

Obstacles and solutions in pest management in organic greenhouse horticulture in practice nowadays

Jeroen van Schelt

Technical program, workshop pest management 12-4-2016

COST is supported by the EU Framework Programme Horizon 2020

OVERVIEW

- Koppert history
- Pollination with bumble bees
- Spider mite control
- Blowing in the wind
- The use of mirids
- White fly control
- Mealybugs
- Aphid control
- Difficult and new pests

HISTORY

Original packaging first *Phytoseiulus* from Switzerland

First commercial fair (live rearing system of P.p.)

HISTORY

Product range nowadays:

- Beneficial insects, mites, 50 species in > 200 types of packaging
- Pollinators (bumble bees, flies)
- Microbial products, (>250)
- Sticky traps, pheromones ...

POLLINATION

Artificial lighting in tomato, disorientated bumble bees. No UV.

Wireless Bee home. Nest boxes can be opened and closed between 10-2

SPIDER MITE CONTROL

Chemically almost impossible With predatory mites relatively easy

SPIDER MITE CONTROL

Distribution of beneficials can be:

- Time consuming
- Uneven
- Or even impossible

BLOWING (MITES) IN THE WIND

BLOWING IN THE WIND

Extremely good distribution.

Also small blowers available

WHITE FLY CONTROL

Greenhouse whitefly *Trialeurodes vaporariorum*

Silverleaf white fly *Bemisia tabaci*

WHITEFLY CONTROL

Different release systems

- Sachets (bran, bran mites, predatory mites)
- Cards with parasitoid pupae

THE USE OF MIRIDS

Mirids can eat a wide variety of prey species

If prey is scarce they can also live from plant juices

Building up a population can take some time, but when settled they will not fluctuate with prey density

"Standing army"

Sometimes plant or fruit damage can be an issue

Macrolophus pygmaeus

THE USE OF MIRIDS

A new invader (2006) : Tuta absoluta , tomato leafminer

THE USE OF MIRIDS

Nesidiocoris tenuis

Tuta —→

Tuta + Nesi —

MEALYBUGS

- Mealybugs are an increasing problem (roses, pot plants, etc.)
- Adult Cryptolaemus tend to fly away
- Larvae stay
- New product:
 - Cryptolaemus montrouzieri larvae
- Pack size: 500 ml bottle

Contains: 1000 larvae in buckwheat hulls

Cryptobug-L larva

Adult Cryptobug

Myzus nicotianae "red Myzus"

Aphid control with parasitoids is often disrupted by hyperparasitoids

Is it possible to to work with the gall midge *Aphidoletes aphidimyza* preventively?

In order to keep aphid population as low as possible before introducing parasitoids.

Less mummies, less hypers...

Aphidoletes aphidimyza

Traditional system with bankerplants and parasitoids

Treatment with only Aphidoletes

- 4 hectare
- From week 5 every two weeks
 2 Aphidoletes / m²
- Sampled every two weeks with small bankers
- Releasing parasitoids when aphids are found

Results

- Continuous presence of gall midge larvae on all small banker plants (feb - juli)
- Aphelinus was only found in March April. Beginning only close to bankers
- "Aphelinibank" greenhouse 2 times corrected with pirimicarb against Macrosiphum euphorbiae
- Aphidend greenhouse, 1 time Myzus found (with Aphidoletes larvae present) Release of A. colemani. Under control.
- Half July both greenhouses went chemical because of caterpillars.
- Good result, with limited costs

DIFFICULT AND NEW PESTS

Thrips

Echinothrips

Tomato russet mite

Caterpillars (e.g. Chrysodeixis)

Lygus

Nezara viridula, stink bug

Drosophila suzukii

Thank you for your attention !

COST is supported by the EU Framework Programme Horizon 2020