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The Millers contributed to root ecology in two areas, which are: 

1. Over a period of more than 30 yr, Bob Miller studied various aspects 
of the mechanical interaction between roots and soils; 

2. Ed Miller was involved in two key developments concerning uptake 
of water by plant roots from soils. 

Ed Miller supervised the dissertations of Wolf (1967) on uptake of 
water by growing root systems, and of Herkelrath (1975) and Herkelrath 
et âl. (1977a, b) on the influence of soil water content and soil water 
potential upon uptake, leading to the "root contact" model. I will return 
to these studies in the course of this article. 

To better understand poor root growth in some compacted soils, Gill 
and Miller (1956) studied the roles of mechanical impedance and oxygen 
supply. Inspiration for this study was derived from Pfeffer's late 19th cen­
tury experiments on root growth pressures exerted by plants (Gill & Bolt, 
1955). To minimize the roles of other factors, Gill and Miller used glass 
beads and tap water as a substrate, and sterilized, freshly germinated corn 
(Zea mays L.) seedlings as the plant material. They determined root growth 
as a function of the applied pressure, with the percent oxygen present in 
the soil atmosphere as a parameter. 

The mechanics of root penetration was the subject of two other studies 
under Bob Miller's guidance. Evans (1965) developed a model for radial 
growth in a granular soil. This was followed by a study of radial resistance 
as a function of root size and spacing by Römkens and Miller (1971). 

In recent years Bob Miller had occasion to combine his intermittent 
interest in plant roots and his continual interest in the physics of freezing 
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of soils in a study of frost upheaval of overwintering plants (Perfect et al., 
1987, 1988). They found that two modes of upheaval can be distinguished. 
On the one hand, seedlings and transplants may be uprooted by surficial 
soil freezing in the fall and/or spring. On the other hand, well-anchored 
plants are displaced by deep frost penetration during midwinter. 

Following some general comments on scaling Richards' Equation, the 
remainder of this article will deal with various aspects of the uptake of 
water, including the role of poor contact between root and soil and uptake 
by a growing root system. 

SOME ASPECTS OF SCALING 

To describe movement of water in unsaturated soils, nearly 60 yr ago 
Richards (1931) proposed the simplest possible balance of mass and balance 
of momentum, the latter expressed in terms of Darcy's Law. The balance 
of mass for the water may be written as 

60lot = %0v) - u [1] 

where t is the time, V is the vector differential operator, 6 is the volumetric 
water content, u is the velocity of the water, and u is the volumetric rate 
of uptake. The volumetric flux 0v is given by Darcy's Law: 

Ov = -k[h\lh + k[h]Jz [2a] 

= -D[0]W + k[6]Vz [2b] 

= - V 0 + k[<t>]lz [2c] 

where h is the tensiometer pressure head, z is a vertical coordinate with 
its origin at the soil surface and taken position downward, and the diffusivity 
D and the matric flux potential 4> are defined by 

D = kdhldd [3] 

4>-4>0 = P kdh = P DdO [4] 

Symbols in brackets denote functional dependence. Unlike the depen­
dence of k upon 6, the dependence of h upon 0 is subject to hysteresis. 
As a consequence, Eq. [2b] and [2c] are, strictly, only valid for mono-
tonic changes in water content from some initial condition with uniform 6 
and h. 

The retention and conduction of water by soils are primarily governed 
by the relationships between h and 0, and between k and 9. These rela-
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tionships vary widely among soils. The scaling theory of Miller and Miller 
(1956) is concerned with geometrically similar media characterized by 
length scales A* = 1 and ).. Figure 6-1 shows two geometrically similar 
media with geometrically similar distributions of water and of air. For such 
a pair, the STVF (surface tension, viscous flow)-theory implies that simple 
relationships exist between the pairs of water contents, pressure heads, 
and hydraulic conductivities: 

1. Geometric similarity implies 

0 = 0» [5] 

2. The inverse relationship between the pressure head and the mean 
radius of curvature implies 

h = X~lh* [6] 

3. The linearized Navier-Stokes Equation at the microscopic scale 
implies that in Darcy's Law at the macroscopic scale the hydraulic 
conductivity satisfies 

k = A2k* [7] 

The three scaling rules just given are of the form (Raats, 1983) 

v = Xnv* [8] 

with integer n. Using the three primary scaling rules, secondary scaling 
rules can be inferred from Darcy's Law and from the volume balance for 
the water. Darcy's Law implies simple scaling rules for the spatial coor­
dinates x, y, and z, the velocity v, the volumetric flux Ov, the total head 
H = h + z, the diffusivity D, and the matric flux potential 0. The volume 
balance for the water implies scaling rules for the time t, and the volumetric 

Fig. 6-1. Two geometrically similar media in similar states (Miller & Miller, 1956). 
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Table 6-1. Scaling rules and implied means and variances for a set of similar media 
with lognormally distributed length scales. 

Variance 
v n Mean of v of v 

t 
h 
H 
x,y, z 
0 
V 
dOIdh 
D 
<t> 
k-1dk/dh(= a for A in Table 6-2) 
k 
Ov 
u 
s = dkldO 
dkldh 

rate of uptake u. Scaling rules for the water capacity dOIdh, the charac­
teristic inverse length a = k~xdkldh, and the characteristic speed s = dkl 
dO, all three potentially a function of the water content, can also be inferred 
easily. Table 6-1 gives the values of n in Eq. [8] associated with the various 
parameters. Most noteworthy are the scaling rules for the spatial coordi­
nates and the time. 

1. The spatial coordinates and hence all macroscopic length scales in 
processes, should be inversely proportional to the microscopic 
length scale. 

2. The time coordinate, and hence all time scales in processes, should 
be inversely proportional to the cube of the microscopic length scale. 

An important implication of the power function dependence on /." of 
all the variables v in Table 6-1 is that if the length scale ). is lognormally 
distributed, then all the variables v/v* will also be lognormally distributed 
(Raats, 1983). This is a consequence of the reproductive rule for lognormal 
distributions: if the variable / is lognormally distributed with mean /u and 
variance a then e"yb is lognormally distributed with mean a + b/x and 
variance (bo)2. 

The STVF theory of Miller and Miller concerns classes of geometrically 
similar media. An alternative method of defining classes of similar media 
is to describe the relationships among the water content 0, the pressure 
head h, and the hydraulic conductivity k for such classes. In effect this is 
often done in terms of parametric expressions for these relationships. Im­
portant examples are (see Table 6-2): 

1. The Class of Mildly Nonlinear Soils with Linear A[0] and Expo­
nential k[d] Relationships, Implying Exponential D[6], k[h], and D\h\ 
Relationships (Raats, 1983). The exponential k[h] relationship linearizes 
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Table 6-2. Two classes of soils. 

63 

Primary relationships 

Derived relationships 

h[0] 
k[0] 
DIO] 

k\h] 

D[h] 

Mildly nonlinear 
soils (A ) 

hr + y(0 - 0r) 
kr exp 6(0 - ()r) 
Dr exp 6(0 - 0r) 

where Dr = ykr 

kr exp a(h - hr) 
where a = 61 y 

Dr exp a(h - hr) 

Power function 
soils (5) 

ha(OIO,)l 
K(0!0s)

m 

Dawiosr 
where Da = (lkshjds) 

n = I + m - 1 
ks(hiha)

p 

where p = mil 
Ds(h/ha)« 

where q = nil = 
(I + m - 1)11 

the gravitational term in Darcy's Law expressed in terms of the matric flux 
potential and as such has been extremely useful in obtaining analytical 
solutions of steady flow problems, including problems involving uptake of 
water by plant roots (e.g., Raats, 1974a, 1976). Rereading Miller and Miller 
(1956), I noticed that they already pointed out that "C(p){= a} alone fully 
describes steady-flow behavior" and that "it may even be possible to ap­
proximate C(p){= a} by a constant for some purposes." For mildly non­
linear soils, the parameter a is proportional to the length scale X. 

2. The Class of Power Function Soils. As will be exemplified in this 
chapter, this class can in some cases also be used to obtain analytical 
solutions. The class of power function soils can be seen as a subclass of a 
superclass of soils, which shares flexibility with a rather sound basis in 
Poiseuillian flow in networks of capillaries (Raats, 1990). Members of this 
superclass are regularly used in numerical studies and as a basis for inter­
preting laboratory and field observations. For power function soils, the air 
entry pressure head ha is inversely proportional to the length scale ?.. 

In the abstract for his lecture at Las Vegas, Ed Miller encourages "the 
use of the microlength X as a natural part of any parameterized description 
of soil properties" (Miller, 1989). It may well be that this idea origin­
ated on a Northwest Orient flight Ed and I took sometime in 1969 (See 
Fig. 6-2). 

SCALING OF UPTAKE 

We have already seen that introducing the three basic scaling rules in 
the balance of mass shows that similarity requires that the volumetric rate 
of uptake is taken proportional to the cube of the length scale X. This 
requirement is satisfied if the rooting depth is taken inversely proportional 
to X and if the rate of transpiration is taken proportional to )}. The role 
of the rooting depth can be nicely demonstrated by considering the volu­
metric rate of uptake to be given by (Raats, 1974a, 1976) 

u = f[z]T [9] 
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Fig. 6-2. Notes by Ed Miller, made sometime in 1969, on scaling of the exponential and 
power function dependencies of the hydraulic conductivity upon the soil water pressure. 
Note that, just as in Miller and Miller (1956), a reduced variable is denoted by a period 
following a symbol. Note further that, during the same flight, the equation of state for 
water in nonrigid soils was discussed briefly. 

where T is the rate of transpiration and f[z] is the distribution function 
for the uptake of water by plant roots. The distribution function 

ƒ = ô~lexp(-z/ô) [10] 

where ô can be interpreted as an equivalent rooting depth, has turned out 
to be rather useful (Raats, 1974a, 1976). Together with the exponential 
k[h] relationship for mildly nonlinear soils, this distribution function can 
be used to obtain solutions for steady flow involving uptake by plant roots. 
Specifically, for a constant rate of infiltration F0 and in the absence of a 
water table, the distribution of the matric flux potential is given by (Raats, 
1974a) 

ac/)/F0 = L + (1 - L) aö 
1 + aô 

exp ( - zlè) [11] 

where L = (F0 - T)/F0 is the leaching fraction. The dimensionless number 
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aô embodies the interaction of the length scales of the soil and the root 
system. Taking a as the length scale of the soil, Eq. [11] can be written as 

4>JFW = L + (1 - L) — - V exp (-z*/<5*) [12] 
1 + d* 

In the example just given it is assumed that the plant has a certain 
demand for water and that this demand can be met at all times. This is 
certainly not always the case. In water balance models such as SWATRE, 
limited availability of water when the soil is either too wet or too dry is 
taken into account (cf., Feddes et al., 1978; Belmans et al., 1983). 

Individual roots function at a meso-scale, which is intermediate be­
tween the microscopic Navier-Stokes scale and the macroscopic scale at 
which the uptake by plant roots is averaged over a large number of roots, 
as in Eq. [1]. Ever since the pioneering studies of Philip (1957) and Gardner 
(1960), mass balance Eq. [1] with u omitted and Darcy Eq. [2] have been 
used to analyze the movement of water in regions affected by individual 
roots. At this meso-scale of individual roots, even the simplest model of 
uniformly distributed parallel roots requires two length scales, r0, the radius 
of the root, and ru the outer radius of the hollow cylinder of soil associated 
with the root. With flow to individual roots are also associated two char­
acteristic times, td and tsld defined by 

td = r\ID, t,ld = (1 - pftOiB/T [13] 

where D is the mean of the soil water diffusivity in the appropriate range, 
Ö, is the initial water content, and B is the rooting depth. The time td 

characterizes the diffusive transport of the water to the root. The time 
ts/d arises from the ratio of the supply (1 - pl)0t of water in the soil and 
the demand TIB by the plant, where p0 = r0/r1. 

To describe the flow to an individual root, it is convenient to introduce 
the dimensionless radial coordinate p, time T, soil water depletion A, and 
diffusivity ^: 

p = rlrx x = tltd [14] 

A = (0, - 6)10t SP = DID [15] 

It turns out that the length scale rQ and the time scale td/s occur in the flow 
problem through the dimensionless parameters p0 and xsld defined by 

A) = h)lrx rsld = tsldltd [16] 

In terms of the dimensionless variables the uptake problem can be 
stated as in Table 6-3. Up to the dimensionless time Tcrit, the solution of 
the flow problem depends on the soil property ^[A] and the parameters pa 
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Table 6-3. Uptake of water by a plant root in terms of dimensionless variables. 

ÉÉ - A. n M 
ÔT Ôp Ôp 
1 = 0 p0<p<l 

T > 0 p = 1 

A. Constant rate of uptake 
0 < T < Tcrit P = Pa 

B. Falling rate of uptake 
* > ^crit P = Po 

and Tsld. In particular this means that rcrit will depend on ^[A], p0, and 
zsld. The evaluation of icrit is the central point of interest in the analysis of 
uptake by plant roots in the Ph.D. thesis of de Willigen and van Noordwijk 
(1987). For x > Tcrit the solution may eventually be governed mainly by 
the ability of the soil to supply water to the soil/root interface. 

Stating the flow problem in terms of dimensionless variables greatly 
increases the efficiency of computations, because the six variables 6h Du 

r0, ru T, and B have been coalesced into the three variables %, p0, and 
Tsld. Further efficiency is obtained by considering Miller scaling. Any so­
lution of the uptake problem stated in Table 6-3 applies to any Miller 
similar flow. Similarity requires that the length scales r0, ru and B are 
proportional to / ', that the rate of transpiration is proportional to )}, and 
that the time scales td and tsld are proportional to A-3. Therefore, the coarser 
the soil, the thinner and more closely spaced the individual roots should 
be, the smaller the rooting depth should be, and the more rapid the flow 
process should evolve. Horticulturalists create a wide range of root envi­
ronments, which tend to being Miller similar: they use coarse substrates, 
in thin layers, inhabited by dense root systems, being irrigated frequently. 

LIMITED CONTACT BETWEEN ROOT AND SOIL 

Figure 6-3 shows schematically the poor contact between root and 
soil. Herkelrath et al. (1977b) suggested that as long as the potential tran­
spiration can be met, the transport from the soil to the xylem is described 
by 

or - 2r0ô
 Epot - C 0S

 m i ' ^ 
0<t< tcnt ,R = fl0, D - = T-4 V = C -f {h[0o] - hxylem} [17] 

where C is the conductance of the region between the soil and the xylem. 
The degree of saturation 60/9s of the soil at the soil/root interface is a 
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Fig. 6-3. Limited contact between root and soil (Herkelrath et al., 1977b). 

factor accounting for the poor contact. From Eq. [17] it follows that at 
time L, 

"lyOcritJ — "xylem crit ' 
r\ 0S Epot 

2rnO ftwit C 
[18] 

or in scaled form 

r *1 "*s_ -fc-*pot 
«*lw*0critj - "*xylera crit 0r Ä ff r [19] 

where 

C = A3C* [20] 

This means that Miller scaling requires that the coarser the soil, roots 
should become not only thinner and more closely spaced, but their cortex 
should become more permeable. 

For given values of /i*xyU:m crit, r*1; r*0, 9*s, £*pot, and C*, Eq. [19] 
relates the pressure head h*Cnt to the water content ö*()crit of the soil at 
the soil/root interface. The infinity of pairs (h0ctit, 00cTit) or (h*0crit, ö*0crit) 
is reduced to the single pair by determining the intersection of Eq. [18] or 
[19] with the soil water retention curve. For (h^^, ö0crit) this was done 
graphically by van Noordwijk (1983; see also de Willigen & van Noordwijk, 
1987). A related graphical technique with the role of the retention curve 
replaced by the relationship between the hydraulic conductivity and the 
pressure head was used earlier in an analysis of steady infiltration into 
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crusted soils (Raats, 1974b). Except for the presence of 00/9s, the "root 
contact model" is analoguous to the model commonly used to describe 
flow across a crust. 

An alternative approach to modeling limited soil/root contact is to 
consider flow in a plane perpendicular to a root, assuming that the cir­
cumference consists of two parts, one part in contact with wet soil, another 
part in contact with air (de Willigen & van Noordwijk, 1987). The avail­
ability of the water is then reduced by the change from a purely radial flow 
pattern to a pattern in which also angular components of the flux are 
involved. The smaller the root/soil contact, the smaller the fraction of the 
potentially available water that can be acquired at a certain rate. 

Some consequences of partial soil/root contact have been analyzed 
by de Willigen and van Noordwijk (1987) not only for uptake of water, 
but also for uptake of plant nutrients and for exchange of gases with the 
soil atmosphere. Although partial contact reduces the availability of water 
and nutrients, it enhances the exchange of gases between roots and soil 
atmosphere. In structured soils, roots have a tendency to follow macropores 
in the form of cracks, worm holes, and holes left behind by decayed roots. 
To what a degree partial contact is a consequence of the inability of roots 
to penetrate or an innate strategy assuring proper future functioning may 
be difficult to determine. Clustering is another feature of root distributions, 
especially in structured soils, limiting availability of water and nutrients 
(de Willigen & van Noordwijk, 1987). 

UPTAKE OF WATER BY A GROWING ROOT SYSTEM 

Wolf (1967) analyzed the uptake of water at a root front in an infinite, 
uniform soil. He discussed three cases: (i) transient flow to a stationary 
root front, (ii) steady flow to a moving root front, and (iii) transient flow 
to a moving root front. In the following, some aspects of this problem will 
be discussed. 

Assume that the entire water uptake occurs at a plane densely pop­
ulated with root tips, moving at a velocity vf, and that the water moves in 
the direction z perpendicular to this plane. To discuss this class of flows, 
it is convenient to introduce a coordinate frame of reference that moves 
with the root front. Equation [21] defines the moving coordinate Z in terms 
of the stationary coordinate z, the time /, and the velocity of the root front 
vf. 

Z = z - vft [21] 

The corresponding transformations of the space and time derivatives are 

il _ il il _ il ii 
ÔZ~ ôz ôt\z ~ ôt\z

 + Vf ôz [ J 
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In terms of Z and t, Eq. [1] becomes 

Assuming that behind the root front the velocity of the water is zero, the 
mass balance at the root front reduces to (cf., Raats, 1972) 

0+(v+ - vf) = -û - 0-vf [24] 

On the left-hand side of Eq. [24] appears the flux of water relative to the 
root front. On the right-hand side of Eq. [24], the first term represents 
the rate of uptake of water per unit area, and the second term represents 
the flux of water into the zone behind the root front. 

In terms of Z and /, Eq. [2] becomes 

* - - D % [25] 

where the gravitational force acting on the water has been neglected. At 
the root front the pressure head and therefore also the water content will 
be continuous 

e+ = o- = tfo [26] 

Introducing Eq. [26] in Eq. [24] gives 

6+v+ = -Û [27] 

Equations [23] and [25], together with the initial condition 0[Z, t] = 
Oj and the boundary conditions, Eq. [26] and [27], describe the flow to a 
root front. 

Transient flow to a stationary root front can be treated by means of 
the so-called Boltzmann transformation. The cumulative uptake increases 
as t112, the rate of uptake decreases as f"1/2. The details of the pressure 
head and water content distributions at successive times depend on the 
physical properties of the soil. 

With a stationary, plane root front the flow does not tend to become 
steady. If the root front is moving, however, the flow does tend to become 
steady in the frame of reference moving with the root front. When this 
happens, Eq. [23] reduces to 

^0(v-vf) = O [28] 

Integration of Eq. [28] gives 

0 (v - Vf) = c [29] 
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Because for Z —> x? g —» 0. and y -* 0 

c = - 0 , ^ [30] 

From Eq. [25], [29], and [30] it follows that 

"o f f = -ißi-0)vf [31] 

On the left-hand side of Eq. [31] appears the flux at any Z. This flux ranges 
from its maximum value - (0, - 90)vf at Z = 0 to zero at Z —> «>. 

Integration of Eq. [31] gives 

ZVf fln(ft-ö) 
—7 = - (D/A>)<* In (0,- - 0) [32] 
^ 0 Jln(0,-fln) 

To integrate Eq. [32], D must be known as a function of In (0, - 0). 
Following are closed solutions for three D[0] functions 

1. Linear soil with D = D0 

Zvf - ,n
 ei-° m i 

According to Eq. [33] the dimensionless water content (0, - 0)1 
(0,- — 60) is an exponential function of the dimensionless distance 
Zvf/D0. This solution was also given by Wolf (1967). 

2. Mildly nonlinear soils (see Table 6-2) 

^ = exp 0(0, - 0o){(-£,{-0(0,- - 0)]) 

(-£,[-0(0, - 0„)])} [34] 

This solution is new. 
3. Power function soils (see Table 6-2) 

^/=_lni^+f!^) [ 3 5 ] 
A, V 0 , - 0 0 „t*,« Of ) l""J 

Forp = 0, equation reduces to Eq. [33]. For p = 1, 2, and 4, Eq. [35] 
reduces to equations given by Wolf (1967). Figure 6-4 shows observed and 
calculated distributions of water content behind and ahead of a root front. 

A quantity of particular interest is the depletion W ahead of moving 
root front 

f» f= D dO 
W = (0, - 0)dZ = - — dZ 

0J 0J vfdZ 

0 / - <t>0 {"' DdOIVf = P' kdhlvf = — [36] 
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Fig. 6-4. Observed (data points) and calculated (curve) distribution of water content behind 
and ahead of a root front located at 20 cm below the soil surface (adapted from Wolf, 
1967). 

where Eq. [31] has been used. The simple evaluations of W for linear, 
mildly nonlinear, and power function soils are left to the reader. Equation 
[36] states that the effectiveness of the matric flux potential difference 
4>i - 0O for delivering water to the root front from the region not yet 
explored by the root system is inversely proportional to the velocity Vf of 
the root front. 

CONCLUDING REMARKS 

Thirty years ago, when I was a M.Sc. student at Wageningen Agri­
cultural University, Gerry Bolt asked me to determine and explain water 
retention curves of mixtures of sand and montmorillonite. This called for 
study of two, then recent developments in soil science: double layer theory 
for clays and STVF-theory for sands (and glass beads). I am grateful that 
at such an early stage I was introduced to those two far-reaching physical-
mathematical models and learned about their limitations. Despite the fact 
that I hardly added to what Bolt and Miller (1958) had already written, 
theories of such calibre became a lasting interest. 
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