

3rd INTERNATIONAL SYMPOSIUM ON ORGANIC GREENHOUSE HORTICULTURE 11-14 APRIL 2016 IZMIR, TURKEY

Climate Management in Unheated

Greenhouses

Fátima Baptista

fb@uevora.pt

COST is supported by the EU Framework Programme Horizon 2020

Contents

- 1. Climate control and energy use
- Trends and solutions for energy efficient greenhouse climate control
- 3. Final considerations

Greenhouse production areas

Europe - 160 000 ha in 2009 (EC, 2013) Spain – >50 000 ha Holland - 10 000 ha Portugal - 3 000 ha Turkey - 66 000 ha (27 000 ha tunnels)

Why is the environmental control so important in greenhouse crop production? And in the Mediterranean regions?!

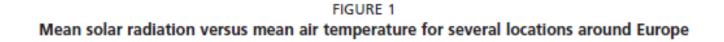
Computed maximum and minimum air temperatures if no climate control actions occur (without heating, ventilation, shadow or cooling). (Baptista et al., 2012)

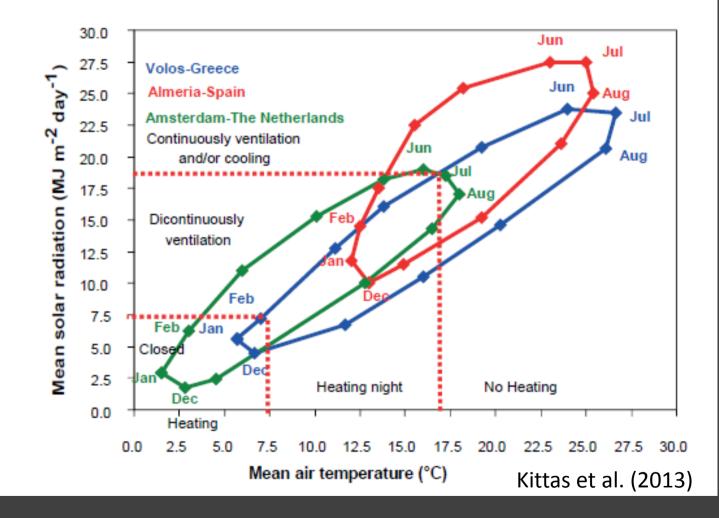
Location	Maximum	Minimum	
	Temperature	Temperature (ºC)	
	(ºC)		
Azores	51,8	10,9	
Faro	53,1	8,0	
Madeira	51,4	12,6	
Torres Vedras	52,0	7,6	
Vila do Conde	51,6	6,6	
Almeria	52,7	6,5	
Castellon	53,1	3,9	
Coruña	46,2	5,8	
Huelva	53,6	6,8	
Madrid	53,9	0,5	
Navarra	47,9	1,2	

Plastic covered Natural ventilation (passive climate control) Low to moderate investment

> Limited yields (20 kg m⁻²) Good quality in limited periods Irregular production

Glass covered Sophisticated active control systems High investments




High yields (> 60 kg m⁻²) Good quality almost year-round Regular production

Stanghellini, C.

Energy consumption in tomato greenhouse production

	Production (t ha ⁻¹)	Specific energy (GJ t ⁻¹)	
UK	213	137	Stanhill (1980)
	120	1	Muñoz et al. (2008)
Spain	200	7	Antón et al. (2009)
	165	4	Torrellas et al. (2012)

	Production (t ha ⁻¹)	Total energy (GJ ha⁻¹)	Specific energy (GJ t ⁻¹)
Greece	160	195	1,22
The Netherlands	640	15289	23,89
Portugal	180	364	2,02
			(Baptista et al., 2014)

Nowadays MEDITERRANEAN horticulture is not dependent on fossil fuels for acclimatisation...

HOW CAN ENERGY EFFICIENCY BE IMPROVED?

- More efficient use of the energy coming from the sun (to produce more)
- More efficient use of water

....

- More efficient use of fertilisers
- More efficient use of pesticides

New trends and solutions for energy efficient greenhouse climate control

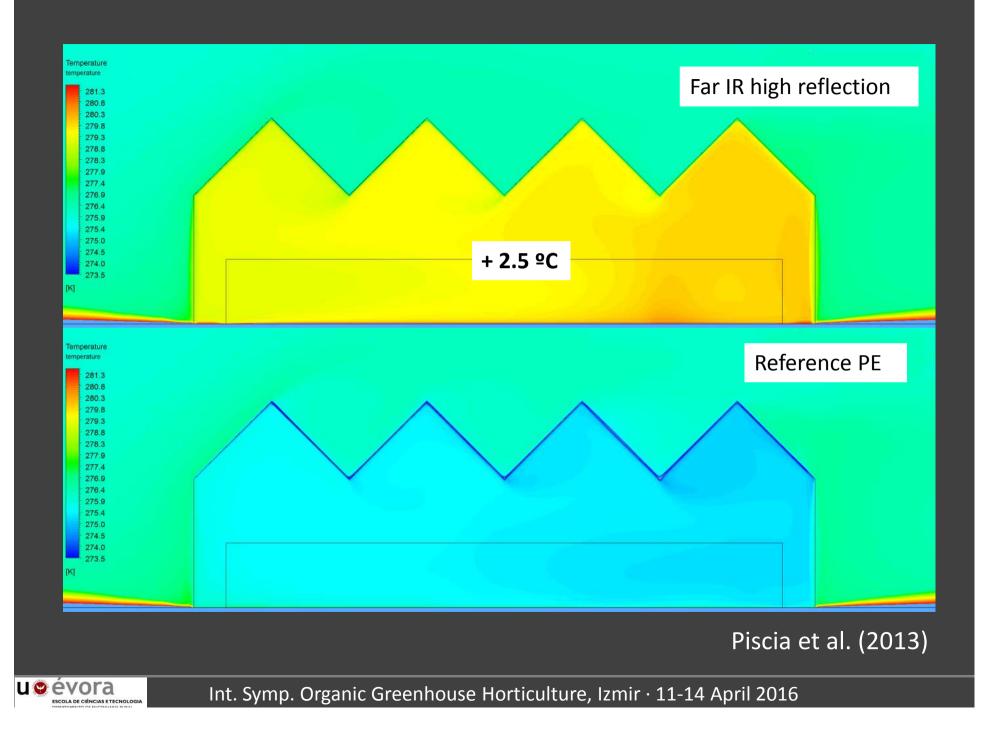
1 - light use
2 - screens
3 - natural ventilation
4 - cooling/heating

Mediterranean growers must increase yield and product quality

improving greenhouse structures implementing technology for climate control

ADAPT TECHNOLOGY NOT ADOPT (WITHOUT PREVIOUS TESTING)

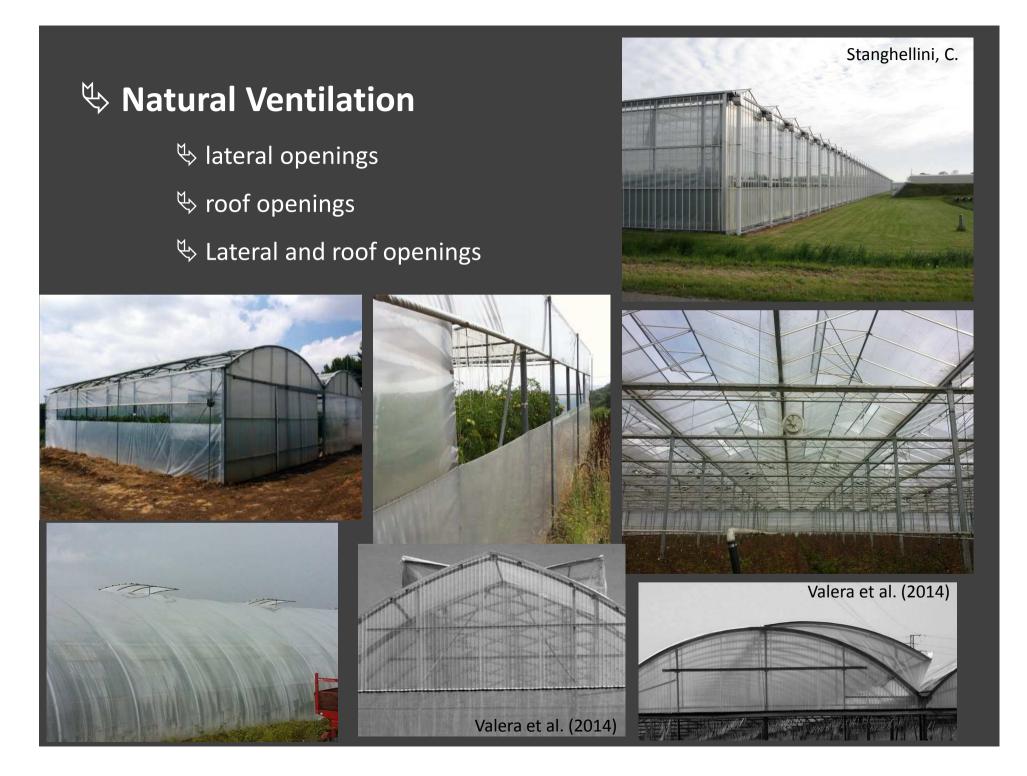
Greenhouse climate control: technological packages


- It is necessary to know, <u>at local level</u>, the crop response (technical and economical) to the climate control improvements and <u>transfer</u> the information to the grower
- According to the local technical and socio-economical conditions, achieving an economic compromise between:
 - Agronomic performances of each "greenhouse techn.
 Package"
 - * <u>Costs</u>
 - Different solutions to obtain proper quality at competitive prices

(Castilla, N.)

1 - Maximize the light (and its quality) entering the greenhouse

- Greenhouse cover with maximum possible transmissivity to PAR radiation
- Materials with high reflection to thermal radiation
- Greenhouse cover with good diffusion and anti-dripping effect
- Use shading and thermal screens wisely
- Optimize greenhouse roof slope and orientation
- Change and clean the plastic in the right moment

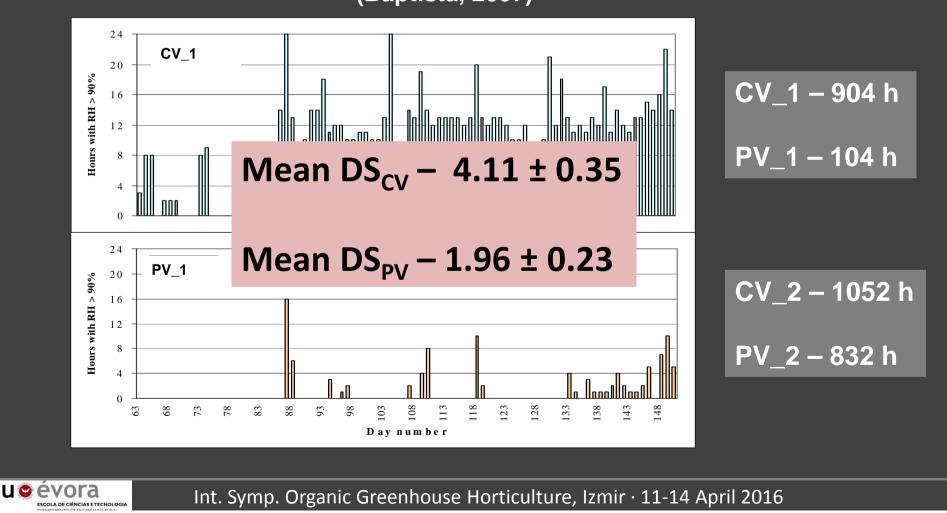

Thermal screens

- High air and crop nocturnal temperature
- Reduction of infiltration (humidity increase diseases)
- Savings 35-40% energy (Kittas et al., 2013)
- Shading screens during day period

3 – Natural Ventilation

🤄 main environmental control technique in Mediterranean regions (low cost and maintenance) temperature and humidity control \forall prevent CO₂ depletion (370 ppm) \forall if mean t_{out} < 27^oC ventilation is enough for temperature control (Kittas et al., 2013) Summer/winter; day/night

Sequences of the second state of the second


✤ recent research works, used CFD tools provided some of the key factors required for building a highly efficient natural ventilation design

Maximum greenhouse volume
 Maximum ventilator area
 Increase the slope of the span

Nocturnal or permanent ventilation

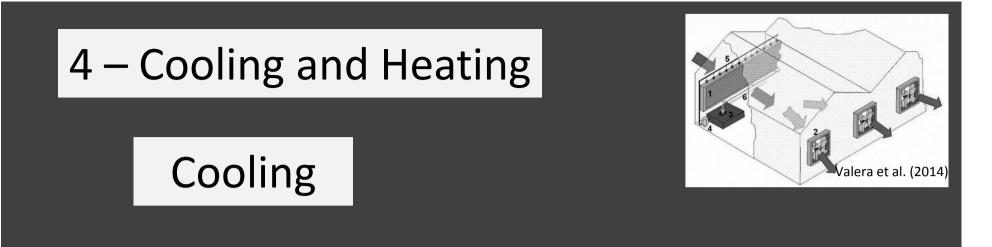
Number of hours per day with relative humidity higher than 90% (Baptista, 2007)

Mean temperature (^oC) for day, night and 24 h periods (Baptista, 2007)

		Day	Night	24 h
Year 1	CV	21.7±0.3	13.2±0.3	16.3±0.2
	PV	21.9±0.3	13.3±0.2	16.5±0.2
Year 2	CV	22.5±0.4	14.3±0.3	17.1±0.3
	PV	22.6±0.4	14.1±0.3	17.0±0.3

Significant differences P < 0.05, mean \pm standard error

Recommendations to growers


RH > 90% for more than 9 h per day - HIGH RISK

prophylactic measures should be used (increase ventilation, cultural measures, crop protections meaan)

RH > 90% for periods between 4 and 9 h per day – MODERATE RISK increasing ventilation should be enough to reduce relative humidity, depending on the outside conditions

RH > 90% for less than 4 h per day or RH < 90% - LOW RISK no action needed

♀ if tout > 27-28 °C usually cooling is required (Kittas et al., 2013)

evaporative cooling

- ♥ pad and fan (low uniformity, temp. difference at 8ºC) (Valera et al., 2014)
- ♦ fog systems (more uniform conditions and

does not need mechanical ventilation)

Kittas et al. (2013)

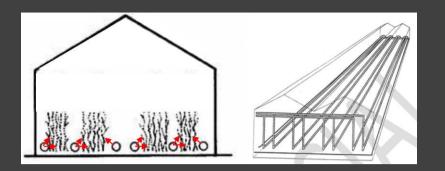
Demands high volume of quality water

Heating

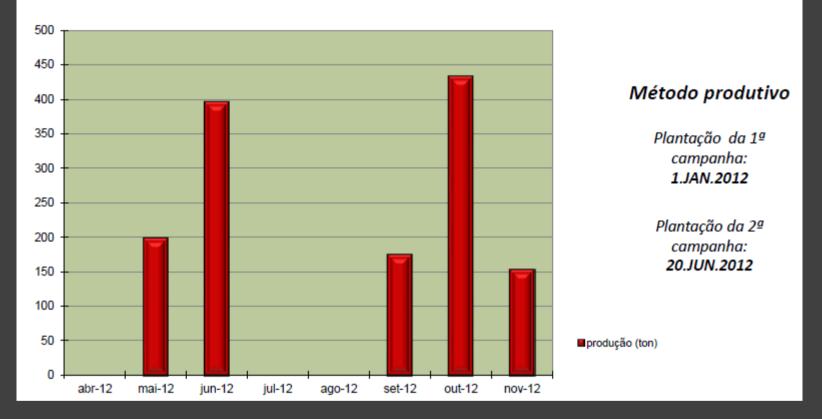
- extend production period
 anticipate harvesting
 production out of season
- ♥ increase productivity and quality

 $\stackrel{\text{t}}{\Rightarrow}$ if t_{out} < 10°C usually heating is required, mainly during the night (Kittas et al, 2013)

select systems that works with different energy sources
 natural gas *versus* diesel
 renewable energies (biomass, biogas, ...)

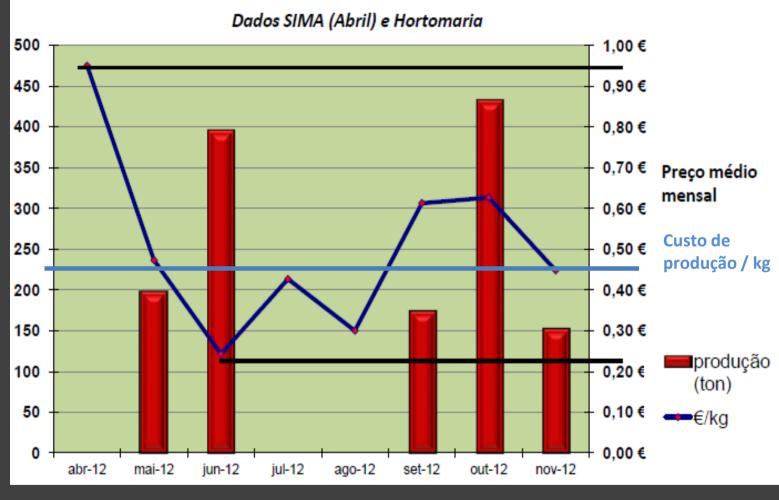

Evaluation of biomass heater with PE tubes for hot air distribution

Paulo Maria, Ricardo Vicente, Sofia Rodrigues, Fátima Baptista, Domingos Almeida, Joaquim Cantandeiro, Rui Vicente


♥ Main objectives:

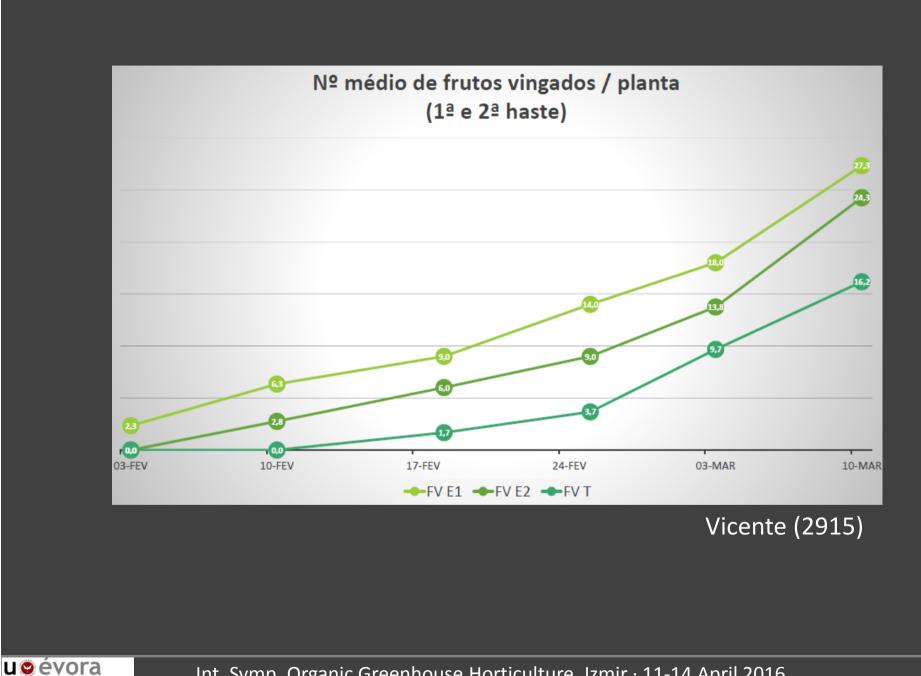
♥⇒ anticipate harvesting

selling in periods with higher market prices



Paulo Maria (2015)

Paulo Maria (2015)


Heating versus no heating

Int. Symp. Organic Greenhouse Horticulture, Izmir · 11-14 April 2016

27 January

Int. Symp. Organic Greenhouse Horticulture, Izmir · 11-14 April 2016

ESCOLA DE CIÊNCIAS ETECN

Important questions:

1. Which is the ideal plantation date in order to optimise the heating system?

- 2. Which are the most adapted varieties?
- 3. What is the best relation plant density, line number, plants height?
- 4. Which are the necessary adjustments to optimise fertigation system?
- 5. What is the total production? How many does the production increased?
- 6. Does quality improved (colour, aroma, flavour, size...)? Which? How much?
- 7. Does high price compensate cost increase?

....

Final Considerations

- Mediterranean greenhouse horticulture shows low dependency on fossil energy;
- Mediterranean growers, in order to stay competitive, must improve their productivity and quality and must be more stable in longer growing cycles;
- Research efforts must be undertaken on designing more efficient greenhouse structures with innovative covering materials, more efficient natural ventilation systems, better management and control.

3rd INTERNATIONAL SYMPOSIUM ON ORGANIC GREENHOUSE HORTICULTURE

11-14 APRIL 2016

IZMIR, TURKEY

Climate Management in Unheated Greenhouses

Fátima Baptista

COST is supported by the EU Framework Programme Horizon 2020