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ABSTRACT

Aim The earth’s land cover is often represented by discrete classes, and pre-

dicting shifts between these classes is a major goal in the field. One increasingly

common approach is to build models that predict land cover classes with prob-

abilities rather than discrete outcomes. Current assessment approaches have

drawbacks when applied to these types of models. In this paper we present a

new metric, which assesses agreement between model predictions and observa-

tions, while correcting for chance agreement.

Location Global.

Methods jmultinomial is the product of two metrics: the first component mea-

sures the agreement in the ranks of the predicted and observed classes, the

other specifies the certainty of the model in the case of discrete observations.

We analysed the behaviour of jmultinomial and two alternative metrics: Cohen’s

Kappa (j) and an extension of the area under receiver operating characteristic

Curve to multiple classes (mAUC) when applied to multinomial predictions

and discrete observations.

Results Using real and synthetic datasets, we show that jmultinomial – in con-

trast to j – can distinguish between models that are very far off versus slightly

off. In addition, jmultinomial ranks models higher that predict observed classes

with an onaverage higher probability. In contrast, mAUC gives the same score

to models that are perfectly able to discriminate among classes of outcomes

regardless of the certainty with which those classes are predicted.

Main conclusions With jmultinomial we have provided a tool that directly uses

the multinomial probabilities for accuracy assessment. jmultinomial may also be

applied to cases where model predictions are evaluated against multiple sets of

observations, at multiple spatial scales, or compared to reference models. As

models develop we assess how well new models perform compared to the real

world.

Keywords

cohen’s kappa, kappa multinomial, land cover, model predictive accuracy,

multinomial models, multiple class AUC, validation

INTRODUCTION

Land use and vegetation models are commonly used in earth

science and biology to understand the effects of environmen-

tal and socio-economic drivers on land cover. For example,

they are used to understand and project changes in vegeta-

tion type distribution under climate change (Lenihan et al.,

2003; Sitch et al., 2008; van Bodegom et al., 2014) and to

predict land use dynamics to support policy and planning

(Verburg et al., 2004 and references herein, Le et al., 2010).

In these models, land use and vegetation are often repre-

sented by discrete classes.

One emerging group of land-use change and vegetation

distribution models determine a probability distribution for

a set of classes (see for an example Fig. 1; Muller & Zeller,

2002; Hepinstall et al., 2008; Douma et al., 2012b; van
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Bodegom et al., 2014; Ackerly et al., 2015). Such multino-

mial models estimate the probability of a sample (also called

instance, pixel, individual observation or item) being a mem-

ber of the possible classes with estimated probabilities pi1,. . .,
piq, pik ≥ 0 in sample i, and

Pq
k¼1 pik ¼ 1. The fact that as pik

is less than 1 may reflect either the stochastic nature of pos-

sible realizations – whatever the nature of the particular

stochastic mechanism(s) in the system may be (Turner et al.,

1993), or the inability of the model to represent an impor-

tant process. The argument for this type of model is that

explicitly modelling probabilities is a better representation of

both ‘real’ stochasticity and instance-level model uncertainty.

Assessing the agreement of multinomial models with (in-

dependent) observations is important to assess and improve

model reliability, and to select among competing models.

Agreement assessment involves the comparison of the pre-

dicted class probabilities to a set of observations y whose

class membership is known either with or without uncer-

tainty. However, the probabilistic nature of the new class of

models makes traditional methods of model assessment

problematic. In multinomial models, the agreement to the

data has two components: 1) the degree to which the ranks

of the predicted class frequencies correspond to the observed

class frequencies, and 2) the certainty with which those

classes are predicted.

The development of metrics for multinomial models and

discrete observations is an active field of research (Ferri

et al., 2009; Sokolova & Lapalme, 2009; Jurman et al., 2012).

The available methods can be classified into three families

(Ferri et al. (2009): i) metrics based on a threshold and a

qualitative understanding of error, ii) metrics based on how

well the model ranks the observations, and iii) metrics based

on a probabilistic understanding of error, and measuring the

difference from the true probability.

The metrics belonging to the first family are most fre-

quently applied and transform class probabilities to success

for exactly one out of q outcomes before assessing their

agreement with a set of samples (Ferri et al., 2009). The

underlying assumption of such a hard classification (also

known as crisp classification) is that a class is observed if it

exceeds a probability threshold. In this case, the prediction

equals the class with the highest predicted probability: ŷij ¼ 1

if j ¼ arg maxkðpikÞ and ŷij ¼ 0 otherwise (Dendoncker et al.,

2007; Douma et al., 2012b; van Bodegom et al., 2014). After
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Figure 1 Observed mosaic of vegetation types and predicted probabilities of the four dominant vegetation types (Grassland, Shrubland,

Broadleaf forest, and Conifer forest) in the Chaparral in California. The predicted probabilities were fitted simultaneously in a
multinomial logistic model, and the probabilities of the four vegetation types in a pixel sum to one. Species composition in this area is

partly determined by constant factors (such as topology, soil, and climate), and partly stochastic factors such as fire. The model shows
that at some locations multiple vegetation types have an equal chance of occurrence (see dashed circle), while only one vegetation type

is observed. For full model specifications we refer to Ackerly et al. (2015). [Colour figure can be viewed at wileyonlinelibrary.com]
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transformation, one can calculate the overall accuracy (the

fraction correctly classified cells p0) and a number of other

measures (see Dendoncker et al., 2007 and Webb et al., 2008

for applying this measure to multinomial predictions).

A classical and still widely used accuracy metric from this

family is the kappa statistic (j, equation 1; Cohen, 1960). It

was originally designed to evaluate the agreement between

two classifiers and expresses the observed agreement between

those classifiers (p0) corrected for chance agreement (pe). p0
equals the proportion of samples that has the same class

attribution by the two classifiers. pe is the agreement that can

be expected after a random allocation of given class sizes. j
has been applied to assess the accuracy of vegetation models

(e.g. Monserud & Leemans, 1992). Rescaling ensures that j
reaches one if the model predictions perfectly match the

observations, while j reaches zero if agreement is similar to

chance:

j ¼ p0 � pe
1� pe

(1)

The main reason to use j is that the scaling against a ref-

erence model allows inter-comparison of models from differ-

ent regions (Gotelli & Graves, 1996). However, this feature

has also been a main point of criticism (Foody, 1992; Pon-

tius & Millones, 2011).

The transformation of probabilities to hard classification

has critical disadvantages. First of all, the probabilistic nature

that is often reality is removed while assessing the accuracy

of the model predictions, which eliminates some of the

advantages of probabilistic models. Secondly, assessing model

agreement on transformed multinomial probabilities very

likely affects model agreement because an arbitrary decision

is made about which predicted class would be observed.

Finally, with transforming probabilities, information is lost

about the certainty with which the model predicts a given

class.

Well-known metrics from the second family are based on

the Area Under the receiver operating characteristic Curve

(AUC). AUC has been designed to measure the ability to

discriminate between two classes of outcomes. An AUC

value of one indicates a perfect ability of the model to dis-

criminate between two classes, and an AUC value of 0.5

indicates similar agreement than what would be expected by

chance. AUC has been extended in multiple ways to cases

with more than two classes (Hand & Till, 2001; Provost &

Domingos, 2001; Ferri et al., 2003). The analogue of the

AUC for multinomial predictions is the volume under curve

(VOC, Ferri et al., 2003). However, the computation of

VOC becomes challenging when a large number of classes is

distinguished (dimension equals 2q – with q classes). A

method that is computationally more attractive in case of a

high number of classes is by calculating multiple AUCs

using a one class versus all other classes approach. Thus in

case of q classes, one gets q AUC curves and q AUC values

that are weighted according to the occurrence of each class

to obtain one AUC value (hereafter referred to as mAUC,

Provost & Domingos, 2001; Fawcett, 2006). A variant of

AUC, which is a hybrid between the second and third fam-

ily, is the probabilistic AUC. Metrics of this kind aim to

make the rankings robust to small changes in the predicted

probabilities (scored AUC, sAUC, Wu et al., 2007; and

probabilistic AUC (pAUC) Ferri et al., 2005). AUC as agree-

ment metric has been criticized when applied to small sam-

ples and to predictive distribution models (Lobo et al.,

2008; Hanczar et al., 2010). The main criticism of the

method when applied to predictive distribution models is

also the strength of the method: the discriminating power of

the model does not necessarily indicate a good model fit

(Lobo et al., 2008).

Agreement metrics that belong to the third family, those

based on a probabilistic understanding of error, measure the

deviation of observations from the predicted probabilities.

Examples include the Brier score and the mean squared error

(Brier, 1950; Ferri et al., 2009). A kappa-like metric, here-

after referred to as jgroup, was developed by Vanbelle &

Albert (2009) to calculate the agreement between a group of

classifiers and a single classifier (equation 2). The classifica-

tion of the group is expressed as a multinomial model with

q classes and the classification of the single observer as suc-

cess for exactly one out of q classes. jgroup defines agreement

as observed agreement (p0multinomial; equation 3) corrected

for the difference in maximum agreement that can be

obtained with the multinomial model (pmax) and chance

agreement (pe). The observed agreement equals the average

probability of observed classes, and is also known as the

mean probability rate (Ferri et al., 2009). The maximum

proportion of agreement was calculated as the average of the

most probable classes over all samples (equation 4). Chance

agreement is the product of the marginal distributions of the

model and the observations (equation 5). Thus, jgroup mea-

sures the degree to which the most probable class is also

observed irrespective of the certainty with which those classes

are predicted.

jgroup ¼ p0 multinomial � pe
pmax � pe

(2)

p0 multinomial ¼ 1

m

Xm
i¼1

Xq
k¼1

yikpik (3)

pmax ¼ 1

m

Xm
i¼1

max
k

ðpikÞ (4)

pe ¼
Xq
k¼1

ykpk with yk ¼ 1

m

Xm
i¼1

yik and pk ¼ 1

m

Xm
i¼1

pik (5)

where pik represents the probability of observing class k in

sample i; yik represents the observed presence or absence of

class k in sample i; m is the total number of samples; and q

is the total number of classes.

jgroup reaches one if all observed classes are predicted with

the highest probability. Hence, the disadvantage of jgroup is

that it cannot account for the relative certainty of the model
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in its predictions. In model assessment this is a major prob-

lem as the observations serve as reference and not the multi-

nomial model. As a consequence once cannot select among

multinomial models with jgroup ¼ 1

From the above it becomes clear that none of the existing

metrics is appropriate to apply to multinomial models that

are used in the domain of biogeography. Therefore, the aim

of this paper is to present a new metric that can be used to

assess agreement both between and within multinomial mod-

els and that corrects for chance agreement. The proposed

metric is a modification of the metric developed by Vanbelle

& Albert (2009). In addition, we compare the behaviour of

this new metric with the two most commonly applied other

measures in biogeography, one from the first and one from

the second family.

METHODS

A generic Kappa-like metric to assess accuracy of

multinomial models

jmultinomial assesses the agreement between a multinomial

model and observations and accounts for agreement

obtained by chance when using observations only (equa-

tion 6). Although the emphasis of this paper is on the appli-

cation of jmultinomial to multinomial predictions and

observations y with one success for exactly one out of q

classes – hereafter referred to as discrete outcomes

ðfyik 2 Z : 0� yik � 1gÞ, jmultinomial can also be applied to

discrete models with discrete observations and to multino-

mial predictions and observations y represented by frequen-

cies (fyik 2 R : 0� yik � 1, Table 1g). The first two cases can

be considered as special case of the third. Therefore, we first

derive the generic equation for jmultinomial and discuss the

specific cases afterwards.

jmultinomial ¼ jprobjloc

¼ p0 multinomial � pe multinomial

pmax � pe multinomial

pmax � pe multinomial

1� pe multinomial

(6)

jmultinomial can be thought of as having two components,

jprob and jloc. jprob measures the degree to which ranks of

the predicted class probabilities correspond to the ranks of the

observed class frequencies. It thus reaches one if there is a per-

fect match between the rank orders of the observations and

predictions. It reaches zero if the model has similar perfor-

mance compared to the null model. jloc, in turn, measures the

certainty of the model in the case of discrete observations. For

continuous observations, jloc measures the mean match of the

sorted observed and predicted sample frequencies. jloc equals
zero if the performance of the multinomial equals the null

model. It equals one if, for each sample, the sorted predictions

exactly matches the sorted observations.

For previous generations of models with discrete predic-

tions, pmax ¼ 1, and so this decomposition is trivial, but for

multinomial models, jloc is an interesting descriptor of the

relationship between the model and the data: some models

make much more ‘certain’ predictions than others - they

have a much higher value of pmax � pe multinomial. This decom-

position separates model ‘certainty’ from model ‘correctness’.

Understanding the statistical and biological drivers of model

‘certainty’ with the new generations of models is an impor-

tant challenge.

jloc and jprob are calculated from three measures: the

observed agreement between model predictions and observa-

tions (p0 mulitinomial equation 7), the agreement expected by

chance (pe mulitinomial) and the maximum possible agreement

of the model (pmax; equation 8). p0mulitinomial measures the

agreement between model predictions and observations, and

measures the proportion in common between predictions

and observations. It is equivalent to the Manhattan distance

which assumes no error in the observed data; the safest

assumption for model evaluation (Legendre & Legendre,

1998; Warton et al., 2006).

p0 multinomial ¼ 1

m

Xm
i¼1

1�
Pq

k¼1 yik � pikj j
2

� �
(7)

When class predictions and observations consist of presence/

absence data or consist of probabilities or frequencies, it can

be shown that
Pq

k¼1 jyik � pikj is bounded for any i between

[0,2] since for each sample the sum of the probabilities is 1

and the sum of each observation is 1. Hence, this equa-

tion can be applied to all three cases. When observations

consists of discrete outcomes equation 3 gives similar results.

For evaluating the performance of multinomial models in

the domain of biogeography, we define a different reference

model compared to what is used in jgroup and Cohen’s j.
jgroup and Cohen’s j were originally designed to assess the

agreement between classifiers and assumes that classifiers are

equally reliable. Hence it computes chance agreement as the

product of the marginal distributions (equation 5). However,

in case of evaluating model performance, it seems more

appropriate to define the reference model as the expected

agreement obtained by using the observations only. That

would be a fair reference for all candidate multinomial mod-

els tested within a study. There is no convenient analytical

solution for the generic case of pe multinomial. However,

pe multinomial can be calculated as the average agreement of the

observed map and a large number of randomized maps. The

agreement between the observations and the randomization

is calculated with equation 7. Hence, pe multinomial and

p0 multinomial are calculated consistently.

The maximum agreement of a model that can be obtained

given the observations (pmax) can be generalized to include

models fitted to either discrete or continuous observations.

For the discrete case: it was calculated by Vanbelle & Albert

(2009) as the average of the most probable classes over all

samples. For the continuous case, a model reaches maximum

agreement if, for each sample, the rank order of the
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predicted class probabilities exactly matches the rank order

of the observed class frequencies. In that case it holds that

yiðqÞ [ yiðq�1Þ [ . . .[ yið1Þ with (q) being the class predicted

with highest probability in sample i, i.e. ðqÞ ¼ arg max
k

ðpikÞ
and (1) being the class with lowest predicted class probabil-

ity, i.e. ð1Þ ¼ arg min
k

ðpikÞ. pmax is calculated as the agree-

ment between the ordered class probabilities and the ordered

class frequencies (equation 8).

pmax ¼ 1

m

Xm
i¼1

1�
Pq

k¼1 yiðkÞ � piðkÞ
�� ��

2

� �
(8)

with pi1; . . .; piq defined as piðqÞ; . . .; pið1Þ; piðqÞ being the highest
class probability piðqÞ ¼ max

k
ðpikÞ, and pið1Þ ¼ min

k
ðpikÞ. Like-

wise, the ordered frequencies of yi1; . . .; yiq are defined as

yiðqÞ; . . .; yið1Þ with yi(q) being the highest class frequency, i.e.

yiðqÞ ¼ max
k

ðyikÞ and yið1Þ ¼ min
k
ðyikÞ.

Applying jmultinomial to multinomial models to

discrete observations

At present, multinomial models are most frequently used to

predict outcomes with one success for exactly one out of q

classes – discrete observations. If only one class is observed

in a given sample, jprob measures the degree to which the

most probable class is observed above random scaled to the

maximum agreement of the model. jloc measures the upper

limit of such a model above random scaled to the difference

between maximum and chance agreement. With discrete

observations, p0 multinomial is calculated with equation 7

although equation 3 can be used as well. In addition, equa-

tion 8 is a generalization of equation 4. Therefore, jprob is

similar to jgroup (sensu Vanbelle & Albert, 2009), except that

chance agreement is calculated differently (for reasons

explained earlier). Chance agreement can be computed ana-

lytically (equation 9). It represents the average of the dis-

tance of the samples compared to the average observed

occurrence class frequency.

pe multinomial ¼ 1

m

Xm
i¼1

1�
Pq

k¼1 yik � ykj j
2

� �
with yk ¼ 1

m

Xm
i¼1

yik

(9)

The behaviour of jmultinomial for a representative set of

probability models with 5 classes and discrete observations is

graphically depicted in Fig. 2.

A special case of multinomial models is when one of the

classes in each sample is predicted with a probability of one.

If predictions are discrete, the model can only be wrong in

the predicting the wrong class (but not in the probabilities

assigned to each class). Thus, every discrete model has a pmax

of one. Therefore, jmultinomial cannot be decomposed into

jloc and jprob. jmultinomial is similar to Cohen’s j if the pre-

dictions are hard classified (presence/absence) and the mar-

ginal totals of the observations and predictions are equal.

Exploring the behaviour of jmultinomial compared to

existing methods

We examined the use, behaviour and the relation of

jmultinomial to existing metrics in two ways. First, we created a

number of contrasting multinomial models and compared

their agreement with a dataset consisting of class occurrences

with discrete outcomes. Second, we used an existing dataset

with vegetation type occurrences for which we predicted the

vegetation type occurrence with multinomial models. For

each dataset, the agreement was evaluated with jmultinomial

and compared with the two most commonly applied metrics:

a member from the first family, Cohen’s kappa (j, Cohen,
1960) and the second family, mAUC (Provost & Domingos,

2001).

Evaluation using a synthetic dataset

We created a synthetic dataset consisting of 1000 samples

with each sample assigned to one class and we assessed the

agreement of 10 sets of pre-defined multinomial models to

this dataset. Across the 10 sets, the pmax ranged from high

(i.e., one class with high probability of occurrence and hence

large differences between the class with the highest probabil-

ity and those of other classes) to low (Fig. 3, see

Appendix S3.1 in Supporting Information). Within each set,

class probabilities were varied across samples and classes.

This reflects reality as oftentimes class probabilities co-vary

with underlying environmental and socio-economic drivers

and differ among samples.

Five out of 10 sets were constructed such that for a given

pmax (0.18, 0.29, 0.49, 0.65 and 0.75) the ordered class proba-

bilities were partly overlapping across samples. These sets are

expected to lead to contrasting behaviour of jmultinomial and

j because j transforms the most likely class to presence irre-

spective of the pmax. Two sets of multinomial models were

constructed such that the minimum of the class that was

predicted with highest probability was higher than the maxi-

mum of the class that was predicted with second highest

probability (e.g. maxi pið9Þ
� �

\min
i

pið10Þ
� �

). Three sets of

models were constructed such that the second most probable

class is predicted with a probability that is only slightly

(0.93) lower to the class with the highest probability. These

latter five sets of models may lead to contrasting behaviour

of mAUC and jmultinomial because mAUC measures the

degree of discrimination between class probabilities, while

jmultinomial measures the average probability with which

observed classes are predicted.

Within each set, we distinguished 41 multinomial models.

In the first model, the observed classes were predicted with

highest probability, hereafter referred to as ‘perfect agree-

ment’ model (jprob ¼ 1). For the remaining 40 multinomial

models in each set two types of mispredictions were

imposed. In 20 models, the observed class was predicted with

second highest probability. In another 20 models, the

observed class was predicted with a randomly chosen class
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(see Appendix S1 for illustration). Within each type of mis-

prediction, 5% to 100% mispredictions were imposed (20

for each) leading to 10 9 41 predictive models. For all mod-

els, j, mAUC and, jloc, jprob and jmultinomial were calculated.

The procedure was repeated for a set of predictive models

that distinguished five different classes.

Evaluation using observed vegetation type distributions

In a dataset with field observations, the average of the trait

values of the plant species in a variety of plant communities

was recorded, as well as the vegetation type to which the

community belonged. This dataset was used in Douma et al.

(2012b) to predict the vegetation types based on a number

of plant traits. The plant traits that were used were three

expert indicator values for soil acidity (Fa), moisture (Fm),

nutrients (Fn) and wood density (SSD). A calibration set was

used to derive the relationship between the plant traits and

the probabilities of vegetation type occurrence. Model agree-

ment was assessed on an independent set of observations.

We compared model agreement to the agreement of a multi-

nomial model distinguishing 38 vegetation types. The 38 veg-

etation types were a refinement of a classification with 15

different vegetation types, for which we also run the compar-

ison. In addition, we compared model agreement to the

agreement of a multinomial model that used three other

plant characteristics to predict the 15 vegetation types men-

tioned earlier. The traits used here were specific leaf area
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Figure 2 Schematic representation of the relationship between pmax and p0 multinomial. The shaded grey triangle represents p0 multinomial of
all possible multinomial probability models. The lower part of the graph shows four different possible probabilistic models, with five

classes. Based on equal class frequencies it is expected that for 20% of the cells the observed classes is predicted correctly. As the class
probabilties differ more from each other, the range in p0 multinomial increases. For the extreme case of crisp predictions (one class is

predicted with a probability of 1), the model can be 100% correct (the probability of observed classes is 1, jmultinomial ¼ 1), totally
wrong (the probability of observed classes is 0, jmultinomial ¼ �0:25) and everything in between. Multinomial models that perform better

than random are above the horizontal grey dotted line (jprob ¼ 0). For class probabilities that are more similar to each other (middle
two stacked bar plots, dashed black lines a,b), jprob reaches one if the class that observed is also predicted with highest probability, it

reaches lower values when other classes are observed than the one that is predicted with highest probability.
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(SLA), average maximum plant height (maxCH) and seed

mass (SM). We refer to Douma et al. (2012a,b) for details

on the plant traits and the technical procedure through

which the multinomial probabilities were derived.

jmultinomial has been built into an R package (https://cran.

r-project.org/). It can be downloaded from https://github.c

om/bobdouma/kappa_multinomial.git.

RESULTS

Synthetic dataset model agreement behaviour

jmultinomial ranged from 0.09 to 0.85 among the ‘perfect

agreement’ models. The variation in jmultinomial was caused

by variation in jloc, as jprob was one in all those cases. For a
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Figure 3 Relationship between the proportion correctly predicted observations (i.e. the proportion of observed classes that was
predicted with maximum probability, p0 in Cohen’s Kappa) and three agreement measures: multiple class AUC (mAUC), Cohen’s j and

jmultinomial for 10 sets of multinomial models predicting 10 classes, differing in the maximum probability of which classes are predicted
(left column). The characteristics of the 10 set of multinomial models are shown in the two right columns, each summarizing the kth

order probability over all 1000 samples; pi(10) = maxkðpikÞ and pi(1) = minkðpikÞ. [Colour figure can be viewed at wileyonlinelibrary.com]
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given value of jloc, jmultinomial decreases for the ‘non-perfect

agreement’ models. The degree to which jmultinomial decreases

depends on the certainty with which the classes are pre-

dicted. If the model has a high pmax and hence a high jloc
than jmultinomial decreases much faster compared to multino-

mial models with a low pmax (compare in Fig. 3: models pmax

0.18 versus pmax 0.75). Thus, a model with a lower pmax may

reach a higher jmultinomial than a model with a high pmax that

does not match the observations.

mAUC also distinguishes among ‘perfect agreement’ mod-

els with different pmax and decreases when there is a mis-

match between the class predicted with highest probability

and the class that is observed. mAUC and jmultinomial do,

however, differ in their ranking of the multinomial models.

In contrast to jmultinomial, mAUC cannot differentiate

between ‘perfect agreement’ models for which the minimum

of the highest class probabilities was higher than the maxi-

mum of the second highest class probabilities across samples

(i.e. mini pið10Þ
� �

[ maxi pið9Þ
� �

). Thus, the multinomial

model with pmax of 0.86 and 0.70 both have a mAUC of

one. When the probabilities of the most probable class and

the second most probable class partly overlap across samples,

mAUC decreases. The stronger this overlap, the lower mAUC

(compare multinomial models with pmax of 0.18 and 0.16).

In contrast, among the ‘perfect agreement models’,

jmultinomial prefers models based on their pmax and ranks the

models with a pmax of 0.16 lowest among all models.

Cohen’s j does not distinguish among the 10 different

models with different pmax, and as hypothesized punishes

every mispredictions equally strong. This is particularly

undesirable for predictive models that predict two classes

with nearly equal probability. If the class that was observed

was predicted with second highest probability j will count

this as a full mismatch, while in fact the model is not far off.

The behaviour of jmultinomial, mAUC and j did not change

when using 5 classes instead of 10 classes (see Appendix S2).

Model agreement behaviour for different vegetation

type classifications

In Fig. 4 and Table 2, an overview of the model characteris-

tics and performance metrics are given for the three models

(four traits to distinguish 15 vegetation types, three traits to

distinguish 15 vegetation types and four traits to distinguish

38 vegetation types; cross tabulation matrices are shown in

Appendix 2). The pmax had values of 0.85, 0.55, and 0.68 for

the three models, respectively. Model agreement was ranked

consistently by the three performance metrics. However, j
and mAUC do not reveal how far off the predictive model is

from the ‘perfect agreement’ model, while the combination

of jloc and jprob does. From the bar plots in.

Figure 4 third column, it can be seen that if an observed

class was not predicted with highest probability, the second

most likely class was observed in most of the cases. The dis-

tinctive power of the performance metrics is largest for

Cohen’s kappa and smallest for mAUC, the latter hardly

differentiates among the various models. j scored

consistently higher than jmultinomial even though pe and

pe multinomial were very similar. This means that mispredic-

tions are punished more heavily in jmultinomial than in j. This
corresponds to the results that were obtained in the synthetic

dataset (Fig. 3).

All metrics show that a higher predictive power is

obtained when fewer vegetation types are distinguished (each

differing in their mean trait values) compared to many

classes (each very similar in their mean trait values). In addi-

tion, the indicator values (traits derived from expert judge-

ment) were better able to distinguish among vegetation types

than the plant traits derived from measurements.

DISCUSSION

The performance of jmultinomial

We present a new metric, jmultinomial, to assess agreement

between a multinomial model and discrete observations while

accounting for chance agreement. The metric is independent

on how the multinomial probabilities are derived. Probabilities

can be derived from multinomial logistic regression models or

from Monte Carlo simulations where the average over multiple

runs – each with discrete outcomes – are interpreted as proba-

bilities. jmultinomial is applicable to both non-spatial and spatial

predictions but it assumes, like Cohen’s Kappa and mAUC

that each pixel is independent. The main advantage of

jmultinomial is that it partitions model agreement into two com-

ponents. A first component specifies the correctness of the

multinomial model in its prediction of the most likely class

(jprob). Hence, it informs about the degree to which the multi-

nomial model is capable of capturing the (mechanisms that

determine) presence and absence of classes. A second compo-

nent measures the relative certainty with which the multino-

mial model predicts class occurrences (jloc). Hence, it informs

about the degree to which the system is predictable. jloc may

be used to choose among multinomial models; jprob to explore

the misfit of a given model. jprob and jloc are theoretically

independent although in the case study in which vegetation

types were predicted by a combination of trait values the val-

ues of jprob and jloc changed consistently over the three mod-

els. Hence, these two components may assist researchers to

optimize model fit and contrasts to j and mAUC that measure

model agreement with one number.

jmultinomial has two advantages over j. First, j seems to

overestimate model performance by transforming the proba-

bilities to discrete outcomes. This transformation effectively

leads to a pmax and a jloc of one for every multinomial

model and thus high j values. Second, given this transforma-

tion j cannot differentiate between models that differ in the

certainty with which classes are predicted (i.e. models that

differ in jloc). In addition, jmultinomial can also be used for

hard classified models that are traditionally assessed with

Cohen’s kappa (i.e. models with pmax = 1). The only differ-

ence is the specification of the reference model.
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jmultinomial differs from mAUC in one important aspect.

mAUC cannot discriminate among multinomial models that

perfectly discriminate among classes, but that have with dif-

ferent pmax. In contrast, jmultinomial does discriminate between

such models, as it is based on the average probability with

which observed classes are predicted. If the most probable

class is always more likely than the second probable class

across all samples and the most probable class is observed,

mAUC reaches one, irrespective of the certainty with which

those classes are predicted. This feature may be desirable

when predicting the right class has important consequences,

e.g. for management decisions. However, the condition that

the most probable class is consistently more likely than the

second probable class over all samples will be hardly met in

practice because class probabilities differ across the landscape

and co-vary with underlying environmental and socio-eco-

nomic drivers. This is particularly true in vegetation mod-

elling where a mosaic of vegetation types under

homogeneous abiotic conditions may occur (Pacala et al.,

1996; Claussen et al., 1999; Scheffer et al., 2001; Rietkerk
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Figure 4 The predictive ability of three predictive models are shown in the rows. The models differ in the maximum probability of

which classes are predicted and the number of classes they predict (predicting 15, 15 and 38 vegetation types respectively). First column:
distribution of the kth order probable classes over all samples from most probable to least probable class with pi(15) = maxkðpikÞ and pi

(1) = minkðpikÞ for the three different models. Second column: boxplots of the probabilities with which observed (1) and non-observed
(0) classes were predicted. Third column: the frequency with which observed classes were predicted by the i-th order likely class. For the

first row, the most probable class was observed in 92% of the cases, and the second most probable class was observed in 6% of the
cases. Note that the axis at the bottom right does not display all 38 classes.
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et al., 2002), and the occurrence of multiple classes is likely.

Therefore, jmultinomial may be better suited to evaluate model

agreement in these conditions.

Additional applications of jmultinomial

We may extend the application of jmultinomial to multiple other

situations. First, jmultinomial can be applied to compare model

predictions simultaneously with multiple sources of observa-

tions. Different observations on the same sample may disagree

in which class is observed because of differences in sampling

period, measurement methods and/or decision rules. This is

likely to occur in an area that is dynamic in time or in transi-

tion between two classes. Averaging over these observations

may better represent the possible states that an area can be in

and hence more closely match the model predictions. Second,

jmultinomial has important applications when assessing the

agreement of a multinomial probability model with a reference

model that has multinomial probabilities as output. For exam-

ple, one may directly assess agreement of ground-based

derived probabilities with remote sensing derived probabilities.

Usually, classification algorithms (tree regression, linear mix-

ture modelling etc.) are used to hard classify spectral informa-

tion (Xie et al., 2008). However, remote sensing derived

probabilities could be used directly in jmultinomial. Directly

comparing probabilities avoids the rounding error that is

introduced by a classification algorithm. Finally, jmultinomial

allows assessing the agreement of model predictions and obser-

vations at larger spatial scales (Pontius & Cheuk, 2006). Land-

scape dynamics are to a large extent driven by the spatial and

temporal scale of disturbances (Turner et al., 1993). For exam-

ple, fire outbreaks of relatively large spatial extent and high

disturbance intervals will create a mosaic of vegetation types

and/or alternative stable states in the landscape (Turner et al.,

1993; van Langevelde et al., 2003). If the model fully captures

the inherent spatial stochasticity the multinomial model will

quickly approach the frequency distribution as derived from

the pixels as aggregated to larger scales.

CONCLUSIONS

Research on predicting and understanding spatial and tem-

poral shifts in land cover is increasingly using multinomial

models that model probabilities of outcomes. The argument

for this modelling approach is that the uncertainty (both

biological and methodological) is preserved in the model

output. While probabilistic output is a clearly advantageous

in many cases, this new type of output presents a problem in

model assessment. Current assessment methods have critical

disadvantages when assessing multinomial models. In this

paper we presented a new method, jmultinomial, that solve

these drawbacks.

We show that jmultinomial has several advantages over exist-

ing methods such j and mAUC. With jmultinomial, we have

provided a tool that directly uses the multinomial probabili-

ties of model predictions for accuracy assessment. Assessing

these models accurately will lead to better and more accurate

future generations of these important land cover models.
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