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Haloalkaline environments 

Haloalkaline environments are defined by high pH (≥ 8.5) and salinity from 0.5 M salt 

up to saturation concentrations due to evaporation (Jones et al., 1977; Kolpakova et 

al., 2016). An important characteristic of these extreme environments is the dominance 

of soluble monovalent cations, such as sodium (Na+) and potassium (K+), and the 

absence of soluble divalent cations, such as calcium (Ca2+) and magnesium (Mg2+). 

This is mainly due to the precipitation of Ca2+ and Mg2+ as calcium carbonate and 

magnesium carbonate salts at the stable high pH buffered by the high carbonate (CO3
2-

) and bicarbonate (HCO3
-) concentration (Figure 1).  

 

Figure 1 – Calculated soluble fractions of Na+, K+, Ca2+ and Mg2+ in a solution containing: 0.1 

M of each cation, 1 M CO3
2- and a total ionic strength of 1.5 M. Calculations were performed 

at 25o C using Visual MINTEQ 3.1 (Software developed by KTH Royal Institute of Technology, 

Stockholm, Sweden). 

 

Natural haloalkaline environments 

Haloalkaline environments are wide spread on Earth, mainly soda lakes and soda soils 

(Figure 2). Soda lakes are usually formed by leaching of carbonates rich rocks with 

rainwater, and the accumulation of this carbonate rich water in the body of a lake. 
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These lakes are usually subjected to volume fluctuations, and some of them go through 

wet and dry seasons during the year. This makes soda lakes very dynamic and 

extreme environments that are rich in life. In soda lakes life forms, such as 

microorganisms, plants and animals, are perfectly adapted to these extreme conditions 

(Jones et al., 1998; Sorokin et al., 2014b).  

 

 

Figure 2 – Location of well-known soda lakes (indicated by the blue markers). The large blue 

markers indicate soda lakes from which sediments were used in this thesis as inoculum.  

 

Microbial adaptations to haloalkaline environments 

To endure the high pH and salt conditions of haloalkaline environments, life had to 

evolve special adaptations. In microorganisms, such adaptations range from 

membrane composition and ion transport to the production of specialized proteins and 

organic compounds (compatible solutes). These microorganisms are known as halo-

alkaliphiles. 
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Microbial life at high pH 

Ecosystems with high pH (>9) create three challenges for microorganisms: i) low 

abundance of protons (H+), which is important for proton motive force-driven 

processes, ii) stability of proteins and iii) precipitation of essential elements, such as 

calcium, magnesium and trace metals.  

To cope with the low abundance of H+, alkaliphiles and haloalkaliphiles possess 

specific cell wall and membrane compositions. Alkaliphiles have acidic secondary cell 

wall polymers (SCWP), such as teichuronic acids or teichuronopeptide, which are 

associated with peptidoglycan (Ito and Aono 2002; Shirai et al. 2007; Janto et al. 2011). 

These SCWP not only have a structural function but also provide additional negative 

charge to the cell surface. To prevent excessive leaking of H+ and Na+, alkaliphilic 

microbes have more compact cell membranes that are rich in non-polar lipids, 

unsaturated fatty acids and cyclopropane fatty acids (Banciu et al., 2008; Krulwich and 

Ito, 2013).  

Inside the cells, alkaliphiles can function at high pH in their cytoplasm, but still lower 

than the external pH. At extreme alkalinity, the internal pH can be up to 2.3 pH units 

lower than the external pH (Krulwich and Ito, 2013). This difference means a higher H+ 

concentration inside the cell compared to the outside of the cell, which renders ATP 

production using proton motive force, via ATPases, not feasible. To tackle this 

challenge, alkaliphilic microorganisms developed another strategy that involves Na+ 

based energy conservation instead of H+ based energy conservation. Alkaliphiles can 

achieve this by using Na+ gradient-dependent mechanisms, such as Na+-dependent 

ATPases and movement by flagella (Ito et al., 2004; Mesbah and Wiegel, 2011). The 

use of Na+ translocating mechanisms, such as the Rnf complex or the Na+-

translocating ferredoxin, can increase the ion gradient, which increases the Na+-

mediated ATP production. These Na+ translocating mechanisms can be activated by 

reactions with less negative Gibbs free energy, increasing the metabolic flexibility to 

produce ATP (Biegel et al., 2011; Biegel and Müller, 2010; Lim et al., 2014; Muyzer et 

al., 2011). 

To keep the structure and function of their proteins at high pH, microorganisms 

developed different strategies. A common feature of the proteins in alkaliphiles is the 

increase of negatively charged residues, which might contribute to the attraction of H+ 
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or other cations essential for cell functions (Janto et al., 2011). The isoelectric point of 

proteins from alkaliphiles is lower than in neutrophiles (Krulwich and Ito, 2013). 

Comparison of homologous proteins in alkaliphiles and neutrophiles revealed that the 

increased negative charge increases the hydrophobic interactions between different 

monomer domains (Kapetaniou et al., 2006). This is essential to have a functional 

protein under alkaline conditions. Additionally, ions such as calcium or magnesium and 

trace metals are essential for the function of several enzymes. As explained above, at 

high pH most of the divalent cations precipitate. This also occurs to trace metals, 

lowering their availability for microorganisms. The mechanism used by alkaliphiles to 

cope with this is poorly researched and needs further research. 

 

Microbial life at high salt concentrations 

The high salt environment (>0.5 M Na+) influences how microorganisms maintain the 

osmotic pressure. Halophilic microorganisms invest energy to maintain the osmotic 

pressure balance with the environment using two different strategies: the “salt-in” 

strategy and the “compatible solutes” strategy (Detkova and Boltianskaia, 2007). 

In the “salt in” strategy, microorganisms balance the osmotic pressure by actively 

accumulating salts inside the cell to prevent dehydration. Some microorganisms, like 

Natroniella acetigena and Halobacteroides halobius, accumulate cations, typically K+, 

inside the cell to balance the osmotic pressure (Oren, 2013). However, the presence 

of high intracellular salt concentration increases hydrophobic interactions between 

cytoplasmic proteins, which leads to aggregation and a possible loss of functionality 

(Dennis and Shimmin, 1997). To cope with this, halophilic microorganisms have 

different amino acid composition of their proteins. This is achieved mainly by increasing 

the acid residues of aspartate and glutamate and decreasing the use of basic residues, 

such as lysine and arginine (Dennis and Shimmin, 1997).  

In the “compatible solutes” strategy, halophilic microorganisms accumulate compatible 

solutes inside the cell, keeping the intracellular salt concentration lower than their 

outside environment. These compatible solutes are mostly organic molecules that do 

not disturb the cell processes, but protect proteins and lipids against the very high salt 

concentrations (Galinski, 1993). These compatible solutes can be sugars (e.g. 

trehalose), polyols (e.g. glycerol), amino acids (e.g. glutamic acid) and quaternary 
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amines (e.g glycine and betaine). This helps microorganisms to cope with high salt 

concentrations together with the active pumping out of cations. The pumping out of 

cations is usually performed by Na+/H+ antiporters under neutral pH (Hamaide et al., 

1983), but at high pH this is probably performed by a Na+-translocating process (Lim 

et al., 2014). An energy generating reaction can be used to actively pump H+ out, which 

drives then the Na+ outside via Na+/H+ antiporter. As this strategy does not involve 

structural changes of proteins, it allows microorganisms to survive over a wide range 

of salinities as long as there is enough energy available (Oren, 2011). In soda lakes, 

the salinity fluctuates considerably and there are energy sources available (e.g. good 

light penetration and high concentration of sulfur compounds), rendering the 

“compatible solutes” strategy the most common strategy in haloalkaliphiles in these 

environments. 

 

 

The sulfur cycle in haloalkaline environments 

The sulfur cycle is one of the major global element cycles. The sulfur cycle interacts 

with the carbon, nitrogen and oxygen biogeochemical cycles. Sulfur metabolism may 

have fuelled the earliest forms of life on Earth, around 3.47 billion years ago 

(Jørgensen and Bak, 1991; Shen and Buick, 2004). The sulfur cycle is a complex cycle 

due to the change of valence of the sulfur atom from -2 (sulfide) to +6 (sulfate) and 

interaction of biological and chemical reactions. Most of the reactions in the sulfur cycle 

do not occur chemically under ambient conditions, but they can occur when catalysed 

by microorganisms. The sulfur-dependent microbial processes active in nature are: the 

oxidation of reduced inorganic sulfur species using O2 or nitrate (NO3
-), or via 

phototrophs; reduction of oxidized inorganic sulfur species using organic compounds 

or H2 as electron donors; disproportionation of intermediate sulfur compounds, such 

as thiosulfate (S2O3
2-) or elemental sulfur (S0), into sulfide and sulfate (SO4

2-) 

(Jørgensen, 1990).  

Oxidation and reduction of sulfur compounds can occur in a wide variety of 

environments with an oxic-anoxic transition zone. These environments can be river 

basins and ocean floor and also more extreme environments, such as deep 

hydrothermal vents, geothermal springs, acidic rivers, salt lakes and soda lakes 
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(Grégoire et al., 2012; Kjeldsen et al., 2007; Kleindienst et al., 2012; Pallud and van 

Cappellen, 2006; Sánchez-Andrea et al., 2012; Sorokin et al., 2010; Weber and 

Jørgensen, 2002).  

 

Figure 3 – Chemical speciation of sulfide in solution between pH 0 and 14. 

 

In haloalkaline environments, the biological sulfur cycle has unique characteristics, 

especially because some chemical reactions occur spontaneously. Due to the high pH 

(8.5 – 10.5), sulfide is mostly present as HS- which is soluble and not volatile such as 

H2S (Figure 3). The dominance of HS- also allows microorganisms to thrive under 

higher sulfide concentrations. HS- cannot easily cross the cell membranes in contrast 

to H2S, and this prevents toxicity effects (Sousa et al., 2015b). HS- also reacts 

chemically with S0, producing polysulfides (Sx
2-) which are soluble opposed to S0 

(Figure 4). In general, the high concentrations of HS- and Sx
2- make the sulfur cycle 

important under haloalkaline conditions (Sorokin et al., 2007).  
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Figure 4 – Main reactions of the inorganic sulfur cycle. Solid lines represent biotic reduction 

(dark blue) or oxidation (light blue) reactions; dashed lines represent biotic disproportionation 

reactions; dotted lines represent abiotic reactions.  

 

Haloalkaliphilic sulfur-oxidizing bacteria 

Sulfur-oxidizing bacteria (SOB) have their habitat niche in oxic/anoxic boundary layers 

of a wide variety of environments (Sorokin et al., 2013a). At these locations, they have 

access to the reduced sulfur species produced in anoxic environments and electron 

acceptors such as O2 or NO3
- present in the oxic environments. The main sulfur-

oxidizing microorganisms known can be divided into two main physiological groups: 

photoautotrophic and chemolithotrophic SOB.  

Photoautotrophic SOB, most commonly green and purple SOB, use light as source of 

energy. Reducing power that is needed to reduce CO2 to cell components comes from 

reduced sulfur compounds such as sulfides and/or S0 (Tang et al., 2009). The CO2 

assimilation is mainly done via the Calvin cycle for purple SOB and via the reductive 

tricarboxylic acid cycle in green SOB (Overmann and Garcia-Pichel, 2013). In 

haloalkaline environments, most phototrophic SOB that we know today belong to the 

genera Thiorhodospira, Thioalkalicoccus, and Ectothiorhodosinus at moderate 

salinities (0.5-1.5 M Na+) and to the genera Halorhodospira at high salinities (>1.5 M 

Na+) (Gorlenko, 2007). The haloalkaliphilic phototrophic SOB from the genera 
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Ectothiorhodospira and Halorhodospira can be found in moderate and high salinities, 

and from Halorhodospira are the most common in high salinities ( Imhoff and Trüper, 

1981; Bryantseva et al., 2010; Oren, 2014). 

Chemolithoautotrophic SOB conserve energy directly from oxidizing reduced sulfur 

compounds using either O2 or NO3
- as electron acceptors. All these bacteria are 

autotrophs, dependent on carbon fixation from CO2 via the Calvin cycle (Tourova et 

al., 2006, 2007). In soda lakes, chemolithoautotrophic SOB belong mostly to the 

genera Thioalkalimicrobium and Thioalkalispira at moderate salinities (0.5-1.5 M Na+) 

and mostly to the genera Thioalkalivibrio and Thioalkalibacter at high salinities (>1.5 

M Na+) (Sorokin et al., 2013a). Thioalkalimicrobium and Thioalkalivibrio species both 

exhibit different growth and metabolic strategies (Sorokin et al., 2001, 2013a). 

Thioalkalimicrobium species have high growth yield and require high substrate 

concentrations while Thioalkalivibrio species have low growth yield but require lower 

substrate concentrations. Thioalkalimicrobium species can only produce S0 when 

oxidizing S2O3
2- in conditions of O2 limitation, and are unable to oxidize S0 and sulfite 

(SO3
2-). On the other hand, Thioalkalivibrio species can produce S0 when oxidizing 

S2O3
2- even when O2 is not limited and can oxidize S0 and SO3

2-. Overall, 

Thioalkalivibrio species have a more flexible metabolism than Thioalkalimicrobium 

species which contributes to making them the dominant chemolithoautotrophic SOB in 

soda lakes from Kulunda steppe, Russia (Vavourakis et al., 2016). 

 

Haloalkaliphilic sulfate-reducing bacteria 

Sulfate-reducing bacteria (SRB) are present in aquatic and terrestrial anoxic 

environments where oxidized sulfur compounds, like SO4
2-, S2O3

2-, SO3
2-, S0 and Sx

2-, 

are present. SRB can reduce these sulfur compounds by using various electron 

donors, like hydrogen, formate and volatile fatty acids, alcohols, sugars, amino-acids 

and hydrocarbons through anaerobic respiration (Liamleam and Annachhatre, 2007; 

Muyzer and Stams, 2008; Widdel and Rabus, 2001). SRB have a flexible physiology 

that allows them to thrive in different conditions (Plugge et al., 2011). They can tolerate 

the low O2 concentrations of microaerophilic environments (Cypionka, 2000), some are 

able to reduce other electron acceptors such as nitrate, arsenate or Fe(III) and  grow 
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in a syntrophic relation with acetogens, methanogens, other sulfate reducers or 

anaerobic methane oxidizers (Stams and Plugge, 2009). 

In soda lakes, chemo-lithotrophic SRB have been found that are phylogenetically 

affiliated with the genera Desulfonatronum, Desulfonatronovibrio, Desulfonatronospira 

and Desulfohalophilus from the Deltaprotobacteria (Table 1). These SRB use mostly 

H2, formate and VFA as electron donors for dissimilatory reduction of SO4
2-, S2O3

2- and 

SO3
2-. They are also able to perform disproportionation of S2O3

2- and SO3
2- to SO4

2- 

and HS-. Some of the isolated species from these 4 genera are autotrophic bacteria, 

dependent on CO2 as carbon source. Due to the presence of high HCO3
- 

concentrations in haloalkaline environments, haloalkaliphilic SRB use HCO3
- as CO2 

source, via the carbonic anhydrase, and fix CO2 using the Wood-Ljungdahl pathway 

(Melton et al., 2016; Pitryuk et al., 2006). However, at pH values above 10, CO2 is 

mostly present as carbonate and not bicarbonate, which might hinder the carbon 

fixation by bacteria above this pH (Sorokin et al., 2011b). On the other hand, there 

exist haloalkaliphilic chemo-organoheterotrophic SRB and these can be divided into 

two major groups: incomplete oxidizers and complete oxidizers. The incomplete 

oxidizers use organic acids, such as propionate and butyrate, as electron donor and 

carbon source and produce acetate as final product. From the haloalkaliphilic 

incomplete  oxidizers, two species have been isolated and characterized so far: 

Desulfobulbus alkaliphilus and Desulfobotulus alkaliphilus (Sorokin et al., 2009, 

2012b). Complete oxidizers also use VFA and produce CO2. Desulfonatronobacter 

acidivorans was for long the only complete oxidizer isolated from soda lakes (Sorokin 

et al., 2012b). Recently,  Desulfonatronobacter acetoxydans, isolated from soda lake 

Bitter-1 (Altai, Russia), is only able to reduce S2O3
2- and SO3

2- but not SO4
2- (Sorokin 

et al., 2015b). Another mechanism for SO4
2- reduction with acetate is through 

syntrophic relations between lithotrophic SRB and acetate oxidizing bacteria (Sorokin 

et al., 2014a). 
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Table 1 – Sulfate reducing bacteria and sulfur reducing bacteria isolated and characterized 

from haloalkaline environments. 

Species 
Optimum 

pH/salinity a 
Electron 

acceptors 
Dispropor-
tionation 

Autotrophic 
growth 

Source 

Desulfonatronum 
lacustre lt, 1 

9.4 / 1.7 
SO4

2-, SO3
2-, 

S2O3
2- 

S2O3
2- - 

Lake Khadin, 
Tuva, Russia 

Desulfonatronum 
thiodismutans lt, 2 

9.5 /1.1 
SO4

2-, SO3
2-, 

S2O3
2- 

SO3
2-, 

S2O3
2- 

+ 
Mono lake, 

California, US 

Desulfonatronum 
cooperativum lt, 3 

8-9 / 1.3 
SO4

2-, SO3
2-, 

S2O3
2- 

N.D. - 
Lake Khadin, 
Tuva, Russia 

Desulfonatronum 
thioautotrophicum lt, 4 

9.3 / 1.75 
SO4

2-, SO3
2-, 

S2O3
2- 

SO3
2-, 

S2O3
2- 

+ 
Lake Tanatar 1, 
Kulunda, Russia 

Desulfonatronum 
thiosulfatophilum lt, 4 

9.5 / 1.5 
SO4

2-, SO3
2-, 

S2O3
2- 

SO3
2-, 

S2O3
2- 

- 
Lake 

Picturesque, 
Kulunda, Russia 

Desulfonatronum 
alkalitolerans lt, 5 

8.5-9 / 0.3-0.6 
SO4

2-, SO3
2-, 

S2O3
2- 

- - 
Thiopaq® 
bioreactor 

Desulfonatronum 
zhilinae lt, 6 

9 / 0.7 
SO4

2-, SO3
2-, 

S2O3
2- 

N.D. - 
Lake Alginskoe, 

Buryatiya, Russia 

Desulfonatronovibrio 
hydrogenovorans lt, 7 

9.5-9.7 / 0.5 
SO4

2-, SO3
2-, 

S2O3
2- 

N.D. - 
Lake Magadi, 

Kenya 

Desulfonatronovibrio 
thiodismutans lt, 4 

9.5-10 / 2-3 
SO4

2-, SO3
2-, 

S2O3
2- 

SO3
2-, 

S2O3
2- 

+ 
Lake Tanatar-5, 
Kulunda, Russia 

Desulfonatronovibrio 
magnus lt, 4 

10 / 2 
SO4

2-, SO3
2-, 

S2O3
2- 

SO3
2-, 

S2O3
2- 

- 
Lake 

Picturesque, 
Kulunda, Russia 

Desulfonatronovibrio 
halophilus lt, 8 

8 / 2 
SO4

2-, SO3
2-, 

S2O3
2- 

- - 
Chloride-sulfate 
lakes, Kulunda, 

Russia 

Desulfonatronospira 
thiodismutans lt, 9 

9.5-10 / 2-2.5 
SO4

2-, SO3
2-, 

S2O3
2- 

SO3
2-, 

S2O3
2- 

+ 
Soda lakes 

Kulunda steppe, 
Russia 

Desulfonatronospira 
delicata lt, 9 

10 / 1-1.5 
SO4

2-, SO3
2-, 

S2O3
2- 

SO3
2-, 

S2O3
2- 

+ 
Soda lakes Wadi 
al Natrun, Egypt 

a  Salinity in M Na+; lt Lithotrophic; og Organotrophic; 1 (Pikuta et al., 1998); 2 (Pikuta et al., 2003); 3 (Zhilina et al., 
2005b); 4 (Sorokin et al., 2011d); 5 (Sorokin et al., 2013b); 6 (Zakharyuk et al., 2015); 7 (Zhilina et al., 1997); 8 
(Sorokin et al., 2012a); 9 (Sorokin et al., 2008b); 10 (Blum et al., 2012); 11 (Itoh et al., 2005); 12 (Sorokin et al., 
2012b); 13 (Sorokin et al., 2009); 14 (Sorokin et al., 2015b); 15 (Sorokin and Muyzer, 2010); 16 (Sorokin et al., 2012c); 
17 (Sorokin et al., 2011a). 
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Table 1 – Continued. 

Desulfohalophilus 
alkaliarsenatis lt, 10 

9.25 / 2-3 
SO4

2-, SO3
2-, 

S2O3
2- 

- + 
Lake Searles, 
California, US 

Sulfurospirillum 
alkalitolerans lt, 5 

8.5 / 0.6 S2O3
2- - - 

Thiopaq® 
bioreactor 

Natronolimnobius 
baerhuensis lt, 11 

9 / 3 S2O3
2- - - 

Lake Baerhu, 
Mongolia 

Desulfobulbus 
alkaliphilus og, 12 

9.4 / 0.2 SO4
2-, SO3

2- - - 
Soda lakes 

Kulunda steppe, 
Russia 

Desulfobotulus 
alkaliphilus og, 13 

9.9-10.1 / 1.75 
SO4

2-, SO3
2-, 

S2O3
2- 

- - 
Lake Bitter-1, 

Kulunda steppe, 
Russia 

Desulfonatronobacter 
acidivorans og, 12 

10 / 0.6 SO4
2-, S2O3

2- - - 
Soda lakes 

Kulunda, Russia 

Desulfonatronobacter 
acetoxydans og, 14 

9.5 / 1 
SO4

2-, SO3
2-, 

S2O3
2- 

- - 
Lake Bitter-1, 

Kulunda, Russia 

Desulfurispira 
natronophila lt, 15 

10.2 / 0.4-0.6 S0, Sx
2- - - 

Soda lakes 
Kulunda, Russia 

Desulfuribacillus 
alkaliarsenatis lt, 16 

10 / 0.6-0.8 S0, S2O3
2- - - 

Soda lakes 
Kulunda, Russia 

Natroniella    
sulfidigena lt, 17 

10 / 3 S0, Sx
2- - + 

Soda lakes 
Kulunda, Russia 

Natronolimnobius 
innermongolicus lt, 11 

9.5 / 2-3 S0 - - 
Lake Baerhu, 

Mongolia 

a  Salinity in M Na+; lt Lithotrophic; og Organotrophic; 1 (Pikuta et al., 1998); 2 (Pikuta et al., 2003); 3 (Zhilina et al., 
2005b); 4 (Sorokin et al., 2011d); 5 (Sorokin et al., 2013b); 6 (Zakharyuk et al., 2015); 7 (Zhilina et al., 1997); 8 
(Sorokin et al., 2012a); 9 (Sorokin et al., 2008b); 10 (Blum et al., 2012); 11 (Itoh et al., 2005); 12 (Sorokin et al., 2012b); 
13 (Sorokin et al., 2009); 14 (Sorokin et al., 2015b); 15 (Sorokin and Muyzer, 2010); 16 (Sorokin et al., 2012c); 17 
(Sorokin et al., 2011a). 

 

Haloalkaliphilc sulfur-reducing bacteria 

Elemental S0 reduction has not been shown for isolated haloalkaliphilic SRB. However, 

fast sulfur reduction occurs in the anaerobic zones of haloalkaline environments, such 

as soda lakes sediments (Sorokin et al., 2010). This is probably due to the stability of 

Sx
2- at high pH conditions (Kleinjan et al., 2005). Due to their solubility in contrast to the 

non-soluble S0, Sx
2- are better available as electron acceptor, which explains the high 

activity of sulfur reduction under high pH environments (Sorokin et al., 2010).  
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The sulfur-reducing bacteria (SuRB) isolated and characterized so far belong to 4 

different phylogenetic groups. Desulfurispira natronophila, belonging to the phylum 

Chrysiogenetes, is capable of reducing S0, Sx
2- and arsenate using several VFAs as 

electron donor and carbon source (Sorokin and Muyzer, 2010). At moderate salt 

concentrations, Desulfuribacillus alkaliarsenatis was isolated which is able to reduce 

S0, Sx
2-, arsenate and S2O3

2-, using H2 and formate as electron donor (Sorokin et al., 

2012c). At high salt concentrations (> 1.5 M Na+) two isolates were obtained so far, 

Natroniella sulfidigena which can reduce S0 using H2, formate and acetate, and strain 

AHT5 which can reduce S0 with H2 and S2O3
2- with formate (Sorokin et al., 2011a). At 

high salt concentrations (> 1.5 M Na+), also a S0 reducing haloarchaea was isolated, 

Natronolimnobius innermongolicus, which can use H2, formate and all VFA except 

acetate as electron donor (Itoh et al., 2005). 

 

 

Biotechnological application of the haloalkaliphilic sulfur cycle 

The biological sulfur cycle has been applied in industries to treat SO4
2--rich effluents 

originated mainly from the mining and paper pulp industries (Janssen et al., 2009; 

Sánchez-Andrea et al., 2014). In these industries, biological SO4
2- reduction is used to 

remove SO4
2- and metals, and to produce products that can be further used as 

resources, like S0 or metal sulfides such as copper or zinc sulfide (Buisman et al., 

1989; van Houten et al., 2009). These processes are usually performed under acidic 

or neutral conditions. In another worldwide application, biogas, natural gas and flue 

gas biodesulfurization processes operate at high pH and salinity conditions due to the 

high pH conditions required to absorb H2S into liquid. To treat this HS--rich waste 

stream with high pH and salinity, bioreactors operated under haloalkaline conditions 

have been used where haloalkaliphilc microorganisms were able to oxidize HS- (van 

den Bosch, 2008). 

There are two main biodesulfurization technologies: biotrickling filters and the so called 

Thiopaq® process (van den Bosch et al. 2007). In biotrickling filters, a reactor filled with 

packing material is used as carrier material for microorganisms. The microorganisms 

in these filters grow in a biofilm formed on the packing material while a solution is 

trickled through the packing material. Using O2 or NO3
- as electron acceptors, these 
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microorganisms oxidize the HS- absorbed in the liquid (neutral or alkaline pH) to SO4
2- 

which is then discarded (Fernández et al., 2014; Fortuny et al., 2011). In this 

biodesulfurization process sulfide is absorbed using a caustic solution in a scrubber. 

The caustic solution rich in sulfide is then treated in a microaerophilic bioreactor where 

the reduction-oxidation potential (ORP) is controlled to low values (between -220 mV 

and -450 mV) (Bosch et al., 2007; Klok et al., 2013). SOB present in this reactor have 

an O2 limitation and due to that reason, they produce S0 from HS- instead of SO4
2- 

which requires more O2 (Figure 5). The S0 produced is not soluble and can be 

separated from the caustic solution by settling. The caustic solution can then be 

recycled back to the scrubber for absorbing more H2S. 

 

The Thiopaq® process – a case of complete use of the haloalkaliphilic biological 

sulfur cycle 

The Thiopaq® process includes both biological oxidation and reduction of sulfur 

compounds in a single process (Figure 5). In the microaerophilic bioreactor, SOB, 

mainly Thioalkalivibrio, oxidize HS- to S0 under low ORP and consequently low O2 

concentrations (Sorokin et al., 2008a). Different ORP values lead to different product 

selectivity in the bioreactor. If the ORP is too high (> -350 mV), SOB produce more 

SO4
2- from HS-, leading to accumulation of SO4

2- in the liquid which cannot be easily 

separated (van den Bosch et al. 2007; Roman et al. 2015). Besides the production of 

S0 and SO4
2-, also S2O3

2- can be produced when the HS- loading to the bioreactor 

exceeds the biological HS- oxidation capacity. In this case the HS- reacts with S0 

producing Sx
2- (Roman et al., 2014). The Sx

2- will then chemically react with the 

available O2 and produce S2O3
2- which also cannot be easily separated. The effect of 

ORP in these bioreactors has been investigated in depth during the last two decades. 

The maximum selectivity for S0 production from HS- reported is close to 95% and 

modelling studies show that 98% can be achieved if a more accurate operation control 

is applied (Bosch et al., 2007; Klok et al., 2013; Roman et al., 2015). 
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Figure 5 – Schematic overview of the Thiopaq® process including bleed stream treatment and 

recycling. 1 – Scrubber where absorption of H2S into the liquid occurs. 2 – Microaerophilic 

reactor where sulfide is biologically oxidized to S0, and minor parts to SO4
2- and abiotically to 

S2O3
2-. 3 – Settler where S0 is separated by settling. 4 – Anaerobic bioreactor where SO4

2- and 

S2O3
2- are reduced to HS- and recycled in 2. 

 

Even when a suitable ORP value for S0 production is used (< -350 mV), O2 

concentrations are not equal in all areas of industrial scale bioreactors due to diffusion 

limitations. This leads to unwanted reactions of biological oxidation of HS- to SO4
2- and 

chemical oxidation of HS- to S2O3
2-. The produced SO4

2- and S2O3
2- accumulate in the 

system, due to their high solubility, and reduce the pH. This lowering of pH occurs 

because there is no regeneration of caustic when they are produced, SO4
2- production 

yields H+ and SO4
2- complexes with Na+ as Na2SO4 disturbing the buffer balance. To 

maintain the pH high enough to absorb HS- efficiently in the scrubber, part of the liquid 

in the microaerophilic bioreactor must be removed and replaced with new caustic 

solution. This liquid removed from the bioreactor is defined as the bleed stream.  

The bleed stream is rich in SO4
2- and/or S2O3

2- and can be treated in a separate 

bioreactor. They both can be reduced to HS- by SRB when a suitable electron donor 

is provided. The HS- produced can be recycled to the microaerophilic bioreactor for 

optimized biological oxidation to S0 (van den Bosch, 2008). Additionally, the reduction 

of SO4
2- and S2O3

2- generates alkalinity (OH-) that reduces the need for new caustic 
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addition. Thus, the bleed stream treatment allows savings in caustic addition to the 

process and avoids the disposal of a SO4
2- and/or S2O3

2--rich effluent. However, in 

contrast to the microaerophilic bioreactor studies, at the start of this research there 

were no reported studies on the possible application of biological SO4
2- and S2O3

2- 

reduction under haloalkaline conditions for this purpose. Recently, Zhou et al. (2014) 

investigated the use of anaerobic filter reactors for SO4
2- reduction at haloalkaline 

conditions using ethanol as electron donor, and the effect of different electron donors 

was studied (Zhou and Xing 2015a). In these studies, SO4
2- reduction occurred and up 

to about 100 mM HS- was produced when using ethanol as electron donor. The use of 

ethanol, lactate and glucose as electron donors led to the accumulation of acetate 

(between 100 and 200 mM), showing that microorganisms active in the process are 

mainly incomplete oxidizing SRB and fermentative microorganisms. The use of 

formate resulted in lower acetate concentration (up to 50 mM), indicating the presence 

of acetogenic microorganisms. The main SRB identified in all bioreactors were related 

to  Desulfonatronovibrio which are known chemolithotrophic and chemoorganotrophic 

SRB (Sorokin et al. 2011c; Zhou et al. 2015b). The dominance of Desulfonatronovibrio 

spp. among sulfate reducers indicates they have a competitive advantage in these 

reactors, even with different electron donors.  

The use of liquid electron donors in biodesulfurization processes might be complicated 

due to the need for transportation of the chemical to the biodesulfurization plants which 

are often located in remote locations. Here, production of syngas or H2 purified from 

syngas on site is possible via gas reforming processes (Pei et al., 2014). As discussed 

above, haloalkaliphilic SRB in nature use H2 as electron donor and thus this should be 

possible also in bioreactors. Thus, there is a need of knowledge on this subject. Such 

research is essential to evaluate the feasibility of to apply biological reduction of SO4
2- 

and S2O3
2- to the bleed stream treatment in the biodesulfurization processes.  

 

 

Goals and thesis outline 

The gap of knowledge mentioned marks the beginning of the work presented in this 

thesis. Different possibilities for application of biological reduction of SO4
2- and S2O3

2- 

at haloalkaline conditions using H2 or syngas as electron donor were investigated. The 
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haloalkaline conditions represent a unique environment with new challenges for 

biotechnological applications. In chapter 2, a review on the biotechnological potential 

of anaerobic haloalkaliphilic microorganisms is presented. 

To better understand the biological reduction of SO4
2- and S2O3

2- under haloalkaline 

conditions using H2 as electron donor, two bioreactors were operated. In chapter 3, a 

bioreactor performing of SO4
2- reduction was investigated, where SO4

2- reduction 

occurred up to high concentrations of dissolved HS-. However, the volumetric SO4
2- 

reduction rates achieved were lower compared with previous studies at neutral 

conditions.  These lower rates were a consequence of low biomass retention due to 

the lack of microbial aggregation and granulation at haloalkaline conditions. The lack 

of aggregation and granulation was also observed in another bioreactor that was 

investigated in chapter 4. Here, the bioreactor was operated in the same way as 

described in chapter 3, but S2O3
2- was the only electron acceptor used instead of SO4

2. 

The addition of S2O3
2- led to more biomass growth and consequently resulted in higher 

volumetric rates. S2O3
2- was converted via 2 pathways: direct reduction to HS- with 

hydrogen as electron donor and disproportionation to SO4
2- and HS- without the use of 

electron donor. The occurrence of S2O3
2- disproportionation led to the design of a new 

process where this process could be applied to remove S-COD from the 

biodesulfurization processes bleed stream without additional electron donor.  

To tackle the absence of microbial aggregation observed in the first two experimental 

chapters, the addition of sand as a biomass carrier material was investigated in 

chapter 5. In this chapter, an increase in biomass concentration inside the bioreactor 

led to higher SO4
2- and S2O3

2- reduction volumetric rates. The biomass did not form 

biofilms attached to the sand particles, but was mostly suspended or as small 

aggregates that appeared after acetate started to accumulate in the bioreactor. 

In all the chapters described above H2 was used as electron donor. However, syngas 

that contains mainly H2, CO and CO2 is a cheaper alternative as electron donor source 

compared to purified H2. In chapter 6 the use of syngas was investigated by adding 

CO together with H2. CO is an inhibitor of hydrogenase activity and, even though it 

inhibited most H2 consuming reactions in the bioreactor, the biomass adapted and 

performed SO4
2- and S2O3

2- reduction in the presence of up to 15% of CO in the gas 

phase. This showed that with further development, syngas could be used as electron 

donor source for SO4
2- and S2O3

2- reduction at haloalkaline conditions. 
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From the chapters 3-6, two observations led to perform additional research: the 

dominance of a bacterium closely related to Tindallia spp. and the production and 

accumulation of formate up to high concentrations (90 mM). The microbial community 

analysis was performed in the studies described in chapters 3 to 6. This revealed that 

bacteria closely related to Tindallia spp. were most dominant. The role of these bacteria 

in the bioreactors was unclear and, in chapter 7 the dominant strain (strain JE1) was 

isolated. Strain JE1 could ferment glucose to mainly acetate, succinate and formate. 

Strain JE1 could reduce S2O3
2- but not SO4

2- with hydrogen and formate as electron 

donors, suggesting that this strain might be involved in the reduction of S2O3
2- in the 

bioreactors, but not in the reduction of SO4
2-. In the presence of only H2 and HCO3

-, 

strain JE1 produced formate to high concentrations (90 mM) which could explain the 

formate production in the bioreactors. However, after all research was done, it was still 

not clear why formate production, which is a low energy yielding reaction, was such a 

main process in all bioreactors investigated in this thesis. In chapter 8 the production 

of formate at haloalkaline conditions was investigated in detail by testing the 

hypothesis that SRB could be dependent on formate produced by strain JE1 as 

electron donor, using mixed pure cultures representing conditions in the bioreactors. 

Our research led to the hypothesis that, when using H2 as electron donor, SRB are 

dependent on the formate produced by formate producing microorganisms, such as 

strain JE1. However, acetate production as carbon source or another essential 

compound might also be produced by the SRB that allows growth of the formate 

producing microorganism. 

The general discussion of this thesis is separated in two parts: 

1. The data obtained were used to assess the feasibility of SO4
2- and S2O3

2- reduction 

using H2 or syngas to treat the bleed stream of the Thiopaq® process. The 

economic feasibility for different scenarios of application are discussed and the 

main challenges for future research are described.  

2. The role of Tindallia sp. strain JE1 and the importance of formate production at 

haloalkaline conditions are discussed. Also, here the knowns and unknowns are 

put together and suggestions for future research and possible application of this 

new strain are discussed. 
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Abstract 

Haloalkaliphilic microorganisms that grow optimally at high pH and high salinity 

conditions can be found in natural environments such as soda lakes. These globally 

spread lakes harbour interesting anaerobic microorganisms that have the potential of 

being applied in existing technologies or create new opportunities. In this review, we 

discuss the potential application of haloalkaliphilic anaerobic microbial communities in 

the fermentation of lignocellulosic feedstocks material subjected to an alkaline pre-

treatment, methane production and sulfur removal technology. Also, the general 

advantages of operation at haloalkaline conditions, such as low volatile fatty acid and 

sulfide toxicity, are addressed. Finally, an outlook into the main challenges like 

ammonia toxicity and lack of aggregation is provided. 
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Introduction 

The metabolic potential of anaerobic microorganisms has been exploited in a wide 

range of applications, like volatile fatty acids (VFAs), alcohols, H2 and methane 

production. However, information about the application of haloalkaliphilic anaerobes 

that thrive in high pH (> 8.5) and high salt conditions (> 35 g l-1) is very limited.  

In these extreme environments, microorganisms adapted physiological mechanisms 

to cope with high pH and salinity. The high salinity of the environment must be 

compensated to prevent osmotic stress and water leakage from the cell. To cope with 

high salinity, microorganisms accumulate inorganic or organic compounds that work 

as osmoregulators, preventing the loss of water inside the cell (Dektova et al. 2007). 

The high pH, on the other hand, affects the proton balance and transport by the 

ATPases that are responsible for ATP production. Even though the pH of the 

environment is alkaline, the cell inside usually operates close to neutral pH. Cells cope 

with this by having more negatively charged cell walls that generate a layer of more 

concentrated protons, lower pH, near the cell while repelling anions. These adaptations 

to alkaline conditions have already been recently reviewed in more detail (Banciu et al. 

2015; Preiss et al. 2015). 

Various haloalkaline environments, like soda lakes, soda solonchak soil, mining 

industry waste and leaves of salt secreting trees have been described (Qvit-Raz et al. 

2008; Sorokin et al. 2008; Sorokin et al. 2014; 2015a; Santini et al. 2015). However, 

only soda lakes and soda solonchak soils have the buffer capacity to maintain a high 

pH (> 8.5) and high salinity (> 35 g l-1). Soda solonchak soils have a higher aeration 

when compared to soda lakes and favour aerotolerant microorganisms (Sorokin et al. 

2008). Thus, soda lakes are the most suitable habitats to find anaerobic haloalkaliphilic 

microorganisms. In these lakes, a high pH and salinity is caused by the evaporative 

concentration of soluble sodium carbonates because of low concentrations of divalent 

cations such as calcium or magnesium in the ground waters and surrounding minerals. 

The extremely high pH (between 9 and 11) is stable due to a high alkaline buffering 

capacity of soluble carbonates and salinity can go from 35 g l-1 up to saturation. Soda 

lakes harbour highly active and diverse microbial communities involved in the carbon, 

sulfur and nitrogen cycles. Microbiological studies on soda  lakes have been reviewed 

by Sorokin et al. (2014; 2015a) Also reviews on application of haloalkaliphilic 
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microorganisms on nitrogen cycle, sulfide oxidation, heavy metals removal, biofuel 

production and enzymes production are available (Horikoshi 1999; Zhao et al 2014) 

In this mini-review, research focused on potential application of anaerobic 

haloalkaliphilic microorganisms in fermentation of lignocellulosic feedstocks, methane 

production and sulfur removal technology will be reviewed. The advantages of low 

VFAs and sulfide toxicity and high methane content will be discussed. We will also 

focus on the main technological challenges, such as ammonia toxicity and lack of 

microbial aggregation. 

 

 

Anaerobic digestion of lignocellulosic feedstocks 

The rate of hydrolysis of sugar polymers is crucial in the fermentation of lignocellulosic 

feedstocks by anaerobic fermentative bacteria. These feedstocks include waste from 

agriculture, forest and paper industry where the hydrolytic step is a bottleneck. This is 

mainly due to the highly packed crystal structure of the fibres composed of lignin, 

cellulose and hemicellulose (Mathews et al., 2015). To improve hydrolysis, an alkaline 

pre-treatment can be performed to reduce the fibres crystallinity, making them more 

accessible to attack of microbial hydrolases (Hendriks and Zeeman, 2009).  

 

 

Fermentation 

After alkaline pre-treatment, the current approach is biofermentation at neutral pH after 

neutralizing the alkaline broth. However, the use of haloalkaliphilic microorganisms 

eliminates the need for pH adjustments, thus reducing costs (Porsch et al., 2015). The 

information on haloalkaliphilic cellulolytic anaerobes is, so far, limited to a few soda 

lake alkaliphiles. Clostridium alkalicellulosi (Table 1) (Zhilina et al., 2005a; Zvereva et 

al., 2006) is able to produce acetate, ethanol, lactate, hydrogen and traces of formate 

as products during fermentation of cellulose and cellobiose. Pikuta et al (2006) 

reported that Anaerovirgula multivorans can weakly grow on cellulose in alkaline 

medium supplemented with yeast extract. However, no growth kinetics and activity 

data have been provided. The sugars released from the lignocellulosic feedstocks 
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during alkaline pre-treatment can be used by many cultured haloalkaliphilic 

saccharolytic fermenters. Such bacteria, belonging to the genera Spirochaeta, 

Amphibacillus, Alkaliflexus and Alkalitalea were isolated from different soda lakes and 

are capable of fermenting cellobiose and glucose, the main product of cellulose 

hydrolysis (Table 1) (Zhilina et al. 2001; Zhilina et al. 2004; Pikuta et al. 2009; Zhao 

and Chen 2012). The fermentation products varied between species, but are mainly 

acetate, ethanol, lactate and hydrogen. However, Halanaerobium hydrogeniformans 

produced acetate, formate and hydrogen as main products in a haloalkaline fed-batch 

bioreactor fed with hydrolysed switchgrass (Table 1) (Begemann et al. 2012). Ethanol, 

lactate and hydrogen can be used by haloalkaliphilic acetogens, such as Natroniella 

and Fuchsiella, converting them to acetate (Table 1) (Zhilina et al., 2012).  

 

 

Methane production 

Methanogenic fermentation of wastes at haloalkaline conditions can be an interesting 

option for renewable biogas production. At high pH, VFA toxicity is reduced because 

VFA are mostly present in the dissociated form which cannot easily cross cell 

membranes and disrupt the proton balance (Figure 1). This would allow the operation 

of such bioreactors at higher organic loadings. At high pH the CO2 is more retained as 

carbonates which could lead to a lower CO2 content in the biogas. Also, sulfide at high 

pH is mainly in the ionized form (HS-) which is less volatile and toxic, resulting in a gas 

with very low concentrations of sulfide. A recent study on the digestion of the microalga 

Spirulina at haloalkaline conditions resulted in a biogas with a methane content of 96% 

and without traces of sulfide (Nolla-Ardèvol et al 2015). This might reduce the need for 

biogas post treatment to remove CO2 and H2S, allowing the use of the biogas directly 

in natural gas supply grid. 
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Table 1 – Relevant haloalkaliphilic microorganisms for fermentation of lignocellulosic 

feedstocks at haloalkaline conditions and their role, optimum pH and optimum salinity. 

Microorganism Metabolic type 
Optimum 

pH 

Optimum 

salinity 

(M Na+) 

Reference 

Clostridium alkalicellum 
Cellulolytic / 
fermenter 

9 0.15-0.3 Zhilina et al. 2005 

Anaerovirgula multivorans 
Cellulolytic*/ 

fermenter 
8.5 0.17-0.34 Pikuta et al. 2006 

Spirochaeta alkalica Fermenter 8.7-9.6 0.5-1.7 Pikuta al. 2009 

Spirochaeta africana Fermenter 8.8-9.75 0.85-1.2 Pikuta al. 2009 

Spirochaeta asiatica Fermenter 8.4-9.4 0.5-1 Pikuta al. 2009 

Amphibacillus tropicus Fermenter 9.5-9.7 0.17-3.6 Zhilina et al. 2001 

Amphibacillus fermentum Fermenter 8-9.5 1.87 Zhilina et al. 2001 

Alkaliflexus imshenetskii Fermenter 8.5 0.35 Zhilina et al. 2004 

Alkalitalea saponilacus Fermenter 9.7 0.44-0.69 Zhao et al. 2012 

Halanaerobium 
hydrogeniformans 

Fermenter 11 1.3 Begemann et al. 2012 

Natroniella 

acetigena 
Acetogen 9.7-10 2.1-2.7 Zhilina et al. 2012 

Fuchsiella alkaliacetigena Acetogen 8.8-9.3 2.8-3.3 Zhilina et al. 2012 

* More information is required to clearly prove that Anaerovirgula multivorans is capable of growing on cellulose. 

 

In soda lakes, the methanogenic activity in the sediments is similar to freshwater lakes 

and marine sediments (Kuivila et al. 1989;1990; Sorokin et al. 2015b). Just a few 

methanogenic archaea have been isolated from soda lakes (Sorokin et al., 2015a; 

Zhilina et al., 2013). The isolated hydrogenotrophic methanogens belong to the genus 
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Methanocalculus that use H2 and formate. The isolated methylotrophic methanogens 

belong to the genera Methanolobus and Methanosalsum that use various methylated 

compounds. Acetate conversion to methane is also possible, albeit at very low rates, 

either directly at moderate salinity by alkaliphilic Methanosaeta or by syntrophic 

associations of reversed acetogens and lithotrophic Methanocalculus at moderate to 

high salinity (Sorokin et al., 2015b). 

 

 

Figure 1 - Effect of ammonia, sulfide and acetate (representing VFAs in general) on 

microorganisms living at alkaline pH, and chemical equilibrium of ammonia sulfide and acetate 

at different pH values. 1 – At alkaline pH, ammonia tends to the un-ionized species (NH3) which 

can cross cell membranes in contrast with the ionized species (NH4
+); 2 – Due to the close to 

neutral pH inside the cell, the chemical equilibrium shifts towards the NH4
+ species, consuming 

one proton (H+) and disrupting the proton balance; 3 – To compensate the lost H+, the primary 

source of H+ is from the catabolic reactions; 4 – Also, antiporters in the cell membrane may 

pump H+ in and simultaneously pump sodium (Na+) or potassium (K+) out, generating an 

osmotic difference that needs to be compensated; 5 – At alkaline pH sulfide and acetate exist 

in the ionized form, HS- and CH3COO-, which cannot easily pass the cell membrane. 

 

 

Sulfidogenesis 

Bioreduction of inorganic sulfur compounds can be applied to treat sulfur-rich waste 

streams with high pH and salinity originated from the oil, natural gas and mining 
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industries. When such streams are exposed to oxygen, mainly oxidized compounds 

exist like sulfate, thiosulfate, sulfite or sulfur. However, in the environment such 

compounds might be reduced, producing sulfide which is toxic and characterized by 

the rotten egg smell. To prevent this, the sulfur compounds can be removed from such 

streams by microbial processes. Oxidized sulfur compounds can be reduced to sulfide 

in a controlled environment, like a bioreactor. The sulfide produced can be biologically 

oxidized at oxygen-limited conditions to elemental sulfur, which has economic value 

(Janssen et al. 2009). Sulfur cycle related haloalkaliphilic bacteria can be found in soda 

lakes where the microbial sulfur cycle is very active (Sorokin et al., 2011c). 

Haloalkaliphilic sulfate-reducing bacteria (SRB) that use besides sulfate also 

thiosulfate and sulfite as electron acceptor and often can disproportionate thiosulfate 

and sulfite have also been isolated from soda lakes. Both lithotrophic and 

organotrophic SRB have been described and reviewed by Sorokin et al (2011; 2014; 

2015a). Elemental sulfur was never shown to be reduced by haloalkaliphilic SRB. 

However, the specialized sulfur-reducing bacteria, which can reduce or 

disproportionate elemental sulfur, are also present in these environments (Sorokin et 

al. 2014; 2015a). 

Sulfate reduction at haloalkaline conditions was tested in anaerobic filters and gas-lift 

bioreactors using various electron donors (Sousa et al., 2015a; Zhou and Xing, 2015). 

These results revealed that the most reliable electron donors are formate, hydrogen 

and ethanol (Table 2). The dominant SRB found in these bioreactors belonged to the 

lithotrophic genera Desulfonatronospira and Desulfonatronovibrio. As produced sulfide 

at high pH is present in the dissociated form (HS-), this has a much lower toxicity to the 

biomass compared to neutral pH (Figure 1). Sousa et al (2015) showed that sulfate 

reduction occurred up to 260 mM of sulfide at pH 9, while at pH 7 the sulfide toxicity 

was already severe at 30 mM (van Houten et al., 1994). Therefore, bioreactors 

operated at haloalkaline conditions can handle more concentrated sulfur streams than 

at neutral pH. 
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Table 2 – Comparison of different studies on sulfate reduction in bioreactors operated at 

haloalkaline conditions. 

Reference 

 

Sousa et al. 2015 

 

Zhou et al. 2015 

 

Zhou et al. 2015 

(Zhou et al., 2014b) 

Reactor type 
Gas lift with 3 phase 

separator 
Anaerobic filter Anaerobic filter 

e- acceptor Sulfate Sulfate Sulfate 

e- donor H2 Formate Ethanol 

pH 9 9.5 9.5 

Na+ conc. (M) 1.5 1 1 

Temperature (oC) 35 37 37 

HRT (d) 3.3 1 1 

Conversion rates 
(mmolS l-1 d-1) 

18 85 89.5 

Max. sulfide conc. 
(mmol l-1) 

260 76 82 

Side products Formate Acetate 
Acetate/formate/ 

lactate 

Biomass conc. 
(mg l-1) 

7.2 (± 3) N.D. N.D. 

Biomass 
aggregation 

No aggregation N.D. N.D. 

N.D. – Not described 

 

Future challenges for haloalkaline bioreactor research 

The application of anaerobic haloalkaline microbial communities has numerous 

advantages. But even though these microorganisms are highly adapted to these 

extreme conditions, there are challenges to overcome before applying such 

technologies at full scale. 

 

Ammonia toxicity 

One challenge is the ammonia toxicity at high pH (Figure 1). At haloalkaline conditions 

un-ionized ammonia (NH3) rather than ammonium (NH4
+) is the dominant chemical 



Chapter 2 

44 

 

2 

species, as the pKa is 9.25. NH3 can freely diffuse through the cell membrane and 

disrupt the proton balance inside the cells, making it toxic while NH4
+ cannot cross the 

membrane and, therefore, is not toxic (Kayhanian, 1999). After crossing the 

membrane, NH3 is protonized into NH4
+ due to the near neutral pH in the cytoplasm 

maintained by alkaliphiles which, in turn, may weaken its neutral buffering. To 

compensate this, haloalkaliphiles primarily use protons from the catabolic reactions or 

can also use antiporters to transport protons into the cell while transporting potassium 

or sodium out of the cells (Kayhanian, 1999). This use of antiporters, however, would 

generate additional osmotic stress that needs to be compensated. 

 

Lack of aggregation 

The high pH and salinity in bioreactors can prevent a stable aggregation of 

microorganisms which is usually essential for biomass retention of slowly growing 

organisms. Previous studies showed that aggregation in bioreactors at high pH and 

salt concentrations did not occur at all or that stable granules disintegrated in high 

salinity bioreactors (Ismail et al., 2008; Sousa et al., 2015a). The causes for this are 

still in discussion and different mechanisms are proposed. At high pH the 

hydrophobicity of cell surfaces and extracellular polymeric substance (EPS) might 

change and hydrophobicity has been reported to affect the microbial attachment (van 

Loosdrecht et al. 1987; Otto et al. 1999). Another possibility was proposed by Ismail et 

al (2008) who suggested that at high Na+ concentrations, Na+ replaces divalent 

cations, such as Ca2+, in the EPS matrix of aggregates, making the aggregates less 

stable. Another possible effect could be down regulation of carbon metabolism at high 

salinities as reported by He et al (2010). This subsequently lowers the EPS production 

in favour of osmolites production to balance the high salinity. Yet, halophilic isolates 

from the Halomonas genus were shown to produce EPS, and this could point to a 

significant role of high pH in the lack of aggregation at haloalkaline conditions 

(Martínez-Cánovas et al., 2004). To overcome the challenge of no aggregation at 

haloalkaline conditions, technologies like use of a biofilm support material in the reactor 

or a membrane biological reactor (MBR) should be considered. 
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Operational challenges 

Additional factors related to the engineering of haloalkaline bioreactors need to be 

addressed. By operating bioreactors at high salt and high pH, there is an increased 

risk of scaling if divalent cations are added. This problem requires special attention 

when designing and optimizing the processes. Also, the high pH and salinity effluent 

might require additional treatment to neutralize pH and salinity prior to its discharge.  

 

 

Conclusions and future prospects 

Application of haloalkaliphilic anaerobic microbial communities in the above-mentioned 

processes is an interesting route to consider in specific cases and/or to increase their 

efficiency. Operation at haloalkaline conditions has several advantages, like low VFA 

and sulfide toxicity, production of low CO2-containing and H2S-containing biogas and 

reduced need for pH control. On the other hand, the challenges of ammonia toxicity 

and lack of biomass aggregation need to be overcome for application in industry. In 

general, more laboratory scale bioreactor studies focusing on these microorganisms 

are required. Information on reaction rates, biomass growth and microbial communities 

during long-term experiments in bioreactors is essential to scale up these technologies.  
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Abstract 

Biological sulfate reduction is used as a biotechnological process to treat sulfate rich 

streams. However, application of biological sulfate reduction at high pH and high 

salinity using H2 was not thoroughly investigated before. In this work the sulfate 

reduction activity, biomass growth, microbial community and biomass aggregation 

were investigated in a H2-fed gas lift bioreactor at haloalkaline conditions. The process 

was characterized by low sulfate reduction volumetric rates due to slow growth and 

lack of biomass aggregation. Apparently, the extreme conditions and absence of 

organic compounds prevented the formation of stable aggregates. The microbial 

community analysis revealed a low abundance of known haloalkaliphilic sulfate 

reducers and presence of a Tindallia sp.. The identified archaea were related to 

Methanobacterium alcaliphilum and Methanocalculus sp. The biomass did not attach 

to metal sulfides, calcite and magnesite crystals. However, biofilm formation on the 

glass bioreactor walls showed that attachment to glass occurs.  
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Introduction 

Dissimilatory reduction of sulfate to sulfide is an important process in the 

biogeochemical cycling of sulfur and carbon (Jørgensen, 1982). Sulfate reducing 

bacteria (SRB) can oxidize hydrogen gas and various organic compounds using sulfate 

as electron acceptor (Muyzer and Stams, 2008; Rabus et al., 2013). Biological sulfate 

reduction is also used as a biotechnological process for treatment of sulfate- and heavy 

metal-rich effluents, wastes and waste streams (Muyzer and Stams, 2008). At pH 

neutral conditions high specific sulfate reduction rates have been achieved (van 

Houten et al., 1995; van Houten et al. 2006). Also application of biological sulfate 

reduction  at extreme conditions like treatment of acidic mining effluents or high salinity 

waste streams have been previously investigated (Vallero et al., 2005; Bijmans et al., 

2008).  

The application of biological sulfate reduction to treat waste streams with both high pH 

(>8.5) and high salinity (>1 M Na+) was shown previously in a combined denitrification 

and sulfate reduction bioreactor (Zhou et al., 2014). Application of solely biological 

sulfate reduction at haloalkaline conditions, however, was never thoroughly 

investigated before. These conditions are present in biodesulfurization systems where 

sulfate reduction may be applied to treat sulfate-rich bleed streams. These extreme 

conditions are present in nature, only in soda lakes which are characterized by high 

Na carbonate/bicarbonate alkalinity resulting in stable high pH of the brines around 10 

(Sorokin et al., 2011a). In these lakes, where pH can reach up to 11 and salinity up to  

4 M Na+, sulfate reduction was shown to occur (Sorokin et al., 2010).  The 

haloalkaliphilic SRB isolated from these lakes are represented by the three genera of 

lithotrophs (Desulfonatronovibrio, Desulfonatronum and Desulfonatronospira) and 

several VFA-utilizing SRB (Sorokin et al., 2012a, 2012b).  

Information on in situ sulfate reduction activities in these extreme environments and 

optimal growth conditions for haloalkaliphilic SRB in pure culture already exists. Yet, 

there are no available studies on continuously operated bioreactors where 

haloalkaliphilic biomass is active. Information about volumetric and specific sulfate 

reduction activities, aggregation of biomass and adaptation are essential to 

successfully apply biological sulfate reduction under extreme haloalkaline conditions 

in biotechnological systems. 
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We investigated the performance of a lab scale H2-fed gas lift bioreactor at haloalkaline 

conditions that could be applied to treat sulfate-rich bleed streams. The sulfate 

reduction activity rate, growth rate, structure of the microbial community and biomass 

aggregation were investigated during the bioreactor operation. The influence of the 

wall biofilm formation on the sulfate reduction activity and sulfide toxicity was also 

investigated.  As there is no dedicated biomass available, inocula from combined 

natural and man-made high pH and high salinity sources were used to enrich for 

haloalkaliphilic hydrogenotrophic SRB.  

 

 

Methods 

 

Bioreactor set-up 

A 4.4 l glass gas lift reactor with an internal 3 phase separator was used (Figure. 1). A 

water jacket connected to a thermostat bath (DC10-P5/U, Haake, Germany) was used 

to maintain the bioreactor temperature at 35oC. The liquid feeding was performed by a 

membrane pump (Stepdos 08 RC, KNF-Verder, the Netherlands). The gas supply was 

controlled using H2 and CO2 digital mass flow controllers (F-201CV-020-AGD-22-V and 

F-201CV-020-AGD-22-Z, Bronkhorst, the Netherlands). For the gas recirculation a 

vacuum pump (Laboport®, KNF, Trenton, NJ) was used and the gas flow measured 

using a flow meter (URM, Kobold, the Netherlands). A pH and an oxidation-reduction 

potential sensor (CPS11D and CPS12D, Endress+Hauser, the Netherlands) 

connected to a controller (Liquiline CM44x, Endress+Hauser, the Netherlands) were 

used to monitor the conditions inside the reactor. The pH was controlled at pH 9 by 

supplying CO2 through the mass flow controller. 

 

Inoculum 

The bioreactor was inoculated with 50 ml of biomass that was collected from a sulfate 

and thiosulfate (1/1 mol ratio) reducing gas-lift bioreactor with 3 phase separator fed 

with H2 and CO2, with the same set-up as described in Figure 1. This bioreactor was 

operated for 3 months with 150 mM (total S loading) and the biomass was collected 
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and washed with anoxic carbonate/bicarbonate buffer (pH 9, 1.5 M Na+). The original 

inoculum used for this bioreactor is a mix of sediments and sludge listed in Table A.1 

in supplementary data. From each sediment 20 g (wet weight) and from each sludge 

type 10 ml were added to start the reactor. 

 

 

Figure 1 – Scheme of the gas-lift bioreactor set-up. A - outlet sampling point; B - biomass 

sampling point; C - gas sampling point; 1 - N2 gas bag; 2 - medium bottle; 3 - membrane pump; 

4 - gas-lift bioreactor with 3 phase separator; 5 - sampling valve; 6 - long water lock; 7 - effluent 
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bottle; 8 - condenser; 9 - vacuum pump; 10 - gas flow adjusting valve; 11 - gas flow meter; 12 

- diffuser; 13 - ORP sensor; 14 - pH sensor; 15 - controller; 16 - mass flow controller; 17 - CO2 

gas bottle; 18 - H2 gas bottle; 19 - thermostat bath; 20 - water lock. 

 

Medium 

A mineral medium that was buffered at pH 9 (± 0.05) with sodium carbonate and 

sodium bicarbonate and with a total of 1.5M Na+ was used. The medium composition 

was as follows: Na2CO3 (33.6 g l-1), NaHCO3 (69.3 g l-1), KHCO3 (1 g l-1), K2HPO4 (1 g 

l-1), NH4Cl (0.27 g l-1), MgCl2.6H2O (0.1 g l-1), CaCl2.2H2O (0.01 g l-1) and 10 ml l-1 of 

vitamin solution (Wolin et al., 1963). Two trace (TE) element solutions with the following 

composition were mixed together and 1 ml added: TE1 - sodium EDTA (1000 mg l-1), 

FeCl2.4H2O (370 mg l-1), H3BO3 (60 mg l-1), MnCl2.2H20 (26 mg l-1), CoCl2.6H2O (40 

mg l-1), ZnCl2 (10 mg l-1), CuCl2 (3 mg l-1), KAl(SO4)2.12H2O (32 mg l-1), NiCl2.6H2O (31 

mg l-1); TE2 – NaOH (40 mg l-1), Na2SiO3.5H2O (10 mg l-1), Na2MoO4.2H2O (10 mg l-

1), Na2SeO3.5H2O (10 mg l-1), Na2WO4.2H2O (10 mg l-1). As electron acceptor, 7.1 g 

(50 mM) of sodium sulfate (NaSO4) was added. 

 

Experimental design 

The bioreactor was filled with medium and flushed with hydrogen gas over night with 

gas recirculation to lower the redox potential. The hydrogen gas supply was set to 5 

ml min-1, the gas recirculation to 2.5 l min-1 and the pH control set at pH 9. Inoculation 

of the reactor was defined as time 0. A batch run was performed to start-up the 

bioreactor and verify the biomass sulfate reduction activity (Start-up, Table 1). Three 

continuous experiments (Run 1, 2 3) with different hydraulic retention times (HRT) were 

performed as described in Table 1. Two batch experiments, biofilm run and sulfide 

toxicity run, were performed to investigate the contribution of the bioreactor wall biofilm 

to the sulfate reduction activity and the toxicity of high sulfide concentrations (Table 1). 

In the biofilm run, the suspended biomass was removed leaving only the biofilm in the 

bioreactor and fresh medium was added. In the sulfide toxicity run, the biofilm was 

removed and only suspended biomass was used in the same concentration as 

measured during the continuous runs, approximately 5 mg l-1.  
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Table 1 – Operational differences between the bioreactor runs performed 

Run Period (d) Mode HRT (d) 
SO4

2- loading 

rate (mmol d-1) 

SO4
2- 

concentration 

(mM) 

Start-up  0 - 13 Batch N.A.a N.A.a 50 

Run 1 15 - 123 Continuous 5 10 N.A.a 

Run 2 124 - 147 Continuous 2.5 20 N.A.a 

Run 3 148 - 155 Continuous 3.3 15 N.A.a 

Biofilm run 6b Batch N.A.a N.A.a 50 

Sulfide toxicity 

run 
70b Batch N.A.a N.A.a 500 

a Not applicable. 

b Duration of the batch test. 

 

Analytical procedures 

Samples for organic acids analysis were filtered through 0.4 µm pore size filters and 

quantified using ultra-high performance liquid chromatography (Dionex ultimate 

3000RS, Thermo scientific, USA) equipped with a Phenomenex Rezex Organic Acid 

H+ column (300x7.8 mm). 2.5 mM sulfuric acid was used as mobile phase with a flow 

rate of 0.5 ml min-1 at 80°C. The UV detector was set at 210 nm.  

Samples for sulfide and sulfate analysis were stabilized with zinc acetate (0.2 M) in a 

1:1 ratio immediately after sampling. Sulfide was analyzed using a cuvette test 

(LCK653, Hach Lange, Germany). For sulfate analysis the sample was filtered through 

0.4 µm pore size filters and analyzed by ion chromatography (761 compact IC with a 

762 IC interface, Metrohm, Switzerland). The IC was equipped with a conductivity 

detector. A pre-column (Metrosep A sup 4/5 guard) and column (Metrosep A sup 5) 

were used. A chemical suppressor (Metrohm, Switzerland), CO2 suppressor (type 853, 

Metrohm, Switzerland) and conductivity detector were used. The mobile phase 

composed of 3.2 mM sodium carbonate and 1 mM sodium bicarbonate + 1% acetone 

+ 5 µM IO3 was used with a 0.7 ml min-1 flow rate. The liquid suppressor consisted of 



Chapter 3 

58 

 

3 

50 mM sulfuric acid + 1% acetone Milli-Q water + 1% acetone and was with a 0.4 ml 

min-1 flow rate. 

Gaseous compounds (H2, CO2, N2 and CH4) were analyzed by gas chromatography 

using a microGC (CP-4900, Varian, CA) equipped with a TCD detector. Argon was 

applied as carrier gas at a flow rate of 1.47 ml min-1. The injector, and detector 

temperature were 105oC and100oC, respectively. The microGC cabinet was set at 

40oC and 100.4 kPa.  H2 and N2 were analyzed with a Mol Sieve 5A PLOT column at 

at 80oC and 150 kPa and CO2 and CH4 were analyzed with a PoraPlot U column at 

65oC and 150 kPa. 

The biomass content was analyzed using the total nitrogen (total N). Samples (10 ml) 

for biomass measurement were centrifuged (10 min, 7500g) and washed 3 times with 

carbonate/bicarbonate buffer (pH 9, 1.5 M Na+) to remove dissolved nitrogen 

compounds. The total N concentration was determined using a cuvette test (LCK238, 

Hach Lange, Germany). 

Particle size was measured using laser measurement in a particle size and shape 

analyzer (Eyetech, Doner technologies, Israel) with the Dipa 2000 software (Doner 

technologies, Israel). Measurements were done in triplicate for 120s with stirring. 

Microscopy pictures were taken using a light microscope (DMI6000B, Leica, 

Germany). 

 

Scanning electron microscopy (SEM) 

Biomass samples were fixed in 2.5% (w/v) glutaraldehyde overnight at 4 oC. The fixed 

samples were washed twice with carbonate/bicarbonate buffer (pH 9, 1.5 M Na+) and 

then dehydrated in a series of ethanol solutions (10%, 25%, 50%, 75%, 90% and twice 

100%) with 20 minutes in each step. The samples were dried in a desiccator. The 

samples were coated with gold and analyzed in a JEOL JSM-6480LV Scanning 

Electron Microscope. Energy-dispersive X-ray spectroscopy (EDX) analysis was 

performed using a NORAN Systems SIX (Thermo Scientific, USA). 
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DNA extraction and amplification 

Samples (50 ml) for DNA analysis were centrifuged (10 min, 7500 g), the biomass 

resuspended in 2 ml of carbonate/bicarbonate buffer (pH 9, 1.5 M Na+) and stored at -

80oC. Total genomic DNA was extracted using the PowerBiofilm™ DNA Isolation Kit 

(MoBio, USA) following the manufacturer’s instructions. Bacterial 16S rRNA genes 

were amplified by PCR using a Taq DNA polymerase kit (Invitrogen, Carlsbad, USA) 

and Primer sets U968f/L1401r and Bact27f/Uni1492r were used for 16S rRNA gene 

amplification for denaturing gradient gel electrophoresis (DGGE) and sequencing 

purposes, respectively (Lane, 1991; Nübel et al., 1996). A 40 bp GC-clamp was added 

at the 5’ end sequence of the primer U968-f. For archaeal 16S rRNA genes the 

A109(T)f/GC515r and A109f/Uni1492r primers sets were used for DGGE and 

sequencing purposes, respectively (Großkopf et al., 1998; Lane, 1991). The PCR 

program used for DGGE was: initial denaturation for 2 min; 35 cycles of 30 s 

denaturation at 95oC, 40 s at 56oC for annealing and 1.5 min elongation step at 72oC; 

7 min at 72oC of post-elongation step. PCR settings for cloning were as described 

above except that a total number of 25 cycles and an annealing temperature of 52oC 

were used. 

 

DGGE analysis 

Biodiversity of the sulfate plus thiosulfate run and the different operational periods of 

the sulfate reducing bioreactor described in this study (Table 1) was visualized on 

DGGE. DGGE analysis of the PCR products was performed by using the DCode 

system (Bio-Rad, Hercules, CA, USA). Gels containing 8% (w/v) polyacrylamide 

(37.5:1 acrylamide/bis-acrylamide) were used with a linear denaturing gradient of 30–

60%, with 100% of denaturant corresponding to 7 M urea and 40% (v/v) formamide. 

Electrophoresis was performed for 16h at 85 V and 60ºC in a 0.5x Tris-Acetate-EDTA 

buffer. DGGE gels were stained with silver nitrate (Sanguinetti et al., 1994), scanned 

and the band profiles were analyzed using Bionumerics® software (Applied Maths, 

USA). 
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Cloning, sequencing and phylogenetic analysis 

The 16S rRNA of the final biomass (day 155) from the bioreactor operation was 

amplified for cloning. The amplicons  purified using the ssDNA/RNA Clean & 

Concentrator (Zymo Research, USA) and ligated into the pGEM-T Easy Vector System 

I (Promega, Madison, MI, USA) and cloned in XL-1 blue competent Escherichia coli 

cells (Stratagene, USA) and grown on LB-agar with 100 mg l-1 ampicillin, 0.1 mM 

isopropyl-1-thio-β-D-galactopyranoside (X-gal). 96 Positive transformants were 

selected (by blue/white screening) and were transferred to solid LB medium with 100 

mg l-1 ampicilin and incubated overnight at 37oC. 96 bacterial clones and 96 archaeal 

clones were sent for sequencing of the 16S rRNA gene insert (Baseclear BV, the 

Netherlands) using the primers sets Bact27f/Univ1492r and A109f/Uni1492r  

(Großkopf et al., 1998; Lane, 1991). The DNA sequences were analyzed using 

Chromas (ver. 2.32, Technelysium). From the 96 clones, 67 good sequences were 

obtained and were used.  Similarity searches for 16S rRNA gene sequences derived 

from the clones were performed using the NCBI BLAST search program within the 

GenBank database (http://www.ncbi.nlm.nih.gov/blast/). 

 

Calculations 

Assumptions: 

The bioreactor liquid volume is constant during the operation which means that the 

liquid flow that goes into the bioreactor is equal to the liquid flow getting out of the 

bioreactor (Øin = Øout). 

Sulfur compounds accumulation in the bioreactor, by incorporation in biomass and 

formation of sulfide precipitates, is assumed to play a minor role due to the high sulfate 

concentration in the influent and is not taken into account. 

The N fraction value of 0.2 was used to calculate biomass concentration based on total 

N, following the biomass molecular formula: C1H1.8O0.5N0.2 

For suspended biomass doubling time, biomass retention in the bioreactor was not 

taken into account since aggregation did not occur. The bioreactor ran as a continuous 

stirred tank reactor for which the suspended biomass doubling time equals the HRT.  
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𝐶𝑥 =
𝐶𝑇𝑜𝑡𝑎𝑙𝑁

0.2
. 𝑀𝑥 

µ = 𝐻𝑅𝑇 

𝑟𝑣 =  
∅. 𝐶𝑠,𝑖𝑛 − ∅. 𝐶𝑠,𝑜𝑢𝑡

𝑉𝑟
 

Nomenclature: 

Cx  Biomass concentration (g l-1) 

Ctn  Total Nitrogen concentration (mol l-1) 

Mx  Biomass molecular weight (g mol-1) 

rv  Volumetric activity (mmol lr-1 d-1) 

Ø  Flow rate (l d-1) 

Cs  Sulfate concentration (mmol l-1) 

Vr  Bioreactor volume (l) 

µ  Suspended biomass growth rate (d) 

 

Subscript: 

x  Biomass 

r  Reactor 

in  Influent 

out  Effluent 

TotalN Total nitrogen 
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Results & Discussion 

 

Reactor operation 

The continuous cultivation of hydrogenotrophic sulfate-reducing biomass in a 

bioreactor at haloalkaline conditions was shown. This process was characterized by 

the absence of biomass aggregation which prevented biomass retention in the 

bioreactor. As consequence, the biomass growth rate (µ) was the main parameter 

affecting the biomass concentration (Cx) which was low (Figure 2c). Because of this, 

the maximum sulfate volumetric reduction rate (rv) of 18 mmol l-1 d-1 (Figure. 2b) was 

lower than previously reported for a full-scale sulfate reducing bioreactor operating at 

neutral conditions, 200 mmol l-1 d-1 (van Houten et al., 2006). The biomass could 

tolerate up to 266 mM of sulfide (Figure. 3), which is higher than the maximum naturally 

occurring sulfide concentrations measured in the Soap Lake where an active biological 

sulfur cycle takes place with sulfide concentration up to 200 mM ( Sorokin et al., 2007; 

Sorokin et al., 2011a). Because H2S is the main toxic sulfide species and its pKa value 

is 7, at pH 9 it represents only 0.4% of the total sulfide. This might explain the high 

sulfide tolerance of the biomass compared to lower pH conditions  (Bijmans et al., 

2008; van Houten et al., 1995). The HS- species was also suggested to be toxic by 

precipitating essential metals to microorganisms. In this study, even though metal 

precipitation did occur, no toxic effect was observed. 
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Figure 2 - Sulfate, sulfide and biomass concentration, sulfate loading rate and sulfate 

volumetric reduction rate during start-up and continuous run of the H2 fed sulfate reducing gas-

lift bioreactor operated at haloalkaline conditions (Start-up, Run 1, Run 2 and Run 3). A - 

Sulfate and sulfide concentrations in the bioreactor effluent. B - Sulfate loading rate and sulfate 

reduction volumetric rate. C - Biomass concentration (Cx) in the bioreactor. 
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Figure 3 – Sulfate and sulfide concentration during the sulfide run. 

 

Microbial community 

The microbial community was constant during the continuous runs (Run 1, 2 and 3) 

and only one DGGE band decreased in intensity when the 2.5 d HRT was used in Run 

2 (Figure 4). This indicates that at 2.5 d HRT a major player in sulfate reduction activity 

was flushed out of the bioreactor, which is shown by the decrease in sulfate reduction 

activity (Figure 2a and 2b). The main clones of sulfate reducing bacteria detected in 

the biomass from the bioreactor, closely related to the haloalkaliphilic SRB 

Desulfonatronospira delicata, Desulfonatronospira thiodismutans and 

Desulfonatronovibrio sp. (Table 2), were previously isolated from Siberian soda lakes 

(Sorokin et al., 2008a; Sorokin et al., 2011b).  
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Figure 4 - Bacteria and Archaea 16S rRNA DGGE profiles from inoculum enriched with sulfate 

and thiosulfate, biomass at the end of start-up, run 1,2 and 3, and biofilm run. 

 

Bacterial clone library analysis also revealed the presence of a clostridium belonging 

to the genus Tindallia (54 out of 67 clones, max. 97% identity with T. texcoconensis). 

This suggests that this clostridium has the ability to grow lithoautotrophically though 

Tindallia texcoconensis was described as a fermentative bacterium (Alazard et al., 

2007). However, hydrogenase and CO-dehydrogenase activity in Tindallia 

magadiensis and Tindallia californiensis suggest an active homoacetic pathway 

(Pikuta et al. 2003). Sorokin et al. (2011c) also showed that a Tindallia isolate from 

soda lakes produced formate from H2 and CO2. The Tindallia sp. found in this study 

might also be involved in the observed formate production or production of acetate that 

even though was not measured, might be present in low concentrations. 
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Table 2 – Bacteria clones sequenced and their similarity with their closest relative.  

Closest relative 

Max. 
Identity 

(%) 

Nº of 
clones 

(total 67) 

Metabolism 
Accession 

number 

Tindallia texcoconensis 
strain IMP-300 

97 54 Fermentation NR 043664 

Desulfonatronospira 
delicata strain AHT 6 

99 4 
Sulfate reduction & 

thiosulfate and sulfite 
disproportionation 

NR 044460 

Desulfonatronovibrio sp. 
AHT 10 

99 2 Thiosulfate reducer FJ469580 

Desulfonatronospira 
thiodismutans ASO3-1 

98 2 
Sulfate reduction & 

thiosulfate and sulfite 
disproportionation 

NR 044459 

Desulfonatronovibrio sp. 
AHT22 

96 1 
Sulfate reduction & 

thiosulfate 
disproportionation 

GU196831 

Uncultured low G+C 
Gram-positive bacterium 
clone ML635J-4 

97 1 N.D.a AF507887 

Uncultured 
Clostridiisalibacter sp. 
Clone 328 

94 1 N.D.a GU202952 

Uncultured CFB group 
bacterium clone 
ML1228J-16 

97 1 N.D.a AF449766 

Uncultured organism 
clone SBXZ_5781 

85 1 N.D.a JN436861 

a No data available. 
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Table 3 – Archaea clones sequenced and their similarity with their closest relative.  

Closest relative 

Max. 
Identity 

(%) 

Number of 
clones 

(total 61) 

Metabolism 
Accession 

number 

Methanobacterium 
alcaliphilum 

99 53 Methanogenesis AB496639 

Methanocalculus sp. 
LA5 

99 2 Methanogenesis DQ987523 

Uncultured archaeon 
clone MOB4-4 

99 2 N.D,a DQ841230 

Methanocalculus sp. 
LA7 

99 1 Methanogenesis DQ987524 

Uncultured 
Methanolobus sp. clone 
IV-A3 

99 1 N.D.a EU546840 

a No data available. 

 

The Desulfonatronovibrio sp. closely related to the clones identified in this study are 

heterotrophic, requiring acetate for growth (Sorokin et al. 2011b). This indicates that 

acetate production and consumption in the bioreactor may occur. The presence of 

unknown biodiversity other than sulfate reducers and Tindallia sp. also indicates that 

fermenters might be active in the biomass (Table 2). Archaeal clone library analysis 

revealed the presence clones closely related to Methanobacterium alcaliphilum (99% 

identity), a moderately alkaliphilic hydrogenotrophic methanogen (Worakit et al., 1986), 

and Methanocalculus sp., a haloalkaliphilic hydrogenotrophic methanogen. Since no 

methane was detected during the continuous runs (Run 1, 2 and 3) but only in the 

biofilm run, these archaea likely only play a minor role in the bioreactor H2 consumption 

and performance. 

 

Biomass aggregation 

The biomass concentration (Cx) obtained in this research (Figure 1c) was lower than 

reported in previous studies where 103 fold higher concentrations of volatile suspended 

solids were obtained (Bijmans et al., 2008; van Houten et al., 1995). Actually, a big 

fraction of the sulfate reduction activity was performed by the biofilm on the bioreactor 



Chapter 3 

68 

 

3 

glass wall and not by the suspended biomass (Figure 5). This low suspended biomass 

concentration is explained by the slow suspended biomass growth rate, 3.3 days, and 

the absence of aggregation. The particle size distribution obtained matches the size of 

single microbes revealing that the biomass was suspended and not aggregated (Figure 

6). Aggregated biomass is usually obtained by applying the liquid up-flow velocity as a 

selection force (Alphenaar et al., 1993). In the current study no aggregation was 

observed even though a 3 phase separator was used to apply a controlled liquid up-

flow velocity (1 m hr-1 in run 1, 2 m hr-1 in run 2, 1.7 m hr-1 in run 3) and biomass 

separation to select for aggregated biomass. Aggreagated biomass has previously 

been used in sulfate reducing bioreactors at neutral conditions (van Houten et al. 1995; 

van Houten et al. 2006; Sipma et al. 2006). Also, in studies at more extreme conditions, 

like low pH and high NaCl concentrations, aggregation was observed (van Houten et 

al. 1995; Vallero et al. 2004; Bijmans 2008). This indicates that the haloalkaline 

conditions used may prevent a stable microbial aggregation.  

The first stage of bacterial aggregation has been explained by the thermodynamic 

approach using the extended DLVO theory (van Oss, 1989,1993). According to this 

theory, at high salt concentrations the formation of a condensed electrical double layer 

by the high amount of cations may minimize repulsion forces that are usually an 

obstacle for aggregation. It was shown, however, that Escherichia coli aggregation 

starts to decrease at higher salt concentrations (> 0.185 M ionic strength) (Otto et al., 

1999). The pH may also affect the hydrophobicity which has been shown to affect 

attachment of Escherichia coli (Otto et al., 1999). Such effects in haloalkaline 

conditions might prevent initial nucleation between microorganisms, which is essential 

for aggregates formation. Biofilm formation, however, was observed on the bioreactor 

glass walls. The shear forces near the bioreactor wall and the properties of glass may 

have provided conditions to overcome the challenges of haloalkaline conditions and 

promote biofilm formation. 
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Figure 5 - Sulfide concentration during the batch runs (Biofilm run and Sulfide run) and 

methane fraction in the gas phase during Biofilm run. 

 

These phenomena only explain the moment when bacteria encounter each other or a 

support material. Thus, this also does not explain why aggregates present in the 

inoculum used in this study could not resist the shear forces in the bioreactor. This can 

be seen by the bigger particle size of the inoculum compared to the biomass growing 

in the bioreactor (Figure 6). A similar decrease in size and strength of aggregates was 

reported in anaerobic digestion at high salinity (Ismail et al., 2008).  After first attraction, 

molecules at the outside of the cell membranes, such as polysaccharides and protein 

complexes, and other exopolymeric substances (EPS) form a stable connection 

between cells or between the cell and other surfaces. It was shown before that at 0.87 

M Na+ the polysaccharide concentration in EPS decreases in granules from an upflow 

anaerobic sludge blanket reactor (Ismail et al., 2010). In another study it was proposed 

that at high salinities (0.65 M Na+), Ca2+ is substituted by Na+ in the aggregates EPS 

matrix, thus resulting in the loss of granules strength reported (Ismail et al., 2008). 

There are also indications that the carbon metabolism is down-regulated at high salt 

conditions which could lead to a reduced EPS production (He et al., 2010).  
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Figure 6 - Biomass SEM picture and particle size distribution. A - SEM picture (5000x) with 

the different microbial morphotypes. B - Particle size distribution by biomass volume using 

laser measurement (3 measurements of 120s with mixing) of biomass from day 0 and 155 of 

continuous runs (begin of Start-up and end of Run 3). 

 

Another factor that strongly influences aggregation is the metabolic relations between 

different microorganisms (Hulshoff Pol et al., 2004). To make these relations more 

efficient, microorganism need to be physically close to each other and aggregate. This 

was shown in sulfate reducing bioreactors where besides sulfate reducers also other 

metabolic groups such as methanogens and homoacetogens were present (van 

Houten et al, 1995; van Houten et al., 2006). In the present study, acetate was not 

detected and homoacetogens were not found in the biomass at the end of Run 3 (Table 

2). Howeve, formate was detected which could also be used as carbon source and 
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electron donor as was shown in other studies (Sorokin et al. 2011a). The diversity 

visualized by the DGGE profiles and unknown biodiversity from the clone library 

(Figure 4 and Table 2 and 3), shows the possible presence of other microbial metabolic 

groups in the bioreactor, like fermentative bacteria. The biomass concentration was 

low, and not enough to sustain an abundant population of fermentative bacteria feeding 

on dead biomass. This indicates that the food chain was short and mostly consisted of 

autotrophic microorganisms. Still some metabolic interactions may have occurred in 

the bioreactor wall biofilm but not in the suspended biomass. Methane was not 

detected in the run with suspended biomass while it was detected in the run with only 

biofilm (Figure 5). Also archaea closely related to isolated methanogens were identified 

(Table 3). The higher biomass retention time in the biofilm allowed the development of 

slow growing microorganisms which might have played a role. Such results indicate 

that the metabolic relations may have contributed to biofilm formation but did not 

constitute a driving force for aggregation of the suspended biomass at haloalkaline 

conditions.  

In previous studies, inorganic particles, like pumice or sand, were used to promote 

aggregation (van Houten et al., 1995; Jong and Parry, 2006). It was also shown that 

bacteria may attach to crystallized metal sulfides (Noël et al., 2010). At sulfate reducing 

conditions, metal sulfides precipitate and thus could be used as support for attachment. 

Zinc sulfide crystals were identified through SEM-EDX in the current study but no 

microbial attachment was observed. Also, at high pH and salt concentration, 

precipitation of salts occurs. Such crystals like calcium or magnesium carbonates are 

known to affect granulation and increase the stability of EPS in aggregates (Braissant 

et al., 2007; Liu et al., 2010). Calcite (crystallized calcium carbonate) and magnesite 

(crystalized magnesium carbonate) were identified using SEM-EDX analysis. Still, 

there was no indication of microbial attachment to these crystals, showing that these 

are not used as support material for aggregation probably due to their instability. On 

the other hand, sand and pumice, being silica based, may have similar characteristics 

as glass. Their use as initial attachment support for aggregation could lead to formation 

of stable aggregates since biofilm growth on glass was observed.  

The maximum sulfate reduction volumetric rate (vr) achieved, 18 mmol l-1 d-1 (Figure 

2), was approximately 10 fold lower than reported for a full-scale H2 fed sulfate-

reducing bioreactor at neutral conditions (van Houten et al., 2006). Using silica based 
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particles with biofilm would allow an increase of biomass concentration inside the 

bioreactor thus generating a potential increase of the sulfate reduction volumetric rate. 

 

 

Conclusions 

This study shows the possibility of performing sulfate reduction at haloalkaline 

conditions in a continuous bioreactor. The process is characterized by low growth rate 

and lack of microbial aggregation. The haloalkaline conditions seem to prevent 

biomass aggregation but the mechanism behind this effect is still unclear. The low 

microbial diversity might have contributed to the poor aggregation ability of the 

biomass. However, biofilm formation on the bioreactor glass wall shows that 

attachment to silica support materials is possible. Further research on how haloalkaline 

conditions affect the aggregation process could provide clues to improve granulation. 
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Supplementary information 

 

Table A1 – Origin, type, pH and salinity of the inocula used in this study 

Source Location Type pH 
Salts 

(g l-1) 
Reference 

Soap lake  Washington, 

USA 

Sediment 9.9 20 - 140 Sorokin et 

al., 2011a 

Kulunda steppe soda 

lakes 

Altai, Russia Sediment 9.3 - 10.6 20 - 380 Sorokin et 

al., 2011a 

Traditional salt 

production ponds 

Tavira, 

Portugal 

Sediment 7.5 N.D. This study 

Thiopaq® sulfide 

oxidizing bioreactor 

Eerbeek, the 

Netherlands 

Sludge 8.5 - 9 18.4 Janssen et 

al., 2009 

Thiopaq® sulfide 

oxidizing bioreactor 

Illinois, USA Sludge 8.5 - 9 N.D. This study 

UASB methanogenic 

bioreactor 

Eerbeek, the 

Netherlands 

Sludge 6.9 N.D. Oude 

Elferink et 

al., 1998 

N.D. – No data available 
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Abstract 

In industrial gas biodesulfurization systems, where haloalkaline conditions prevail, a 

thiosulfate containing bleed stream is produced. This bleed stream can be treated in a 

separate bioreactor by reducing thiosulfate to sulfide and recycling it. By performing 

treatment and recycling of the bleed stream, its disposal decreases and less caustics 

is required to maintain the high pH. In this study, anaerobic microbial thiosulfate 

conversion to sulfide in a H2/CO2 fed bioreactor operated at haloalkaline conditions 

was investigated. Thiosulfate was converted by reduction to sulfide as well as 

disproportionation to sulfide and sulfate. Formate production from H2/CO2 was 

observed as an important reaction in the bioreactor. Formate, rather than H2, might 

have been used as the main electron donor by thiosulfate/sulfate-reducing bacteria. 

The microbial community was dominated by bacteria belonging to the family 

Clostridiaceae most closely related to Tindallia texcoconensis. Bacteria 

phylogenetically related to known haloalkaline sulfate and thiosulfate reducers, 

thiosulfate-disproportionating bacteria and remarkably sulfur-oxidizing bacteria were 

also detected. Based on the results, two approaches to treat the biodesulfurization 

waste stream are proposed: i) addition of electron donor to reduce thiosulfate to sulfide 

and ii) thiosulfate disproportionation without the need for an electron donor. The 

concept of application of solely thiosulfate disproportionation is discussed. 
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Introduction 

Thiosulfate (S2O3
2-) is one of the major reactive intermediate in the biogeochemical 

sulfur cycle (Jørgensen 1990). Thiosulfate can be formed abiotically through oxidation 

of sulfide (HS-), polysulfide (Sx
2-) or pyrite with O2. Most sulfate-reducing bacteria 

(SRB) are able to reduce thiosulfate to sulfide with H2 or an organic electron donor (Eq. 

1) (Widdel 1988). However, thiosulfate can also be disproportionated to sulfate and 

sulfide in the absence of an electron donor (Eq. 2) (Bak & Cypionka 1987). 

Disproportionation of thiosulfate can also be performed by several SRB (Finster 2008; 

Sorokin et al 2011a). 

 

𝑺𝟐𝑶𝟑
𝟐−  + 𝟒𝑯𝟐  → 𝟐𝑯𝑺−  + 𝟑𝑯𝟐𝑶   (Eq. 1) 

𝑺𝟐𝑶𝟑
𝟐−  +  𝑯𝟐𝑶 → 𝑺𝑶𝟒

𝟐−  + 𝑯𝑺−  + 𝑯+  (Eq. 2) 

 

Thiosulfate is particularly relevant in the sulfur cycle of haloalkaline environments, such 

as soda lakes where sodium carbonate and bicarbonate are the dominant salts. In 

these environments, thiosulfate is abiotically formed by the oxidation of polysulfides 

that are chemically stable at high pH and anoxic conditions (van den Bosch et al 2008). 

In soda lakes thiosulfate reduction is even more prominent than sulfate reduction 

(Sorokin et al 2010; Sorokin et al 2011b). Several anaerobic thiosulfate-converting 

microorganisms have been isolated from soda lakes (Sorokin et al 2011b). These 

isolated microbes, mainly belonging to genus Desulfonatronum, Desulfonatronovibrio 

and Desulfonatronospira, are able to perform both thiosulfate disproportionation and 

thiosulfate reduction.  

Thiosulfate is also an important intermediate in biodesulfurization processes that 

operate at haloalkaline conditions (Janssen et al 2009). In these processes thiosulfate 

is an unwanted soluble product along with sulfate and needs to be removed via a bleed 

stream. This bleed stream is rich in thiosulfate which contributes to the chemical 

oxygen demand (COD) of the disposed water. Additionally, the production of a bleed 

stream increases the demand in water and caustic to maintain the pH high enough to 

absorb hydrogen sulfide from the gas. The increased demand of water and caustics is 
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critical when biodesulfurization plants are built in locations without easy access to 

water and caustics, requiring transport of both. 

Thiosulfate in the bleed stream can be removed by biological conversion to sulfide in 

a separate anaerobic bioreactor. The sulfide produced in this anaerobic bioreactor can 

then be recycled back to the sulfide oxidation bioreactor. In this bioreactor, the oxygen 

supply is controlled to maximize production of elemental sulfur and minimize sulfate 

and thiosulfate formation. The elemental biosulfur is recovered and used in agriculture 

or in chemical and biotechnological industries (Buisman et al 1989).  

At present, there are no studies available on long-term cultivation of thiosulfate-

reducing biomass in reactor systems at haloalkaline conditions, which is needed for 

full-scale application of the proposed concept. Detailed information on the microbial 

activity and composition, metabolic interactions of microorganisms and biomass 

characteristics is lacking. This information is crucial to understand and improve 

thiosulfate conversion in bioreactors.   

In this work, microbial thiosulfate conversion at haloalkaline conditions in a continuous 

reactor system was investigated. A gas-lift bioreactor fed with H2 as electron donor and 

thiosulfate as electron acceptor was used. The bioreactor was operated at pH 9 and 

1.5 M Na+ and no organic compounds were present in the feed. Thiosulfate conversion 

was monitored and biomass growth and biomass characteristics were determined. The 

dominant microbes were identified using molecular biological techniques. 

 

 

Methods 

 

Bioreactor set-up 

A 4.4 l glass gas lift reactor with an internal 3 phase-separator was used (Figure 1 

Chapter 3). Temperature was maintained at 35oC using a water jacket connected to a 

thermostat bath (DC10-P5/U, Haake, Dreieich, Germany). The influent feeding was 

performed by a membrane pump (Stepdos 08 RC, KNF-Verder, Utrecht, the 

Netherlands). The H2 and CO2 gas supply was controlled using digital mass flow 

controllers (F-201CV-020-AGD-22-V and F-201CV-020-AGD-22-Z, Bronkhorst, 
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Ruurlo, the Netherlands). The gas was recycled using a vacuum pump (Laboport®, 

KNF, Trenton, NJ) and the gas flow was measured with a calibrated flow meter (URM, 

Kobold, Arnhem, the Netherlands). A pH and a redox potential sensor (CPS11D and 

CPS12D, Endress+Hauser, Naarden, the Netherlands) connected to a controller 

(Liquiline CM44x, Endress+Hauser, Naarden, the Netherlands) were used to monitor 

the conditions inside the reactor. The pH was controlled at pH 9 by supplying CO2 

using the mass flow controller with a supply rate range between 0.05 - 5 ml min-1. 

The bioreactor was inoculated with 50 ml of biomass collected from a gas lift bioreactor 

earlier operated with sulfate and thiosulfate (1/1 mol ratio) and fed with H2 and CO2 

(Sousa et al 2015).   

 

Medium 

The mineral medium used was buffered at pH 9 (± 0.05) with sodium carbonate and 

sodium bicarbonate, adding to a total of 1.5 M Na+. The medium composition was as 

follows: Na2CO3 (33.6 g l-1), NaHCO3 (69.3 g l-1), KHCO3 (1 g l-1), K2HPO4 (1 g l-1), 

NH4Cl (0.27 g l-1), MgCl2.6H2O (0.1 g l-1), CaCl2.2H2O (0.01 g l-1) and 10 ml l-1 of vitamin 

solution (Wolin et al 1963). Two trace element solutions with the following composition 

were mixed together: TE1 - Na-EDTA (1000 mg l-1), FeCl2.4H20 (370 mg l-1), H3BO3 

(60 mg l-1), MnCl2.2H2O (26 mg l-1), CoCl2.6H2O (40 mg l-1), ZnCl2 (10 mg l-1), CuCl2 (3 

mg l-1), KAl(SO4)2.12H2O (32 mg l-1), NiCl2.6H2O (31 mg l-1); TE2 – NaOH (40 mg l-1), 

Na2SiO3.5H2O (10 mg l-1), Na2MoO4.2H2O (10 mg l-1), Na2SeO3.5H2O (10 mg l-1), 

Na2WO4.2H2O (10 mg l-1). From this mixed solution, 10 ml l-1 was added to the medium. 

As electron acceptor, 3.95 g l-1 (25 mM) of sodium thiosulfate (Na2S2O3) was added. 

 

Experimental design 

The bioreactor was filled with medium and flushed with hydrogen overnight with gas 

recirculation to lower the redox potential. Afterwards, hydrogen was supplied at 5 ml 

min-1, the gas recirculation was set to approximately 2.5 l min-1 and the pH was 

controlled at pH 9 (± 0.05). Inoculation of the reactor was defined as time 0. A batch 

run was performed to start-up the bioreactor and to verify thiosulfate conversion (Start-

up, Table 1). Four continuous experiments (Run 1, 2, 3 and 4) with different hydraulic 
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retention times (HRT) were performed as described in Table 1. Another batch 

experiment (Biofilm run) was performed to investigate the contribution of the reactor 

wall biofilm to the thiosulfate conversion (Table 1). In the biofilm run, all suspended 

biomass was removed leaving only the biofilm in the bioreactor and fresh medium was 

added.  

 

Table 1 – Operational differences between the different bioreactor runs performed 

 Period  

(d) 

Mode 

 

HRT  

(d) 

S2O3
2- loading rate  

(mmol d-1) 

Start-up  0-12 Batch N.A.a N.A.a 

Run 1  12-42 Continuous 5 10 

Run 2  42-91 Continuous 2.5 20 

Run 3  91-117 Continuous 1.7 29.4 

Run 4  117-140 Continuous 1 50 

Biofilm run  13b Batch N.A.a N.A.a 

a Not applicable. 

b Duration of the batch test. 

 

Batch bottle experiments 

To gain further insight into biomass growth and use of H2, batch experiments were 

performed. The bottles had a total volume of 250 ml. At the beginning of the 

experiments the bottles contained 100 ml liquid and a headspace of 150 ml. For gas 

measurements 1 ml headspace was sampled and for liquid composition analysis, 5 ml 

was collected. To start the experiment, 5 ml of biomass obtained at the end of run 4 

was inoculated into the serum bottles with sterile medium, pH 9 and 1.5 M Na+, 

containing 25 mM thiosulfate. Three bottles were incubated with a H2/CO2 (80%/20%) 

gas phase and three bottles were incubated with a N2/CO2 (80%/20%) gas phase. All 

bottles were incubated at 35oC while shaking at 120 rpm. Chemical controls without 

biomass were included. 

 



Thiosulfate conversion to sulfide by a haloalkaliphilic microbial community 

85 

 

4 

 

Analytical procedures 

Samples for organic acids were filtered through 0.4 µm pore size filters and analyzed 

using ultra-high performance liquid chromatography (Dionex ultimate 3000RS, Thermo 

scientific, Wilmington, MA) as described previously (Sousa et al 2015). Samples for 

sulfide, thiosulfate and sulfate analysis were stabilized with zinc acetate (0.2 M) in a 

1:1 ratio immediately after sampling. Sulfide was analyzed using a colorimetric test 

(LCK653, Hach Lange, Düsseldorf, Germany). For sulfate and thiosulfate analysis the 

samples were filtered through 0.4 µm pore size filters and analyzed by ion 

chromatography (761 compact IC with a 762 IC interface, Metrohm, Herisau, 

Switzerland) as described previously (Sousa et al 2015).  

Gaseous compounds (H2, CO2, N2 and CH4) were analyzed by gas chromatography 

using a microGC (CP-4900, Varian, Palo Alto, CA) as described previously (Sousa et 

al 2015).  

The biomass development in the bioreactor was determined by analyzing the total 

nitrogen (total N) content of biomass. Samples (10 ml) were centrifuged (10 min, 

7500g) and washed 3 times with carbonate/bicarbonate buffer (pH 9, 1.5 M Na+) to 

remove dissolved nitrogen compounds. The total N content was determined using a 

colorimetric test (LCK238, Hach Lange, Düsseldorf, Germany). 

Biomass particle size was quantified using laser measurement in a particle size and 

shape analyzer (Eyetech, Doner technologies, Or Akiva, Israel) with the Dipa 2000 

software (Doner technologies, Or Akiva, Israel). Measurements were done in triplicate 

for 120s while stirring. Microscopy pictures were taken using a light microscope 

(DMI6000B, Leica, Biberach, Germany). 

 

DNA extraction  

Samples (50 ml) for DNA analysis were centrifuged (10 min, 7500 g). The biomass 

was re-suspended in 2 ml of carbonate/bicarbonate buffer (pH 9, 1.5 M Na+) and stored 

at -80oC. Genomic DNA was extracted from the pellet after centrifugation of stored 

samples using the PowerBiofilm™ DNA Isolation Kit (MoBio, Carlsbad, CA) following 

the manufacturer’s instructions. After extraction, the DNA quantity and quality was 
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analyzed using NanoDrop 1000 (ThermoScientific, Wilmington, MA). Only samples 

with more than 5 ng µl-1 DNA and ratio 260/280 nm between 1.7 and 2 were used. 

When required, the extraction process was repeated to achieve the quantity and quality 

mentioned. Amplified DNA samples were used for DGGE for a routine check of the 

microbial community, for a clone library to identify the species in the bioreactor, and 

for Illumina sequencing for investigating the relative abundance of different OTUs.  

 

PCR for DGGE and clone library 

Bacterial 16S rRNA genes were amplified by PCR using a Taq DNA polymerase kit 

(Invitrogen, Carlsbad, CA). The primer sets used were U968f/L1401r for denaturing 

gradient gel electrophoresis (DGGE) and Bact27f/Uni1492r for 16S rRNA cloning and 

sequencing (Lane 1991). A 40 bp GC-clamp was added at the 5’ end sequence of the 

primer U968-f. For archaeal 16S rRNA genes the A109(T)f/GC515r primers set were 

used for DGGE (Lane 1991; Großkopf et al 1998).  

For both bacteria and archaea 16S rRNA gene DGGE, the PCR program was: initial 

denaturation for 2 min; 35 cycles of 30 s denaturation at 95oC, 40 s at 56oC for 

annealing and 1.5 min elongation step at 72oC; 7 min at 72oC of post-elongation step. 

PCR settings for bacteria 16S rRNA gene cloning were as described above except that 

a total number of 25 cycles and an annealing temperature of 52oC were used. 

 

Clone library  

The bacterial 16S rRNA amplicons obtained from the final biomass (day 140) were 

purified using the ssDNA/RNA Clean & Concentrator (Zymo Research, Irvine, CA) and 

ligated into the pGEM-T Easy Vector System I (Promega, Madison, MI) and cloned in 

XL-1 blue competent Escherichia coli cells (Stratagene, la Jolla, CA) and grown on LB-

agar with 100 mg l-1 ampicillin, 0.1 mM isopropyl-1-thio-β-D-galactopyranoside (X-gal). 

96 Positive transformants were selected (by blue/white screening) and transferred to 

solid LB medium with 100 mg l-1 ampicilin and incubated overnight at 37oC. 96 bacterial 

clones were sent for sequencing of the 16S rRNA gene insert (Baseclear BV, the 

Netherlands) using the primers sets Bact27f/Univ1492r (Lane, 1991). The DNA 

sequences were analyzed using Chromas (ver. 2.32, Technelysium). From the 96 
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clones, 64 good sequences (without chimeras) were obtained and analyzed further. 

The sequences were in average 1400 base pairs length. Similarity searches for 16S 

rRNA gene sequences derived from the clones were performed using the EMBL-EBI 

ENA sequence search program within the ENA database. (http://www.ebi.ac.uk/ena).  

 

Bacteria community profiling 

From the biomass sample on day 140, a fragment of the 16S rRNA gene of bacteria 

was amplified with primers 341F and 805R (Herlemann et al 2011). The PCR protocol 

was performed according as previously described (Hugerth et al 2014) and sequenced 

using the Illumina Miseq platform (Lindh et al 2015) at the Science for Life Laboratory, 

Sweden (www.scilifelab.se). The sequence data were processed with the UPARSE 

pipeline (Edgar, 2013a) and annotated against the SINA/SILVA database SILVA 119 

(Quast et al., 2013a). Finally, the data were analyzed using Explicet 2.10.5 (Robertson 

et al., 2013). Sequences were submitted to the ENA database 

(http://www.ebi.ac.uk/ena) under the accession number PRJEB11708. 

 

Archaea community profiling 

For Archaea community profiling, an adapted method was used to analyze the biomass 

sample from day 140 (Jaeggi et al., 2014). A fragment of the 16S rRNA gene of 

archaea was amplified with primers 340F and 1000R (Gantner et al.2011). The PCR 

protocol was followed using a 50 µl solution with 1 µl DNA, 200 nM of the forward and 

reverse primer, 1 U KOD Hot Start DNA Polymerase (Novagen, Madison, WI), 5 µl 

KOD-buffer (10x), 3 µl MgSO4 (25 mM), 5 µl dNTP mix (2 mM each), and 33 µl sterile 

water. The PCR program used was: 2 minutes at 95oC and 35 cycles of 20s at 95oC, 

10s at 5oC and 15s at 70oC. The amplicons were purified with a MSB spin PCRapace 

kit (Invitek, Dublin, OH) and the concentration measured with a Nanodrop 1000 

spectrophotometer (Thermo scientific, Wilmington, DE). Equimolar amounts of 

amplicons from each sample were mixed to a total of 200 ng. This mixed sample was 

purified with a Purelink PCR Purification kit (Invitrogen, Carlsbad, CA), using a high 

cutoff binding buffer B3. The amplicons were sequenced on the 454 Life Sciences GS-

FLX platform using Titanium sequencing chemistry (GATC-Biotech, Konstanz, 

Germany). The sequencing data was analysed using QIIME v1.2 (Caporaso et al 2010)  

http://www.ebi.ac.uk/ena
http://www.scilifelab.se/
http://www.ebi.ac.uk/ena
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and the chimeric sequences were filtered using Chimera Slayer (Haas et al 2011). The 

OTU clustering was performed as described in QIIME newsletter of December 17th 

2010 (http://qiime.wordpress.com/2010/12/17/new-default-parameters-for-uclust-otu-

pickers/) and with 97% identity threshold. The diversity metrics were calculated in 

QIIME 1.2. Hierarchical clustering was done with UPGMA with weighted UniFrac as 

distance measure in QIIME 1.2 (Caporaso et al 2010). For the taxonomic classification 

the Ribosomal Database Project (RDP) classifier 2.2 was used (Cole et al 2009).  

 

Calculations 

Calculations are described in supplementary material. The following assumptions were 

made: 

1. Thermodynamic calculations were made based on Eq. 1 for thiosulfate reduction, 

Eq. 2 for thiosulfate disproportionation and for sulfate reduction based on Eq. 3. 

𝟒𝐇𝟐 + 𝐒𝐎𝟒
𝟐− + 𝐇+  →  𝐇𝐒− + 𝟒𝐇𝟐𝐎  (Eq. 3) 

2. Evaporation does not cause a major loss of liquid from the bioreactor because it is 

a closed system. The bioreactor liquid volume is assumed constant during the 

operation which means that the liquid flow that goes into the bioreactor is equal to 

the liquid flow getting out of the bioreactor (Qin = Qout). 

3. Accumulation of sulfur compounds by incorporation in biomass and formation of 

sulfide precipitates is assumed to play a negligible role due to the high thiosulfate 

concentration in the influent. 

4. Hydrogen used for biomass synthesis is assumed to play a negligible role in the 

bioreactor. 

5. The N fraction value of 0.2 was used to calculate biomass concentration based on 

total N, following the biomass molecular formula: C1H1.8O0.5N0.2 

6. For suspended biomass doubling time, the bioreactor was assumed as continuous 

stirred tank reactor for biomass growth rate calculations. It was assumed that there 

is hardly any retention of suspended biomass in the bioreactor. The role of the 

biomass growing in a biofilm that developed on the glass wall of the bioreactor, in 

the biomass retention is thus considered negligible for this specific parameter.  

http://qiime.wordpress.com/2010/12/17/new-default-parameters-for-uclust-otu-pickers/
http://qiime.wordpress.com/2010/12/17/new-default-parameters-for-uclust-otu-pickers/


Thiosulfate conversion to sulfide by a haloalkaliphilic microbial community 

89 

 

4 

 

𝐶𝑥 =
𝐶𝑇𝑜𝑡𝑎𝑙𝑁

0,2
. 𝑀𝑥 

𝐷 =
1

𝐻𝑅𝑇
 

µ = 𝐷 

𝑟𝑣 =  
𝑄. 𝐶𝑡𝑠,𝑖𝑛 − 𝑄. 𝐶𝑡𝑠,𝑜𝑢𝑡

𝑉𝑟
 

∆𝐺 =  ∆𝐺0′ + 𝑅𝑇 ln (
(𝑃𝑟𝑜𝑑𝑢𝑐𝑡1)𝑛𝑝1. (𝑃𝑟𝑜𝑑𝑢𝑐𝑡2)𝑛𝑝2

(𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒1)𝑛𝑠1. (𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒2)𝑛𝑠2
) 

 

Nomenclature used in calculations: 

 

Cx  Biomass concentration (g l-1) 

Mx  Biomass molecular weight (g mol-1) 

Vr  Bioreactor volume (l) 

D  Dilution rate (d-1) 

Q  Flow rate (l d-1) 

µ  Specific biomass growth rate (d-1) 

Cts  Thiosulfate concentration (mmol l-1) 

CTotalN Total Nitrogen concentration (mol l-1) 

rv  Volumetric activity (mmol lr-1 d-1) 

 

Subscript: 

x   Biomass 

out   Effluent 

in   Influent 

r   Reactor 
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s   Sulfur 

ts   Thiosulfate 

TotalN  Total nitrogen 

 

 

Results & Discussion 

 

Bioreactor performance 

The biomass in the bioreactor efficiently converted thiosulfate from the beginning of 

the operation. A stable maximum volumetric thiosulfate conversion rate of 28.7 (± 0.8) 

mmolS lr-1 d-1 was achieved in run 3 with a hydraulic retention time (HRT) of 1.7 days 

(Figure 1A and B). This rate is almost two times higher than the sulfate reduction rate 

in a similar system (Table 2) (Sousa et al., 2015a). The higher volumetric rate can be 

explained by the 2 times higher biomass concentration obtained compared to that in 

the previous study (Table 2, Figure 1C). Such difference shows that thiosulfate is 

easier to convert than sulfate which might be related to the energy required for sulfate 

activation prior to its conversion while thiosulfate does not require activation (Sydow et 

al., 2002). In addition, there is an intrinsic higher energy gain from thiosulfate reduction 

to sulfide (ΔG’ = -121 kJ per reaction) compared to sulfate reduction (ΔG’ = -99 kJ per 

reaction) at 35oC and pH 9. With a HRT of 1 day (run 4) initially even higher volumetric 

rates were measured (Figure 1B). Yet, the gradual decrease in biomass concentration 

and the decrease of volumetric thiosulfate conversion rate showed that the system was 

not stable at an HRT of 1 day. Apparently, bacteria actively involved in thiosulfate 

conversion were washed out. This can also be seen in the 16S rRNA gene DGGE 

bacteria profile where a dominant band disappeared during run 4 (Figure S1). The 

cause might be that the growth rate of these bacteria was lower than the dilution rate 

used in run 4, and thus they were washed out of the bioreactor.  

 



Thiosulfate conversion to sulfide by a haloalkaliphilic microbial community 

91 

 

4 

 

Figure 1 – Performance during start-up and continuous run of the H2 fed thiosulfate converting 

gas-lift bioreactor operated at haloalkaline conditions. A – Thiosulfate, sulfate and sulfide 

concentrations in the bioreactor effluent. B – Thiosulfate loading rate and thiosulfate 

conversion volumetric rate. C – Biomass concentration (Cx) in the bioreactor. 
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Table 2 – Conditions and performance of sulfate and thiosulfate reducing bioreactors 

operated at haloalkaline conditions. 

 
This study 

Sousa et al 
(2015) 

Zhou et al 
(2015b) 

Zhou et al 
(2015b) 

Reactor type 
Gas lift with 3 

phase separator 
Gas lift with 3 

phase separator 
Anaerobic filter Anaerobic filter 

e- acceptor Thiosulfate Sulfate Sulfate Sulfate 

e- donor H2 H2 Formate Ethanol 

Carbon source CO2 CO2 Formate Ethanol 

pH 9 9 9.5 9.5 

Na+ conc. (M) 1.5 1.5 1 1 

Temperature (oC) 35 35 37 37 

HRT (d) 1.7 3.3 1 1 

Sulfidogenic 
conversion rates 
(mmolS lr-1 d-1) 

28.7 (± 0.8) 18 85 89.5 

Side products Formate Formate Acetate 
Acetate/Formate/ 

Lactate 

Biomass conc. 
(mg l-1) 

14.0 (± 2.2) 7.2 (± 3) N.D.b N.D.b 

Biomass 
aggregation 

No aggregation No aggregation N.D.b N.D.b 

a Data from reference. 

b No data available. 

 

The loss of bacteria could be prevented by the formation of microbial aggregates which 

would allow biomass to be retained in the bioreactor. However, microbial aggregation 

was not observed in the bioreactor even though a 3 phase separator was used to retain 

microbial aggregates inside the bioreactor. The biomass particle size distribution 

matches the size of the microorganisms found in the biomass, thick vibrio and thin rods 

shaped microorganisms, indicative of suspended biomass rather than aggregated 

biomass (Figure 2). No aggregates were observed by microscopy even though the 
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initial inoculum had small biomass aggregates of around 100 µm in diameter (Figure 

2). Absence of biomass aggregation at haloalkaline conditions was also previously 

observed (Sousa et al., 2015a).  However, a biofilm developed on the bioreactor glass 

wall over time. This biofilm was tested in a batch test (Biofilm run) to determine its 

contribution to the bioreactor performance. In this run, not only thiosulfate conversion 

and formate production, but also acetate and methane production was observed 

(Figure 3). Acetate and methane were not detected during continuous operation. 

Acetate, if intermediately produced during continuous operation, might also have been 

used as carbon source by heterotrophic sulfidogenic microorganisms. In the biomass, 

bacteria were detected that are phylogenetically closely related to sulfate/thiosulfate 

converting bacteria that use acetate as carbon source (Table 3). Some 

Desulfonatronovibrio sp. are unable to grow autotrophically with H2 and formate, but 

are able to grow with acetate carbon source and hydrogen or formate as electron donor 

(Sorokin et al., 2008b, 2011d).    
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Figure 2 – Biomass micrograph and particle size distribution. A – Micrograph with the different 

microbial morphotypes found. White bar represents 10 µm. B – Particle size distribution by 

biomass volume using laser measurement (3 measurements of 120s with mixing) of biomass 

from day 0 and 140 of continuous runs (begin of Start-up and end of Run 4). 
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Figure 3 – Thiosulfate, sulfate, sulfide, formate and acetate concentration in the liquid phase 

and methane fraction in the gas phase during the Biofilm run. 
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Table 3 – Phylogenetic affiliations and frequency of cloned bacterial 16S rRNA gene amplicons 

retrieved from the bioreactor at day 140. 

Closest cultured relative 
Similarity 

(%) 

Number of 
clones 

(64 clones) 

Metabolism described in 
literature 

Accession 
number 

Thioalkalibacter halophilus 
strain ALCO1 

99 14 Sulfur oxidation NR 044406 

Thiomicrospira sp. V2501 99 14 Sulfur oxidation AB634592 

Tindallia texcoconensis 
strain IMP-300 

97 11 Fermentation NR 043664 

Thiomicrospira thyasirae 
strain DSM 5322 

99 4 Sulfur oxidation NR 024854 

Desulfonatronovibrio sp. 
AHT22 

99 4 
Sulfate reduction & 

thiosulfate 
disproportionation 

GU196831 

Candidate division SR1 
bacterium RAAC1_SR1_1 

85 4 Fermentation CP006913 

Halomonas sp. IB-559 99 2 
Heterotrophic sulfide 

oxidation 
AJ309560 

Desulfurivibrio sp. AMeS2 96 2 Sulfur disproportionation KF148062 

Bacteroidetes VNs52 77 2 N.D.* FJ168485 

Desulfonatronospira 
thiodismutans ASO3-1 

98 1 
Sulfate reduction & 

thiosulfate 
disproportionation 

NR 044459 

Desulfonatronovibrio sp. 
AHT 10 

97 1 Thiosulfate reduction FJ469580 

Thiomicrospira sp. JB-A1F 99 1 Sulfur oxidation AF013976 

Dethiobacter alkaliphilus 
AHT 1 

89 1 
Thiosulfate reduction & 

Sulfur disproportionation 
NR 044205 

Bacillus sp. IST-38 86 1 
Fermentation & iron 

reduction 
FM877978 

Low G+C Gram-positive 
bacterium IRB 1 

94 1 Iron reduction DQ631799 

Gracilimonas tropica 
strain CL-CB462 

92 1 Fermentation NR 044361 

*No data available. 
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Thiosulfate conversion 

Thiosulfate conversion occurred either through disproportionation and subsequent 

reduction of sulfate or through direct reduction (Figure 1A). In previous studies with 

marine sediments thiosulfate conversion was shown to occur partly by 

disproportionation and partly by reduction (Jørgensen, 1990). Disproportionation 

occurred as sulfate was produced in the bioreactor. The production of sulfate from 

thiosulfate using O2 or nitrate as electron acceptor can be discarded since these were 

not present in our system (Sorokin et al., 2011c). Phototrophic microorganisms can 

also produce sulfate from thiosulfate but such microorganisms were not found in 

microbial community analysis (Table 3), and therefore cannot explain sulfate 

production (Sorokin et al., 2011c). Thus, thiosulfate disproportionation is the most 

probable metabolism for sulfate production. Thiosulfate disproportionation can occur 

biologically and chemically (Bak and Cypionka, 1987; Kamyshny et al., 2014). 

However, chemical disproportionation did not occur at the conditions used as can be 

seen in the batch bottles experiments (Figure 4C). Clones with similarity to known 

thiosulfate-disproportionating bacteria (Desulfonatronovibrio and Desulfonatronospira) 

were identified (Table 3). Desulfonatronovibrio and Desulfonatronospira are also 

capable of sulfate reduction, which was also observed. For the two isolated and 

characterized species it was found that disproportionation can occur without electron 

donor (Sorokin et al., 2011d). In the current study, thiosulfate disproportionation also 

took place when electron donors were available (H2 supplied and formate produced) 

(Figure S2). Assuming a complete mixing of the bioreactor, it is unlikely that there were 

regions where biomass did not have access to at least one of these electron donors. 
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Figure 4 – Thiosulfate conversion and H2 use in batch tests. A – Average thiosulfate (●), sulfate 

(○) and sulfide (▼) concentration with H2. B – Average thiosulfate (●), sulfate (○), sulfide (▼) 

concentration with N2. C - Average thiosulfate (●), sulfate (○), sulfide (▼) concentration in the 

chemical controls with N2. D – Average formate (■) concentration with H2. E – Average H2 (◊) 

and CH4 (♦) concentration in the gas phase with H2. 
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To better understand the effect of H2 and formate on the overall thiosulfate conversion, 

batch experiments were performed. When no electron donor was available, only 

thiosulfate disproportionation occurred (Figure 4B). When H2 and/or formate were 

available, thiosulfate was mainly converted to sulfide and some sulfate, confirming that 

disproportionation occurred in the presence of an electron donor (Figure 4A). When all 

electron donors were depleted, after day 9, sulfate accumulated due to 

disproportionation (Figure 4A, 4D and 4E). These results reinforce the idea that 

thiosulfate disproportionation occurs even in the presence of an electron donor. More 

detailed studies are required to understand the mechanism of thiosulfate 

disproportionation. 

 

 

Figure 5 – Bacteria and Archaea 16S rRNA relative abundance at the end of Run 4 on family 

level. OTUs with less than 0.5% relative abundance were grouped in “others”. 

 

Microbial community 

The microbial community in the bioreactor changed when the HRT was lowered during 

the bioreactor operation and was different between suspended biomass and biomass 

attached to the bioreactor walls (Figure S1).  

For bacteria, there is a clear decrease in diversity with the decrease of HRT. The 

bacteria with higher growth rates are kept in the bioreactor while the ones that have 



Chapter 4 

100 

 

4 

growth rates lower than dilution rate get washed out, unless they grow attached to the 

bioreactor walls. This also suggests that adding support material to the bioreactor 

might improve the thiosulfate conversion efficiencies by keeping more biomass and 

microbial diversity inside the bioreactor. 

A decrease in archaeal diversity with lower HRT was not observed (Figure S1). The 

archaeal community of suspended and attached biomass was similar, which indicates 

that the archaea in the bioreactor were not affected by the dilution rate applied.  

The microbial community obtained at the end of run 4 (day 140) was studied further. A 

16S rRNA gene clone library for bacteria was made and used to identify phylogenetic 

affiliation of the dominant bacteria while a 16S rRNA gene MiSeq approach for both 

bacteria and archaea was used to study the relative abundance of different 

microorganisms (Table 3; Figure 5). Bacteria belonging to the family Clostridiaceae 

were dominant in the bioreactor (Figure 5). In the clone library, 16S rRNA genes that 

have 97% similarity to Tindallia texcoconensis were identified (Table 3). These clones 

were also dominant in a hydrogen fed sulfate-reducing bioreactor (Sousa et al., 

2015a). Tindallia texcoconensis is a fermentative bacterium that uses  peptone and a 

few amino acids for growth (Alazard et al., 2007). In our study, however, no organic 

compounds were fed to the bioreactor. Due to the low concentration of biomass in the 

bioreactor, it is very unlikely that such microorganisms can become dominant by 

feeding on dead biomass alone. Another isolate that is closely related to Tindallia 

magadiensis was able to produce formate from H2 and CO2 and use it to reduce 

thiosulfate (Sorokin et al., 2011a). In our bioreactor, high concentrations of formate (up 

to 100 mM) were found that could have been produced by the microorganisms closely 

related to Tindallia sp. (Figure S2). At the actual conditions in the bioreactor: pH 9, 1 

atm of H2 and 0.825 M of HCO3
-, formate production from hydrogen (Eq. 4) can yield 

energy. The Gibbs free energy is -24.3 kJ when formate concentration is low, 0.01 mM, 

and is close to the thermodynamic equilibrium (6.88 kJ) when formate reaches 90 mM. 

 

𝐇𝟐 + 𝐇𝐂𝐎𝟑
−  →   𝐇𝐂𝐎𝟐

− + 𝐇𝟐𝐎  (Eq. 4) 

 

Thiosulfate-reducing and thiosulfate-disproportionating bacteria, belonging to the 

family Desulfohalobiaceae, only represent a small fraction of the total population, 
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approximately 10% (Figure 5). From this family Desulfonatronovibrio sp. and 

Desulfonatronospira thiodismutans related clones were identified (Table 3). These two 

genera can reduce sulfate. Sequences related to other known thiosulfate-reducing 

bacteria were identified, such as Desulfurivibrio sp. and Dethiobacter sp. (Table 3). 

The species previously studied that belong to these genera cannot use sulfate as 

electron acceptor. Likely, their role in the bioreactor was restricted to thiosulfate 

disproportionation or thiosulfate reduction. 

Surprisingly, microorganisms related to the family Piscirickettsiaceae and 

Halothiobacillaceae represented approximately 10-14% and 3-6% of the total microbial 

community, respectively (Figure 5). In the clone library 28 out of 64 clones were closely 

related to Thiomicrospira sp. from the family Piscirickettsiaceae, and Thioalkalibacter 

sp. from the family Halothiobacillaceae. These bacteria are mainly known as sulfur-

oxidizing bacteria that thrive in oxic and micro-oxic conditions (Sorokin et al., 2006). 

As O2 and nitrate were not added to the bioreactor the physiological role of these 

microorganisms remains unknown. Sulfide oxidizers were previously also identified in 

sulfate-reducing bioreactors operated at haloalkaline conditions, where their role was 

not established (Zhou et al., 2015a). It seems plausible to assume that sulfide-oxidizing 

microorganisms might be capable of disproportionation of sulfur compounds such as 

thiosulfate (Warren et al., 2008). However, this was never showed for haloalkaliphilc 

sulfide oxidizing microorganisms.  

As methane production occurred in the biofilm run, the archaeal community was also 

investigated in the biomass at the end of the reactor run. Archaea belonging to the 

genus Methanocalculus were most dominant, approximately 82% of the total archaea. 

Methanocalculus sp. are known as haloalkaliphilic methanogens that can use H2/CO2 

or formate as growth substrates (Sorokin et al., 2015).  

 

Application outlook 

The results clearly show that it is possible to efficiently convert thiosulfate to sulfide 

using a bioreactor fed with hydrogen as electron donor and without any addition of 

organic compounds. The conversion of thiosulfate to sulfide can thus be used in 

biodesulfurization processes to treat the bleed stream and reduced the water and 

caustic requirements. Two different approaches for a practical application of thiosulfate 
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conversion can be considered (Table 4). One approach is using H2 or formate as 

electron donor to fully reduced thiosulfate to sulfide and eliminate the need for bleed 

stream disposal. Another new approach is without addition of electron donor by making 

use of thiosulfate disproportionation to sulfate and sulfide. The option without electron 

donor could be applied to selectively remove thiosulfate from biodesulfurization bleed 

streams without the additional cost of an electron donor (Figure 6). By 

disproportionating thiosulfate to sulfate and sulfide and recycling the bleed stream 

back, sulfate would become the main component of the bleed stream. Thiosulfate adds 

to the total COD of the bleed stream while sulfate does not. Due to COD disposal 

restrictions, removing thiosulfate without use of electron donor might be an attractive 

option to decrease the bleed stream COD content. 

 

Table 4 – Relative comparison of three biodesulfurization processes.  

Process 
Caustic 

consumption 

Volume of 
Waste bleed 

stream disposal 

Bleed stream 
neutralization 

Additional 
chemical 

consumption 

Standard 
biodesulfurization  

High High COD and Sulfate 
removal requiredc,d 

None 

With thiosulfate 
completely reduced 
to sulfidea 

Low Low Not required Electron donor 
(e.g. H2) 

 

With thiosulfate 
disproportionationb 

Medium Medium Sulfate removal 
requiredd 

None or very 
lowe 

a Described in this work. 

b Proposed in this work. 

c COD (mainly from thiosulfate) removal is usually performed by aerobic biologic treatment. 

d Sulfate removal is usually performed by precipitation with lime. 

e An organic carbon source may be beneficial to support biomass growth. 

 

Thiosulfate disproportionation results in a low amount of energy per reaction. It yields 

-22 kJ at standard conditions (pH 7 and 25oC) and -62 kJ when taking into account the 

in situ concentrations, pH 9 and 25 mM thiosulfate. This limits biomass growth in a 

bioreactor without electron donor. But, at the conditions used in the bioreactor, pH 9 

and about 1.5 M sodium carbonate/bicarbonate, thiosulfate disproportionation yields 

more energy, -89 kJ per reaction. Because the disproportionation produces protons, it 
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actually becomes thermodynamically more favourable at high pH. Biomass growth was 

determined in small batch tests. It became clear that microorganisms grow by 

thiosulfate disproportionation, even though the growth yield is less than with electron 

donor (Figure S3). Thiosulfate disproportionation should be further explored in 

bioreactor systems to get insight into its feasibility for future large scale application. 

 

 

Figure 6 – Biological process for gas desulfurization using an anaerobic thiosulfate (S2O3
2-) 

disproportionating bioreactor to reduce the bleed stream COD content. The sulfide (H2S) 

present in the gas is solubilized in an alkaline solution as HS- using a scrubber (1). This HS- 

rich solution goes to an aerobic bioreactor (2) where is biologically oxidized, under controlled 

microaerophilic conditions, to mostly elemental sulfur (S0) and in small part to sulfate (SO4
2-) 

and also chemically oxidized, via polysulfides, to thiosulfate (S2O3
2-). The S0 is separated in a 

settler (3) and most of the liquid is recycled to the scrubber (1) to solubilize more H2S. Other 

part of the liquid goes through an anaerobic bioreactor (4) where S2O3
2-, without addition of e-

donor, is disproportionated to SO4
2- and HS- which are recycled back to the aerobic bioreactor 

(2). With time this prevents accumulation of S2O3
2- in the whole system. When a bleed stream 

is discarded to add new caustic to the system, this bleed stream will have low chemical oxygen 

demand (COD) because only S2O3
2- and HS- contribute to the COD and not SO4

2-. 
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Suplementary information 

 

Figure S1 - 16S rRNA gene DGGE profiles of bacterial and archaeal community from 

inoculum, the end of start-up phase, run 1, run 2, run 3, run 4, biofilm run and biomass from a 

sulfate-reducing bioreactor previously reported (Sousa et al., 2015a). 
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Figure S2 – Formate accumulation in the bioreactor over time.   

 

Figure S3 – Average optical density at 600nm in batch tests with N2 and H2 over time.



 

110 

 

 



Immobilization of sulfate&thiosulfate-reducing biomass on sand 

111 

 

5 

  Chapter 5 
 

 

 

Immobilization of sulfate/thiosulfate-reducing 
biomass on sand under haloalkaline conditions 
 

 

João AB Sousa, Andrea Bolgár, Stephan Christel, Mark Dopson, 
Martijn FM Bijmans, Alfons JM Stams, Caroline M Plugge 

 

 

 

  



Chapter 5 

112 

 

5 

Abstract 

Biological sulfate and thiosulfate reduction under haloalkaline conditions can be 

applied to treat waste streams from biodesulfurization systems. However, the lack of 

microbial aggregation under haloalkaline conditions limits the volumetric rates of 

sulfate and thiosulfate reducing bioreactors. In this study, sand was used as a biomass 

carrier material to increase biomass retention and consequently raise the volumetric 

rates. The results showed that higher biomass concentrations could be achieved with 

sand and that sulfate/thiosulfate reduction rates increased. However, the biomass 

attachment was weak and restricted to cavities within the sand particles. Acetate 

produced by acetogenic bacteria from H2 and CO2 enhanced biomass growth, while 

formate that was also produced from H2 and CO2 enhanced sulfate reduction. The 

results indicate that even though the biomass attachment to sand is weak, it can still 

increase the biomass concentration and consequently the sulfate and thiosulfate 

reduction volumetric rates. 
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Introduction 

Biological sulfate and thiosulfate reduction are widespread microbiological processes 

that occur under anoxic conditions. These processes can be applied to treat sulfate 

and thiosulfate-rich waste streams (van Houten et al., 2006; Muyzer and Stams, 2008). 

In gas biodesulfurization systems, for example, sulfate and thiosulfate rich waste 

streams with a high pH and salinity (haloalkaline conditions) are produced (Janssen et 

al., 2009). In this case, haloalkaliphilic sulfate- and thiosulfate-reducing 

microorganisms that thrive under these conditions are required. Such microorganisms 

can be found in natural environments such as soda lakes, where pH values up to 11 

are commonly found and the salinity can reach saturation (Sorokin et al., 2011a). 

Sediments from soda lakes have been successfully used to inoculate a bioreactor to 

treat sulfate and thiosulfate-rich streams at haloalkaline conditions (Sousa et al., 

2015a). 

Even though sulfate and thiosulfate conversion to sulfide has been shown in a 

bioreactor operated at haloalkaline conditions, the reported lack of biomass 

aggregation poses a challenge (Sousa et al., 2015a). Without biomass aggregation, 

the hydraulic retention time (HRT) is the only parameter that allows the biomass 

concentration in these bioreactors to be controlled. When applying an HRT of 2.5 days 

in a sulfate-reducing bioreactor, the sulfate reduction capacity was significantly 

decreased compared to higher HRTs. Similarly, in a thiosulfate reducing bioreactor 

operated with a HRT of 1.7 days, the thiosulfate reduction capacity also decreased 

(Sousa et al., 2015a). This indicated that the system was limited by biomass growth. 

Therefore, retaining biomass in the bioreactor is a key factor to improve the sulfate and 

thiosulfate conversion capacity. 

When biomass self-aggregation as flocks or granules does not occur, the use of carrier 

materials or membranes can improve the biomass retention. Sand and pumice were 

previously used for sulfate-reducing bioreactors operated at neutral and acidic 

conditions and the biomass successfully attached to these silica based carrier 

materials (Christensen et al., 1996; van Houten et al., 1995). In a prior study, biofilm 

growth was observed on the glass wall of a sulfate-reducing bioreactor operated at 

haloalkaline conditions (Sousa et al., 2015a). This suggests that silica based carrier 

material might also work under haloalkaline conditions to retain biomass.  
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Studies on sulfate or thiosulfate converting gas-lift bioreactors at haloalkaline 

conditions using carrier material are not reported, while detailed information on 

microbial aggregation and attachment at haloalkaline conditions in natural 

environments is scarce (Sousa et al., 2015b). Haloalkaline environments have unique 

physical-chemical characteristics that may affect aggregation, such as reduced effect 

of electrostatic charges, difference in hydrophobicity of cell surfaces and low divalent 

ions concentration (Grant et al., 1990; van Loosdrecht et al., 1987; Otto et al., 1999).  

In the current study, sand was used as a carrier material for biomass retention in a H2 

fed, sulfate- and thiosulfate-converting gas-lift bioreactor operated at haloalkaline 

conditions. The bioreactor performance and biomass retention were investigated, and 

the attached and suspended microbial communities were characterized.  

 

 

Methods 

 

Bioreactor 

A 4.4 liter glass gas lift reactor with an internal 3 phase separator was used as 

described previously (Sousa et al., 2015a). The temperature was kept at 35oC and the 

pH controlled at pH 9 by supplying CO2 via a mass flow controller. As carrier material 

for biomass, 0.5 l of acid washed sea sand with a particle size of 0.1 - 0.3 mm (VWR, 

Amsterdam, the Netherlands) was added.  

 

Inoculum 

The bioreactor was inoculated with 50 ml of biomass collected from a sulfate-reducing 

bioreactor (operated for 155 days) and 50 ml of biomass collected from a thiosulfate-

converting bioreactor (operated for 140 days), both fed with H2 and CO2 and operated 

at pH 9 and 1.5 M Na+ (Sousa et al., 2015a).  
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Medium  

The mineral medium used was buffered at pH 9.00 ± 0.05 with sodium carbonate and 

sodium bicarbonate, adding to a total of 1.5 M Na+. The medium composition was as 

follows: Na2CO3 (33.6 g l-1), NaHCO3 (69.3 g l-1), KHCO3 (1 g l-1), K2HPO4 (1 g l-1), 

NH4Cl (0.27 g l-1), MgCl2.6H2O (0.1 g l-1), CaCl2.2H2O (0.01 g l-1) and 10 ml l-1 of vitamin 

solution (Wolin et al., 1963). Two trace element solutions were added as described 

previously (Sousa et al., 2015a). As electron acceptor, 7.1 g l-1 or 14.2 g l-1 (25 or 50 

mM) of sodium sulfate (Na2SO4) and 3.95 g l-1 or 7.9 g l-1 (12.5 mM or 25 mM) of 

sodium thiosulfate (Na2S2O3) were added. 

 

Experimental design 

The bioreactor was filled with medium and flushed overnight with 10 ml min-1 H2 and a 

gas recirculation at 5 l min-1 to lower the redox potential. Afterwards, H2 was supplied 

at 5 ml min-1, but was increased during the experiment to maintain an overpressure in 

the bioreactor (Figure 1c). Different influent and gas recirculation flows were tested 

and adjusted to prevent washout of sand particles with the effluent. Finally, the gas 

recirculation was set to approximately 7 l min-1. 

The operation was performed under non-sterile conditions. Inoculation of the reactor 

was defined as time 0. A batch run was performed to start-up the bioreactor and to 

confirm that the biomass was still capable of performing sulfate and thiosulfate 

conversion to sulfide (Start-up, Table 1). The start-up run was performed until the 

sulfate and thiosulfate concentrations were each below 10 mM. After the start-up 

phase, five continuous experiments were performed (Table 1; runs 1 to 5) as well as 

two experiments, where formate and acetate were spiked. Sodium formate (100 mM 

increase) and sodium acetate (100 mM increase) were directly injected into the 

bioreactor at the beginning of each test. The tests were performed in duplicate for 

formate and a single test for acetate.  
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Table 1 – Operational characteristics of bioreactor runs 

 Period 

(d) 
Mode 

HRT 

(d) 

Total S loading rateb 

(mmolS l-1 d-1) 

Start-up 0-6 Batch N.A.a N.A.a 

Run 1 7-42 Continuous 1.7 29.4 

Run 2 53-96 Continuous 1 50 

Run 3 97-113 Continuous 0.5 100 

Run 4  114-152 Continuous 1 50 

Run 5  153-181 Continuous 1 100 

Formate spike  182-188 Continuous 1 100 

Acetate spike  195-197 Continuous 1 100 

a Not applicable. 

b Total S includes sulfate and thiosulfate in mol of S.  

 

Analytical procedures 

Liquid samples for volatile fatty acids, sulfate, thiosulfate and sulfide analysis, and gas 

samples were prepared and analyzed as described previously (Sousa et al., 2015a).  

For biomass measurements, the sand-attached biomass was separated from the 

suspended biomass by settling for 30 s and both fractions were transferred to a new 

tube. One ml of sand was collected and the samples were washed 3 times with a 

carbonate/bicarbonate buffer with lower salinity (LS buffer; pH 9, 0.5M Na+ instead of 

1.5 M Na+). In the washing steps, sand was separated from the buffer by settling for 

30 s. Two ml of the suspended biomass was centrifuged (10 min, 10000g) and was 

washed 3 times with LS buffer. Finally, the total nitrogen content was determined using 

a cuvette test (LCK238, Hach Lange, Düsseldorf, Germany). 

Biomass particle size for the suspended fraction was measured using laser 

measurement in a particle size and shape analyzer (Eyetech, Doner technologies, Or 

Akiva, Israel) with the Dipa 2000 software (Doner technologies, Or Akiva, Israel). 

Measurements were performed in triplicate for 120 s while stirring continuously. The 

morphology of the microorganisms was routinely examined using light microscopy 
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(DMI6000B, Leica, Biberach, Germany) equipped with a camera (DFC300FX, Leica, 

Biberach, Germany). 

 

Scanning electron microscopy 

Biomass samples were fixed in 2.5% (w/v) glutaraldehyde overnight at 4oC. The fixed 

samples were separated and washed following the same procedure for the attached 

and suspended fractions described above for biomass measurement. The samples 

were then dehydrated for 20 min in a series of ethanol solutions (10%, 25%, 50%, 

75%, 90%, and twice 100%) and dried in a desiccator overnight. The samples were 

coated with gold and analyzed in a JEOL JSM-6480LV Scanning Electron Microscope 

(JEOL Benelux, Nieuw-Vennep, The Netherlands).  

 

DNA extraction 

Suspended and sand attached biomass fractions (10 ml) were separated by settling 

for 30 s. The suspended fraction was centrifuged (10 min, 7500g) before both fractions 

were washed three times with buffer LS and finally re-suspended in 2 ml of buffer LS 

and stored at -80oC. Total genomic DNA was extracted using the PowerBiofilm™ DNA 

Isolation Kit (MoBio, Carlsbad, CA) following the manufacturer’s instructions.  

 

DGGE analysis 

Bacterial 16S rRNA genes were amplified by PCR using a Taq DNA polymerase kit 

(Invitrogen, Carlsbad, CA) and primer set U968f/L1401r (Lane, 1991; Nübel et al., 

1996). A 40 bp GC-clamp was added at the 5’ end sequence of the primer U968-f. For 

archaeal 16S rRNA genes the A109(T)f/GC515r primer sets were used (Großkopf et 

al., 1998; Lane, 1991). The PCR program included initial denaturation for 2 min; 35 

cycles of 30 s denaturation at 95oC, 40 s at 56oC for annealing and 1.5 min elongation 

step at 72oC; and 7 min at 72oC as a post-elongation step.  

Denaturing gradient gel electrophoresis (DGGE) analysis of the PCR products was 

performed by using the DCode system (Bio-Rad, Hercules, CA). Gels containing 8% 

(wt/vol) polyacrylamide (37.5:1 acrylamide/bis-acrylamide) were used with a linear 
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denaturing gradient of 30–60%, with 100% of denaturant corresponding to 7 M urea 

and 40% (vol/vol) formamide. Electrophoresis was performed for 16 h at 85 V and 60ºC 

in a 0.5 × Tris-Acetate-EDTA buffer. DGGE gels were stained with silver nitrate 

(Sanguinetti et al., 1994), scanned, and the band profiles were analyzed using 

Bionumerics® software (Applied Maths, Austin, TX). 

 

Sequencing and phylogenetic analysis 

For sequencing, suspended biomass samples from day 0 (inoculum), 53, 97, 113, 179, 

and 197 as well as biomass attached to sand samples from day 179 and 197 were 

used. A fragment of the V3-V5 region of 16S rRNA gene of bacteria was amplified 

using primers 341F and 805R (Herlemann et al., 2011). The PCR protocol was 

performed according to Hugerth et al. (2014) and amplicons were sequenced on the 

Illumina platform according to Lindh et al. (2015) at the Science for Life Laboratory, 

Sweden (www.scilifelab.se). The sequence data was processed with the UPARSE 

pipeline (Edgar, 2013b) and annotated against the SINA/SILVA database (SILVA 119; 

Quast et al., 2013). Afterwards, the data was analyzed using Explicet 2.10.5 (Harris et 

al., 2013). 

 

Calculations 

Calculations were performed as describe in the supplementary material (Calculations) 

and followed the following assumptions: 

1. Thermodynamic calculations were performed using eQuilibrator online tool 

(Flamholz et al., 2012) and the actual conditions in the bioreactor (pH 9, 1.5 M 

ionic strength, 0.825 M HCO3
-, and 1 bar H2. For formate production from H2 

and HCO3
-, calculations were made based on Eq. 1. For sulfate reduction using 

H2 or formate as electron donors, calculations were made based on Eq. 2 and 

Eq. 3. 

 

H2 + HCO3
-    HCO2

- + H2O    (Eq. 1) 

4H2 + SO4
2- + H+    HS- + 4H2O   (Eq. 2) 

http://www.scilifelab.se/
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4HCO2
- + SO4

2- + H+    HS- + 4HCO3
-   (Eq. 3) 

 

2. The bioreactor liquid volume was constant during the operation which means 

that the liquid flow that goes into the bioreactor is equal to the liquid flow exiting 

the bioreactor. 

3. Accumulation of sulfur compounds in the bioreactor, by incorporation in biomass 

and formation of sulfide precipitates, was not taken into account in the 

calculations as it plays a minor role due to the high sulfate and thiosulfate 

concentration in the influent. 

4. S volumetric conversion rate was calculated by the sum of the volumetric 

conversion rates of sulfate and thiosulfate based on mol of S atoms. 

5. The N molar fraction value of 0.2 was used to calculate biomass concentration 

based on total N, following the biomass molecular formula: C1H1.8O0.5N0.2. 

 

 

Results & Discussion 

 

Bioreactor performance 

In this study, we tested if sand as a biomass carrier material in a H2 fed sulfate and 

thiosulfate-converting bioreactor operated at haloalkaline conditions can improve 

reactor performance.  

The use of sand allowed the operation of the gas-lift bioreactor at an HRT of one day, 

which is similar to studies using anaerobic filters filled with sediments (Zhou and Xing, 

2015). Previously described sulfate and thiosulfate-reducing bioreactors fed with H2 at 

haloalkaline conditions did not contain aggregated biomass (Sousa et al., 2015a). 

Consequently, the minimum HRT achieved without a decrease of biomass 

concentration and reduction activity was 3.3 days for the sulfate-reducing bioreactor 

and 1.7 d for the thiosulfate-converting bioreactor. Operation of the bioreactor with 
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sand as carrier material at lower HRT led to higher S volumetric conversion rates, 85 

± 3 mmolS l-1 day-1 during Run 5, compared with previous published results (Table 2).  

 

Figure 1 – Activities in the bioreactor during all operation periods. A – sulfate loading and 

volumetric reduction rates. B – Thiosulfate loading and volumetric reduction rates. C – H2 

supply and consumption rates. 
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Figure 2 - Composition of the bioreactor effluent and gas phase during all operation periods. 

A – sulfate (●), thiosulfate (■), and sulfide (∇) concentration in the effluent. B – formate (▲) 

and acetate (○) concentration in the effluent; C – Hydrogen (♦) and methane (x) in the gas 

phase. 
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Thiosulfate was completely converted to sulfide throughout the whole reactor 

operation, while 93 ± 2% of the sulfate was converted in the stable phase of Run 5 

(Figures 1 and 2). Such sulfate conversion efficiencies were similar to other systems 

using different bioreactors and electron donors (Table 2). To exclude the sulfide toxicity 

effect as cause for incomplete sulfate reduction, in run 5 the loading of sulfate and 

thiosulfate was doubled. This resulted in higher concentrations of sulfide and higher 

sulfate and thiosulfate reduction rates, and the conversion efficiencies of sulfate and 

thiosulfate remained in the same range as in previous runs. This shows that there is 

no sulfide toxicity up to 100 mM, but does not explain why sulfate is not completely 

reduced. An explanation for this limitation in sulfate reduction might be the sulfate 

uptake system of microorganisms. Tarpgaard et al. (2011) showed that some sulfate 

reducers possess two different sulfate uptake systems, one low affinity and another 

high affinity for low sulfate concentrations (< 0.2 mM). If the high affinity system is not 

switched on, or not present in the microorganisms, this might explain why the 

conversion of sulfate is not complete. 
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Table 2 – Conditions and performance of sulfate and thiosulfate reducing bioreactors 

operated at haloalkaline conditions 

 This study Sousa et al. 2015 (Zhou et al 2015) Sousa et al 

Reactor type 
Gas lift with 3 

phase separator 
Gas lift with 3 

phase separator 
Anaerobic filter 

Gas lift with 3 
phase separator 

Carrier material Sand None Sediments None 

e- acceptor 
Sulfate 

/thiosulfate 
Sulfate Sulfate Thiosulfate 

e- donor H2 H2 Formate H2 

Carbon source CO2 CO2 Formate/CO2 CO2 

pH 9 9 9.5 9 

Na+ conc. (M) 1.5 1.5 1 1.5 

Temperature (oC) 35 35 37 35 

HRT (d) 1 3.3 1 1.7 

S volumetric 
conversion rates 
(mmolS l-1 d-1) 

85 (± 3) 18 85 (± 0.2) 57 (± 0.8) 

Side products Formate/Acetate Formate Acetate Formate 

Biomass conc. 
(mg l-1) 

127 (± 41) 7 (± 3) N.D. 14 (± 2) 

N.D. – No data available 

 

Biomass attachment 

The swift and efficient sulfate and thiosulfate conversion points to a positive effect of 

adding sand as a carrier material for biomass when compared with results without 

using sand (Table 2). This is caused by an overall increase of biomass, which is ~10 

times higher than without using carrier material. However, most biomass was 

suspended and not attached to the sand particles (Figure 3). Microorganisms were 

only detected in sand particle cavities, where they were protected from shear forces 
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suggesting weak biomass attachment (Figure 4). At neutral pH and non-saline 

conditions using a similar bioreactor, no microbial attachment to basalt (non-porous) 

was observed, while attachment to pumice (porous) occurred (van Houten et al., 1994). 

However, in that study the biomass growing on the pumice pores, colonized and 

covered the whole particle, which was not observed in the current study. The main 

difference between that earlier work and the current study is the haloalkaline 

conditions. As discussed previously, aggregation and attachment at haloalkaline 

conditions is more difficult for microorganisms (Ismail et al., 2008; Sousa et al., 2015a). 

The aggregation is weak and vulnerable to shear forces which strongly indicates that 

the combination of high pH and high salinity, characteristic for soda lakes, affects the 

biofilm formation process. In the biofilm formation process at neutral pH, soluble 

divalent cations such as Ca2+ have a crucial role in EPS stabilization (Sobeck and 

Higgins, 2002). However, at high pH the concentration of soluble divalent cations is 

low because of precipitation as carbonates. In salt lakes biofilms when the alkalinity 

inside the EPS becomes higher, the EPS binding capacity to divalent cations is 

reduced and subsequently precipitation of carbonates occurs (Dupraz et al., 2004). 

This illustrates the impact of the high pH on the stability of EPS, and consequently, on 

the stability of aggregates.  
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Figure 3 – Suspended (●) and attached (▼) biomass concentration (A) and fraction (B) in the 

bioreactor during all operational periods. 

 

To investigate if there is a dedicated microbial community attached to the sand 

particles, the composition of the suspended and attached biomass to sand was studied 

at the end of run 5. Figure 5 shows the relative abundance of different 16S rRNA gene 

sequences on the sand, which reveals that microorganisms most closely related to 

members of the Desulfohalobiaceae had a higher relative abundance than in 

suspended biomass. The Desulfohalobiaceae family consists of sulfate and 

thiosulfate-reducing bacteria. They  were present in the inoculum (Sousa et al., 2015a). 

The microbial community data show that the relative abundance of bacteria 

categorized as “others” (abundance > 0.5 %) was higher in the attached fraction. Some 
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of these rare microorganisms that are more abundant in the attached fraction might 

produce compounds, like vitamins, that are beneficial to other microorganisms in the 

bioreactor. This was previously shown for other different microbial communities (Seth 

and Taga, 2014).  

 

 

Figure 4 - Scanning electron micrograph of a sand particle with microorganisms attached to 

the sand surface inside cracks. Sample from day 75 (run 2). 
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Figure 5 - Bacterial 16S rRNA gene relative abundance from a defined day from each run of 

the bioreactor operation. All samples were collected and sequenced in duplicate (represented 

by “A” and “B”). OTUs with less than 0.5% relative abundance were grouped in “others”. 

 

Effect of acetate on biomass growth and attachment 

Acetate production in the bioreactor had an effect on biomass concentration, sulfate 

reduction and methane production. This is demonstrated by the increase of these 

parameters following an increase in acetate from the end of run 4 until the end of run 

5 (Figure 2). Additionally, the acetate spiking test confirmed that indeed acetate 

enhances growth of the biomass, specifically of the attached fraction of biomass 

(Figure 6).  

Heterotrophic growth (e.g. using acetate as carbon source) is energetically more 

efficient as it requires less energy input, compared to autotrophic growth (Oren, 1999). 

Stimulating effects of acetate on biomass growth were reported for neutral conditions 

where sulfate reducers were dependent on acetate produced from H2 and CO2 by 

acetogens (Weijma et al., 2002). Such an interaction might also have occurred in the 

current study. Most of the sulfate reducers present in the biomass had 16S rRNA gene 

sequences most similar to the Desulfohalobiaceae family (Figure 5). Within this family, 

most of the sequences were closely related to bacteria belonging to the 
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Desulfonatronovibrio genus that indeed require acetate as carbon source (Sorokin et 

al., 2011b).  

 

Figure 6 – Suspended (●) and attached (▼) biomass concentration during the acetate spiking 

test (AT). 

 

The formation of small microbial aggregates (not attached to sand) was observed after 

the acetate increase and these aggregates became more abundant during run 5 

(Figure S1 and S2). This indicates that acetate cross feeding might play a crucial role 

in microbial aggregation in the bioreactor. The microbial aggregates size stabilized at 

approximately 10 µm in diameter and the maximum size observed was approximately 

30 µm in diameter. The shear forces and the haloalkaline conditions in the bioreactor 

might have prevented further increase in aggregate size.  

 

Formate as an electron donor 

Formate production from H2 and HCO3
- was one of the main reactions taking place in 

the bioreactor (Figure 2). From a thermodynamic point of view, although the Gibbs free 

energy change is low (Figure 7), this reaction is favorable at the conditions used in this 

study. Production of formate was shown previously, where it was proposed to be linked 

to the dominance of Tindallia related bacteria (Sousa et al., 2015a). In the current 
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study, the dominant bacteria in the bioreactor were closely related to the Clostridiaceae 

family, and about 99% of these sequences were closely related to the Tindallia genus. 

The 16S rRNA gene sequences were 98% similar to the 16S rRNA gene sequences 

related to Tindallia identified previously (Sousa et al., 2015a). In contrast, Tindallia 

related bacteria were not dominant in haloalkaline sulfate-reducing bioreactors fed with 

formate, ethanol, glucose, and lactate as electrons donors and no formate production 

was observed in any reactor where formate was absent (Zhou et al., 2015). These 

differences support the hypothesis that Tindallia related bacteria in the bioreactor use 

H2 and are possibly responsible for the formate production. 

Formate production from H2 and HCO3
- occurred even though the Gibbs free energy 

(ΔG) per reaction is lower than sulfate reduction and methane or acetate production. 

In soda lakes of the Kulunda Steppe (Altai, Russia), formate is the preferred electron 

donor for sulfate and thiosulfate reduction when compared to H2 (Sorokin et al., 2010). 

The results from formate spike injections showed enhanced sulfate reduction with 

higher formate concentrations (Figure 8). The calculated ΔG for sulfate reduction with 

formate is less favorable than with H2 (Figure 7). However, the poor solubility of H2 

might lead to low in situ concentrations of dissolved H2. A lower dissolved H2 

concentration results in a less negative ΔG of sulfate reduction using H2 making this 

less favorable than formate driven sulfate reduction.  
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Figure 7 – Thermodynamic models at pH 9 and 0.825 M of HCO3
2-. A – ∆G values for formate 

production following Eq. 1, at different formate concentrations. H2 was assumed to be constant 

at 1 atm. B – ∆G for sulfate reduction using H2 and formate during the first formate spike 

experiment. Measured concentrations of sulfate, sulfide, formate, H2, and CO2 were used for 

the calculations. 
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Figure 8 – Formate, acetate, and sulfate concentration as well as hydrogen consumption and 

methane production during the two formate spiking experiments. 100 mM formate was injected 

at time 0 into the continuously operated bioreactor.  
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Conclusions 

• Sand as carrier material in H2 fed sulfate- and thiosulfate-reducing bioreactors 

at haloalkaline conditions increases biomass retention and S volumetric 

conversion rates.  

• Attachment of biomass to sand is weak and mostly confined to cavities in the 

sand particles where microorganisms are protected from shear forces.  

• Acetate increases biomass growth, especially growth of the attached biomass. 

Addition of acetate could be used as a strategy to increase overall biomass 

growth and biomass retention.  

• Formate has a central role in the bioreactor as electron donor for sulfate 

reduction. 

 

 

  



Immobilization of sulfate&thiosulfate-reducing biomass on sand 

133 

 

5 

References 

Amjres H, Béjar V, Quesada E, Carranza, D, Abrini J, Sinquin C, Ratiskol J, Colliec-Jouault S, 

Llamas I (2014) Characterization of haloglycan, an exopolysaccharide produced by 

Halomonas stenophila HK30. Int J Biol Macromol 72C:117–124.  

Christensen B, Laake M, Lien T (1996) Treatment of acid mine water by sulfate-reducing 

bacteria; results from a bench scale experiment. Water Res 1354:1617–1624. 

Dupraz C, Visscher PT, Baumgartner LK, Reid RP (2004) Microbe-mineral interactions: early 

carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). 

Sedimentology 51:745–765.  

Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. 

Nature Methods 10:996-998. 

Flamholz A, Noor E, Bar-Even A, Milo R (2012) eQuilibrator--the biochemical thermodynamics 

calculator. Nucleic Acids Res 40:770–775.  

Grant WD, Mwatha WE, Jones BE (1990) Alkaliphiles: Ecology, diversity and applications. 

FEMS Microbiol Rev 75:255–269. 

Großkopf R, Janssen PH, Liesack W (1998) Diversity and structure of the methanogenic 

community in anoxic rice paddy soil microcosms as examined by cultivation and direct 

16S rRNA gene sequence retrieval. Appl Environ Microbiol 64:960-969. 

Harris JK, Caporaso JG, Walker JJ, Spear JR, Gold NJ, Robertson CE, Hugenholtz P, 

Goodrich J, McDonald D, Knights D, Marshall P, Tufo H, Knight R, Pace NR (2013) 

Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. ISME J 

7:50–60.  

Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF (2011) 

Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic 

Sea. ISME J 5:1571-1579. 

Hugerth LW, Wefer HA, Lundin S, Jakobsson HE, Lindberg M, Rodin S, Engstrand L, 

Andersson AF (2014) DegePrime, a program for degenerate primer design for broad-

taxonomic-range PCR in microbial ecology studies. Appl Environ Microbiol 80:5116-

5123. 

Ismail SB, Gonzalez P, Jeison D, van Lier JB (2008) Effects of high salinity wastewater on 

methanogenic sludge bed systems. Water Sci Technol 58:1963–1970. 



Chapter 5 

134 

 

5 

Janssen AJH, Lens PNL, Stams AJM, Plugge CM, Sorokin DY, Muyzer G, Dijkman H, van 

Zessen E, Luimes P, Buisman CJN (2009) Application of bacteria involved in the 

biological sulfur cycle for paper mill effluent purification. Sci Total Environ 407:1333–

1343. 

Lane DL (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (ed) Nucleic 

Acid Techniques in Bacterial Systematics, John Wiley & Sons Ltd, Chichester, United 

Kingdom, pp 115–148.  

Lindh MV, Figueroa D, Sjöstedt J, Baltar F, Lundin D, Andersson A, Legrand C, Pinhassi J 

(2015) Transplant experiments uncover Baltic Sea basin-specific responses in 

bacterioplankton community composition and metabolic activities. Front Microbiol 

6:223. 

Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. 

Nat Rev Microbiol 6:441–454. 

Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348. 

Otto K, Elwing H, Hermansson M (1999) Effect of ionic strength on initial interactions of 

Escherichia coli with surfaces, studied on-line by a novel quartz crystal microbalance 

technique. J Bacteriol 181:5210–5218. 

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) 

The SILVA ribosomal RNA gene database project: improved data processing and web-

based tools. Nucl Acids Res 41:590-596. 

Seth EC, Taga ME (2014) Nutrient cross-feeding in the microbial world. Front Microbiol 5:1–6.  

Sobeck DC, Higgins MJ (2002) Examination of three theories for mechanisms of cation-

induced bioflocculation. Water Res 36:527–538.  

Sorokin DY, Rusanov II, Pimenov NV, Tourova TP, Abbas B, Muyzer G (2010) Sulfidogenesis 

under extremely haloalkaline conditions in soda lakes of Kulunda Steppe (Altai, 

Russia). FEMS Microbiol Ecol 73:278–290. 

Sorokin DY, Kuenen JG, Muyzer G (2011a) The microbial sulfur cycle at extremely haloalkaline 

conditions of soda lakes. Front Microbiol 2:1–16. 

Sorokin DY, Tourova TP, Kolganova TV, Detkova EN, Galinski EA, Muyzer G (2011b) 

Culturable diversity of lithotrophic haloalkaliphilic sulfate-reducing bacteria in soda 

lakes and the description of Desulfonatronum thioautotrophicum sp. nov., 

Desulfonatronum thiosulfatophilum sp. nov., Desulfonatronovibrio thiodismutans sp. 

nov., and Desulfonatronovibrio magnus sp. nov.. Extremophiles 15:391–401. 



Immobilization of sulfate&thiosulfate-reducing biomass on sand 

135 

 

5 

Sousa JAB, Plugge CM, Stams AJM, Bijmans MFM (2015a) Sulfate reduction in a hydrogen 

fed bioreactor operated at haloalkaline conditions. Water Res 68:67-76. 

Sousa JAB, Sorokin DY, Bijmans MFM, Plugge CM, Stams AJM (2015b) Ecology and 

application of haloalkaliphilic anaerobic microbial communities. Appl Microbiol 

Biotechnol 99:9331-9336. 

Tarpgaard IH, Røy H, Jørgensen BB (2011) Concurrent low- and high-affinity sulfate reduction 

kinetics in marine sediment. Geochim Cosmochim Acta 75:2997–3010.  

van Houten BHGW, Roest K, Tzeneva VA, Dijkman H, Smidt H, Stams AJM (2006) Occurrence 

of methanogenesis during start-up of a full-scale synthesis gas-fed reactor treating 

sulfate and metal-rich wastewater. Water Res 40:553–560.  

van Houten RT, Oude Elferink SJWH, van Hamel SE, Hulshoff Pol LW, Lettinga G (1995) 

Sulphate reduction by aggregates of sulphate-reducing bacteria and homo-acetogenic 

bacteria in a lab-scale gas-lift reactor. Biores Technol 54:73–79. 

van Houten RT, Hulshoff Pol LW, Lettinga G (1994) Biological sulphate reduction using gas-

lift reactors fed with hydrogen and carbon dioxide as energy and carbon source. 

Biotechnol Bioeng 44:586–594.  

van Loosdrecht MC, Lyklema J, Norde W, Schraa G, Zehnder AJB (1987) The role of bacterial 

cell wall hydrophobicity in adhesion. Appl Environ Microbiol 53:1893–1897.  

Weijma J, Gubbels F, Hulshoff Pol LW, Stams AJM, Lens P, Lettinga G (2002) Competition 

for H2 between sulfate reducers, methanogens and homoacetogens in a gas-lift reactor. 

Water Sci 45:75–80. 

Wolin EA, Wolin MJ, Wolfe RS (1963) Formation of methane by bacterial extract. J Biol Chem 

238:2882-2886. 

Zhou J, Xing J (2015a) Effect of electron donors on the performance of haloalkaliphilic sulfate-

reducing bioreactors for flue gas treatment and microbial degradation patterns related 

to sulfate reduction of different electron donors. Biochem Eng J 96:14-22. 

Zhou J, Zhou X, Li Y, Xing J (2015b) Bacterial communities in haloalkaliphilic sulfate-reducing 

bioreactors under different electron donors revealed by 16S rRNA MiSeq sequencing. 

J Hazard Mater 295:176-184. 

  



Chapter 5 

136 

 

5 

Supplementary information 

 

 

Figure S1 – Particle diameter distribution of the biomass on day 75 (Run 2), 161 and 175 

(Run 5). 
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Figure S2 – Micrograph of small biomass aggregates observed during run 5. The image is 

representative of the small aggregates observed during all run 5. The picture was taken on 

day 162 using a microscope equipped with phase contrast and with 1000 fold magnification. 
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Abstract 

Biodesulfurization processes are used to remove toxic and corrosive hydrogen sulfide 

from gas streams (e.g. natural gas, biogas, or syngas). To improve the efficiency of 

these processes under haloalkaline conditions, a sulfate and thiosulfate reduction step 

can be included. To investigate the potential to reduce the costs of the electron donor 

required for this reduction, the use of H2/CO mixtures (like in syngas) instead of pure 

H2 was tested. Initially, CO present in syngas inhibited hydrogen-dependent sulfate 

reduction. However, after 30 days the biomass had adapted to the presence of CO and 

started to consume H2 and CO as electron donors. Initially, acetate was produced, 

followed by sulfate and thiosulfate reduction, and then formate and methane 

production. Sulfide production rates with a mixture of sulfate and thiosulfate after 

adaptation were comparable with previously described rates with solely hydrogen. The 

addition of CO affected slightly the microbial community but did not change the 

dominance of microorganisms closely related to Tindallia in the biomass. The CO as 

electron donor led to an increase of acetate production, which became the dominant 

metabolism in the bioreactor. Approximately 50% of the available electron donors were 

converted to acetate. Acetate production promoted growth of biomass and higher 

biomass concentrations were reached compared to bioreactors without CO. Also, CO 

addition resulted in the formation of small, compact microbial aggregates. This 

suggests that CO or syngas can be used to promote aggregation of microbes in 

biodesulfurization systems.   
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Introduction 

Hydrogen sulfide is a toxic and corrosive compound present in gas streams such as 

natural gas or biogas. In biodesulfurization systems, sulfide is removed from the gas 

and elemental sulfur is formed. Biodesulfurization systems that produce elemental 

sulfur have been studied and applied for more than 25 years (Buisman et al., 1989; 

Janssen et al., 2009; Roman et al., 2016a). The efficiency of converting sulfide to 

elemental sulfur in laboratory experiments was up to 95% and models suggest that 

98% efficiency is possible (Klok et al., 2013; Roman et al., 2016b). The remaining part 

of the sulfide is biologically oxidized to sulfate or chemically to thiosulfate. These 

compounds are soluble and accumulate in the system which causes a pH decrease. 

This pH decrease has a negative impact because high pH (> 8.5) is required for 

efficient hydrogen sulfide gas absorption. To solve this problem, part of the liquid 

content of the system is removed, generating a bleed stream with high pH and high 

salinity that contains sulfate and thiosulfate (Janssen et al., 2009). 

This bleed stream can be treated by biological reduction of sulfate and thiosulfate to 

sulfide in a separate bioreactor. This allows the recirculation of the bleed stream into 

the sulfide-oxidizing bioreactor of the biodesulfurization process. Previous studies 

showed that such a process is possible at high pH and high salinity (haloalkaline 

conditions) in different bioreactor types using a variety of electron donors (Sousa et al., 

2015a; Zhou and Xing, 2015). Hydrogen gas (H2) is considered a suitable electron 

donor for biodesulfurization systems applied for natural gas as it can be produced on-

site by gas reforming of methane. However, the gas reforming process produces 

syngas consisting mainly of H2, carbon monoxide (CO) and carbon dioxide (CO2). 

Purification of syngas to obtain pure H2 implies higher costs due to additional post-

treatment of the syngas. The application of syngas as an electron donor without 

removal of CO is thus preferred and was applied successfully under neutral pH and 

low salinity conditions (van Houten et al., 2009). On the other hand, CO is known to be 

toxic for some sulfate reducers (Parshina et al., 2010). CO mainly inhibits [Fe-Fe] and 

[Ni-Fe] hydrogenases involved in hydrogen metabolism (Vignais and Billoud, 2007). 

This blocks electron flow and inhibits H2-driven sulfate reduction and might also inhibit 

other hydrogen-dependent reactions in the bioreactor such as formate, acetate and 

methane production. Nevertheless, microorganisms capable of using CO as substrate 

exist (Diender et al., 2015; Parshina et al., 2010; Sipma et al., 2003). These 
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microorganisms, which also include sulfate reducers, use CO via the water-gas shift 

reaction (eq. 1) to produce H2 that is the actual electron donor (Parshina et al., 2005a, 

2005b). The effect of CO on sulfate-reducing biomass from bioreactors at neutral and 

high temperature conditions was studied, where it was possible to adapt biomass to 

CO (van Houten et al., 1996; Sipma et al., 2003). Additionally, it was observed that CO 

had an effect on the formation of granules, making them smoother (van Houten et al., 

1996). This was probably caused by the development of different layers on the granule. 

The external layer contained acetogenic bacteria that convert CO while the inner layer 

contained sulfate-reducing bacteria. These sulfate-reducing bacteria probably used 

the produced acetate as an additional carbon source (Bertsch and Müller, 2015; 

Diender et al., 2015). Granules with a smoother shape settle better than irregular 

shaped aggregates, and in this way CO could induce the formation of better settling 

aggregates. 

To date, the effect of CO on haloalkaphilic microorganisms has not been studied in 

pure or mixed cultures. In this study, we investigated syngas as an electron donor for 

a sulfate and thiosulfate reducing bioreactor operated under haloalkaline conditions. 

The impact of CO on sulfate and thiosulfate reduction as well as on formate, acetate, 

and methane production was investigated. In addition, biomass attachment to sand as 

well as microbial aggregation was studied to understand if CO can be used to influence 

the adhesion of microorganisms as observed at neutral pH and low salinity conditions. 

The feasibility of industrial application of syngas as electron donor for sulfate and 

thiosulfate reducing bioreactors was evaluated and the main advantages and 

disadvantages of the use of syngas versus pure hydrogen gas is discussed. 

 

 

Experimental 

 

Bioreactor set-up 

A 4.4-L glass gas lift reactor with an internal three phase separator was used (Sousa 

et al., 2015a). The H2, CO, and CO2 gas supply was controlled using digital mass flow 

controllers (F-201CV-020-AGD-22-V and F-201CV-020-AGD-22-Z, Bronkhorst, 
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Ruurlo, the Netherlands). The pH was controlled at pH 9 by supplying CO2 via the 

mass flow controller. 

 

Inoculum 

The inoculum used was a 1/1 ratio mixture from a sulfate and thiosulfate reducing gas-

lift bioreactors fed with H2 and CO2 (Sousa et al., 2015a). For the inoculation, 100 ml 

of concentrated biomass from each bioreactor was used. The biomass was 

concentrated by centrifuging the content of the previously operated bioreactors at the 

end of the experiments.  

 

Medium 

A mineral medium was used which was buffered with sodium carbonate and sodium 

bicarbonate at pH 9 ± 0.05, that contained a total of 1.5 M Na+. The medium 

composition was as follows: Na2CO3 (33.6 g l-1), NaHCO3 (69.3 g l-1), KHCO3 (1 g l-1), 

K2HPO4 (1 g l-1), NH4Cl (0.27 g l-1), MgCl2.6H2O (0.1 g l-1), CaCl2.2H2O (0.01 g l-1) and 

10 ml l-1 of vitamin solution (Wolin et al., 1963). Two trace element solutions were 

added (Sousa et al., 2015a). As electron acceptors, 7.1 g (25 mM) of sodium sulfate 

and 3.95 g (12.5 mM) of sodium thiosulfate were added. 

 

Experimental design 

After filling the bioreactor with medium, it was flushed with H2 gas overnight to lower 

the redox potential. The gas recirculation was set at 5 l min-1 (±0.5). Then the H2 gas 

supply was set at 20 ml.min-1, and the pH control (set at 9) was turned on. The inoculum 

was added (time 0) initiating the start-up phase. Hereafter, the only parameter changed 

was the gas composition by adding CO (Table 1). For the 60% CO spike experiment, 

the CO supply was increased to 60% of the gas phase on day 217 and maintained for 

48 hours before being switched to 15% day 219 until the end of the experiment. 
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Table 1 – Overview of operational characteristics of bioreactor runs 

 Period (d) Mode 

Start-up 0-6 Batch 

0% CO 7-45 Continuous 

5% CO 46-123 Continuous 

15% CO 124-216 Continuous 

60% CO spike* 217-235 Continuous 

*See experimental design for a detailed description 

 

Batch experiments 

Two batch experiments were performed to assess the metabolic capacity of the 

biomass at different stages of the bioreactor operation. All experiments were 

performed with the same medium composition used for the bioreactor.  

To study the activity of the biomass after CO addition, 125 ml of bioreactor liquid, 

containing biomass, from day 54 of operation was transferred to 250 ml serum bottles. 

The serum bottles headspace was replaced with N2 gas. CO was added to make three 

different gas compositions: 30, 55, and 80% CO (at 1 bar of total pressure). The bottles 

were incubated at 37oC and stirred at 150 rpm for 14 days. Each CO composition was 

tested in triplicate. For each sampling time, 5ml of liquid content and 1 ml of gas content 

were collected from the bottles.  

To study the effect of formate and acetate on sulfate/thiosulfate reduction in adapted 

biomass in the presence of CO, 120 ml serum bottles filled with 70 ml fresh medium 

and N2 headspace were used. Three different conditions were tested: no electron 

donor, 25 mM sodium formate, and with 12.5 mM sodium acetate. 50 ml of bioreactor 

liquid, containing biomass, was collected at day 90, centrifuged 10 min at 10000 g, re-

suspended with 10 ml buffer (pH 9, 1.5 M Na+) and added as inoculum. CO was added 

at approximately 25% CO in the gas phase (1.4 bar total pressure). Each set of batch 

cultures was tested in triplicate. For each sampling point, 2 ml of liquid content and 1 

ml of gas content were collected from the bottles. 
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Analytical procedures 

Liquid samples for volatile fatty acids, sulfate, thiosulfate and sulfide analysis were 

prepared and analyzed as described previously (Sousa et al., 2015a). The H2, CO, 

CO2, N2 and CH4 in the gas phase were quantified by gas chromatography using a CP-

4900 microGC (Varian, Palo Alto, CA) as previously described (Sousa et al., 2015a).  

To measure the biomass concentration, the sand-attached biomass was separated 

from the suspended biomass by settling for 30 s and both fractions were transferred to 

a new tube. One ml of sand was collected and the samples were washed three times 

with a carbonate/bicarbonate buffer with lower salinity (LS buffer; pH 9, 0.5 M Na+ 

instead of 1.5 M Na+). In subsequent washing steps, sand was separated from the 

buffer by 30 s settling. Two ml of the suspended biomass was centrifuged (10 min, 

10000 g) and was washed three times with LS buffer. Finally, the total nitrogen content 

was determined using a cuvette test (LCK238, Hach Lange, Düsseldorf, Germany). 

The particle size of the bioreactor content (including sand) was measured using laser 

measurement in a particle size and shape analyzer (Eyetech, Doner technologies, Or 

Akiva, Israel) with the Dipa 2000software (Doner technologies, Or Akiva, Israel). Each 

sample was analyzed in triplicate and each measurement was performed continuously 

for 120 s with stirring. Microscopy pictures were taken using a light microscope 

(DMI6000B, Leica, Biberach, Germany). The sand particles were not measured due to 

settling in the mixing chamber, being only small aggregates analyzed for particle size. 

 

Scanning electron microscopy 

Biomass samples were fixed in 2.5% (w/v) glutaraldehyde overnight at 4oC. The fixed 

samples were separated and washed following the same procedure for attached 

fraction and suspended fraction described above for biomass measurement. Then the 

samples were dehydrated in a series of ethanol solutions, (10%, 25%, 50%, 75%, 90% 

and twice with 100%) with 20 min in each step and then dried in a desiccator. The 

samples were coated with gold and analyzed in a JEOL JSM-6480LV Scanning 

Electron Microscope (JEOL Benelux, Nieuw-Vennep, The Netherlands).  
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DNA isolation 

Samples for DNA analysis were stored at -80oC. These samples were collected on 

days 0, 46, 96, 123, 216 and 218 of bioreactor operation. Samples (10 ml) from the 

bioreactor were separated into attached fraction and suspended fraction and washed 

following the same protocol as for biomass measurements. Total genomic DNA from 

the suspended fraction of all samples (days 0, 46, 96, 123, 216 and 218) and attached 

fraction of samples from day 123 was extracted. The extraction was performed using 

the PowerBiofilm™ DNA Isolation Kit (MoBio, Carlsbad, CA) following the 

manufacturer’s instructions. DNA was stored at -20oC. 

 

Bacteria community profiling 

A fragment of the 16S rRNA gene of bacteria, including the V3-V5 regions, was 

amplified with primers 341F and 805R (Herlemann et al., 2011). The PCR protocol and 

sequencing using the Illumina Miseq platform were performed as previously described 

at the Science for Life Laboratory, Sweden (www.scilifelab.se) (Hugerth et al., 2014; 

Lindh et al., 2015). The sequencing data were processed with the UPARSE pipeline 

and annotated against the SINA/SILVA database (SILVA 119) (Edgar, 2013; Quast et 

al., 2013). Finally, the data were analyzed using Explicet 2.10.5 (Robertson et al., 

2013). Sequences were submitted to the ENA database (http://www.ebi.ac.uk/ena) 

under the accession number PRJEB11708. 

 

Calculations and assumptions: 

Thermodynamic calculations under actual bioreactor conditions were performed using 

the online tool eQuilibrator 2.0 (equilibrator.weizmann.ac.il) (Flamholz et al., 2012). 

The relative electron donor use calculations were based on the molar quantities 

indicated by the reactions described in Table 2. The assumptions used in the 

calculations were as follows: i. Evaporation does not cause a major loss of liquid from 

the bioreactor because it is a closed system. ii. The bioreactor liquid volume was 

assumed to be constant during the operation which meant that the liquid flow that goes 

into the bioreactor was equal to the liquid flow getting out of the bioreactor (Qin = Qout). 

iii. Accumulation of sulfur compounds by incorporation in biomass and formation of 

http://www.scilifelab.se/
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sulfide precipitates was assumed to play a negligible role. This was due to the high 

sulfate and thiosulfate concentration in the influent compared to the low concentration 

of metals added to the medium. iv. Hydrogen used for biomass synthesis was assumed 

to play a negligible role in the bioreactor. v. The N fraction value of 0.2 was used to 

calculate biomass concentration based on total N, following the biomass molecular 

formula: C1H1.8O0.5N0.2. vi. The attached biomass fraction was composed of the sand 

particles with attached microorganisms and microbial aggregates without support 

material. 

 

𝐶𝑥 =
𝐶𝑇𝑜𝑡𝑎𝑙𝑁

0.2
. 𝑀𝑥 

𝐶𝑡𝑥 =  𝐶𝑥,𝑠𝑝 +  𝐶𝑥,𝑎 

𝑟𝑣𝑠 =  
𝑄. 𝐶𝑠,𝑖𝑛 − 𝑄. 𝐶𝑠,𝑜𝑢𝑡

𝑉𝑟
 

𝑟𝑣𝑝 =  
𝑄. 𝐶𝑝,𝑜𝑢𝑡 − 𝑄. 𝐶𝑝,𝑖𝑛

𝑉𝑟
 

 

Nomenclature 

Cx  Biomass concentration (g l-1) 

Ctx  Total biomass concentration (g l-1) 

Mx  Biomass molecular weight (g mol-1) 

Vr  Bioreactor volume (l) 

Q  Flow rate (l d-1) 

Cs  Sulfate or thiosulfate concentration based on S molar content (mmolS l-

1) 

CTotalN  Total nitrogen concentration (mol l-1) 

rvs  Sulfidogenic volumetric activity (mmolS lr-1 d-1) 

rvp  Formate, acetate or methane production volumetric activity (mmol lr-1 d-

1) 
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Subscript: 

a  Attached biomass 

x  Biomass 

out  Effluent 

in  Influent 

p  Products 

r  Reactor 

s  Sulfur 

sp  Suspended biomass 

tx  Total biomass 

TotalN Total nitrogen 

 

 

Results & Discussion 

 

Bioreactor performance 

The use of syngas as an electron donor for haloalkaliphilic sulfate and thiosulfate 

reducing microorganisms was possible when the CO present in the syngas was up to 

15%. However, a period of adaptation of the biomass to CO was required. All H2-driven 

microbial processes, including sulfate/thiosulfate reduction and formate production, 

were inhibited by the presence of 5% CO (Figure 1a and 1b). This is in agreement with 

similar studies performed at neutral conditions where the sulfate reduction activity 

decreased from 140 mmol l-1 d-1 to 98 mmol l-1 d-1 with 5% CO (van Houten et al., 

1996). During this inhibition period (day 47 to 75), thiosulfate disproportionation to 

sulfate and sulfide was not inhibited. This can be seen by the increase of sulfate and 

sulfide concentrations in an approximately 1:1 ratio (Figure 1). During this period in 
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which no acetate was formed, the pH decreased and the CO2 fraction in the gas phase 

increased, indicative of the water-gas shift reaction (eq. 1, Table 2, and Figure 1c). 

 

Table 2 – Gibbs free energy under the bioreactor actual conditions (ΔG’) for different CO 

and H2 consuming reactions at starting and continuous operation conditions. 

Reaction 
ΔG’ starting 

(kJ mol-1) 

ΔG’ continuous 
operation  

(kJ mol-1) 

Eq. nº 

CO + 2H2O    HCO3
- + H2 + H+ -22.7 (±10.5) -23.1 (±10.5) 1 

4CO + 4H2O    C2H3O2
- + 2HCO3

- + 3H+ -199.6 (±26.6) -182.9 (±26.6) 2 

4H2 + 2HCO3
- + H+    C2H3O2

- + 4H2O -108.9 (±26.9) -90.5 (±26.9) 3 

4CO + SO4
2- + 4H2O    4HCO3

- + HS- + 3H+ -240.6 (±34.3) -218.8 (±34.3) 4 

4H2 + SO4
2- + H+    HS- + 4H2O -150.0 (±25.0) -126.4 (±25.0) 5 

CO + H2O    HCO2
- + H+ -38.0 (±6.5) -32.3 (±6.5) 6 

H2 + HCO3
-    HCO2

- + H2O -15.2 (±8.9) -9.2 (±8.9) 7 

4CO + 5H2O    CH4 + 3HCO3
- + 3H+ -215.4 (±30.6) -198 (±30.6) 8 

4H2 + HCO3
- + H+    CH4 + 3H2O -124.4 (±25.1) -105.6 (±25.1) 9 

Conditions used for calculations: pH 9, 1.5 ionic strength, 825 mM HCO3
-. Starting conditions: 50 mM sulfate, 1 

mM sulfide, 1 mM acetate, 1 mM formate, 150 mbar CO, 850 mbar H2, 10 mbar methane. Continuous operation 
conditions (average of days 190 to 216): 5.7 mM sulfate, 36.9 mM sulfide, 37.8 mM acetate, 4.5 mM formate, 
68 mbar CO, 333 mbar H2, 575 mbar methane. Error for each ΔG’ estimation is presented in brackets because 
formation energy of the compounds under high pH and ionic strength are estimated based on models. 
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Figure 1 – Concentrations of sulfate, thiosulfate and sulfide (A), formate and acetate (B) and 

pH and fractions of CO and CO2 in the gas phase of the bioreactor during the bioreactor 

experiment (C). Vertical dashed lines represent the beginning of CO experiments: 5% CO (1st), 

15% CO (2nd) and 60% CO spike (3rd). 
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After 38 days of operation with 5% CO (day 84), the sulfate/thiosulfate reduction activity 

recovered. This activity was not affected by an increase to 15% CO on day 124 (Figure 

1a). Thiosulfate was completely reduced and 87 ± 3% of sulfate was reduced during 

the stable phase with 15% CO (day 200 to 216). The sulfidogenic rate was similar to 

that achieved in a study with only H2 (42.3 ± 2.2 mmolS l-1 d-1), when applying the same 

sulfate/thiosulfate loading rate (Chapter 5). The sulfidogenic rates (rvs) achieved almost 

matched the loading rates of sulfate and thiosulfate (Figure 2a). This indicated that 

sulfidogenic rates could be higher if loading of sulfate and thiosulfate was increased 

as described for other sulfate and thiosulfate reducing bioreactors (Table 3). 

 

Table 3 – Conditions and performance of sulfate and thiosulfate reducing bioreactors 

operated under haloalkaline conditions 

 This study Sand paper Zhou et al, 2015 Thiosulfate paper 

Reactor type 
Gas lift with 3 

phase separator 
Gas lift with 3 

phase separator 
Anaerobic filter 

Gas lift with 3 
phase separator 

e- acceptor 
Sulfate 

/thiosulfate 
Sulfate 

/thiosulfate 
Sulfate Thiosulfate 

e- donor H2/CO H2 Formate H2 

pH 9 9 9.5 9 

Na+ conc. (M) 1.5 1.5 1 1.5 

Temperature (oC) 35 35 37 35 

HRT (d) 1 1 1 1.7 

Max loading rate 
(mmolS l-1 d-1) 

50 100 88.5 50 

Sulfidogenic rate 
(mmolS l-1 d-1) 

46.8 (± 0.8) 85.45 (± 3) 85.05 (± 0.2) 28.7 (± 0.8) 

Side products 
Formate/Acetate/

Methane 
Formate/Acetate

/Methane 
Acetate Formate 

Biomass (mg l-1) 197 (± 39) 127 (± 41) N.D. 14 (± 2.2) 

N.D. – No data availalbe 
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Figure 2 – Metabolic rates and electron donor consumption during the bioreactor experiment. 

A – Sulfate and thiosulfate loading rate (represented by the continuous line), sulfate (●), 

thiosulfate (□), and volumetric reduction rates (rvs). B – Total methane production rate (rvp). C 

– Supply of H2 (continuous line) and CO (dashed line), and consumption rate of H2 (○) and CO 

(♦). Vertical dashed lines represent the start of CO addition: 5% CO (1st), 15% CO (2nd), and 

60% CO spike (3rd). 
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Besides sulfate and thiosulfate reduction, acetate, formate and methane were 

produced (Figure 1a, 1b and 2b). Acetate production started after the inhibition period 

on day 76, probably using hydrogen and/or CO as electron donors.  It is not possible 

to distinguish if either H2 or CO were specifically used because  H2 and CO were 

simultaneously consumed (Figure 2c). However, looking at the overall electron donor 

consumption (H2 + CO), acetate production was the main electron donor-consuming 

reaction. Approximately 49% (±5%) of the supplied electron donors in the stable phase 

with 15% CO (Figure 3). This was considerably higher than reported in bioreactors fed 

with H2 or formate as electron donors (Chapter 5) (Zhou and Xing, 2015). Furthermore, 

high acetate concentrations might have contributed to the biomass increase compared 

to previous results (Table 3, Figure 4). This effect of acetate was observed when no 

other carbon sources were added to the media (Chapter 5).  

 

 

Figure 3 – Fraction of electron donor (H2 + CO) used by the different metabolisms: sulfate and 

thiosulfate reduction and formate, acetate and methane production. For calculation, all values 

of electron donors and acceptors were converted to mmol/d. Vertical dashed lines represent 

the beginning of CO experiments: 5% CO (1st), 15% CO (2nd) and 60% CO spike (3rd). 
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Figure 4 – Biomass in the bioreactor. A - Total biomass concentration (Ctx) in the bioreactor 

during its operation. B - Particle diameter distribution of the biomass on days 46 (without CO), 

99 (5% CO), 125 (just after increase to 15%), and 216 (stable phase with 15% CO). 

 

Even though high and stable sulfate and thiosulfate reduction rates with 15% CO in 

the gas supply were achieved (Figure 1 and 2), temporary CO increases could still 

have a negative effect on the bioreactor operation. To study this, 60% CO was fed to 

the bioreactor from day 217 until day 219, and afterwards CO was returned to 15%. 

The addition of 60% CO led to a steep decrease in sulfate reduction, formate and 

acetate production, and biomass concentration (Figure 1 and 4). However, thiosulfate 
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disproportionation was not affected and methane production even increased after the 

60% CO spike (Figure 1 and 2). This indicated that either methanogenesis could 

compete for H2 after the inhibition with the other hydrogenotrophic microorganisms or 

that the methanogens present were using CO as electron donor. Generally, 

methanogens poorly use CO and are rapidly inhibited upon exposure to CO (Daniels 

et al., 1977). However, methanogenesis with CO has never been reported under 

haloalkaline conditions and it is thermodynamically favourable at the conditions 

present in the bioreactor (Table 2).  

 

Inhibition by CO  

The results indicated that CO affects H2-driven microbial processes in the bioreactor, 

such as sulfate reduction, and formate and acetate production. Due to its reductive 

properties (E0 = -520mV), CO reacts with metals in the active centres of enzymes 

(Jeoung et al., 2014). The inhibition of hydrogenases by CO is well known, causing 

hydrogen-dependent microbial processes to be rapidly inactivated upon exposure to 

CO (Bertsch and Müller, 2015; Daniels et al., 1977). [Fe-Fe]-hydrogenases appear to 

be more sensitive to CO than [Ni-Fe]-hydrogenases (Adams, 1990b; De Lacey et al., 

2007). Exposure of biomass to CO apparently inhibited hydrogenases, resulting in low 

rates of H2-driven sulfate reduction, and formate and acetate production. The 

observation that thiosulfate disproportionation remained active supports the 

hydrogenase inhibition hypothesis, as thiosulfate disproportionation does not require 

the action of hydrogenases. Despite the inhibition of hydrogen-dependent conversions, 

biomass levels remained relatively constant during this phase, indicating microbial 

growth (Figure 4). Besides thiosulfate disproportionation and the water-gas shift 

reaction already described, acetate production from CO might also have occurred in 

this phase. Even though acetate was under the detection limit, its production in lower 

amounts might have supported the biomass growth. Slow oxidation of CO was 

observed in batch bottles incubated with biomass from the period just after CO was 

added (Figure 5). This suggests the microbial community present during this operation 

period had the ability to convert CO.  
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Figure 5 – Formate (▲) and acetate (◊) production during the batch tests with biomass from 

day 54 incubated with 30%, 55% and 80% CO in the gas phase. The vertical bars indicate the 

standard deviation. 

 

Adaptation to CO  

After 30 days without activity of H2-driven microbial processes, at day 76 acetogenic 

activity was observed which correlated with removal of CO from the headspace (Figure 

1 and 2). Several acetogens utilize CO as substrate, employing the Wood-Ljungdahl 

pathway (Bertsch and Müller, 2015). In volcanic environments that contain high levels 

of CO, carboxydotrophic organisms play a role in removal of CO, thereby creating a 

viable environment for non-CO-tolerant microbes (Techtmann et al., 2009). The CO-

driven acetogenic activity observed in the bioreactor could have created favourable 

conditions for hydrogenotrophic sulfate reducers and formate producers. Additionally, 

adaptation to CO by microorganisms already present in the biomass, such as via 

production of CO-resistant enzymes, also might have contributed to restoration of 

activity. Some hydrogenases have been reported to be highly resistant to CO like some 

[Ni-Fe]-hydrogenases and O2 tolerant hydrogenases (Adams, 1990a; Fox et al., 1996; 

Vignais and Billoud, 2007). Microorganisms capable of producing such CO-resistant 

hydrogenases would be able to metabolize H2 in CO-rich environments.  



Syngas as e- donor for sulfate & thiosulfate reducing haloalkaliphilic microorganisms 

157 

 

6 

The effect of different CO gas fractions on the activity of adapted biomass was 

assessed in batch experiments. Formate and acetate production from CO as sole 

electron donor occurred, but higher formate formation and lower acetate formation 

were observed with increasing CO fractions (Figure 5). Formate is produced by some 

bacteria and archaea which grow acetogenically on CO, such as Clostridium 

ljungdahlii, Methanosarcina acetivorans, and Archaeoglobus fulgidus (Henstra et al., 

2007; Köpke et al., 2010; Rother and Metcalf, 2004). However, no physiological studies 

are available on haloalkaliphilic CO-oxidizing acetogens. Currently, Fuchsiella 

alkaliacetigena is the only existing isolate representing a haloalkaliphilic 

hydrogenotrophic acetogen, but it is unable to grow in the presence of CO (Zhilina et 

al., 2012). The microbial community in the bioreactor was dominated by bacteria 

closely related to the Clostridiaceae family (Figure 6). By further analysis, ~99% of 

these sequences were closely related to the Tindallia genus. These Tindallia related 

bacteria were previously detected as dominant bacteria in H2 fed sulfate and 

thiosulfate-reducing bioreactors and their role in formate production was hypothesized 

(Sousa et al., 2015a; Chapter 4 & 5). Despite the low energy yield of H2-driven formate 

production (eq 7, Table 2), one of the Tindallia isolates was capable of H2-driven 

formate production coupled to growth (Sorokin et al., 2011). As Tindallia related 

bacteria were dominant during the whole bioreactor operation period, it was likely that 

they could adapt to CO.  

CO-oxidation coupled to sulfate reduction at neutral and thermophilic conditions by 

mixed- or pure-cultures, such as Desulfotomaculum carboxydivorans and 

Archaeoglobus fulgidus, is well documented (Henstra et al., 2007; van Houten et al., 

1996; Parshina et al., 2005a, 2005b; Sipma et al., 2006). In the present study, sulfate 

reduction only started after removal of CO, and no CO-driven sulfate reduction 

occurred in batch experiments (Figure 7). This suggests that hydrogen and/or formate 

were the electron donors for sulfate reduction. Interestingly, incubations with CO and 

50 mM formate showed sulfate reduction. This indicated that formate acts as an 

electron donor for sulfate reduction in the presence of CO, possibly bypassing 

hydrogenases. The sulfate reducers detected in both the suspended and attached 

biomass were related to the Desulfohalobiaceae family (Figure 6). By zooming in to 

genus level of Desulfohalobiaceae related sequences, all were closely related to 

Desulfonatronovibrio. The studied isolates belonging to this genus can use H2 or 
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formate to reduce sulfate (Sorokin et al., 2012). However, to date there is no 

information available on the effect of CO on these bacteria and how formate can still 

be used as electron donor in the presence of CO.  

 

 

Figure 6 – Microbial 16S rRNA relative abundance on family level in the inoculum and biomass 

samples from the end of the runs without CO (day 46), with 5% CO (day 123), with 15% CO 

(day 216) and after the spike with 60% CO (day 218). For the samples of day 123, the 

suspended and settling fractions were separated and analyzed separately. A and B represent 

duplicates for the corresponding day. OTUs with less than 0.5% relative abundance were 

grouped in “others”. 
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Figure 7 – Sulfate (●) and thiosulfate (□) conversion during the batch tests with biomass from 

day 90 incubated with 25% CO in the gas phase. The control test was performed with regular 

medium, while to the formate experiment, 25 mM formate was added, and to the acetate test, 

12.5 mM acetate was added. Vertical bars represent the standard deviation. 

 

Biomass aggregation 

The addition of CO to the bioreactor influenced the formation of biomass aggregates 

that were not attached to sand. After addition of CO, small compact biomass 

aggregates were observed while no biofilm formation on sand particles was observed 

(Figure 8). A similar effect was previously observed in bioreactors operated at neutral 

conditions (van Houten et al., 1996). The formation of biomass aggregates under 

haloalkaline conditions was previously observed in a bioreactor fed with H2, but their 

appearance was not as compact as observed with CO (Figure 8) (Chapter 5). The 

particles in the bioreactor were mainly dominated by biomass aggregates that 

decreased in diameter upon CO addition (Figure 4). The maximum size achieved after 

CO addition did not increase with time as can be seen by the similar particle size 

distribution at days 125 and 216 (Figure 4). This phenomenon might be related to the 

haloalkaline conditions and more specifically, the effect of pH on the hydrophobicity of 

cells surfaces or absence of soluble divalent cations for EPS stabilization (Ismail et al., 

2008; Otto et al., 1999; Sousa et al., 2015b). 
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Figure 8 – Microscopic observations of the biomass from the bioreactor. A – Small compact 

aggregates observed on day 154 and representative for the whole period with 15% CO (scale 

bar represents 10 µm). B – Small aggregates observed on a previous bioreactor operated with 

H2 as electron donor (Chapter 5); (scale bar represents 10 µm). C – Scanning electron 

micrograph of a small aggregate from a sample from day 78 (scale bar represents 5 µm). D – 

Scanning electron micrograph of microorganisms attached to sand inside cavities on a sample 

from day 78 (scale bar represents 5 µm and black arrows point to microorganisms). 

 

The observed aggregates were more compact than those in a bioreactor without 

addition of CO. This might be connected to a metabolic relationship between CO 

oxidizers and sulfate reducers as was observed for neutral conditions (van Houten et 

al., 1996). Focusing on the microbial composition of the aggregates in settled biomass 

on day 123, ~58% consisted of Desulfohalobiaceae and more specifically 

Desulfonatronovibrio-like bacteria (Figure 6). All studied Desulfonatronovibrio sp. 

isolates use acetate as carbon source for growth (Sorokin et al., 2012). Thus, 

aggregation of sulfate reducers together with CO-oxidizing microbes, such as 

acetogens, could have enhanced their growth due to acetate production. Additionally, 
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the lower in situ CO concentrations generated by CO oxidizing acetogens might also 

have been more favourable to the sulfate reducers. 

 

Application in gas biodesulfurization 

Syngas can be used as electron donor for sulfate and thiosulfate-reducing bioreactors 

operated under haloalkaline conditions. However, the CO concentration in the syngas 

varies considerably depending on the feedstock used and production method, from 0 

up to higher than 50% (Guan et al., 2016; Voldsund et al., 2016). Even though inhibition 

effects were observed during the spike of 60% CO performed in this study, such spikes 

can be controlled by a proper production of syngas or pre-treatment of syngas 

(Voldsund et al., 2016). Thus, despite that using syngas without removing CO would 

decrease the cost of the electron donor, the capacity of biomass to withstand CO 

fractions only up to 15% might make the application of bleed stream treatment using 

syngas and recycling an interesting option for biodesulfurization systems (Figure 9).  

Acetate production might be a drawback for the application of such bioreactor in 

biodesulfurization systems. For the sulfate and thiosulfate reducing bioreactor, 

excessive acetate production consumes additional electron donor which increases 

demand of electron donor. This implies the requirement of extra syngas to compensate 

for acetate production, which increases the costs of operation. After treatment, the 

sulfide and acetate rich stream from the sulfate/thiosulfate-reducing bioreactor (Figure 

8, no 4) could be recycled back into the sulfide-oxidizing bioreactor (Figure 8, no 2) (van 

den Bosch, 2008). In the sulfide-oxidizing bioreactor, acetate leads to organic 

contamination of the system resulting in growth of unwanted microorganisms. Acetate 

oxidation requires extra consumption of O2, increasing aeration costs, and production 

of CO2, which decreases the pH. The pH decrease affects the sulfide absorption 

process (Figure 8, no 1) which increases the caustic required to increase pH.  
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Figure 9 – Biological process for gas desulfurization using an anaerobic sulfate/thiosulfate 

reducing bioreactor to enable bleed stream recycling. The sulfide (H2S) present in the gas is 

dissolved in an alkaline solution as HS- using a scrubber (1). This HS- rich solution goes to an 

aerobic bioreactor (2) where it is biologically oxidized, under controlled microaerophilic 

conditions, to mostly elemental sulfur (S0) and a minor fraction to sulfate (SO4
2-), and 

chemically oxidized, via polysulfides, to thiosulfate (S2O3
2-). The S0 is separated in a settler (3) 

and most of the liquid is recycled to the scrubber (1). Part of the liquid from the settler (3) goes 

to an anaerobic bioreactor (4) where SO4
2- and S2O3

2- are reduced to HS- using syngas as 

electron donor. The HS- produced is recycled back to the aerobic bioreactor (2). With time, this 

prevents accumulation of SO4
2- and S2O3

2- in the whole system, and theoretically reducing the 

amount of caustic required to increase the pH to almost zero. Additionally, it will prevent the 

disposal of bleed stream into the environment and maximize the S0 production. 

 

 

Conclusions 

Syngas, up to 15% CO content, can be used as electron donor for a sulfate/thiosulfate-

reducing bioreactor operated at haloalkaline conditions. Adaptation of the biomass to 

CO is required as CO inhibits hydrogen-dependent microbial processes, such as 

sulfate reduction, formate production, and acetate production in non-adapted biomass. 

After adaptation, the biomass sulfate/thiosulfate reduction activity was comparable to 
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reported in previous studies using other electron donors, such as H2 or formate. 

Acetate production was the dominant conversion in the bioreactor when CO was 

supplied. Acetate production seems to enhance growth of sulfate-reducing bacteria 

that require acetate as carbon source. The high acetate concentration in the treated 

bleed stream has consequences for the sulfide oxidation step and sulfide absorption 

step of the biodesulfurization process after it is recycled.  
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Abstract 

Bacteria closely related to Tindallia sp. dominated the microbial community in sulfate 

and thiosulfate reducing bioreactors fed with H2 and operated at haloalkaline 

conditions. To understand the role of these bacteria in the bioreactors, we isolated a 

hydrogenotrophic bacterium (strain JE1). Strain JE1 has 98.4% 16S rRNA gene 

identity with its closest relative Tindallia texcoconensis, 97.4% with T. californiensis, 

97.1% with T. magadiensis, and 96% with Tindallia sp. strain AHT5. In contrast to all 

characterized species of the genus Tindallia, strain JE1 can ferment glucose. Strain 

JE1 can reduce thiosulfate and elemental sulfur using H2 as electron donor. The 

thiosulfate reducing capacity might explain its role in the thiosulfate-fed bioreactors. In 

the sulfate reducing bioreactors the role of strain JE1 is not directly connected to sulfate 

reduction as it is not capable of sulfate reduction. Its role in sulfate reducing bioreactors 

seems to be limited to the production of formate from H2 and HCO3
-. Strain JE1 can 

grow when producing formate only in the presence of yeast extract. When comparing 

the 16S rRNA gene, physiological differences, glucose fermentation, reduction of 

thiosulfate and elemental sulfur, and production of formate from H2 and HCO3
- to 

described Tindallia species, strain JE1 differed substantially and we propose strain 

JE1 as a new species in the genus Tindallia as Tindallia wetsonia strain JE1, sp. nov..  
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Introduction 

Haloalkaline environments, characterized by high pH (9-11) and salinity up to 

saturation can be found in soda lakes that exist worldwide. The main difference of soda 

lakes compared to salt lakes is the dominance of sodium carbonate and bicarbonate 

as the main salts which provide molar concentrations of alkaline buffer that maintain 

the extremely high pH in the brines stable. The availability of divalent cations in these 

environments, such as Ca2+ and Mg2+, is low due to precipitation as carbonates. This 

creates a unique set of conditions that can be found in soda lakes as well as in man-

made environments such as reactors used in gas biodesulfurization processes. 

In these biodesulfurization processes, haloalkaliphilic bacteria oxidize sulfide adsorbed 

in an alkaline carbonate solution to elemental sulfur at oxygen-limiting conditions 

(Buisman et al., 1989). However, part of the sulfide is converted to thiosulfate and 

sulfate. To improve the sulfur production efficiency of this biodesulfurization process, 

sulfate and thiosulfate reduction bioreactors have been investigated (Zhou and Xing 

2015, Chapter 3, 4, 5 and 6).  

The microbial community of these sulfate and thiosulfate reducing bioreactors was 

dominated by a bacterium closely related to Tindallia species (in the class Clostridia) 

when H2 was used as electron donor (Chapter 3, 4, 5, and 6). Three different species 

of Tindallia isolated from various soda lakes have been described so far: T. 

magadiensis, T. californiensis and T. texcoconensis (Alazard et al., 2007; Kevbrin et 

al., 1998; Pikuta et al., 2003). All these bacteria were described as amino acid 

fermenting, heterotrophic acetogens. Their role as possible homoacetogens was 

discussed, yet only hydrogenase and CO dehydrogenase activities from the cell extract 

were tested in this context. Another isolate, strain AHT5, closely related to Tindallia 

magadiensis, isolated from south Siberian soda lakes could use thiosulfate and 

elemental sulfur as electron acceptor and formate as electron donor (Sorokin et al., 

2011). Additionally, Tindallia sp. AHT5 was reported to grow with H2 and HCO3
- forming 

formate as the main product (Sorokin et al., 2011). 

To better understand the role of Tindallia sp. in the haloalkaline bioreactors, we isolated 

the dominant strain in our reactor and compared its properties with the described 

species in the genus Tindallia and strain AHT5.   
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Methods 

 

Origin of samples  

The inoculum was obtained from a sulfate-reducing bioreactor fed with H2 and 

operated at pH 9, 1.5 M Na+ and 35oC (Sousa et al., 2015). The bioreactor was 

characterized by formate production as a major intermediate and with the presence of 

bacteria closely related to Tindallia sp. 

 

Enrichment, isolation and growth conditions 

The medium used for enrichment, isolation and growth was a sodium 

carbonate/bicarbonate buffer with pH 9 and 1.5 M Na+, except in experiments where 

different pH and salinity were tested. The medium composition was as follows: Na2CO3 

(33.6 g l-1), NaHCO3 (69.3 g l-1), KHCO3 (1 g l-1), K2HPO4 (1 g l-1), NH4Cl (0.27 g l-1), 

MgCl2.6H2O (0.1 g l-1), CaCl2.2H2O (0.01 g l-1) and 10 ml l-1 of vitamin solution (Wolin 

et al., 1963). Two trace element solutions were added (Sousa et al., 2015).  

For enrichment, 50-ml serum bottles filled with 25 ml of medium were closed with butyl-

rubber stoppers and the gas phase exchanged with 1.6 bar mixture of H2/CO2 

(80%/20%). The bottles were inoculated with 1 ml of a biomass sample from the 

bioreactor operated in chapter 3. Serial dilutions up to extinction were made. The 

bottles were incubated at 37oC while shaking (150 rpm) for 15 days. The highest 

dilution with H2 consumption was used to re-inoculate new bottles, with the same 

medium as before but without serial dilutions. After 15 days of incubation, samples 

were observed under the microscope and the bottles with only one morphotype present 

were used for a new round of serial dilutions (as described before). The highest dilution 

with H2 consumption was used as inoculum for new bottles with growth medium (same 

composition plus 500 mg l-1 yeast extract) and H2/CO2 gas phase as before. The bottles 

were incubated for 7 days and the purity after growth with yeast extract was analyzed 

by microscopic observation and 16S rRNA gene analysis. Only pure samples with a 

one morphotype and a clean 16S rRNA gene sequence were used afterwards. 

For comparison, Tindallia sp. AHT5, isolated previously from soda lakes (Sorokin et 

al., 2011) was also cultured using the same conditions. 
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Morphological characteristics 

For light microscopy observation, a DMI6000B optical microscope (Leica, Biberach, 

Germany) equipped with a DFC300FX camera (Leica, Biberach, Germany) was used. 

Gram staining was performed using the Gram staining kit (Sigma-Aldrich, Zwijndrecht, 

Netherlands). The production of spores was verified by monitoring growth during 

culturing after pasteurization at 80oC for 20 min.  

 

Physiological characterization 

All growth experiments were performed in duplicate under sterile conditions, using 15-

ml Hungate tubes filled with the same medium used for the isolation (pH 9, 1.5 M Na+). 

The gas phase of all tubes was exchange to N2/CO2 (80%/20%) at 1.4 bar total 

pressure. All substrates were added from sterile anaerobic stock solutions at a 

concentration of 10 mM except complex substrates that were added at 5 g l-1. To 

support growth, 20 mg l-1 of yeast extract was added to the media.  Growth of the 

cultures was measured by optical density at 600 nm wavelength in a 

spectrophotometer (UV-1280, Shimadzu, ’s-Hertogenbosch, Netherlands). The pH 

and salinity profiles were investigated using buffers with a different proportion of 

sodium carbonate/ sodium bicarbonate at 37oC, using glucose and yeast extract as 

substrate (Table A1). The temperature optimum and range were determined at the 

optimal pH-salt conditions using glucose and yeast extract as substrate (1.5 M Na+ and 

pH 9).  

 

Analytical procedures 

Samples for organic acids analysis were filtrated through 0.4 µm pore size filters and 

quantified using ultra-high performance liquid chromatography (Dionex ultimate 

3000RS, Thermo scientific, Wilmington, MA) as described previously (Sousa et al., 

2015). Samples for sulfide, sulfate and thiosulfate analysis were stabilized with zinc 

acetate (0.2 M) in a 1:1 ratio immediately after sampling. Sulfide was analyzed using 

a cuvette test (LCK653, Hach Lange, Düsseldorf, Germany). For sulfate analysis the 

sample was filtrated through 0.4 µm pore size filters and the concentrations were 

determined by ion chromatography (761 compact IC with a 762 IC interface, Metrohm, 
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Herisau, Switzerland) as described previously (Sousa et al., 2015). H2, CO2, N2 and 

CH4 in the gas phase were quantified by gas chromatography using a CP-4900 

(Varian, Palo Alto, CA) as previously described (Sousa et al., 2015). Optical density at 

600 nm was measured in a spectrophotometer (UV-1280, Shimadzu, ’s-

Hertogenbosch, Netherlands). 

 

16S rRNA gene sequence analysis 

Genomic DNA was extracted using the PowerBiofilm™ DNA Isolation Kit (MoBio, 

Carlsbad, CA) following the manufacturer’s instructions. 16S rRNA genes were 

amplified by PCR using a Taq DNA polymerase kit (Invitrogen, Carlsbad, CA) and 

Bact27F and Univ1492R primers pair (Lane, 1991). The PCR program was: initial 

denaturation for 2 min; 25 cycles of 30 s denaturation at 95oC, 40 s at 52oC for 

annealing and 1.5 min elongation step at 72oC; 5 min at 72 oC of post-elongation step. 

Amplified 16S rRNA samples were sent for sequencing (Baseclear BV, Leiden, the 

Netherlands) using the primers sets Bact27f/Univ1492r (Lane, 1991). The 16S rRNA 

gene sequences were analyzed and trimmed using Chromas (ver. 2.32, Technelysium) 

and chimera checked with DECIPHER software (ver. 2.0) (Wright et al., 2012). The 

similarity searches performed using the EMBL-EBI ENA sequence search program 

within the ENA database. (http://www.ebi.ac.uk/ena).  

 

 

Results 

 

Enrichment and isolation 

The strain JE1 was enriched from the bioreactor biomass (chapter 3) using H2 and 

HCO3
- as substrates. These conditions were chosen as we postulated that the 

dominant Tindallia sp. identified in the bioreactors was involved in the production of 

formate from H2 and HCO3
-. The enrichments with H2 and HCO3

- did show formate 

production, but no visible increase in turbidity was observed. However, after 3 cycles 

of dilutions series and re-inoculation, formate was still produced, even though the cell 

number was low; only a few cells were observed under the microscope. Then, the 

http://www.ebi.ac.uk/ena
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cultures were inoculated in the same medium, but supplemented with 500 mg l-1 yeast 

extract. This resulted in good growth of the culture while still producing formate as end-

product. Under the microscope, the culture looked pure and 16S rRNA gene sequence 

analysis yielded a clean sequence identical to the 16S rRNA gene sequence of the 

Tindallia sp. found in the bioreactors (Chapters 3-6). 

 

Morphological characteristics 

Strain JE1 grown in liquid culture with H2/CO2 gas phase and 20 mg l-1 yeast extract 

was a motile, slightly curved long rod of approximately 3-10 μm length and 0.5 μm 

diameter (Figure 1). The cells occurred mostly as single cells, but with 500 mg l-1 yeast 

extract they occur paired or as filaments, leading to the formation of flock like structures 

observable by naked eye. The cells stained Gram positive and endospores were not 

observed under experimental conditions and after pasteurization no growth was 

observed.   

 

 

Figure 1 – Micrograph of strain JE1 cells grown for 30 days on H2/CO2 gas phase and yeast 

extract. 
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Table 1 – Characteristics that differentiate strain JE1 from other Tindallia related species.  

 
JE1 AHT5 

T. 
texcoconensis 

T. 
californiensis 

T. 
magadiensis 

Reference This study 1 2 3 4 

Cell length 3-10 μm 2-6 μm 3-5 μm 1.7-3 μm 1.2-3.5 μm 

Sporulation - n.t. - + - 

Optimum 
temperature 

37oC 37o C. 35oC 37oC 37oC 

Optimum pH 9 9.5-10 9.5 9.5 8.5 

Optimum salinity 1.5 n.t. 1.3 0.5 0.7 

O2 tolerance n.t. Not tolerant Not tolerant Not tolerant Not tolerant 

Fermentation 
substrates 

     

Casamino acids + + + + + 

Peptone + + + + + 

Pyruvate + + + + + 

Citrate - - + - + 

Glucose + - - - - 

Complex sugars - - - - - 

Electron 
acceptors  

     

Sulfate - - - - n.t. 

Thiosulfate + + - n.t. - 

Sulfur + + n.t. n.t. n.t. 

DMSO + n.t. n.t. n.t. + 

Iron + n.t. + n.t. + 

Fumarate + + n.t. n.t. n.t. 

a based on activity of hydrogenase and CO-dehydrogenase; (-) – no growth observed. (+) – growth 
observed. (n.t) – not tested. References: 1 – Sorokin et al. 2011; 2 – Alazard et al. 2007; 3 – Pikuta et al. 
2003; 4 – Kevbrin et al. 1998. 
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Table 1 – Continued. 

Electron donors      

H2 + + n.t. n.t. n.t. 

Formate + + n.t. n.t. n.t. 

Acetate + + n.t. n.t. n.t. 

Lactate + + n.t. n.t. n.t. 

Ethanol + + n.t. n.t. n.t. 

Glycerol + + n.t. n.t. n.t. 

CO - - n.t. n.t. n.t. 

Formate 
production from 
H2 and HCO3

- 
+ + n.t. n.t. n.t. 

Homoacetogenic 
activity 

- - n.t. +a +a 

Yeast extracted 
required for 
growth 

+ + n.t. + + 

a based on activity of hydrogenase and CO-dehydrogenase; (-) – no growth observed. (+) – growth 
observed. (n.t) – not tested. References: 1 – Sorokin et al. 2011; 2 – Alazard et al. 2007; 3 – Pikuta et al. 
2003; 4 – Kevbrin et al. 1998. 

 

Phylogeny 

A sequence of 1403 bp of the 16S rRNA gene of strain JE1 was obtained. Comparison 

of the sequence with the database (ENA) revealed that it had 98.4% similarity with the 

16S rRNA gene sequence of T. texcoconensis IMP-300, 97.4% with the 16S rRNA 

gene of T. californiensis, 97.1% with the 16S rRNA gene of T. magadiensis and 96% 

with the 16S rRNA gene of strain AHT5. The 16S rRNA gene sequence of JE1 had 

100% identity with the sequences obtained from a 16S rRNA gene clone library from 

the bacterial community DNA of the sulfate-reducing bioreactor that was used as 

inoculum (Chapter 3). 

 

Physiological characteristics 

Strain JE1 is an anaerobe that grows between 25 and 45oC, with an optimal 

temperature at 37oC (Figure 2a). Optimal growth was observed with glucose and yeast 
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extract at pH 9 and at salinity 1.5 M Na+, indicating that the isolate is a haloalkaliphile 

(Figure 2b). At these conditions, the doubling time was 22 h.  

Strain JE1 was capable of fermentative growth with proteinaceous compounds, such 

as peptone, casamino acids, and yeast extract, but also with pyruvate, citrate, glycerol 

and glucose (Figure 3). No growth was observed with lactate, fumarate and complex 

polymeric sugars (cellulose and starch). Thiosulfate, sulfur, iron (III), DMSO and 

fumarate could be used as electron acceptors with H2, formate, acetate, lactate, citrate, 

ethanol and glycerol. Sulfate was not reduced. No disproportionation of sulfur 

compounds (sulfur, thiosulfate) was observed. Strain JE1 and strain AHT5 are capable 

of producing formate from H2 and bicarbonate, leading to approximately 49 mM 

formate and approximately 96 mM when yeast extract was added (Figure 4). Growth 

of strain JE1 with H2 and HCO3
- was dependent on the presence of yeast extract. 

Under such conditions, optimal growth occurred with glucose (10 mM) from which 

acetate (6.5 mM) and succinate (4.6 mM) together with trace amounts of formate (2.9 

mM), propionate (0.9 mM), malate (0.7 mM) and pyruvate (0.4 mM) were produced 

(Figure 3). However, when yeast extract was not added, strain JE1 produced only 

traces of acetate from glucose. This indicates that some elements from yeast extract 

are necessary not only for growth of strain JE1, but also for production of other organic 

acids, such as succinate.  
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Figure 2 – Effect of pH, Na+ concentration and temperature on the growth of strain JE1 with 

10 mM glucose and yeast extract measured by optical density at 600 nm wavelength. A – 

Effect of pH and Na+ concentration at 37oC. B – Effect of temperature at pH 9 and 1.5 M Na+. 
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Figure 3 – Organic acids (mM) produced by strain JE1 from different substrates after 30 

days of incubation. YE – 20 mg/l yeast extract. 

 

 

Discussion 

The physiological characterization of strain JE1 reveals that it is different from the 

previously characterized Tindallia species. The main difference is the fermentation of 

glucose that was not observed for all other isolates. The fermentation of glucose 

yielded succinate as a main product, which was observed in another fermentative 

haloalkaliphilic bacterium, Alkaliflexus imshenetskii (Zhilina et al., 2004). The 

production of succinate is an interesting metabolic activity for future biotechnological 

application (Becker et al., 2015). 
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Figure 4 - Formate, acetate and propionate production by strains JE1 and AHT5 from H2 and 

CO2, with and without 20 mg l-1 of yeast extract (YE). 

 

Strain JE1 can reduce thiosulfate and thus plays a role in thiosulfate reduction in the 

bioreactors. However, both strains cannot reduce sulfate which does not explain their 

dominance in the bioreactor fed only with sulfate, from which it was isolated (Chapter 

3). We hypothesize that Tindallia sp. strain JE1 has a syntrophic relationship with 

sulfate-reducing bacteria, which could explain its dominance in the bioreactors (Figure 

5). They likely obtain energy for growth by conversion of H2/CO2 to formate, while 

requiring organic compounds excreted by other bacteria present in the bioreactor as 

carbon source. In turn, formate is the preferred electron donor for the sulfate reducers. 
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Figure 5 – Relative abundance of bacteria16S rRNA sequences closely related to Tindallia in 

the biomass of the bioreactors investigated in chapters 3, 4, 5 and 6. Results from chapter 3 

(day 155) were obtained via 16S rRNA clone library methodology. Results from chapter 4 (day 

140), chapter 5 (day 179) and chapter 6 (day 216) were obtained via 16S rRNA gene amplicon 

Illumina sequencing method. 

 

Both strain AHT5 and JE1 produce formate from H2 and CO2 (Eq. 1). The high 

concentration of bicarbonate (HCO3
-) together with the supply of H2 gas makes this 

reaction thermodynamically favourable (Chapter 5). The ΔG’ of formate production is 

-15.6 kJ mol-1 when assuming 850 mM of HCO3
-, 1 mM of formate, 1 bar of H2, pH 9, 

1.5 M ionic strength and 35oC. No other characterized bacteria, including 

haloalkaliphiles, besides strains AHT5 and JE1 can perform and derive energy from 

this reaction, although the reversed reaction (formation of H2 from formate) has been 

reported for other species (Lim et al., 2014; Thiele and Zeikus, 1988; Wu et al., 1993). 

The end products from H2-dependent CO2 reduction are usually either methane or 

acetate and these reactions are thermodynamically favourable (Oren, 2011). Because 

the energy gain per reaction is extremely low for formate production, the reason for the 

formate production remains unclear and requires further research. Energy 

conservation and growth by formate production may occur via a reversible formate 
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dehydrogenase (FDH) that catalyses the reaction on Eq 1 (Ferry, 1990). 

Homoacetogens, such as Acetobacterium woodii can also produce formate instead of 

acetate as the product of H2-dependent CO2 reduction at non-growing conditions 

(Schuchmann and Müller, 2013). However, the underlying mechanism should be 

investigated in more detail to understand how these bacteria are capable of producing 

formate to such high concentrations.  

 

H2 + HCO3
-  HCO2

- + H2O  (Eq 1) 

 

Another aspect that points to formate production as one of the characteristics of strain 

JE1 specific for the bioreactors is the fact that Tindallia related bacteria are not 

dominant in natural occurring soda lakes (Antony et al., 2013; Sorokin et al., 2014; 

Vavourakis et al., 2016). In these lakes, high concentrations of sulfate and other partly 

oxidized sulfur species are present and still it is not a driving force for the dominance 

of Tindallia related bacteria. The major difference is the lack of complex organic 

compounds and continuous supply of H2 in the bioreactors.  The continuous H2 supply 

in the bioreactors could give a competitive advantage to bacteria that can use H2, as 

might be the case of strains JE1 and AHT5.  

Strain JE1, closely related to Tindallia sp., is a key player in the bioreactors described 

in this thesis. Its role in the bioreactors is most probably linked to the production of 

formate from H2 and HCO3
- which can be subsequently used by sulfate reducers as 

electron donor. However, this link requires further research that is described in chapter 

8. 

 

 

Description of Tindallia wetsonia sp. nov. 

Tindallia wetsonia [wet.so’.nia. N.L. gen., of Wetsus, from a bioreactor operated at 

Wetsus, European centre of excellence for sustainable water technology, located in 

Leeuwarden, the Netherlands]. 
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Curved rods 3-10 μm in length and around 0.5 μm in diameter and with motility. Stains 

Gram positive and no sporulation observed. Haloalkaliphilic, with optimum pH 9, 

optimum salinity 1.5 M Na+, and mesophilic with optimum temperature 37oC. 

Anaerobic organotroph capable of fermenting glucose, peptone, casamino acids and 

yeast extract. Main products of glucose fermentation were acetate, formate, succinate 

and traces of propionate, pyruvate and malate. Capable of producing formate from H2 

and HCO3
-. Thiosulfate, elemental sulfur, DMSO, iron and fumarate are reduced with 

H2, formate, acetate, lactate, ethanol and glycerol as electron donors. Growth is 

dependent on yeast extract. 

Habitat: isolated from a sulfate reducing bioreactor using H2 as electron donor and 

operated at pH 9 and 1.5 M Na+. The bioreactor was operated at Wetsus, Leeuwarden, 

the Netherlands. 
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Abstract  

In haloalkaline environments, formate is an important intermediate in the anaerobic 

biodegradation of organic matter. In sulfate/thiosulfate-reducing bioreactors operated 

at haloalkaline conditions with H2 as the only electron donor, formate intermediately 

accumulated up to a concentration of 150 mM. The high HCO3
- concentration (>0.5 M) 

under haloalkaline conditions, compared to neutral conditions, allows ~100-fold more 

formate formation. The formate produced from H2 and HCO3
- by microorganisms in 

these bioreactors was then used as electron donor by sulfate and thiosulfate-reducing 

bacteria. To better understand this metabolic interaction, co-cultures of a formate 

producer, Tindallia sp. strain JE1, and a sulfate reducer, Desulfonatronovibrio 

thiodismutans AHT10, were studied. Both species have been detected in the 

sulfate/thiosulfate reducing bioreactors previously studied. When hydrogen was 

supplied as electron donor, sulfate was reduced by D. thiodismutans AHT10 only in 

the presence of Tindallia sp. strain JE1, indicating a syntrophic relationship.  

Interspecies formate transfer occurred between the producer Tindallia and the 

consumer D. thiodismutans. The interactions were not restricted to formate transfer. 

Possibly, cross feeding of trace amounts of acetate or other unknown compounds 

produced by Tindallia sp strain JE1 plays a role as well.  
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Introduction 

Haloalkaline environments, such as soda lakes that can be found around the world, 

are characterized by their high pH and alkaline salt concentrations up to saturation. 

The prevailing salts in most soda lakes are sodium carbonate and bicarbonate which 

buffer the environment at high pH (> 8.5). In these extreme habitats, prokaryotic 

communities, classified as haloalkaliphiles, thrive. Under haloalkaline conditions some 

metabolic processes are especially important, such as the sulfur cycle. The high 

activity of the sulfur cycle is due to the chemical stability and lack of toxicity of several 

sulfur compounds, such as sulfide and polysulfides, at high pH compared to low pH 

conditions. These sulfur cycling prokaryotic extremophiles have also been successfully 

exploited in environmental biotechnology processes, such as bio- and natural gas 

desulfurization (van den Bosch 2008; Zhou et al. 2014; Sousa et al. 2015). 

While investigating lithotrophic sulfidogenesis in soda lake native microbial 

communities, mixed cultures and pure cultures, formate was observed to be a 

significant electron donor in contrast to H2 (Sorokin et al. 2010). Some of the isolated 

sulfate reducers from that same study were closely related to the sulfate reducers in 

the biomass of the bioreactors operated in chapters 3-6. Most of these sulfate reducers 

in the bioreactors were closely related to Desufonatronovibrio thiodismutans sp. which 

can use H2 and formate as electron donors for sulfate and thiosulfate reduction 

(Sorokin et al. 2011b). In the bioreactors, H2 was supplied as electron donor, and 

formate was produced and accumulated to high concentration, up to150 mM (chapters 

3-6). The produced formate could also be used as electron donor, and was shown to 

enhance sulfate reduction when supplied externally (chapter 5).  

Formate production, under neutral pH and low salinity conditions, was described for 

several microorganisms (Peters et al. 1999). However, the maximum formate 

concentrations achieved were approximately 100-fold lower than the concentrations 

reported in chapters 3-6. This is probably related to the high bicarbonate concentration 

in the medium which changes the thermodynamic equilibrium of the conversion of H2 

and bicarbonate to formate. Under haloalkaline conditions, two isolates were shown to 

produce formate from H2 and bicarbonate, strains AHT5 and JE1, both closely related 

to Tindallia spp. (Sorokin et al. 2011a, Chapter 7). In chapter 4, we hypothesized that 

the formate production might be related to the dominance of Tindallia sp. strain JE1 in 
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the bioreactors, and that the formate produced could be used for sulfate reduction. 

However, the dynamics of formate production and how formate affects sulfate 

reduction under haloalkaline conditions are still not fully understood. 

In this work, the intermediate formate production from H2 and bicarbonate catalyzed 

by the biomass of a sulfate and thiosulfate-reducing bioreactor was investigated in 

more detail. To investigate the role of formate as an intermediate, co-culture 

experiments were performed using a haloalkaliphilic formate scavenging sulfate 

reducer, Desufonatronovibrio thiodismutans AHT10, and Tindallia sp. strain JE1 as 

formate producer. The results indicate that formate plays a key role in sulfidogenesis 

at haloalkaline conditions.  

 

 

Methods 

 

Media 

A mineral medium with pH 9 (± 0.05), buffered with sodium carbonate and sodium 

bicarbonate, containing a total of 1.5 M Na+ was used. The medium composition was 

as follows: Na2CO3 (33.6 g l-1), NaHCO3 (69.3 g l-1), KHCO3 (1 g l-1), K2HPO4 (1 g l-1), 

NH4Cl (0.27 g l-1), MgCl2.6H2O (0.1 g l-1), CaCl2.2H2O (0.01 g l-1) and 10 ml l-1 of vitamin 

solution (Wolin et al. 1963). Trace element solutions were added as described 

previously (Sousa et al. 2015). When sterile conditions were used, the mineral medium 

was autoclaved separately, without trace elements and vitamins solution. The vitamins 

and trace elements were sterilized using filtration and added afterwards.  

 

Mixed and pure cultures 

The mixed culture used for the batch experiments was obtained from the 

sulfate/thiosulfate reducing bioreactor described in chapter 5. 400 ml of the bioreactor 

biomass was collected during run 4 in which 50 mM of sulfate and 25 mM of thiosulfate 

were fed and H2 was supplied as electron donor. The sample was centrifuged at 5000 

g for 10 min and the cells were washed twice with the same buffer as used for the 
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medium. After the final washing step, 50 ml of buffer was added and the suspension 

was used as inoculum for the batch experiments directly afterwards. 

For the pure culture batch experiments, two pure cultures were used. A pure culture of 

D. thiodismutans AHT10 was previously isolated from soda lake (lake Bitter-1) using 

formate and thiosulfate as substrates (Sorokin et al. 2011b). D. thiodismutans AHT10 

was grown routinely in the medium described above in batch bottles with butyl-rubber 

stoppers and aluminium caps using formate as electron donor (100 mM), thiosulfate 

as electron acceptor (12.5 mM), acetate as carbon source (2 mM) and 20 mg l-1 yeast 

extract. The gas phase was 80% N2 and 20% CO2 (1.6 bar). D. thiodismutans AHT10 

was incubated for 15 days at 37oC with continuous agitation at 140 rpm.  

A pure culture of Tindallia sp. strain JE1 was enriched and isolated from the 

haloalkaline sulfate reducing bioreactor (chapter 3) and was described in chapter 7. 

Tindallia sp. strain JE1 was routinely grown in the medium described above in 120 ml 

batch bottles butyl-rubber stoppers and aluminium caps using H2 as electron donor, 

HCO3
- as electron acceptor (825 mM) and 50 mg l-1 yeast extract. The gas phase was 

80% H2 and 20% CO2 (1.6 bar). Tindallia sp. strain JE1 was incubated for 15 days at 

37oC with continuous agitation at 140 rpm. 

 

Fed-batch experiments with mixed biomass 

Fed-batch experiments with biomass from the sulfate/thiosulfate reducing bioreactor 

(chapter 5) were performed to study the H2, HCO3
- and formate dynamics. Bioreactors 

with a total volume of 1 liter were used. Bioreactors were filled with 700ml mineral 

medium with vitamins, trace elements (as described above) and 50 mM sodium sulfate. 

Prior to start, the bioreactors were flushed for 30 minutes with nitrogen or hydrogen to 

remove oxygen and after were inoculated with 5 ml (200 mg Total N) of the 

concentrated biomass. Bioreactors were operated with a continuous H2 or N2 flow of 5 

ml min-1, in presence or absence of 100mM formate. The specific test conditions of 

each experiment are listed in Table 1. For sampling, 5 ml liquid and 1 ml gas were 

collected using syringes. For gas sampling and analysis, a syringe with a closing valve 

was used. 

Table 1 – Conditions of different tests of mixed biomass activity in fed-batch bioreactors 
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Test name Inoculum Formate added (mM) Gas flow 

Control No 100 mM 5 ml min-1 H2  

Formate Yes 100 mM 5 ml min-1 N2  

H2 Yes 0 mM 5 ml min-1 H2 

Formate / H2 Yes 100 mM 5 ml min-1 H2 

 

Batch experiments with pure and mixed pure cultures 

Batch culture experiments with pure and mixed pure cultures were performed to 

understand the possible interaction between a formate producing bacteria and a 

sulfate reducing bacteria. The cultures were grown in 120 ml glass bottles with butyl-

rubber stoppers and aluminium caps, using 50 ml sterilized mineral medium with 

vitamins and trace elements, and 70 ml gas volume at 1.6 bar final pressure. All bottles 

were incubated at 37oC with continuous agitation at 140 rpm. Sulfate (25 mM) and/or 

formate (100 mM) were added in specific experiments according to experimental 

conditions (Table 4). Sulfate was added as sodium sulfate and formate was added as 

sodium formate solutions from sterile anaerobic stock solutions. The gas phase applied 

was 1.6 bar of either 80% H2 and 20% CO2 or 80% N2 and 20% CO2 according to the 

experimental conditions (Table 4). The bottles were inoculated with 1 ml (2% v/v) from 

the respective pure cultures and cells from the same pre-cultures were used to 

inoculate all experiments. In the co-culture experiments, also 1 ml of each culture was 

added. Abiotic control experiments were performed for all conditions. For the time zero 

samples, 5 ml liquid and 1 ml gas were collected using syringes. Afterwards, for each 

sampling 2 ml liquid and 1 ml gas were collected. For gas collection and analysis, a 

syringe with a closing valve was used. 

 

Analytical procedures 

Samples for formate and acetate analysis were filtered through 0.45 µm pore size 

filters and quantified by ion chromatography as described previously (Sousa et al. 

2015). Samples for sulfide, sulfate and thiosulfate analysis were stabilized with zinc 

acetate (0.2 M) in a 1:1 ratio (v/v) immediately after sampling. For sulfate and 

thiosulfate analysis the sample was filtered again through 0.4 µm pore size filters and 



Formate as key intermediate for sulfate-reducing bacteria in haloalkaline environm. 

195 

 

8 

the concentrations were determined as described previously (Sousa et al. 2015). Gas 

phase composition was determined by gas chromatography as previously described 

(Sousa et al. 2015). Microscopy pictures were taken using a phase contrast light 

microscope (DMI6000B, Leica, Biberach, Germany). 

 

Thermodynamic calculations 

Thermodynamic calculations were performed using eQuilibrator online tool (Flamholz 

et al. 2012) and the reactant concentrations used in the calculations were based on 

the actual conditions  in the bioreactors (chapters 3-6), pure cultures  (chapter 7) and 

current chapter: (pH 9, 1.5 M ionic strength, 825 mM HCO3
-). The remaining 

compounds concentrations were specific for each case and can be found in the results.  

 

 

Results & Discussion 

 

Formate production  

Under haloalkaline conditions, formate production always occurred when H2 was 

supplied to bioreactors, while no organic compounds were added, excluding vitamins 

added (Table 2). The biomass from the bioreactor described in chapter 5 was used to 

test the effect of formate addition (Figure 1a). Formate was produced when H2 was 

supplied but also the reverse reaction occurred; when formate was supplied, H2 was 

produced. The formate hydrogen lyase complex, composed of a formate 

dehydrogenase and a hydrogenase, is capable of catalyzing both reactions depending 

on the equilibrium between formate and H2/HCO3
- (Wu et al. 1993). In our study, this 

equilibrium between H2 and formate resulted in a stable formate concentration of 

approximately 90 mM, when both formate and H2 were added together. At the 

conditions in the bioreactor, mainly when the formate concentration is 90 mM, the ΔG’ 

of both formate and H2 production reaction is similar, (Table 3). At formate 

concentrations of 90 mM, the ΔG’ of formate production from H2/HCO3
- is -5.3 (± 8.9) 

kJ mol-1 and for H2 production from formate the ΔG’ is -6.9 (± 8.9) kJ mol-1 (assuming 
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10 mbar H2 in the last case). For formate production, similar maximum ΔG’ values can 

be calculated for Acetobacterium woodii, Acetobacterium carbinolicum and 

Methanobacterium formicicum (Table 2) (Wu et al. 1993; Peters et al. 1999). For H2 

production, also similar ΔG’ values were found for Thermococcus onnurineus NA1 (Lim 

et al. 2014).  

 

Table 2 – Formate accumulation and ΔG’ in H2 fed bioreactors, Tindallia sp. strain JE1, Tindallia 

sp. strain AHT5, Acetobacterium woodii, Acetobacterium carbinolicum and Methanobacterium 

formicicum. 

 H2 (mbar) Type of incubation 
Max. produced 
formate (mM) 

ΔG’ at max. formate 
produced (kJ mol-1) 

Bioreactor 
chapter 3 

1000 Continuous 44 -6.3 (± 8.9) 

Bioreactor 
chapter 4 

1000 Continuous 108 -4.0 (± 8.9) 

Bioreactor 
chapter 5 

1000 Continuous 159 -3.1 (± 8.9) 

Bioreactor 
chapter 6 

1000 Continuous 40 -6.5 (± 8.9) 

Tindallia sp. 
strain JE1  

1280 Batch 96 -4.9 (± 8.9) 

Tindallia sp. 
strain AHT5  

1280 Batch 51 -6.5 (± 8.9) 

A. woodii* 500 Batch 1.75 -5.0 (± 8.9) 

A. carbinolicum* 500 Batch 1.5 -5.4 (± 8.9) 

M. formicicum* 470 Batch 1.5 -5.4 (± 8.9) 

* Data retrieved from (Peters et al. 1999). Calculations for bioreactors and strains JE1 and AHT 5 were 

performed assuming 35oC, pH 9, 1.5 M ionic strength and 0.825 M HCO3
-. Calculations for A. woodii, A. 

carbinolicum and M. formicicum were performed assuming 25oC, pH 7.2, 0.05 M ionic strength, 0.05 M HCO3
-. 
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Figure 1 – Concentrations of formate (A) and sulfate (B) during the fed-batch experiments with 

mixed biomass. 

 

The production of formate from H2 and HCO3
- by microorganisms is mainly dependent 

on the concentration of HCO3
- (Thiele and Zeikus 1988; Wu et al. 1993). The major 

difference between formate production under neutral conditions and haloalkaline 

conditions is the high concentration of HCO3
-, being 825 mM in the bioreactors 

described in chapters 3-6 and even higher in soda lakes (Foti et al. 2008; Sorokin et 

al. 2010). The relevance of formate production at haloalkaline conditions was observed 

in the bioreactors described in chapters 3 to 6, where formate was the main product of 

H2 conversion. In these bioreactors, the dominant microorganism, Tindallia sp. strain 

JE1 (described in chapter 7), was shown to produce formate from H2 and HCO3
- up to 
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high concentrations (Table 2). The only other haloalkaliphilic microorganism capable 

of producing formate from H2 and HCO3
- was isolated from soda lakes sediments 

(Sorokin et al. 2011a). 

 

Table 3 – Gibbs free energy (ΔG’) for different H2 and formate consuming reactions under the 

bioreactors (chapters 3-6) actual conditions. 

Reaction ΔG’ (kJ mol-1) Eq. nº 

H2 + HCO3
-    HCO2

- + H2O -15.6 (± 8.9) 1 

HCO2
- + H2O  H2 + HCO3- -12.9 (± 8.9) 2 

4H2 + 2HCO3
- + H+    H2C3O2

- + 4H2O -110.4 (± 26.9) 3 

4H2 + SO4
2- + H+    HS- + 4H2O -151.6 (± 25.0) 4 

4HCO2
- + SO4

2- + 5H+  HS- + 4CO2 + 4H2O -134.7 (± 26.7) 5 

4H2 + HCO3
- + H+    CH4 + 3H2O -126.0 (± 25.1) 6 

4HCO2
- + H+ + H20  CH4 + 3HCO3

- -109.1 (± 21.5) 7 

Conditions used for calculations: pH 9, 1.5 ionic strength, 825 mM HCO3
-, 50 mM sulfate, 100 mM 

(substrates), 1 mM sulfide, 1 mM acetate, 1 mM formate (products), 1 mM methane, 1000 mbar H2. 
The error for each ΔG estimation is presented in brackets.  

 

 

Formate as electron donor  

Under haloalkaline conditions, formate seems to be one of the major electron donors 

for both sulfidogenesis and methanogenesis (Sorokin et al. 2010; Sorokin et al. 2015). 

In soda lakes, formate is mostly reported as a minor product of fermentation of more 

complex organic compounds while H2 is one of the major products (Zhilina et al. 1996; 

Pikuta et al. 2000; Zhilina et al. 2005; Pikuta et al. 2006; Pikuta et al. 2009; Begemann 

et al. 2012) . However, there are isolates, such as Amphibacillus fermentum and 

Amphibacillus tropicus, that produce formate as the major product from sugar 

fermentation (Zhilina et al. 2001). Additionally, formate is produced from H2 and HCO3
- 

up to high concentrations by other haloalkaliphilic anaerobes (Sorokin et al. 2011a, 

chapter 7). Thus, formate is an abundant electron donor in haloalkaline environments. 

For both sulfate reduction and methanogenesis, the use of H2 as electron donor 

instead of formate is thermodynamically similar under haloalkaline conditions (Table 
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3). Still, in soda lakes sediments, sulfate reduction has higher rates with formate than 

with H2 (Sorokin et al. 2010). This might be due to the low solubility of H2 but, as 

discussed in chapter 4, H2 solubility does not fully explain the reason for the lower rates 

compared to formate. During operation of the bioreactors (chapters 3-6), it became 

clear that there is a relationship between the presence of formate and sulfate reduction. 

More specifically, the addition of formate increased sulfate reduction activity in the 

bioreactor operated in chapter 5. In contrast to these previous results, the sulfate 

reduction rate in the fed-batch experiments reported here were higher when H2 was 

fed than when formate was fed as electron donor (Figure 1b). In this last case, the 

addition of formate might not have supported other processes such as acetate 

production as occurred in the sulfate/thiosulfate reducing bioreactor fed with H2 

(chapter 5). Also, Tindallia sp. strain JE1, the dominant species in that bioreactor, can 

produce small amounts of acetate when yeast extract was present (chapter 7). This 

indicates that the biomass used in the fed-batch experiments had the potential for 

production of small amounts of acetate from hydrogen and bicarbonate. Thus, in the 

fed-batch experiments fed with H2, acetate production might have occurred even 

though acetate accumulation was not observed. This could be due to the rapid 

consumption of acetate as C source for microbial growth, keeping acetate under the 

detection limit, which could explain the higher sulfate reduction rates observed with H2.  

Overall, the results from the bioreactors (chapters 3-6) and the fed-batch experiments 

point to a relation between formate producers, also capable of acetate production, and 

sulfate reducers. 

 

Interspecies formate transfer  

To investigate the relationship between formate production and sulfate reduction, 

several batch tests using two microorganisms were used. Tindallia sp. strain JE1  was 

used as formate producer and D. thiodismutans AHT10 as sulfate reducer (Chapter 7; 

Sorokin et al. 2008). Both strains were selected because they were closely related to 

the bacteria identified in the bioreactors (chapters 3-6). Their capacity for formate 

production and sulfate reduction was investigated in pure and co-cultures (Table 4). 

Tindallia sp. strain JE1 produced formate from H2 and HCO3
- and did not reduce sulfate 

(as described in chapter 7). D. thiodismutans AHT10 did not produce formate and did 
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not reduce sulfate with either H2 or formate as electron donors. Curiously, only when 

in co-culture and with H2 available, sulfate reduction occured using the formate 

produced (Table 4, Figure 2). This indicates that sulfate reduction by D. thiodismutans 

AHT10 only occurs in the presence of Tindallia sp. strain JE1. 

 

Table 4 – Formte production and sulfate reduction by Tindallia sp strain JE1, 

Desulfonatronovibrio thiodismutans AHT10 and a co-culture of both.  

Inoculum e- donor e- acceptor 
Formate 

produced (mM) 

Sulfide 
produced 

(mM) 

Tindallia sp. strain JE1 None HCO3
2- - - 

H2 HCO3
2- 92.8 ± 16 - 

Formate HCO3
2- - - 

H2 + Formate HCO3
2- - - 

None HCO3
2- + Sulfate - - 

H2 HCO3
2- + Sulfate 56.4 ± 28 - 

Formate HCO3
2- + Sulfate - - 

H2 + Formate HCO3
2- + Sulfate - - 

D. thiodismutans AHT10 None HCO3
2- - - 

H2 HCO3
2- - - 

Formate HCO3
2- - - 

H2 + Formate HCO3
2- - - 

None HCO3
2- + Sulfate - - 

H2 HCO3
2- + Sulfate - - 

Formate HCO3
2- + Sulfate - - 

H2 + Formate HCO3
2- + Sulfate - - 

Tindallia sp. strain JE1 +                 
D. thiodismutans AHT10 

H2 HCO3
2- + Sulfate 96.4 ± 7 11.7 ± 1.5 

None HCO3
2- + Sulfate - - 

(-) Formate or sulfide under the detection limit. Experiments were performed with mineral medium. No additional 

reactions using H2 or formate were detected, such as methanogenesis or homoacetogenesis. Tindallia sp. strain 

JE1 + D. thiodismutans AHT10 with H2 and sulfate was the only condition yielding growth. 
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Figure 2 – Formate, H2 and sulfate in the batch bottles with the co-culture of Tindallia sp. strain 

JE1 and D. thiodismutans AHT10. (●) – replicate 1; (Δ) – replicate 2; (■) – replicate 3. A – 

Formate in the liquid. B – H2 in the gas phase. C – Sulfate in the liquid. D – Actual Gibbs free-

energy changes of formate production and sulfate reduction. 

 

The observation that D. thiodismutans AHT10 could not reduce sulfate using supplied 

formate, contrary to when there is produced formate and presence of Tindallia sp. 

strain JE1, indicates that there is a missing piece to this process. Additionally, in bottles 

with the co-culture and H2 present the turbidity increased significantly, indicating 

growth of the co-culture, while no turbidity increase was observed in all other bottles. 

The observed growth might also be connected to the increase of the sulfate reduction 

activity (Figure 2). The occurrence of growth and sulfate reduction in only these bottles 

could be explained in two different ways. One is the production of trace amounts of 
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acetate from H2/HCO3
- as carbon source and the other is the production of an 

additional organic compound that might be required by one of the organisms for 

growth. For the culture of D. thiodismutans AHT10 used as inoculum, yeast extract and 

acetate were added to promote growth, which did not happen without. 

 

 

Figure 3 – Scheme with the syntrophic interaction between Tindallia sp. strain JE1 and D. 

thiodismutans AHT10. The dotted line represents our hypothesized reaction that was not 

experimentally confirmed in the present study. 

 

Tindallia sp. strain JE1 produced trace amounts of acetate when yeast extract was 

present, but it was never detected when yeast extract was absent (Chapter 7). In the 

co-culture, strain JE1 might obtain trace amounts of acetate, for example via starving 

biomass. This acetate could be used by D. thiodismutans AHT10 as carbon source for 

growth. We did not measure acetate, but it may have been produced in amounts below  

the detection limit of our equipment. D. thiodismutans AHT10 is dependent on acetate 

as carbon source when using H2 or formate as electron donor for sulfate reduction 

(Sorokin et al. 2011b). The other possibility is that D. thiodismutans AHT10 might be 

dependent not only on the formate produced, but also on an additional unknown 

compound produced by Tindallia sp. strain JE1. Some microorganisms can depend on 

trace compounds, such as vitamins or amino acids, excreted by other microorganisms 
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in complex communities (Seth and Taga 2014). To understand the metabolic 

relationship between these two microorganisms, further research is still required to 

evaluate if acetate or another compound is the missing piece in this syntrophic relation 

(Figure 3).  

 

 

Figure 4 – Phase contrast micrograph of a co-culture of Tindallia sp. strain JE1 and D. 

thiodismutans AHT10 grown with H2 and sulfate after 30 days of incubation Bar = 10µm 

 

Though D. thiodismutans AHT10 and Tindallia sp strain JE1 are dependent on each 

other, both bacteria grew suspended and did not attach to each other (Figure 4). Even 

though there might be an advantage to attach to each other, syntrophic 

microorganisms do not always do this (Stams and Plugge 2009). Growth without 

aggregation in the current study shows that the nature of their metabolic relationship 

may be rather complex involving multiple compounds such as formate and acetate as 

well as other trace compounds. 
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Conclusions 

Formate plays a key role in haloalkaline environments where it accumulated up to high 

concentrations when formed from H2 and bicarbonate. This is due to the high 

concentrations of HCO3
- that make the reaction thermodynamically favorable. Two 

haloalkaliphilic microorganisms capable of formate production from H2 and HCO3
- were 

previously isolated: Tindallia sp. strain JE1 and Tindallia sp. strain AHT5. The formate 

produced by Tindallia sp. strain JE1 was used as electron donor for sulfate reduction 

by D. thiodismutans AHT10 in a coculture. Growth of both species was only observed 

in co-culture, indicating a possible syntrophic relationship. However, formate transfer 

was not the only metabolic interaction taking place. Since D. thiodismutans AHT10 

could not grow in pure culture when supplied with sulfate and formate or hydrogen, 

trace amounts of acetate or other unknown compounds might be a key link in this 

syntrophic relationship. This requires further research. 
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Sulfidogenic bioreactors have been investigated and applied in different industries at  

mesophilic and neutral  pH conditions, but also more extreme conditions such as acidic 

pH and high temperature  (van Houten et al. 1996; Sipma et al. 2006; Bijmans et al. 

2008b; Muyzer and Stams 2008). The work in this thesis complements this knowledge 

by investigating the application of sulfidogenic bioreactors at haloalkaline conditions, 

high pH (> 8.5) and high salinity (> 0.5 M Na+). These are the conditions used in 

biodesulfurization processes, where sulfidogenic bioreactors could be used to treat 

sulfate and thiosulfate-rich waste streams. Along the research described in this thesis, 

new challenges and opportunities for application, and new microbial syntrophic 

relationships were discovered. In this chapter the results are discussed concerning two 

main topics: i) Application of sulfidogenic bioreactors under haloalkaline conditions, ii) 

Formate and formate producers in haloalkaline environments and their 

biotechnological potential. 

 

 

Application of sulfidogenic bioreactors under haloalkaline 

conditions 

We showed that application of sulfidogenic bioreactors at haloalkaline conditions is 

possible using different bioreactor designs and conditions of operation (Chapters 3-6). 

Previous research focused on liquid electron donors for sulfate reduction at 

haloalkaline conditions which allowed the choice of an anaerobic filter filled with 

sediments (Zhou and Xing 2015). In this thesis, gaseous electron donors, H2 and 

syngas, were investigated, which have the advantage of being produced locally from 

natural gas using gas reforming technology (Pei et al. 2014). The choice of gaseous 

electron donors led us to choose a gas lift bioreactor to promote a good gas-liquid 

contact to allow optimal diffusion of H2 in the liquid and prevent gradients, as shown 

for other conditions (van Houten et al. 1996; Bijmans et al. 2008a). Research with both 

liquid or gaseous electron donors showed similar maximum sulfidogenic volumetric 

rates (Zhou and Xing 2015; Chapters 3-6). In view of these results the choice for the 

best bioreactor system and electron donor will depend on electron donor availability 

and price, side reactions with each electron donor and biomass retention requirements.  
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H2 or syngas as electron donor 

This thesis focused on the use of gaseous electron donors, mainly H2 and syngas (H2 

+ CO). When using H2 as electron donor, sulfate and thiosulfate were both reduced, 

most probably by bacteria closely related to Desulfonatronovibrio spp. and 

Desulfonatronospira spp (Chapters 3-6). The characterized species from these genera  

are known to reduce sulfate and thiosulfate using H2 and formate (Sorokin et al. 2008; 

Sorokin et al. 2011b). Desulfonatronovibrio thiodismutans and Desulfonatronospira 

thiodismutans, can also disproportionate thiosulfate without using an electron donor, 

which was also observed in the bioreactors (Chapters 4-6). Most Desulfonatronovibrio 

spp. previously characterized are dependent on acetate as carbon source for growth 

(Sorokin et al. 2012). Because no organic compounds were added to the medium, this 

was considered as one of the reasons for the low biomass yield and lack of biomass 

retention in the bioreactors in chapters 3 and 4. In H2-fed sulfate-reducing bioreactors 

operated at neutral pH and low salinity conditions, sulfate reducers were dependent 

on acetate produced by homoacetogens (van Houten et al. 2009). In chapters 3 and 

4, acetate production was never observed; only formate production was observed. In 

chapter 5, the addition of sand as biomass carrier material to the bioreactor led to other 

microbial conversion as well. Besides sulfate/thiosulfate reduction and formate 

production, also acetate and methane were produced from H2 and HCO3
-. This 

increase of acetate production was associated with an increase of biomass growth, 

thus resulting in a higher biomass concentration in the bioreactor. This observation 

indicates that acetate is an essential carbon source for obtaining high biomass 

concentrations in the sulfidogenic bioreactors fed with H2 under haloalkaline 

conditions. 

As stated before, by using H2 as electron donor we achieved sulfidogenic rates similar 

to other studies using different liquid electron donors. A cheaper source of H2 is syngas 

produced via gas reforming process (Pei et al. 2014). The drawback of using syngas 

without purification, is the presence of CO. CO is a known inhibitor of hydrogenases, 

which consequently inhibits H2 fuelled biotransformations (Vignais and Billoud 2007; 

Parshina et al. 2010). This inhibition effect of CO occurred in the experiments 

described in chapter 6. But, after an adaptation period, the biomass recovered, being 

able to use H2 and also CO after this period. This activity was still affected by a further 

shock of higher CO concentrations (60% of the gas phase), but the biomass recovered 
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afterwards when CO concentrations were reduced back to 15%. The results indicate 

that when biomass is exposed to CO for longer periods, it can adapt to CO. 

Interestingly, there was a slight change in the microbial population that adapted to CO, 

but the dominant microorganisms remained the same. Especially a bacterium closely 

related to Tindallia spp. remained the same. This bacterium was enriched, isolated and 

characterized in chapter 7, where it was shown to produce formate from H2 and HCO3
- 

and to reduce thiosulfate. Both reactions were inhibited at the start of the CO addition 

but recovered after approximately 30 days (chapter 6). This indicated a possible 

adaptation at the metabolic level, probably by changing the type of hydrogenases, or 

by reducing the CO via the water-gas shift reaction. 

Overall the results showed that adaptation to CO is possible and that syngas can be 

considered as a feasible cheaper alternative source for pure H2 as electron donor for 

sulfidogenesis at haloalkaline conditions. However, further research using syngas with 

high fractions of CO (> 15%) for longer periods should be done to clearly understand 

the limits of using syngas. Also, research efforts should focus on how the microbial 

community adapts to the presence of CO. 

 

The challenge of microbial aggregation 

In chapters 3 and 4, the absence of microbial attachment and aggregation in the 

bioreactors was discussed. Even though the bioreactors were equipped with an 

internal settler to retain settling particles, no microbial aggregates were found during 

the bioreactors operation, which contrasts with previous research at neutral conditions 

(van Houten et al. 1995). The only microbial attachment observed was on the glass 

walls of the bioreactors, possibly favoured by the reduced shear forces near the 

bioreactor walls. The possible reasons for the lack of microbial aggregation were 

discussed in chapter 3. The possible causes include the lack of soluble divalent cations 

(Ismail et al. 2010), differences in cell surface hydrophobicity (Otto 2008) and reduced 

microbial interactions due to the absence of organic substrates (Chapters 3 and 5). 

In chapter 5, sand was added as a biomass support material because sand has the 

same molecular composition as the glass where biofilm was formed. The attachment 

of biomass to the sand was weak, limiting the presence of attached microorganism to 

cracks in the sand particles where they were protected from shear forces. However, 
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the addition of sand sustained acetate production which caused an increase in 

biomass. After acetate accumulated in the bioreactor, formation of small microbial 

flocks was observed. However, the size of the flocks did not increase over time, 

pointing again to a weak aggregation of the biomass. The presence of small 

aggregates indicated that the weak aggregation is caused by factors affecting their 

stability, such as lack of or reduced EPS production, and not initial attraction factors, 

such as cells surface charge or hydrophobicity. 

The addition of CO to the gas phase in chapter 6 led to the formation of different types 

of aggregates. Even though they were similar in size compared to the ones obtained 

in chapter 5, they had a more granular and compact structure. This indicated that CO 

influenced the spatial behaviour of microorganisms in aggregates, possibly due to 

toxicity effects of CO or metabolic interactions, as previously reported (van Houten et 

al. 1995). Thus, CO could be used to influence the type of aggregation in bioreactors 

operated under haloalkaline conditions. 

Besides microbial self-aggregation or attachment to carrier materials, other 

technologies can be used to enable control of the biomass retention in bioreactors:  

• Membrane bioreactors allow the control of biomass retention even if microbes 

are present only as free-swimming. Sulfate reducing bioreactors were already 

studied at neutral, acidic and high temperature conditions (Vallero et al. 2005; 

Bijmans et al. 2008b; Suarez-Zuluaga et al. 2015).  

• Encapsulation of biomass in gel-based granules can be used to control biomass 

retention but also select for microbes with high activity by pre-culturing them in 

the granules  (Trögl et al. 2012).  

• Bioelectrochemical cells with H2 production at the cathode can also be used for 

sulfate reduction, which was already shown for neutral conditions (Sharma et 

al. 2013). Microorganisms might attach to or associate with the cathode since 

that is the location where H2 is produced, thus increasing the biomass retention 

in the process. 

All these processes can be further investigated for haloalkaline conditions as 

alternative methods for improving biomass retention, and consequently, sulfide 

production volumetric rates. 
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Sulfide toxicity 

In both research lines, using liquid or gaseous electron donors, it became clear that 

the lower sulfide toxicity at alkaline pH for sulfidogenic microorganisms represents an 

advantage (Zhou and Xing 2015; Sousa et al. 2015). This allows the operation of 

sulfidogenic bioreactors under haloalkaline conditions at very high sulfate loading rates 

compared to sulfidogenic bioreactors operated at lower pH values (< 9). The lower 

sulfide toxicity is related to the speciation of sulfide at high pH, where HS- is the 

dominant species. It is generally assumed that HS- is not toxic and only the H2S species 

is toxic because it can freely diffuse across cell membranes. We performed preliminary 

experiments with mixed cultures incubated at different pH values with H2 and sulfate 

(0.5 M) (Figure 1, suppl. info. SI1). Sulfate reduction activity ceased at similar values 

for H2S concentration, while the total sulfide (all sulfide species) concentrations differed 

considerably. In view of these results, the operation of these bioreactors at higher pH 

values might even allow higher sulfate loading rates than investigated in this thesis, 

above 100 mM d-1. This should be further investigated, especially considering that the 

high pH, above 10, will also have a negative effect on the activity of sulfate reducing 

microbes (Sorokin et al. 2011b). The balance between the high pH effect and sulfide 

toxicity will result in an optimum pH for operation of sulfidogenic bioreactors. Such 

research should also include efforts to define the sulfide toxicity mechanism at alkaline 

conditions. The main toxicity mechanism described in literature is related to the 

capacity of H2S to freely cross cell membranes, affecting the pH homeostasis in the 

cell by dissociating into HS- and H+ (Ghose and Wiken 1955; Bijmans et al. 2008a). 

However, as described before (Chapter 1), alkaliphiles have structural and 

physiological mechanisms of keeping the intracellular pH lower than the extracellular 

environment. Thus, the described effect of H2S crossing the cell membranes, 

dissociating and producing H+ which decreases intracellular pH does not seem to apply 

for alkaliphiles. To clarify this, further research could focus on understanding the effect 

of toxic concentrations of sulfide on the intracellular pH and clarify if this is or not the 

toxicity mechanism. Another possible effect of higher intracellular sulfide 

concentrations hypothesized is the reaction of HS- with metal containing compounds 

in the cell, possibly disturbing its function (Madigan et al. 2012). A deeper look into the 

transcriptome and proteome of sulfidogenic microorganisms at toxic sulfide 

concentrations could provide clues on this alternative toxicity mechanism. 
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Figure 1 - Maximum total sulfide (including all sulfide species) and H2S concentrations in the 

liquid reached in sulfidogenic mixed cultures at different pH values (suppl. info. SI1). Salinity 

was always set at 1.5 M Na+. The tests at pH 7.9 and 8.3 were performed in 2 l reactors 

operated in batch mode mixed with a magnetic stirrer and with a continuous H2 supply of 5 ml 

min-1. The test at pH 9, described also in chapter 3, was performed in a 4.4 l gas lift reactor 

operated in batch mode and with a continuous H2 supply of 5 ml min-1. All reactors were fed 

with 0.5 M of sodium sulfate. 

 

Application of sulfidogenesis in biodesulfurization processes 

One of the major applications of sulfidogenesis at haloalkaline conditions is treating 

the bleed stream from biodesulfurization processes, such as the Thiopaq® process 

(Figure 2a). In this process the sulfide is absorbed in an alkaline solution, which is sent 

to a microaerophilic bioreactor. In this bioreactor, the redox conditions are kept low (< 

-350) to favour the oxidations of sulfide to S0 instead of to sulfate. As explained in 

chapter 1, the difficulties in redox control during the microaerophilic oxidation of sulfide 

leads to the unwanted production and accumulation of sulfate and thiosulfate in the 

process. This accumulation of sulfate and thiosulfate leads to a decrease in pH. To 

maintain the pH (above 8.5) part of the process liquid must discharged, which is called 

the bleed stream. This implies the addition of new caustic solution to the 

biodesulfurization process which increases the operational expenses (OPEX) of the 

biodesulfurization process. Additionally, the thiosulfate in the bleed stream can be 

oxidized, and thus contributes to the chemical oxygen demand (COD) of the disposed 

bleed stream, implying extra discharge costs.  
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Figure 2 – Process scheme of 3 different configurations for biodesulfurization processes. NBT 

– No bleed stream treatment; FBT – With full bleed stream treatment (reduction of sulfate and 

thiosulfate, addition of electron donor); TDBT – With thiosulfate removal from the bleed stream 

via disproportionation, no addition of electron donor; 1 – Scrubber. 2 – Sulfide oxidation 

microaerophilic bioreactor; 3 – Settler for sulfur separation; 4 – Sulfate/thiosulfate reducing 

bioreactor; 5 – Thiosulfate disproportionating bioreactor. 
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The addition of a sulfidogenic bioreactor allows the reduction of sulfate and thiosulfate 

to sulfide while regenerating the caustic solution (Figure 2b). This solution can be 

recycled into the microaerophilic reactor where sulfide is again oxidized. However, this 

process involves the addition of an electron donor leading to extra OPEX. The 

economic feasibility of applying a sulfidogenic reactor depends for a large part on the 

availability and price of the electron donor, and the S0 selectivity of the sulfide oxidation 

process. The S0 selectivity in the sulfide oxidation bioreactors can be between 90% 

and 95% and models predict that 98% could be achieved (Klok et al. 2013; Roman et 

al. 2016). To evaluate this, a simplified economic calculation for the sulfidogenic 

bioreactor application on biodesulfurization processes was performed (Supplementary 

information SI2 and SI3). For OPEX, only costs of the caustic consumption, bleed 

stream discharge and electron donor consumption were used, which usually represent 

the main costs. As can be seen in Figure 3, the OPEX of a biodesulfurization process 

with bleed stream treatment (FBT) is lower than without (NBT) for all scenarios with 

different S0 selectivity. Within the FBT options, the OPEX is directly related to the 

electron donor price. Syngas production by gas reforming provides higher savings, but 

similar to H2 purified from syngas. However, the capital expenses (CAPEX) are higher 

when using a gaseous electron donor, such as H2 or syngas, compared to the use of 

a liquid electron donor, such as formate, which increases the investement payback 

period (Figure 4). This is mainly due to the compressors required to recirculate H2 or 

syngas to promote a good gas diffusion. However, the investement payback period of 

the CAPEX of FBT, using savings in OPEX by using bleed stream treatment, is still 

slightly lower for H2 and syngas produced by gas reforming compared to formate. 

CAPEX costs related to the gas reformer were not included in the calculation but could 

increase the CAPEX payback time of FBT using H2 or syngas from gas reforming.  

Overall, the investment in bleed stream treatment can be recovered, being the payback 

time shorter for bigger size biodesulfurization plants and longer for plants with high S0 

selectivity in their sulfide oxidation bioreactors (Figure 4). Achieving higher S0 

selectivity in the sulfide oxidation bioreactor, approximately 98%, can be an effective 

strategy to decrease the OPEX (Klok et al. 2013). 
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Figure 3 – Relative operational costs (OPEX) savings compared to the NBT scenario. Different 

reactor configurations were evaluated: without bleed stream treatment (NBT), with full bleed 

stream treatment by sulfate and thiosulfate reduction (FBT) and with partial bleed stream 

treatment by thiosulfate disproportionation (TDBT). For the FBT, the OPEX was calculated 

with cryogenic liquid H2, H2 from gas reforming, syngas from gas reforming and formate as 

electron donors. For each option, the OPEX was calculated for three different S0 selectivity (% 

is based on the mol of HS- supplied): 90% S0 with 5% sulfate and 5% thiosulfate production; 

95% S0 selectivity with 2.5% sulfate and 2.5% thiosulfate production; 98% S0 selectivity with 

2% thiosulfate production. The values were calculated based on a biodesulfurization plant 

treating 1 tonS day-1. The calculations and values used are described in supplementary 

information SI2 and SI3.  
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Figure 4 – Investement payback period in years of the different reactor configurations in 

different scenarios of S0 selectivity and biodesulfurization plant size based on the S load. 

 

When thiosulfate disproportionation was observed in the bioreactor (chapter 4), 

another process configuration was designed, using a thiosulfate disproportionating 

bioreactor (TDBT). When including a reactor that exclusively performs thiosulfate 

disproportionation there is no need for an electron donor. In addition, the thiosulfate is 
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converted and reduces the COD of the bleed stream to low values (Figure 2c). This 

would not be a cost saving step in caustic, but could lead to a cost saving in bleed 

stream discharge. The TDBT process reduces the OPEX of the biodesulfurization 

process when compared to the NBT in all S0 selectivity scenarios evaluated but is 

always higher than the FBT options (Figure 3). This is also applicable for the payback 

time of CAPEX, which is always longer than the FBT options, rendering this option less 

attractive from an economic perspective (Figure 4).  

 

The missing pieces 

Besides the topics investigated in this thesis, additional factors might dictate the 

success or failure of sulfidogenic bioreactors application at haloalkaline conditions. 

These factors include mainly: i) effect of S0 as competing electron acceptor for sulfate 

and thiosulfate reduction; ii) effect of organic S compounds; iii) lack of oxygen tolerance 

of sulfidogenic microorganisms. 

 

Effect of S0 as competing electron acceptor 

S0 that does not settle properly is present in the bleed stream entering the sulfidogenic 

bioreactor, where it will be reduced to sulfide (van den Bosch 2008). First, S0 reacts 

abiotically with sulfide present in the sulfidogenic bioreactor, yielding polysulfides, 

which are stable at haloalkaline conditions. The polysulfides are soluble and can be 

easily reduced by sulfur-reducing microorganisms, producing sulfide. Haloalkaliphilic 

sulfur-reducing microorganisms have been previously isolated from both soda lakes 

and microaerophilic and anaerobic bioreactors (Itoh et al. 2005; Sorokin et al. 2007; 

Sorokin and Muyzer 2010; Sorokin et al. 2011a; Sorokin et al. 2013; Chapter 7). In 

soda lakes sediments from Kulunda steppe in Russia, S0 reduction activity is higher 

than sulfate or thiosulfate reduction activity. Thus, S0 can interfere with sulfate and 

thiosulfate reduction mainly by competing for the same electron donor, increasing the 

amount of electron donor required. This was observed in tests performed by us where 

S0 was added to a bioreactor as 5% and 10% (in mol) of the total S supplied. All sulfur 

was reduced to sulfide, being trace amounts of polysulfides, mainly S4
-, detected as 

intermediates. However, more research is required to understand the different kinetics 

of S0-reducing microorganisms compared to sulfate-reducing microorganisms. This 
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would allow developing strategies to prevent S0 reduction when it is not required, as in 

biodesulfurization processes. 

 

 

Effect of organic S compounds 

Besides inorganic S compounds, organic S compounds can be found in natural 

environments and bioreactors, such as dimethyl sulfide (DMS), dimethyl disulfide 

(DMDS) or methanethiol (MT). These compounds can be converted by methylotrophic 

methanogens (Lomans et al. 2002a), and to a lesser extent by sulfate reducers 

(Lomans et al. 2002b).The removal of organic S compounds could be considered in 

processes where organic S compounds are toxic, as is the case for the sulfide-

oxidizing bacteria in biodesulfurization processes (Roman et al. 2015; Roman et al. 

2016). The removal of MT and DMDS in anaerobic bioreactors was studied in the past, 

where it was mainly converted by methanogens, and more efficiently when a co-

substrate was added, such as methanol (van Leerdam et al. 2008). However, in the 

sulfidogenic bioreactors operated in this study, the dominant methanogens identified 

are hydrogenotrophic and not methylotrophic, which could represent a challenge to the 

degradation of MT or DMDS. We performed some preliminary research in fed-batch 

bioreactors studying the effect of DMDS on sulfidogenic biomass with and without H2 

in the gas phase. DMDS was abiotically converted to MT which was used by both 

methanogens and sulfate reducers. The presence of H2 as co-substrate had a positive 

effect, allowing operation of the bioreactor under higher DMDS concentrations, 2.5 mM 

with H2 compared to 0.5 mM without. More research is required to understand why MT 

and DMDS degradation can be performed at higher concentrations when co-substrates 

are used, such as H2. 

 

Oxygen tolerance of sulfidogenic microorganisms 

In biodesulfurization processes, such as the ones discussed above, the 

microorganisms from the sulfidogenic bioreactor recycle through the sulfide oxidation 

bioreactor. In this bioreactor, operated under microaerophilic conditions, the anaerobic 

sulfidogenic microorganisms will be exposed to oxygen (O2). All haloalkaliphilic sulfate 
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and sulfur reducers isolated so far are obligate anaerobes. The O2 presence is lethal 

to sulfidogenic microorganisms due to: i) reactive oxygen species (ROS) production, 

for example by reacting with HS- (Cypionka et al. 1985); ii) inactivation of enzymes, 

such as hydrogenases (Lubitz et al. 2014); ii) destabilizing the intracellular redox 

potential  (Dolla et al. 2006). However, sulfur reducers have been isolated from a 

microaerophilic bioreactor operated for almost 20 years continuously (Sorokin et al. 

2013), meaning that the sulfur reducers were able survive at low O2 conditions. Some 

neutrophilic sulfate reducing bacteria, such as Desulfovibrio spp., have mechanisms 

to handle reactive oxygen species formed in the presence of O2 (Dolla et al. 2006; 

Zhou et al. 2011). In the case of the FBT or TDBT biodesulfurization processes (Figure 

2), sulfidogenic microorganisms are also exposed to low O2 conditions. The 

sulfidogenic microorganisms might cope with oxygen and ROS by producing reactive 

oxygen species scavengers or by aggregating, as shown for neutral conditions (Dolla 

et al. 2006; van den Brand et al. 2015). However, none of these O2 tolerance processes 

were studied for haloalkaliphilic sulfidogenic microorganisms. More research is needed 

to understand if and how haloalkaliphilic sulfidogenic microorganisms can resist O2 

during their passage through the microaerophilic bioreactor of biodesulfurization 

processes. 

 

 

Formate and formate producers in haloalkaline environments and 

their biotechnological potential 

 

Formate production under haloalkaline conditions 

During all experiments with sulfidogenic bioreactors fed with H2 or syngas, formate was 

produced and accumulated in the medium (Chapters 3-6). Under haloalkaline 

conditions, formate can be produced during fermentation of organic compounds, as 

performed by Amphibacillus spp. (Zhilina et al. 2001), or via H2 and HCO3
-, as 

performed by Tindallia spp. strains AHT5 and JE1 (Sorokin et al. 2011a; Chapter 7). 

Formate production from H2 and HCO3
- is thermodynamically favorable because of the 

high concentration of HCO3
- present in haloalkaline environments (Chapter 8). 
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Consequently, formate can accumulate up to higher concentrations when compared 

with formate formation at neutral conditions with lower HCO3
- concentrations. This 

indicates that formate dependent metabolisms might be more active in haloalkaline 

environments. 

In the bioreactors studied in chapters 3-6, the production of formate as one of the main 

products led us to hypothesize that the dominant bacterium in the microbial community, 

related to Tindallia spp., were responsible for it (Chapter 4). To validate this hypothesis, 

we isolated that dominant bacterium, Tindallia sp. strain JE1, which could produce 

formate from H2 and HCO3
-, up to 96 mM of formate (Chapter 7). Growth of this species 

was dependent on the presence of yeast extract, like the other Tindallia spp. described 

in literature (Chapter 7). This indicated that Tindallia sp. strain JE1 required an 

additional carbon source and/or a trace element that we did not add the defined media. 

Such carbon source and/or trace element could have been present in the bioreactors 

in chapters 3-6, originating from dead biomass, allowing Tindallia sp. to grow and 

become the dominant microorganism. Tindallia sp. strain JE1 was also able to reduce 

thiosulfate and S0 using H2, but not sulfate. This cannot explain its dominance in the 

bioreactor fed only with sulfate, indicating that another competitive advantage might 

have been important in the bioreactors. 

 

Formate as interspecies electron carrier 

In view of the previously describe results, we hypothesised that the sulfate reducers 

present in the bioreactors were dependent on the formate produced by Tindallia sp. 

strain JE1. The dependence of sulfate reducers on the formate produced by Tindallia 

sp. strain JE1 might have allowed the dominance of Tindallia sp. strain JE1 in the 

bioreactors. In chapter 8, this syntrophic relationship was studied in co-cultures with 

Tindallia sp. strain JE1 (formate producer) and Desulfonatronovibrio thiodismutans 

AHT10 (sulfate reducer). Besides formate production, another unknown factor played 

a role in the syntrophic relationship. This factor could be the dependence of D. 

thiodismutans AHT10 on acetate or another unknown trace compound produced by 

Tindallia sp. strain JE1. Also, Tindallia sp. strain JE1 was shown to require yeast 

extract to grow (Chapter 7). In the co-culture without yeast extract, it might get similar 



Chapter 9 

224 

 

9 

compounds from the D. thiodismutans AHT10 as present in yeast extract which allows 

it to grow. 

In soda lakes in the Kulunda steppe in Russia, sulfate reduction activity of sediments 

was always higher with formate than with H2 gas (Sorokin et al. 2010). This indicates 

that formate is a preferred electron donor in soda lakes, as in the bioreactors (chapters 

3-6). The cause for this preference might be related to the uptake mechanisms involved 

in utilization of H2 and formate. In the syntrophic relationship, formate producers might 

have higher affinity mechanisms for H2 uptake compared to the sulfate reducers. The 

sulfate reducers dependent on formate, might have higher affinity for sulfate uptake or 

higher sulfate reduction rates than the sulfate reducers that use H2 directly. This would 

generate an advantage if the two microorganisms cooperate. This should be further 

researched together with the hypothesized effect of acetate and/or trace element 

production by the formate producer.  

 

Application of formate production 

Formate production at haloalkaline conditions can also be applied as a technology on 

its own. Formate can be used in wide range of applications, from CO2 capture and H2 

storage (Schuchmann and Müller 2013; Blanchet et al. 2015; Singh et al. 2015) to 

production of various chemicals and production of proteins for feedstock (Liu et al. 

2015; Yishai et al. 2016). The best studied process for formate production is the 

electrochemical route that uses specific metal, molecular or enzymatic catalysts to 

produce formate from H2 and CO2 (Taheri and Berben 2016). One of these enzymatic 

catalysts used was a formate dehydrogenase from Syntrophobacter fumaroxidans 

which was successfully coated on an electrode and produced formate from CO2 (Reda 

et al. 2008). Several microorganisms have the capacity of producing formate from H2 

and CO2, mostly as an intermediate for electron transfer (Peters et al. 1999). However, 

the formate production halts at formate concentrations below 2 mM at neutral pH and 

low salinity conditions. Recombinant Escherichia coli cells with formate 

dehydrogenase genes from Pyrococcus furiosus could produce formate up to 44 mM 

(Alissandratos et al. 2014). In this last study, a higher salinity was used, 0.25 M HCO3
- 

instead of 0.05 M HCO3
- by Peters et al. (1999). High HCO3

- concentrations change 

the thermodynamic equilibrium of H2/formate in favour of formate production. This is 
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confirmed by our observation at high HCO3
- concentrations, 0.825 M (Chapter 8), 

where formate was accumulated up to 90 mM, but it even reached about 160 mM 

(Chapter 5). Formate production at haloalkaline conditions allows the accumulation of 

higher formate concentrations, which is an advantage for transport and downstream 

applications.  

Future research is required to understand formate production from H2 and HCO3
- at 

haloalkaline conditions. We still need answers to why the formate producing microbes, 

such as Tindallia spp, produce formate and not acetate, which is energetically more 

favourable. Information on formate dehydrogenase used by formate producing 

Tindallia spp. could shed light on this subject. This information could allow the 

application of bioreactors with mixed biomass where conditions are steered to the 

specific production of formate.  
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Supplementary information 

The materials and methods for the sulfide toxicity experiments and economic 

calculations of the biodesulfurization processes are described in this section. 

 

SI1 - Sulfide toxicity experiments 

Two fed-batch 2 l glass anaerobic bioreactors with mixing were used. The bioreactors 

were filled with 1.5 l of mineral medium and the pH was adjusted by the addition of 

sodium bicarbonate to 8.5 in one and 8 in the other. Sodium sulfate (0.55 M) was added 

to the medium in excess to prevent substrate limitation. The gas phase added was 

80% H2 and 20% CO2 at 1.6 bar and, to prevent major O2 leaks and H2 limitation, it 

was replaced when the pressure in the bioreactor was under 1 bar.  

In each sampling, 10 ml of liquid and 3 ml of gas were collected. Sulfate, thiosulfate, 

sulfide, formate and acetate were analysed in the liquid as previously described (Sousa 

et al. 2015). Pressure in the headspace of the bioreactors and H2, CO2, CH4, H2S, O2 

and N2 fractions in the gas were analysed  as previously described (Sousa et al. 2015). 

The pH of the bioreactors was measured in the first and final sample, where a decrease 

in pH was observed: from 8.5 to 8.3 and from 8 to 7.9. The final pH values were used 

to calculate the fractions of H2S and HS- from the total sulfide measurements. 

 

SI2 - Model of steady state conditions 

A simplified model of the biodesulfurization process was modelled to achieve the 

caustic consumption and bleed stream disposal requirements. This was performed for 

different configurations:  

• Biodesulfurization process – Without bleed stream treatment (NBT); with sulfate 

and thiosulfate reduction of the bleed stream (FBT); with only disproportionation 

of thiosulfate (TDBT). 

• S0 selectivity in the sulfide oxidation bioreactor – 90% S0 production with 5% 

sulfate and 5% thiosulfate; 95% S0 production with 2.5% sulfate and 2.5% 

thiosulfate; 98% S0 production with 2% thiosulfate. 
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• Plant size – Load of 1 tonS d-1 (50 m3 liquid volume), 10 tonS d-1 (500 m3 liquid 

volume) and 100 tonS d-1 (5000 m3 liquid volume). 

Each calculation cycle equals to 1 day of the specific S load (1, 10 or 100 tonS) to the 

process. In the first cycle, the S load (as HS-) to the sulfide oxidation bioreactor is only 

the S load from the influent, but in the following calculation cycles, the S load from the 

recycle is added to the S load of the influent. In the sulfide oxidation bioreactor, the S0 

selectivity was used to calculate the amount of S0, sulfate and thiosulfate leaving the 

bioreactor. In the settler, it was assumed that 98% of the S0 settles and is separated 

from the rest (personal communication by Paques BV, Balk, Netherlands). In the FBT 

model, S0 and thiosulfate are fully converted to sulfide while sulfate is 90% converted 

to sulfide. This is based in observations from chapters 3-6. In the TDBT model, S0 and 

thiosulfate are fully disproportionated to sulfate and sulfide while sulfate is not 

removed. In the models NBT and TDBT, a bleed stream is formed, while in the FBT 

model, no bleed stream is produced. The calculation was performed for 150 cycles to 

assure that steady conditions were achieved (Figure S1). The values of cycle 150, at 

steady state, were used for the caustic consumption, bleed stream production and 

electron donor consumption calculations. 
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Figure S1 – Models of 150 calculation cycles for NBT, FBT and TDBT for a load of 1 tonS day-

1 with 90%, 95% and 98% S0 slectivity. 

 

The caustic solution used in the process has 1.5 M Na+ and this concentration must 

be kept preferably above 1 M. This means that the maximum sulfate or thiosulfate 

concentration that the process can handle is 0.25 M of S, which will mean a loss of 0.5 

M of Na+ to sodium sulfate or sodium thiosulfate formation. Thus, the bleed stream 

production was calculated based on the amount of sulfate and thiosulfate that needed 

to be removed to keep their combined concentration below 0.25 M of S. Based on the 

amount of bleed stream produced, the volume (Eq. 1) and mass (Eq. 2) of new caustic 

solution required was calculated. 

 

vbleed stream =  vnew caustic solution          Eq. 1 

mcaustic  =  vnew caustic solution × [caustic solution] × MwNaOH    Eq. 2 
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In the case of FBT scenarios, the electron donor consumption per day was calculated 

based on the stoichiometry of sulfate, thiosulfate and S0 reduction using H2 or Formate 

(Eq. 3). Based on the worst-case scenario of the results of chapter 5, 50% of the 

electron donor added was assumed to be used for other reactions, such as formate, 

acetate or methane production. For this reason, the supply of electron per day was 

multiplied by a factor 2 (Eq. 3). 

 

mole−donor = (([molSO4
2−]  × 4) + ([molS2O3

2−]  × 4) + ([mol𝑆 
0]  × 2)) × 2    Eq. 3 

 

SI3 - OPEX and CAPEX calculations 

In this chapter, we presented a simplified version of the OPEX which includes only 

major operational costs: caustic consumption, bleed stream disposal and electron 

donor consumption. OPEX values were calculated based on the values calculated as 

described above and the prices in Table S1.  

 

Table S1 – Market prices of caustic, bleed stream disposal and electron donors. 

 Price Source 

Caustic 20% (w/v) solution 250 € per m3 Alibaba.com 

Bleed stream disposal 36 € per m3 Paques B.V. 

Cryogenic liquid H2 7 € per Kg Energieonderzoek Centrum Nederland 

H2 gas from gas reforming 3.4 € per Kg Eurostat 

Syngas from gas reforming 2.55 € per Kg Based on Pei et al. (2014) and Eurostat 

Sodium formate 0.44 € per Kg Alibaba.com 
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For the CAPEX calculations, the bioreactor volume was estimated on the maximum 

volumetric rates obtained from chapter 5, 0.085 mol l-1 d-1. The bioreactor volumes 

were used to estimate total CAPEX based on estimated cost values of the bioreactors, 

pumps and compressors (Dutch Association of Cost Engineers, 2011). The total 

CAPEX and CAPEX payback period were calculated as follows: 

 

CAPEXFBT  =  €Bioreactor +  €Pumps + €Compressor     Eq. 4 

CAPEXTDBT  =  €Bioreactor +  €Pumps       Eq. 5 

CAPEX payback period =  
CAPEX

(OPEXNBT− OPEXFBT)
      Eq. 6 
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Summary 

Haloalkaline environments are characterized by their high salinity (> 0.5 M Na+) and 

buffered high pH (> 8.5). In these environments, the sulfur cycle is especially 

interesting due to the chemical stability of some S compounds, like sulfide and 

polysulfides. Sulfide, at high pH, is present in the deprotonated form, HS-, which is not 

volatile and accumulates in the liquid up to high concentrations. Sulfide is produced by 

sulfidogenic microorganisms, for instance sulfate or sulfur reducers. These 

microorganisms can reduce sulfate, thiosulfate, sulfite, S0 and polysulfides to sulfide 

with a suitable electron donor, such as H2, organic acids or alcohols. Sulfidogenesis 

for biotechnological application under haloalkaline conditions, has been explored only 

for the use of liquid electron donors, for example ethanol or formate. However, H2 or 

syngas are interesting electron donors since they can be produced on-site by natural 

gas reforming. This has not been investigated for haloalkaline conditions. 

In this thesis, we investigated sulfate-reducing bioreactors (Chapter 3) and thiosulfate-

reducing bioreactors (Chapter 4) fed with H2 as electron donor. Sulfate was reduced 

to sulfide, while thiosulfate was either reduced to sulfide or disproportionated to sulfide 

and sulfate, and sulfate was then reduced to sulfide. Sulfidogenic rates in these 

bioreactors were lower compared to previous studies, mainly due to the low biomass 

concentration in the bioreactors. The low biomass was caused by a lack of microbial 

aggregation, even though an internal settler was used in the bioreactors to promote 

aggregates selection. Due to this absence of aggregation, sand was added to a 

sulfate/thiosulfate reducing bioreactor as a biomass carrier material, but 

microorganisms attached only weakly to sand particles (Chapter 5). They colonized 

small cracks in the sand particles. However, in this bioreactor small microbial 

aggregates, without using sand as support, became visible when biomass 

concentrations started to increase. This increase in biomass concentration was linked 

to the acetate production from H2 and HCO3
-, which might have supported microbial 

growth as an extra organic carbon source.  

Besides H2, syngas is also a promising electron donor, but CO present in syngas is a 

known inhibitor of hydrogenases. The biomass used in this study adapted to addition 

of CO up to 15% CO of the gas fed to the bioreactor (Chapter 6). Thus, syngas can 

be used as electron donor for sulfate and thiosulfate reduction under haloalkaline 
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conditions considering that an adaptation period is included. Other effects associated 

with the CO addition were the formation of more granular shaped small microbial 

aggregates and an increased acetate production compared to bioreactors fed only with 

H2. 

Overall, considering the limitations due to lack of aggregation, the biotechnological 

application of sulfidogenesis under haloalkaline conditions using H2 or syngas is 

possible. For biodesulfurization processes, operated at haloalkaline conditions, the use 

of these sulfidogenic bioreactors could lead to savings in caustic consumption and 

disposal of COD and S-rich wastewater (Chapter 9). 

In all bioreactors, formate production from H2 and HCO3
- was observed together with 

the dominance of a bacterium closely related to Tindallia spp. in the microbial 

community. By isolating this bacterium, Tindallia sp. strain JE1, we could show its 

involvement in formate production (Chapter 7). Formate production from H2 and HCO3
- 

is thermodynamically not favourable at neutral conditions, but becomes feasible under 

haloalkaline conditions, due to the high HCO3
- concentrations. To explain its 

dominance in the microbial community of all bioreactor we hypothesized that sulfate 

reducers were dependent on formate produced by Tindallia sp. strain JE1 as electron 

donor for sulfate reduction (Chapter 8). The experiments performed in chapter 8 show 

this syntrophic relationship between Tindallia sp. strain JE1 and Desulfonatronovibrio 

thiodismutans AHT10, a sulfate reducer closely related to the sulfate reducers present 

in the bioreactors. These experiments revealed that D. thiodismutans AHT10 was also 

dependent on an additional compound produced by Tindallia sp. strain JE1, which 

could be acetate and an unknown compound, such vitamins or amino acids.  
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