
addition to this use as a biomarker, blood cell transcriptome analyses have also provided us
with an increased mechanistic understanding of the changes in the cellular processes caused

by diet that may be associated with metabolic disease (2-4).

To examine whether challenge tests can also be used to study more subtle changes in metabolic
health caused by diet, we recently published an intervention study, in which the response of
plasma metabolites to a high-fat challenge was examined in healthy subjects both before as
well as after a 4-week high-fat high-calorie diet and compared to responses in MetS subjects
(5). Several plasma markers, shifted towards the levels of the MetS subjects after the diet. For
example, the increases in postprandial levels of some eicosanoids (11(S)-HETE, 12(S)-HETE,
and 19,20-DiHoPe) were significantly diminished in healthy subjects by the high-fat high-

calorie diet, resulting in a response similar to that of MetS subjects.

As white blood cell gene expression changes in response to a high-fat challenge have been
shown to be different between lean and obese individuals, it is possible that these may also
be used to assess more subtle differences in health status, such as those induced by a short-
term high-calorie diet. Therefore, in this study we will answer the following questions. Firstly,

we will examine the additional value of studying whole genome gene expression changes in
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response to a high-fat challenge compared to studying only fasting gene expression profiles.
Secondly, we examine whether the 4 week high-fat high-calorie diet can induce a shift in gene
expression profiles in the healthy subjects towards more MetS-like profiles, both at fasting and
post-prandially.

Methods

Subjects

Men aged between 35 and 65 years were recruited from a pool of volunteers from the
Netherlands Organisation for Applied Scientific Research (TNO) database and with the
assistance of a recruitment agency. In total, 20 men participated in the study. Of these men,
10 were healthy, and 10 had two or more characteristics of MetS. Inclusion criteria for the
healthy men were age 35-65 yr, BM 23-30 kg/m2, normal Dutch eating habits and eating
without restriction, defined as a score of <3.25 on the Dutch Restrained Eating Questionnaire.
Inclusion criteria for the MetS group were age 35-65 yr, BMI 23-40 kg/m2, normal Dutch
eating habits, and 2 or more cardiometabolic risk factors, defined as waist circumference >
94 cm, TGs = 1.7 mM, HDL cholesterol < 0.9 mM, systolic blood pressure > 130 mm Hg
and diastolic blood pressure > 85 mm Hg and fasting glucose > 5.6 mM. Exclusion criteria
for both groups were a history of medical or surgical events that may significantly affect the
study outcome, including medication for diabetes, cholesterol-lowering medication, eating
disorders, food allergy, smoking, consuming more than 28 U/wk of alcohol, and exercising
more than 3 h/wk. Written informed consent was obtained from each participant after
receiving an explanation of the procedures. Before the start of the study, all subjects underwent
a screening that involved an anamnesis about medical history, lifestyle and eating behavior,
measurement of body composition, blood pressure, waist circumference, and collection of

blood for clinical laboratory tests.

Study design

The design of the study was described in detail previously (5) and is visualized in Figure
5-1. Briefly, 9 healthy and 10 MetS men were included in this study. It should be noted that
compared to the earlier paper, we have one less healthy subject and one more MetS subject.
The healthy subjects underwent a 4 week high-fat high-calorie dietary intervention. The

intervention diet consisted of a fixed amount of commercially available foods high in fat,
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sugar, or both and was consumed on top of their habitual diet (see below for details). Before
and after the 4 week intervention period, the healthy subjects underwent a high-fat challenge
consisting of whipping cream, water and sugar (see below for details). The MetS subjects
underwent the high-fat challenge once. An independent medical ethics committee (Medical
Ethics Committee (METC) of Brabant, Tilburg, The Netherlands) approved the research

protocol.

Intervention diet

Once a week, the healthy subjects received a shopping bag with the items of the high-fat
high-calorie diet. They were asked to maintain their habitual diet and lifestyle. In addition to
their habitual diet, they were asked to consume the items of the high-fat high-calorie diet. The
calculated nutritional composition of the weekly diet was 36,328 kJ, 215 g protein, 440 g fat,
and 965 g carbohydrates, resulting in a daily surplus of 5,190 kJ (= 1240 kcal), 31 g protein, 63
g fat, and 138 g carbohydrates. Subjects were instructed to divide their dietary items equally
over the course of the week. For the final week, they received an additional snack pack on top
of the intervention diet, containing 12,805 kJ, 72 g protein, 179 g fat and 290 g carbohydrates,

in order to maintain the increase in body weight.

High-fat shake

The high-fat challenge was a shake consisting of 53% whipped cream, 3% sugar, and 44% water.
The volume of the shake was 500 ml. The nutritional composition of the shake per 100 g was
640 kJ, 1.6 g protein, 16 g fat, and 3.2 g carbohydrates. The subjects were instructed to restrict
their physical activity and alcohol consumption the day before test days. A standardized low-
fat meal (1922 k], 30 g protein, 7 g fat, and 64 g carbohydrates) was provided for consumption
at home the evening before the test days. A fasting blood sample (t = 0 min) and two post-

prandial blood samples (t = 120 min and t = 360 min) were used for the microarray analysis.

RNA isolation and microarray analysis

Blood samples were taken before consumption of the shake in the fasted state (t = 0 min)
and at two postprandial time points (t = 120 min and t = 360 min). At these time points, 2.5
ml of blood was collected in PAXgene® Blood RNA Tubes. RNA extraction was performed
as described previously in detail (6). Briefly, total RNA was extracted using glass beads and
RNAzol (Campro Scientific, Veenendaal, The Netherlands). RNA integrity was examined
using the RNA 6000 Nano Lab-on-a-Chip kit and a bioanalyzer 2100 (Agilent Technologies,
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Amstelveen, The Netherlands). The [llumina® TotalPrep™ RNA Amplification Kit (Ambion, art.
No.AM-IL1791) was used to synthesize biotin labeled cRNA starting with 500 ng total RNA.
The concentration of the labeled cRNA was measured using the Nanodrop spectrophotometer.
The amount of biotinylated cRNA which was hybridized onto the Illumina HumanHt12-v4
Expression Beadchip was 750 ng. Illumina’s Genomestudio v1.1.1 software with the default

settings advised by Illumina was used for Gene Expression analysis.

Microarray analysis

Microarray QC and pre-processing were performed using Arrayanalysis.org (7). Three
samples did not pass QC-criteria and were left out of further analysis. Probe expression
values were calculated using the neqc algorithm from the limma package (8), which performs
background correction, quantile normalization and log2-transformation of the data. We
filtered out low expressing probes by selecting only the probes with a detection p-value <
0.01 in at least 5 arrays for further analysis. Further statistical analysis on the remaining
17,184 probes was performed in R using the limma package. For all comparisons, probes
were defined as significantly different when the P-value was < 0.05. Differences in baseline
expression between the healthy and MetS subjects were identified using the contrast (MetS_
t0- Healthy_ before _t0). Expression changes in response to the challenge at t=120 min in the
healthy subjects after intervention were identified using the contrast (Healthy after t120-
Healthy_after _t0). Differences in challenge response at t=120 min between the MetS and the
healthy subjects were identified using the contrast ((MetS_t120-MetS_t0)-(Healthy_before_
t120-Healthy_ before _t0)). For the differences at other time points and between different
groups, contrasts were defined in similar fashion. To take into account the paired design of

our study, subjects were treated as random effects using the “duplicateCorrelation” function.

Pathway analysis

To examine changes in gene expression pathways, we performed gene set enrichment analysis
(GSEA; http:/www.broad.mit.edu/gsea) (9). Genes were ranked based on the t-statistic and
analyzed for over- or underrepresentation in predefined gene set using pre-ranked GSEA. In
order to end up with one value for each gene, we used the highest absolute t-statistic value
when multiple probes were annotated to the same gene. The gene set database was custom-
made and consisted of gene sets from the Biocarta, KEGG, Reactome and Wikipathways
databases. We used a cut-off of FDR q < 0.25 for statistical significance. Significant gene sets

were visualized in Cytoscape using enrichment map (10).

104



High-fat challenges, shift towards metabolic syndrome

Statistics

Differences in subject characteristics between the two groups were analyzed using independent
t-tests Changes in subject characteristics in the healthy group were analyzed using paired
t-tests. P-values < 0.05 were considered significant. IBM SPSS Statistics, version 22.0.0.1 was

used for all analyses.

Results

Subject characteristics

Several metabolic markers have been analyzed and discussed in detail previously (5). In this
study, microarray data was available in 9 healthy subjects and 10 MetS subjects. Characteristics
of these subjects are shown in Table 5-1 and have been published before for a similar subset of
the population (5). The MetS subjects had a higher body weight, BMI, total cholesterol, LDL
cholesterol, glucose, insulin, and waist-to-hip ratio compared to the healthy subjects. After
the high-fat high-calorie diet, the healthy subjects showed an increase in body weight, BMI,

triglycerides, insulin and waist-to-hip ratio (Table 5-1).

Microarray analysis

High-fat challenges were performed in subjects with MetS and in healthy subjects before and
after the dietary intervention. During each of these challenges, we performed microarray
analyses at fasting and at 120 and 360 min post-prandially. To identify if high-fat challenges
provide additional information compared to fasting measurements we examined the changes
in gene expression both at fasting as well as during the high-fat challenge. To determine if the
4-week high-fat high-calorie diet induced a shift in gene expression towards a more MetS-like
profile, we examined the overlap between subjects with MetS vs healthy subjects, and healthy
subjects after vs before invention, both at fasting and post-prandially. All these analyses were

done at probe (Figure 5-2) and pathway level (Table 5-2).

Do high-fat challenges provide additional information compared to fasting?

We examined whether measurement of gene expression responses upon a high-fat challenge
could provide additional information compared to measurement of gene expression profiles at
fasting.. Firstly, we examined how many probes were differently changed by the intervention

diet in the healthy subjects. At fasting, these were 2007 probes (Figure 5-2a, dashed lines),
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whereas in the response to the high-fat challenge this number was lower, with 1170 and 716
probes differentially expressed at 120 and 360 min respectively after the challenge upon the 4

week intervention (Figure 5-2b, dashed lines).

We also examined the above research question on the pathway level. After the intervention
diet, at fasting healthy subjects showed changes in expression of 568 gene sets, of which 71
were upregulated and 497 were downregulated. The post-prandial response to the challenge
showed changes in 3 gene sets (3 upregulated, 0 downregulated) at 120 min and 25 gene
sets (1 upregulated, 24 downregulated) at 360 min. The gene sets that were changed and
the direction of changes induced by the intervention at fasting and post-prandially are

summarized in Table 5-2.

Does the intervention diet cause a shift towards the metabolic syndrome?

We examined whether the intervention diet induced a shift in gene expression profiles in
the healthy subjects upon the 4 weeks high fat high calorie intervention towards the gene
expression profiles of the MetS subjects. This was done both at fasting and for the high-fat

challenge response at the probe and pathway level.

We determined the overlap of significantly differentially expressed probes due to the diet in
healthy subjects and the probes that were significantly different between MetS and healthy
subjects before the intervention. At fasting this overlap was found to be 319 probes (Figure
5-2a, dotted lines), and in response to the high-fat challenge the overlap was in a similar range

with 287 and 192 probes at 120 and 360 min respectively (Figure 5-2b, dotted lines).

As can be observed from the highlighted pathways in Table 5-2, at fasting, a large overlap
is present between the changes induced by the diet in healthy subjects and the pathways
differently expressed in the MetS subjects. Pathways related to oxidative phosphorylation,
and translation showed an upregulation upon the high-fat high-calorie diet and a shift in
expression towards MetS. Pathways related to antigen presentation, B cell receptor signaling,
chromatin organization, insulin receptor signaling, lipid metabolism, notch signaling, T cell
receptor signaling and toll-like receptor cascades showed a downregulation upon the high-fat

high-calorie diet and a shift in expression towards MetS.

Postprandially, two pathways (Table 5-2, highlighted in yellow) were changed by the diet in
healthy subjects that were also different between MetS and healthy. Healthy subjects before
intervention showed a downregulation of the chaperone gene activation pathways at 120 min.

After intervention, this down regulation was no longer present, resembling the post-prandial
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response of MetS subjects. To illustrate how the expression of the individual genes in the
chaperone activation pathways were changed post-prandially a heatmap with individual gene
expression changes of al subject at 120 min postprandial is shown in Figure 5-3. At 360 min
after the challenge, expression of genes in the TLR cascades pathways showed a shift towards
MetS. In the healthy subjects before intervention, this pathway was upregulated, whereas
after intervention, this upregulation was less pronounced, which was similar to the MetS
subject, that showed no postprandial change in TLR cascade pathways. To illustrate how the
expression of the individual genes in the TLR cascade pathways were changing postprandially
a heatmap with individual gene expression changes of all subjects at 360 min postprandial is

shown in Figure 5-4.

Discussion

The combination of high-fat challenge tests with transcriptome measurements has been
suggested as a suitable tool for picking up subtle changes in health status. In this study, we
used a 4-week high-fat high-calorie diet to induce a small change in health status in apparently
healthy subjects. After this dietary intervention, the number of probes and pathways changed
was ~2 and ~3 times higher at fasting compared to post-prandially. Moreover, after the high-
fat high-calorie diet, at fasting, a shift towards MetS was observed in 10 pathways, whereas
postprandial gene expression responses showed this shift towards MetS in one pathway at 120

min and one pathway at 360 min.

In this study, first, we examined the additional value of studying whole genome gene expression
changes in response to a high-fat challenge compared to studying fasting gene expression
profiles only. The ~2 times higher number of probes changed and the many more pathways
changed at fasting compared to post-prandially shows that fasting changes are much more
pronounced than post-prandial high-fat challenge-induced changes after the 4 week high-fat
high-calorie diet. This indicates that the high-fat high-calorie diet-induced changes in fasting
gene expression likely provide more information than using high-fat challenges. A potential
explanation may be the loss of power as the fasting changes are based on a comparison of two
timepoints, before and after intervention, whereas the post-prandial measurements are based
on six timepoints, fasting and postprandial, both before and after intervention. The additional
variation that is induced by including these extra timepoints may decrease statistical power.

Another likely explanation may the combination of the high-fat high-calorie intervention
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with the high fat challenges, as the daily exposure to high-fat meals from the intervention may
have caused changes in the response to high-fat meals, such as the high-fat challenge. To sum
up, based on this study, the additional value of high-fat challenge tests to study the effects of a

high-fat high-calorie dietary intervention remains questionable.

We also examined whether the 4-week high-fat high-calorie diet induced a shift in gene
expression profiles towards the profiles of MetS subjects. At fasting, in healthy subjects, the 4
week diet intervention caused changes in gene expression that were similar to the differences
in gene expression observed between MetS subjects and healthy subjects. These findings
coincide with the diet-induced changes in body weight, BMI, triglycerides, insulin and waist-
to-hip ratio, which were all going in the direction of the MetS subjects. The gene expression
response to the challenge remained largely unchanged in healthy subjects after intervention
diet, with expression of less genes and pathways changed when compared to diet-induced

changes at fasting.

At fasting, we observed a higher expression of OXPHOS genes in MetS subjects compared to
healthy subjects before the intervention and an increase in expression in healthy subjects after
the diet intervention. Other studies have also reported increased OXPHOS gene expression
in whole blood in in obese vs lean subjects (11) and MetS vs healthy subjects (12). While the
cause of this increase in expression is not completely understood, it has been suggested that
increased OXPHOS gene expression may be caused by an increased energy demand with

obesity (11).

Other pathways that showed a change at fasting due to the intervention in the direction of
MetS were related to inflammation, such as T-cell receptor signaling, B-cell receptor signaling
and TLR cascades. Genes in these pathways were lower expressed in MetS subjects compared
to healthy subjects and showed a decrease in expression in healthy subjects after the dietary
intervention. Since MetS is associated with a low-grade chronic inflammation (13, 14),
we did not expect this lower expression in Mets subjects and the downregulation in gene
expression upon the intervention. One might expected that a constant exposure in blood
to slightly elevated pro-inflammatory molecules such as TNF-a and IL-6 (15) results in
increased expression of inflammation-related genes in blood cells. Other studies did indeed
show an increased expression of inflammation-related genes in subjects with MetS compared
to healthy controls (16). However, one study examined the effects of a 7-day high-fat diet in
healthy men and observed a decrease in TLR2 protein expression in PBMCs and a reduced

ex-vivo cytokine excretion upon stimulation with a TLR2 agonist (17). These findings are
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consistent with our results, though the mechanism behind the diminishing effects of a high-

fat diet on TLR cascade pathways remains unclear.

Genes related genes related to chaperone gene activation showed a switch in challenge response
at 120 min towards MetS induced by the diet. After the diet, the downregulation of these
pathways was no longer present, which was also observed in the MetS subjects. Chaperone
gene activation is part of the unfolded protein response (UPR), which is a cellular stress
response that is activated in situations of endoplasmatic reticulum stress (18). One might
therefore expect an activation instead of a downregulation, which was also observed in other
studies where an increased expression of ER stress-regulated genes was observed in blood
cells of subjects with the MetS compared to healthy controls after an oral glucose tolerance
test (19). Furthermore, the unfolded protein response has been shown to be activated during
obesity in other tissues, such as hypothalamus, liver, fat, muscle and pancreatic p-cells in
studies in humans and rodents (20). It is unclear why our findings are discrepant with these
observations. However, much of the triggering mechanism and physiological roles of the UPR

in relation to the MetS is not completely understood (20, 21).

Another pathway that showed a change in challenge response after the high-fat high-calorie
in healthy subjects was the TLR cascade pathway. The upregulation of this pathway at 360
min was diminished after the 4 week high-fat high-calorie diet, resulting in a more MetS-like
response, as MetS subjects did not show a significant change in expression of genes involved
in the TLR cascade pathways. Interestingly, as discussed previously, at fasting, we observed
a lower expression of these pathways in MetS subjects and a downregulation in healthy
subjects upon the diet compared to the healthy subjects before the diet. Several studies have
shown that saturated fatty acids are able to active TLR- cascade pathways (22, 23), leading
to NFkB-activation and subsequent increase in gene expression of pro-inflammatory genes
(23). Despite the fact that pro-inflammatory gene expression was already lower at fasting in
subjects with the MetS, they do not show an increase in pro-inflammatory gene expression in
response to a high-fat load, which may indicate that, potentially, they have a reduced cellular
adaptation capacity. In this regard, the 4-week high-fat high-calorie diet may have induced

changes in healthy subjects towards a MetS-like state of reduced cellular adaptation capacity.

A major strength of this study was the use of a high-fat high-calorie diet that induced weight
gain and, likely, a change in metabolic health status. Most studies take the opposite approach
and aim to increase metabolic health, either by caloric restriction and resultant weight

reduction or by using health-promoting diets. A limitation of the current study is that we did
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not include a placebo group and, therefore, we cannot confirm that all of the changes observed
after the diet intervention were specifically caused by the diet. Another limitation of this study
is the relatively small size of the groups of 9 and 10 subjects. Therefore, to minimize the chance
of false-positive results, we focused our analyses mainly on the pathway level. We did observe
distinct differences in the gene expression response to the high-fat challenge between healthy
and MetS subjects, indicating that the differences between these groups may be quite large.
Conversely, changes in high-fat challenge response induced by the diet in healthy subjects
were quite small despite the fact that these were within subject changes. It should be noted
that the diet was only 4 weeks long and led to changes in subject characteristics that were
not yet at the levels of MetS subjects. Furthermore, it is possible that the daily exposure to
a high-fat high-calorie diet may have affected the response to a high fat meal by a potential
habituation to the high-fat meals that were part of the diet. Possibly, dietary interventions
with a different dietary composition may be able induce larger changes in high-fat challenge

response.

In conclusion, fasting whole blood whole genome gene expression profiles are highly
responsive to a 4-week high-fat high-calorie diet, showing changes in many pathways in
the direction of a MetS-like gene expression profile. High-fat challenge responses in healthy
subjects show only small changes upon the dietary intervention and a minimal shift in the
direction of the metabolic syndrome. This indicates that fasting gene expression profiles are
more responsive to the effects of a 4-week high-fat high-calorie diet than high-fat challenge-

induced gene expression responses.
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Tables

Table 5-1. Subject characteristics of the healthy subjects before and after intervention and the MetS
subjects.

Healthy (N=9) .
Metabolic syndrome

Before intervention After intervention (N=10)
Body weight (kg) 782+84 80.8 +8.3* 95.9 +8.3%
BMI (kg/m2) 240+£19 248 £1.9% 29.0 £ 2.1*
Triglycerides (mmol/l) 1.2+£0.6 2.0 £0.8* 1.7+0.6
Cholesterol (total) (mmol/l) 5.3+0.8 57+09 6.7 £ 0.9%
HDL cholesterol (mmol/I) 1.3+ 0.3 1.4+03 1.3+0.2
LDL cholesterol (mmol/I) 34+0.7 34+038 4.6 +0.8*
Waist-to-hip ratio 0.89 +0.04 0.90 + 0.04* 0.95 + 0.04*
Glucose 51+03 53+03 6.0 £ 0.3*
Insulin 45+1.6 7.0+3.3% 14.0 + 4.6*

*, significantly different from healthy subjects before intervention.

Table 5-2. Differences in significantly expressed gene sets in each of the comparisons.

GSEA results were visualized in enrichment maps and gene set clusters are summarized in this table. Shown are
differentially expressed gene set clusters at fasting and post-prandially in response to the high-fat challenge at
120 and 360 min. Arrows indicate direction of change (T, upregulation; | downregulation). For the post-prandial
time points, only the pathways are shown that are significant in the comparison of healthy after intervention (t=4)
vs before intervention (t=0) or the comparison of MetS vs healthy before intervention (t=0). Yellow highlighting
indicate that these pathways are differentially expressed in both of these comparisons.
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Figures

a Study design

9 healthy . 4-week high-fat high calorie diet
subjects H
10 MetS i
subjects .
0 weeks 4 weeks
b  High-fat challenge
Consumption of :
high-fat shake |-
T=0min T=120 min T=360 min
Whole blood Whole blood Whole blood
microarray microarray microarray

Figure 5-1. Study design and high-fat challenge.

Schematic overview of the study design (a) and high-fat challenge procedure (b). MetS, metabolic syndrome.
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47,323 probes on microarray

v

17,184 probes expressed
(detection p-value <0.010n >4
arrays)

Fasting difference
Metabolic syndrome vs healthy:
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I Healthy after vs before intervention
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Overlap
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120 min vs 0 min:
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Metabolic syndrome

120 min vs 0 min:
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360 min vs 0 min:
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Challenge response
Healthy

120 min vs 0 min:
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360 min vs 0 min:
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360 min vs 0 min:
3700 probes
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360 min vs 0 min:
794 probes

120 min vs 0 min:
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360 min vs 0 min:
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Overlap
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Figure 5-2. Probe selection workflow and number of differentially expressed genes.

Flowchart showing (a) probe selection workflow and number of differentially changed genes at fasting and
(b) postprandially. Results from the dashed (- - -) panels were used to examine the additional value of studying
whole genome gene expression changes in response to a high-fat challenge compared to studying only fasting
gene expression profiles. Results from the dotted (...) panels, were used to examine whether the 4 week high-fat
high-calorie diet can induce a shift in gene expression profiles in the healthy subjects towards more MetS-like
profiles, both at fasting and post-prandially.
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Healthy t = 4 weeks

Metabolic syndrome

Gene Symbol  Probe ID Healthy t = 0 weeks
CTDSP2 ILMN_1692962
SRPR ILMN_1785660
TSPYL2 ILMN_1693635
TSPYL2 ILMN_1657554
TPP1 ILMN_1729234
SULT1A3 ILMN_2262177
ZBTB17 ILMN_1711048
HDGF ILMN_1765621
PPP2R5B ILMN_2124082

Figure 5-3. Heatmap showing individual high-fat challenge responses for genes in the chaperone gene
activcation pathways at 120 min.

Genes were significantly differentially expressed when comparing the challenge response in the healthy group
after intervention to before intervention. As a result, after intervention, the challenge response was similar to
the response in the MetS subjects.

Gene Symbol

Probe ID

Healthy t = 0 weeks

TBKI1
BIRC2
IRAK3
CHUK
MAP3K1
MEF2C
DHX9
SARMI1

ILMN_1739967
ILMN_2182704
ILMN_1913678
ILMN_1677041
ILMN_1723020
ILMN_1742544
ILMN_1656016
ILMN_1746265

Healthy t = 4 weeks

Metabolic syndrome

Figure 5-4. Heatmap showing individual high-fat challenge responses for genes in the TLR cascade
pathway at 360 min.

Genes were significantly differentially expressed when comparing the challenge response in the healthy group
after intervention to before intervention. As a result, after intervention, the challenge response was similar to
the response in the MetS subjects.
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Chapter 6

Abstract

Background

Several studies have examined the whole genome gene expression response in blood cells to
high-fat challenges. However, changes in gene expression profiles described in these studies
are quite diverse. We aimed to identify consistently up or downregulated genes and pathways

in response to a high-fat challenge by using different integration and meta-analysis methods
Methods

Several methods to combine the data from the different studies were applied. Overlap in
differentially expressed genes of each separate study were examined, P-values of each separate
study were combined using Fishers methods and data were analyzed as one merged dataset.
Significantly differentially expressed genes and pathways were compared between these

methods.
Results

Selecting only the genes that were differentially expressed in all of the three separate studies
resulted 67 differentially expressed genes, which were for a large part involved in circadian
pathways. When using less strict methods, such as the Fishers P-value method and the merged
dataset analysis, we observed changes in 1097 and 1182 genes, respectively. Overall, a high
fat challenge upregulated pathways related to inflammation, whereas pathways related to
unfolded protein response, protein processing, cholesterol biosynthesis and translation were

downregulated upon a high-fat challenge.
Discussion

By performing this meta-analysis, we showed a general PBMC whole genome gene expression
response to a high-fat challenge. Meta-analysis provides added value for the discovery of
consistently differentially expressed genes and pathways compared to selecting only those

genes and pathways that are identified in all separate studies.
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Introduction

Metabolic challenge tests are performed in nutritional research to magnify the small effects of
nutrition on health (1). In addition, an individual’s response to such a challenge is considered
to be a marker of phenotypic flexibility and reflect the individual’s health status. A type of
metabolic challenge test that is frequently used in nutrition studies is the high-fat challenge,
in which subjects consume a high-fat load containing 50-100 grams of fat. These high-fat
challenges have been shown to not only affect postprandial lipid metabolism, but also other

processes, such as inflammation, stress response, vascular health and glucose metabolism (2).

A good source of cells to study the abovementioned processes are peripheral blood
mononuclear cells (PBMCs), which have proven useful for the determination of the effects of
nutritional intervention on gene expression profiles (3-6). These cells are a subset of circulating
white blood cells, which are non-invasive to collect during human intervention studies as
they can be easily isolated from blood. Several studies have examined the effects of acute
high-fat challenges on PBMC whole genome gene expression by comparing post-prandial
gene expression profile responses to challenges with different compositions. We found that a
high-SFA challenge induced expression of liver X receptor signaling genes, whereas a high-
PUFA challenge caused a downregulation of these genes (Bouwens et al. (7)). Matone et
al. (8) studied the effects of a high-MUFA challenge and observed increased expression of
inflammatory genes in several pathways, including Toll-like receptors, interleukins, TNF and
NF-kB-related genes. In another study (Esser et al. (9)), we found that a high-SFA challenge
decreased expression of cholesterol biosynthesis and uptake genes and increased cholesterol
efflux genes compared to a high-MUFA challenge which increased expression of inflammatory
genes and PPAR-a target genes involved in B-oxidation. We also performed a study (Chapter
5) in which we examined the effect of a high-SFA challenge on whole blood gene expression.
We observed an increase in expression of several pathways including inflammatory pathways
such as Toll-like receptors and TNFa signaling. These effects were only observed in healthy
subjects and not in subjects with the MetS. Taking all these findings together, the changes in
gene expression profiles described in these studies are quite diverse. Therefore, the question is
raised if a general response to such a high-fat challenge, independent of fatty acid composition,

BM]J, sex, or age, can be characterized.

In this manuscript, our first aim was perform and compare different methods of combining

the results of the abovementioned studies that examined the PBMC gene expression response
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to high-fat challenges. Secondly, using this cross-study meta-analysis, our goal was to identify
consistently up or downregulated genes and pathways in response to a high-fat challenge.
Ultimately, this may help to increase our understanding of how the body responds to a high-
fat load.

Methods

Study design

The studies by Bouwens et al., Matone et al. and Esser et al. were previously published and
data is publicly available (7-9) (GSE13466, GSE56609 and GSE53232). These studies used
single-channel Affymetrix microarrays to perform gene expression measurements, whereas
Matualatupauw et al. (Chapter 5) used llumina HumanHt12-v4 Expression Beadchips.
The studies by Bouwens et al. and Esser et al. applied a crossover design to examine high-
SFA versus high-MUFA and high-PUFA challenges respectively. To decrease heterogeneity
between studies, we elected to analyze only the high-SFA challenges from both of these studies
in this meta-analysis. Moreover, of the Matualatupauw et al. study (Chapter 5), we used only
the high-fat challenge data that was acquired before the 4-week high-fat high-calorie diet

intervention. The designs of the four studies are summarized in Table 6-1.

Pre-processing

Pre-processing was done for each study separately. For the studies using Affymetrix
microarrays, raw CEL files were normalized using the Robust Multi-array Average algorithm
(10), as implemented in the oligo R-package (11). A custom annotation was used based
on reorganized oligonucleotide probes, which combines all individual probes for a gene
(brainarray CDF files (ENTREZG v20)). We filtered out low expressing probes genes using
Universal exPression Codes with a 0.5 cut-off, corresponding to a 50% likelihood that a gene

is expressed (12).

For the study using Illumina beadarrays, pre-processing methods were described in detail
previously (Chapter 5). Briefly, probe expression values were calculated using the neqc
algorithm from the limma package (13). Low expressing probes were filtered by selecting
only the probes with a detection p-value < 0.01 in at least 5 arrays for further analysis. To end
up with only one value per Entrez gene, we selected the probe with the highest variation when

multiple probes were present for a gene.
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After filtering, only the genes present in all datasets, which were 6043 genes, were retained for
further analysis. Initial analysis showed that the Matualatupauw et al. study showed a large
batch effect when examining per subject log2-ratio (Figure 6-1). Therefore, it was decided to
exclude this study from the analysis. The three remaining studies by Bouwens et al., Matone
et al. and Esser et al. had an overlap of 7406 genes, which were used for further analysis. The

workflow is summarized in Figure 6-2.

Differentially expressed genes

We first calculated log2-ratios per subject between the intensities before and after the challenge.
These log2-ratios were used for further analysis using the Linear Models for Microarray data
(limma) R-package. To identify differentially expressed genes, empirical Bayes moderated
t-tests as implemented in limma were performed in each dataset separately as well as in the
combined dataset of all studies. P-values were adjusted using Benjamini and Hochberg false

discovery rate (14) and a Q-value < 0.05 was considered significant.

In addition to the P-values per study and the p-values of the combined dataset, we also used
Fisher’s combined probability test to pool P-values from the three separate studies. We used
the MetaDE R-package to calculate a test statistic (Chi2), which follows a chi distribution,
and P- and FDR-values for each gene (15). An FDR Q < 0.05 was used as significance cutoff,

indicating that the corresponding gene was differentially expressed in at least one study.

Pathway analysis

For all pathway analyses, we used a list of gene sets that was derived by combining all gene sets
taken from the Biocarta, KEGG, Reactome and Wikipathways databases. We performed gene
set enrichment analysis (GSEA; http://www.broad.mit.edu/gsea) (16). Genes were ranked
based on the moderated t-statistic and analyzed for over- or underrepresentation in the gene
sets. GSEA was performed in each separate study as well as in the combined dataset. Gene sets

with an FDR q < 0.25 were considered significantly enriched.

Results

In this study, we reanalyzed data of four separate studies of which the study designs are
described in Table 6-1. Baseline characteristics of the study populations can be found in Table
6-2. Population differed in age, weight, height and BMI. To examine the presence of a potential

batch effect between studies, we performed PCA on the per subject change in gene expression
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depicted as log2-ratios (Figure 6-1). The study of Matualatupauw et al. (Chapter 5) showed
a separation from the other three studies, indicating the presence of large differences in gene
expression changes between this study and the others. Therefore, the analysis was continued

using the Bouwens et al., Matone et al. and Esser et al. studies only.

In Figure 6-2, the number of genes after filtering out non-expressed genes per data set/
study and the overlapping genes between datasets are shown. Combining the three datasets
resulted in 7406 genes that were expressed in all datasets and these were used for further
analysis. To examine variation within and between the datasets, we performed a PCA on the
normalized log2 intensity values. This showed a clear separation between datasets (Figure
6-3A), reflecting batch effects. When the PCA was performed using per subject log2-ratios of
the postprandial effects, datasets were found to be intermixed (Figure 6-3B). We continued

our analyses using these log2-ratios.

Differentially expressed genes

To find the genes that showed a significant change in expression by the high-fat challenge
in each individual dataset, we analyzed the data per study. An FDR Q < 0.05 was used as
significant cut-oft value (Figure 6-4A). When comparing, the results of these analyses across
datasets, 202 genes were found to be differentially expressed in at least two of the three datasets
and 67 genes were found to be changed in all three datasets (Figure 6-4A). Figure 6-5 shows a
heatmap of the postprandial gene expression changes in all subjects of the 67 genes that were

differentially expressed in all studies.

Another method for microarray dataset integration that was applied, involved calculating an
overall combined p-value based on p-values of each individual dataset analyzes using Fisher’s

method. We found 1097 differentially expressed genes at FDR Q < 0.05 (Figure 6-4A).

The third method that we performed, was the creation of one merged dataset containing
log2-ratios of all subjects from the three datasets. Statistical analysis was performed on this
merged dataset, which revealed that 1182 genes were differentially expressed by the high-fat
challenge at FDR Q < 0.05. Overlap of the genes identified using Fisher’s method and the
merged dataset analysis was 881 genes, as shown in Figure 6-4B. Overlap in genes between

all comparisons is shown in Supplementary Figure S6-1.

Gene set enrichment analysis

To assess which pathways were upregulated by a high-fat challenge, we performed GSEA on
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the three separate datasets as well as on the merged dataset. Results are summarized in Table
3. Pathways related to circadian rhythm were found to be downregulated in each separate
study as well as in the merged dataset. In the merged dataset, pathways related to interferon
signaling were upregulated, whereas pathways related to circadian rhythm, unfolded protein
response, protein processing, cholesterol biosynthesis and translation were downregulated.
The individual significant postprandial gene expression changes of genes from these pathways

are shown in a heatmap in Figure 6-6.

Discussion

We performed a cross-study meta-analysis of three studies that examined the PBMC gene
expression response to a high-fat challenge using Affymetrix microarrays. Selection of
the genes that were differentially expressed in the three separate analyses resulted in 67
differentially expressed genes, which were for a large part involved in circadian pathways.
When using less strict methods, such as the Fishers P-value method and the merged dataset
analysis, we observed changes in 1097 and 1182 genes, respectively. Pathways related to
interferon signaling were upregulated, whereas pathways related to unfolded protein response,
protein processing, cholesterol biosynthesis and translation were downregulated upon a high-

fat challenge.

Initially, we also included a study that used Illumina beadarrays measure gene expression
in whole blood. As this study showed a large deviation from the others it was left out off
further analysis. We have to two potential explanations for the large separation between
the Matualatupauw et al. study and the other three studies. Firstly, this study used Illumina
BeadArrays, whereas the others used Affymetrix GeneChips. This difference in microarray
platform could have induced the bias (17), though it has been shown that measurements
derived from both platforms show high agreement, especially in genes that are differentially
expressed in a comparison (18, 19). Besides microarray platform, this study also differed in the
source of RNA, which was whole blood compared to PBMCs in the others three studies. Whole
blood contains RNA from all cell types present in blood including granulocytes (neutrophils,
eosinophils, basophils), lymphocytes and monocytes, whereas PBMC RNA samples contain
RNA from lymphocytes and monocytes only (20). One study compared differences in gene
expression profiles in whole blood versus PBMCs in patients with advanced heart failure

versus age-matched controls (21).They observed a considerable overlap and concordance in
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gene expression profiles between the two RNA sources, though they also observed differences.
Differences in gene expression caused by different blood cell populations were also observed
in another study (20). In this study, they observed lower signal-to-noise ratios and larger
variability in whole blood compared to PBMCs. In summary, differences in microarray
platforms and cell populations may potentially explain the large separation between the

whole blood compared to the PBMC studies.

We observed consistent up or downregulation of several genes involved in circadian rhythm
in the three studies. The studies used a similar protocol for their high-fat challenges. Subject
arrived fasted early in the morning and consumed a high-fat challenge. PBMC blood samples
were taken just before challenge consumption and 4 or 6 hours after consumption. In this
regard, the times at which fasting and postprandial samples were taken can be expected to be
similar between studies. In line with our findings, circadian oscillations in gene expression
of PERI and PER2 have been observed previously in PBMCs of healthy young men (22). In
addition, PER1 and PER2 gene expression have been shown to peak shortly after awakening
(23) or early in the morning (24), followed by a gradual decrease in expression in the
subsequent hours. These findings coincide with the decrease in gene expression that we

observed for these genes 4 and 6 hours after consumption of the high-fat challenge.

From studies in rodents, it is clear that many genes, including some involved in metabolic
control and immune responses, show a circadian oscillations in gene and protein expression
during the day (25-27). Interestingly, the IRE1a pathway, which is part of the unfolded protein
response was found to be under circadian control in mice, as observed from a 12 hour period
rhythmic activation of target genes (28). Therefore the downregulation of pathways related
to the unfolded protein response that we observed may potentially be caused by circadian
oscillations as well, although studies showing this relationship in humans are lacking. In this
study, we do not have a control group available and, therefore we are not able to distinguish
between high-fat-induced and circadian oscillations changes in gene expression. The
individual studies did include multiple challenges as a control and compared differences
between them. Our analyzes of only one of the challenges per study clearly demonstrate the
importance of a control group in metabolic challenge studies for the identification of actual

challenge-induced effects on gene expression.

Another finding was the upregulation in expression of inflammation-related genes by the
high-fat challenges. Triglyceride-rich lipoproteins and lipoprotein remnants are thought to

play an important role in mediating postprandial inflammation (29). In the postprandial
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circulation, these lipoprotein may cause the activation of the nuclear factor kB transcription
factor, either by internalization of these lipoproteins by leukocytes (30), or by activating
intracellular signaling by binding to CD14 and activation of toll-like receptor-4 on the cell
surface (31). These may be potential mechanism by which a high-fat challenge may cause an

increase in inflammatory gene expression in PBMCs.

A postprandial downregulation was observed for genes related to cholesterol biosynthesis.
Interestingly, this down regulation appears to mostly be attributed to changes in the study
by Esser et al. and Bouwens et al and to a lesser extend the study by Matone et al. These
differences may be caused by the high-SFA load in the first two studies compared to the
high-MUFA load in the Matone et al. study. In the original study by Esser et al., a high-
MUFA challenge was also included, which did not cause changes in cholesterol biosynthesis
genes, in accordance with our observations in the Matone et al. study. Furthermore, another
similarity between these two high-MUFA challenges was an increase in expression of PPAR
signaling pathways, which was observed in both. Expression of cholesterol biosynthesis genes
is regulated via the SREBP-2 transcription factor through a negative feedback system (32),
suggesting that intracellular cholesterol concentrations may be high after a high-SFA challenge
and not after a high-MUFA challenge. The cause of this potential cholesterol concentration
increase is unclear, as cholesterol biosynthesis gene expression changes appeared to be the
largest in the study by Esser et al. even though the high-fat challenge that was used did not
contain cholesterol, unlike the challenge used by Bouwens et al. that did contain cholesterol-
containing butter. Potentially, the higher SFA-load, the more at risk population of the Esser et
al. vs. the Bouwens et al. study or the larger study population of Esser et al. may be responsible
for the significant finding in the individual study of Esser al. on cholesterol biosynthesis gene

expression .

A strong study-related difference in gene expression was observed (Figure 3A) when comparing
log2-intensity values between studies, which is consistent with observations in many previous
studies and is a commonly faced problem when combining different batches of microarray
data (17). Several methods for correction of these batch-effect have been suggested (17, 33).
Problematic with these approaches is that it is difficult to separate technical batch effects,
such as batch effects caused by differences in PBMC collection or lab methodology, from
biological effects (17). In our studies, differences in subject characteristics (age and BMI) or
high-fat challenge composition are examples of factors that may cause batch effects. However,

when we examined within-subject log2-ratios, the study-related batch effects disappeared,
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showing a large similarity in the responses to the high fat challenge across studies. This is
an advantage of the within-subject design of the studies, as microarrays were performed on
samples taken before as well as after the high-fat challenges in each individual. Furthermore,
we found that the overlap in differentially expressed genes between the combined dataset
analysis and the Fisher P-value combination method was large, with an overlap of 80%.
From these observations, we conclude that the between study batch effects are not a major
source of variation in our studies and, therefore, we expect that batch effect correction would
not be beneficial. Nevertheless, many differences exist between the three studies, which
include differences in study population, challenge composition, time of the post-prandial
measurement, microarray platform and laboratory methods. These are all potential sources
of variability in our analyzes and may have decreased our power to detect high-fat challenge-
induced changes in gene expression. Consequently, we may have only picked up the genes and
pathways with the strongest changes. In the future, minimizing differences between studies
by increased standardization in methods, including the use of a standardized metabolic
challenge as described by Stroeve et al. (2), the consumption of a standardized low-fat meal
the evening before a challenge test, and using RNA from the same cell sources would greatly

enhance power of these types of meta-analyses.

To our knowledge, this is the first study that has performed a meta-analysis of microarray
datasets from several acute nutritional challenge intervention studies. We used several meta-
analysis approaches to identify changes in PBMC gene expression upon a high-fat challenge.
Several differences exists between the studies, such as microarray platform, number and
characteristics of subjects, high-fat challenge composition, laboratory where the analysis took
place and timepoint of the postprandial measurement. Nevertheless, the identified changes
are consistent across datasets, demonstrating that this may be a valuable approach that can

also be applied in future studies.

Of the used methods, selection of genes that were differentially expressed in all three separate
studies was the strictest, resulting in low number of differentially expressed genes that did
show the most consistent and robust regulation in all studies. When using less strict methods,
such as the Fisher P-value method and the merged dataset analysis, we observed changes in

additional genes and pathways.

In conclusion, meta-analysis providesadded value for the discovery of consistently differentially
expressed genes and pathways compared to selecting only those genes and pathways that

are identified in all separate studies. Using meta-analyzes of PBMC whole genome gene
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expression responses to high-fat challenges of studies varying in study population, challenge

composition and research laboratory, we identified a general PBMC whole genome gene

expression response to a high fat challenge.
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Table 6-2. Baseline characteristics of the four study populations.

Matualatupauw

Bouwens et al. Matone et al. Esser et al. etal. P-value
Age (years) 21+3° 37.3+£13° 62 +5¢ 46 £7¢ <0.001
Weight (kg) 744 +8.1° 83.0+£18.0° 89.0 £ 18.0° 86.8 + 13.0° 0.009
Height (m) 1.84 +0.06° 1.75+0.09° 1.78 + 0.07* 1.81+£0.07* 0.001
BMI (kg/m2)  22.1+2.0° 27.0+6.1° 27.9 +4.9° 264 +3.2° <0.001

Data are presented as mean * sd. Differences between groups were determined using one-way ANOVA and
corresponding P-values are shown. Different letters indicate differences between groups, as determined using
LSD post-hoc tests.

Table 6-3. Summary of GSEA results.

Merged
dataset

Interferon signaling ’]\ ’I\ /I\

Bouwens et al. Matone et al. Esser et al.

Circadian rhythm NP Np J
Unfolded protein response Jd J
mRNA Splicing

Protein processing

« € € ¢« ¢«

é

Cholesterol biosynthesis

Translation Np Np

Cell cycle J

Semaphorin processing \],
Oxidative phosphorylation Jd
Toll-like receptor cascades ™
PPAR signaling pathway ™

Differentially expressed gene sets were visualized using the Enrichment Map plugin in Cytoscape. Up and down
regulated gene set clusters in each study and in the merged dataset were summarized in this table.
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Figure 6-1. PCA of the log2-ratios of the four studies.

Every dot represents one subject.
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Bouwens et al. Esser et al. Matone et al.
Separate pre-processing and filtering
8,779 genes 9,440 genes 10,352 genes
expressed expressed expressed

Matone

Bouwens

Figure 6-2. Gene selection workflow
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A
Bouwens et al. 324
Matone et al. 363
Esser et al. 458
Significant in all 3 studies 67
Significant in at least 2 studies 202
Fisher's method 1097
Merged dataset analysis 1182
[ I I I I I I |
0 200 400 600 800 1000 1200 1400
# of differentially expressed genes
B

Merged dataset Fisher's P-value

Figure 6-4. A. Number of significantly differentially expressed genes identified in each separate dataset
and in the meta-analysis of the datasets using different methods. B. Venn diagram of overlap between
Fishers method and the merged dataset analysis

Overlap in genes between all results are shown in Supplemental Figure S6-1.
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LILRA4
SERPINF1
PROM1
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Figure 6-5. Heatmap depicting individual gene expression changes by a high-fat challenges of the 67
genes that are differentially expressed in all studies (FDR Q < 0.05).

Log-ratios are shown for each gene in each subject of the three studies.
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Supplementary Figure S6-1. Overlap in differentially expressed genes in separate studies and in different
meta-analysis approaches
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Chapter 7

Aim of the research

Health effects of dietary fatty acids depend on the type of fatty acid that is consumed. The
aim of this thesis was to increase our understanding of the molecular mechanisms underlying
the effects of dietary fatty acids. To do this, we examined changes in whole genome gene
expression profiles upon both acute as well as long-term dietary fatty acid interventions.
Furthermore, from previous research, it is clear that large inter-individual differences in the
response to dietary fatty acids exist (1-6). We used whole genome gene expression analyses
to increase our understanding of the mechanisms underlying some of these inter-individual

differences.

Main findings of the research

A summary of the main findings of the microarray analyses of each chapter can be found in

Table 7-1. The main findings in each chapter were:

o Transcriptome analyses can be applied to identify differences in response to dietary
interventions based on phenotypic characteristics. In Chapter 2, we performed a review
of all previously published studies that used microarrays to do this. The studies that are

performed are low in number and are often secondary analyses of existing data.

o In Chapter 3, we studied the effects of the apolipoprotein E4 (APOE4) allele on
gene expression profiles, at baseline and upon a long-term fish-oil supplementation
intervention. APOE4 was associated with an increased expression of cholesterol
biosynthesis and interferon signalling pathways, which may in part explain the increased
CVD risk of APOEA4. Fish-oil supplementation may be beneficial by decreasing interferon

signalling-related gene expression in APOE4 carriers.

o In Chapter 4, we studied the effect of a 12-week high medium-chain saturated fatty
acid diet on subcutaneous adipose tissue gene expression profiles. Intake of this diet
increased expression of genes increased expression of genes involved in oxidative
energy metabolism in subcutaneous adipose tissue, and decreased inflammation-related
gene expression. These findings suggest that medium-chain saturated fatty acids have

potentially beneficial effects on adipose tissue gene expression profiles.

o In Chapter 5, we studied whole genome gene expression changes in whole blood
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at fasting and upon a high-fat challenge. Fasting whole blood whole genome gene
expression profiles are highly responsive to a 4-week high-fat high-calorie diet, showing
changes in many pathways in the direction of a metabolic syndrome-like gene expression
profile. High-fat challenge responses in healthy subjects show only small changes upon
the dietary intervention and a minimal shift in the direction of the metabolic syndrome.
This indicates that fasting gene expression profiles are more suitable for examining the

subtle changes induced by a 4-week high-fat high-calorie diet.

o In Chapter 6, we combined microarray data from several previously published high-
fat challenge studies varying in study population, challenge composition and research
laboratory. By performing this meta-analysis, we showed a general PBMC whole genome
gene expression response to a high-fat challenge. Meta-analysis provides added value for
the discovery of consistently differentially expressed genes and pathways compared to

selecting only those genes and pathways that are identified in all separate studies.

Long-term effects of dietary fatty acids

In Chapter 3 and Chapter 4, we studied the gene expression responses in PBMCs and
subcutaneous adipose tissue to long-term dietary interventions with fatty acids. The fish-oil
supplementation intervention that was studied in Chapter 3 had already been shown to induce
anti-inflammatory and anti-atherogenic changes in gene expression profiles (7). In this thesis,
we dissected this further and showed anti-inflammatory effects of fish-oil supplementation in
carriers of the APOE4 gene variant with a downregulation of interferon signalling pathways.
In Chapter 4, we studied the effects of a dietary intervention consisting of products produced
from milk that was high in medium-chain saturated fatty acids vs milk that was low in
medium-chain saturated fatty acids. Similar to the fish-oil intervention (Chapter 3), we
observed a downregulation of inflammation-related pathways, though in this case we did not
measure in the blood, but in the adipose tissue. The high medium-chain saturated fatty acid
diet (Chapter 4) caused changes in gene expression profiles with a decrease in inflammatory
pathways, especially of the complement system, together with an increased expression of

citric acid cycle and oxidative phosphorylation pathways.

The findings from Chapter 3 and Chapter 4 may be of relevance for the low-grade
inflammation that is associated with obesity (8). This low-grade inflammation is characterized

by infiltration of macrophages into the adipose tissue and a phenotypic switch of these

145



Chapter 7

macrophages towards the pro-inflammatory M1 phenotype (9). M1 macrophages are
characterized by a reliance on glycolysis and the pentose phosphate pathway for their ATP
production, whereas the anti-inflammatory M2 macrophages have a highly active citric acid
cycle and oxidative phosphorylation (10). In accordance with the M2 response, the high MC-
SFA diet (Chapter 4) caused changes in gene expression profiles with an increased expression
of citric acid cycle and oxidative phosphorylation pathways together with to a decrease in
inflammatory pathways. Besides local adipose tissue inflammation, obesity can also lead to
secretion of pro-inflammatory cytokines from the adipose tissue into the circulation (11).
Circulating blood cells, such as PBMCs, exposed to these cytokines may play an important
role in obesity-associated low-grade inflammation, as observed from an increased production
of inflammatory cytokines and a decreased production of anti-inflammatory cytokines in
PBMCs of obese subjects (12, 13). Furthermore, in atherosclerotic lesions, interferon-y
produced by T-lymphocytes is highly expressed and affects many processes involved in the
pathogenesis of atherosclerosis (14). The downregulation of interferon-related pathways
observed in APOE4 carriers in Chapter 3 may be beneficial with regard to both these
mechanisms. Taken together, we observed potentially beneficial changes in gene expression
of the fish-oil supplementation intervention in PBMCs, and of the medium-chain saturated

fatty acid intervention in adipose tissue.

Previously, strong similarities between PBMC and adipose tissue gene expression profiles have
been observed, especially regarding genes involved in immune response and inflammation
(15). In our studies, the specific inflammation-related pathways that were affected were
different between the two long-term intervention studies. In Chapter 3, these were interferon
signalling pathways in PBMCs, whereas in Chapter 4 these were complement pathways in
adipose tissue. These findings indicate that the mechanisms that may responsible for the
observed gene expression effects are also different. The mechanism by which the two long-
term fatty acid interventions may have exerted their effects are discussed in their respective
chapters in this thesis (Chapter 3 and Chapter 4). Briefly, regarding Chapter 3, one mouse
study found that n-3 PUFA intake led to diminished interferon intracellular signalling after
ex-vivo stimulation of immune cells with interferon-y (16). A similar mechanism could
be present in our APOE4 carriers, though, to our knowledge, no studies exist that have
examined the role of APOE genotype in this context. Many of the effects of N-3 PUFAs may
be mediated by peroxisome proliferator-activated receptors (PPAR) (17). Of all fatty acids,
N-3 PUFAs lead to the most pronounced PPAR activation (18). In context of this discussion,

PPARYy is of particular interest, as it is expressed in adipose tissue and macrophages (19).
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Activation of PPARy may cause anti-inflammatory changes in cells, through direct gene
activation or via interfering with nuclear factor kB (20). Possibly, the already increased levels
of interferon signalling-related genes in APOE4 carriers makes them more susceptible to
the anti-inflammatory effects of fish-oil supplementation, leading to decreased levels after

supplementation.

The beneficial effects of medium-chain saturated fatty acids have so far been considered to
mainly take place in the liver, especially post-prandially by an increase in energy expenditure
due to rapid beta-oxidation of these fatty acids (21). However, our findings in Chapter 4
show that possibly some of the effects on adipose tissue are directly regulated by MC-SFAs,
as some of these reach the adipose tissue (22). Interestingly, one study showed that medium-
chain fatty acids can bind to and activate PPARy (23). However, the amount of MC-SFAs
reaching the adipose tissue is thought to be relatively minor (24), so it is questionable whether
the effects that we observe are directly PPAR-induced or may be regulated through indirect
mechanisms. In conclusion, the effects of fish-oil supplementation in APOE4 carriers may
be a direct anti-inflammatory effect of these fatty acids, whereas the effect medium-chain
saturated fatty acids on adipose tissue inflammatory gene expression may be directly regulated

via PPARY or indirectly regulated by other changes in the adipose tissue.

Since the adipose tissue as well as white blood cells in the circulation play a key role in obesity-
associated metabolic disease, targeting both tissues with a combined medium-chain saturated
fatty acid and fish-oil intervention may have additional anti-inflammatory effects. Especially
persons who are at-risk of metabolic disease, such as APOE4-carriers, persons with obesity
or those who already have the metabolic syndrome may benefit from such an intervention.
Interestingly, in a small study (25), 10 healthy subjects were given a 14-day 1500 kcal diet,
administered in the form of a formula drink, containing 72% medium-chain fatty acids and
22% n-3 PUFA, or a control diet containing an iso-energetic amount of long-chain fatty acids,
containing 33% oleic acid, 30% palmitic acid and 28% linoleic acid. The medium-chain and
PUFA group showed a decrease in plasma triglycerides and total cholesterol, whereas the
control group showed a decrease in total cholesterol only. Even though this was a small and
short-term study and the intervention contained large amounts of fatty acids, beneficial effects
of a combined medium-chain and PUFA diet were observed. It would be very interesting to
study the long-term effects of a medium-chain and PUFA diet in an intervention, which may
be a combination of our interventions from Chapter 3 and Chapter 4, on other parameters,

such as PBMC and adipose tissue gene expression as well as body composition and circulating
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inflammatory markers.

Apolipoprotein E4

Direct transcriptional effects of APOE4

Regarding APOE4, recently some interesting findings have been published that may be of
interest to our already published findings in Chapter 3. A recent study showed that APOE can
translocate to the nucleus of cells and bind with high affinity to DNA, acting as a transcription
factor (26). APOE4-unique binding sites were found in the promotor region of ~1700 genes.
Interferon-\ was one of the genes identified as APOE4 target gene and was also among the
top potential upstream regulators in our analysis. Potentially, increased IFN- A expression
due to the APOE4 genotype may be responsible for the increase in IFN targets genes that
we observed. The response to dietary fatty acids, especially to n-3 PUFAs has been shown
to be partly dependent on APOE4 genotype, with APOE4 carriers showing larger decreases
in plasma triglycerides upon supplementation with fish-oil compared to non-carriers (27).
In Chapter 3, we observed APOE4-specific anti-inflammatory actions of fish-oil, which
decreased expression of interferon signalling pathways. Besides triglyceride lowering, these

findings point to additional anti-inflammatory actions of fish-oil in APOE4 carriers.

Dual role of APOE4

Many detrimental effects of APOE4 have been described, including chronic inflammation,
increased risk of Alzheimer’s disease, high blood lipids, lower life expectancy and increased
risk of cardiovascular disease. Given these adverse effects, from an evolutionary viewpoint,
this raises the question why the APOE4 allele has persisted until today. It is hypothesized that
the increased inflammatory responses in APOE4 carriers may have a protective effect against
viral and bacterial infections, especially in early stages of the life (28). APOE4 was shown to
be beneficial during hepatitis C virus infection by protecting against liver damage (29) and
also to inhibit the growth of the malaria bacteria in red blood cells (30). Furthermore, it was
shown to have protective effects on brain development in Brazilian children with a heavy
diarrhea burden (31). Our findings may provide some insight into the mechanisms behind
these observations, as type 1 interferons have been shown to be essential in the activation of
anti-viral and anti-bacterial immune responses (32). From this, we hypothesize that increased

expression of interferon signalling and interferon target genes may be beneficial for protecting
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against infectious diseases, but may be detrimental by increasing risk of cardiovascular and

Alzheimer’s disease.

Post-prandial effects of dietary fatty acids

In Chapter 5 and Chapter 6, we studied the gene expression responses in PBMCs and whole
blood to acute high-fat loads. Consumption of these high-fat loads have been shown to lead
to increased triglyceride levels in plasma for several hours post-prandially, whereas free fatty
acids show an initial decrease in plasma levels (2 hours) and eventually rise above baseline (4
- 6 hours) (33, 34). Exposure of circulating white blood cells to this high-lipid environment,
especially at 4 to 6 hours post-prandially, may be the cause of the gene expression changes
that we observe. In Chapter 5, we studied changes in whole blood gene expression profiles,
whereas in Chapter 6 we studied PBMC gene expression profiles. Initially, we set out to
include the data of Chapter 5 in the meta-analysis of Chapter 6. However, we observed large
differences in the gene expression response to the high-fat challenge separating this dataset
from the other datasets. These differences may be the result of differences in cell populations
between whole blood and PBMCs, or may be caused by differences in microarray platform
between the Illumina HumanHT-12 V4 BeadArrays and the Affymetrix GeneChips. Even
though Chapter 5 focussed on differences between groups (healthy subjects, healthy subjects
after a high-fat high-calorie intervention and subjects with the metabolic syndrome), we did
observe some postprandial changes in gene expression profiles that were similar to those
observed in Chapter 6. In both chapters, we observed an upregulation of inflammation-
related pathways in response to a high-fat challenge, which may be the response to the
increased stress associated with the high-lipid post-prandial environment and may be a way
of the cells to cope with this stress. Interestingly, subjects with the metabolic syndrome do
not show this inflammatory response (Chapter 5), which may reflect a diminished cellular

response capacity.

Interestingly, the specific inflammation-related pathways that were upregulated in the studies
differed. In the whole blood study, these were TLR cascade pathways, whereas in the PBMC
studies these were interferon signalling pathways. Perhaps differences in cell types may be
responsible for this. Whole blood consists for a large part of neutrophils, that are virtually
absent in PBMCs which consist of lymphocytes and monocytes. TLRs are an important part

of innate immunity, serving as pathogen recognition receptors (35) and have been shown to
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be essential for neutrophil activation (36). We hypothesize that the TLR signalling pathway
may be relatively more active in neutrophils compared to monocytes and lymphocytes,
leading to the differences in inflammation-related gene expression that we observe.
Interestingly, TLR signalling has been shown to lead to activation of nuclear factor-kB, which
subsequently induces expression of pro-inflammatory nuclear factor-kB-target genes [20-
22]. Since interferon-vy is a nuclear factor-kB-target gene [23], the increase in the expression
of genes in the interferon signalling pathway, as observed in Chapter 6, may be instigated
by this mechanism. Furthermore, a significant increase in the number as well as activation
of neutrophils has been observed post-prandially (37-39). Taken together, it is possible that
the postprandial pro-inflammatory response may be initiated in neutrophils, followed by

inflammatory activation of other immune cells.

Combining long-term fatty acid interventions with high-fat
challenges

Based on observations in Chapter 5, we speculated that subjects with the metabolic syndrome
may show a blunted inflammation-related gene expression response compared to healthy
subjects. Furthermore, after the 4-week of high-fat high-calorie diet, we observed a shift in
post-prandial gene expression response of TLR pathways in healthy subjects towards a more
MetS-like response, maybe suggesting that the subtle changes in metabolic status induced by
a 4-week high-calorie diet may be observed in this pathway. This raises the question whether
the inflammation-related gene expression response to a high-fat challenge can be used to
examine changes in health status in other interventions, such as the fish-oil supplementation
(Chapter 3) or medium-chain saturated fatty acid intervention (Chapter 4). Based on results
from Chapter 5, we concluded that changes in fasting gene expression to the 4-week high-fat
high-calorie diet are much more pronounced compared the changes in post-prandial high-fat
challenge gene expression responses. Moreover, the combination of high-fat challenges with
transcriptome analyses may provide some interesting findings, especially in inflammation-
related pathways. Nevertheless, fasting gene expression profiles appear more responsive to
a 4-week high-fat high-calorie dietary intervention and may, therefore, be more suited for
studying the effects of such an intervention. It should, however, be noted that Chapter 5
describes a small study with only a short dietary intervention period and it remains uncertain
whether these findings can be confirmed in larger and longer studies and with different

dietary interventions.
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Issues with biological interpretation of microarray results

Nutritional interventions induce only small changes or limited significant changes at the
single-gene level. To prevent selection of false positive genes, we used several pathway analysis
tools to select the pathways in which multiple genes are significantly differentially expressed.
This increases the chance of finding potential biological relevant changes and decreases the
chance of false discoveries. Gene set enrichment analysis is especially valuable, as it does not
require p-value and/or fold change cut-off values, but uses a continuous variable to rank genes
(40). In this analysis method, gene sets (pathways) that are significantly positively or negatively
enriched in the ranked gene list are considered differentially upregulated or downregulated
respectively. A disadvantage of using pathway analyses is the introduction of bias, as we are
reliant on pathway databases that are based on prior knowledge. Firstly, some pathways may
not be active in the tissue that we study. Secondly, our analyses may be biased towards the
most well-studied and described pathways, such as cell cycle and cancer-related pathways,
hindering the potential for the generation of new hypotheses. We partly combatted the latter
problem, by combining pathways from several pathway-databases in order to maximize the
diversity of pathways that we analyse. Even though pathway analyses provide great value for
finding potential biologically meaningful changes in gene expression profiles, one should
not rely on pathways analyses only, as pathway databases are based on only a small part of
all available literature. Therefore, it is important to also examine individual gene expression
changes in differentially expressed pathways, and examine literature that may be valuable in

the context of microarray study findings.

An issue with microarray analyses in most studies in this thesis (chapters 2, 3, 4 and 6), is that
whole genome gene expression changes were not the primary outcome parameter in these
studies. As a consequence, microarray analyses were performed as secondary retrospective
analyses and the described analyses may therefore not have had an optimal study design.
Performing studies with the specific goal of transcriptome analyses will increase power as a
higher numbers of subjects can be measured and group size can be balanced. As an example,
in Chapter 3, the original study consisted of 302 subjects, of which 96 were assigned to the
1800 mg/day fish-oil supplementation group that we studied. Of these 96 subjects, microarray
measurements were only available in 23. Performing microarrays in all subjects would have
been very valuable for increasing the validity of our findings, as well as allow for additional
analyses of other factors besides APOE genotype that may affect the response to fish-oil

supplementation.
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Observations by others and us showed that between-subject variation in gene expression
profiles is much larger than within-subject variation. From this thesis, it is clear that there
are many factors that influence gene expression profiles and changes in these profiles. These
findings highlight the importance of a study design, in which multiple interventions are
performed within one subject; i.e a cross-over design, or, when this is not possibly to have

large groups to analyse.

Transcription is only a small part of the total of cellular and organism biology, and regulation
by food takes place at many more levels, including epigenetic, post-transcriptional and
post-translational level. As a consequence, microarray studies are inherently hypothesis-
generating. To aid biological interpretation, microarray findings could be integrated with

established biomarkers or data gathered using other -omics technologies.

Potential of microarray meta-analysis

With the increasing quantity of publicly available microarray datasets in repositories, such as
GEO (41), ArrayExpress (42), and the Phenotype database (www.dbnp.org), several methods
for microarray data integration have been developed and applied (43). Integration of data
from separate studies provides opportunities for increasing reliability and generalizability of
findings. In Chapter 6, we performed such a meta-analysis in the field of nutrigenomics. In
this proof-of-principle study, we applied several meta-analysis methods to integrate data from
3 separate high-fat challenge studies. Using these methods, we identified several pathways
that are consistently changed upon a high-fat challenge across studies from different labs.
These findings provide evidence of a general response to a high-fat challenge that can be
consistently measured, even in different labs, at different times, by different researchers, and
using different microarray platforms. As discussed in Chapter 6, in part, this response may
be the consequence of circadian oscillations in gene expression. However the gene expression
response to a high-fat challenge, which contains large amounts of fat (50-100 gram) can be
expected to be large, especially compared to the response to long-term dietary interventions
which are, in general, milder interventions. In contrast to acute high-fat challenges, long-term
interventions may cause changes in functioning of different metabolic organs, such intestine,
liver or adipose tissue, resulting in alteration in secretion of signalling molecules such as
adipokines or hepatokines, leading to systemic changes in the blood that can be measured

in circulating blood cells. Furthermore, for long-term interventions ranging from weeks to
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months, the relative influence of other phenotypic, genotypic and environmental factors may
be larger compared to that of acute high fat challenges, as these factors also influence systemic
metabolic status. As a result, it can be expected that changes in gene expression to long-term

interventions are smaller and more variable between subjects (44).

In summary, long-term changes in gene expression to a dietary intervention may reflect
systemic changes in the body, whereas gene expression response to a challenge test may
be very direct responses designed to deal with the post-prandial environment. It remains
to be elucidated whether meta-analyses can be applied to examine the effect of these long-
term dietary interventions. One area of research, in which several long-term intervention
studies are available and meta-analysis may be applied is that of fish-oil supplementation.
To our knowledge, at least six studies have been performed that examined the effects of fish-
oil supplementation on PBMC or whole blood gene expression using microarrays (3, 6, 7,
45-47). Many differences exist between studies, such as study population, duration, fish oil
supplement composition and microarray platform. Nevertheless, performing a meta-analysis
of these studies may provide valuable insight to both the applicability of these methods in
long-term nutritional intervention studies as well as the identification of general molecular

mechanisms underlying the effects of fish-oil.

The future of nutrigenomics

The research presented in this thesis falls in the field of nutrigenomics, which focusses on the
mechanisms by which nutrition affects our cells and body at different levels, including the
transcriptome, proteome and the metabolome. Increasing our understanding of how nutrients
influence cellular and organism metabolism may allow for effective dietary-intervention
strategies for the prevention of diet-related diseases (48). Even though many discoveries on
the effects of nutrients on transcriptome, proteome and metabolome have been made, the
interplay between genotype, phenotype, diet, other environmental factors and development
of disease is extremely complex. Due to this large complexity, at present, nutrigenomics-based
dietary advice on the basis of phenotypic or genotypic characteristics is not applicable in the
general population. Nevertheless, transcriptome analysis have shown differences in dietary
response between individuals (Chapter 2 and Chapter 3) though many questions remain
to be answered. As an example, even though sex is universally recognized as an important

determinant of dietary response, relatively few studies have actually examined the impact
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of sex on response to diet. In Chapter 2, the two studies that studied sex, only did so in a
retrospective analysis. Specifically designed studies focusing on the interaction between sex
and diet are highly needed, as most studies in the past have focused only on males. A similar
story goes for other phenotypic and genotypic factors. For example, we showed inflammation-
inhibiting effects on gene expression profiles in PBMCs induced by fish-oil supplementation in
APOEA4 carriers. Even though these changes may be beneficial, they do not provide sufficient
evidence for dietary recommendations. Ultimately, integration of multi-omics data may be the
key to personalized nutrition. In 2015, Zeevi et al. (49) performed a landmark study in which
they devised a machine-learning algorithm that integrated blood parameters, dietary habits,
anthropometrics, physical activity, and gut microbiota. Using this algorithm, they were able to
predict postprandial glycemic responses to real-life meals. The algorithm was validated in an
independent cohort and finally shown in a personalized nutrition intervention study to result
in lower post-prandial glycemic responses. In the future, similar techniques for personalized
prediction of nutritional effects may be applied to other dietary interventions or outcome
measures. Such prediction algorithms may be used, for example, for the identification of
individuals who may profit the most from a fish-oil intervention, or be used to identify which
diet may be optimal for individuals who carry the APOE4 allele or have characteristics of the
metabolic syndrome. Developing these prediction algorithms will require large amounts of
data. In this regard, being able to combine data from different studies, as touched upon in
Chapter 6 will be very valuable. Ultimately, all these efforts may pave the way for personalized

nutrition for the prevention and treatment of metabolic disease.

Conclusion

In this thesis, we studied the molecular mechanisms underlying the response to dietary
interventions with different types of fatty acids. We observed anti-inflammatory actions of two
long-term interventions. Fish-oil supplementation induced these anti-inflammatory changes
in PBMC gene expression profiles in APOE4 carriers, whereas medium-chain saturated fatty

acids induced these in the adipose tissue of overweight individuals.

High-fat challenges induce pro-inflammatory gene expression profiles in whole blood
and PBMCs, possibly by direct actions of fatty acids. We showed that these changes were
diminished in subjects with the metabolic syndrome, suggesting a state of decreased cellular

flexibility. Lastly, by performing a meta-analysis of PBMC microarray data from acute

154



General discussion

nutritional challenge studies, we showed that the gene expression response was consistent

across different studies.
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Summary



Various types of dietary fatty acids have different effects on human health. The aim of this
thesis was to increase our understanding of the molecular mechanisms underlying the effects
of dietary fatty acids. To do this, we examined changes in whole genome gene expression
profiles upon both acute as well as longer term dietary fatty acid interventions. Furthermore,
from previous research, it is clear that large inter-individual differences in the response to
dietary fatty acids exist. We used whole genome gene expression analyses to increase our

understanding of the mechanisms underlying some of these inter-individual differences.

Many modifiable and non-modifiable factors can be the cause of these inter-individual
differences. In Chapter 2, we reviewed all studies that examined differences in the
transcriptional response to dietary interventions based on the presence of one of these factors.
These include gender, age, BMI, body composition, blood lipid levels and gut microbial
composition. We conclude that transcriptome analyses are well-suited for studying the
underlying mechanisms behind these differences in the response to diet. Nevertheless, the

number of studies that use this approach remains limited.

Another factor that may modify the response to a dietary intervention is genetics, e.g. the
apolipoprotein E4 (APOE4) variant. People who carry the APOE4 allele have an increased
risk of cardiovascular disease. Fish-oil supplementation may help in the prevention
of cardiovascular disease, though inter-individual differences in the response to n-3
polyunsaturated fatty acids on gene expression profiles have been observed. In Chapter 3,
we aimed to assess the impact of APOE4 on peripheral blood mononuclear cell (PBMC)
whole genome gene expression at baseline and following a 6-month fish-oil intervention. We
observed increased gene expression of IFN signaling and cholesterol biosynthesis pathways
in APOE4 carriers, which might explain part of the association between APOE4 and CVD.
Furthermore, fish-oil supplementation may be beneficial by decreasing interferon signalling-

related gene expression in APOE4 carriers.

Another long-term dietary intervention with fatty acids was studied in Chapter 4. We
examined the effect of a 12-week high medium-chain saturated fatty acid diet on subcutaneous
adipose tissue gene expression profiles. We observed increased expression of genes involved
in oxidative energy metabolism and decreased inflammation-related gene expression due to
the high medium-chain saturated fatty acid intake. Considering the role of the adipose tissue
in sustaining the low-grade inflammation that is associated with obesity, these findings may
be indicative of a more anti-inflammatory phenotype of the adipose tissue. We concluded that

medium-chain saturated fatty acids may potentially have beneficial effects on adipose tissue
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functioning.

Besides studying the effects of long-term interventions with fatty acids on whole genome
gene expression, we also examined the effects of acute high-fat challenges. In Chapter 5, we
determined the additional value of determining whole genome gene expression changes in
response to a high-fat challenge compared to assessment at fasting only. In addition, we aimed
to identify whether a 4 week high-fat high-calorie diet can induce a shift in gene expression
profiles in healthy subjects towards a metabolic syndrome-like gene expression profile. We
found that fasting whole blood whole genome gene expression profiles are highly responsive
to a 4-week high-fat high-calorie diet, with changes in in the direction of a metabolic
syndrome-like gene expression profile. High-fat challenge responses in healthy subjects
show only minimal changes in gene expression upon the dietary intervention and a marginal
shift in the direction of the metabolic syndrome. We concluded that fasting gene expression
profiles are more responsive compared to high-fat challenge responses to a 4-week high-fat

high-calorie diet.

Besides Chapter 5, several other studies have also examined changes in whole genome
gene expression in blood cells induced by high-fat challenges. In Chapter 6, we combined
microarray data from four high-fat challenge studies varying in study population, challenge
composition and research laboratory. By performing this meta-analysis, we showed a general
PBMC whole genome gene expression response to a high-fat challenge. We concluded that a
meta-analysis provides added value for the discovery of consistently differentially expressed
genes and pathways compared to selecting only those genes and pathways that are identified

in all separate studies.

In conclusion, in this thesis we showed differences in the whole genome gene expression
response to fish-oil supplementation in PBMCs of APOE4 carriers vs non-carriers.
Furthermore, the effects on whole genome gene expression of the two long-term dietary
interventions, i.e. the fish-oil supplementation in PBMCs of APOE4 carriers and the high
medium-chain saturated fatty acid diet in adipose tissue, may be beneficial by downregulation
of gene expression related to inflammation. We also showed that whole genome gene
expression responses to high-fat challenges are affected by a 4-week high-fat high-calorie
diet, though changes in fasting gene expression profiles are much more pronounced. Finally,
we showed the value of meta-analysis of microarray data in high-fat challenge studies for

identifying the general response to a high-fat challenge.
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