A framework for designing Regional Biomass Delivery Chains (Project ME4)

Berien Elbersen

The Hague, 13 September 2007

Project coordinator: **Prof. Johan Sanders** Project secretary: **Bert Annevelink**

bert.annevelink@wur.nl

Project Partners

- Wageningen UR
 - AFSG Valorisation of Plant Production chains
 - AFSG Biobased
 Products division
 - ESG Alterra
- Energy research Centre of the Netherlands (ECN)
- Copernicus Institute Utrecht University
- KEMA
- VU Amsterdam

Project Details

- official start: January 2007
- duration: 4 years

in

- budget: 2075 kEuro
- main financer: Climate changes spatial planning

climate saus spatial planning

co-financing: EU, Ministry of Agriculture & Shell

agriculture, nature and food quality

Overall project objective

to develop an integrated framework to assess and analyse the spatial implications and related opportunities and consequences of an increased implementation of biomass delivery chains for energy and materials at different geographical levels

Start of DEMO

Biomass chain design & assessment to'ol

Methodology

Pre-design

Chain design

Spatial modelling

Impact assessment

Compare results

Demo

Biomass chain design & assessment tool

Methodology: modules

Main aim of this demo:

- 1) To illustrate what framework can be developed within the first 2 years of the project
- 2) To show how the tool can be used:
 - For design of optimal biomass chains (given technological expectations)
 - For spatial implementation of the chains
 - For assessment of spatial and other impacts
 - For comparison of the sustainability-performance of different chains
- 3) We aim at a tool that will be quick and easy to use
 - This implies that from the complicated models only response functions will be integrated into the tool
- 4) We will use existing models:
 - their use for assessing biomass chains is sometimes new
 - the integration of the models is most challenging

Methodology: Admire Rebus/BIOTRANS

Input:

- 1) Biomass potentials (to obtain realistic potential)
- 2) Costs of (expected) technologies
 - Technology costs (investment and operational costs)
 - Fuel costs (market prices, handling, domestic transport)
 - Lifetime
 - Tax rates
 - Reference electricity price
- 3) Policy (support) system (e.g. obligation or support system, feedin tariff, premia)

Calculation:

1) Demand and supply curves for each year

<u>Output:</u>

1) Amount of energy per year at different costs and biomasstechnology mixes

Biomass chain			Pre-o	design: c	output	
design & assessment						
tool		ol per G.	J			
Methodology			Costs I	bio-elect	ricity pe	r GWh
Pre-design		mass	Year	Year	Year	Year
Chain design	ton	s DM	2000	2010	2020	2030
Spatial modelling		00	K€50	K€50	K€45	K€40
Impact assessment	200	00	K€100	K€80	K€70	K€65
Compare results	300	00	K€120	K€100	K€100	K€90
· · · ·						
100 million			-	A BA		

Biomass chain			Chair	n design	input	
design & assessment to'ol	Г		Costs b	io-ethan	ol per G.	J
Methodology			Costs I	bio-elect	ricity pe	r GWh
Pre-design		Biomass tons DM	Year 2000	Year 2010	Year 2020	Year 2030
Chain design		1000	K€50	K€50	K€45	K€40
Impact assessment		2000	K€100	K€80	K€70	K€65
Compare results	L	3000	K€120	K€100	K€100	K€90

Biomass chain	Impact assessment biodiversity: output					
design & assessment		Indicators	impact			
to'ol		Soil biodiversity	+			
		Vegetation	+			
Methodology		Farmland birds	-			
Pre-design		Invertebrates	+			
Chain design		Mammals (forest)	-			
		Mammals (other)	+			
Spatial modelling	Indirect effects through improvement or degradation of					
Impact assessment	environment/habitat (output Miterra) specified for: • Soil biodiversity • Vegetation • Farmland birds • Invertebrates					
Land use						
Environment						
Landscape Biodiversity						
	 Mammals Direct effect on biodiversity through changes in land 					
Compare results	use and landscape structure on: • Farmland birds and mammals					

Biomass chain	Impact assessment biodiversity: methodology								
design & assessment to'ol	Biomass cropping- drivers	Pressures (partly from Miterra):	Water	Soil	Soil organism	Birds	Mammals	Inverts	Plants
Methodology -	rotation widening, higher crop diversity	extensification	+	+	+	+/-	+	+	+
Pre-design	Clearing abandoned	Re-using abandoned land, increase							
Chain design	land	landscape diversity	-	-	-	+	+/-	+/-	+/-
Spatial modelling	Drain land/ bring land under irrigation	Drainage/ irrigation	-	-	-	-	-	-	-
Impact assessment	Enlarging plots/ remove hedges, tree lines etc	Habitat fragmentation	0	0	0	-	-	-	-
Land use Environment Landscape	Less tillage/ploughing removal biomass	Less erosion, improvement of soil C	+	+	+	+	+	+	+
Biodiversity	Less N-application	Less eutrophication, acidification	+	+	+	+/-	+	+	+
Compare results	Less pesticides	Improvement of water & soil quality	+	+	+	+	+	+	+
			-		-	-	-	-	

Biomass chain		Compare results			
design & assessment to'ol	Select pre-designs: □2005 ▼	Select >2 pre-designs if you want to compare results for different pre-designs			
Methodology	Select results Of pre-designs:	Select here the type of results you want to compare for the			
Pre-design	□Costs bio-elect▼	selected pre-designs			
Chain design	Select chains:	Select >2 chains if you want to			
Spatial modelling	□North-east 200	compare results for different chains			
Impact assessment	Select results of chain designs:	Select here the type of results			
Compare results	□Price level ▼	you want to compare for the selected chains			
Bar chart Spider graph	Select Impacts:				
Score table Map	□Land use▼□Environment▼□Landscape▼□Biodiversity▼	Select here the impacts you want to compare for the selected chains			

Biomass chain design & assessment to'ol

Methodology

Pre-design

Chain design

Spatial modelling

Impact assessment

Compare results

EXIT

