Short-term improvement of soil biological activity in biochar-amended organic greenhouse tomato crops – no effect on

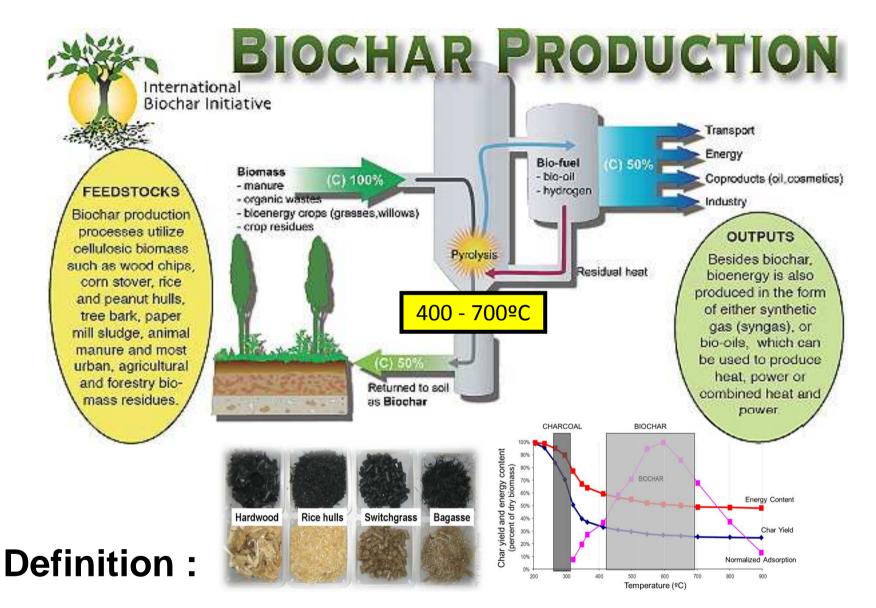
COST is supported by the EU Framework Programme Horizon 2020

Martine Dorais, F. Gagnon, M. Thériault, C. Ménard and S. Pepin Agriculture and Agri-Food Canada Centre de Recherche en Innovation sur les Végétaux, Laval University

Challenge of organic greenhouse farming

Soil nutrient release that will perfectly match plant nutrient uptake, without any leaching or emissions into the environment

✓ Balanced fertilizers/amendments


Plant nutrient uptake

High mineralization rate
 High nutrient plant demand

✓ Optimal fertilization → minimize salinization + GHG

✓ Optimal irrigation → No nutrient leaching (e.g. N, Ca, Mg)

Biochar as a soil amendment 🛁 👘 Soil quality

Charcoal from the thermal decomposition (pyrolysis) of C-rich biomass materials (Yao et al., 2012)

Biochar effects on soil quality

Limiting Factor	Parameter	Problem	Role of biochar
Physical	Structure	Compaction	Decreases bulk density
	Erosion	Erodibility	Higher infiltration capacity
	Humidity	Soil drying	 Increases soil water retention

Hypothesis – organic greenhouse tomato

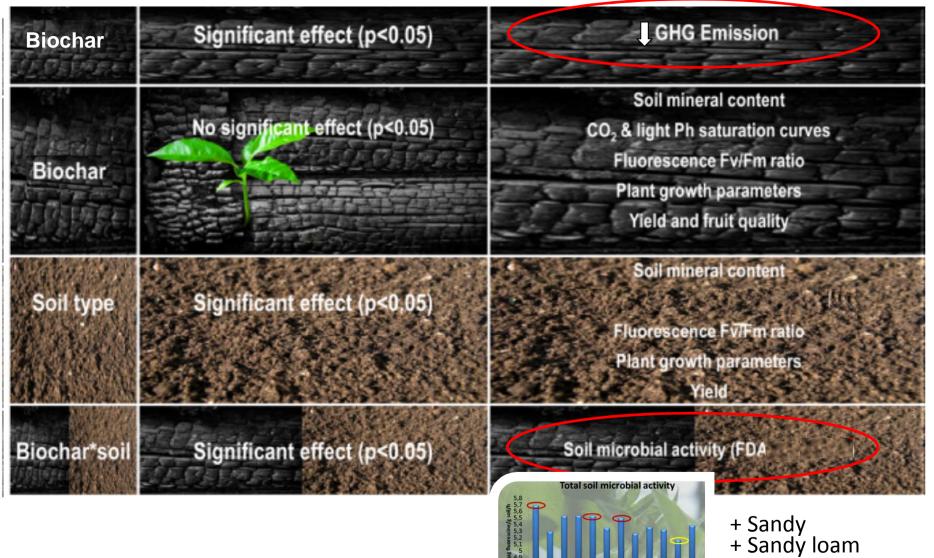
Biochar amendment to different types of organic soil can:

- (1) Increase soil microbial activity, mycorrhizal colonization and plant nutrient availability
- (2) Decrease CO₂ and N₂O emissions and nutrient leaching
- (3) Improve plant growth, yield and fruit quality of organic greenhouse tomato

- 150 m² greenhouse
- **Cv** Trust grafted on Beaufort
- 0.62 m³ container (2.4 plants/m²) Sand
 - Six types of soil

Muck soil Sandy loam Peat - sawdust Peat mix

A three-year experiment


and Z-WEER (Iniu-Aug. to end of Oct.) Inter vais

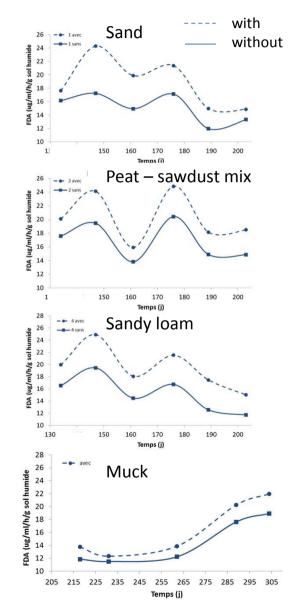
Loam

Irrigation : ψ_m –20 to –40 kPa

Split plot with 3 replicates - ANOVA using the MIXED procedure + Tukey's test ($P \le 0.05$)

Biochar soil amendment (10% v/v) – after 1 year

+ Peat mix


Biochar soil amendment (10% v/v) – after 2 years

Microbial activity

(FDA; ug fluorescein /ml/h/g soil)

May-July 2013 (4-wk interval)		Bioc		
		with	without	P value
Sand	↑ 25 9	<mark>%</mark> 18.8	15.1	0.0001
Peat sawdust mix	↑ 21 9	<mark>%</mark> 20.3	16.8	0.0002
Peat mix		19.7	18.8	0.2440
Sandy loam	↑ 27	<mark>%</mark> 19.5	15.3	<0.0001
Loam		15.6	14.6	0.2253
Muck	↑ 17	<mark>%</mark> 18.2	15.5	0.0029

		Bic	ochar	
August to October 2013 (2-wk interval)		with	without	P value
FDA (ug/ml/h/g sol humide)	↑ 14%	16.4	14.4	0.0047

Biochar soil amendment (after 2 years) – Flux of CO₂

May-July 2013 (4-wk interval)	Biochar			
	with	without	P value	
Flux of CO ₂ (mg CO ₂ m ⁻² s ⁻¹) \downarrow 15%	17.6	20.8	0.05	
	Biochar		P value	
August to October 2013	Bio	ochar	P value	
August to October 2013 (2-wk interval)	Bic	ochar without	P value	

- ✓ Increased carbon-use efficiency from co-location of soil microbes, soil organic matter and nutrients
- Precipitation of CO₂ onto the biochar surface (e.g. carbonate)

(Case et al 2014)

Biochar soil amendment (after 2 years) – Soil mineral content

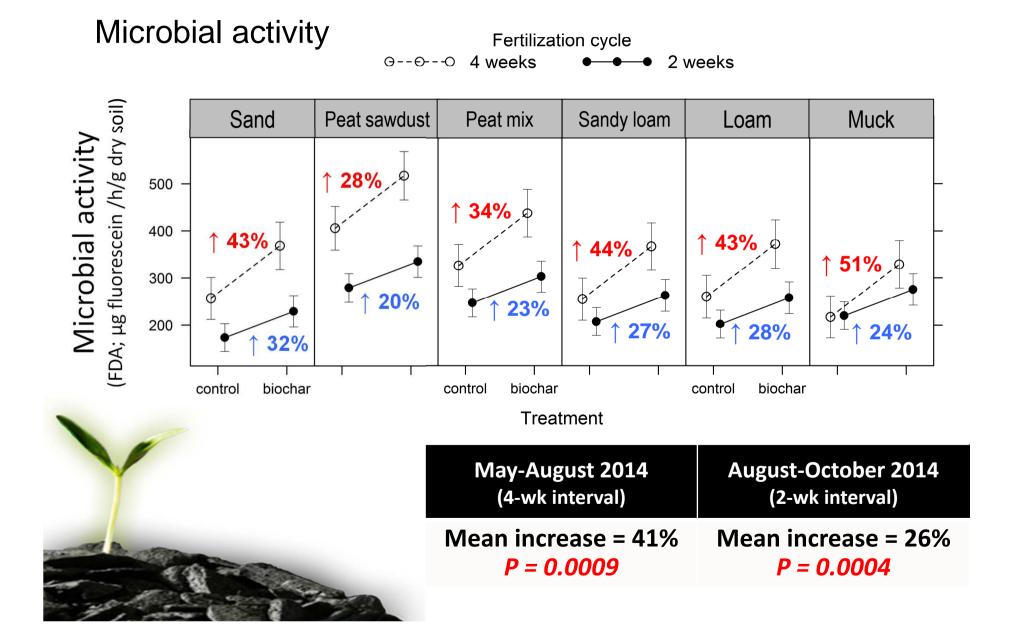
	Control	10 % biochar	P value	
NO 3 (mg L ⁻¹)	843	1008	0.0019	↑ 20%
\mathbf{NH}_4 (mg L ⁻¹)	64	65	0.8565	Ţ
for th	e min he so	nt differ eral cor il solutio analysis	ntent	↑ 17% ↑ 24% ↑ 60%
Mn (mg L ⁻¹)	31	42	<0.0001	↑ 35%
Zn (mg L ⁻¹)	493	298	<0.0001	↓ 40%
CEC (mEq/100g)	85	85	0.7527 -	Relatively low

Soil mineral content in the leachate

		Control	10 % biochar	P value	
	NO₃ (mg L ⁻¹)	359	252	0.0216	↓ 30%
	PO₄ (mg L⁻¹)	26	23	0.1855	
	K (mg L ⁻¹)	43	37	0.4223	
	Ca (mg L ⁻¹)	253	221	0.1885	
	Mg (mg L ⁻¹)	51	44	0.2534	
	SO₄ (mg L ⁻¹)	212	223	0.5695	
	Na (mg L ⁻¹)	61	59	0.7748	
~	CI (mg L ⁻¹)	118	127	0.6470	
	рН	7.4	7.4	0.2258	
	EC (mS)	1.9	1.7	0.1509	

* No significant difference between 2 and 4 week interval fertilization periods

Biochar soil amendment (10% v/v) – after 2 years

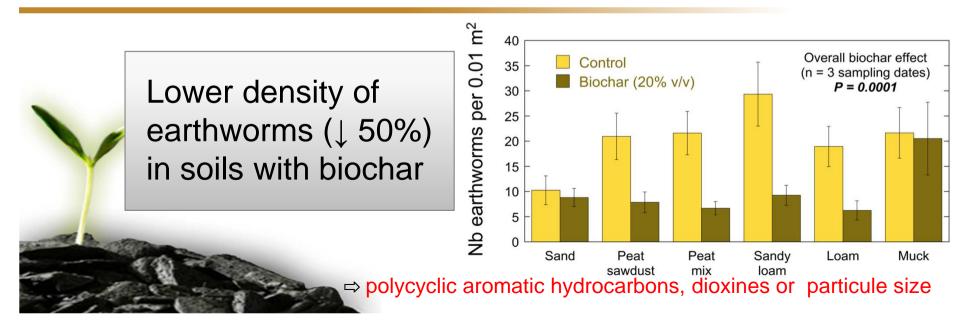

Biochar had little or **no significant effect** on :

- Plant growth & total yield
- Root mycorrhization
- Leaf nutrient content
- Soil N₂O emission

Significant effect of biochar on :

- Higher soil biological activity (FDA)
- Higher soil nutrient content (N, P, Fe, Cu, Mn)
- Reduction of soil CO₂ flux
- Reduction of 30% N leaching
- Reduction of fruit cuticle cracking

Biochar soil amendment (20% v/v) – after 3 years



Biochar soil amendment (20% v/v) – Root mycorrhization (AMF)

	July 2014 Biochar		Novembe Bioch	
	with	without	with	without
% of E.U. with mycorrhized roots	67%	83%	33%	55%
<i>P</i> -value	0.2637		0.19	25

⇒ No significant effect of biochar on root colonisation by mycorrhiza

Biochar soil amendment (20% v/v) – Earthworms

D	ĩ	2	1	4
	-	CI.	-	-

CH1 Chris Hadfield, 11-4-2016

Biochar soil amendment (20% v/v) – Soil mineral content

	Control	20 % biochar	P value				
NO₃ (mg kg⁻¹)	358	519	0.0003	↑ 45%			
NH₄ (mg kg ^{−1})	32	20	<0.0001	↓ 38%			
Greater concentrations of soil nutrients in biochar-amended soils							
F (exce	F (except NH_4 , Ca and Zn) 1						
Сч (тд кд-')	<u>_0.000</u> 1	↑ 129%					
Mn (mg kg ⁻¹)	16	32	<0.0001	↑ 97%			
Zn (mg kg ⁻¹)	388	178	<0.0001	↓ 54%			

Based on monthly soil analysis using the Mehlich-3 method

Soil mineral content in the leachate

			20%		<i>P</i> value	
		Control	biochar	Trt	Soil	Trt*soil
↓ 50%	NO₃ (mg L ⁻¹)	210	105	<0.0001	<0.0001	<0.0001
	PO₄ (mg L ⁻¹)	25	26	0.8425	<0.0001	0.4987
	K (mg L ⁻¹)					
	Ca (mg L ⁻¹)	Sigr	nifican	t red	uctic	n in
	Mg (mg L ⁻¹)	NO	3 CON	centi	ratior	n in
	SO₄ (mg L ⁻¹)	bioc	har-a	men	ded s	soils
	Na (mg L ⁻¹)					
	CI (mg L ⁻¹)	92	104	0.4169	0.0585	0.5803
	рН	7.35	7.42	0.0483	<0.0001	0.2208
	EC (mS cm ⁻¹)	2.04	1.80	0.0788	<0.0001	0.1380

* No significant difference between 2 and 4 week interval fertilization periods

Dry matter and mineral content of the 5th leaf

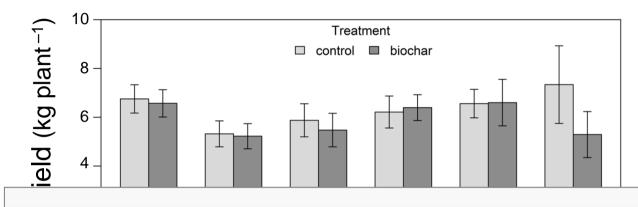
(%)	Biochar			
	With	Without		
Dry matter	12.44 ± 0.33	12.17 ± 0.31		
N	4.18 ± 0.16	4.23 ± 0.16		

No difference in concentrations of foliar nutrients between soils with 20% biochar and controls

IVIN	25.73 ± 1.39	22.22 ± 1.17
Cu	9.63 ± 0.74	8.50 ± 0.37
Fe	109.26 ± 8.70	112.53 ± 8.68
Zn	33.55 ± 7.03	35.18 ± 6.00

Biochar soil amendment (20% v/v) – Plant growth

Stem height growth (cm)


Foutilization	Bic			
Fertilization	with	without	P value	
4-week interval	269	265	0.6450	
2-week interval	205	207	0.6078	

No difference in plant growth parameters between soils with 20% biochar and controls

		~ ·	0.00.0
Fruiy dry weight (g)	83	81	0.8991
Stem dry weight (g)	41	42	0.6886
	October 2014		
Leaf dry weight (g)	55	52	0.0955
Fruit dry weight (g)	98	98	0.9151
Stem dry weight (g)	75	71	0.1590

Biochar soil amendment (20% v/v) – Productivity

No difference in productivity and fruit quality with 20% biochar and controls

May to October 2014	Control	20 % biochar
Fruit nb with physiological disorders	7.93	7.33
Fruit weight with physiological disorders	1.057	0.998

Summary – after 3 years of biochar amendment (10%, 10% and 20%)

Biochar had little or no significant effect on :

- Plant growth & total yield
- Root mycorrhization
- Leaf nutrient content

Significant effect of biochar on :

- Higher soil biological activity (FDA)
- Higher soil nutrient content (except Ca and Zn)
- Reduction of CO_2 flux (1st and 2nd years)
- Reduction of 30 to 50% N leaching
- Reduction of fruit cuticle cracking (2nd year)

Conclusion – 3 year experiment

Adding 10-20% (v/v) biochar to soils of organic greenhouse tomato **increased soil biological activity** and **nitrogen retention** resulting in lower nitrogen leaching and improved crop system sustainability

Different types of soil

No significant effect on productivity

Research team & collaborators

Dr C. Ménard

É. Fortier MSc

R. Bacon, MSc

M. Thériault, MSc

Undergraduate students

Ariane Généreux-Tremblay Elisabeth Dubé Ariane Dionne Benjamin Leuven

Graduate students

S. Laurin Lanctôt

F. Gagnon

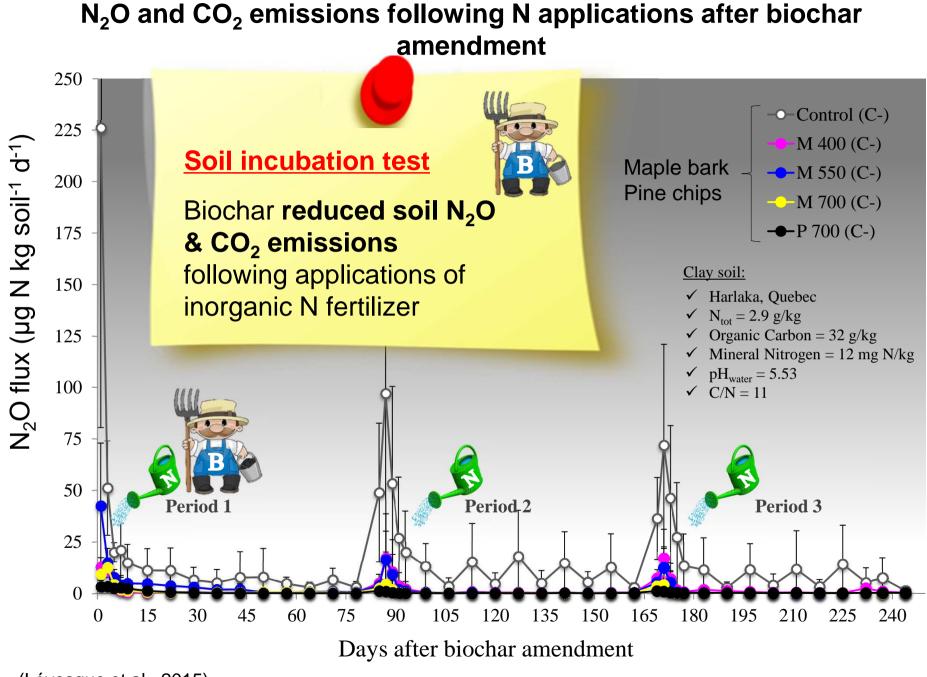
Professors- Researchers

- S. Pepin, ULaval
- H. Antoun, ULaval
- P. Rochette, AAFC

ACKNOWLEDGEMENTS

Financial support was provided by the "Programme Innovbio" of the Ministry of Agriculture, Fisheries & Food (MAPAQ, Quebec) and by the Canadian Agri-Science Clusters (Organic Science Cluster II)

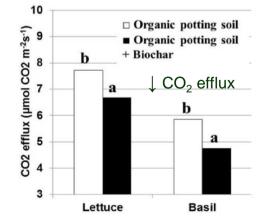
Cultivons l'avenir, une initiative fédérale-provinciale-territoriale


Agriculture et Agriculture and Agri Food Canada

Thank you very much

Martine.Dorais@agr.gc.ca

Without compost = C-

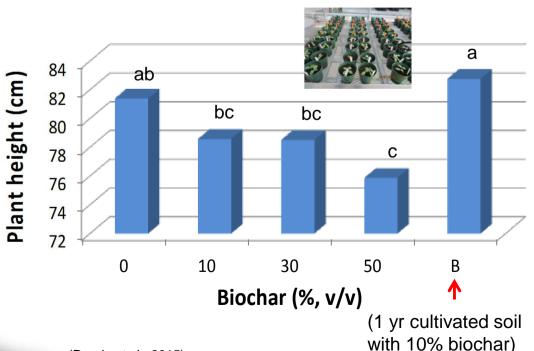

(Lévesque et al., 2015)

Amending potting soils with biochar

Study by Gravel *et al.* (2013) on potted plants grown in a substrate amended with 50% (v/v) biochar:

- \bigcirc Increased pH, no effect on EC, lower CO₂ efflux
- 2 + 46% aboveground dry weight of coriander
- 3 44% on DW of lettuce
- ④ No effect on DW of basil, pepper and geranium

Sho	oot	Pepper		Geranium		Coriander		Basil		Lettuce	
Vol	1:1	F.W	D.W	F.W	D.W.	F.W.	D.W	F.W.	D.W.	F.W.	D.W.
	(g/plant)	(g/plant)	(g/plant)	(g/plant)	(g/plant)	(g/plant)	(g/plant)	(g/plant)	(g/plant)	(g/plant)	
Org	ganic soil	77	8.6	55.3	8.1	74.2b	4.3b	60	5.5	165a	4.7a
Org	ı soil + Biochar	73	8.4	56.8	8.6	91.2a	6.3a	54	5.1	132b	2.6b
P va	alues	0.0891	0.7775	0.7616	0.4376	0.0025	0.0059	0.0749	0.2263	0.0011	0.0009




Effects of biochar on seedling tomato growth and root colonization by *Pythium ultimum*

P-value	Soil	Biochar	S*B	Pythium	S*P	B*P	S*B*P
Height (cm)	0.0480	0.0004	NS	NS	0.0305	NS	NS
Dry Wt (g)	0.0001	0.0001	0.0001	0.0001	0.0215	NS	NS
Fresh Wt (g)	0.0001	0.0001 🄇	0.0001	0.0002	NS	NS	NS

Soil * Biochar

- 30% and 50% biochar (v/v) had negative effect on plant DW
- Positive effects on FW & DW of plants in soils cultivated for one year with 10% biochar (B)

Biochar soil amendment (20% v/v) – Flux of CO₂

May–August 2014		Bic	ochar	Dualua	
(4-wk interval)		with without		P value	
CO ₂ efflux (µmol CO ₂ m ⁻² s ⁻¹)	↑ 11%	9.9	9.0	P = 0.0141	
August–October 2014		Bio	ochar	Dugluo	
(2-wk interval)		with	without	P value	
$CO_2 efflux (\mu mol CO_2 m^{-2} s^{-1})$	↑ 21%	9.3	7.7	P = 0.0001	
				respiration nded orga	` I