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1 Introduction  

1.1 Principles of chemicals’ risk assessment and the need for improving 
efficiency of toxicity testing  

Chemicals are ubiquitous in our daily lives. The use of chemicals in several products and 

applications, such as food products, pharmaceuticals or cosmetics, creates great benefits to 

society. At the same time, humans and the environment are exposed to chemicals via a 

number of pathways. Depending on exposure concentrations, some chemicals can have 

harmful effects and can pose risks to human health and the quality of the environment (WHO, 

2016). The production of chemicals is expected to continue to increase in the coming years 

which may also increase human and environmental exposure and, consequently, the risks of 

adverse effects (OECD, 2012a). Controlling the risks from chemicals’ use and enforcing 

effective control strategies are key tasks of regulatory agencies, for example, the European 

Chemicals Agency (ECHA), the Organisation of Economic Co-operation and Development 

(OECD), and the World Health Organisation (WHO), who have put a lot of effort on the 

development of risk assessment and risk management processes. For instance the OECD, has 

been developing control strategies for consumer products such as risk assessment 

approaches in order to ensure harmonised strategies worldwide (OECD, 2016a). Likewise, the 

WHO and the Food and Agriculture Organization of the United Nations (FAO) have developed 

safety and control measures for pesticides (WHO/FAO, 2016a; WHO/FAO, 2016b).  

Risk assessment of chemicals describes the process by which information about the 

hazard identification of chemicals, the dose-response relationship (effects assessment), and 

exposure is collected and combined in order to characterise a chemical’s risks (WHO, 2004; 

van Leeuwen et al., 2007), see Figure 1.1. Based on the risk characterisation of chemicals, risk 

management measures for the control of risks to human health and the environment, can be 

adopted in order to allow the safe use of substances. The outcomes of risk management 

measures depend on information from the risk assessment of chemicals, but also consider the 

economic relevance of a chemical, the effectiveness of a measure, or its practicality, 

consistency and public acceptability (Krewski et al., 2009; Gabbert and Weikard, 2010; Tralau 

et al., 2015). Typical risk management measures are classification and labelling, safety 

standards, adjustments of the production technologies, restriction of use, or even a ban of the 

chemical compound (Hansen and Blainey, 2008).  

To ensure the protection of human health and the environment, the European 

Commission (EC) has established regulatory frameworks guiding the risk assessment of 

chemicals produced, manufactured or imported within the EU. In June 2007 the new 
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chemicals’ legislation “Registration, Evaluation, Authorisation and Restriction of Chemicals” 

(REACH) entered into force (EC, 2006). The key aims of REACH are: (i) “...to ensure a high level 

of protection of human health and the environment, including the promotion of alternative 

methods for assessment of hazards of substances....” (see Article 1 in EC, 2006) (ii) “the sharing 

and joint submission of information... in particular information related to the intrinsic properties 

of substances” (see Article 25 in EC, 2006) (iii) “...to ensure the good functioning of the internal 

market while assuring that the risks from substances of very high concern are properly 

controlled and that these substances are progressively replaced by suitable alternative 

substances ...” (see Article 55 in EC, 2006).  

To meet the information requirements defined by the REACH legislation, it is estimated 

that about 143,000 substances need to be tested, which is much more than the initial EU 

estimate of approximately 30,000 substances (Schoeters, 2010). Obviously, the traditional 

approach for assessing chemicals’ risks and hazards based on a “check-list” approach, where 

information about chemicals’ hazard is generated performing highly standardised in vivo or in 

vitro testing methods for every toxicological endpoint, is not able to fill information gaps 

within the deadlines defined in the REACH legislation. Furthermore, generating information 

about the hazardous properties of chemicals is resource consuming (Koch and Ashford, 2006; 

Bottini and Hartung, 2009). It has been estimated that fulfilling information requirements 

defined by REACH – if based on existing animal tests – would increase testing costs by several 

billions of Euros, depending on the toxicological endpoint and the number of chemicals that 

need to be tested for a given endpoint (Rovida and Hartung, 2009). The need to fill 

information gaps for large numbers of chemicals at low cost has stimulated research on 

developing new and efficient approaches to toxicity testing (Schaafsma et al., 2009; Andersen 

and Krewski, 2010; Hartung, 2010a).  

In addition to protecting human health and the environment through generating sufficient 

and adequate information, the REACH legislation emphasises the need to reduce animal 

testing (EC, 2003b; Hartung, 2010b). Article 25 of REACH legislation states that animal tests 

should be used as “a last resort”, supporting the “3R’s principle” i.e. the refinement, reduction 

and replacement of animal tests (Russell, 1959). Besides the REACH legislation, the European 

Cosmetics Regulation (EC, 2009), which was commenced in July 2013 and replaced the 

Cosmetics Directive (EC, 2003a), has adopted concrete steps to phase-out animal testing. 

Specifically, since 2009 the Cosmetics Regulation has prohibited to test finished cosmetic 

products on animals. Additionally, since July 2013 a full marketing ban of cosmetic products 

with ingredients tested in animals has been established. This stimulated the development of 
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testing methods which are not only able to generate relevant and sufficient information fast 

and less costly which replace animal testing. 

 
Figure 1.1: Steps of risk assessment of chemicals (adapted from van Leeuwen et al., 2007)  

 

Furthermore, it has been increasingly acknowledged that none of the available testing 

methods, including the animal tests, provides perfect information about a substance’s 

hazardous properties. Thus, information from testing is uncertain and consequently, there is a 

“cost of making errors”. An erroneous release of a hazardous substance can cause health 

damages resulting in costs to the society (Hartung, 2010a). Likewise, a false classification of a 

safe substance may prevent the realisation of marketing benefits (Grandjean, 2015). There is 

a need (i) to accelerate risk assessment of chemicals in order to fill information gaps for large 

numbers of chemicals according to the requirements of REACH legislation, (ii) to replace 

animal testing, and (iii) to account for the limitations of animal tests and standalone non-

animal testing methods for assessing chemicals’ hazardous properties. Therefore, several 

concepts for integrated approaches to testing have been proposed as an innovative solution 

for the improvement of toxicity testing of chemicals (Grindon et al., 2006a; Nordberg et al., 

2008; Jaworska and Hoffmann, 2010; Balls et al., 2012).  

Initially, a testing strategy integrating information from different testing methods, was 

defined as a “flexible sequence of steps ... covering the characterisation of the substance, the 

analysis of modes of action, the identification of possible analogues, and the evaluation of 

existing in vivo and in vitro testing data as well as of QSAR results” (Ahlers et al., 2008). By 

sequentially combining different testing methods in a testing strategy has been considered to 

allow for exploiting information about the hazardous properties of a substance from various 

sources, thus maximising information gains, while minimising or even avoiding animal use, 
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assessment

Risk 
characterisation

Exposure 
assessment



Introduction 

4 

testing time, and costs (Jaworska et al., 2010). Early examples of testing strategies have been 

developed for various toxicological endpoints, such as developmental and reproductive 

toxicity (Grindon et al., 2008a), eye irritation (Grindon et al., 2008b), skin corrosion (Grindon 

et al., 2008c), repeated dose toxicity (Grindon et al., 2008d), skin sensitisation (Grindon et al., 

2008e). Whereas early studies addressing the development of testing strategies took the form 

of qualitative decision flow charts, there has been a scientific discussion on suitable criteria 

and principles for the development of testing strategies. Specific attention has been given to 

developing testing strategies using non-animal testing methods (Hartung et al., 2013; Rovida 

et al., 2015). In June 2016, the OECD published two reports (OECD, 2016b; OECD, 2016c) in 

which concepts related to testing strategies and risk assessment of chemicals were presented 

(see Table 2.1 in Chapter 2 of this thesis).  

The overall debate and the process of developing non-animal testing strategies have been 

characterised by fundamental conceptual questions addressing the principles of data 

integration for assessing hazards and risks of chemicals. In particular, the fundamental 

questions of (i) how to integrate information from different sources in a transparent and 

coherent way, (ii) how to update information gains across testing sequential steps, (iii) how to 

quantify and reduce uncertainty across sequential steps, (iv) with which testing method to 

start a testing sequence, and (v) when to stop testing, have been discussed (Jaworska and 

Hoffmann, 2010; Jaworska et al., 2011). Answering, however, these questions, is ultimately, an 

economic optimisation problem (Gabbert and Weikard, 2013). Exploring the possible optimal 

allocation of scarce resources in order to maximise output (e.g. social welfare) is a key 

economic principle called “efficiency” (Hurley et al., 2000; Wynand et al., 2000). Economics as 

a discipline in social sciences offers a set of approaches and tools to analyse the trade-offs 

between competing objectives, such as information gains from testing, testing costs, and 

animal welfare. The aim is to increase efficiency of testing strategies and avoid unnecessary 

testing and costs (Nordberg et al., 2008).  

Although the scientific and policy debate about the development of a “new toxicity testing 

paradigm” (Krewski et al., 2010), including the minimisation of animal tests, have been clearly 

driven by efficiency considerations, only a few studies approach the question of how to 

optimise toxicity testing, and the development of testing strategies, from an economic 

perspective. Cost-effectiveness analysis (CEA) has been applied in order to evaluate testing 

methods with regard to their information outcome expressed in terms of a testing method’s 

predictive accuracy and animals saved (Lave et al., 1988; Gabbert and van Ierland, 2010; 

Norlén et al., 2014). Other studies have addressed the optimisation of testing methods using 
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tiered approaches or sequences of testing methods from an expected utility theory 

perspective (Hansson and Rudén, 2007), and by using a Value of Information (VOI) analysis 

(Yokota et al., 2004; Yokota and Thompson, 2004; Gabbert and Weikard, 2013). However, 

these studies include animal tests and usually assume a pre-defined order of testing methods.  

1.2 Addressing the development of efficient toxicity testing strategies: The 
case of skin sensitisation  

During the past decade, a lot of attention has been dedicated to developing non-animal 

testing methods and testing strategies for the toxicological endpoint skin sensitisation 

(Jaworska and Hoffmann, 2010; Jaworska et al., 2011; Hartung et al., 2013; Rovida et al., 2015; 

Jaworska, 2016). Skin sensitisation is the toxicological endpoint assessing a substance’s ability 

to cause allergic contact dermatitis (ACD) (UNECE, 2011). ACD is responsible for causing 

contact allergies affecting 15% – 20 % of the human population at least once in a lifetime 

(Thyssen et al., 2007). Within REACH, assessing skin sensitisation is mandatory for all 

chemicals produced or imported in tonnage larger than one tone per year (EC, 2006), and it is 

a mandatory endpoint for all substances used in cosmetic products (EC, 2009). In particular, 

the development of testing strategies for the assessment of skin sensitisation potential (i.e. the 

classification of substances as “sensitisers/non-sensitisers”), and the assessment of skin 

sensitisation potency (i.e. the assessment of the concentration dependent severity of an 

adverse effect by characterising substances as low, moderate, strong or extreme sensitisers), 

has been advanced from qualitative flow charts (e.g. Grindon et al. (2008e)) to deterministic 

approaches such as the tiered testing strategies (van der Veen, et al., 2014), or integrated 

testing strategies (ITS) approaches (Bauch et al., 2012; Urbisch et al., 2015a) and to 

probabilistic, quantitative approaches such as the Bayesian networks (Jaworska et al., 2011; 

Jaworska et al., 2013). Skin sensitisation has become particularly relevant for exploring and 

developing non-animal testing methods and for integrating information into testing 

strategies, among other toxicological endpoints such as endocrine disruption or liver toxicity 

endpoints (Valérie Zuang, 2015).  

First, skin sensitisation is an economically relevant endpoint because the number of 

people suffering from ACD has been increasing world-wide for many years (Thyssen et al., 

2007). Second, ACD causes high direct and indirect costs to society (ECHA, 2014b). Several 

studies have assessed direct costs arising from ACD, e.g. costs for medical treatment (Augustin 

and Zschocke, 2001; Ricci et al., 2006; Sætterstrøm et al., 2014), and indirect costs such as loss 

of well-being and productivity (Hongbo et al., 2005; Nijsten, 2012). Third, skin sensitisation 

testing is costly. Conservative estimates on testing costs for assessing the skin sensitisation of 
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chemicals under REACH suggest 162.8 billion Euros for the total number of chemicals, 

considering a moderate scenario on the animal tests requirements (Rovida and Hartung, 

2009). Under the same moderate scenario, animal tests for skin sensitisation, such as the 

Local Lymph Node Assay (LLNA) (Kimber et al., 1994; Kimber et al., 2001) described in the 

OECD TG 429 (OECD, 2010) and guinea pig based tests described in the OECD TG 406 (OECD, 

1992), are estimated to require the use of about 823,891 animals in order to meet the 

requirements of REACH (Rovida and Hartung, 2009). To achieve cost minimisation in the 

development of testing strategies, it is important to further study the integration of 

information about direct testing costs, animal welfare considerations and indirect costs from 

the increasing occurrence of ACD, the clinically relevant effect of skin sensitisation, in the 

development of testing strategies for assessing skin sensitisation.  

Finally, it has been acknowledged that the precision of testing methods, including animal 

tests, is limited. As shown for the case of skin sensitisation potential assessment, technical and 

biological variability can lead to misclassifications (Kolle et al., 2013; Hoffmann, 2015; 

Dimitrov et al., 2016; Dumont et al., 2016). The impact of biological and technical variability of 

the LLNA on the misclassification of substances, is associated with the fact that the 

classification of substances as “sensitisers/non-sensitisers” is based on clear-cut thresholds 

(Hoffmann, 2015). Biological and technical variability have an impact of misclassifications 

when test results fall within the area around the classification threshold. This area has been 

defined by (Kolle et al., 2013) the borderline range, also called “grey zone” by (Dimitrov et al., 

2016), in which test results are discordant (also described as ambiguous, inconclusive, or 

borderline). Biological and technical variability can limit the precision of non-animal testing 

methods (Leontaridou et al., 2017a). Finally, limited precision due to the biological and 

technical variability can add to uncertainties underlying to measures of non-animals testing 

methods’ predictive accuracy (Worth and Cronin, 2001a). In particular, uncertainties occur 

due to variations of the size and composition of substances’ samples used to assess predictive 

accuracy. However, research to unravel the joint effect of different types of uncertainty on 

predictive accuracy metrics of non-animal testing methods is still lacking. 

Given both the economic and the toxicological relevance of the skin sensitisation 

endpoint, several non-animal methods for assessing skin sensitisation potential have been 

developed in recent years (Mehling et al., 2012; Reisinger et al., 2015). The Direct Peptide 

Reactive Assay (DPRA) (Gerberick et al., 2004; Gerberick et al., 2007), the Antioxidant 

Response Element - Nuclear Factor Erythroid 2 (ARE-Nrf2) luciferase testing methods 

covered by KeratinoSensTM (Emter et al., 2010; Natsch et al., 2011) and the Human Cell 
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Activation Test (h-CLAT) (Ashikaga et al., 2006; Sakaguchi et al., 2006; Ashikaga et al., 2010; 

Sakaguchi et al., 2010), which have been validated by the European Centre for Validation of 

Alternative Methods (ECVAM; Italy). The DPRA is described in the testing guideline (TG) 

OECD TG 442C (OECD, 2015a), the ARE-Nrf2 luciferase method in the OECD TG 442D (OECD, 

2015b) and the h-CLAT in the OECD TG442E (OECD, 2016d). The ARE-Nrf2 method is also 

covered by LuSens (Ramirez et al., 2014; Ramirez et al., 2016), which is currently under 

validation by ECVAM. In addition, we include the in-silico method called the OECD toolbox 

QSAR method which is developed by the OECD (OECD, 2012d) following the guidance 

document on the principles of Quantitative Structure-Activity Relationship (QSAR) models 

validation (OECD, 2007), in our analysis.  

Individual non-animal testing methods cover different “key events” of the adverse 

outcome pathway (AOP) (OECD, 2012b; OECD, 2012c) of skin sensitisation, which describes 

the sequence of biological events and their linkages leading to the expression of an adverse 

outcome (i.e. an ACD incident). Since non-animal testing methods are not considered suitable 

to provide sufficient information to draw conclusions upon the skin sensitisation potential of 

chemicals (Mehling et al., 2012; Reisinger et al., 2015), a solution suggested is to integrate 

information from different sources and testing methods by using hypothesis-based 

approaches such as Bayesian networks (Jaworska and Hoffmann, 2010; Jaworska et al., 2011; 

Hartung et al., 2013; Jaworska et al., 2013; Jaworska, 2016) or deterministic ITS approaches 

(Bauch et al., 2012; Urbisch et al., 2015a). For the development of integrated strategies 

assessing skin sensitisation potential and potency (Jaworska, 2016) different sets of criteria 

have been proposed including transparency, coherency, ambiguity, or cost effectiveness 

(Hartung et al., 2013; Rovida et al., 2015) which are applicable also for other toxicological 

endpoints (Jaworska et al. 2010). It has also been suggested that the combination of individual 

non-animal testing methods into batteries or sequential strategies should be guided by the 

skin sensitisation AOP (Vinken, 2013; Patlewicz et al., 2014). The OECD has suggested the use 

of AOP as a guiding tool for the development of the “Integrated Approaches to Testing and 

Assessment” (IATA) (OECD, 2008). As a guiding tool, the AOP aims at integrating information 

from different testing methods for testing strategies and overall assessment of substances. In 

2015, the European Chemical Industry Council (CEFIC) made a selection of IATA cases 

assessing skin sensitisation as validation reference (CEFIC, 2015). Besides these efforts to 

develop strategies for the assessment of skin sensitisation potential and potency (see Chapter 

2 of this thesis for a review), the concept of “Defined Approaches” (DA), as individual 
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information sources to be used in IATA for skin sensitisation, was recently suggested (OECD, 

2016c).  

For skin sensitisation potential and potency assessment criteria for developing non-

animal testing strategies have been suggested in the literature (Jaworska and Hoffmann, 

2010; Jaworska et al., 2011; Hartung et al., 2013; Rovida et al., 2015; Jaworska, 2016). 

Moreover, the need for efficient testing, i.e. balancing information gains against costs (Gabbert 

and Weikard 2013; Norlén et al., 2014; Hartung et al., 2013; Rovida et al., 2015), has been 

repeatedly emphasised. Still, an approach to optimising non-animal testing strategies and a 

comprehensive evaluation of their efficiency in relation to animal tests have not become 

available so far. Moreover, systematic assessments of non-animal testing methods’ precision 

and the impact of precision constraints on the predictive accuracy of these testing methods 

need to be further elaborated. 

1.3 Problem definition, research objectives and research questions  

In light of the challenges and knowledge gaps discussed above, this thesis addresses the 

problem how non-animal testing strategies can be optimised from an economic perspective. 

The focus is on non-animal testing strategies for assessing skin sensitisation potential. In 

order to address this problem we first need to gain insights into the criteria and the current 

status of non-animal testing strategies for skin sensitisation proposed in the literature. Based 

on the insights gained from this, an approach to optimising non-animal testing strategies, 

which allows balancing information gains and expected losses from testing, needs to be 

developed and its applicability needs to be tested. In addition, the precision of information 

derived from non-animal testing methods for assessing skin sensitisation potential needs to 

be assessed, and the uncertainties in the measures of predictive accuracy of non-animal 

testing methods assessing skin sensitisation potential due to limited precision, variation of 

sample size and sample composition needs to be evaluated. 

Given the problem definition explained above, two objectives can be spelled-out. This 

thesis aims at developing and applying an approach to the development of optimised non-

animal toxicity testing strategies assessing skin sensitisation potential that explicitly allow 

balancing information gains and expected costs. In this thesis, costs capture both monetary 

expenses for conducting non-animal toxicity testing methods, and societal costs arising from 

the erroneous release of a substance causing skin sensitisation called “costs of making errors”. 

In addition, it focuses on the analysis of the impact of biological and technical variability on 

the precision of testing methods and examines the uncertainties in measures of predictive 
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accuracy of non-animal testing methods due to limited precision, variation of sample size and 

composition. To this end, the thesis addresses the following research questions (RQ):  

RQ1: What are relevant criteria guiding the development of non-animal testing strategies for 

skin sensitisation potential and potency assessment? 

The first research question focuses on the current practices on integrating information 

from non-animal testing methods for the assessment of skin sensitisation potential and 

potency. We introduce the conceptual criteria and informational requirements, from an 

economic perspective, for the development of resources-efficient testing strategies. We 

evaluate if and how existing testing strategies for skin sensitisation assessment meet the 

suggested criteria. 

RQ2: How can non-animal toxicity testing strategies for assessing skin sensitisation potential be 

optimised?  

The second research question deals with the development of the conceptual framework 

for optimising non-animal testing strategies, for skin sensitisation potential assessment. 

Furthermore, the applicability of the framework needs to be tested.  

RQ3: How do technical and biological variability of non-animal testing methods influence the 

precision of non-animal testing methods for assessing skin sensitisation potential?  

The third research question focuses on the precision of information derived from non-

animal testing methods assessing skin sensitisation potential. In particular, it addresses the 

impact of biological and technical variability on information derived from non-animal testing 

methods after dichotomising continuous experimental data into binary test results.  

RQ4: How do limited precision, sample size and sample composition impact the predictive 

accuracy of non-animal testing methods for skin sensitisation?  

The predictive accuracy depends on the sample size (i.e. the number of substances which 

were tested to determine it), the sample composition, and the precision of a testing method. 

Usually, non-animal methods use prediction models to transform continuous read-outs of the 

test into dichotomous results by applying threshold values above and below which the test 

substance is assessed as positive or negative. Due to intra-test variability the precision of any 

testing method is limited. The fourth research question focuses on exploring the impact of 

limited precision and uncertainties due to varying sample size and sample composition on the 

predictive accuracy of non-animal testing methods. The impacts are analysed individually and 

in combination.  

The research questions are addressed in Chapters 2 to 5 of the thesis.  
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1.4 Methodology  

In Chapter 2 we address RQ1 by surveying the scientific literature regarding the 

development of non-animal toxicity testing strategies for assessing skin sensitisation. In 

particular, we identify key criteria suggested in the toxicological literature for the 

development of testing strategies aiming at combining individual non-animal testing methods. 

We propose the conceptual and informational criteria required to improve resource-efficiency 

in the development of testing strategies from an economic perspective. Furthermore, we 

discuss how the criteria proposed in the toxicological literature, for example coherency, 

transparency and ambiguity (Hartung et al., 2013; Rovida et al., 2015) have been practically 

implemented. We compare these criteria with the conceptual and informational criteria from 

an economic perspective in order to evaluate whether existing non-animal toxicity testing 

strategies for skin sensitisation allow for balancing information gains and losses. Based on 

that, we draw conclusions on whether testing strategies can be characterised as resource-

efficient and we provide suggestions in order to further improving efficiency. Finally, we 

discuss implications raised from the evaluation of existing approaches to develop non-animal 

toxicity testing strategies.  

In Chapter 3, we address RQ2 by developing a decision-theoretic model for the 

optimisation of non-animal toxicity testing strategies for assessing skin sensitisation potential 

using Bayesian Value-of-Information (VOI) analysis (Hirshleifer, 1971; Olson, 1990; Howson 

and Urbach, 1991; Claxton 1999). Performing a testing method is assumed to have value if 

and only if expected social net gains from an optimal decision with additional information 

derived from testing outweigh expected net gains from decision-making without evidence. 

The expected value of test information (EVTI) can be expressed as the probability weighted 

sum of social net gains under posterior beliefs that the substance is hazard and non-hazard, 

respectively. The probability of seeing a positive or negative test result is used as weights 

(Yokota et al., 2004; Yokota and Thompson, 2004; Gabbert and Weikard, 2013; Leontaridou et 

al., 2016). Clearly, a testing method, or a testing strategy consisting of a battery of sequential 

combinations of non-animal testing methods, should be performed if the EVTI is positive and 

exceeds testing costs. Quantifying the EVTI, allows for ranking testing methods and their 

combinations into testing strategies, from a social welfare perspective. Bayesian VOI analysis 

offers a guiding tool for the construction of sequential testing strategies which allows 

determining the initial testing method, the ordering of testing methods required for the 

collection of sufficient information and when testing should stop.  
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The model developed in Chapter 3 is applied to a set of validated or pre-validated non-

animal methods (i.e. the DPRA, the OECD Toolbox QSAR, ARE-Nrf2 luciferase method covered 

by KeratinoSensTM and LuSens, and the h-CLAT), seven battery combinations of these 

methods, and 236 sequential 2-test and 3-test strategies composed of these methods. Their 

EVTI net of testing costs is compared to that of the animal test LLNA and AOP based testing 

strategies suggested in the literature. Determining the societal gains and losses from releasing 

a hazardous or a non-hazardous substance requires estimating expected marketing benefits, 

and balancing them with expected direct and indirect health damage costs caused by ACD. The 

latter is assumed to be a function of the skin sensitisation prevalence of a substance (Schnuch 

et al., 2011; Peiser et al., 2012; Schnuch et al., 2012) within the EU. As a proof-of-concept case, 

the Bayesian VOI model is applied to the preservative Methylisothiazolinone which is used for 

the formation of Kathon CG, known which is an ingredient for cosmetic products with high 

skin sensitisation prevalence (Uter et al., 2013).  

In Chapter 4 we address RQ3 by assessing the influence of technical and biological 

variability on the precision of non-animal testing methods for assessing skin sensitisation. We 

analyse how the classification of a substance as “sensitiser/non-sensitiser”, by dichotomising 

experimental data from non-animal testing methods using clear-cut classification thresholds, 

can be influenced by the biological and technical variability of the testing method. Specifically, 

we develop a method for quantifying the range around the classification threshold of non-

animal testing methods within which a method is likely to deliver discordant test results for 

the binary classification of substances. This range has been called “borderline range” (Kolle et 

al., 2013) or “grey zone” (Dimitrov et al., 2016). Acknowledging that for any testing method, 

including the “first choice” animal tests (i.e. LLNA), the borderline range defines the area in 

which binary test results, as derived by dichotomising continuous experimental data, are 

discordant (inconclusive, ambiguous or borderline). This offers a new perspective to the 

evaluation of the precision of the prediction models using classification thresholds, of testing 

methods: Substances for which test results fall into the borderline range can neither be 

classified as positive, thus indicating an adverse effect, or negative. The classification is, 

therefore, inconclusive which indicates the need for further information in order to draw 

conclusion upon the skin sensitisation potential of the tested substance.  

The borderline range is determined by calculating the pooled standard deviation of 

experimental test results revealed from repeated testing of substances. The standard 

deviation was pooled across substances and concentrations. Then, the borderline range is 

applied as an additional classification rule together with the threshold criteria of testing 
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methods. In that way, we identify substances as positive (i.e. sensitisers), negative (i.e. non-

sensitisers) or discordant (i.e. substances yielding test results within the borderline range). 

Furthermore, the percentage of substances yielding discordant test results, thus within the 

borderline range, is used as a measure of a non-animal testing method’s precision constraint. 

This analysis was performed for selected non-animal testing methods used for assessing skin 

sensitisation potential, i.e. the DPRA, LuSens, the h-CLAT, and the “2 out of 3” Integrated 

Testing Strategy (ITS) formerly called “2 out of 3” weight of evidence (WoE) approach (Bauch 

et al., 2012; Urbisch et al., 2015a). We quantify the borderline range for sets of experimental 

results compared to the LLNA as the reference animal test.  

In Chapter 5, we address RQ4 by exploring the uncertainties in predictive accuracy 

metrics of testing methods by quantifying the impact of limited precision and variations in 

sample size and sample composition, on the predictive accuracy of non-animal testing 

methods assessing skin sensitisation potential. We analyse these impacts for selected 

accuracy metrics usually used to characterise the predictive accuracy of these methods. i.e. 

sensitivity, specificity and concordance (also called accuracy) (Krzanowski and Hand, 2009) 

by means of contingency tables which is a well-established way to assess the predictive 

accuracy of tests (Cooper et al., 1979). The impact of limited precision is determined by 

quantifying sensitivity, specificity and concordance based on experimental samples including 

substances yielding tests results within the borderline range (i.e. borderline substances), and 

comparing these with accuracy metrics derived from samples after borderline substances are 

excluded. Furthermore, the impact of variations in sample size and sample composition on 

predictive accuracy metrics is assessed for randomised samples of substances using the non-

parametric bootstrap resampling analysis (Jones et al., 2000; Wehrens et al., 2000). We 

calculate the confidence limits and standard deviations of the accuracy metrics, in order to 

provide estimates for the uncertainty related to accuracy metrics due to the use of samples 

with pre-defined compositions of substances. Besides sample composition, accuracy metrics 

are influenced by the number of substances (sample size) used for the assessment of accuracy 

metrics. The impact of limited precision and variations in sample size and composition 

(individually and in combination) on the predictive accuracy of the non-animal testing 

methods is assessed using the DPRA, LuSens, the h-CLAT and the “2 out of 3” ITS.  

1.5 Novelty  

It has been acknowledged that there is a need to fill in the information gaps considering 

the hazardous properties of thousands of substances (Ahlers et al., 2008; Krewski et al., 2009; 

Schaafsma et al., 2009; Krewski et al., 2010). At the same time there has been increasing 
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support for a systematic reduction and replacement of animal testing (Kinsner-Ovaskainen et 

al., 2009; Daston et al., 2015). The need for adequate and sufficient information derived from 

fast and less costly non-animal testing methods has emerged the development of testing 

strategies, integrating information from individual non-animal testing methods (Jaworska and 

Hoffmann, 2010; Jaworska et al., 2011; Hartung et al., 2013; Rovida et al., 2015; Jaworska, 

2016). From an economic perspective this requires to balance the informational gains from 

performing testing methods with costs such as testing costs and the costs of making errors. 

Obviously, balancing gains and losses from conducting toxicity testing can be considered as an 

economic problem.  

So far, however, only few studies have become available addressing the problem how to 

optimise toxicity testing from an interdisciplinary perspective, linking toxicology with 

economics (Olson, 1990). Chapter 2 reviews existing non-animal testing strategies for the 

assessment of skin sensitisation potential and potency. This chapter also identifies the criteria 

suggested in the toxicological literature for developing non-animal testing strategies 

(Jaworska, 2016) and further evaluates them from the economic perspective. Chapter 2 

introduces the standard economic approach by suggesting the conceptual and informational 

criteria necessary to establish resource-efficiency in the development of testing strategies. 

Although criteria for developing resource-efficient testing strategies for the assessment of 

skin sensitisation refer to cost effectiveness (Hartung et al., 2013; Rovida et al., 2015), this 

chapter offers novel insights on the practical implementation of optimisation methods for the 

development of resource-efficient testing strategies from an economic perspective. 

Further, Chapter 3 develops a decision-theoretic framework for the optimisation of 

sequential testing strategies using the Bayesian VOI analysis. While the theoretical 

foundations of the framework, i.e. expected-utility theory and Bayesian inference, are not new 

per se, there exist only few applications to the problem of sequential testing, focusing 

exclusively on selected endpoints, i.e. carcinogenicity (Yokota and Thompson, 2004) and 

mutagenicity (Gabbert and Weikard, 2013), where animal tests are usually included in the 

testing strategies suggests. In Chapter 3, we apply for the first time the Bayesian VOI analysis 

to the optimisation of non-animal testing strategies for the assessment of skin sensitisation 

potential. We provide an evaluation of the EVTI of non-animal testing methods and strategies 

in comparison to the EVTI of the animal test. The Bayesian VOI model suggested in Chapter 3 

guides the construction of sequential testing strategies determining which non-animal testing 

method should be performed first, how many non-animal testing methods should be include 

into the strategy and when testing should stop. Further, we examine the role of the adverse 
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outcome pathway of skin sensitisation as a guide for developing optimal sequential non-

animal testing strategies.  

Besides developing and applying the Bayesian VOI model, this thesis provides novel 

insights on the informational outcomes derived from conducting non-animal testing methods. 

In particular, we introduce a methodology for estimating the influence of technical and 

biological variability on the precision of non-animal testing methods, in Chapter 4. The 

uncertainty of information derived from toxicity testing has been frequently discussed in the 

toxicology literature (Paparella et al., 2013; Heringa et al., 2015). For example, the impact of 

technical and biological variability on test results derived from testing methods (Kolle et al., 

2013; Hoffmann, 2015; Dimitrov et al., 2016; Dumont et al., 2016; Leontaridou et al., 2017a), 

and the effect of overfitting experimental data from testing (Kopp-Schneider et al., 2013) have 

been discussed. However, the estimation of non-animal testing methods’ borderline range and 

the identification of substances yielding borderline test results provide a novel approach to 

classify substances, to identify discordant test results and to decide if additional information 

is needed.  

Chapter 4 highlights the problem of using clear-cut thresholds for the binary classification 

of substances without considering the borderline range of testing methods. This, however, has 

not been sufficiently linked to the implications that may occur, if these substances (i.e. 

substances classified based only on clear-cut thresholds) are used to assess the predictive 

accuracy of testing methods. As a consequence, the impact of substances yielding test results 

within the borderline range of testing methods is highly relevant for drawing conclusions 

about a non-animal testing method’s predictive accuracy, which is addressed in Chapter 5. 

The uncertainty related to the assessment of predictive accuracy of testing methods (Worth 

and Cronin, 2001a) has been previously discussed. The predictive accuracy metrics are 

usually calculated based on available samples of substances and they are used as point 

estimates, thus without accounting for uncertainties. Besides predictive accuracy being 

influenced by the limited precision of the testing methods, expressed in number of substances 

which yield test results within the borderline range; the sample size and sample composition 

can impact the uncertainty in accuracy metrics of non-animal testing methods. Chapter 5 

examines the uncertainties underlying to the predictive accuracy metrics due to limited 

precision of non-animal testing methods. Furthermore, it analyses the impact of the variations 

in sample size and the sample composition on predictive accuracy metrics of non-animal 

testing methods. Finally the effect of varying sample size and sample composition in 

combination with the limited precision of non-animal testing methods is examined.  
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1.6 Outline of the thesis  

The remaining thesis chapters are structured as follows (Table 1.1): Chapter 2 surveys the 

state-of-the-art and the construction criteria currently suggested in the toxicological 

literature for developing toxicity testing strategies for assessing skin sensitisation. 

Furthermore, suggestions for the conceptual and informational criteria for increasing the –

resource-efficiency in the development of non-animal toxicity testing strategies are proposed. 

Chapter 3 describes the Bayesian VOI model for the evaluation of toxicity testing methods. 

The model is applied on the evaluation of sequential testing strategies for the assessment of 

skin sensitisation potential. Chapter 4 describes the quantification of the borderline range of 

testing methods. The borderline range is applied as an additional classification rule, next to 

the threshold criteria of non-animal testing methods assessing skin sensitisation potential, in 

order to identify the substances as positive, negative or discordant in case test results fall into 

the borderline range. Chapter 5 addresses the uncertainties underlying to the predictive 

accuracy metrics for non-animal testing methods assessing skin sensitisation due to limited 

precision by calculating accuracy metrics with and without considering the borderline range 

in the prediction models of non-animal testing methods. Further the impact of variations in 

sample size and sample composition on uncertainties in the predictive accuracy metrics is 

assessed. Chapter 6 summarises the results of this thesis answering the research questions, 

discusses the main findings and addresses the policy relevance of this thesis. Finally, 

limitations of the methods applied in this thesis are discussed, and suggestions for further 

research are proposed.  
Table 1.1: Outline of the remaining chapters of this thesis  

Focus on the improvement of the efficiency of non-animal toxicity testing strategies 

Ch. 2 A review of concepts and tools for integrating information from non-animal testing methods: The 
case of skin sensitisation. 

Ch. 3 Evaluation of non-animal methods for assessing skin sensitisation hazard: A Bayesian Value-of-
Information analysis. 

Focus on the information from non-animal testing methods and strategies 

Ch. 4 The borderline range of prediction models of testing methods for skin sensitisation potential 
assessment: Quantification and implications for evaluating non-animal testing methods’ precision. 

Ch. 5  Uncertainties in measures of predictivity: The impact of precision, sample size and sample 
composition on the predictive accuracy of non-animal methods for skin sensitisation. 

Closing chapter  

Ch. 6 Synthesis: Main findings of this thesis, general discussion, limitations of this thesis, conclusions and 
suggestions for further research. 
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2 A review of concepts and tools for integrating information 
from non-animal testing methods: The case of skin sensitisation 1 

Integrating information from in vitro, in silico and in chemico methods into non-animal 

toxicity testing strategies has been widely considered an innovative way of phasing-out 

animal testing. At the same time, non-animal testing strategies are considered to provide 

adequate and relevant information about chemicals’ hazardous properties in a resource-

efficient way. The aim of this chapter is to identify the conceptual criteria for developing 

resource-efficient testing strategies, and at evaluating existing testing strategies under these 

criteria. This chapter provides an overview of the definitions proposed in the scientific 

toxicological literature to characterise the process of integrating information into strategies 

for hazard and risk assessment of chemicals. We, further, present the general conceptual 

criteria which have been suggested in the scientific toxicological literature for guiding the 

process of data integration. Next, we propose a set of conceptual and informational criteria for 

combining information from different methods into strategies in a resource-efficient way. 

This explicitly acknowledges that resource efficiency, being is fundamental economic concept, 

requires balancing the gains and losses from using scarce resources. Finally, we evaluate 

whether existing testing strategies, addressing skin sensitisation, meet the suggested resource 

efficiency criteria. We conclude that existing testing strategies focus predominantly on 

maximising toxicity information, whereas direct and indirect testing costs (including also 

welfare losses for society in case of unintended health or environmental damage) are either 

ignored or only addressed in a non-quantitative way.  

 
  

                                                        
1 Chapter 2 is based on the manuscript in preparation: Leontaridou M., Gabbert S., Landsiedel R., (2017). A 
review of concepts and tools for integrating information from non-animal testing methods: The case of skin 
sensitisation. 
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2.1 Introduction  

Non-animal testing methods and toxicity testing strategies aim at a subsequent reduction 

of the number of animal tests used and, ultimately, a full replacement of animal testing (Ahlers 

et al., 2008; Hartung, 2010a; Adler et al., 2011; Reisinger et al., 2015). During the past decade, 

non-animal testing strategies have been developed for several toxicological endpoints. In 

addition to developing individual methods such as in vitro methods, in silico and in chemico 

methods, experts in science, industry and regulatory agencies have put a lot of effort in 

combining non-animal testing methods into toxicity testing strategies (Tollefsen et al., 2014). 

Integrating information from various sources for human health endpoints (ECHA, 2014a; 

Gocht et al., 2015; Worth and Patlewicz, 2016) such as skin sensitisation and eye irritation 

(Sauer et al., 2016), repeated dose toxicity and toxicity to reproduction (Gocht et al., 2015) as 

well as environmental endpoints such as fish toxicity (Nendza et al., 2014) have received a lot 

of attention. Basically, a testing strategy is an integrated combination of different testing 

methods for achieving an adequate assessment of the hazardous properties of substances. 

Different conceptual approaches for combining information from in silico, in vitro or in 

chemico methods have been proposed in the scientific toxicological literature. The suggested 

approaches have been characterised as “Integrated Testing Strategies” (ITS), “Sequential 

Testing Strategies” (STS), “Weight of Evidence” (WoE) and “Integrated Approach to Testing and 

Assessment” (IATA). Definitions of these approaches showed terminological overlaps and 

made a clear delineation difficult. For example, IATAs have been described as overarching 

“...data integration approaches... e.g. ITS, STS, WoE or other IATA strategies...” (Tollefsen et al., 

2014). Furthermore, the WoE approach has been closely related to the concept of ITS or DA, 

with the difference being that “...the WoE approach is usually based on existing data while ITS 

should prospectively address which assays need to be performed ...” (Rovida et al., 2015). 

Hartung et al., (2013) emphasized the need to “... understand that WoE and ITS are two 

different concepts although they combine the same types of information! In WoE there is no 

formal integration, usually no strategy, and often no testing...” (Hartung et al., 2013), while the 

concept of ITS “...enables an integrated and systematic approach to guide testing such that the 

sequence...is tailored to the chemical-specific situation...adapted and optimized for meeting 

specific information target” (Jaworska and Hoffmann, 2010). Despite terminological 

differences between the WoE concept and the ITS concept, both attempt to integrate 

information (Balls et al., 2006; Rovida et al., 2015). In June 2016 the OECD published guidance 

documents to clarify terminology (OECD, 2016b; OECD, 2016c), see Table 2.1.  
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Table 2.1: Definition of terminologies used to describe different schemes of integrating 
information from different sources into strategies for hazard and risk assessment  

Schemes Definition Reference 

IATA 

“An Integrated Approach to Testing and Assessment is an approach based 
on multiple information sources used for the hazard identification, hazard 
characterisation and/or safety assessment of chemicals. An IATA 
integrates and weights all relevant existing evidence and guides the 
targeted generation of new data, where required, to inform regulatory 
decision-making regarding potential hazard and/or risk.” 

Paragraph 1 
OECD, (2016c)  

WoE 
“A Weight of Evidence determination means that expert judgement is 
applied on an ad hoc basis to the available and scientifically justified 
information bearing on the determination of hazard or risk” 

Paragraph 4 
OECD, (2016c)  

DA 

“A Defined Approach to testing and assessment consists of a fixed data 
interpretation procedure used to interpret data generated with a defined 
set of information sources, that can either be used on its own, or together 
with other information sources within an IATA” 

“Defined Approaches to testing and assessment can be designed in 
different ways, and may take for example the form of a Sequential Testing 
Strategy (STS) or an Integrated Testing Strategy (ITS)” 

Paragraph 5 and 10 
OECD, (2016c)  

ITS 

“An Integrated Testing Strategy is an approach in which multiple sources 
of data or information are assessed at the same time by applying a variety 
of specific methodologies to convert inputs from the different information 
sources into a prediction” 

Paragraph 11 
OECD, (2016c)  

STS 

“A Sequential Testing Strategy is a fixed stepwise approach for obtaining 
and assessing test data, involving interim decision steps, which, depending 
on the test results obtained, can be used on their own to make a prediction 
or to decide on the need to progress to subsequent steps. At each step, 
information from a single source/method is typically used by applying a 
prediction model associated with that source/method” 

Paragraph 12 
OECD, (2016c)  

 

This chapter focuses on DAs, which were introduced by the OECD as a component of an 

IATA which comprises different approaches to integrate information from computational, in 

vitro and in chemico testing methods, and which can be designed as ITS or STS (OECD, 2016b; 

OECD, 2016c).  

Besides replacing or reducing animal testing, a key driver for the development of DAs has 

been the need to acquire sufficient and relevant information about chemicals’ hazardous 

properties with less time and at lower costs than the traditional animal tests (Gabbert and 

Weikard, 2010; Gabbert and Weikard, 2013; Hartung et al., 2013; Rovida et al., 2015). Clearly, 

maximising the information outcomes from testing, decreasing the time needed to attain 

hazard and risk information, reducing costs of testing, and minimising or even avoiding the 

use of animals are competing objectives. Balancing competing objectives is a fundamental 

economic principle which guides the optimal, i.e. resource efficient, use of scarce resources in 

order to either maximise information outcomes at a given resource endowment, or to 

minimise costs for achieving a given outcome target (Clemen and Reilly, 2001). Criteria and 

conceptual requirements for developing resource efficient testing strategies have been 
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proposed in the toxicological literature (Jaworska and Hoffmann, 2010; Krewski et al., 2010; 

Hartung et al., 2013; Rovida et al., 2015). So far, however, a systematic review of criteria that 

define “resource efficient” testing, and an evaluation of DAs with regard to these criteria has 

not been provided.  

The aims of this chapter are, therefore, twofold. First we provide a systematic review of 

criteria that were proposed in the scientific toxicological literature for constructing DAs to be 

used for hazard and risk assessment of chemicals. Second, we suggest the conceptual and 

informational criteria that guide resource efficient data integration into DAs. Then we 

evaluate existing DAs with respect to the conceptual and informational criteria. This 

evaluation focuses on DAs for assessing skin sensitisation potential (i.e. hazard identification) 

and potency (i.e. sub-categorisation into weak, moderate, strong and extreme sensitisers). 

Skin sensitisation is the clinically relevant endpoint for assessing allergic contact dermatitis 

(ACD) (UNECE, 2011). Approximately 15 - 20% of the human population suffer from an ACD 

incident once in their life (Thyssen et al., 2007). Assessing chemicals’ ability to cause ACD – i.e. 

their skin sensitisation potential or potency – is, therefore, a key requirement for the safety 

assessment chemicals falling under the European chemicals’ legislation REACH (EC, 2006) 

and the European Cosmetics Regulation (EC, 2009). Skin sensitisation can, therefore, be used 

as an illustrative case for the fundamental challenge on how toxicity testing should be 

conducted resource-efficiently and without animal use. 

Chapter 2 is structured as follows. A systematic overview of the criteria suggested for 

developing DAs is presented in Section 2.2. Section 2.2.1 presents conceptual criteria for 

developing DAs which were proposed in the toxicological literature of the past decade. Section 

2.2.2 suggests conceptual and informational criteria for developing optimal, i.e. resource-

efficient DAs, from an economic perspective. Section 3, then, describes qualitative (Section 

3.1) and quantitative (Section 2.3.2) methodological approaches used for integrating different 

types of information into DAs. Section 2.4 offers a detailed evaluation of DAs for skin 

sensitisation potential and potency assessment with regard to the conceptual and 

informational criteria which are suggested in Section 2.2.2. Section 2.5 concludes and 

provides suggestions for further improvement of the DAs to ensure resource efficient and 

animal-free testing. 
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2.2 Criteria for developing non-animal defined approaches 

2.2.1 Aims and conceptual criteria for developing defined approaches suggested in the 
toxicological literature 

The overall goal of integrating information from different sources, in particular non-

animal experimental or computational methods, is to generate adequate information at low 

cost, and with a minimum or no animal use (Jaworska et al., 2010; Jaworska and Hoffmann, 

2010; Hartung et al., 2013; Rovida et al., 2015). The integration of information is 

characterised as a dynamic process which progresses along with development of non-animal 

testing methods and the mechanistic understanding of endpoints (Tollefsen et al., 2014; 

Jaworska, 2016). In the scientific toxicological literature of the past decade a number of 

criteria have been suggested, seeking to explain “what the ITSs should be” (Jaworska and 

Hoffmann, 2010), “what the ITS should contain” (Rovida et al., 2015), “what the DAs should be 

associated with” (OECD, 2016b). These criteria are summarised in Table 2.2. 

Criteria, thus far, focus on (i) selecting and integrating reliable and accurate information 

from scientifically robust sources and testing methods (ii) guiding the final interpretation of 

the informational outcomes from a DA into decisions about the hazardous properties of 

substances (iii) evaluating the performance of the selected individual sources of information 

and the strategies themselves. Publications discussing criteria for developing optimal testing 

strategies often refer to ITS, however, sets of criteria have also been proposed and discussed 

for IATA, see e.g. (Tollefsen et al., 2014), and for DA, see e.g. (OECD, 2016b). As explained in 

the introduction, we will use in the following the term DA (i.e. defined approaches) as an 

overarching concept. 
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Table 2.2: Criteria for guiding the development of defined approaches (DAs) proposed in the 
scientific toxicological studies of the past decade 

Criteria to be considered in the development of DAs References 

Criteria related to generating information 

Optimal extraction and use of information from existing 
data. 

Schaafsma et al., 2009; Jaworska et al., 2010; 
Jaworska and Hoffmann, 2010; Schoeters, 2010; De 
Wever et al., 2012 

Combination of different types of information (e.g. in 
vitro, in silico, in chemico; use of in vivo only if 
necessary). 

Hoffmann et al., 2008; Dellarco et al., 2010; De 
Wever et al., 2012 

Use of scientifically valid (accurate, reliable) and 
adequate information. 

Hoffmann and Hartung, 2006; Ahlers et al., 2008; 
Schaafsma et al., 2009; Krewski et al., 2010; 
Schoeters, 2010; De Wever et al., 2012 

Evaluation of the performance (e.g. predictivity, 
goodness-of-fit, robustness) of individual testing 
methods and strategies. 

Jaworska and Hoffmann, 2010; Tollefsen et al., 
2014; Rovida et al., 2015 

Criteria related to costs and resource use 

Reduction/minimisation of direct testing costs for 
generating information and indirect costs i.e. testing 
time, costs of misclassifications, costs for regulatory 
validation of testing methods and strategies.  

 Lewis et al., 2007; Kinsner-Ovaskainen et al., 2009; 
Schaafsma et al., 2009; Krewski et al., 2010; De 
Wever et al., 2012 

Protect animal welfare; reduce/minimise the number of 
animal used in testing or animal suffering when animal 
testing is considered unavoidable. 

Hoffmann and Hartung, 2006; Lewis et al., 2007; 
Hoffmann et al., 2008; Schaafsma et al., 2009; 
Krewski et al., 2010 

Evaluation of cost-effectiveness or efficiency.  
Hoffmann and Hartung, 2006; Lewis et al., 2007; 
Hoffmann et al., 2008; Schaafsma et al., 2009; 
Krewski et al., 2010 

Conceptual requirements for DA development 

Data integration and final conclusion based on a 
coherent methodology (e.g. unambiguous algorithm). 

Jaworska and Hoffmann, 2010; De Wever et al., 
2012; Basketter et al., 2013; Rovida et al., 2015 

Specifications on the applicability domain, endpoint 
assessed and regulatory purpose (hazard or potency 
assessment). 

Kinsner-Ovaskainen et al., 2009; Krewski et al., 
2010; De Wever et al., 2012; Basketter et al., 2013; 
Tollefsen et al., 2014; Rovida et al., 2015 

Transparency regarding all information sources used, 
including testing costs, animal numbers, uncertainty; 
data processing, evaluation target (hazard/dose-
response information), endpoint. 

Lewis et al., 2007; Ahlers et al., 2008; Kinsner-
Ovaskainen et al., 2009; De Wever et al., 2012; 
OECD, 2016b 

Flexibility regarding the integration of new information, 
(e.g. hypothesis-driven approach). 

Kinsner-Ovaskainen et al., 2009; Jaworska et al., 
2010; Jaworska and Hoffmann, 2010; De Wever et 
al., 2012 

Final decision based on a weight-of-evidence approach. Jaworska et al., 2010; Jaworska and Hoffmann, 
2010; Basketter et al., 2013 

Address/document/reduce uncertainty of information 
generated from individual testing methods and 
uncertainty of extrapolations to effects in humans. 

Lewis et al., 2007; Ahlers et al., 2008; Schaafsma et 
al., 2009; OECD, 2016b 

Use of mechanistic information; relate construction of 
DA to mechanistic understanding of an endpoint (e.g. 
AOP). 

Ankley et al., 2010; Dellarco et al., 2010; Basketter 
et al., 2013; Landesmann et al., 2013; Vinken, 2013; 
Rovida et al., 2015; OECD, 2016b 
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According to the criteria presented in Table 2.2, information revealed from testing should 

be reliable, accurate, precise and fit-for-purpose. Uncertainties should be transparently 

addressed and documented. Furthermore, different cost components need to be 

acknowledged, in particular welfare losses from misclassifications (Hoffmann and Hartung, 

2006), monetary costs of regulatory validation of testing strategies (Schaafsma et al., 2009), 

animal welfare loss (Hartung et al., 2013; Rovida et al., 2015) and direct testing costs 

(Krewski et al., 2010; Hartung et al., 2013; Rovida et al., 2015). Jaworska and Hoffmann 

(2010) indicated that the process of integrating information from toxicity testing should allow 

for evidence maximisation while considering factors such as costs, animal welfare and test 

complexity for an optimal selection of information sources (computational, in chemico and in 

vitro methods). Although efficiency (Kinsner-Ovaskainen et al., 2009), optimisation (Rovida et 

al., 2015) or cost effectiveness (Lewis et al., 2007; Hoffmann et al., 2008; Hartung et al., 2013) 

are mentioned in the toxicological literature, the required methodological approaches for 

addressing these criteria in the process of developing a DA are not addressed. While the 

possible trade-offs occurring when developing DAs are acknowledged, still it has largely 

remained unclear how these trade-offs can be made transparent and how they should be 

addressed to ensure resource-efficient DAs. Krewski et al. (2010) emphasised the “...the 

difficulty in simultaneously meeting four objectives ...” when developing DAs, e.g. minimise 

testing costs, the number of laboratory animals, the time to perform testing methods and 

simultaneously provide sufficient information (also see (Nordberg et al., 2008; Gabbert and 

van Ierland, 2010). 

2.2.2 An economic perspective to developing optimal defined approaches 

The term “resource efficiency” is a key economic decision-criterion for guiding the 

allocation of scarce resources. In the economics’ literature “resource efficiency” denotes an 

allocation of resources that allows achieving a given outcome target with a minimum of 

resources (Clemen and Reilly, 2001). Toxicological testing of substances aims at generating 

new information about the hazardous properties of substances. The ultimate goal of toxicity 

testing is to allow for adopting better-informed decisions upon chemicals’ use. Depending on 

the toxicological effect of interest (the so-called “endpoint”), toxicological testing requires a 

variety of resources, in particular appropriate laboratory equipment or computational 

capacities, manpower, laboratory animals, and time. The challenge is, therefore, to distribute 

available resources such that a maximum of output – i.e. hazard information – can be 

achieved, or, to use a dual formulation, that a certain information outcome can be achieved 

with a minimum of resources (Norlén et al., 2014). Thus, efficient or optimal testing can be 
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characterised as a process where a maximum of information can be achieved at the lowest 

cost. 

The European chemicals’ legislation REACH requires large numbers of industrial 

chemicals to be tested within defined time-frames (EC, 2006). Acknowledging that existing 

testing capacities are tight, several studies pointed to the urgent need to structure the testing 

process more efficiently (Jaworska and Hoffmann, 2010; Krewski et al., 2010; Hartung et al., 

2013; Rovida et al., 2015). Corresponding to the efficiency definition provided above this 

requires specifying key criteria for efficiency evaluations of testing. A basic distinction can be 

made between (i) conceptual and methodological criteria for balancing gains and costs from 

testing and (ii) informational criteria (Table 2.3). 
 

Table 2.3: Key criteria for evaluating the resource efficiency of defined approaches (DAs)  

Informational criteria Possible assessment parameters 

Specification of information gain/outcome.  

 Accuracy parameters (e.g. sensitivity/specificity) for 
characterising the ability of a method to assess 
hazard/potency classes. 

 Reliability parameters (intra- and inter-laboratory 
reproducibility). 

 Mechanistic information (e.g. mode of action or coverage of 
key events in the AOP). 

 Combinations of different parameters (e.g. entropy). 

Specification of costs. 

 Direct testing costs (laboratory equipment or 
computational capacities, animal welfare loss, testing time, 
labour costs). 

 Indirect testing costs (i.e. validation costs). 

Conceptual criteria Possible methods/approaches 

Valuation of information gains and costs. 
 Monetary valuation. 

 Non-monetary valuation. 

Purpose of the assessment.   Hazard identification, potency sub-categorisation. 

Approach to balance information gains and 
costs.  

 Qualitative approach (e.g. multi criteria analysis). 

 Quantitative approach (e.g. cost-effectiveness analysis, cost-
benefit analysis). 

Assessment of uncertainties of parameters 
assessing information gains and testing 
costs. 

 Frequentist statistics’ approaches (e.g. calculation of 
confidence intervals). 

 Bayesian inference methods. 

 Approaches for assessing testing method’s precision. 

Stopping rule for testing. 

 Decision-theoretic approaches (e.g. Value-of-Information 
analysis). 

 Mechanistic relevance driven approaches (e.g. the adverse 
outcome pathway AOP). 
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Efficiency evaluations of individual testing methods and DAs require, first of all, specifying 

information gains and costs. Then we need to select appropriate quantifiable parameters for 

both components. Testing costs can be further distinguished into direct and indirect costs. 

Direct costs consist of i.e. (i) laboratory equipment or computational capacities for conducting 

a testing method which are directly required for conducting a testing method or a 

combination of methods, (ii) laboratory animal welfare loss (in case of an animal test) and (iii) 

testing time. Indirect testing costs include, for example, expenditures, resources and time 

needed for the validation of a (non-animal) testing method, or switching costs for cases where 

new technologies have to be adopted (Norlén et al., 2014). 

First, for quantifying information gains from testing different metrics can be used. For 

example, a testing method’s information outcome can be characterised in terms of its 

predictive accuracy, describing “the closeness of agreement between test method results and 

accepted reference values” (OECD, 2015a). Common accuracy metrics are sensitivity (i.e. the 

proportion of hazardous substances correctly classified as hazardous by a testing method) 

and specificity (i.e. the proportion of non-hazardous substances correctly classified as non-

hazardous by the testing method). In addition, information gains from testing can be 

characterised by a testing method’s reliability, denoting a testing method’s ability to be 

reproduced within and between laboratories over time and usually expressed in terms of a 

testing method’s intra- and inter- reproducibility. Finally, information about the coverage of 

specific key events in the adverse outcome pathway (AOP) of a particular in vivo adverse 

outcome by a specific testing method is important to quantify the informational gains from 

testing. 

Second, efficiency evaluations require defining a mechanism to balance information gains 

from testing with costs. How to do this depends, ultimately, on how information gains and 

costs are valued. Basically, two possibilities exist, i.e. monetary and non-monetary valuation. 

In case of a non-monetary valuation information or cost parameters are expressed in terms of 

their natural units (e.g. the proportion of positive chemicals correctly classified in case of 

sensitivity). A monetary assessment requires transferring information or cost parameters into 

Euro or Dollar values. While direct costs, e.g. expenditures for conducting a test, are usually 

expressed in monetary terms, a monetary valuation of other cost components (e.g. animal 

welfare loss) is less common and also often not wanted. Likewise, monetising information is 

not straightforward. In economics, different approaches have been suggested for 

quantitatively balancing information gains from testing with costs, some of which have also 

been applied to the field of toxicity testing (see Section 2.3 for a detailed discussion).  
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Third, evaluating the efficiency of testing methods, and guiding the development of 

optimal DA, must account for the uncertainty underlying to information gains and costs. In 

particular, since any testing method, including the animal test, is a model representation of 

human or environmental endpoint considered, information outcomes from testing are 

uncertain. Ideally, if different (non-animal) testing methods are combined into a DA, 

uncertainty will be reduced throughout the strategy. Again, different options exist for 

assessing uncertainty of test information and costs. A distinction can be made between 

frequentist and Bayesian approaches. Frequentist approaches, e.g. the calculation of 

confidence intervals of predictivity parameters, require the underlying datasets to be of a 

sufficient size to be meaningful. Bayesian inference methods explicitly account for a decision-

makers subjective (prior) beliefs and allow for updating information about uncertainty if new 

data become available. Finally, given that a DA is a framework that combines individual non-

animal testing methods, integrating data from individual testing methods into a DA requires 

to determine a stopping rule for testing (Gabbert and Weikard, 2013; Leontaridou et al., 

2016).  

2.3 Methodological approaches for data integration into defined approaches 

2.3.1 Qualitative approaches 

2.3.1.1 Descriptive weight of evidence (WoE) based approaches  

Descriptive Weight of Evidence (WoE) is a qualitative process for evaluating existing 

information and deciding whether or not further testing is necessary (Grindon et al., 2006b). 

Testing includes in silico, in chemico, and in vitro methods. Animal tests (in vivo) can be used 

as a “last resort” if evidence from non-animal methods is considered insufficient (Vermeire et 

al., 2013). For example the overview of the assessment strategy for skin sensitisation (EHCA, 

2016), the decision tree described in (Patlewicz et al., 2015) or even the earlier suggestion 

from (Grindon et al., 2008e) for assessing skin sensitisation guides the collection and 

evaluation of existing information and decision-making for further testing by means of 

graphical flowcharts. In a descriptive WoE approach, testing methods are performed either in 

combination or in a sequential order following flowcharts which indicate the order of tests to 

be conducted depending on whether information already collected is sufficient. Testing 

outcomes are usually characterised by their predictive accuracy measures, however, the 

starting point and the number of testing methods to be performed is decided by expert 

judgment.  
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2.3.1.2 Mode of action (MoA) based approaches  

The Mode of Action (MoA) concept describes a series of key events which are causally 

related to a toxic effect. The MoA concept was first applied to assessing potential carcinogens 

(EPA, 2005) and later it was extended to analysing non-cancer toxic effects (Boobis et al., 

2008). It has been suggested as a guiding tool to evaluate existing information and to 

integrate information from in-silico, in chemico, and in-vitro methods (Lilienblum et al., 2008; 

Dellarco et al., 2010; Dellarco and Fenner-Crisp, 2012; Simon et al., 2014) into DA 

frameworks. The MoA approach combines information from testing methods depending on 

the biological relevance of key events addressed by non-animal testing methods, which are 

assumed to lead to toxic effects on organs responses (Vonk et al., 2009). The MoA concept has 

been considered a promising tool to guide toxicity testing because it can be used for 

prioritising substances and for evaluating information from testing based on their 

mechanistic-relevance to humans. Therefore, the MoA concept can, first of all, guide toxicity 

testing with respect to the applicability domain of substances. Second, it can guide the 

development of testing strategies based on the mechanistic relevance of information derived 

from non-animal methods regarding the toxic effect on organs.  

2.3.1.3 Adverse outcome pathway (AOP) based approaches  

The adverse outcome pathway (AOP) concept describes the biological (key) events and 

their linkages which ultimately lead to the expression of an adverse effect at the level of an 

organism (OECD, 2012b; OECD, 2012c). Conceptually, the AOP broadens the scope of the MoA 

by considering adverse effects at an organism- or population- level rather than organ- level 

addressed by the MoA (Ankley et al., 2010; Vinken, 2013). The AOP has been suggested as a 

criterion for guiding data collection, and for the organisation and evaluation of relevant 

information derived from non-animal testing methods (Ankley et al., 2010; Landesmann et al., 

2013; Vinken, 2013; Kleinstreuer et al., 2016) in order to develop DAs. The advantage of using 

the AOP concept as a guiding tool for the construction of testing strategies is its ability to 

guide the collection and combination of specific pieces of information about key events in a 

biologically consistent manner (Gocht et al., 2015). AOP-based approaches aim at the full 

replacement of the animal tests with mechanistically-relevant combinations of non-animal 

testing methods addressing specific key events in the AOP (Schultz et al., 2016). 
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2.3.2 Quantitative approaches 

2.3.2.1 Machine learning approaches 

Machine learning approaches encompass computational algorithms developed to predict 

hazardous properties of substances and to reduce uncertainties underlying to the assessment 

of the hazardous properties. During the past years machine learning approaches have been 

increasingly suggested and applied to identify the types of information, called variables, which 

have to be combined to draw conclusions about the hazardous properties of substances. 

Applications of machine learning methods to the construction of DAs are Bayesian networks 

(BN) (Jaworska et al., 2011; Jaworska et al., 2013), Artificial Neural Networks (ANN) (Hirota 

et al., 2013; Tsujita-Inoue et al., 2014; Hirota et al., 2015; Tsujita-Inoue et al., 2015), Naïve 

Bayes Algorithms (NB), Support Vector Machines (SVM) and Classification and Regression 

Trees (CART) (Matheson, 2015; Asturiol et al., 2016; Kleinstreuer et al., 2016). Using machine 

learning approaches is considered a suitable approach to optimise DAs because they allow for 

a quantification of uncertainties at any stage of the testing strategy, and they allow for 

learning (i.e. updating the assessment) if new information (e.g. about the molecular structure 

of a substance) is received. Since existing applications of machine learning approaches focus 

exclusively on the information side of testing these approaches can also be denoted 

information-theoretic, in contrast to decision theoretic methods which are explained below. 

2.3.2.2 Cost analysis approaches 

Contrary to machine learning approaches, MoA- and AOP- based approaches, cost analysis 

approaches allow for balancing informational gains from testing with costs. If information 

gains and costs of testing can be expressed in monetary terms a cost-benefit analysis (CBA, 

see Bergstrom and Varian, (2003)) can be applied. Testing methods and DAs can be ranked 

according to their (expected) net benefits. In absence of monetary values for information 

gains or cost components, cost effectiveness analysis (CEA) is used (Hurd, 2015). CEA has 

been proposed and repeatedly been used as a decision-support tool for test selection in a 

regulatory context (Lave et al., 1988; Omenn, 1995; Bjørner and Keiding, 2004) and for 

evaluating toxicity testing strategies (Gabbert and van Ierland, 2010). Information outcome 

may be quantified in terms of a testing method’s performance metrics (Gabbert and van 

Ierland, 2010; Norlén et al., 2014).  

2.3.2.1 Decision theoretic approaches 

Decision theory approaches aim at quantifying expected net gains of a process (e.g. a 

policy intervention, a medical treatment), acknowledging that within this process different 
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decisions/actions can be adopted and that the outcomes of a decision/action are uncertain. 

Value of Information (VOI) analysis has been proposed as a decision-theoretic tool to 

prioritise and optimise testing (Lave et al., 1988; Yokota et al., 2004; Gabbert and Weikard, 

2013; Leontaridou et al., 2016). Based on expected utility theory, VOI analysis quantifies the 

expected payoff of any possible decision adopted with and without information from testing 

(Claxton, 1999). Payoffs can be expressed as welfare gains and losses resulting from decisions 

upon the use of a substance (e.g. ban or release). In a Bayesian inference framework, VOI 

analysis allows for incorporating a decision maker’s beliefs about the true hazardous 

properties of a substance and to update beliefs if new information becomes available (Gabbert 

and Weikard, 2013; Leontaridou et al., 2016). A decision-theoretic framework based on the 

expected utility maximisation theory has proposed (Hansson and Rudén, 2007), using 

frequencies to describe the accuracy metrics of testing methods. Since the expected value of 

test information is a quantitative measure it allows for ranking testing methods and 

strategies. In addition VOI analysis can be used to guide the construction of testing strategies 

because it offers an endogenous rule when testing should stop (i.e. the expected value of test 

information exceeds testing costs, see Leontaridou et al. (2016)). When a monetisation of test 

information is not possible, Multi Criteria Decision Analysis (MCDA) can be used. MCDA has 

been suggested as an approach to integrate evidence from different sources (Linkov et al., 

2011; Linkov et al., 2015) for the optimisation on assessments for nanoparticles (Hristozov et 

al., 2014).  

2.4 Evaluating defined approaches addressing skin sensitisation according to 
resource efficiency criteria  

To date, none of the non-animal testing methods can provide sufficient information to 

fully replace the animal tests used for skin sensitisation hazard identification and potency 

assessment as standalones (ECHA, 2016). Instead, a combination of in vitro, in chemico and in 

silico methods has been considered a good way to generate sufficient information and 

eventually replace in vivo tests (Kinsner-Ovaskainen et al., 2009; Casati et al., 2013). During 

the past years, several testing strategies have been proposed for the assessment of skin 

sensitisation potential and potency (Jaworska, 2016; OECD, 2016c). Strategies complying with 

the definition of a DA proposed in (OECD, 2016b) are summarised in (OECD, 2016c) and they 

are extensively described in the Annex I (OECD, 2016e) of the respective report. Note that 

these strategies have been also characterised as IATAs (Urbisch et al., 2015b) SEURAT-1 

annual report in 2015 (CEFIC, 2015).  
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DAs for skin sensitisation potential and potency assessment use different conceptual and 

methodological approaches to integrate information from the individual testing methods. 

Hence, they are presented in different ways, for example in the form of qualitative flowcharts 

(Grindon et al., 2008e; Mekenyan et al., 2010; ECHA, 2014a; Patlewicz et al., 2015), 

probabilistic approaches (machine learning) applying Artificial Neural Networks (Hirota et al., 

2013; Tsujita-Inoue et al., 2014; Hirota et al., 2015) or Bayesian Networks (Jaworska and 

Hoffmann, 2010; Jaworska et al., 2013; Jaworska et al., 2015), and as deterministic 

approaches based on a “majority vote” decision rule for batteries of testing methods (Bauch et 

al., 2012; van der Veen et al., 2014a; van der Veen et al., 2014b; Urbisch et al., 2015a) or score-

based batteries of testing methods (Ellison et al., 2010; Nukada et al., 2013; Takenouchi et al., 

2015). In addition, a regression analysis model (Natsch et al., 2015) and a quantitative model 

using the toxico-kinetics and toxico-dynamics modelling (MacKay et al., 2013) are used. Based 

on the criteria defined in Table 2.3 existing DAs for assessing skin sensitisation can be 

evaluated and compared regarding the resource efficiency of data integration. Table 2.4 

shows DAs that were selected as reference examples in (OECD, 2016c). 
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Regarding the information outcomes from testing each individual testing method used in 

a DA is characterised in terms of its predictive accuracy. For determining the predictive 

accuracy the sets of substances used are well documented and most commonly compared 

with the reference animal tests such as the LLNA or human data when available. DAs use 

testing methods for which reliability measures, accounting for inter- and intra- 

reproducibility of the testing methods are determined, however, they are not always 

explained in detail. For assessing the reliability of probabilistic DAs cross-validation statistical 

tools are suggested to cross check the robustness of DAs. For example, for the IDS the 

reliability of the strategy to predict the LLNA classification, thus the final decision outcome, 

was checked using the leave-one-out validation (Strickland et al., 2016). For the ANN-ITS, the 

ability of the model to predict the final decision outcome on the skin sensitisation potential 

was validated using the 10-fold cross validation approach (Hirota et al., 2013). Probabilistic 

approaches for the assessment of potency or potential offer the statistical tools to combine 

information of different parameters such as the BN ITS with the use of Mutual Information 

(MI) metrics (Jaworska et al., 2010; Jaworska et al., 2013; Jaworska et al., 2015). The 

mechanistic understanding of the information collected from each source of information is 

based on identifying key events covered in the skin sensitisation AOP. Generally, it is assumed 

that covering the first three key events of the AOP is sufficient to draw conclusions on a 

substance’s skin sensitisation potential. This is the case for most DAs presented in Table 2.4 

(Jaworska et al., 2013; van der Veen et al., 2014a; Jaworska et al., 2015; Urbisch et al., 2015a). 

However, some DAs focus on selected key events only. For example, Kao DA (Nukada et al., 

2013; Takenouchi et al., 2015) covers the first and third key event, whereas the EC-JRC DA 

covers the molecular initiating event (MIE) only (Dimitrov et al., 2005; Asturiol et al., 2016), 

which is considered to determine the final conclusion on the skin sensitisation potential 

(Asturiol et al., 2016). Given that only animal tests can provide information on the fourth key 

event (i.e. T-cell proliferation), animal welfare considerations do not allow the direct 

assessment of the fourth key event. The IATA case (Patlewicz et al., 2014) covers the fourth 

key event with the use of LLNA when necessary and the SARA case (MacKay et al., 2013) 

predicts this key event using modelling approaches.  

Considering direct and indirect testing costs we observe that only one DA, i.e. the RIVM 

STS, reported direct testing cost estimates (van der Veen et al. 2014). In case of probabilistic 

DAs (Natsch et al. 2015; Matheson et al. 2015; Hirota et al. 2015; Hirota et al. 2013; Tsujita-

Inoue et al. 2015), it is indicated that due to the saving unnecessary testing will also save 

costs. Furthermore, the Bayesian network (Jaworska et al. 2013) and the “2 out of 3” ITS 
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(Bauch et al. 2012; Urbisch et al. 2015a) suggest that a non-animal testing method would be 

avoided if information collected as a certain step of the strategy would be sufficient to 

conclude on the skin sensitisation potential. This implies saving additional testing costs. 

However, cost savings are not quantified and, consequently, are not considered an explicit 

variable for DA development. As DAs for skin sensitisation usually aim at fully replacing 

animal testing, only in a few cases (e.g. the non-testing pipeline approach (Patlewicz et al., 

2014; Patlewicz et al. 2015)) the animal test LLNA is proposed as a “last resort”.  

Regarding the conceptual criteria, the purpose of the assessment for which a DA is 

conducted is to asses either skin sensitisation potential or potency. The DAs presented in 

Table 2.4 document the information outcomes exclusively in a non-monetary way. 

Specifically, information outcomes are expressed in terms of predictive accuracy metrics. The 

final decision, i.e. the conclusion whether testing information is sufficient, or whether further 

testing is required, requires an exogenous decision rule. For example, the “2 out of 3” ITS 

(Bauch et al. 2012; Urbisch et al. 2015b) is based on a majority vote where the decision 

follows the outcome of two concordant test results. Similarly, the RIVM STS (van der Veen et 

al. 2014) uses as a first step a Bayesian QSAR approach, described in (Rorije et al., 2013), 

which is followed by tiers of non-animal testing methods. The overall conclusion is also based 

on a majority vote from test results from sequential steps in the strategy. The Artificial Neural 

Network (ANN) concept (Hirota et al. 2015; Hirota et al. 2013; Tsujita-Inoue et al. 2015) or 

the Bayesian networks (Jaworska et al., 2010; Jaworska and Hoffmann, 2010; Jaworska et al., 

2013; Jaworska et al., 2015) offer probabilistic approaches to predict skin sensitisation 

potential or potency using different physicochemical properties and information from non-

animal testing methods. The IDS DA (Matheson, 2015; Strickland et al., 2016) uses different 

machine learning approaches, i.e. ANN, Naïve Bayes algorithm (NB), Classification and 

regression tree (CART), Linear discriminant analysis (LDA), Logistic regression (LR), Support 

vector machine (SVM). The SVM is considered to be the most accurate (Matheson, 2015; 

Strickland et al., 2016) and combines information from non-animal testing methods (i.e. h-

CLAT), computational methods and physicochemical properties. The EC-JRC DA uses the 

Classification Trees (CT) machine learning approach based on in silico information to predict 

skin sensitisation potential (Dimitrov et al., 2005; Asturiol et al., 2016). Machine learning 

models are developed as information maximising approaches and the stopping rule is not 

clearly defined. It is rather exogenously set by the information target.  

Direct or indirect testing costs are in most cases not reported. None of existing DAs 

incorporate a mechanism that balances information gains and costs. As shown in Leontaridou 
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et al. (2016), information from testing cannot be considered regardless costs. In particular, 

testing costs are decisive for determining when testing should stop (Gabbert and Weikard 

2013). Hence, ignoring testing costs means that existing DAs do not provide an endogenous 

stopping rule to testing. Rather, the stopping rule for deterministic approaches such as the “2 

out of 3” ITS (Bauch et al. 2012; Urbisch et al. 2015b), the RIVM STS (van der Veen et al., 

2014a; van der Veen et al., 2014b) and the Kao DA suggestions (Nukada et al., 2013; 

Takenouchi et al., 2015) is often based on exogenous decision rules such as AOP coverage. In 

probabilistic DAs such as the BN-ITS (Jaworska et al., 2010; Jaworska et al., 2013; Jaworska et 

al., 2015), the stopping rule is exogenously determined setting information targets i.e. the 

prediction of the skin sensitisation potential using the LLNA results as a reference. We argue, 

however, that the stopping rule should not be pre-defined assuming for example covering 

most key events in the AOP is a sufficient condition to ensure robust predictions from a 

testing strategy. Instead, decision-theoretic approaches should define rules under which 

testing should stop when information no longer contributes to the existing knowledge.  

The uncertainty underlying to relevant parameters for information outcomes is assessed 

in a variety of ways. The BN-ITS proposed by (Jaworska et al., 2010; Jaworska et al., 2013; 

Jaworska et al., 2015), for example, offers an elaborate uncertainty assessment with regard to 

predictive accuracy of each individual method, and the precision, being the ability of a method 

to produce concordant results from repeated testing. Uncertainty is based on Bayesian 

inference and mutual information theory. In case of deterministic approaches, the majority 

vote is frequently applied to test results without explicitly assessing uncertainties. Individual 

testing methods reproducibility, interchangeability and reliability is assessed for methods 

used in, for example, the “2 out of 3” ITS (Bauch et al., 2012; Natsch et al., 2013; Urbisch et al., 

2015a) and the RIVM STS (van der Veen et al., 2014a; van der Veen et al., 2014b).  

2.5 Conclusions and recommendations 

This chapter reviews the state-of-the-art regarding the development DAs denoting 

approaches to integrate information from different testing and computational methods to 

determine the hazardous properties or risks of substances. According to the OECD, DAs are 

defined “rule-based [approaches] and can either be used on their own ... or considered together 

with other sources of information in the context of IATA” (OECD, 2016b). We identified criteria 

that were suggested in the toxicological literature as normative principles for constructing 

DAs. One criterion that has frequently been suggested is cost-efficiency. We defined key 

criteria for evaluating the resource-efficiency of DAs, and explain economic approaches that 

have been used or suggested for improving resource efficiency of DAs. Using these criteria we 
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evaluated DAs suggested for the assessment of skin sensitisation potential and potency, and 

presented in a recent OECD guidance document(OECD, 2016b).  

Based on our evaluation we can conclude that none of the existing DAs integrate both 

information and cost parameters. Instead, DAs predominately focus on maximising 

information, while the reduction of testing costs is often mentioned to be an important aim of 

DAs. Still, direct or indirect costs components were not systematically incorporated in the 

construction of testing strategies. Furthermore, the uncertainty of test information, which can 

originate from different sources (Worth and Cronin, 2001b; Kolle et al., 2013; Hoffmann, 

2015; Leontaridou et al., 2017a; Leontaridou et al., 2017b) are assessed only in some of the 

existing DAs. Basically, ignoring direct and indirect testing costs implies that the resource 

efficiency of DAs cannot be evaluated. In particular, DAs discussed in this paper do not allow 

for identifying the trade-offs between generating information from testing, and the costs for 

resources required to attain new information from testing.  

As a consequence, it remains unclear whether DAs indeed allow for optimising 

toxicological testing compared to animal tests, if “optimising” is interpreted in terms of 

economic resource efficiency. Moreover, suggested DAs for skin sensitisation testing lack an 

endogenous stopping rule. Evaluating the resource efficiency of DAs requires, first, to 

document both information outcomes and costs of testing. In addition, information gains must 

be balanced with costs. This can be achieved by means of integrating cost information in the 

construction method of a DA. In particular, machine learning approaches offer the possibility 

to weighing costs and information gains while accounting for uncertainties of both 

parameters at any stage of the DA. In a recent paper by Leontaridou et al. (2016) Bayesian VOI 

analysis has been applied to optimising DAs for skin sensitisation testing. Their approach 

showed that DAs are more resource efficient compared to the animal test LLNA. Alternatively, 

the resource-efficiency of DAs can be evaluated ex post, i.e. after the strategy was developed, 

using cost analysis methods, i.e. CBA or CEA. Both methods have been widely used for 

efficiency assessments of, for example, medical treatments, where conceptual challenges to 

identify the best performing alternative are very similar to toxicity testing (Claxton, 1999; 

Cunningham, 2001; Bergstrom and Varian, 2003; Claxton et al., 2004). It is important to note 

that optimal, i.e. resource-efficient, testing does not require that all relevant parameters are 

monetised. However, further research is require to assess direct and indirect costs of toxicity 

testing to ensure that cost information can be integrated in the construction of DAs. We 

believe that this is a prerequisite for developing optimal testing approaches which ensure 

valid safety assessments chemicals without animal testing, and low cost.  
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3 Evaluation of non-animal methods for assessing skin 
sensitisation hazard: A Bayesian Value-of-Information analysis2 

This chapter offers a Bayesian Value-of-Information (VOI) analysis for guiding the 

development of non-animal testing strategies, balancing information gains from testing with 

the expected social gains and costs from the adoption of regulatory decisions. Testing is 

assumed to have value, if and only if, the information revealed from testing triggers a welfare-

improving decision on the use (or non-use) of a substance. As an illustration, our VOI model is 

applied to a set of five individual non-animal testing methods used for skin sensitisation 

hazard assessment, seven battery combinations of these methods, and 236 sequential 2-test 

and 3-test strategies. Their expected values are quantified and compared to the expected 

value of the local lymph node assay (LLNA) as the animal method. We find that battery and 

sequential combinations of non-animal testing methods reveal a significantly higher expected 

value than the LLNA. This holds for the entire range of prior beliefs. Furthermore, our results 

illustrate that the testing strategy with the highest expected value does not necessarily have 

to follow the order of key events in the sensitisation adverse outcome pathway (AOP). 

  

                                                        
2 Chapter 3 is published as: Leontaridou M., Gabbert S., et al., (2016). Evaluation of non-animal methods for 
assessing skin sensitisation hazard: A Bayesian Value-of-Information analysis. ATLA Alternatives to Laboratory 
Animals vol. 44(3), pp. 255-269. 
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3.1 Introduction  

Skin sensitisation denotes an immunological response that results in allergic contact 

dermatitis (ACD) after repeated exposure to a sensitising substance (Kimber et al., 2002; 

ECHA, 2014a). Besides being a key endpoint for safety evaluations of cosmetic ingredients, 

skin sensitisation testing is mandatory for all substances produced or marketed in volumes 

larger than 1 tonne per year under the European REACH legislation (EC, 2003a; EC, 2006). 

Although REACH does not prescribe a strict replacement of animal testing, it bases testing 

requirements on the paradigm of using in vivo testing only “as a last resort” ((EC, 2006), 

Article 25). In addition to REACH, the Cosmetics Regulation enforced a phasing-out of toxicity 

testing in animals by establishing a marketing ban for finished cosmetic products with 

ingredients tested in animals, which came into force in March 2013 (EC, 2003a; Hartung, 

2010a). This fostered the development of new, animal- free testing methods for assessing skin 

sensitisation hazard. 

Several non-animal testing methods for predicting skin sensitisation have been developed 

(see (Reisinger et al., 2015), for a detailed overview). Of these, one in chemico method and two 

in vitro methods were formally validated, i.e. the Direct Peptide Reactivity Assay (DPRA; 

(Gerberick et al., 2007)), the human Cell-Line Activation Test (h-CLAT; (Sakaguchi et al., 

2006)) and the ARE-Nrf2 luciferase method covered by KeratinoSensTM (Emter et al., 2010). 

The last-named testing method is also covered by LuSens (Ramirez et al., 2014), for which 

validation is still pending. Organisation for Economic Co-operation and Development (OECD) 

Test Guidelines (TGs) have been adopted for the DPRA (OECD TG 442C; (OECD, 2015a)) and 

the ARE-Nrf2 luciferase method (OECD TG 442D; (OECD, 2015b)). Nevertheless, none of the 

available non-animal methods satisfy the requirements for being accepted as an individual 

replacement of the animal-based method. The main reasons are that non-animal methods 

usually cover only selected steps of the entire adverse outcome pathway (AOP) for inducing 

an allergic reaction in the skin, and existing non-animal methods are unable to deliver 

information on skin sensitisation potency (Goebel et al., 2012; Worth et al., 2014). 

The lack of full replacement options has shifted attention to possibilities for combining in 

vitro, in silico and in chemico methods into batteries and sequential (integrated) testing 

strategies (Rovida et al., 2015). Ultimately, the development of integrated approaches for 

testing and assessment (IATAs) should solve fundamental problems, in particular, which 

testing methods to select and how to combine different methods in a strategy (Patlewicz et al., 

2014); the latter issue also includes the problem of defining the optimum number of steps 

required. In recent studies on integrated testing strategies for skin sensitisation, the selection 
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and sequential ordering of non-animal testing methods has been guided by the AOP for skin 

sensitisation (Patlewicz et al., 2014; van der Veen et al., 2014a). This implies that covering all 

consecutive events in an AOP delivers more-reliable information about a substance’s 

properties. Furthermore, the few studies offering a quantitative evaluation of the 

performance of non-animal testing strategies focus exclusively on information gains from 

testing, being either expressed as discrete predictivity estimates for skin sensitisation hazard 

classification (van der Veen et al., 2014a; Vinken et al., 2014), or as probability predictions for 

substances belonging to a specific potency class (Jaworska et al., 2013).  

This chapter argues that the criteria for guiding the construction of non-animal testing 

strategies, and their evaluation as replacements of animal tests should be based on an 

approach that accounts for testing costs and the social gains and losses from possible 

regulatory decisions, rather than solely on information gains from testing. This is motivated 

by three arguments. First, despite the progress in AOP development during recent years 

(Vinken, 2013; Tollefsen et al., 2014; Patlewicz et al., 2015), for many adverse outcomes the 

knowledge of the AOP is still rudimentary. For endpoints for which the AOP is well 

characterised, there is no plausible reason why a testing strategy should necessarily cover all 

the key events. On the contrary, it could be preferable to start a testing strategy with the most 

informative method. Second, none of the available methods, including animal tests, deliver 

perfect information. Thus, irrespective of the information metric used, test information is 

uncertain. In several studies, test information has been interpreted from a Bayesian 

perspective as conditional probabilities that update a decision-maker’s beliefs about the 

hypothesis that a substance has a specific property. As shown in (Gabbert and Weikard, 

2013), the construction of non-animal testing strategies with regard to information gains 

alone is insufficient, because it lacks an intrinsic rule of when testing should stop. Third, 

testing is costly (Koch and Ashford, 2006). Hence, assuming that the ultimate goal of testing is 

to inform regulatory decision-making, which, in turn, aims at improving social welfare, an 

evaluation of non-animal testing methods and testing strategies must balance information 

gains against costs.  

The objectives of Chapter 3 are twofold. Our first objective is to introduce a decision-

theoretic Value-of-Information (VOI) approach for developing and evaluating non-animal 

testing strategies. We assume that testing has a ‘value’, if, and only if, the information revealed 

from testing triggers a welfare-improving decision on the use (or non-use) of a substance, 

compared to decision-making in the absence of additional information from testing. Thus, in 

contrast with information-theoretic approaches such as Bayesian Networks, Hidden Markov 
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or quantitative Weight-of-Evidence approaches (Rorije et al., 2013; van der Veen et al., 2014a; 

Luechtefeld et al., 2015; Rovida et al., 2015), VOI analysis explicitly considers expected social 

gains and costs (called “payoffs”) from any possible decision on the use of a substance, while 

accounting for the uncertainty of test information. Quantifying the VOI provides a tool which 

guides the choice and sequencing of methods in a testing strategy. By comparing the VOI of 

different testing methods and testing strategies, the tool offers insight into the fundamental 

question of whether, and under what conditions, the VOI of a non-animal testing strategy 

outperforms the VOI of an animal test. 

The second objective is to illustrate the features of our model by applying it to the case of 

skin sensitisation hazard assessment. This complements and expands the information-

theoretic literature on the development of non-animal testing strategies for skin sensitisation 

(Jaworska and Hoffmann, 2010; Jaworska et al., 2011; Jaworska et al., 2013) by also 

incorporating societal benefits and costs of testing into the analysis. The VOI is calculated for a 

set of individual non-animal testing methods, including in vitro, in silico and in chemico 

methods, seven battery combinations, 62 two-test and 174 three test sequential combinations 

of these non-animal testing methods (Urbisch et al., 2015a). Their VOIs are compared to the 

VOI of the local lymph node assay (LLNA) as the animal test (Mehling et al., 2012; Basketter et 

al., 2014; Urbisch et al., 2015a). 

3.2 Method: A decision-theoretic approach to assessing the value of testing  

VOI analysis is a decision-analytic method that calculates expected gains and losses from 

gathering additional information. It has been widely applied to problems of decision-making 

surrounded by uncertainty in many different domains, such as medical diagnosis and 

healthcare decision-making, environmental technology assessment, environmental pollution 

management and the prioritisation of regulatory strategies (Claxton, 1999; Claxton et al., 

2004; Yokota et al., 2004; Yokota and Thompson, 2004). Several studies applied VOI analysis 

to the problem of chemical risk management (Lave et al., 1988; Yokota et al., 2004; Gabbert 

and Weikard, 2010; Gabbert and Weikard, 2013) of which two studies offer applications to 

sequential combinations of tests, focusing on carcinogenicity and mutagenicity hazard 

assessments (Yokota and Thompson, 2004; Gabbert and Weikard, 2013). However, Yokota 

and Thompson (2004) pre-defined the selection and ordering of tests. Also, the sets of non-

animal testing methods addressed by Gabbert et al. (2013) and by Yokota and Thompson 

(2004) were confined to in vitro methods only, and the animal test is combined with non-

animal testing methods into a sequential testing strategy. A comprehensive evaluation of 

different non-animal testing methods and their combinations, assessing their potential to 
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replace the animal test, has not been conducted so far. In this paper, the value of collecting 

additional information is assessed from a social welfare perspective, where gains and losses of 

both producers and consumers are considered. Depending on exposure, a substance can lead 

to the manifestation of an adverse effect on human health or on ecosystems (an “endpoint”; 

(van Leeuwen et al., 2007; Wallace and Ernest, 2012)). The simplest approach is to identify an 

adverse effect with a binary “hazardous/non-hazardous effects” assessment (van der Schouw 

et al., 1995; Hoffmann and Hartung, 2005; Rovida et al., 2015). In the following, we will use τ = 

1 for denoting that a substance has the potential to cause a hazardous effect, and τ = 0 if it 

does not. Depending on a decision-maker’s beliefs about the state of the substance, they must 

decide whether the substance can be used. For simplicity, we assume that the set of 

regulatory decisions contains only two options: “release” (i.e. allow access to the market) and 

“ban” (i.e. prohibit access to the market). Depending on τ and the set of regulatory actions, the 

use of a substance can have benefits, but also costs, to society. 

Assuming a competitive market, the social benefits of releasing a non-hazardous 

substance are the sum of the producer’s expected marketing benefits Bp (being the difference 

between revenue and costs; (Bergstrom and Varian, 2003), and expected intermediate 

consumer benefits Bc (intermediate consumers are companies who use a substance as 

ingredient for their products). The release of a hazardous substance, in contrast, can cause 

health and environmental damages, which are costly for society. Social costs, D, comprise 

health and environmental damage costs from the use of a substance. Thus, benefits and costs 

of the use of chemicals are incurred by different economic factors. If a substance is released, 

expected social damage costs must be subtracted from expected social benefits. If a substance 

is banned, we assume zero social benefits, irrespective of the true hazardous properties of the 

substance. Clearly, expected payoffs are substance- specific. Table 3.1 summarises expected 

payoffs for the possible states of a substance and the set of regulatory actions, i.e. the action 

space. 
Table 3.1: Payoffs from substances’ use 

 State of substance 

Ac
ti

on
 

sp
ac

e  ߬ = 1 ߬ = 0 

Ban 0 0 

Release ܤ௉ + − ஼ܤ + ௉ܤ  ܦ ߬  ஼ܤ = 1: Substance is hazardous; ߬ = 0: Substance is non-hazardous;  
BP = Marketing benefits of chemical producer;  
BC = Marketing benefits of intermediate consumer; 
D = expected health damage costs.  
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Prior to testing, a decision-maker’s beliefs about the state of a substance depend on 

available information about τ. This could be based on information about a substance’s 

structure (e.g. taken from an OECD profiler screening), earlier studies, evidence of the 

prevalence of toxic health effects, or expert judgement. In the absence of any information, 

prior beliefs can be completely subjective (Held and Bové, 2014). Prior beliefs that a 

substance is hazardous are denoted ݌଴, and (1 – ݌଴) if the substance is believed to be non-

hazardous. Based on prior beliefs, a substance should be released if, and only if, 

+ ௉ܤ)଴݌  − ஼ܤ ( ܦ + (1 − + ௉ܤ)(଴݌ ( ஼ܤ > 0 (3.1) 

 
According to Eq.3.1, a chemical should be marketed if the probability-weighted sum of 

payoffs is positive. Assuming that decision-makers aim at maximising expected payoffs, the 

value of decision-making under uncertainty, i.e. without information from testing, is: 

 ଴ܸ = ;0ൣ ݔܽ݉ ൫݌଴(ܤ௉ + − ஼ܤ ( ܦ + (1 − + ௉ܤ)(଴݌  ௖ )൯൧ (3.2)ܤ

 
That is, a ban will be preferred if the expected payoff (0, left expression in square brackets 

in Eq. 3.2) exceeds the expected payoff from releasing the substance. The latter is the sum of 

probability-weighted payoffs for marketing a hazardous and a non-hazardous substance, 

respectively (right expression in square brackets in Eq. 3.2). Testing reveals additional 

information, which reduces uncertainty about the true status of the substance, provided that 

the methods used are reliable and relevant. For hazard identification, the continuous dose–

response curve resulting from testing is often dichotomised into a binary hazardous/non-

hazardous classification (van der Schouw et al., 1995; Hoffmann and Hartung, 2005). We 

define ݐ + as a positive test outcome, indicating that a substance is hazardous. A negative test 

outcome is denoted ݐ ି . So far, neither the animal test nor the available non-animal testing 

methods provide perfect information. Thus, testing may reduce, though not fully resolve, 

uncertainty. The predictive capacity of a non-animal testing method has usually been 

expressed by means of a 2 × 2 contingency tables (Cooper et al., 1979), which shows the 

proportion of correct (sensitivity s, and specificity r) and false classifications, i.e. the false 

negative rate (1 – s) and false positive rate (1 – r), based on a pre-defined training set of 

substances with known properties (Table 3.2; (Bauch et al., 2012; Urbisch et al., 2015a)). 

From a Bayesian perspective, the proportion of correct and false classifications can be 

interpreted as conditional probabilities of seeing a positive or negative test result, given that 
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the chemical is hazardous or non-hazardous, p(t│τ) (Jaworska et al., 2010; Jaworska et al., 

2013; Rorije et al., 2013).  
 

Table 3.2: Conditional probabilities ࢖(࢚|࣎) of seeing a testing result t, given the true state of the 
substance ࣎ 

  State of the substance 

߬ (߬|ݐ)݌  = 1 ߬ = 0 

Te
st

 o
ut

co
m

e ݐ ା 
  ݏ

Probability of a true positive 
outcome (Sensitivity) 

1 −   ݎ
Probability of a false 

positive outcome 

ି ݐ  
1 −   ݏ

Probability of a false 
negative outcome 

  ݎ
Probability of true negative 

outcome (Specificity) ߬ = 1: Substance is hazardous;  ߬ = 0: Substance is non-hazardous; ߬ ା : Test outcome is positive;  ߬ି: Test outcome is negative.  
 

Additional information may change a decision maker’s beliefs about the state of the 

substance. Using Bayes’ theorem (Eq. 3.3), which is the standard approach for probabilistic 

information update and learning (Howson and Urbach, 1991), the decision-maker’s prior 

beliefs ݌଴can be revised into posterior beliefs on the state of the substance (ݐ|߬)݌, given the 

outcomes from testing (Table 3.3): 

(ݐ|߬)݌  = ௣బ௣(ݐ|߬)௣బ௣(ݐ|߬)ା(ଵି௣బ)൫ଵି௣(ݐ|߬)൯. (3.3) 

Table 3.3: Posterior probability ࢖(࣎|࢚ ) of a substance being hazardous or non-hazardous after 

seeing evidence from testing 

  State of the substance 

߬ (ݐ|߬)݌  = 1 ߬ = 0 

Te
st

 o
ut

co
m

e ݐା ݌ା = ݏ଴݌ ݏ଴݌ + (1 − ଴)(1݌ − 1 (ݎ − ା݌ = (1 − ଴)(1݌ − 1)(ݎ − ଴)(1݌ − (ݎ +  ݏ଴݌

ି  ݐ ି݌  = ଴(1݌ − ଴(1݌(ݏ − (ݏ + (1 − 1 ݎ(଴݌ − ି݌ = (1 − 1)ݎ(଴݌ − ݎ(଴݌ + ଴(1݌ − ߬ (ݏ = 1: Substance is hazardous; ߬ = 0: Substance is non-hazardous;  ݐ ା : Test outcome is positive; ିݐ: Test outcome is negative;  ݌଴: Prior probability that a substance is hazardous; (1 − Probability of a true positive outcome (sensitivity); (1 :ݏ  ;଴): Prior probability that the substance is non-hazardous݌ − Probability of a true negative outcome (specificity); (1 :ݎ ;Probability of a false negative outcome :(ݏ − ା: Posterior probability that the substance is hazardous after seeing a positive test outcome;  1݌  ;Probability of a false positive outcome :(ݎ − Posterior probability that the substance is non-hazardous after seeing a positive test outcome;  1 :ି݌ ;ା: Posterior probability that the substance is hazardous after seeing a negative test outcome݌ −  .Posterior probability that the substance is non-hazardous after seeing a negative test outcome :ି݌
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In the specific case that prior beliefs are equivalent to the prevalence of toxic health 

effects, the posterior probability of a substance being hazardous or non-hazardous coincides 

with a testing method’s positive and negative predictive value, respectively. The expected 

value of taking an optimal action under posterior beliefs is, then, 

 ௜ܸା ≡ max ൣ0; ൫݌ା(ܤ௉ + − ஼ܤ ( ܦ + (1 − + ௉ܤ)(ା݌  ஼ )൯൧, (3.4)ܤ

 

in case of a positive test result, and  

 

௜ܸି ≡ max ൣ0; ൫ܤ)ି݌௉ + − ஼ܤ ( ܦ + (1 − + ௉ܤ)(ି݌  ஼ )൯൧ (3.5)ܤ

 

in case of a negative test result. 

The expected value of performing test ݅ is the weighted sum of V௜ା and V௜ି , with the probability 

of seeing a positive and a negative test outcome (Prା, Prି) being the weights: 

 ௜ܸ = ାݎܲ ௜ܸା + ିݎܲ ௜ܸି , (3.6) 

 

where ܲݎା = ݏ଴݌ + (1 − ଴)(1݌ −  (3.7a) (ݎ

 

denotes the probability of seeing a positive test outcome, and  

ିݎܲ  = ଴(1݌ − (ݏ + (1 −  (3.7b) (ݎ)(଴݌

 

denotes the probability of seeing a negative test outcome.  

It follows from Eq. 3.2 and Eq.3.6 that a test ݅ should be performed if the expected value 

from an optimal decision with additional information from testing, ௜ܸ, exceeds the expected 

value of an optimal decision without information from testing, ଴ܸ. Thus, the expected value of 

test information (ܫܸܶܧ௜) is 

௜ܫܸܶܧ  = ௜ܸ − ଴ܸ. (3.8) 
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Since testing is costly, a test ݅ should be performed if, and only if, its expected value exceeds 

testing costs: 

௜ܫܸܶܧ   − ݇௜ ≥ 0, (3.9) 

with ݇௜  denoting monetary testing costs (Norlén et al., 2014). Note that Eq. 3.9 provides the 

rule for testing to be stopped. 

The higher the ܫܸܶܧ௜ net of testing costs, the higher the expected social benefits arising 

from the use of a substance, given additional information from test ݅. For a set of non-animal 

testing methods, the one revealing the highest ܫܸܶܧ௜ net of costs, will be preferred. A decision-

maker will stop testing as soon as the ܫܸܶܧ௜ net of testing costs becomes negative (Eq. 3.9). 

This also holds if the decision maker is a social planner (e.g. a member of a regulatory agency). 

Although regulators do not bear testing costs, we assume that they adopt a social welfare 

perspective, because they must consider all types of costs and benefits from the use of a 

chemical. Bayesian inference allows the calculation of information gains in terms of posterior 

beliefs about a substance being hazardous or non-hazardous at any stage of the sequence. 

Thus, Eq. 3.9 offers a quantitative measure for comparing and ranking individual non-animal 

testing methods, as well as sequential or battery combinations of these methods. A key feature 

of sequential testing strategies is that the decision of whether or not to continue testing is 

conditional on information gains at earlier stages in the sequence. This involves the possibility 

to save tests and, consequently, costs. 

3.3 Application: Optimised testing strategies for assessing skin sensitisation 
hazard of cosmetic ingredients  

The applicability of the Bayesian VOI model is illustrated for the case of skin sensitisation 

hazard assessment of cosmetic ingredients. Given the important role of this endpoint in 

various regulatory frameworks (Basketter et al., 2012; Luechtefeld et al., 2015), several 

studies have proposed probabilistic approaches for data integration and the development of 

hypothesis-driven testing strategies. These studies focus on information gains from testing 

(Jaworska and Hoffmann, 2010; Jaworska et al., 2011; Jaworska et al., 2013; van der Veen et 

al., 2014a). This paper complements existing approaches by adopting a social welfare 

perspective, where information gains from testing are balanced with societal benefits and 

costs from decisions on the use (or non-use) of a substance. 

The set of testing methods consists of five non-animal testing methods, seven battery 

combinations of these methods, and the LLNA as the animal test (Basketter et al., 2012; 

Mehling et al., 2012; Urbisch et al., 2015a). The non-animal testing methods include the DPRA 
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(Gerberick et al., 2007), the OECD profiler toolbox v3.2 (denoted hereinafter as “OECD 

Toolbox”; (OECD, 2012d)), the ARE-Nrf2 luciferase method covered by KeratinoSensTM 

(Emter et al., 2010) and LuSens (Ramirez et al., 2014), and the h-CLAT (Sakaguchi et al., 

2006). The predictive capacities of all the non-animal testing methods and the LLNA were 

evaluated on human data (subset B in (Urbisch et al., 2015a), derived mainly from (Basketter 

et al., 2014)), using a sample of 114 substances (Table 3.4). In the skin sensitisation AOP, the 

DPRA captures the first key event (protein binding), KeratinoSensTM and LuSens the second 

key event (epithelial responses), and the h-CLAT captures the third key event (dendritic cell 

activation; (OECD, 2012a)). Note that the cellular non-animal testing methods inherently 

cover cysteine reactivity and thus mechanistically overlap with the DPRA (Natsch et al., 2013). 

Finally, we included the OECD Toolbox in the analysis (OECD, 2012d) by using the protein-

binding profilers based on OECD and OASIS algorithms, the “auto-oxidation profiler” and the 

“skin metabolism profiler” (Urbisch et al., 2015a). The analysis was performed for individual 

non-animal testing methods, selected battery combinations of these methods, and all possible 

two-test and three test sequences that can be constructed from the five non-animal testing 

methods in our set. This revealed a total number of 236 sequential testing strategies for 

assessing skin sensitisation hazard; note that we did not consider combinations of methods 

where an individual method would be applied repeatedly. 

 
Table 3.4: Predictive capacity and testing costs for individual methods and battery 

combinations  

Testing methods Sensitivity [%] Specificity [%] Testing costsa 
[Euro/substance] 

LLNAb 91 64 5,500 
OECD toolboxb 89 64 500 
DPRAc 84 84 3,000 
KeratinoSensTM c 82 84 4,000 
LuSensc 78 79 4,000 
hCLAT 89 64 4,500 
DPRA + LuSens b 93 100 7,000 
DPRA + KeratinoSensTM d 100 82 7,000 
DPRA + hCLATb 94 88 7,500 
LuSens + hCLATb 96 91 8,500 
KeratinoSensTM + hCLATb 93 92 8,500 
DPRA + KeratinoSensTM + hCLATd 90 90 11,500 
DPRA + LuSens + hCLATd 90 89 11,500 

Test batteries are indicated by ‘+’; 
a Estimated average costs 2015 (unpublished); 
b BASF (2015), personal communication; 
c(Urbisch et al., 2015a); 
d Suggested as an AOP-based testing strategy for skin sensitisation hazard assessment,  
also called the “2-out-of-3ITS”. 
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Table 3.4 shows that battery combinations of non-animal testing methods have a higher 

sensitivity/specificity than the LLNA, but are more expensive. The decision-analytic VOI 

model accounts for the possible trade-offs between information and costs. Quantifying social 

benefits and costs, in particular, expected health and environmental damage costs caused by 

the release of a hazardous substance, has been a major challenge in empirical VOI applications 

(Ennever et al., 1990; Omenn, 1995; Yokota and Thompson, 2004; Gabbert and Weikard, 

2013). 

A substance that is known to be a skin sensitiser can cause allergic skin reactions (allergic 

contact dermatitis [ACD]; (Kimber et al., 2002; Park and Zippin, 2014)). Given uncertain test 

outcomes, there is a risk of harm from ACD, even if the substance has been classified a non-

sensitiser. These “costs of making errors” are the monetary health damage costs to society 

(Table 3.1) — in the following, denoted ܦ஺஼஽ . Focusing on non-occupational exposure, health 

damage costs of an individual suffering from ACD (i.e. ܦ஺஼஽௜௡) consist of direct costs for 

primary and secondary healthcare (i.e. treatments provided by general practitioners and 

dermatologists), and of indirect costs (for example, loss of productivity and quality of life). 

Estimates of health costs caused by ACD provided in the literature vary depending on the 

severity of ACD (usually expressed in terms of the categories ‘mild’, ‘moderate’ or ‘severe’) 

and the population group considered (Verboom et al., 2002; Ricci et al., 2006; Halvarsson and 

Loden, 2007; Stein et al., 2007; Witt et al., 2009; Sætterstrøm et al., 2014). More importantly, 

empirical cost assessments usually cover only a fraction of overall costs caused by ACD, 

because several cost components (e.g. loss of quality of life) are difficult to quantify and 

monetarise. To exemplify the features of our model, we used the mean estimate of health 

damage costs to an individual adult, as published in (Sætterstrøm et al., 2014), of 973 Euros 

per person and per year. This estimate includes the direct costs of medical treatment and 

costs of productivity loss. This value can, of course, differ considerably across individuals 

within a country and across countries. Furthermore, assessments of health damage costs vary 

according to the endpoint (see, for example, (Yokota et al., 2004; Yokota and Thompson, 

2004)). An alternative approach to estimating the welfare loss of people suffering from ACD 

would be to determine their “willingness to pay” (WTP) to avoid skin allergies caused by 

cosmetics. Conducting a revealed preference study is, however, time and resource consuming 

and was beyond the scope of this paper. WTP estimates provided in a recent ECHA study 

(ECHA, 2014b) considered, in addition to cosmetic ingredients, a mixed set of allergens, and 

were based on direct health costs only. 
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Calculating expected health damage costs to society requires health costs to individuals to 

be aggregated. Clearly, individuals suffering from ACD caused by specific cosmetic ingredients 

account for only a fraction of the total population affected by ACD. This is expressed by a 

substance’s sensitisation prevalence ߩ, this being the proportion of people in a sample 

showing positive human patch test reactions to the application of a specific substance 

(Schnuch et al., 1997; Natsch et al., 2013). Multiplying individual health damage costs (ܦ஺஼஽௜௡) 

by the prevalence- weighted population (ߩ * N) provides an estimate of the expected health 

damage costs (ܦ஺஼஽) caused by ACD. Since our study focuses on Europe, N denotes inhabitants 

within the European Union (EU28) (EC - Eurostat). 

஺஼஽ܦ  =  (3.10) .ܰ ߩ ஺஼஽௜௡ܦ
 

Prior to the testing of an uncharacterised substance, the ‘true’ prevalence will be 

unknown. If a substance belongs to a certain group of contact allergens (e.g. disinfectants, 

dyes, fragrances, preservatives), a mean prevalence for this group can be used (Schnuch et al., 

2011; Leiva-Salinas et al., 2014). If no information is available, a mean prevalence value for 

contact allergens can be applied (Schnuch et al., 2011). 

To calibrate the model, we use the case of methylisothiazolinone. It is used for the 

formation of Kathon CG, which is a preservative that has been widely used in cosmetic 

products and is known to be a sensitiser (Uter et al., 2012). Values for the prevalence of 

sensitisation to MI and Kathon CG have been reported in the literature (Schnuch et al., 2011; 

Schnuch et al., 2012), and vary, depending on population sample size and composition, 

between 1.2% and 4.2%. To illustrate the impact of prevalence estimates on the ܫܸܶܧ௜, and on 

the ranking of testing methods and testing strategies included in our analysis, we calculated 

health damage costs for four different sensitisation prevalence estimates, therefore capturing 

a range between optimistic and conservative estimates (Table 3.5). 
 

 

  



Chapter 3 

49 

Table 3.5: Prevalence estimates and prevalence-weighted health damage costs caused by ACD 
within the European Union (EU28) 

Sensitisation 
prevalence 

[%] 
Source Prevalence calculation 

 ࢔࢏ࡰ࡯࡭ࡰ

Euro/person and 
year 

0.7 (Schnuch et al., 
2012) 

Sensitisation prevalence of N-Isopropyl-N’-phenyl-
p-phenylenediamine (IPPD), typically low 
prevalence observed for contact allergens 

7 

2.8 (Uter et al., 
2013) 

Prevalence derived from the MOAHLFA index for 
Kathon CG corrected by the fraction of people 
suffering from atopic contact dermatitis 

27 

3.8 (Uter et al., 
2013) 

Prevalence for Kathon CG from a sample of 28,922 
patch test results conducted in the period of 2009-
2012 

37 

15 (Schnuch et al., 
2012) 

Sensitisation prevalence of Nickel Sulphate, highest 
prevalence observed for contact allergens 146 

 

Finally, applying the VOI model requires the determination of expected producer and 

consumer benefits from a substance’s release (ܤ௉ and ܤ஼; Table 3.1). Since data on substance 

specific revenue and production costs are not available, industry’s marketing benefits of 

Kathon CG were approximated by assuming profits to be 15% of marketing revenues in 2014. 

For Kathon CG, we used an average price of 1.635 Euros/kg, calculated from monthly prices 

for the solution of Kathon CG between January 2013 and May 2015 (Zauba). The quantity of 

Kathon CG marketed in the EU was assumed to be 1000 tonnes per year, which is the upper 

limit of the REACH tonnage band (100–1000 tonnes/year; (EC, 2006) Article 12). 

Intermediate consumer benefits, Bc, refer to the marketing gains of companies using a 

cosmetic ingredient — in our case Kathon CG — in their products. Empirical data on the profit 

share of single cosmetic ingredients are not available. Therefore, it was not possible to 

quantify Bc directly. Assuming that, prior to testing and in the absence of adequate toxicity 

information, a decision-maker will likely decide not to release a substance, we approximated 

Bc as the threshold benefit at which a ban would still just be the optimal action. For 

uninformative prior beliefs (݌଴ = 0.5) and re-arranging Eq. 3.1, the threshold consumer 

benefit is 

஼෢ܤ  = ஺஼஽ܦ଴݌) − (௉ܤ −1. (3.11) 
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3.4 Results 

Applying the VOI model to the set of five non-animal testing methods and the LLNA, seven 

battery combinations and 236 sequential testing strategies of non-animal methods, and 

considering four sensitisation prevalence estimates, we obtained a rank list of non-animal 

methods and testing strategies according to their net ܫܸܶܧ௜ of testing costs (see Eq. 3.1). For 

ease of presentation, the discussion of results is confined to outcomes for sensitisation 

prevalences of 2.8% and 15%. Furthermore, we show ܫܸܶܧ௜ results for two selected prior 

beliefs, ݌଴ = 0.2 and ݌଴ = 0.7. The first value approximates the prevalence of sensitisers in 

REACH registration dossiers (Thyssen et al., 2007), the latter denotes beliefs which are 

slightly more conservative than the percentage of sensitisers in the human data set presented 

in (Urbisch et al., 2015a). A complete rank list of all individual testing methods, battery 

combinations and sequential testing strategies for all prior beliefs and prevalence estimates is 

documented in a supplementary file (available from the website, www.atla.org.uk). The file 

also includes a numerical example of calculating the ܫܸܶܧ௜ net of testing costs for an 

individual testing method. 

Generally, we find that a higher sensitisation prevalence - all other parameters being the 

same - increases the expected value of testing. The reason is that a higher prevalence causes 

expected social health damage costs, ܦ஺஼஽ , to increase. Consequently, testing becomes more 

relevant, because it reduces uncertainty and, thus, the probability of the erroneous release of 

a substance. This is reflected by a higher ܫܸܶܧ௜.  
Table 3.6 lists the non-animal testing strategies taking the first ten positions: a) for ݌଴= 

0.2, indicating weak prior beliefs that a substance is a sensitiser; and b) for ݌଴ = 0.7, indicating 

moderate prior beliefs that a substance is a sensitiser. A “+” between two non-animal testing 

methods denotes a testing battery, and arrows indicate a sequential combination of testing 

methods. In addition to documenting the testing methods in the ranking, Table 3.6 presents 

numerical values of their ܫܸܶܧ௜ net of testing costs and the incremental difference of the ܫܸܶܧ௜ net of testing cost between subsequent rank positions. 

We find that individual testing methods and the LLNA are positioned at the end of the 

ranking. This holds for the entire range of prior beliefs and across all sensitisation prevalence 

estimates (see the supplementary file for a complete ranking of all testing methods and 

testing strategies). For very low and very high prior beliefs (݌଴ = 0.1; ݌଴ = 0.9), the ܫܸܶܧ௜net of 

testing costs of the LLNA and the individual testing methods equals zero. Thus, testing has no 

value because expected information from the testing will not change the decision made on the 

use of the substance, compared to the situation without additional testing information. For 
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prior beliefs ݌଴ ≤ 0.4, the battery DPRA + LuSens reveals the highest ܫܸܶܧ௜ net of testing costs 

(see Table 3.6 and the supplementary file). For prior beliefs ݌଴ ≥ 0.4, sequential testing 

strategies perform best. More specifically, for prior beliefs in the range 0.4 ≤ ݌଴ ≤ 0.8 the 

sequence consisting of DPRA + LuSens, the OECD Toolbox, and KeratinoSensTM + h-CLAT takes 

the first five rank positions. This holds for all prevalence scenarios considered. As shown in 

Table 3.6 for ݌଴ = 0.7, differences in the ܫܸܶܧ௜ net of costs across these rank positions are 

relatively small. The reason is that the ܫܸܶܧ௜ difference between two sequences that differ 

only in the order of testing methods cannot exceed the difference in testing cost between the 

cheapest and the most expensive test in the sequence. In contrast, the difference of the ܫܸܶܧ௜ 
net of testing costs between strategies with a different composition of non-animal testing 

methods is usually much larger (see, for example, the strategies on rank position 7 and 8 for ݌଴ = 0.7, and the strategies on rank position 5 and 6 for ݌଴ = 0.7 in Table 3.6). 
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The better performance of sequential testing strategies compared to batteries of non-

animal testing methods can be explained by their potential to reduce the number of tests 

needed, and, hence, to reduce testing costs. This can be demonstrated by looking into the 

belief updating process of each branch in a sequence. Figure 3.1 illustrates the sequential 

structure of the first ranked obtained for ݌଴= 0.7, being DPRA +LuSens → OECD Toolbox → 

KeratinoSensTM +h-CLAT. If DPRA + LuSens would reveal a positive result (DPRA + LuSens: ݐଵା), conducting the OECD Toolbox at the second stage and KeratinoSensTM + h-CLAT at the 

third stage of the sequence would not sufficiently shift posterior beliefs in order to change the 

optimal action from “Ban” to “Release”. As a consequence, the expected value of the OECD 

Toolbox and KeratinoSensTM + h-CLAT would be zero, irrespective of whether their outcome 

would be positive or negative. 

If the use of the battery DPRA + LuSens would reveal a negative result (ݐଵି ), the ܫܸܶܧ௜ net 

of testing costs of the OECD Toolbox would be negative. This can be explained as follows: At 

the second stage of the sequence, the expected value of the OECD Toolbox is equivalent to the 

expected value of the battery DPRA + LuSens at the first stage ( ଵܸି = ଶܸ| ଵܸି = 4970 million 

Euros). Hence, one would expect the ܫܸܶܧ௜ after the second stage of the sequence to be zero. 

However, conditional on seeing a negative result of the OECD Toolbox, a positive outcome of 

KeratinoSensTM + h-CLAT at the third stage of the sequence, would shift the action from 

“Release” to “Ban”. This is reflected by a positive ܫܸܶܧ௜ after the third stage of the sequence 

ଷหܫܸܶܧ) ଵܸ,ଶିା = 1455 million Euros). Conducting KeratinoSensTM + h-CLAT at the third stage 

implies that the second testing stage must have been conducted as well, and the costs of the 

second testing method would be incurred. Therefore, the ܫܸܶܧ௜ of the OECD Toolbox is 

negative and equivalent to its costs (–500 Euros). Thus, whereas in a battery all testing 

methods are conducted (therefore incurring testing costs of all methods), in the case of a 

sequence, whether a testing method of a follow up stage will be conducted or not depends on 

the outcomes observed at previous stages. 
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As illustrated in Table 3.7, the ܫܸܶܧ௜ of testing strategies depends on a decision-maker’s 

prior beliefs. This emphasises the need to carefully evaluate all available information prior to 

testing, e.g. from screening methods or expert consultation, in order to determine meaningful 

prior probabilities. Comparing numerical ܫܸܶܧ௜results of the first ranked strategies at 

different prior beliefs with that of the LLNA underlines that — given the assumptions and 

data discussed in the Method section — the ܫܸܶܧ௜ of battery and sequential combinations of 

non-animal testing methods is significantly higher. To put our results in the context of AOP-

based prediction models for skin sensitisation hazard assessment suggested in the literature 

(29, 45), we compared the ܫܸܶܧ௜ net of costs of first-ranked strategies with that of the “‘2 out 

of 3” ITS, where the classification for skin sensitisation is based on congruent results of at 

least two of three non-animal testing methods (Urbisch et al., 2015a). Here, we considered the 

DPRA, KeratinoSensTM and the h-CLAT (see also Table 3.4). Our results demonstrate that the ܫܸܶܧ௜net of testing costs of this strategy, though being higher than that of the LLNA, is lower 

than the ܫܸܶܧ௜net of testing costs of the first-ranked strategies in Table 3.6 for all prior 

beliefs. Hence, if used as a battery (as in (Urbisch et al., 2015a)), the “2 out of 3” ITS, despite 

its high joint sensitivity and specificity, is outperformed by sequential combinations of non-

animal testing methods. 
 

Table 3.7: ࢏ࡵࢀࢂࡱ −  of the first- ranked testing strategy for different prior (Million Euros) ࢏࢑
beliefs (࢖૙), and for a sensitisation prevalence of 2.8% a 

 ૙ First-ranked testing strategy࢖
࢏ࡵࢀࢂࡱ −  of ࢏࢑
first-ranked 

strategy 

࢏ࡵࢀࢂࡱ −  of ࢏࢑
LLNA 

࢏ࡵࢀࢂࡱ −  ࢏࢑
of “2 out of 3” ITS ´b 

0.1 

DPRA + LuSens 

642,754,005 0 0 

0.2 1,285,515,010 0 691,129,366 

0.3 1,928,276,014 145,134,082 1,382,270,231 

0.4 

DPRA + LuSens → OECD Toolbox → 
KeratinoSensTM + hCLAT 

2,611,781,558 1,022,882,981 2,073,411,096 

0.5 3,314,491,729 1,900,631,879 2,764,551,961 

0.6 2,634,920,170 1,396,099,048 2,073,411,095 

0.7 1,955,348,612 891,566,216 1,382,270,230 

0.8 1,275,777,053 387,033,384 691,129,365 

0.9 DPRA + KeratinoSensTM → OECD Toolbox → 
LuSens + hCLAT 830,318,758 0 0 

a Results of the first-ranked strategy are compared to the (ܫܸܶܧ௜ − ݇௜) of the LLNA and of the “2-out-of-3” ITS, as 
suggested in (Bauch et al., 2012; Urbisch et al., 2015a)  
b This approach consists of the DPRA, KeratinoSensTM and the hCLAT. The conclusion on a substance’s hazardous 
properties is based on a majority vote; the h-CLAT will be conducted only if the first two prediction methods are in 
disagreement (Bauch et al., 2012; Urbisch et al., 2015a). 
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Finally, our results illustrate that testing strategies do not necessarily have to follow the 

order of key events in an AOP, nor do all key events have to be covered. Looking into the list of 

methods taking the ten top positions in the ranking (Table 3.6), we observe that testing 

strategies for assessing skin sensitisation hazard do not have to start with methods covering 

protein activation, nor do all events in the AOP for skin sensitisation have to be covered 

(Figure 3.2). A possible explanation for this finding is that combinations of testing methods 

reduce the variation in predictions of either method, which increases the overall predictive 

capacity of the testing strategy. This underlines that key events in an AOP, if sufficiently 

known, cannot be understood as a construction rule for testing. Instead, with which non-

animal testing method (or combination of methods) a testing strategy should start, and in 

which order to conduct testing methods, depend on the interplay between prior beliefs, the 

predictive capacity of methods, and the specification of payoffs and testing costs. The strength 

of the VOI framework is to offer a transparent analysis of whether, and under what conditions, 

a non-animal testing strategy provides sufficient and adequate hazard information for optimal 

decision-making without full coverage of all AOP events. 

 

 
Figure 3.2: Schematic representation of key events in the skin sensitisation AOP covered by 

the first-ranked testing strategies for prior beliefs of ࢖૙= 0.2 and ࢖૙= 0.7, and a skin 
sensitisation prevalence of 2.8% 

 

  

Event 1: 
Protein activation  

Event 2: 
Keratinocyte activation 

Event 3: 
Dendritic cell activation 

Optimal testing strategy for prior beliefs ࢖૙ = ૙. ૛: 
Optimal testing strategy for prior beliefs ࢖૙ = ૙. ૠ: 

1st step: DPRA + LuSens 

1st step: DPRA + LuSens 

2nd step: OECD Toolbox 3rd step: KeratinoSensTM + hCLAT 
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3.5 Discussion and conclusions 

Bayesian VOI analysis is a decision-theoretic tool for assessing a testing method’s 

potential for improving decision-making on the use of a substance. Testing has a value, if 

expected social net gains from an optimal decision with additional evidence outweigh 

expected net gains from decision making without such evidence. Hence, a testing method, or 

any combination of methods, should be performed if the ܫܸܶܧ௜ is positive, and if it exceeds 

testing costs. The ܫܸܶܧ௜ net of testing costs can be quantified for individual testing methods, 

and battery and sequential combinations of methods. VOI analysis can therefore be used for 

comparing and ranking different testing options. In addition, the VOI framework guides the 

construction of sequential testing strategies, because it permits the determination of which 

order of methods reveals the highest ܫܸܶܧ௜ net of testing costs, and when testing should stop. 

This chapter complements the existing literature on developing and optimising integrated 

testing strategies. During recent years, several studies have addressed the challenge of 

constructing non-animal testing strategies for skin sensitisation hazard classification and 

potency assessment. These studies have focused on the maximisation of informational gains 

from sequential testing strategies and batteries (Jaworska and Hoffmann, 2010; Jaworska et 

al., 2011; Jaworska et al., 2013; van der Veen et al., 2014a). The role of social benefits and 

costs for developing testing strategies, and how to balance information gains against theoretic 

costs, have not been addressed. In order to complement existing information-theoretic 

approaches, our paper applies decision-theoretic VOI analysis which integrates information 

gains and costs of chemical use. Moreover, it adopts a social welfare perspective. 

As an illustration, we applied the model to the problem of skin sensitisation hazard 

assessment. We quantified the ܫܸܶܧ௜ net of testing costs for a set of validated or pre-validated 

non-animal methods (including the DPRA, the OECD Toolbox, the ARE-Nrf2 luciferase method 

covered by KeratinoSensTM and LuSens, and the h-CLAT), seven battery combinations of these 

methods, and 236 sequential 2-test and 3-test strategies composed of these methods. Their ܫܸܶܧ௜ net of testing costs was compared with that of the animal test LLNA. Social benefits and 

costs from the release of cosmetic ingredients to the market were calculated by estimating 

industry’s marketing gains and health damage costs caused by ACD. Clearly, the numerical 

estimates used in our study and, in particular, estimates of marketing benefits and health 

damage costs, may vary across countries and between chemicals. 

The impact of variations in health damage costs was analysed by means of a sensitivity 

analysis. Moreover, the predictive capacity of non-animal testing methods and their 

combinations depends on the number and the selection of substances in the training set. 
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Therefore, ܫܸܶܧ௜ estimates can vary if training sets are composed differently. In addition, 

conditional dependence between individual non-animal testing methods may affect their joint 

sensitivity and specificity when used in combination. Accounting for this uncertainty, e.g. by 

using categorical data analysis (Zauba), might change the predictive capacity of testing 

methods and, following on from this, their ܫܸܶܧ௜. Since the main purpose of our study was to 

illustrate the features of decision-theoretic VOI analysis, a detailed assessment of these 

uncertainties is beyond the scope of this paper, but remains an interesting aspect for further 

research. 

Our results warrant a number of interesting conclusions. Firstly, the value of 

combinations of non-animal testing methods outweighs that of the LLNA. This is a robust 

result, because it holds for both battery and sequential combinations, for the entire range of 

prior beliefs, and for all the sensitisation prevalence estimates considered. Furthermore, 

sequential combinations of batteries can outperform individual battery combinations of non-

animal methods. In our case study, this became already apparent at relatively low prior 

beliefs. One explanation for this result is the higher predictive capacity of battery 

combinations in comparison to individual non-animal methods, which reduces the probability 

of adopting erroneous decisions. More importantly, sequential testing strategies offer the 

possibility to save on testing methods, and, therefore, on testing costs. The reason is that, 

depending on the outcomes at previous stages in the sequence, follow-up testing methods 

would not be conducted in any case. This “cost-saving potential” of sequential testing 

strategies results in a higher ܫܸܶܧ௜ compared to battery combinations of testing methods. 

Secondly, for given predictive capacities of non-animal methods, payoff estimates and 

testing costs, the optimal order of tests is highly sensitive to a decision-maker’s prior beliefs. 

Hence, unlike the approach suggested in REACH and recent studies on the testing of skin 

sensitisation (Bauch et al., 2012; Basketter et al., 2012; van der Veen et al., 2014a), our results 

underline that there cannot be a pre-defined ‘best approach’ to testing. In contrast, 

determining the optimal testing strategy must consider the trade-offs between expected gains 

and costs, while accounting for the uncertainties inherent in all parameters. 

Finally, our results illustrate that full coverage of all key events in the skin sensitisation 

AOP is neither a necessary nor a sufficient condition for combinations of non-animal testing 

methods revealing a higher ܫܸܶܧ௜ net of testing costs than the LLNA. However, this only holds 

if the key events of an AOP are known. Therefore, further research should address possible 

extensions of the decision-theoretic VOI model to permit the identification of the optimal 

combination of methods for endpoints where knowledge about the AOP is still incomplete. 
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Likewise, there is no reason to assume that a non-animal testing strategy must necessarily 

cover each key event in the sensitisation AOP just once. Since information outcomes of 

individual non-animal testing methods are uncertain, there is a probability that the prediction 

is wrong. If different non-animal testing methods are combined into a battery, uncertainties of 

individual methods can compensate each other, which reduces the probability of erroneous 

predictions. As our results show, it can therefore be optimal to combine batteries of non-

animal methods into a sequence, even though this might repeatedly address the same key 

event in the AOP. In other words: From a decision-analytic perspective, the AOP concept can 

neither be understood as a rule for the combination nor for the order of non-animal testing 

methods in a sequence. 

Clearly, the numerical results of our analysis depend on model assumptions and the 

quality of the data used. Furthermore, we focused on non-occupational exposure for the 

calculation of sensitisation prevalence. The inclusion of occupational exposure may increase 

estimated health damage costs, which changes the ܫܸܶܧ௜ of the testing methods. Since this 

applies symmetrically to all testing methods and testing strategies, the ranking of methods 

will remain unchanged. The calculation of expected payoffs was based on simplified 

assumptions due to lacking data, for example about substance-specific benefits for 

intermediate consumers. The model can, however, be used straightforwardly, to investigate 

the impact of increasing or decreasing social benefits and costs on the ܫܸܶܧ௜ net of testing 

costs — for example, if in-house marketing data for substance groups or particular substances 

are available, or if testing costs change over time. Finally, although our case study was 

characterised by high health damage costs in relation to marketing benefits and testing costs, 

this may not hold for all endpoints. Hence, expanding the analysis to other endpoints and non-

animal testing methods will offer further insights into the potential of non-animal testing 

methods to replace animal testing. 
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4 The borderline range of prediction models for skin 
sensitisation potential assessment: Quantification and 
implications for evaluating non-animal testing methods’ 
precision3 

Testing methods to assess the skin sensitisation potential of a substance usually use 

threshold criteria to dichotomise continuous experimental read-outs into “yes/no” 

conclusions. The threshold criteria are prescribed in the respective OECD test guidelines and 

the conclusion is used for regulatory hazard assessment, i.e. classification and labelling of the 

substance. Due to biological and technical variability we can identify a borderline range (BR) 

around the classification threshold within which test results are non-conclusive. We quantify 

the BR of the prediction models of the non-animal testing methods DPRA, LuSens and h-CLAT. 

The borderline ranges were between  10% and  30% of the respective testing methods’ 

thresholds. We find that of the 199, 79 and 40 substances tested 20, 5 and 8 (10%, 6% and 

20%) were borderline with the DPRA, LuSens and the h-CLAT, respectively. If the results of 

individual non-animal test methods are combined into integrated testing strategies (ITS), 

borderline test results of individual tests can affect the overall assessment of the skin 

sensitisation potential of the testing strategy. This was analysed for the “2 out of 3” ITS: Four 

out of 40 substances (10%) were actually borderline. This compares to six out of the 22 

(27%) performance standard substances of the LLNA. Based on our findings we propose 

expanding the standard binary classification of substances into “positive/negative” or 

“hazardous/non-hazardous” by adding a “borderline” or “‘non-conclusive” alert for cases 

where test results fall within the borderline range. 

 
  

                                                        
3 Chapter 4 is an earlier version of the manuscript: Leontaridou M., Urbisch D., Kolle S.N., Ott K., Mulliner D.M., 
Gabbert S. and Landsiedel R., (2017). The borderline range of toxicological methods: Quantification and 
implications for evaluating precision (ALTEX in press doi: 10.14573/altex.1606271.). 
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4.1 Introduction  

Skin sensitisers are substances that can lead to an allergic response following skin contact 

(UNECE, 2011). An individual will be sensitised upon first contact. Subsequent contact can 

then provoke allergic contact dermatitis (ACD). It is estimated that ACD affects about 20% of 

the European and North American population at least once in their lifetime, although there is 

considerable variation of skin sensitisation prevalence between different age-sex groups 

(Thyssen et al., 2007). Data on skin sensitisation potential have to be provided for all 

substances produced or manufactured above one tonne per year under the European 

chemicals legislation REACH, and for classification and labelling of substances under the 

European CLP regulation (ECHA, 2016). The assessment of a substance’s skin sensitisation 

potential has been traditionally based on data derived from animal tests such as the guinea 

pig based tests described in OECD TG no. 406 (OECD, 1992) or the murine local lymph node 

assay (LLNA) described in OECD TG no. 429 (OECD, 2002; OECD, 2010). However, animal 

welfare concerns, and the regulatory enforcement e.g. by the Cosmetics Regulation (EC, 2009) 

and the REACH legislation (EC, 2006) have driven efforts to move away from animal to non-

animal testing. A number of non-animal testing methods have been developed (Mehling et al., 

2012; Reisinger et al., 2015), two of which, namely the Direct Peptide Reactivity Assay (DPRA) 

(Gerberick et al., 2004; Gerberick et al., 2007) and the antioxidant response element - nuclear 

factor erythroid 2 (ARE-Nrf2) luciferase testing methods covered by KeratinoSensTM (Natsch 

et al., 2011), have been validated by the European Centre for Validation of Alternative 

Methods (ECVAM; Italy) and are described in the OECD TG no. 442C and no. 442D (OECD, 

2015a; OECD, 2015b). LuSens (Ramirez et al., 2014; Ramirez et al., 2016) also covers the ARE-

Nrf2 luciferase testing method and is currently undergoing validation. Another non-animal 

testing method, the human cell line activation test (h-CLAT) (Ashikaga et al., 2006; Sakaguchi 

et al., 2006; Ashikaga et al., 2010; Sakaguchi et al., 2010) has recently been validated by 

ECVAM and is described in OECD TG no. 442E (OECD, 2016d). The sequential structure of 

molecular and cellular mechanisms causing ACD is represented by the “adverse outcome 

pathway” (AOP) for skin sensitisation, consisting of eleven causally linked steps, four of which 

were defined to be essential and specific “key events” (OECD, 2012b; OECD, 2012c). The 

DPRA, the ARE-Nrf2 testing methods and the h-CLAT cover the first three key events of the 

skin sensitisation AOP.  

For hazard classification purposes, i.e. for assessing skin sensitisation potential, 

continuous data obtained from animal tests or from non-animal testing methods are 
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dichotomised into binary “positive/negative” information (van der Schouw et al., 1995; 

Hoffmann and Hartung, 2005). The prediction models used for the DPRA, LuSens and the h-

CLAT are described in OECD TG no. 442C (OECD, 2015a), Ramirez et al. (2014 and 2016), and 

in the OECD TG no. 442E (OECD, 2016d), respectively. Based on the threshold for 

classification a testing method’s accuracy, i.e. the percentage of true positive and true negative 

classifications, can be determined (see for example (Cooper et al., 1979)and (Yerushalmy, 

1947)). 

The experimental data obtained from a testing method are, however, subject to biological 

and technical variability. As a consequence, repeated testing may result in discordant 

classification results. This impacts the precision of a testing method, defined as the ability of a 

testing method to deliver concordant results in repeated applications. The problem of intra- 

and inter-assay variability of in vitro methods has been observed earlier (see Hothorn (2002 

and 2003)). Luechtefeld et al. (2016) pointed to a limited intra-assay reproducibility of skin 

sensitisation potential and potency data. 

This chapter focuses on the intra-assay variability of testing methods for skin sensitisation 

potential assessment. Specifically, we analyse limitations with regard to the reproducibility of 

results when continuous dose-response data are transformed into “toxic/ non-toxic” 

outcomes. Kolle et al. (2013), Hoffmann (2015), Dumont et al., (2016), and Dimitrov et al. 

(2016) analysed the intra-assay variability of the LLNA. Kolle et al. (2013), showed that 

outcomes of repeated testing of a substance are not always concordant. Specifically, for those 

substances for which the estimated concentration (EC3) leads to a simulation (SI) index value 

which was relatively close to the threshold for classification (i.e. SI = 3; Kolle et al., 2013), 

different classifications: Positive or negative for skin sensitisation can result. Kolle et al. 

(2013), defined a range around the classification threshold of the LLNA, within which 

discordant outcomes can be expected, by determining coefficients of variation based on 

individual animal data. This range is called “borderline range” (BR) (Kolle et al., 2013), or 

“grey zone” (Dimitrov et al., 2016). The percentage of substances falling into the BR of a 

testing method’s prediction model can be used as a measure of the, i.e. the intra-assay 

variability, i.e. the testing method’s limited precision. 

Analyses of the BR for non-animal testing methods used for skin sensitisation potential 

assessment have not been conducted so far. Furthermore, a comparative evaluation of the 

precision of non-animal testing methods and the LLNA has not become available. The aim of 

this chapter is, therefore, to fill this gap by examining the impact of technical and biological 

variability on the precision of selected non-animal testing methods for skin sensitisation 
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potential assessment. Moreover, we compare the precision of the non-animal testing methods 

with that of the animal test LLNA. For this purpose the BR was quantified for the non-animal 

testing methods DPRA, LuSens, h-CLAT and the LLNA, based on results revealed from a large 

number of experiments (Appendix A). The approach for quantifying the BR and the decision 

rules for detecting borderline substances in experimental samples are explained in Section 

4.2. Results from quantifying the BR for each individual testing method are presented in 

Section 4.3.1. Borderline substances detected in the experimental samples of individual 

testing methods are shown in Section 4.3.2. Finally, Section 4.3.3 shows borderline substances 

for the “2 out of 3” ITS. Section 4.4 discusses implications from considering the BR in non-

animal testing methods’ prediction models and the “2 out of 3” ITS, respectively. Section 4.5 

concludes. 

4.2 Materials and methods  

4.2.1 Testing methods 

The three non-animal testing methods DPRA, LuSens, and h-CLAT were developed to 

address the three key events of the AOP in order to assess a substance’s skin sensitisation 

potential. We compared our findings to those of the LLNA as in vivo reference test to evaluate 

the precision of these methods. The samples used for quantifying the BR contained 42 

substances in case of the DPRA, 26 substances in case of LuSens, 13 substances in case of the 

h-CLAT, and 22 substances in case of the LLNA, respectively. The BR was quantified using 

results from a large number of runs of each testing method. Information about the samples 

used for determining the BR for each non-animal testing method and the LLNA, the number of 

runs conducted and the substance concentrations used in the experiments is provided in 

Appendix A, Tables A1-A4. Where substance names could not be provided due to data 

confidentiality substances were numbered consecutively. 

The experimental samples to which the BR concept was applied in order to detect 

borderline substances consists of 199 substances in case of the DPRA, 79 in case of LuSens, 40 

in case of the h-CLAT, and 22 substances in case of the LLNA; see Bauch et al. (2012) and 

Urbisch et al. (2015a, 2016). The composition of these samples is presented in Appendix B, 

Tables B1-B5. 
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4.2.1.1 Local lymph node assay 

The Local Lymph Node Assay (LLNA) is the “first choice” animal test for the assessment of 

skin sensitisation potential (Kimber et al., 1994). It is described in OECD TG 429, which was 

first published in 2002 (OECD, 2002)and updated in 2010 (OECD, 2010). In the LLNA, the 

proliferation of lymphocytes in auricular draining lymph nodes induced by substances is 

quantified by comparing the mean proliferation in each test group to the mean proliferation in 

the vehicle treated control group. The ratio of the mean proliferation in each treated group to 

that in the concurrent vehicle control group, termed the Stimulation Index (SI), is determined. 

The classification threshold of the LLNA is SI = 3. If SI > 3 a substance is classified a skin 

sensitiser.  

4.2.1.2 Direct peptide reactivity assay 

The Direct Peptide Reactivity Assay (DPRA) was developed by (Gerberick et al., 2004; 

Gerberick et al., 2007). The DPRA has been formally validated and the OECD Testing Guideline 

TG 442C (OECD, 2015a) was adopted in 2015. In the DPRA, depletions of two model peptides 

containing a cysteine- or lysine- residue as a reactive nucleophilic centre are measured after 

incubation with a test substance. The classification threshold of the DPRA is the mean 

depletion of 6.38% of the two peptides compared to the depletion in the reference 

controls(OECD, 2015a). If the mean lysine- and cysteine- peptide depletion is above this 

threshold, a test substance is considered to be peptide reactive. According to OECD TG 442C 

the DPRA can be used, together with complementary information, to discriminate sensitisers 

and non-sensitisers. Depending on the regulatory framework a positive result of the DPRA can 

serve as standalone information for classifying substances into Category 1 for skin 

sensitisation. However, as emphasised in the ECHA Guidance on information requirements 

and Chemical Safety Assessment Chapter R.4a (ECHA, 2016) the DPRA should not be used in 

isolation for identifying a skin sensitiser or non-sensitiser. 

4.2.1.3 ARE-Nrf2 luciferase method 

The ARE-Nrf2 luciferase method utilises the gene induction regulated by the antioxidant 

response element (ARE) in transgenic human keratinocyte cell lines. The OECD Test Guideline 

TG 442D (OECD, 2015b) was adopted in 2015. The ARE-Nrf2 luciferase method is covered by 

KeratinoSensTM (Natsch et al., 2011) and LuSens (Ramirez et al., 2014). In this study the 

LuSens assay is used. In ARE-Nrf2 luciferase methods the keratinocyte activating potential is 

determined by measuring luciferase induction after treatment with a test substance treatment 

relative to concurrent vehicle controls. A statistically significant fold induction (FI) of the 
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luciferase activity above 1.50 is considered to indicate a keratinocyte activating potential of a 

test substance. The classification threshold for LuSens is FI = 1.50, above which a substances 

is considered to have a keratinocyte activating potential. Similar to the DPRA, LuSens is not 

considered suitable for classifying substances as skin sensitisers or non-sensitisers when used 

in isolation (ECHA, 2016). 

4.2.1.4 Human cell line activation test  

The human Cell Line Activation Test (h-CLAT) (Ashikaga et al., 2006; Sakaguchi et al., 

2006; Ashikaga et al., 2010; Sakaguchi et al., 2010) determines the dendritic cell activating 

potential by measuring the induction of the expression of the cell surface markers CD54 and 

CD86 after treatment with a test substance relative to concurrent vehicle controls in 

immortalised human monocytic leukemia THP-1 cells as a surrogate of DCs. As indicated in 

the OECD testing guideline TG 442E (OECD, 2016d) a two-fold induction of the CD54 

expression and/or 1.50 fold induction of CD86 expression at relative cell viabilities of at least 

50% is considered to indicate a dendritic cell activating potential of a test substance. The 

classification thresholds for h-CLAT are CD54FI = 1.50 and CD86FI = 2.00. Like for the DPRA 

and LuSens, the method only addresses a specific key event of the skin sensitisation AOP. 

Consequently, it should not be used in isolation for classifying skin sensitisation potential 

(ECHA, 2016). 

4.2.1.5 The “2 out of 3” ITS for characterising skin sensitisation potential 

The “2 out of 3” ITS (Bauch et al., 2012; Urbisch et al., 2015a; OECD, 2016b; OECD, 2016c) 

is an integrated testing strategy for the assessment of skin sensitisation potential. According 

to this approach, 2 out of 3 concordant test results using the DPRA, the ARE-NrF2 luciferase 

method, and the h-CLAT determine the prediction. The ARE-NrF2 luciferase method can be 

covered by LuSens or KeratinoSensTM. The “2 out of 3” ITS addresses the first three 

consecutive key events of the AOP for skin sensitisation and it is a selected case study for 

integrated approaches to testing and assessment (IATA) (Urbisch et al., 2015a). Applying the BR 

concept to the “2 out of 3” ITS provides a measure for evaluating the performance of this 

specific DA case.  

4.2.2 Approach to quantify the borderline range (BR) 

The first step of the variability assessment was to quantify the BR. The BR denotes the 

area around the classification threshold for which a testing method’s prediction model may 

deliver discordant results. For each non-animal testing method considered, and for the animal 



Chapter 4 

67 
 

test LLNA, we derived the BR (Eq. 4.1) from the pooled standard deviation ܵܦ௣ (Eq. 4.2) of a 

testing method’s results (Appendix A), pooled across substances ݅ and concentrations ݆ used 

(i.e. the dose in case of the LLNA). For the specific case that test results are normally 

distributed, and the classification threshold is at the mean of the distribution, the BR covers 

~68% of the probability mass under the distribution of all test results. Note that the BR 

approach used in this paper goes beyond Kolle et al. (2013), who calculated the BR only for 

the LLNA and based on individual animal data. We use the pooled standard deviation ܵܦ௣ (Eq. 

4.2) to define the BR (Eq. 4.1) around a prediction model’s classification threshold T. Using the 

notation shown in Table 4.1 the BR is calculated as follows: 

ܴܤ  = ൛ܶ − ,௣ܦܵ ܶ +  ௣ൟ. (4.1)ܦܵ

 

The pooled standard deviation of experimental results, retrieved from testing different 

substances and concentrations, is calculated as follows: 

 

௣ܦܵ = ඨ∑ ∑  ൫௥೔,ೕିଵ൯∗ఙ೔,ೕమೖ೔ೕసభ೙೔సభ∑ ∑ ൫௥೔,ೕିଵ൯ೖ೔ೕసభ೙೔సభ , (4.2) 

 

where ߪ௜,௝ଶ  is the variance of the testing methods’ test results for substance i and concentration ݆. The standard deviation per substance i and concentration ݆ is given by  

 

௜,௝ߪ =  ඨ∑ (௬೔,ೕ,೗ିݕത݅,݆)మೝ೔,ೕ೗సభ(௥೔,ೕିଵ)  . (4.3) 
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Table 4.1: Notation for calculating the pooled standard deviation ࢖ࡰࡿ of experimental results 

per substance and concentration (dose in case of the LLNA) according to Eq. 4.2 

Notation Explanation 

T Classification threshold in a testing method’s prediction model 

i Substance (݅ = 1, … , ݊) ݊ Number of substances 

j Concentration tested per substance i (݆ = 1, … , ݇௜) ݇௜  Number of concentrations per substance in the sample ݎ௜,௝  Number of runs per substance i and concentration j ݈ Run per substance i and concentration j (݈ = 1, … , ௜,௝,௟ݕ (௜,௝ݎ  Test result of substance I, concentration j and run ݈ ݕത௜,௝ Arithmetic mean of test results for substance i and concentration j  
 

The BR in case of the DPRA was quantified using results from repeatedly testing n = 42 

substances, yielding 446 runs (i.e. individual results) for different concentrations including 

the positive control (see Appendix A, Table A1), performed in a GLP-certified laboratory of 

BASF SE. The cysteine depletion of a given run was combined with the lysine depletion of a 

random run. This revealed pairs of cysteine and lysine depletion values. For each pair we 

determined the mean peptide depletion per substance and concentration. The BR was then 

calculated for test results revealing mean peptide depletion values between 3.38% and 9.38%. 

The BR in the prediction model of LuSens was calculated for test results from n = 26 

substances, including the positive and negative control, yielding 2206 runs (i.e. individual 

results) from different concentrations (see Appendix A, Table A2). Again, experiments were 

conducted in a GLP-certified laboratory of BASF SE (using the Multimode Reader TriStar2 

luminometer - Berthold Technologies, Germany), applying the classification threshold ܫܨ =1.50. For each experiment, the BR was calculated for test results with luciferase fold-induction 

(FI) values up to 3.00 (ܫܨ < 3.00), and for test substance concentrations affording at least 

70% relative viability. For assessing whether an unknown substance should be classified 

borderline (or not) we first investigated whether results from each concentration tested in a 

certain run fell into the BR (or not). Following to this we defined a decision rule for concluding 

on the overall assessment across runs within experiments (see Section 4.2.3, Table 4.2). In a 

second step we defined a decision rule was determined guiding conclusions on the overall 

assessment (borderline/non borderline) across experiments (Section 4.2.3, Table 4.3). 

The BR around the classification threshold of the h-CLAT was calculated for test results 

from testing n = 13 substances during routine (in house) test applications, yielding 528 runs 
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(i.e. individual results) covering different concentrations (see Appendix A, Table A3). The BR 

was quantified for test results of fold inductions (FI) up to 3.00 fold for CD54 (CD54FI < 3.00) 

and up to 3.00 fold for CD86 (CD86FI < 3.00) for substance concentrations affording at least 

50% relative viability. Since according to the testing protocol (OECD, 2016d) an experiment 

does not have to be conducted for different concentrations we first classified the result from 

each run (positive, negative, borderline). In a follow-up step we defined a decision rule to 

conclude on the overall assessment across experiments (see also Section 4.2.3).  

Finally, the BR of the LLNA was quantified for test results from testing the n = 22 

performance standard (PS) substances (ICCVAM, 2009) according to good laboratory practise 

(GLP), yielding 479 runs (i.e. individual results) for substances at different concentrations, 

applying the classification threshold of ܵܫ = 3 (see Appendix A, Table A4). For determining 

the BR only those chemicals with an SI in the range between (2 ≤ SI ≤ 4) were considered. The 

reason is that chemicals with an SI far above or below SI = 4 were observed to be of no or only 

marginal impact on the BR. 

4.2.3 Decision rules for identifying borderline substances tested with individual non-
animal methods 

Given the BR around the classification threshold of each testing method we defined 

decision rules which guide, corresponding to the prediction model applied in each method, 

the identification of borderline substances in an experimental sample. 

In case of the DPRA, substances for which the mean depletion rate was found to be 

between 4.86% and 7.90% were defined borderline. The prediction model of LuSens as 

described in Ramirez et al. (2014) requires that two consecutive concentrations per run 

reveal results above (below) the classification threshold in order to assess the test substance 

as positive (negative). Thus, a complete experiment reveals at least two independent results. 

If they are discordant, a third run has to be conducted and the conclusion on a substance’s 

skin sensitisation potential is based on the majority outcome. For LuSens we established 

decision rules for determining the final result across all concentrations considered in 

repeated runs of an experiment (Table 4.3). Given the BR around the classification threshold 

of the LuSens prediction model (1.26 ≤ ܫܨ ≤ 1.74, see also Table 4.2) the outcome of an 

experiment was concluded to be positive (negative) if all results were above (below) the 

upper (lower) margin of the BR. If the first concentration (denoted x in Table 4.2) gave a 

negative result and the consecutive concentration (x+1) was either tested borderline or 

negative, it was concluded that the overall test outcome is negative. If LuSens revealed a 



Borderline range 

70 
 

borderline result for a certain concentration x and the follow-up concentration (x+1) was 

tested borderline or positive, the substance was decided to be a borderline substance. 
 

Table 4.2: Decision rule for concluding on the overall test result of LuSens after two 
consecutive concentrations in a run 

Concentration x Concentration 
(x+1) Overall test result 

Non-animal testing 
method results 

N N N 

P P P 

B B B 

N B N 

B P B 
N: Negative test result, indicating that a substance has not a keratinocyte activating potential;  
P: Positive test results, indicating that a substance has a keratinocyte activating potential;  
B: Substances which fall within the BR.  

 

In case of the h-CLAT, at least one of the test results of either the CD54 expression or the 

CD86 expression from at least one of the runs in an experiment has to fall into the BR for 

qualifying an experimental result as borderline. Hence, the conclusion on the overall result of 

the experiment (positive, negative) is based on results from just one concentration. 

Finally, we established a decision rule allowing to conclude on the overall test result 

across experiments. This was necessary because the testing protocols for LuSens and the h-

CLAT require conducting two or more runs in order to classify a substance according to the 

results. The decision rules for the final conclusion on a substance’s skin sensitisation potential 

across all possible runs conducted are shown in Table 4.3: 
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Table 4.3: Decision rules for LuSens and the h-CLAT to conclude on the overall test result after 
seeing results from repeated runs 

Number of runsa 1 2 3 4 Overall conclusion 

Non-animal testing 
method result 

N N N N N 

P P P P P 

N N B B B 

P P B B B 

N N P B B 

P P N B P 

N P B B B 

N N B - N 

P P B - P 

N P B - B 
N: Negative test result, i.e. a substance does not have a keratinocyte activating potential for 
LuSens or a dendritic cell activating potential for h-CLAT;  
P: Positive test result, i.e. a substance has a keratinocyte activating potential for LuSens or a 
dendritic cell activating potential for h-CLAT;  
B: Substances for which test results fall within the BR for either LuSens or h-CLAT. 
a Test results 1, 2,3 and 4 don’t not imply fixed combinations. 

 

4.2.4 Decision rules for identifying borderline substances tested with the “2 out of 3” 
ITS 

Considering the BR of the prediction models of non-animal testing methods changes the 

possible outcomes of each method to be negative, positive, or borderline/ambiguous. Since 

test results of borderline substances can (by definition) not unambiguously be denoted 

positive or negative the respective substances cannot be compared with results from a 

reference animal test in order to conclude whether the test result is FP (i.e. erroneously 

classified as positive) or FN (i.e. erroneously classified as negative). The skin sensitisation 

potential is, however, assessed by a combination of the results of non-animal testing methods 

addressing different steps of the adverse outcome pathway (Jaworska, 2016; Kleinstreuer et 

al., 2016; Strickland et al., 2016). One of the simplest, yet successful, ways to do this, is the “2 

out of 3” ITS (Bauch et al., 2012; Urbisch et al., 2015a). The “2 out of 3” ITS uses dichotomised 

results of individual non-animal testing methods (i.e. positive or negative). If a 

borderline/ambiguous outcome of an individual testing method is considered in the “2 out of 

3” ITS, its overall conclusion of the skin sensitisation potential of a test substance may as well 

be borderline/ambiguous (or negative or positive). The “2 out of 3” ITS assigns equal weights 

to each testing method. Hence, the order of results of the individual methods does not matter. 

Consequently, one testing method yielding a borderline/ambiguous result will not change the 

overall result of the “2 out of 3” ITS, if the other two methods provided concordant – negative 
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or positive – results. If test results of prediction models of two non-animal testing methods fell 

into the BR, the overall outcome was borderline likewise, if the three methods yielded 

positive, negative and borderline/ambiguous results, respectively. Table 4 lists the overall 

outcome of the “2 out of 3” ITS depending on the results of the prediction models of the 

individual non-animal testing methods. 
 

Table 4.4: Decision rules to conclude on the overall result using the “2 out of 3” ITS when 
considering borderline substances in individual non-animal testing methods 

Non-animal 
testing methodsa 

First test 
result 

Second test 
result 

Third test 
result 

Overall 
conclusion 

Non-animal 
testing method 
results1 

N N N N 

P P P P 

B B B B 

N B N N 

P B P P 

N N B N 

P P B P 

N B B B 

P B B B 

N B P B 
N: Negative test result, i.e. a substance does not have a peptide reactivity potential for DPRA or 
a keratinocyte activating potential for LuSens or a dendritic cell activating potential for h-
CLAT;  
P: Positive test result, i.e. a substance has a peptide reactivity potential for DPRA or 
keratinocyte activating potential for LuSens or a dendritic cell activating potential for h-CLAT;  
B: Substances which fall within the BR for either the DPRA, LuSens or the h-CLAT. 
a The order of test results does not imply the order of performing the non-animal testing methods.  

 
4.3 Results  

4.3.1. Quantification of the borderline range (BR) for the DPRA, LuSens, the h-CLAT and 
the LLNA 

To quantify the BR around the classification threshold we used test results from 

substances tested with the non-animal testing methods DPRA, LuSens and h-CLAT, and from 

the LLNA, respectively. The number of substances with known skin sensitisation potential 

used to quantify the BR, the number of runs conducted per testing method, and the BR values 

of the testing methods’ prediction models, are shown in Table 4.5.  
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Table 4.5: Borderline range  ,around the classification threshold of the animal test LLNA (܀۰) 
and of the non-animal testing methods DPRA, LuSens, and h-CLAT 

Testing method Number of substances (and runs) 
used for quantifying the BR* Borderline range (BR) 

LLNA 22 (96 runs) SI: 2.41 – 3.59 

DPRA 42 (76 runs) Mean peptide depletion: 4.86%– 7.9% 

LuSens 26 (473 runs) Luciferase FI: 1.26–1.74 

h-CLAT 
13 (513 runs) CD54 FI: 1.83–2.17 

13 (474 runs) CD86 FI: 1.27– 1.73 
BR: Borderline range;  
SI: Stimulation index;  
FI: Fold induction;  
CD54, CD86: Cell surface markers;  
See the Appendix A for a list of substances included in the experimental samples.  
* For details about the composition of the samples see also Appendix A, Tables A1-A4. 
 

If a substance is tested with any of the testing methods shown in Table 4.5, and if the 

result falls within BR of its prediction-model, a clear-cut conclusion about the substance’s skin 

sensitisation potential is not possible. If, for instance, a substance tested with the DPRA 

reveals a mean peptide depletion between 4.86% and 7.90%, the result can neither be 

concluded to be negative nor to be positive. Instead, such test result would have to be 

qualified as “borderline” because results from repeated runs of the DPRA for this substance 

are likely to vary. For the specific case that test results are distributed normally, and that the 

BR is the mean of the distribution, the likelihood that a randomly selected substance is 

borderline is ~68%. 

4.3.2 Identification of borderline substances in experimental samples tested with the 
non-animal testing methods DPRA, LuSens and h-CLAT, and with the animal test LLNA 

Substances for which test results fell within the BR of the prediction models of the non-

animal testing methods and the LLNA are listed in Table 4.6. We found that 6 out of 22 

substances tested in the LLNA (i.e. 27%) were identified as borderline.  

Of the borderline substances identified in the sample tested with the DPRA 9 revealed 

negative and 11 positive test results in the LLNA. Most substances with a negative test result 

were non-sensitisers based on LLNA potency classes. Four of the five substances for which 

test results were within the BR of LuSens revealed positive results in the LLNA. Of these, one 

was a weak, one a moderate and two strong sensitisers. Within the BR of h-CLAT all 

substances were positive when compared to the LLNA, three of which were weak sensitisers, 

one a moderate sensitiser, three were strong and one an extreme sensitiser.  
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Table 4.6: Borderline substances for the LLNA, the DPRA, LuSens, and the h -CLAT 

Testing 
method Borderline substances 

Sensitisation potentiala in 
mice or humans 

(by conventional approach, 
assessed without BRb) 

Potency class (based 
on LLNA) 

  LLNA Human  
LLNA Salicylic acidc N N Non-sensitiser 
 Methyl salicylatec N N Non-sensitiser 
 Chlorobenzenec N - Non-sensitiser 
 Nickel chloridec N P Non-sensitiser 
 Phenyl benzoatec P P Weak 
 Methyl methacrylatec P P Weak 
DPRA Salicylic acidc N N Non-sensitiser 
 α-Hexyl cinnamic aldehydec P - Weak / Moderate 
 Geraniol P P Non-sensitiser 
 Benzyl alcohol N P Non-sensitiser 
 Tween 80 N N Moderate 

 3-Dimethylamino 
propylamine P P Weak 

 Cis-6-Nonenal P - Non-sensitiser 
 Ethyl vanillin N - Weak 
 Undecylenic acid P P Moderate 
 2-methoxy-4-methylphenol P - Non-sensitiser 
 Ethyl benzoylacetate N - Moderate 
 Dihydroeugenol P - Weak 
 N,N-Diethyl-m-toluanimde N - Non-sensitiser 
 Penicillin G P P Weak 
 d,l-Citronellol P N Weak 
 Pentachlorophenol P P Weak 

 p-tert-Butyl-alpha-ethyl 
hydrocinnamal (Lilial) P P Weak 

 1-Bromobutane N - Non-sensitiser 
 Fumaric acid N N Non-sensitiser 
 Glucose N N Non-sensitiser 
LuSens 1-Butanol N N Non-sensitiser 
 Benzoyl peroxide P P Weak 
 4-Allylanisole P - Extreme 
 Methyldibromo glutaronitrile P P Strong 

 Imidazolidinyl urea P P Strong 
h-CLAT 4-phenylenediaminec P P Strong 
 Phenyl benzoatec P P Weak 
 Ethylene diaminec P P Moderate 
 Aniline P P Weak 
 Farnesal P - Weak 
 Methyldibromo glutaronitrile c P P Strong 
 p-Benzoquinone P P Extreme 
 Propyl gallatec P P Strong 

a Prediction based on (Urbisch et al., 2015a), human data were extracted from (Basketter et al., 2014); 
b N=negative, P=positive. 
c Performance Standards (PS) substances of the OECD TG no. 429 (ICCVAM, 2009; OECD, 2010). 
In case of the DPRA the percentage of substances falling into the BR was 10%, 6% in case of LuSens and 20% in case of the 
h-CLAT. 
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4.3.3 Identification of borderline substances in the experimental sample tested with 
the “2 out of 3” ITS 

We found four substances out of 40 (10%) of the substances tested with the “2 out of 3” 

ITS to be borderline (Table 4.7), which is equal or less than the percentages revealed in case 

of the DPRA and the h-CLAT individually. All substances were positive in the LLNA. Of these, 

one is a weak one is a moderate and two substances are strong sensitisers according to the 

LLNA potency classes.  
Table 4.7: Borderline substances in the experimental sample tested with the “2 out of 3” ITS  

Borderline substances Sensitisation potentiala in 
mice or humans 

Potency classes 
(based on LLNA) 

 LLNA Human  

Phenyl benzoate P P Weak 

Ethylene diamine P P Moderate 

Methyldibromo 
glutaronitrile P P Strong 

Propyl gallate P P Strong 
a Prediction based on (Urbisch et al., 2015a) human data were extracted from  
Basketter et al., (2014). 

 
4.4 Discussion  

4.4.1 Identification of borderline substances and implications of the BR for assessing 
substances’ skin sensitisation potential 

The BR defines the area around a testing method’s classification threshold within which 

repeated testing will likely show discordant results. That is, within the BR a testing method is 

not precise due to its intra-assay variability. Given the BR, conclusions about a borderline 

substance’s skin sensitisation potential are not possible. If a substance reveals test results 

falling within the BR, further testing is required to allow for a robust discrimination between 

a positive and a negative test outcome. The probability of an unknown substances to reveal a 

borderline result depends on the distribution of test results. For the specific case that test 

outcomes are normally distributed, and that the classification threshold is the mean of the 

distribution, the probability of seeing a borderline result is p = 0.68. This may differ for other 

types of distributions. Clearly, irrespective of the distribution of test outcomes the precision of 

a testing method is the higher (lower) the smaller (larger) the BR. 

In this study we quantified the BR for prediction models of three non-animal testing 

methods as the pooled standard deviation around the testing method’s classification 

threshold, the animal test LLNA, and the “2 out of 3” ITS. We find that 6 out of 22 (i.e. 27%) of 

the performance standard (PS) substances tested with the LLNA fall into its BR. This is slightly 
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higher than results obtained from the variability assessment in Hoffmann (2015), which may 

be explained by considering that Hoffmann (2015) determined the BR from EC3 values. 

For the DPRA 20 out of 199 (10%) substances were identified as borderline, of which four 

were positive and seven negative in the LLNA. Applying the BR concept to LuSens required 

two steps to identify borderline substances (i.e. BR quantification within and across runs of 

experiments, see Tables 4.2 and 4.3). LuSens has a stringent prediction model (Ramirez et al., 

2014; Ramirez et al., 2016). This may be a reason why LuSens revealed a relatively small 

percentage of borderline substances (6%, i.e. 5 out of 79). The application of the BR concept to 

the prediction model of the h-CLAT revealed 8 out of 40 substances (20%) being borderline. It 

should be noted that the prediction model of h-CLAT (Bauch et al., 2012) does not require 

concordant test results in consecutive concentrations of the same run to conclude on the 

substance’s skin sensitisation potential. Furthermore, concordant test results with either cell 

surface markers CD54 expression or CD86 expression from at least two runs within the same 

experiment are required to conclude on a positive or negative test result (OECD, 2016d). 

Compared to the h-CLAT, the prediction model of LuSens is more elaborate because for each 

run two consecutive concentrations must be tested to determine the final result. 

Consequently, the prediction model of h-CLAT (OECD, 2016d) identifies a larger number of 

positive results (Sakaguchi et al., 2010), which may explain why all borderline substances in 

the experimental sample of h-CLAT were sensitisers. 

 

4.4.2 Precision of non-animal testing methods compared to the LLNA  

Taking the percentage of borderline substances in an experimental sample as a measure 

of a testing method’s limited precision, we observe that this is considerably higher for the 

LLNA (27%) compared to the DPRA (10%), LuSens (6%) and the h-CLAT (20%). While this 

might be an indication for a larger imprecision of the LLNA compared to non-animal methods, 

the evidence provided in our study is not conclusive because experimental samples used 

differed across testing methods (24 PS substances in case of the LLNA, 199 substances for the 

DPRA, 79 substances for LuSens and 40 substances for the h-CLAT, respectively). Further 

research is required to examine the influence of sample size and composition on the 

quantification of the BR. 

Of the borderline substances in the experimental sample of the LLNA two (i.e. phenyl 

benzoate, methyl methacrylate) are weak sensitisers, and four (i.e. salicylic acid, methyl 

salicylate, chlorobenzene, nickel chloride) are non-sensitisers (Table 4.6). Most substances 

identified as borderline in the LLNA are also discussed in Kolle et al. (2013). Our study also 
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identified phenyl benzoate as borderline, causing the percentage of substances falling in the 

BR of the LLNA to be slightly higher (27%) compared to Kolle et al. (2013) (23%). Note, 

however, that Kolle et al. (2013) determined the BR by calculating coefficients of variation 

based on individual animal data and did not use pooled animal data in the LLNA. 

None of the substances identified as borderlines in the LLNA was borderlines in LuSens, 

one substance (salicylic acid) was also identified as borderline in the DPRA, and one 

substance (phenyl benzoate) was identified as borderline in the h-CLAT.  

4.4.3 Precision of the “2 out of 3” ITS 

Following the testing protocols for the DPRA (OECD, 2015a), LuSens (Ramirez et al., 2014; 

Ramirez et al., 2016) and the h-CLAT (OECD, 2016d) a single testing method cannot be used to 

predict skin sensitisation potential as a standalone method. The “2 out of 3” ITS has been 

suggested as a suitable approach for the overall assessment of the skin sensitisation potential 

based on the results of three individual testing methods (Urbisch et al., 2015a). Applying the 

BR concept to the “2 out of 3” ITS (Urbisch et al., 2015a) revealed four borderline substances 

in a set of 40 (10%), which is lower than that of the LLNA (27%). Our results, therefore, may 

indicate that the precision of the “2 out of 3” ITS is higher compared to the LLNA. Again, this 

result has to be treated with care because the experimental sample of the LLNA differed from 

that of the non-animal testing methods used in the “2 out of 3” ITS. Notwithstanding, the “2 

out of 3” ITS reduces the influence of borderline substances on the overall conclusion about a 

substance’s skin sensitisation potential for all cases where two of the three methods provide 

concordant results. This, in turn, increases the overall precision of the “2 out of 3” ITS 

compared to the precision of the individual non-animal testing methods. 

4.5 Conclusions 

Technical and biological variability of non-animal testing methods used for assessing skin 

sensitisation potential, and the animal test LLNA, influence the precision of these methods. It 

is important to recognise that neither the animal test LLNA, often considered “the gold 

standard”, nor non-animal testing methods perfectly predict effects in humans (due to limited 

accuracy) and do not always yield clear-cut results (due to limited precision). A testing 

method’s precision constraint caused by intra-assay variability can be captured by 

quantifying a BR around the classification threshold of the method’s prediction model, which 

are used to transform continuous experimental data into a dichotomous result, being either 

“positive” (indicating an effect) or “negative” (indicating no effect). Test substances for which 

results fall within the BR of a testing method could be assessed as positive or negative upon 
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re-testing; thus the result of the test is ambiguous. Quite obviously, any conclusion drawn 

from experimental data is constrained by uncertainties and this is often neglected in reporting 

the results. The BR may offer a simple and pragmatic way to take into account that not every 

experimental data allows for a definite conclusion. A measure of precision, such as the BR, 

should therefore be reported with every study result. Furthermore, when using prediction 

models which dichotomise data there should always be three potential outcomes: positive, 

negative or borderline. While the paper focused on skin sensitisation as a proof-of-concept 

case, the BR approach is a generic method and can be applied to other endpoints, tests, and 

ITSs. Further research should, for example, quantify the BR for a broader set of (non-animal) 

testing methods, and should also address the impact of the size and composition of 

experimental samples on the BR. Moreover, examining the precision of testing methods for 

continuous endpoints deserves further attention in order to provide complementary insights 

into testing methods’ precision regarding potency assessment (Slob, 2016). 

Another important issue for further research and discussion is how to deal with 

borderline test results in a regulatory context. One possible option could be to define 

borderline results per default as positive results. However, this would imply that the upper 

part of the BR is factually ignored. Alternatively, one could require additional testing. 

Decision-theoretic approaches such the Bayesian Value-of-Information approach introduced 

in Leontaridou et al. (2016) can help to determine the optimal follow-up test in a systematic 

and transparent way. Finally, the question how borderline substances impact testing 

methods’ predictive performance deserves further attention. Since for borderline substances 

the overall conclusion on their hazardous potential remains inconclusive, they cannot 

contribute unambiguously to the evaluation of a testing method’s accuracy. Ignoring a 

substance’s borderline result will, therefore, cause either over- or underestimation errors of, 

for example, a testing method’s sensitivity or specificity. Exploring the size and direction of 

this impact for different non-animal testing methods, and analysing the influence of the size 

and composition of experimental samples, will provide complementary insights into the 

implications of intra-assay variability. 
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5 Uncertainties in measures of predictivity: The impact of 
precision, sample size and sample composition on the predictive 
accuracy of non-animal methods for skin sensitisation 4 

The ability of non-animal methods to predict the outcome of in vivo testing is expressed in 

terms of a test's predictivity (or predictive accuracy) by comparing the results of both tests 

obtained with a given number of substances. The predictive accuracy depends on the sample 

size (i.e. the number of substances which were tested to determine it), the composition of the 

sample, and the precision of both methods. Non-animal methods use prediction models to 

transform continuous read-outs of the test into dichotomous results by applying threshold 

values above and below which the test substance is assessed as positive or negative. Due to 

intra-test variability the precision of any testing method is limited. This results in a 

“borderline range” rather than a clear-cut classification threshold. When calculating the 

predictivity of non-animal methods it is usually not taken into account that test results of 

substances falling into the borderline range are inconclusive. This chapter explores the impact 

of intra-test variability on the predictivity of non-animal testing methods for assessing skin 

sensitisation potential. We quantity the impact a method’s limited precision on the predictive 

accuracy of the DPRA assay, the ARE-Nrf2 luciferase method (covered by LuSens), the h-CLAT 

assay, and a combination of these methods into the “2 out of 3” integrated testing strategy. In 

addition, we examine impacts of intra-test variability on testing methods’ predictivity caused 

by limited precision in combination with varying composition and size of experimental 

samples. Our results underline that discrete “positive/negative” outcomes are of limited 

informational value for evaluations of non-animal testing methods’ predictivity. Instead, 

information on the variability, and the upper and lower limits of accuracy metrics should be 

provided to ensure transparent assessments and comparisons of testing methods’ 

predictivity. 

  

                                                        
4 Chapter 5 is based on the manuscript in preparation: Leontaridou M., Gabbert S., Landsiedel R., (2017) 
Uncertainties in measures of predictivity: The impact of precision, sample size and sample composition on the 
predictive accuracy of non-animal methods for skin sensitisation. 



Uncertainties in measures of predictivity 

80 

5.1 Introduction 

It has been widely acknowledged that binary “positive/negative” or “yes/no” outcomes 

have limited informational value regarding the “true” accuracy of non-animal testing methods, 

i.e. the degree of agreement between experimental results obtained and a corresponding 

(animal) reference test. Several studies pointed to possible biases in non-animal testing 

methods’ accuracy metrics due to inter- and intra-laboratory variability (Agnese et al., 1984; 

Margolin et al., 1984; Hothorn, 2002; Hothorn, 2003), which hampers a transparent 

comparison of non-animal testing methods predictivity with that of the animal test. Likewise, 

previous research revealed that animal test results can be biased due to technical and 

biological variability (Weil and Scala, 1971; Worth and Cronin, 2001b). 

Recent research has paid specific attention to the intra-test variability of methods used for 

assessing skin sensitisation potential. Specifically, for the classification of substances’ 

hazardous potential both animal and non-animal testing methods apply prediction models 

using defined threshold values that dichotomise continuous experimental results into binary, 

i.e. positive and negative, outcomes (van der Schouw et al., 1995; Hoffmann and Hartung, 

2005). Results from binary classifications are used to determine a testing method’s predictive 

accuracy compared to a reference test (e.g. the LLNA, (OECD, 2010)). Comparing experimental 

results obtained with a non-animal testing method with animal data allows quantifying the 

fractions of substances revealing true positive (TP), true negative (TN), false positive (FP), or 

false negative (FN) results (Krzanowski and Hand, 2009). Based on these fractions, a non-

animal testing method’s predictive accuracy, e.g. sensitivity, specificity, and concordance (also 

called “accuracy”) can be determined. Predictive accuracy metrics specify a non-animal 

testing method’s ability to correctly classify an unknown substance compared to the reference 

animal test. 

For the LLNA (Kolle et al., 2013; Hoffmann, 2015; Dumont et al., 2016) analysed the 

variability of classifications caused by a dichotomisation of continuous read-outs into discrete 

“positive/negative” data. In particular, Kolle et al. (2013) determined a range around the 

classification threshold within which the LLNA reveals discordant results in repeated 

applications. This range has been called “grey zone” (Dimitrov et al., 2016) or “borderline 

range” (BR) (Kolle et al., 2013). Hence, for substances yielding test results within the BR, 

clear-cut classifications of their skin sensitisation potential is not possible. This limits the 

LLNA’s precision, i.e. its ability to reveal concordant results in repeated applications. 

Leontaridou et al. (2017a) quantified the BR for the LLNA and the non-animal testing methods 

DPRA, LuSens and h-CLAT. Furthermore, their study determined borderline substances for 
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the “2 out of 3” integrated testing strategy (ITS), consisting of the non-animal testing methods 

mentioned above. The analysis showed that the number and percentage of substances 

considered borderline can be significant.  

Clearly, substances with ambiguous hazard classification cannot contribute to 

determining a testing method’s predictive accuracy. As a consequence, ignoring the BR in a 

testing method’s prediction model – and, hence, the limited precision – may bias the 

assessment of classification accuracy. This hampers meaningful comparisons of accuracy 

metrics between non-animal testing methods and the reference animal test, e.g. for regulatory 

validation purposes. Besides the specification of the classification threshold, testing methods’ 

accuracy depends on the size and composition of experimental samples. Apart from using 

defined reference substances (denoted “proficiency chemicals”) (see Annex 2 of the DPRA 

OECD guideline (OECD, 2015a), Annex 2 of the ARE-Nrf2 luciferase method OECD guideline 

(OECD, 2015b), and Annex 2 of the h-CLAT OECD TG no. 442E (OECD, 2016d)), the 

composition and the size of the experimental samples depend on various considerations, e.g. 

the availability of robust reference data (i.e. in vivo and human data if applicable) , the number 

of substances falling into each of the sensitisation potency classes and the number of 

sensitisers and non-sensitisers (ECVAM, 2012; ECVAM, 2013). Hence, the composition and the 

number of substances included in experimental samples can vary considerably. Furthermore, 

there is no defined minimum number of substances below which an experimental sample 

would be considered insufficient for robust evaluations of non-animal testing methods’ 

predictive accuracy. This induces additional bias, which can even interact with biases caused 

by testing methods’ limited precision. 

So far, however, the impact of possible biases in the calculation of the abovementioned 

predictive accuracy metrics has not been systematically analysed. The aim of Chapter 5 is to 

fill this gap. We examine the impact of the limited precision on sensitivity, specificity and 

concordance of the non-animal testing methods DPRA, LuSens, and the h-CLAT. Currently, 

none of these methods is considered to provide sufficient information for classification as a 

standalone method (Mehling et al., 2012; Reisinger et al., 2015; ECHA, 2016). Combinations of 

these methods, for example the “2 out of 3” ITS (Bauch et al., 2012; Urbisch et al., 2015a), are 

assumed to provide sufficient information for concluding on a substance’s skin sensitisation 

potential. We therefore also include the “2 out of 3” ITS in the analysis. 

The impact of classification bias is analysed in four steps: First, we examine the impact of 

non-animal testing methods’ limited precision on predictive accuracy metrics. This is done by 

comparing sensitivity, specificity and concordance derived from experimental samples 
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including borderline substances (i.e. the complete sample) with accuracy values obtained 

after borderline substances were excluded (i.e. the reduced sample). Second, we apply non-

parametric bootstrapping (Wehrens et al., 2000) to create randomised experimental samples 

for every non-animal testing method considered. This generates distributions of sensitivity, 

specificity and concordance. Quantifying the mean, the standard deviation, and the 95% 

confidence interval for all accuracy metrics and compare the mean accuracy metrics to those 

from deterministic samples illustrate the impact of sample composition on classification bias. 

Third, we examine the joint impact of limited precision and sample composition by comparing 

accuracy metrics from randomised complete samples (i.e. including borderline substances) 

with those retrieved from reduced samples (i.e. excluding borderline substances). Finally, the 

joint impact from variations of sample composition, size and limited precision on 

classification accuracy is analysed. 

The remainder of the chapter is structured as follows. Section 5.2 presents the 

methodological approach. We briefly explain the method to assess precision and document 

the experimental datasets used. In addition, we explain the scenarios for analysing the impact 

of classification bias on accuracy metrics. Section 5.3 discusses results from examining the 

impact of limited precision, sample size and sample composition on the predictive accuracy of 

non-animal testing methods. Section 5.4 discusses implication from our findings for assessing 

and comparing accuracy across non-animal testing methods, and between non-animal testing 

methods and the animal test. Section 5.5 concludes. 

5.2 Materials and methods  

5.2.1 Non-animal testing methods for assessing skin sensitisation potential  

Skin sensitisation is a key endpoint for safety evaluations of new and existing substances 

in different regulatory frameworks of the European Union (e.g. the REACH legislation (EC, 

2006), the Cosmetics regulation (EC, 2009)). Skin sensitisers cause allergic responses after 

contact (UNECE, 2011), from which about 15% to 20% of the population suffers at least once 

in a lifetime with increasing prevalence (Thyssen et al., 2007; Peiser et al., 2012). Responding 

to the urgent need to minimise animal testing, several non-animal testing methods and 

integrated testing strategies have been developed (Mehling et al., 2012; Reisinger et al., 2015; 

Urbisch et al., 2015a). Of these, the Direct Peptide Reactivity Assay (DPRA) (Gerberick et al., 

2004; Gerberick et al., 2007), and the ARE-Nrf2 luciferase method covered by KeratinoSensTM 

(Natsch et al., 2011), were validated by European Centre for Validation of Alternative Methods 

(ECVAM), and OECD test guidelines 442C and 442D (OECD, 2015a; OECD, 2015b) have been 

adopted. The ARE-Nrf2 luciferase method is also covered by LuSens (Ramirez et al., 2014; 
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Ramirez et al., 2016), which is currently under validation by ECVAM. The human cell line 

activation test (h-CLAT) (Ashikaga et al., 2006; Sakaguchi et al., 2006; Ashikaga et al., 2010; 

Sakaguchi et al., 2010) has recently been validated by ECVAM and is described in OECD TG no. 

442E (OECD, 2016d). The DPRA, KeratinoSensTM or LuSens and the h-CLAT cover the three 

“key events” of the skin sensitisation adverse outcome pathway (AOP) (OECD, 2012b; OECD, 

2012c).  

In case of the DPRA (Gerberick et al., 2004; Gerberick et al., 2007), depletions of two 

model peptides containing a cysteine- or lysine residue as a reactive nucleophilic centre are 

measured after incubation with a test substance. If the mean cysteine- and lysine- peptide 

depletion is above 6.38%, when compared to depletion in the reference control, the test result 

is positive and the substance is considered to be peptide reactive. 

For determining the keratinocyte activating potential induced by LuSens (Ramirez et al., 

2014; Ramirez et al., 2016), the luciferase induction after treatment with a test substance is 

assessed relative to concurrent vehicle controls. If a statistically significant fold induction (FI) 

of the luciferase activity is above 1.5, at relative cell viabilities of at least 70%, the test result is 

positive and the substance is considered to have a keratinocyte activating potential. 

In case of the h-CLAT (Ashikaga et al., 2006; Sakaguchi et al., 2006; Ashikaga et al., 2010; 

Sakaguchi et al., 2010) the induction of the expression of the cell surface markers CD54 and 

CD86 is measured after treatment with a test substance, relative to concurrent vehicle 

controls in immortalized human monocytic leukemia THP-1 cells as a surrogate of DCs. If at 

least a two-fold induction of the CD54 expression and/or a 1.50-fold induction of CD86 

expression are observed at relative cell viabilities of at least 50%, the test result is positive 

and the substance is considered to indicate a dendritic cell activating potential.  

The “2 out of 3” ITS (Bauch et al., 2012; Urbisch et al., 2015a) combines test results from 

the DPRA, the ARE-Nrf2 luciferase method (covered by either LuSens or KeratinoSensTM) and 

the h-CLAT. Equal weights are attached to each of the non-animal testing methods, which 

capture the three key events of the skin sensitisation AOP. The overall classification of a 

substance is determined by the majority of concordant test results from the DPRA, LuSens or 

KeratinoSensTM and the h-CLAT, respectively.  

5.2.2 Quantification of the borderline range 

Due to biological and technical variability we can identify a borderline range (BR) around 

the classification threshold within which test results can neither be classified positive or 

negative, but they must be reported as “non-conclusive” or “ambiguous” (Leontaridou et al., 

2017a). The BR, therefore, constraints a testing method’s precision. Leontaridou et al. (2017a) 
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quantified the BR around a testing method’s classification threshold (T) as the pooled 

standard deviation (ܵܦ௣) of test results from runs of testing methods, pooled across 

substance i and concentration j used. The quantification of the borderline rage is described in 

detail in Chapter 4 Section 4.3.1 of this thesis. 

Using experimental results for the DPRA, LuSens, the h-CLAT and for the “2 out of 3” ITS 

published in (Bauch et al., 2012; Urbisch et al., 2015a), Leontaridou et al. (2017a) identified 

20 substances out of 199 tested with the DPRA (10%), 5 out of 79 tested with LuSens (6%), 

and 8 out of 40 tested with the h-CLAT (20%) to be borderline when compared to results 

from the LLNA. For the “2 out of 3” ITS, 4 of 40 substances (10%) were identified as 

borderline. 

5.2.3 Calculation of testing method’s accuracy metrics 

The predictive accuracy of non-animal testing methods and of the “2 out of 3” ITS 

approach was determined by means of three accuracy metrics, i.e. sensitivity, specificity, and 

concordance. Using standard 2x2 contingency tables (Cooper et al., 1979) the number of true 

positive (TP), true negative (TN), false positive (FP), and false negative (FN) experimental test 

results of each non-animal testing method was determined when compared to LLNA and 

human data. The accuracy metrics sensitivity (ܵ݁), specificity (ܵ݌) and concordance (݊݋ܥ) 

were quantified as follows: 

 ܵ݁ [%] = ்௉்௉ାிே ∗ 100, (5.1) 

[%] ݌ܵ  = ்ே்ேାி௉ ∗ 100, (5.2) 

[%] ݊݋ܥ  = ்௉ା்ே்௉ା்ேାி௉ାிே ∗ 100. (5.3) 

 

5.2.4 Scenarios for analysing the impact of limited precision, sample size and sample 
composition on non-animal methods’ predictive accuracy 

To examine the impact of limited precision, sample size and sample composition on 

classification bias of non-animal testing methods we defined different scenarios, which are 

summarised in Table 5.1. 
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Table 5.1: Scenarios for assessing the impact of variations of precision, sample composition 
and sample size on non-animal methods’ predictive accuracy metrics  

 
Experimental sample 

sample size = ࢔ 

Randomised sample 

sample size = ࢔ 

Randomised sub-samples 

sample size < ࢔ 

Complete sample 

(including borderline 
substances) Scenario 1: Impact of 

limited precision on 
predictive accuracy 

metrics 

Scenario 2a: Impact of 
varying sample 
composition on 

predictive accuracy 
metrics 

Scenario 3a: Joint impact of 
varying sample 

composition and sample 
size on predictive accuracy 

metrics 

Reduced samples 

(excluding borderline 
substances) 

Scenario 2b: Joint impact 
of varying sample 

composition and limited 
precision on predictive 

accuracy metrics 

Scenario 3b: Joint impact of 
varying sample 

composition and size, and 
limited precision on 

predictive accuracy metrics 
 

First, we determined sensitivity (Eq. 5.1), specificity (Eq. 5.2) and concordance (Eq. 5.3) 

using the experimental datasets revealed for the DPRA, LuSens, the h-CLAT and the “2 out of 

3” ITS, and compared to both the LLNA and to human reference data (Natsch et al., 2011; 

Bauch et al., 2012; Urbisch et al., 2015a) (Scenario 1 in Table 5.1). The composition of 

experimental samples is documented in Table B1-B4 in the Appendix B. The tables show 

experimental test results for the non-animal testing methods when compared to the LLNA and 

to human data. 

Accuracy metrics were derived from experimental test results for the complete samples of 

substances (i.e. including the borderline substances) and for reduced samples (i.e. excluding 

the borderline substances). For ease of presentation, we confine the discussion on results 

revealed from experimental data compared to the LLNA as reference test. Results revealed 

from experimental samples using human data as reference are presented in the Appendix D. 

Table 5.2 shows the number of substances in the complete and the reduced samples used for 

calculating predictive accuracy metrics of the non-animal testing method and the “2 out of 3” 

ITS. 
 

Table 5.2: Number of substances (࢔) in the experimental samples used for calculating 
predictive accuracy metrics of non-animal testing methods and the “2 out of 3” ITS *. 

 
Complete samples 

(including borderline 
substances) 

Reduced samples 
(excluding borderline 

substances) 

Number and percentage of 
borderline substances 

DPRA 199 179 20 (10%) 

LuSens 79 74 5 (6%) 

h-CLAT 40 32 8 (20%) 

“2 out of 3”ITS 40 36 4 (10%) 
* Experimental data compared to the LLNA as reference test.  
Experimental data extracted from: Natsch et al., (2011); Bauch et al., (2012); Urbisch et al., (2015a). 
Source: Leontaridou et al. (2017a).  
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Second, accuracy metrics were calculated for randomised samples. This captures 

uncertainty of test results due to varying sample composition. We determined accuracy 

metrics for the complete sample (i.e. including borderline substances, Scenario 2a in Table 

5.1) and for the reduced sample (i.e. excluding borderline samples, Scenario 2b in Table 5.1). 

The latter offers a means to analyse the joint impact of sample composition and precision 

limitations on accuracy metrics. Randomisation was achieved by applying non-parametric 

standard bootstrap resampling analysis (Table 5.3). This method was used earlier by (Worth 

and Cronin, 2001b) to assess the variability of the Draize tissue scores. Our study applies a 

similar approach but focuses on the assessing the combined impact of varying sample 

composition and limited precision on non-animal methods’ accuracy. 

For every non-animal method and the “2 out of 3” ITS a set of m = 10,000 randomised 

samples (Efron and Tibshirani, 1993; Ostaszewski K. and Rempala G.A., 2000) was created by 

random replacement of the binary classifications obtained from experimental test results 

(Table 5.3, Step 1). The number of substances in randomised samples, denoted n, was equal to 

the number of substances in the complete and reduced experimental samples (column 2 and 3 

in Table 5.2). Randomised samples were assumed to be independent and identically 

distributed (Wehrens et al., 2000). For all randomised samples we determined sensitivity, 

specificity and concordance according to Eq. 5.1-5.3. This revealed non-parametric 

distributions of sensitivity, specificity and concordance for the complete samples (i.e. 

including borderline substances), and for the reduced samples (excluding borderline 

substances, see also Table 5.3, Step 2 and 3). For every distribution we determined the mean 

and the standard deviation (SD) according to Eq. (5.4) and (5.5): 

௔݊ܽ݁ܯ  = ∑ ௔೤೤భ௠ , (5.4) 

ܦܵ  = ට∑ (௔೤ିெ௘௔௡ೌ)೤భ ௠ିଵ , (5.5) 

 

with a denoting the accuracy metric which is determined from the randomised sample (thus ܵ݁∗, ݉) and y denoting the number of random samples ,(∗݊݋ܥ ,∗݌ܵ = 10,000).  
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Table 5.3: Steps for conducting non-parametric standard bootstrap resampling analysis  

Step Description 

Step 1 Bootstrap resampling with random replacement of experimental test results from the 
individual non-animal testing methods and the “2 out of 3” ITS.  

Step 2 Quantification of a, thus sensitivity (ܵ݁∗), specificity (ܵ݌∗) and concordance (݊݋ܥ∗) for 
the bootstrap sample. 

Step3 m-fold repetition of step 1 and 2; ݉ = 10,000.  

Step 4 Calculation of the mean, the standard deviation and the 95% confidence interval of the 
distributions obtained for sensitivity (ܵ݁∗), specificity (ܵ݌∗) and concordance (݊݋ܥ∗). 

 

In addition, we calculated confidence limits using the simple percentile method. 

Specifically, the 95% confidence interval (95% CI) was determined by the value 

corresponding to the 2.5% and 97.5% percentile in the bootstrap distribution of sensitivity, 

specificity and concordance, respectively (Table 5.3, Step 4).  

Third, we assessed accuracy metrics for randomised sub-samples of varying sizes 

(Scenario 3a and 3b in Table 5.1) in order to analyse the combined impacts of uncertainty in 

sample size and composition, and of limited precision on non-animal testing methods’ 

accuracy. Following the procedure outlined in Table 5.3 we calculated the mean, the SD and 

the 95% CI of the predictive accuracy metrics for each sub-sample including and excluding 

borderline substances. Sub-samples were ݊ = 10; 50; 100; and 150 substances for the DPRA 

(with random replacement from the experimental sample consisting of 199 substances), ݊= 

10; 20; 40 and 60 substances for LuSens (with random replacement from the experimental 

sample consisting of 79 substances), and of ݊ = 10 and 20 substances for the h-CLAT and the 

“2 out of 3” ITS (with random replacement from the experimental samples consisting of 40 

substances), respectively. 
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5.3 Results  

5.3.1 Impact of precision uncertainty on accuracy metrics of the DPRA, LuSens, the h-
CLAT and the “2 out of 3” ITS 

In this section we present the results from analysing the impact of borderline substances 

on accuracy metrics of the DPRA, LuSens, the h-CLAT and the “2out of 3” ITS. Accuracy 

metrics were derived from experimental results using the LLNA as reference test. Results 

obtained from testing using human reference data are shown in Table D1-D3 in Appendix D. 
Table 5.4: Impact of precision on predictive accuracy metrics of non -animal testing methods 

and the “2 out of 3” ITS* 

DPRA 

Complete samples  
(including borderline substances) 

 ݊ =199 
Sensitivity [%] 
Specificity [%] 
Concordance [%] 

76 
72 
75 

Reduced sample  
(excluding borderline substances) 

 ݊ =179 
Sensitivity [%] 
Specificity [%] 
Concordance [%] 

85 
80 
83 

LuSens 

Complete samples  
(including borderline substances) 

 ݊ =79 
Sensitivity [%] 
Specificity [%] 
Concordance [%] 

75 
70 
73 

Reduced sample  
(excluding borderline substances) 

 ݊ =74 
Sensitivity [%] 
Specificity [%] 
Concordance [%] 

77 
69 
74 

h-CLAT 

Complete samples  
(including borderline substances) 

 ݊ =40 
Sensitivity [%] 88 
Specificity [%] 87 
Concordance [%] 88 

Reduced sample  
(excluding borderline substances) 

 ݊ =32 
Sensitivity [%] 
Specificity [%] 
Concordance [%] 

82 
87 
84 

“2 out of 3” ITS 

Complete samples  
(including borderline substances) 

 ݊ =40 
Sensitivity [%] 
Specificity [%] 
Concordance [%] 

85 
93 
88 

Reduced sample  
(excluding borderline substances) 

 ݊ =36 
Sensitivity [%] 
Specificity [%] 
Concordance [%] 

82 
93 
86 

* Experimental data compared to the LLNA as reference test. 
Source: Own calculations. 
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5.3.2 Impact of uncertainty in sample composition and precision on accuracy metrics 

As a result of the non-parametric bootstrapping procedure we received for each 

individual non-animal testing method a distribution of accuracy metrics. For the DPRA and 

LuSens we found predictive accuracy metrics to be normally distributed, while for the h-CLAT 

and the “2 out of 3” ITS we observed a left-skewed distribution of accuracy metrics (see Table 

C13-C24 in the Appendix C).  

Randomisation causes the composition of substances in the samples to differ. 

Consequently, the number of borderline substances differed as well. The minimum and 

maximum number of substances in the reduced samples (i.e. after borderline substances were 

excluded) is shown in Table 5.5. 

 
Table 5.5: Minimum and maximum number of substances (࢔) in randomised samples resulting 

from bootstrap resampling, after borderline substances were excluded * 

Randomised 
sample size (݊) 

DPRA LuSens h-CLAT “2 out of 3” ITS 

Min 160 65 33 27 

Max 194 79 40 40 
* Experimental data compared to the LLNA as reference test. 
Source: Own calculations. 

 

Table 5.6 presents the mean and the SD (column 3), and the 95% CI (column 5) revealed 

from the distributions of sensitivity, specificity and concordance values. The table shows 

results obtained for the complete samples, i.e. samples including borderline samples 

(Scenario 2a in Table 5.1), reflecting the impact of variations in sample composition on 

accuracy metrics. Furthermore, the table documents the mean, the SD and the 95% confidence 

interval for distributions retrieved from the reduced samples (i.e. excluding borderline 

substances, scenario 2b in Table 5.1). This illustrates the joint impact of a varying sample 

composition and limited precision. 
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Table 5.6: Mean, Standard deviation (SD) and 95% confidence intervals of predictivity values 
of the DPRA, LuSens, the h-CLAT and the “2 out of 3” ITS determined from randomised 

experimental samples* 

  Mean ± SD 95%CI 
DPRA 

Complete samples (including 
borderline substances) 

Sensitivity [%] 76±4 (69;83) 
Specificity [%] 72±6 (60;83) 

Concordance [%] 75±3 (69;81) 

Reduced sample (excluding 
borderline substances) 

Sensitivity [%] 80±4 (73;86) 
Specificity [%] 74±6 (62;86) 

Concordance [%] 78±3 (72;84) 
LuSens 

Complete samples (including 
borderline substances) 

Sensitivity [%] 75±6 (63;87) 
Specificity [%] 71±9 (53;88) 

Concordance [%] 73±5 (64;83) 

Reduced sample (excluding 
borderline substances) 

Sensitivity [%] 77±6 (65;89) 
Specificity [%] 69±9 (51;87) 

Concordance [%] 74±5 (64;84) 
h-CLAT 

Complete samples (including 
borderline substances) 

Sensitivity [%] 88±7 (74;100) 
Specificity [%] 87±9 (67;100) 

Concordance [%] 87±5 (78;98) 

Reduced sample (excluding 
borderline substances) 

Sensitivity [%] 82±9 (62;100) 
Specificity [%] 87±9 (67;100) 

Concordance [%] 84±6 (71;96) 
“2 out of 3” ITS 

Complete samples (including 
borderline substances) 

Sensitivity [%] 85±7 (70;96) 
Specificity [%] 93± 7 (77;100) 

Concordance [%] 87± 5 (78;98) 

Reduced sample (excluding 
borderline substances) 

Sensitivity [%] 82±8 (64;96) 
Specificity [%] 93±7 (77;100) 

Concordance [%] 86±6 (74;97) 
* Experimental data compared to the LLNA as reference test. 
Source: Own calculations. 

 
5.3.3 Assessing the joint impact of uncertainty in sample size, sample composition and 
precision on accuracy metrics 

Determining the mean, the SD and the 95% CI of accuracy metrics allows analysing the 

joint impact of sample size and composition on predictive accuracy metrics of the DPRA, 

LuSens, the h-CLAT and of the “2 out of 3” ITS (scenario 3a in Table 5.1). Results are shown in 

Table 5.7. 
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Table 5.7: Mean, SD and 95% CI of accuracy metrics revealed for the DPRA, LuSens, the h -CLAT 
and the “2 out of 3” ITS for complete samples (i.e. including borderline substances) * 

 Sensitivity [%] Specificity [%]  Concordance [%] 

Sample size (݊) Mean ± SD 95%CI  Mean ± SD 95%CI  Mean ± SD 95%CI  
DPRA  

10 76±16 (43; 100) 71±29 (0; 100) 75±14 (50; 100) 
50 76±7 (61; 90) 72±12 (46; 93) 75±6 (62; 86) 

100 76±5 (66; 86) 72±8 (55; 87) 75±4 (66; 83) 
150 76±4 (68; 84) 72±7 (57 ;84) 75±4 (68; 81) 
199a 76±4 (69; 83) 72±6 (60; 83) 75±3 (69; 81) 

LuSens  
10 75±17 (38; 100) 70±28 (0.0; 100) 73±14 (40; 100) 
20 75±12 (50; 100) 70±19 (33; 100) 74310 (55; 90) 
40 75±9 (57; 91) 71±13 (44; 92) 73±7 (60; 88) 
60 75±7 (61; 88) 70±10 (50; 89) 73±6 (62; 85) 
79a 77±6 (65; 89) 69±9 (51; 87) 74±5 (64; 84) 

h-CLAT 
10 88±14 (56;100) 87±19 (40; 100) 87±10 (60; 100) 
20 88±9 (67; 1000 87±13 (57; 100) 87±7 (70; 100) 
40a 88±7 (74; 100) 87±9 (67; 100) 75±5 (64; 84) 

“2 out of 3” ITS  
10 84±15 (50; 100) 93±15 (50; 100) 87±10 (60; 100) 
20 85±10 (63; 100) 93±10 (67; 100) 88±7 (70; 100) 
40a 85±7 (70; 96) 93± 7 (77; 100) 87± 5 (78; 98) 

* Experimental data compared to the LLNA as reference test. 
a Number of substances in the experimental sample. 
Source: Own calculations. 
 

Finally, the parameters revealed for the distributions of sensitivity, specificity and 

concordance from reduced samples (i.e. after excluding borderline substances, scenario 3b in 

Table 5.1) offer insights into the joint impact of sample size variation and composition, and 

limited precision on predictive accuracy metrics (Table 5.8). Note that due to the 

randomisation of experimental samples the number of borderline substances within sub-

samples could vary. Thus, similar to Table 5.5 we can determine the minimum and maximum 

number of substances for all subsamples after excluding borderline substances, which is 

shown in column 1 of Table 5.8. Distribution parameters of accuracy metrics (columns 2-4) 

capture the range of sample sizes per sub-sample. 
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Table 5.8: Mean, SD and 95% CI of accuracy metrics revealed for the DPRA, LuSens, the h -CLAT 
and the “2 out of 3” ITS for reduced samples (i.e. excluding borderline substances) * 

 Sensitivity [%] Specificity [%] Concordance [%] 
Max. and min. number 

of substances in 
randomised, reduced 

sub-samples 

Mean ± 
SD 95%CI Mean ± 

SD 95%CI Mean ± 
SD 95%CI 

DPRA 
6-10 (݊  = 10) a 80±16 (43; 100) 74±30 (0; 100) 78±14 (50; 100) 
37-50 (݊ = 50) a 80±7 (65; 93) 74±13 (47; 95) 78±6 (66; 89) 

89-99 (݊ = 100) a 80±5 (70; 89) 74±9 (56; 90) 78±4 (69; 87) 
121-146 (݊ = 150) a 80±4 (72; 88) 74±7 (60; 88) 78±4 (71; 85) 
160-194 (݊ = 199) a 80±4 (73; 86) 74±6 (62; 86) 78±3 (72; 84) 

LuSens  
4-10 (k ݊ = 10) a 77±18 (40; 100) 69±29 (0.0; 100) 75±14 (44; 100) 
14-20 (݊ = 20) a 77±12 (50; 100) 69±19 (30; 100) 74±10 (53; 94) 
30-40 (݊ = 40) a 77±8 (59; 92) 69±13 (40; 93) 74±7 (60; 87) 
48-60 (݊ = 60) a 77±7 (63; 90) 69±11 (47; 89) 74±6 (63; 85) 
65-79 a (݊= 79) a 78±6 (65; 89) 69±9 (50; 86) 75±5 (64; 84) 

h-CLAT 
6-10 (݊ = 10) a 82±20 (33; 100) 87±20 (33; 100) 84±13 (56; 100) 
7-20 (݊ = 20) a 82±13 (50; 100) 87±13 (57; 100) 84±9 (65; 100) 

33-40 a (݊ = 40) a 82±9 (62; 100) 87±9 (67; 100) 84±6 (71; 96) 
“2 out of 3” ITS  

6-10 (݊ = 10) a 81±18 (40; 100) 93±15 (50; 100) 86±12 (60; 100) 
12-20 (݊ = 20) a 82±12 (56; 100) 93±10 (67; 100) 86±8 (68; 100) 
27-40 a (݊ = 40) a 82±8 (64; 96) 93±7 (77; 100) 86±6 (74; 97) 

* Experimental data compared to the LLNA as reference test. 
a Number of substances in the complete sub-samples. 
Source: Own calculations. 
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5.4 Discussion  

5.4.1 Precision uncertainty 

Acknowledging that borderline substances cannot be classified as “positive” or “negative”, 

we expected that predictive accuracy metrics derived from samples including borderline 

substances will differ from those where borderline substances were removed. Indeed, our 

results confirmed that accounting for the limited precision of the non-animal testing methods 

DPRA, LuSens, the h-CLAT, and the “2 out of 3” ITS, changed accuracy metrics (Table 5.4). 

However, this impact was not symmetric across all non-animal testing methods and the “2 out 

of 3” ITS. In particular, whereas for the DPRA, sensitivity, specificity and concordance 

increased after borderline substances were excluded from experimental samples, for the h-

CLAT all accuracy metrics derived from test results compared to the LLNA decreased 

considerably but remained almost unchanged when derived from substances compared to 

human data (see Table D3 in the Appendix D). For LuSens we observed a small increase of 

sensitivity and concordance but even a slight decrease of specificity values, respectively. For 

the “2 out of 3” ITS we found a decrease of sensitivity, whereas specificity remained 

unchanged and concordance slightly decreased when assessed with substances compared to 

the LLNA. Similar results were observed for the accuracy metrics when test results of the non-

animal testing methods were compared to human data (see Table D3 in the Appendix D).  

For individual non-animal testing methods the size and direction of the impact on 

accuracy metrics, when considering limited precision, depends on the composition of 

experimental samples. In addition, it depends on whether test results for borderline 

substances are above or below the classification threshold. If, as in the case of the DPRA, more 

borderline substances revealed results below the classification threshold (thus they would be 

classified as “negative” when ignoring precision), excluding these substances increases the 

faction of substances classified as “positive”, which in turn causes sensitivity to increase (see 

Eq. (5.3)). In contrast, test results of substances identified as borderline in the h-CLAT were all 

above the classification threshold (Leontaridou et al., 2017a). Hence, excluding these 

substances in order to correct for ambiguous classifications decreases specificity for the 

experimental sample with the LLNA as reference test (see Eq. (5.2)). In addition, since 

accounting for the BR changed the fractions of TP, TN, FP and FN classifications of the 

substances remaining in the sample, we also observed a slight decrease of sensitivity and 

concordance. In case of LuSens, only few substances were identified as borderline in the 

experimental sample (5 out of 79 substances, i.e. 6%; Leontaridou et al. 2017a). Due to the 

stringent prediction model of LuSens (Ramirez et al., 2014; Ramirez et al., 2016), the impact of 
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excluding these substances on the values of predictive accuracy metrics was only marginal. 

Likewise, the prediction model of the “2 out of 3” ITS, basing the overall conclusion about the 

skin sensitisation potential of a test substance on at least two concordant test results from the 

DPRA, LuSens or the h-CLAT, and assigning equal weights to each testing method, reduces the 

impact of borderline substances on predictive accuracy metrics. 

5.4.2 Impact of uncertainty in sample composition and precision on non-animal 
methods’ predictivity 

Determining accuracy metrics from randomised samples allows specifying their variation 

within the area under the probability distribution where predictive accuracy metrics are 

expected to lie. Depending on the composition of the randomised sample, accuracy metrics 

can be higher or lower compared to those quantified for the deterministic experimental 

samples. For all individual non-animal testing methods and the “2 out of 3” ITS the mean of 

the distributions of accuracy metrics corresponded to the values in the deterministic 

experimental samples. 

Our results illustrate that accounting for limited precision in combination with 

randomised sampling increased the mean sensitivity, specificity and concordance of the 

DPRA, but did not affect the variation of accuracy metrics. For LuSens, mean sensitivity 

slightly increased, whereas mean specificity decreased, but the SD remained unchanged. For 

the h-CLAT and the “2 out of 3” ITS we observed a clear decrease of mean sensitivity and a 

slight decrease of mean concordance, respectively. Accounting for uncertainty of sample 

composition and precision also led to a higher SD for distributions of sensitivity and 

concordance. Hence, the overall uncertainty of these metrics increased. Furthermore, we 

found the 95% confidence interval to increase for all accuracy metrics and methods 

considered. This underlines that capturing the variation of sample composition and limited 

precision causes the variability of accuracy metrics to increase and, hence, different types of 

uncertainties underlying to non-animal testing methods’ accuracy can accumulate. 

5.4.3 Impact of uncertainty in sample composition, sample size and precision on non-
animal methods’ predictivity 

Assessing the joint impact of varying sample size and composition, our results 

demonstrate that increasing the sample size decreases the variation of predictive accuracy 

metrics (given by the SD) and the 95% confidence limits for all individual non-animal 

methods and “2 out of 3” ITS. More specifically, for all individual methods and the “2 out of 3” 

ITS the SD of accuracy metrics from randomised sub-samples was found to be up to four times 

higher than the SD obtained from randomised full samples (i.e. including ݊ = 199, 79, and 40 
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substances for the DPRA, LuSens and the h-CLAT respectively). Furthermore, the 95% CI of 

predictive accuracy metrics was considerably larger, indicating that for very small sample 

sizes a robust assessment of predictive accuracy metrics cannot be provided. Apparently, 

variations of sample size in combination with varying sample composition (Scenario 3a in 

Table 5.1) had only marginal impact on the mean values of accuracy metrics. Very similar 

results for the SD and the 95% CI were obtained when considering limited precision in 

addition to uncertainty of sample size and composition also (Scenario 3b in Table 5.1, results 

see Table 5.8). This implies that the impact of uncertainty in sample size and sample 

composition has a dominant impact on intra-test variability of accuracy metrics. However, 

including limited precision in the assessment changed the mean of accuracy metrics’ 

distributions. 

Finally for the DPRA, we observed a stabilization of the SD and the 95% CI values at 

samples sizes of ݊≥100 substances, irrespective of whether borderline substances were 

included or excluded from the samples. Our findings suggest, therefore, that predictive 

accuracy metrics of the DPRA are not sufficiently robust when derived from samples 

containing ݊≤100 substances. Our results may have implications for the interpretation of 

predictive accuracy metrics presented in other studies. For instance, experimental samples 

used for validating the DPRA and the h-CLAT included 21 and 24 substances, respectively. In 

both validation reports substances were tested three times with the DPRA (in three different 

labs) (ECVAM, 2012), and four times (in four different labs) with the h-CLAT (ECVAM, 2013). 

Although the assessment of a non-animal testing methods’ predictive accuracy is only one 

component in a validation study, it is an important piece of information for concluding on a 

testing method’s ability to provide correct classifications in relation to a reference test. Our 

findings may, therefore, stimulate a scientific and a policy debate about (the criteria for 

defining) minimum sample sizes. 

5.5 Conclusions  

Predictive accuracy metrics of all testing methods, i.e. non-animal methods and animal 

tests, suffer from different types of uncertainty, causing biased conclusions about substances 

properties. This chapter explored the impact of limited precision, variation of sample 

composition and variation of sample size on accuracy metrics of non-animal testing methods 

for skin sensitisation assessment. We analysed the impact for each individual type of 

uncertainty and for different combinations. The analysis was applied to experimental samples 

of substances tested with the DPRA, LuSens, and the h-CLAT. Furthermore, we included an 

integrated testing strategy composed by these individual methods, the “2 out of 3” ITS, in the 
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assessment. Considering limited precision (due to the BR around classification thresholds in 

non-animal testing methods’ prediction models) changed accuracy metrics whenever 

experimental samples contain borderline substances.  

Accounting for limited precision could have either a positive impact on accuracy metrics 

(i.e. accuracy metrics increase) or a negative impact (i.e. accuracy metrics decrease). 

Generally, we conclude that the direction and the size of this impact cannot be predicted from 

the outset, but depends on the composition of the sample of substances. In particular, the 

impact depends on the number of borderline substances on both sides of a method’s 

classification threshold (i.e. the number of substances which would be classified as TP, TN, FP 

and FN if the BR is ignored) in relation to the number of substances which are not borderline.  

Using randomised instead of deterministic experimental samples allowed determining 

probability distributions of accuracy metrics, illustrating their variation when the 

composition of samples is assumed to be uncertain. When considering the joint impact of 

varying sample composition and limited precision, the mean values of accuracy metrics, but 

also their SD (indicating the variation of data) and the 95% CI limits (indicating the spread of 

the variation) changed. Again, the size and direction of these changes was not pre-defined but 

depended on the fractions of substances on both sides of the prediction model’s classification 

threshold. Finally, we found that the expected bias of accuracy metrics is highest if we account 

for uncertainty due to varying sample composition, sample size and limited precision. Thus, 

impacts of different types of uncertainty on non-animal testing methods’ predictive accuracy 

accumulate. 

Although the precise impacts differed across individual non-animal testing methods and 

the “2 out of 3” ITS, our results warrant a number of general conclusions. First, in order to 

avoid erroneous specifications of testing methods’ accuracy metrics, the BR needs to be 

determined and substances with experimental results falling within this range should be 

detected. Furthermore, assessments of non-animal testing method’s predictive accuracy 

should include complementary information about the potential over- and under-estimation 

error of accuracy metrics due to limited precision. This is particularly relevant because, as our 

results illustrate, there is a clear link between predictive accuracy metrics, limited precision 

and the composition and size of experimental samples. Determining the SD and 95% CI of the 

accuracy metrics is a useful way to report the uncertainties due to sample variation and to 

provide the area which encompasses the predictive accuracy metrics of testing methods if re-

assessed using different experimental samples. Finally, for a more coherent assessment of the 

predictive accuracy of testing methods, experimental samples should be of a sufficient size 
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and of varying composition (i.e. with regard to TP, TN, FP and FN substances). This is 

particularly relevant for regulatory validation processes, which are decisive for the 

acceptance or rejection of non-animal testing methods. Determining the number of 

substances in an experimental sample which is considered sufficient is a matter of further 

research. Also, while this chapter focused on non-animal testing methods assessing skin 

sensitisation potential, it is important to explore the (combined) impacts of varying sample 

composition, sample size and limited precision on the predictive accuracy of testing methods 

for a broader set of endpoints. Such assessments must also include the reference animal tests 

to allow for comparisons of biases in testing methods’ predictive accuracy between animal 

and non-animal testing methods. This is, in our view, a prerequisite for transparent and 

informative evaluations of testing methods. 
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6 Synthesis 

This thesis introduced an economic perspective on the development of non-animal testing 

strategies. The research is embedded in the overall context of increasing information 

requirements for safety assessments of several tens of thousands of chemicals produced or 

marketed within the EU, the existing trade-offs between information requirements, 

constrained testing capacities and the policy objective to phase-out animal testing. From a 

conceptual and methodological perspective, the thesis offered a complementary contribution 

to toxicological research on developing non-animal testing strategies, and the evaluation of 

their performance compared to traditional animal tests. Moreover, the research presented in 

the thesis attempts to integrate fundamental toxicological concepts and approaches, e.g. for 

quantifying information outcomes derived from testing, into a comprehensive framework for 

efficient testing. Section 6.1 summarises the main findings from this research with regard to 

the research questions presented in the first chapter. Section 6.2 discusses the methodological 

approaches used, and a reflection of the general scientific and policy context to which this 

thesis contributes. Section 6.3 discusses limitations of the applied approaches and methods 

with regard to scope, underlying assumptions and data availability. Finally, section 6.4 

concludes and Section 6.5 suggests topics for further research. 

6.1 Answers to the research questions  

RQ1: What are relevant criteria guiding the development of non-animal testing strategies for 

skin sensitisation potential and potency assessment? 

The development of resource-efficient toxicity testing strategies has been driven by the 

need for providing fast, less costly and animal-free testing methods or strategies that offer 

adequate and sufficient information for hazard and risk assessment of chemicals. Focusing on 

the toxicological endpoint of skin sensitisation, Chapter 2 of this thesis reviewed the state-of-

the art regarding the development of non-animal testing strategies, and identified the criteria 

which guide the development of testing strategies as proposed in the recent toxicological 

scientific and policy literature.  

Key findings revealed from this analysis can be summarised as follows: Throughout the 

past decade a large number of individual non-animal testing methods has been developed. 

Notwithstanding, there is general consensus between scientists and regulatory decision-

makers that none of these methods can serve as a suitable replacement of the reference 

animal test (e.g. the LLNA or guinea pig based tests), if performed as standalone methods. For 

those non-animal methods which have been formally validated by the European Centre for 
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Validation of Alternative Methods (ECVAM; Italy) (e.g. the DPRA, the Are-Nrf2 luciferase 

method and the h-CLAT), testing protocols emphasise that the individual methods should be 

used in combination with supplementary information in order to provide suitable information 

for hazard identification and for potency assessment (ECHA, 2016). Therefore, the integration 

of information from different sources into battery or sequential combinations has been 

suggested as a promising solution for solving the problem of developing adequate and 

relevant information in an efficient way. In Chapter 2, we identified the criteria suggested in 

the toxicological literature for developing non-animal testing strategies Furthermore, Chapter 

2 introduced the economic perspective to the issue of “resource-efficient” testing and set the 

conceptual and informational criteria to optimise toxicity testing. Following to this, we 

provided a comprehensive qualitative evaluation on how these criteria were implemented 

into non-animal testing strategies for skin sensitisation potential and potency assessment. In 

Chapter 2, we analysed whether testing strategies suggested as “resource-efficient” in the 

literature can fulfil economic efficiency criteria.  

The current state-of-the art regarding the development of non-animal toxicity testing 

strategies assessing skin sensitising properties of substances is characterised by the 

development of numerous toxicity testing strategies, aiming at integrating information from 

different non-animal testing methods for skin sensitisation. Both deterministic and 

probabilistic toxicity testing strategies are proposed for the assessment of skin sensitisation 

potential and potency. Schemes such as “Integrated Testing Strategies” (ITS), “Integrated 

Approaches to Testing and Assessment” (IATA), “Defined Approaches” (DA) and “Weight of 

Evidence” (WoE) approaches have been proposed, often in similar context, for the 

combination of information derived from different sources such as in vitro testing methods, 

read across or in-silico QSAR methods. A guiding rule, often proposed, for constructing testing 

strategies using different non-animal testing strategies is to follow the consecutive key events 

of the adverse outcome pathway (AOP). Following the key events of the AOP, supports the 

construction of testing strategies based on biological relevance criteria. In order to improve 

the economic efficiency of a testing strategy it is important to balance information gains with 

costs. We observed that the current toxicity testing strategies for the assessment of skin 

sensitisation aim at improving information gains without using animal tests, however, little 

attention has been given to the aspect of costs. Indeed, minimising testing costs and the “costs 

of making errors” is one of the criteria often mentioned in the efficiency criteria proposed in 

the literature. Our findings in Chapter 2 suggested, however, that testing costs are not 
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systematically incorporated into the design of non-animal testing strategies for skin 

sensitisation. 

According to the criteria suggested in the toxicological literature, testing strategies should 

be coherent, transparent, hypothesis-driven, unambiguous and cost effective (Jaworska and 

Hoffmann, 2010; Rovida et al., 2015). However, seeing the development of “‘resource-

efficient” testing strategies from an economic perspective, implies a set of conceptual criteria 

necessary to ensure optimisation in the development of toxicity testing. The conceptual 

criteria are: (i) the valuation of information gains and costs, (ii) the weighing mechanism for 

balancing information gains and costs from testing, (iii) the uncertainty assessment of both 

gains and costs and (iv) the stopping rule indicating when testing should stop. Furthermore, 

to ensure the appropriateness of the information gains and costs from performing testing 

methods as standalones or in a strategy, we set key informational criteria, i.e. predictivity, 

reliability and mechanistic understanding of information from testing methods and associated 

direct and indirect costs.  

Next we investigated how these key conceptual and informational criteria are 

implemented on existing examples of testing strategies suggested as “Defined Approaches” in 

the latest OECD report (OECD, 2016c) for assessing skin sensitisation. We identified testing 

strategies using deterministic approaches such as “2 out of 3” ITS (Bauch et al., 2012; Urbisch 

et al., 2015a) and tiered testing strategies (van der Veen et al., 2014a) or probabilistic 

approaches such as Bayesian networks (Jaworska et al., 2010; Jaworska et al., 2013) and 

artificial neural networks (Hirota et al., 2013; Hirota et al., 2015). For this, economic 

approaches such as value of information (VOI) analysis, cost benefit analysis (CBA) or cost 

effectiveness analysis (CEA) can offer the tools for improving the economic efficiency in 

toxicity testing strategy development. Economic approaches offer guiding rules for developing 

testing strategies for the assessment of skin sensitisation. Balancing informational gains and 

expected economic losses from testing, reveals when an additional testing method should be 

performed and when testing should stop. The development of toxicity testing strategies 

should, therefore, not only be guided by principles from toxicology, but also by criteria, such 

as the costs of testing and the economic costs to society of making incorrect judgements.  

 

RQ2: How can non-animal toxicity testing strategies for assessing skin sensitisation potential be 

optimised?  

Chapter 3 provides a decision-theoretic framework for optimising sequential testing 

strategies. Using a Bayesian Value-of-Information (VOI) analysis approach allows for 
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balancing expected social welfare gains from testing with expected costs, including costs of 

making errors, for individual testing methods and any possible combination of methods into a 

testing strategy. A key assumption of the VOI approach applied is that testing has value if and 

only if it leads to welfare-improving decisions on chemicals´ use. The VOI approach has 

several convenient features. First, it is a quantitative approach. The outcome of the VOI model 

is a testing method’s or a testing strategy’s expected value of test information (denoted EVTI), 

which is a monetary estimate of the expected social net benefit from testing. Comparing the 

EVTI across testing methods and testing strategies allows for ranking testing options 

according their expected social net benefits. This offers the means for determining with which 

testing method to start a testing sequence, the number of testing methods that should be 

included in a testing strategy, and when to stop testing. Furthermore, it allows for comparing 

the EVTI of non-animal testing methods and strategies with that of an animal test. It also 

offers the opportunity to systematically examine if, and to what extent, non-animal testing 

methods for skin sensitisation should follow the order of key events in the skin sensitisation 

adverse outcome pathway (AOP), although this has repeatedly been suggested in the 

literature as a sufficient guiding rule for skin sensitisation testing. Second, the VOI model is a 

probabilistic approach. By applying Bayesian inference it allows for quantifying the 

uncertainty related to the outcomes of any test (including the “gold standard” animal test), 

and for assessing the remaining uncertainty of the outcomes from testing after new 

information (e.g. from a follow-up test) has become available. In addition, the Bayesian 

specification of the VOI model accounts for and allows updating update a decision-maker’s 

beliefs about the properties of a substance. Third, VOI analysis integrates, besides 

toxicological information, also relevant economic information such as testing costs, marketing 

gains from releasing a (safe) substance, forgone marketing benefits in case of an erroneous 

ban, and possible health damage costs (in our case direct and indirect costs arising from 

allergic contact dermatitis) from an erroneous release of a toxic substance.  

The Bayesian VOI approach was applied to selected non-animal testing methods for skin 

sensitisation potential assessment (i.e. the DPRA, LuSens, KeratinoSensTM, the h-CLAT, the 

OECD Toolbox and battery combinations of those methods), and the animal test LLNA. To 

explore the applicability of the model, we used the preservative Kathon CG as a proof-of-

concept case. Though the empirical application was based on a number of simplifying 

assumptions (for example with regard to the assumed marketing volume of Kathon CG, the 

market price of the substance, or the decision-maker’s risk attitudes, see also Section 6.3.2) 

the analysis offers a number of interesting and novel insights into the principles of developing 
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efficient sequential non-animal testing strategies for assessing the skin sensitisation potential 

of substances. First, we can conclude that the expected value of information from testing does 

not only depend on the information outcome from testing, but on the interplay of multiple 

parameters. These are a decision-maker’s prior beliefs upon the hazardous properties of a 

substance, the predictive capacity of non-animal testing methods, the expected payoffs from 

marketing a hazardous or non-hazardous substance, and testing costs. Second, if a decision 

maker has strong beliefs that a substances is a potential skin sensitiser, or if a substance has a 

high sensitisation prevalence, or even a combination of strong beliefs that a substances is a 

sensitiser with a high skin sensitisation prevalence, increase the value of additional 

information from testing, because expected social costs of the release of a hazardous 

substance are high. We found that a 3-step sequential testing strategy consisting of the battery 

of the DPRA and LuSens, followed by the OECD Toolbox, and KeratinoSensTM as third testing 

method revealed the highest EVTI compared to all 236 sequential 2-test and 3-test testing 

strategies analysed. For low prior beliefs, (i.e. a decision-maker assumes that a substance is a 

non-sensitiser), we found the battery combination of the DPRA and LuSens to rank first. 

Third, our results underlined that both battery and sequential combinations of non-animal 

testing methods have a higher EVTI than the animal test, in this case the LLNA. One reason is 

that the predictive capacity of battery combinations of non-animal testing methods is usually 

higher than that of individual non-animal methods, which reduces the probability of adopting 

erroneous decisions. Another reason is that sequential testing strategies offer the possibility 

to save methods and, therefore, testing costs because a follow-up test will only be conducted 

conditional on the outcomes of testing methods at earlier stages of the testing strategy. 

Finally, we observe that the order of non-animal testing methods in a strategy does not have 

to follow the order of key events in the skin sensitisation AOP. Thus, covering all key events in 

the AOP is neither a necessary nor a sufficient condition for efficient testing. In contrast, 

depending on a decision-maker’s prior beliefs it may be preferred to generate more 

information for the same key event in two consecutive steps of the sequential testing strategy.  

 

RQ3: How do technical and biological variability of non-animal testing methods influence the 

precision of non-animal testing methods for assessing skin sensitisation potential?  

In Chapter 4 we assessed the impact of biological and technical variability on the precision 

of non-animal testing methods assessing skin sensitisation potential. Given that any test – 

irrespective of whether it is an animal test, an in vitro method (using cell-cultures), or an in 

chemico method or an in silico method (using computational methods), is a simplified model 
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representation of the processes that are expected to happen in the human body, biological and 

technical variability are inherent characteristics of testing methods. For hazard classification, 

continuous experimental data resulting from testing are usually dichotomised into binary 

“positive/negative” or “hazardous/non-hazardous” data by means of applying a pre-defined 

classification threshold. Earlier studies, i.e. (Kolle et al., 2013; Dimitrov et al., 2016), has 

shown that biological and technical variability influence the ability of the animal test LLNA to 

provide clear-cut conclusions about a substance’s skin sensitising potential when test results 

fall close to the pre-defined classification thresholds. This has been expressed as the range on 

both sides of the classification threshold of the LLNA in which test results can be discordant. 

Thus if a substance tested with the LLNA reveals results which fall within this range, called 

“grey zone” or “borderline range”, drawing conclusions about skin sensitisation potential is 

not possible because repeated testing may ambiguously reveal either positive or negative 

results. The precision of non-animal testing methods is, similarly to the LLNA, influenced by 

the biological and technical variability. Therefore non-animal testing methods also have a 

borderline range around their classification threshold in which their ability to provide clear-

cut conclusions on the skin sensitising properties of substances is not possible with sufficient 

confidence. Substances yielding test outcomes within the borderline range of testing methods 

may require further testing in order to avoid misclassifications. Quantifying the borderline 

range in the prediction models of non-animal testing methods is, therefore, a practical way to 

account for borderline test results and to unravel a testing method’s limited precision.  

We quantified the borderline range for selected non-animal testing methods for assessing 

skin sensitisation, i.e. the DPRA, LuSens, and the h-CLAT, and for the “2 out of 3” ITS. The 

latter has been introduced as an integrated testing strategy consisting of three non-animal 

testing methods. Furthermore, we identified the substances in the experimental samples of 

these methods for which test results fell within the borderline range. Since each prediction 

model applied in each of the non-animal testing methods used is different, specific decision 

rules were defined to guide the identification of borderline substances. Our analyses revealed 

the following results: First, biological and technical variability do not only impact the 

prediction revealed from the animal test LLNA, but also predictions used for the non-animal 

testing methods considered in Chapter 4 for which we quantified their borderline range. The 

borderline range shows the area around the classification threshold, in which non-animal 

testing methods are not precise, i.e. they are likely to reveal discordant results in repeated 

applications. Second, the percentage of borderline substances in the experimental samples 

used in the DPRA, LuSens, the h-CLAT, as well as the “2 out of 3” ITS was less than that of the 
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reference animal test (LLNA). However, since the size and composition of experimental 

samples differed across non-animal testing methods, and between non-animal testing 

methods and the LLNA, our findings do not allow for comparisons between these methods 

(see also Section 6.4). For the “2 out of 3” ITS, we found that the percentage of substances 

yielding borderline test results was equal to the DPRA and lower compared to the h-CLAT. 

The reason is that the “2 out of 3” ITS applies a simple majority rule for concluding on a 

substance’s skin sensitisation potential, i.e. the classification is based on at least two 

concordant results. This majority rule ignores borderline substances in the sample of each 

testing method used in the “2 out of 3” ITS which is not considered for the classification 

decision. The majority rule of the “2 out of 3” ITS, therefore, allows excluding a borderline test 

result if the results from the other two testing methods fall outside the borderline range. 

Hence, one can conclude on the skin sensitisation potential of a substance even if individual 

methods revealed a borderline result.  

 

RQ4: How do limited precision, sample size and sample composition impact the predictive 

accuracy of non-animal testing methods for skin sensitisation?  

In Chapter 5 we analysed the uncertainties in predictive accuracy metrics of non-animal 

testing methods. We analysed the impact of the limited precision of non-animal testing 

methods on their predictive accuracy, i.e. a testing method’s ability to correctly detect an 

adverse effect in comparison to the reference animal test. Further, we analysed the impact of 

variations of sample size and sample composition on testing methods’ predictive accuracy. We 

examined these impacts both separately and in combination with limited precision. Common 

predictive accuracy metrics e.g. sensitivity, specificity and concordance (also called accuracy) 

are calculated by comparing binary “hazardous/non-hazardous” test results from non-animal 

testing methods (e.g. the DPRA, LuSens, the h-CLAT and the “2 out of 3” ITS) to those from a 

reference test (e.g. test results from the LLNA data, and human data when available) for a set 

of substances. As elaborated in Chapter 4, for substances yielding test results within the 

“borderline range” around the classification threshold of a testing method’s prediction model 

such clear-cut classifications into “hazardous/non-hazardous”, is not possible. Consequently, 

borderline substances cannot contribute to the assessment of a testing method’s predictive 

accuracy.  

The impact of considering borderline substances on testing method’s predictive accuracy 

was analysed by comparing sensitivity, specificity and concordance quantified from 

experimental samples including borderline substances with values obtained when borderline 
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substances were excluded. Here we compared results obtained from experimental samples of 

a pre-defined sample size and composition with those obtained from randomised samples of a 

given size and of varying samples Randomised samples were created using non-parametric 

bootstrap resampling analysis. The analysis was performed using the DPRA, LuSens, the h-

CLAT and the “2 out of 3” ITS combining these three methods.  

We can conclude that the limited precision of testing methods s, reflected by the number 

of borderline substances in an experimental sample, can affect the predictive accuracy 

metrics. However, the magnitude and the direction of the impact on the predictive accuracy 

vary across non-animal testing methods. Generally, the impact depends on the number of 

borderline substances on both sides of a method’s classification threshold (i.e. the number of 

substances which would be classified as TP, TN, FP and FN if the BR is ignored) in relation to 

the number of substances which are not borderline. Whereas for the DPRA sensitivity, 

specificity and concordance increased after borderline substances were excluded from 

experimental samples, the accuracy metrics for the h-CLAT were considerably decreased after 

excluding the borderline substances from the experimental samples, when compared to the 

LLNA data. For LuSens we observed a small increase of sensitivity, but no change on 

concordance and even a slight decrease of specificity values. For the “2 out of 3” ITS, we found 

a decrease in sensitivity, whereas specificity remained unchanged and concordance even 

slightly decreased. 

Determining predictive accuracy metrics from randomised samples revealed for each 

non-animal testing method considered distributions of sensitivity, specificity and 

concordance. Based on these distributions we quantified the 95% confidence intervals, the 

mean and the standard deviation of sensitivity, specificity and concordance, respectively. 

Mean values of accuracy metrics derived from experimental samples differed only marginally 

from mean accuracy metrics obtained from randomised samples. However, there can be 

considerable variation of accuracy metrics around the mean of the distributions. For the three 

non-animal testing methods the DPRA, LuSens and the h-CLAT, and for the “2 out of 3” ITS, 

this illustrates that the impact of considering borderline substances on the assessment of a 

non-animal testing method’s predictive accuracy can be either higher or lower based on the 

sample composition. Finally, we observed that the variation of accuracy metrics decreases 

with increasing number of substances in the samples used to assess the predictivity of testing 

methods (sample size). This underlines the relevance of using experimental samples of a 

sufficient size and of a balanced composition (i.e. including a balanced fraction of hazardous 

and non-hazardous substances) for ensuring a coherent assessment of non-animal methods’ 
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predictive accuracy. Moreover, a transparent and coherent assessment of non-animal testing 

methods’ predictive accuracy requires to identify and document borderline substances in 

experimental samples. Finally, due to appropriate standard deviations or confidence limits, 

indicating ranges of expected accuracy metrics, and not as point estimates. 

6.2 General discussion 

This section discusses the wider context of the research conducted in this thesis, briefly 

reflects on the methodological and modelling approaches used in the Chapters 2 to 5 and the 

policy relevance of the thesis. 

6.2.1 Wider context of the thesis 

In the overall context of chemicals’ safety assessment and the development of efficient 

toxicity testing strategies scientific efforts have focused on developing new testing methods 

and conceptual approaches that facilitate the integration of information from different 

experimental and computational sources. The purpose is to support efficient hazard and risk 

assessment of the large numbers of chemicals produced worldwide, while reducing or 

avoiding the use of animal testing. The development and combination of non-animal methods, 

e.g. cell based methods (in vitro) and computational (in silico) approaches, has been 

considered a powerful approach for generating sufficient and relevant hazard information 

using less resources (i.e. time, testing costs, laboratory animals) than with traditional animal 

tests. In addition, integrating information from in vitro and in silico methods is considered to 

better cover the different key events in the AOP of certain endpoints compared to animal 

tests, provided that these events are known (Vinken, 2013). Still, a number of fundamental 

conceptual question have not been addressed systematically as yet, in particular how to 

optimally combine different information outcomes from in vitro and in silico methods, and 

how to arrive at conclusions on the hazardous properties of a substance.  

Regarding the current status of developing integrated approaches to toxicity testing for 

skin sensitisation (Chapter 2) we identified different terminologies describing the effort to 

combine non-animal testing methods into strategies, for example “Integrated Testing 

Strategies” (ITS), “Sequential Testing Strategies” (STS), “Integrated Approaches to Testing and 

Assessment” (IATA), “Defined Approaches” (DA), or “Weight of Evidence approaches” (WoE) 

(Tollefsen et al., 2014; Rovida et al., 2015; Jaworska, 2016; Sauer et al., 2016). The recent 

reports from OECD, provide clear definitions and delineate the differences between the 

concept of IATA and any approach (i.e. DA) to integrate information from different sources 

using a fixed data interpretation procedure (OECD, 2016b; OECD, 2016c). Moreover, we 
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concluded that existing approaches focus predominantly on maximising information 

outcomes from testing. As we argue in this thesis, a prerequisite for optimal testing is to 

balance information gains from testing with costs for generating this information. This holds 

for both individual testing methods and for DAs to integrate information (testing strategies). 

Thus, the development of efficient testing strategies has clear characteristics of an economic 

optimisation problem (Yokota et al., 2004; Yokota and Thompson, 2004; Gabbert and van 

Ierland, 2010; Gabbert and Weikard, 2010; Gabbert and Weikard, 2013). While this thesis 

focuses on skin sensitisation, the problem of developing efficient non-animal testing strategies 

is generic and it applies to any health and environmental endpoint, e.g. liver toxicity (Daston 

et al., 2015; Gocht et al., 2015), aquatic toxicity (Villeneuve et al., 2014; Groh et al., 2015), fish 

toxicity (Nendza et al., 2014) or local tolerance endpoints such as skin corrosion and eye 

irritation (Sauer et al., 2016). We observed that several non-animal testing strategies have 

been developed based on purely toxicological criteria. Although theoretical approaches to the 

optimisation of testing strategies have been suggested earlier (Gabbert and van Ierland, 2010; 

Gabbert and Weikard, 2013; Norlén et al., 2014; Leontaridou et al., 2016), empirical 

applications – requiring in particular a quantification social gains and losses related to testing 

– have been largely lacking. The Bayesian VOI model suggested in Chapter 3 of the thesis is 

therefore a step forward to filling this gap. While the findings from our analysis refer to a 

specific human health endpoint (skin sensitisation), the insights into the conceptual features 

of sequential testing are generic. The thesis, therefore, lays the conceptual grounds for 

optimising toxicity testing for other toxicological endpoints, and also for more types of 

chemicals (e.g. nanoparticles).  

To understand the implications of translating experimental readouts from testing into a 

final conclusion about the hazardous properties of a substance we need to carefully 

investigate the quality of test information. Based on our analysis on the precision of non-

animal testing methods (Chapter 4) we observed that biological and technical variability can 

limit the precision of testing methods. This may lead to erroneous hazard classifications and 

to over- or underestimation errors of a testing method’s predictive capacity. Again, using skin 

sensitisation as an illustrative case we showed that ambiguity of hazard classification is a 

general problem that applies to both animal tests (Kolle et al., 2013; Hoffmann, 2015; 

Dimitrov et al., 2016) and non-animal testing methods. Defining a quantifiable measure for 

this ambiguity, called “borderline range”, Chapter 4 allows assessing its impact on the 

predictive accuracy of (non-animal) testing methods, i.e. the ability of a testing method to 
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provide test results concordant to those of a reference animal test for tested substances as 

described in test guidelines for non-animal testing methods e.g. TG no 442C (OECD, 2015a). 

Currently, a testing method’s predictive accuracy is determined by comparing 

dichotomised test results revealed from testing a pre-selected sample of substances to those 

obtained from a reference animal test. As we showed in this thesis, the borderline range and 

the number of chemicals which are likely to be misclassified due to the borderline range 

depend on the size and composition of these experimental samples. This raises the normative 

question of how to compose experimental samples in order to reduce ambiguity. 

Furthermore, it highlights the need to document complementary information about the 

uncertainty of test information, for example as part of validation reports of new testing 

methods. This holds in particular because the predictive accuracy of non-animal testing 

methods is compared with that of reference animal tests. The concept of using the borderline 

range as an additional measure to evaluate information from testing strengthens the 

appropriateness and trustworthiness of information based on which the use of substances is 

decided. As a consequence, this has implications for the quality of predictive accuracy metrics, 

also used as input into the optimisation framework developed in Chapter 3, and on the 

trustworthiness of hazard classifications for substances yielding test results close to the 

classification thresholds.  

6.2.2 Methodological and modelling approaches  

Although it is common sense among scientists and policy makers that testing costs should 

be minimised, the qualitative review conducted in Chapter 2 revealed that the development of 

existing testing strategies, and in particular of testing strategies for the assessment of skin 

sensitisation, has not been guided by economic efficiency criteria such as a mechanism for 

balancing gains and costs of testing. It was therefore concluded that there is a need for 

developing an optimisation framework to testing. Responding to this need we developed a 

decision theoretic framework using Bayesian VOI analysis that guides the process of 

combining different non-animal testing methods into sequential testing strategies in an 

efficient way. While the Bayesian VOI approach is not new per se (Yokota and Thompson, 

2004), it offers a coherent, theory-based framework for determining (i) with which test to 

start in a testing strategy, (ii) how many non-animal testing methods to include, and (iii) when 

to stop testing. In our analysis the expected value of test information of non-animal testing 

methods and their combinations, EVTI, is compared to that of the reference animal test that 

has been considered a “first choice” in the traditional toxicity testing approach. The Bayesian 

VOI model which we suggested incorporates estimates of social benefits and losses from 
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decisions upon the use of a substance under either outcome from testing. Besides testing costs 

from performing a testing method, it captures monetised health damage costs due to skin 

sensitisation. Furthermore, it includes estimates of (foregone) marketing benefits. The gains 

and losses under either decision option are added in order to determine expected net benefits 

for every decision option (ban or release). We used Kathon CG as a proof of concept case for 

calibrating the model. The Bayesian VOI model offers a tool to link the predictive accuracy of 

testing methods with the expected payoffs from marketing substances by weighing the 

expected payoffs, with the probability of a substance to be hazardous/non-hazardous. This 

model can also be applied for a broader set of substances or endpoints. 

The Bayesian VOI uses measures of a test’s predictive accuracy (i.e. sensitivity and 

specificity) for characterising test information. These are a test’s sensitivity (i.e. the 

proportion of skin sensitisers which were correctly classified) and specificity (i.e. the 

proportion of non-sensitisers which were correctly classified). Predictive accuracy metrics 

were derived by transforming continuous experimental readouts from testing into binary 

hazardous/non-hazardous outcomes, and by determining percentages of correctly and 

erroneously classified substances in the experimental sample as compared to a reference test. 

In a regulatory context, dichotomised test results are sufficient for hazard identification 

purposes required for any toxicological endpoint (EC, 2008; EC, 2016). The classification of 

substances as “hazardous/non-hazardous” is based on pre-defined thresholds applied to the 

continuous experimental readouts. However, using clear-cut thresholds may lead to an over- 

or underestimation of a testing method’s sensitivity and specificity due to the biological and 

technical variability of the testing method. The biological and technical variability constraint 

the testing method’s precision, i.e. its ability to reveal concordant results in repeated runs of 

the testing method. We determined the area around the threshold of testing methods in which 

test results are expected to be ambiguous. This area is called borderline range and we 

proposed this concept as an additional measure to evaluate the appropriateness of 

information from testing. To quantify the borderline range, we used substances that have 

been routinely tested with “in-house” experiments of testing methods. Routinely tested 

substances, in contrast to highly standardised and well-characterised substances used in 

validation experiments of the testing methods, are substances that are intended to be released 

into the market. Therefore, using substances routinely tested is a practical way to examine the 

precision of testing methods and reflect the precision of these methods in “in house” 

laboratory practices.  
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While the uncertainty underlying to predictive accuracy metrics of testing methods has 

been discussed earlier (Worth and Cronin, 2001a), the impact of this uncertainty on (i) the 

correct classification of hazardous and non-hazardous substances, and (ii) the conclusions on 

the predictive accuracy of testing methods, in particular non-animal testing methods, have not 

been systematically addressed. Our analysis, therefore, contributed to a more comprehensive 

understanding of the informational “value” of testing methods (Worth and Cronin, 2001a). As 

a first step we analysed the impact of the borderline range on non-animal testing methods’ 

accuracy metrics (Chapter 5). This was done by comparing accuracy metrics derived from test 

results of a sample of substances which include borderline substances, with those obtained 

after we excluded substances yielding borderline results. Excluding the substances for which 

test results fall within the borderline range implies that the concept of precision is considered 

before the decision makers translate experimental readouts into final conclusions on the 

classification of substances. Furthermore, we examined the impact of the borderline range for 

randomised substances samples, using non-parametric standard bootstrap analysis. 

Randomised samples of the same sample size as the experimental samples and of different 

sample sizes smaller than the size of experimental samples were generated. The bootstrap 

analysis allows defining 95% confidence intervals for the accuracy metrics of no-animal 

testing methods for both cases at which precision of a testing method is first considered and 

second ignored. Providing confidence intervals for accuracy metrics based on randomised 

samples means that decision makers can approximate the range of expected accuracy metrics 

(Worth and Cronin, 2001a). This provided insight into the impact of the borderline range on 

testing methods’ predictive accuracy when considered in combination with varying size and 

composition of experimental samples. The experimental samples used for evaluating a test’s 

predictive accuracy are usually composed on the basis of expert judgment or simply data 

availability, and thus they are neither randomised nor of a pre-defined size. Our analysis 

shows that documenting accuracy metrics as ranges rather than point estimates may be a 

more appropriate way of characterising test information uncertainty raised from number and 

composition of substances in the experimental samples. Predictive accuracy assessment of 

testing methods, irrespectively of the endpoint addressed, has been traditionally based on the 

comparison of test results derived from a testing method to those from a reference animal 

test. Therefore, the methodology used in Chapter 5 contributes to the current practices of 

assessing the predictivity of testing methods by suggesting to consider (i) the impact of 

limited precision on the classification of substances and (ii) the number and composition of 

substances used for assessing the predictivity of testing methods.  
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6.2.3 Policy relevance 

During the past decade scientists and decision makers in industry or regulatory agencies 

have increasingly paid attention to the fundamental problem how toxicity testing strategies 

can be optimised. Regulatory frameworks such as the European REACH legislation (EC, 2006) 

and the Cosmetics Regulation (EC, 2009), but also policy reports such as the report of the U.S. 

National Academy of Sciences “Toxicity testing in the 21st Century: A Vision and a Strategy” 

(Krewski et al., 2010) have spelled-out detailed information requirements in order to ensure 

that the risks of toxic chemicals can be optimally controlled. Information requirements for 

hazard and risk assessment of large numbers of chemicals in a regulatory context have 

triggered the development of alternative testing methods. The development of testing 

methods has been focusing on creating robust, fast and cheap approaches aiming at reducing 

and eventually replacing the animal tests. This thesis contributes to this process by (i) 

surveying the state of the art and the conceptual criteria of developing non-animal testing 

strategies for skin sensitisation hazard and potency assessment, (ii) developing an economic 

framework to optimise non-animal strategies for skin sensitisation potential assessment, and 

(iii) by exploring uncertainties underlying to information outcomes of non-animal testing 

methods. The optimisation framework to developing non-animal testing strategies, using the 

Bayesian VOI analysis, offers a probabilistic tool to analyse the interplay between a decision-

maker’s prior beliefs about the properties of a substance, expected information gains from 

testing, and costs. This acknowledges that the construction of optimised non-animal testing 

strategies must balance different and possibly competing objectives. Furthermore, it 

underlines that solutions to the general problem of “how to test” are not independent of the 

possible set of (regulatory) decisions upon the use of chemicals. 

Although there has been an agreement among scientists and policy makers that animal 

testing should be phased out (Basketter et al., 2013; Jaworska, 2016; Sullivan, 2016; Worth 

and Patlewicz, 2016), there is still a controversial discussion on how this can best be achieved 

(Hartung et al., 2013; Rovida et al., 2015). Non-animal testing methods can be used in 

combination with other complementary information to support final conclusions on the skin 

sensitising properties of substances (ECHA, 2016), however, information from standalone 

non-animal testing methods may be sufficient for the classification of a substance into UN GHS 

category 1 (thus binary classification of a substances as “sensitiser/non-sensitiser”) under 

specific regulatory frameworks as explained in OECD test guidelines e.g. for the DPRA, the 

ARE-Nrf2 Luciferase method and the h-CLAT (OECD, 2015a; OECD, 2015b; OECD, 2016d). 

Scientific discussions, however, suggest integration of information from non-animal testing 
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methods for trustworthy classification of substances. As our results show the expected value 

of animal test information is lower than that of standalone non-animal testing methods. 

Performing non-animal testing methods combined in battery or sequential combinations 

increased the value of information of these methods even further. Moreover, our results 

underline that sequential testing strategies do not necessarily need to follow the order of key 

events of an AOP. Chapter 3, therefore, contributes to evaluating the relevance of non-animal 

testing methods for chemicals’ hazard assessment.  

In addition, results presented in this thesis contribute to the policy debate regarding the 

regulatory acceptance of non-animal testing methods. As we demonstrated in Chapters 4 and 

5, using clear-cut thresholds to translate experimental readouts into binary test results 

ignores the impact of technical and biological variability on the precision of testing methods. 

Ignoring the precision of testing methods may lead to over- or underestimation errors 

regarding a testing method’s predictive accuracy. Assessing the hazardous properties of 

substances for regulatory purposes requires, therefore, accurate as well as precise test 

results. This is an observation relevant for testing methods using in vivo, in vitro or in silico 

approaches. According to the findings in Chapter 4, the documentation of test results should 

be expanded and should include, besides positive (i.e. indicating an adverse effect) and 

negative (i.e. indicating no adverse effect) results, also information for which substances the 

test delivered inconclusive (i.e. borderline) results. If a substance is classified as borderline, 

further testing might become necessary in order to provide sufficient information for safety 

assessment of substances in a regulatory context. Quantifying the borderline range for several 

non-animal testing methods, underlines the need to revise the current way of evaluating and 

documenting testing methods’ predictive accuracy. This is particularly relevant in a 

regulatory context, for example within the validation process of non-animal testing methods 

(Sauer et al., 2016). 

Acknowledging that intra-assay variability of testing methods can affect their precision 

and their predictive accuracy stimulates reflection about the regulatory validation process 

and the criteria for evaluating non-animal testing methods. Specifically, our findings point to 

the need to consider quantitative estimates of a testing method’s precision as an important 

piece of information in the evaluation of a method’s predictive performance. Besides technical 

and biological variability it is important to consider factors affecting the intra- and inter-

laboratory reproducibility of tests for example the absence of robust reference data for 

comparisons between test results (Hothorn, 2002; Hothorn, 2003). Our suggestion to describe 

predictive accuracy metrics using ranges, indicating the expected values of accuracy metrics, 
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rather than with point estimates, contributes to the ongoing discussion on how to assess this 

uncertainty, and the implications for evaluating the relative performance of animal tests in 

comparison to non-animal methods. Comparing information about testing methods’ 

predictive accuracy across different testing methods should be based on a transparent 

documentation of this uncertainty, e.g. within test guidelines and validation reports.  

6.3 Limitations of the thesis  

In the following paragraphs we reflect on limitations with regard to the scope of this 

thesis, the assumptions underlying to the methodologies used, and data availability.  

6.3.1 Scope  

This thesis focused on a specific toxicological endpoint, i.e. skin sensitisation. Though 

being a highly relevant endpoint for safety assessments of chemicals under different 

regulatory frameworks, and although the findings about the features of optimising sequential 

testing strategies are generic, the applicability of the Bayesian VOI approach should be 

explored for different toxicological endpoints. In particular, the expected welfare gains and 

losses from releasing or banning substances used as cosmetic ingredients are highly case 

specific. Moreover, while for human health endpoints such as skin sensitisation, but also 

carcinogenicity, estimates of expected health damage costs can be retrieved from the scientific 

literature, this is more difficult for endpoints such as liver toxicity. Estimates of the 

(monetary) damage costs for environmental endpoints (e.g. aquatic toxicity) usually do not 

exist. Here, revealed or stated preference methods could be used for generating data on 

environmental externalities caused by a release of hazardous substances. Furthermore, the 

presented approach refers to individual substances only and did not account for additive or 

synergistic effects of chemicals which are part of mixtures. Though being beyond the scope of 

this thesis, developing optimised testing strategies for mixtures is an interesting option for 

further research.  

The choice of skin sensitisation as endpoint for assessing the impact of biological and 

technical variability of testing methods (Chapter 4) and the uncertainties underlying to their 

predictivity (Chapter 5) was for illustrative purposes. Assessing the impact of intra-test 

variability on the precision of testing methods is a complex field of research which also has 

implications with regard to the policy-driven process of test validation. Addressing in detail 

different sources of uncertainties underlying to the precision and predictivity of testing 

methods goes beyond the scope of this thesis. Nonetheless, our findings underline that 

accuracy metrics should rather be documented as ranges rather than as point estimates. Using 
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test accuracy metrics as point estimates is a limitation which also applies to the scope of the 

decision-theoretic VOI analysis presented in Chapter 3. The VOI model could, therefore, be 

further expanded by integrating the uncertainty of test information due to the limited 

precision of testing methods into the Bayesian VOI model.  

6.3.2 Assumptions  

The quantitative methods presented in this thesis were based on a number of 

assumptions. For instance, to explore the applicability of the Bayesian VOI model presented in 

Chapter 3, Kathon CG was used as a proof-of-concept case. To quantify the expected payoffs 

from marketing Kathon CG, we made simplifying assumptions about the substance’s 

marketing volume, its market price, and the slope of the supply and demand curves of this 

chemical. Clearly, modifying these assumptions impacts the expected value of information of 

individual non-animal testing methods and that of combinations of these methods into 

sequential or battery strategies. Although the numerical values of the analysis have to be 

treated with care, the VOI model can be straightforwardly used to investigate the impact of 

modified parameter values if better information, e.g. about the marketing volume of a 

substance, becomes available.  

In addition, the Bayesian VOI model assumes risk neutral decision-makers. As a 

consequence, marginal health damage costs are considered to be constant. Given the 

increasing trend of skin allergies worldwide, particularly in children (Jackson et al., 2013), 

this assumption may not be valid and may not appropriately describe risk preferences of 

decision-makers in regulatory agencies. However, little information about decision-makers’ 

risk preferences and risk perceptions regarding the use of specific groups of chemicals has 

become available so far. Further, the Bayesian VOI model was applied to a set of non-animal 

testing methods which are assumed to capture all key events in the skin sensitisation AOP. 

This implies that different key events have equal relevance and that information on different 

key events is of same importance. Relaxing this assumption could change the expected value 

of test information of individual testing methods, and could change the optimal order of 

testing methods in a sequence. In addition, for several toxicological endpoints (e.g. liver 

toxicity, see Landesmann et al., (2013); Vinken, (2013); Perkins et al., (2015)) existing 

knowledge of the events in the AOP is still rudimentary.  

Furthermore, analysing the precision and the uncertainty of accuracy metrics of non-

animal testing methods addresses the informative value of test outcomes. The analysis of the 

precision and implications of testing methods’ precision constraints on the assessment of the 

predictive accuracy of non-animal testing methods was performed under the assumption that 



Synthesis 

116 
 

the classification threshold is exogenously given. The approach for quantifying the borderline 

range (Chapter 4) around testing methods’ classification threshold could, therefore, be 

generalised by accounting for varying thresholds. This might impact the borderline range, and 

consequently its impact on assessing the predictivity of a testing method. Further, our 

analysis on the impact of precision, sample size and sample composition on testing methods’ 

accuracy assumes that the experimental samples are a representative selection of the entire 

set of chemicals. This assumption, which was underlying to the bootstrap analysis used, is 

difficult to verify. As a consequence, the outcomes of our analysis may not adequately cover 

the entire spectrum of substances. 

6.3.3 Data availability  

To quantify expected health damage costs from Kathon CG we used mean values for direct 

health treatment costs based on empirical estimates published in recent studies for different 

populations groups and in different European countries. Due to lacking data we did not 

account for potential health damage costs from occupational exposure or indirect costs such 

as impacts on the social life patients may suffer due to skin allergies (Both et al., 2007). Also, 

cost components such as a firm’s loss of reputation due to erroneously marketing a skin 

sensitiser could not be included due to lacking information, e.g. about liability fees. For 

quantifying the number of people suffering from skin sensitisation in Europe, we used mean-

estimates of skin sensitisation prevalence. While such estimates could be retrieved for Kathon 

CG, they are not available for many other cosmetic ingredients, and for substances relevant for 

endpoints other than skin sensitisation. Applying the Bayesian VOI model to any of these 

substances requires operating with mean prevalence estimates. This will impact the 

quantification of health damage costs and might affect the “true” optimal order of tests in a 

sequence. Further, key events of the AOP are considered to be equally relevant for causing an 

adverse outcome. Therefore, the non-animal testing methods(i.e. the DPRA, LuSens, the h-

CLAT, and the OECD toolbox), which address different key events in the skin sensitisation AOP 

are treated with equal weights with respect to their relevance on addressing the skin 

sensitising properties of a substance. Finally, due to the lack of non-animal testing methods 

addressing the fourth key event in the skin sensitisation AOP, i.e. T-cell proliferation, the 

Bayesian VOI model as well as the analysis on the precision and accuracy of non-animal 

testing methods focused only on the first three key events in the AOP. 
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6.4 Conclusions  

The main conclusions from this thesis can be summarised as follows: 

1. The optimisation of testing strategies depends on the interplay of different parameters. 

These are a decision-maker’s prior beliefs about the hazardous properties of a 

substance, non-animal testing method’s predictive accuracy, social gains and losses 

corresponding to the set of decisions about the use of a substance, and testing costs.  

2. The expected value of test information revealed from “gold standard” animal tests for 

assessing skin sensitisation is lower than that of individual non-animal methods. This 

result holds for the entire range of a decision maker’s prior beliefs. When individual 

non-animal testing methods are combined into sequential or battery combinations, the 

expected value of test information increases. 

3. Sequential or battery combinations of non-animal testing methods have higher 

expected value than standalone methods because a relative higher shift of posterior 

beliefs is observed when using testing methods in strategies. For strategies assessing 

skin sensitisation the increase of information gains exceeded the increase of testing 

costs. 

4. The order of key events in the skin sensitisation AOP is neither a necessary nor a 

sufficient condition for optimising sequential testing. Furthermore, for a sequential 

testing strategy to be efficient not all key events in the AOP need necessarily to be 

covered. 

5. Integrating information from non-animal testing methods into sequential strategies 

decreases the likelihood to misclassify substances due to the impact of biological and 

technical variability of individual testing methods.  

6. Using clear-cut classification thresholds for transforming experimental readouts from 

testing methods into binary “hazardous/non-hazardous” information may lead to 

ambiguous classifications of substances. Quantifying the area where such ambiguous 

results are likely to occur, thus the borderline range can be used to document a testing 

method’s limited precision.  

7. The borderline range around the classification threshold of a testing method can 

impact a testing method’s predictive accuracy. The size and direction of this impact 

depends on how many of substances of the experimental samples yield test results 

within or outside the borderline range. 

8. Assessing the predictive accuracy of testing methods should be complemented by 

information about the borderline range. For a coherent evaluation of testing methods’ 



Synthesis 

118 
 

accuracy, the uncertainty of accuracy metrics caused by the limited precision of a 

testing method, captured in the borderline range should be assessed.  

6.5 Suggestions for further research  

In this section we provide suggestions for further research reflecting on the scope, 

assumptions and data availability of this thesis: 

Reflecting on the scope, further research should focus on:  

1. The optimisation of non-animal testing strategies for those substances which are of a 

high expected social relevance. For these substances the value of attaining information 

from testing will be highest. 

2. The influence of the limited precision of testing methods on the optimisation of non-

animal testing strategies. Specifically, one would expect that over- and under- 

estimation errors of accuracy metrics can change the optimal sequence of testing 

methods for given prior beliefs about the true hazardous properties of substances. 

Reflecting on the assumptions, further research should focus on:  

3. The impact of different risk preferences of stakeholders on the optimisation of testing 

strategies. We suggest conducting empirical research using, for example, choice 

experiments, to understand the behavioural drivers of different stakeholders (risk 

assessors in industry, regulatory agencies and consumers) for controlling the risks of 

chemicals.  

4. Expanding the Bayesian VOI model in order to consider information about the AOP and 

the relevance of each key event regarding the formation of an adverse effect. 

Furthermore, uncertainties about key events in an AOP need to be included. 

5. Further assessment of the prediction models of testing methods using the Receiver 

Operating Characteristic (ROC) curve analysis with varying classification thresholds 

while accounting for the impact of biological and technical variability of the precision 

of testing methods thus considering the borderline range.  

Reflecting on data used, further research should focus on:  

6. Compiling a dataset of different types of costs related to testing, e.g. health damage 

costs for consumers or loss of reputation for producers. This research could also 

expand on occupational exposure to substance in order to capture direct and indirect 

health damages costs occurring at workplaces. 
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Appendix A 

Experimental samples of substances used in the borderline range calculation 
Where substance names could not be published for reasons of data confidentiality we 

numbered them consecutively. 
Table A1: Substances in the sample for calculating the BR of the DPRA prediction model 

Chemical name  No. of runs 
Test substance 
concentrations 

considered [mM] 
Study year 

Ethylene glycole dimethacrylate* 
(positive control) 

211 0.5, 1, 5, 10, 50, 100 2014 

Substance 1 24 1, 10, 100 2015 
Substance 2 6 100 2015 
Substance 3 3 100 2015 
Substance 4 12 1, 5, 10, 100 2014 
Substance 5 9 1, 5, 10 2014 
Substance 6 12 1, 5, 10, 100 2014 
Substance 7 12 1, 5, 10, 100 2014 
Substance 8 3 100 2014 
Substance 9 6 1, 10, 100 2015 

Substance 10 6 1, 10, 100 2015 
Substance 11 6 1, 10, 100 2015 
Substance 12 4 1, 10 2015 
Substance 13 6 1, 10, 100 2015 
Substance 14 6 1, 10, 100 2015 
Substance 15 4 1, 10 2015 
Substance 16 4 1, 10 2015 
Substance 17 6 1, 10, 100 2015 
Substance 18 6 1, 10, 100 2015 
Substance 19 4 1, 10 2014 
Substance 20 6 1, 10, 100 2014 
Substance 21 6 1, 10, 100 2014 
Substance 22 6 1, 10, 100 2014 
Substance 23 6 1, 10, 100 2014 
Substance 24 6 1, 10, 100 2014 
Substance 25 6 1, 10, 100 2014 
Substance 26 6 1, 10, 100 2014 
Substance 27 6 1, 10, 100 2014 
Substance 28 6 1, 10, 100 2014 
Substance 29 6 1, 10, 100 2014 
Substance 30 3 100 2014 
Substance 31 3 100 2014 
Substance 32 3 100 2014 
Substance 33 3 100 2014 
Substance 34 3 100 2013 
Substance 35 3 3.76% 2013 
Substance 36 3 3.76% 2013 
Substance 37 3 100 2013 
Substance 38 3 100 2013 
Substance 39 3 100 2013 
Substance 40 3 100 2012 
Substance 41 3 100 2013 
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Table A2: Substances in the sample for calculating the BR of the LuSens prediction model 

Chemical name  No. of runs 
Test substance range of 

concentrations considered 
[μg/mL] 

Study Year 

Lactic Acid (Negative control) 395 450 2013-2015 
Substance 1 36 1.4 - 5.1 2013-2015 
Substance 2 53 0.15 - 0.54 2013-2015 
Substance 3 48 3.9 - 14.0 2013-2015 
Substance 4 144 0.06 - 0.92 2013-2015 
Substance 5 174 0.65 - 16.8 2013-2015 
Substance 6 96 77.0 - 479.0 2013-2015 
Substance 7 96 0.03 - 0.53 2013-2015 
Substance 8 96 0.31 - 4.75 2013-2015 
Substance 9 48 4.5 - 16.2 2013-2015 

Substance 10 48 4.7 - 42.9 2013-2015 
Substance 11 120 4.0 - 176.0 2013-2015 
Substance 12 48 6.0 - 46.0 2013-2015 
Substance 13 72 3.9 - 20.2 2013-2015 
Substance 14 48 4.6 - 16.5 2013-2015 
Substance 15 48 0.44 - 1.57 2013-2015 
Substance 16 48 1283.0 - 7942.0 2013-2015 
Substance 17 48 636.0 - 2278.0 2013-2015 
Substance 18 48 14.0 - 85.0 2013-2015 
Substance 19 48 226.0 - 2012.0 2013-2015 
Substance 20 36 0.59 - 2.02 2013-2015 
Substance 21 72 0.91 - 3.27 2013-2015 
Substance 22 96 6.9 - 106.0 2013-2015 
Substance 23 96 1.8 - 28.0 2013-2015 
Substance 24 72 542.0 - 1941.0 2013-2015 
Substance 25 72 450.0 - 2000.0 2013-2015 

 
Table A3: Substances in the sample for calculating the BR of the h-CLAT prediction model 

Chemical name  No. of runs 
Test substance 
concentrations 

considered [μg/mL] 
Study Year 

Lactic Acid (Negative control) 53 1000 2013-2015 
DNCB (Positive control) 53 4.0 2013-2015 

Substance 1 32 7396.0 - 2064.0 2013-2015 
Substance 2 30 5655.0 - 29176.0 2013-2015 
Substance 3 40 12.3 - 64.0 2013-2015 
Substance 4 32 69.0 - 510.0 2013-2015 
Substance 5 48 14.2 - 73.4 2013-2015 
Substance 6 48 2.2 - 8.0 2013-2015 
Substance 7 32 29.0 - 105.0 2013-2015 
Substance 8 48 1589.0 - 5695.0 2013-2015 
Substance 9 48 13.0 - 48.0 2013-2015 

Substance 10 32 115.0 - 710.0 2013-2015 
Substance 11 32 14.0 - 51.0 2013-2015 
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Table A4: Substances in the sample for calculating the BR of the LLNA prediction model 

Chemical name  CAS no No. of runs 
Test substance 
concentrations 

considered [μg/mL] 
Study Year 

DL-Lactic acid 50-21-5 20 5, 10, 25 2013-2015 
Salicylic acid 69-72-7 20 5, 10, 25 2013-2015 

Chlorobenzene 108-90-7 20 25, 50, 100 2013-2015 
Methyl methacrylate 80-62-6 20 25, 50, 100 2013-2015 

2-Mercaptobenzothiazole 149-30-4 19 0.75, 2.0, 7.5 2013-2015 
Methyl salicylate 119-36-8 20 10, 25, 50 2013-2015 

MCI / MI 26172-55-4 & 
2682-20-4 40 0.005, 0.05, 0.2, 0.1, 0.5, 

1 2013-2015 

Sodium dodecyl sulfate 151-21-3 20 1, 5, 10 2013-2015 
Imidazolidinyl urea 39236-46-9 20 10, 25, 50 2013-2015 

Ethylenglycolmethacrylate 
(EGDMA) 97-90-5 20 25, 50, 100 2013-2015 

Nickel(II) chloride 7718-54-9 20 1, 2.5, 5 2013-2015 
Cinnamic alcohol 104-54-1 20 10, 25, 50 2013-2015 

Isopropanol 67-63-0 20 25, 50, 100 2013-2015 
Phenylbenzoate 93-99-2 40 5,10, 15, 25, 40 2013-2015 

Isoeugenol 97-54-1 20 1, 5, 10 2013-2015 
Xylene 1330-20-7 20 25, 50, 100 2013-2015 

Alpha-Hexylcinnamaldehyde 101-86-0 20 5, 10, 25 2013-2015 
p-Phenylenediamine 106-50-3 20 0.05, 0.1, 0.5 2013-2015 

Citral 5392-40-5 20 5, 10, 25 2013-2015 
Cobalt(II) chloride 7646-79-9 20 0.25, 0.5, 1 2013-2015 

Eugenol 97-53-0 20 2.5, 10, 25 2013-2015 
1-Chloro-2,4-dinitrobenzene 

(DNCB) 97-00-7 20 0.025, 0.1, 0.25 2013-2015 
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Appendix B 

Experimental samples used for identifying borderline substances and calculate the 
predictive accuracy of non-animal testing methods (with including and excluding the 
borderline substances) when compared to the animal test LLNA and to the human data 
as reference  
 

Table B1: Experimental sample tested with the DPRA (borderline substances in bold) 

Chemical name CAS no 
Sensitisation potential1 in mice or 

humans (by conventional approach, 
assessed without BR) 

  LLNA Human 
Salicylic acid 69-72-7 N N 

Geraniol 106-24-1 P - 
Benzyl alcohol 100-51-6 P P 

Tween 80 9005-65-6 N P 
3-Dimethylamino propylamine 109-55-7 N N 

cis-6-Nonenal 2277-19-2 P P 
Ethyl vanillin 121-32-4 P - 

Undecylenic acid 112-38-9 N - 
2-Methoxy-4-Methylphenol 93-51-6 P P 

Ethyl benzoylacetate 94-02-0 P - 
Dihydroeugenol (2-Methoxy-4-Propyl-phenol) 2785-87-7 N - 

α-Hexyl cinnamic aldehyde 101-86-0 P - 
N,N-Diethyl-m-toluanimde 134-62-3 N - 

Penicillin G 61-33-6 P P 
d,l-Citronellol 106-22-9 P N 

Pentachlorophenol 87-86-5 P P 
p-tert-Butyl-alpha-ethyl hydrocinnamal (Lilial) 80-54-6 P P 

1-Bromobutane 109-65-9 N - 
Fumaric acid 110-17-8 N N 

Glucose 50-99-7 N N 
Propyl paraben 94-13-3 TN TN 

4-Methoxyacetophenone (Acetanisole) 100-06-1 TN TN 
6-Methylcoumarin 92-48-8 TN TN 

Nonanoic acid 112-05-0 FN TN 
Isopropanol 67-63-0 FN TN 

Methyl salicylate 119-36-8 TN TN 
Dibutyl phthalate 84-74-2 TN inconclusive 

Pyridine 110-86-1 TN - 
dl-α-Tocopherol 10191-41-0 TN - 

Clotrimazole 23593-75-1 FN - 
Methyl pyruvate 600-22-6 FN - 

1-Butanol 71-36-3 TN TN 
Xylene 1330-20-7 FN TN 

Diethyl phthalate 84-66-2 TN TN 
Vinylidene dichloride 75-35-4 TN - 
Oxalic acid anhydrous 144-62-7 FN - 

Octanoic acid (Caprylic acid) 124-07-2 TN TN 
Coumarin 91-64-5 TN FN 

Dimethyl formamide 68-12-2 TN - 
Glycerol 56-81-5 TN TN 

2,2,6,6-Tetramethyl-3,5-heptanedione 1118-71-4 FN - 
N,N-Dibutylaniline 613-29-6 FN FN 

Resorcinol 108-46-3 FN - 
Chlorobenzene 108-90-7 TN - 

Propylene glycol (1,2-Propanediol) 57-55-6 TN TN 
4-Chloroaniline 106-47-8 FN - 

7,12-Dimethylbenz[α]anthracene 57-97-6 FN - 
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Aniline 62-53-3 FN FN 
Saccharin 81-07-2 TN TN 

Hexadecyltrimethylammonium bromide (Cetrimide) 57-09-0 TN - 
n-Hexane 110-54-3 TN TN 

Benzalkonium chloride 8001-54-5 TN TN 
Lactic acid 50-21-5 TN TN 

Octanenitrile 124-12-9 TN - 
Undec-10-enal 112-45-8 FN - 

Benzyl benzoate 120-51-4 FN TN 
Methyl 4-hydroxybenzoate (Methylparaben) 99-76-3 TN - 

Butylbenzylphthalate 85-68-7 TN - 
4-Hydroxybenzoic acid 99-96-7 TN TN 

Sulfanilamide 63-74-1 TN TN 
Cocamidopropyl betaine 61789-40-0 TN - 

Benzene,1-methoxy-4-methyl-2-nitro (4-Methyl-2-
nitroanisole) 119-10-8 TN - 

Squaric acid diethyl ester 5231-87-8 FN - 
Clofibrate (Ethyl (2-(4-chlorophenoxy)-2-

methylpropanoate) 637-07-0 TN - 

α-Amyl cinnamic aldehyde 122-40-7 FN Inconclusive 
Streptomycin sulfate 3810-74-0 TN FN 
α-iso-Methylionone 127-51-5 FN TN 

Carbonic acid, dioctyl ester 1680-31-5 TN - 
Hexyl salicylate 6259-76-3 FN TN 

Benzyl cinnamate 103-41-3 FN - 
Benzyl salicylate 118-58-1 FN TN 

Sulfanilic acid 121-57-3 TN - 
Isopropyl myristate a 110-27-0 FN TN 
p-Aminobenzoic acid 150-13-0 TN TN 

Tartaric acid 87-69-4 TN TN 
Zinc sulfate 7733-02-0 TN - 

Dioctyl ether 629-82-3 TN - 
2,2-Azobis phenol 2050-14-8 FN - 

Benzaldehyde 100-52-7 TN FN 
Farnesol 4602-84-0 FN FN 

3-Aminophenol 591-27-5 FN - 
(+/-) Linalool 78-70-6 FN TN 

Diethylenetriamine 111-40-0 FN FN 
Octanoic acid, 4-methyl-2-pentylbutyl ester 868839-23-0 TN - 

R(+)-Limonene 5989-27-5 TP FP 
Ethylenediamine free base 107-15-3 TP TP 

Vanillin 121-33-5 FP FP 
Cyclamen aldehyde 103-95-7 TP - 

Tropolone 533-75-5 TP - 
Cinnamyl Alcohol 104-54-1 TP TP 

R-Carvone 6485-40-1 TP TP 
Benzocaine 94-09-7 FP TP 

3-Phenoxypropiononitrile 3055-86-5 FP - 
2-Acetyl-cyclohexanone 874-23-7 FP - 

Diethyl sulfate 64-67-5 TP - 
2-Phenylpropionaldehyde 93-53-8 TP TP 
5-Methyl-2,3-hexanedione 13706-86-0 TP TP 

1-Iodohexane 638-45-9 FP - 
2,2-Bis-[4-(2-hydroxy-3-

methacryloxypropoxy)phenyl)]-propane (Bis-GMA) 1565-94-2 TP - 

Farnesal 502-67-0 TP - 
α-Methyl-trans-Cinnamaldehyde 101-39-3 TP - 

3,4-Dihydrocoumarin 119-84-6 TP TP 
Eugenol 97-53-0 TP TP 

Lyral / 3 and 4-(4-Hydroxy-4-methylpentyl)-3-
cyclohexene-1-carboxaldehyde 31906-04-4 TP TP 

Nickel chloride 7718-54-9 FP TP 
Bisphenol A-diglycidyl ether 1675-54-3 TP TP 

1,2,4-Benzenetricarboxylic anhydride (Trimellitic 
anhydride) 552-30-7 TP - 

1-(p-Methoxyphenyl)-1-penten-3-one 104-27-8 TP - 
3-Propylidenephthalide 17369-59-4 TP TP 

Perillaldehyde 2111-75-3 TP TP 
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Tetrachloro-salicylanilide 1154-59-2 TP TP 
2-Fluoro-5-nitroaniline 369-36-8 FP - 

Phthalic anhydride 85-44-9 TP FP 
1,2-cyclohexane dicarboxylic anhydride 85-42-7 TP - 

Squaric acid 2892-51-5 TP TP 
Formaldehyde 50-00-0 TP TP 

2-Hydroxypropyl methacrylate 923-26-2 FP - 
1-Phenyl-1,2-propanedione 579-07-7 TP - 

Cobalt chloride 7646-79-9 TP TP 
Methylmethacrylate 80-62-6 TP TP 

Phenyl benzoate 93-99-2 TP TP 
3-Chloro-4-Methoxybenzaldehyde (3-Chloro-p-

anisaldehyde) 4903-09-7 FP - 

Butyl glycidyl ether 2426-08-6 TP TP 
Imidazolidinyl urea 39236-46-9 TP TP 

1-Naphthol 90-15-3 TP - 
Ethanol-2-butoxy acetate 112-07-2 FP - 

1-Bromohexane 111-25-1 TP - 
Phenylacetaldehyde 122-78-1 TP TP 

Benzoic acid 65-85-0 FP - 
1-Iodohexadecane 544-77-4 TP - 

Citral 5392-40-5 TP TP 
Bandrowski’s Base (N,N-bis(4-aminophenyl)-2,5-

diamino-1,4-quinone-diimine) 20048-27-5 TP - 

1,1,3-Trimethyl-2-Formylcyclohexa-2,4-diene 
(Safranal) 116-26-7 TP TP 

4-Vinyl pyridine 100-43-6 TP - 
Benzylidene acetone (4-Phenyl-3-buten-2-one) 122-57-6 TP TP 

2-Nitro-1,4-phenylendiamine 5307-14-2 TP TP 
2,5-Diaminotoluene sulfate (PTD) 615-50-9 TP TP 

Hydroxycitronellal 107-75-5 TP TP 

MCI/MI 26172-55-4 & 
2682-20-4 TP TP 

Sodium lauryl sulfate / sodium dodecyl sulfate (SDS) 151-21-3 TP FP 
Methyl-2-octynoate / Methyl heptine carbonate 111-12-6 TP TP 

2-Methyl-2H-Isothiazol-3-one (MI) 2682-20-4 TP TP 
4-Allylanisole 140-67-0 TP - 

Diphenylcyclopropenone 886-38-4 TP TP 
Lauryl gallate 1166-52-5 TP TP 

Iodopropynyl butylcarbamate 55406-53-6 TP TP 
Furil 492-94-4 FP - 

2-Methylundecanal 110-41-8 TP - 
N,N-dimethyl-4-nitrosoaniline 138-89-6 TP - 

2-Propylheptyl acrylate 149021-58-9 TP - 
trans-2-Hexenal 6728-26-3 TP TP 

5-Amino-2-methylphenol 2835-95-2 TP - 
Chlorothalonil 1897-45-6 TP - 

2-Mercaptobenzothiazole 149-30-4 TP TP 
Methyl 2-nonynoate 111-80-8 TP TP 

Methyl methanesulphonate 66-27-3 TP - 
4-(N-Ethyl-N-2-methan-sulphonamido-ethyl)-2-

methyl-1,4-phenylenediamine (CD3) 25646-71-3 TP - 

1,2-Dibromo-2,4-dicyanobutane (MDGN, 
Methyldibromo glutaronitrile) 35691-65-7 TP TP 

Trans-2-Decenal 3913-71-1 TP - 
Tetramethylthiuram disulfide 137-26-8 TP TP 

1,2-Benzisothiazolin-3-One (Proxel active) 2634-33-5 TP TP 
Propanoic acid, 3-Bromo-Mmethyl ester (Methyl-3-

bromopropionate) 3395-91-3 FP - 

4-Carboxyphenylacetate 2345-34-8 TP - 
Cinnamic aldehyde 104-55-2 TP TP 

2-Aminophenol 95-55-6 TP TP 
Diethyl acetaldehyde 97-96-1 TP 

Glutaraldehyde 111-30-8 TP TP 
Abietic acid 514-10-3 TP TP 

4-Ethoxymethylene-2-phenyl-2-oxazolin-5-one 
(Oxazolone) 15646-46-5 TP TP 

4-Amino-m-cresol 2835-99-6 TP - 
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Isoeugenol 97-54-1 TP TP 
2-Ethylhexyl acrylate 103-11-7 TP - 

2,4-Heptadienal 5910-85-0 TP - 
2,4-Dinitrobenzenesulfonic acid, sodium salt 885-62-1 TP - 

Benzyl bromide 100-39-0 TP - 
2,4,6-Trinitrobenzenesulfonic acid 2508-19-2 TP - 

Propyl gallate 121-79-9 TP TP 
4-Nitrobenzyl bromide 100-11-8 TP - 

Glyoxal 107-22-2 TP TP 
Ethylene glycol dimethacrylate (EGDMA) 97-90-5 TP TP 

2,3-Butanedione 431-03-8 TP - 
Isophorone diisocyanate 4098-71-9 TP - 

5-Chloro-2-methyl-4-isothiazolin-3-one (MCI) 26172-55-4 TP - 
1,6-hexamethylene diisocyanate 822-06-0 TP - 

Hydroquinone 123-31-9 TP TP 
Maleic anhydride 108-31-6 TP - 

1,4-Phenylenediamine 106-50-3 TP TP 
4-(Methylamino) Phenol sulfate (Metol) 55-55-0 TP TP 

1-Chloro-2,4-Dinitrobenzene (Dinitrochlorobenzene, 
DNCB) 97-00-7 TP TP 

Fluorescein-5-isothiocyanate 3326-32-7 TP - 
3-Methylcatechol 488-17-5 TP - 
Diethyl maleate 141-05-9 TP TP 

Benzoyl peroxide 94-36-0 TP TP 
2-Hydroxyethyl acrylate 818-61-1 TP TP 

Ethyl acrylate 140-88-5 TP TP 
Methyl acrylate 96-33-3 TP - 
Butyl acrylate 141-32-2 TP - 

p-Benzoquinone 106-51-4 TP TP 
Tosylchloramide sodium (Chloramine T) 127-65-1 TP - 

 
Table B2: Experimental sample tested with LuSens(borderline substances in bold) 

Chemical name CAS no 
Sensitisation potential1 in mice or 

humans (by conventional approach, 
assessed without BR) 

  LLNA Human 
1-Butanol 71-36-3 N N 

Benzoyl peroxide 94-36-0 P P 
4-Allylanisole 140-67-0 P - 

Methyldibromo glutaronitrile (MDGN) 35691-65-7 P P 
Phthalic anhydride 85-44-9 FN TN 

Resorcinol 108-46-3 FN FN 
Sodium lauryl sulfate / sodium dodecyl sulfate 

(SDS) 151-21-3 FN TN 

Nickel chloride 7718-54-9 TN FN 
Salicylic acid 69-72-7 TN TN 

Farnesal 502-67-0 FN - 
Propyl gallate 121-79-9 FN FN 

Hexadecyltrimethylammonium bromide (Cetrimide) 57-09-0 TN TN 
Lactic acid 50-21-5 TN TN 

Aniline 62-53-3 FN FN 
4-Hydroxybenzoic acid 99-96-7 TN TN 

Glucose 50-99-7 TN TN 
Sulfanilamide 63-74-1 TN TN 

Penicillin G 61-33-6 FN FN 
p-Aminobenzoic acid 150-13-0 TN TN 

Ethylenediamine free base 107-15-3 FN FN 
Phenyl benzoate 93-99-2 FN FN 

Glycerol 56-81-5 TN TN 
Cocamidopropyl betaine 61789-40-0 TN - 

Propylene glycol (1,2-Propanediol) 57-55-6 TN TN 
n-Hexane 110-54-3 TN TN 

Isopropanol 67-63-0 TN TN 
Fumaric acid 110-17-8 TN TN 
Tartaric acid 87-69-4 TN TN 

Xylene 1330-20-7 FN TN 
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Pyridine 110-86-1 FN TN 
Vanillin 121-33-5 TN TN 

Octanoic acid, 4-methyl-2-pentylbutyl ester 868839-23-0 TN - 
Benzyl alcohol 100-51-6 FP TP 
Dioctyl ether 629-82-3 FP - 

Hydroxycitronellal 107-75-5 TP TP 
Methyl salicylate 119-36-8 FP FP 

1,6-hexamethylene diisocyanate 822-06-0 TP - 
p-Benzoquinone 106-51-4 TP TP 

Potassium dichromate 7778-50-9 TP TP 
4-Nitrobenzyl bromide 100-11-8 TP - 

α-Hexyl cinnamic aldehyde 101-86-0 TP inconclusive 
1-Chloro-2,4-dinitrobenzene 

(Dinitrochlorobenzene, DNCB) 97-00-7 TP TP 

Diethyl phthalate 84-66-2 TN TN 
2-Ethylhexyl acrylate 103-11-7 TP - 

2-Phenylpropionaldehyde 93-53-8 TP TP 
6-Methylcoumarin 92-48-8 FP inconclusive 

Tween 80 9005-65-6 FP FP 
Propyl paraben (propyl-4-hydroxybenzoate) 94-13-3 FP FP 

Formaldehyde 50-00-0 TP TP 
Isophorone diisocyanate 4098-71-9 TP - 
2-Propylheptyl acrylate 149021-58-9 TP - 

Glyoxal 107-22-2 TP TP 
Ethyl acrylate 140-88-5 TP TP 

Imidazolidinyl urea 39236-46-9 TP TP 
Butyl glycidyl ether 2426-08-6 TP TP 

Tetramethylthiuram disulfide 137-26-8 TP TP 
Eugenol 97-53-0 TP TP 

2,4,6-Trinitrobenzenesulfonic acid 2508-19-2 TP - 
Glutaraldehyde 111-30-8 TP TP 

Methyl 4-hydroxybenzoate (Methylparaben) 99-76-3 FP - 

MCI/MI 26172-55-4 
& 2682-20-4 TP TP 

Cinnamyl Alcohol 104-54-1 TP TP 
Methylmethacrylate 80-62-6 TP TP 

Cobalt chloride 7646-79-9 TP TP 
4-Ethoxymethylene-2-phenyl-2-oxazolin-5-one 

(Oxazolone) 15646-46-5 TP TP 

4-(Methylamino)phenol sulfate (Metol) 55-55-0 TP TP 
Undecylenic acid 112-38-9 TP TP 
2,3-Butanedione 431-03-8 TP - 

4-Methoxyacetophenone (Acetanisole) 100-06-1 FP FP 
Butyl acrylate 141-32-2 TP - 

1,4-Phenylenediamine 106-50-3 TP TP 
Methyl acrylate 96-33-3 TP 
Diethyl maleate 141-05-9 TP TP 

Benzylidene acetone (4-Phenyl-3-buten-2-one) 122-57-6 TP TP 
Cinnamic aldehyde 104-55-2 TP TP 

2-Mercaptobenzothiazole 149-30-4 TP TP 
Isoeugenol 97-54-1 TP TP 

Ethylene glycol dimethacrylate (EGDMA) 97-90-5 TP TP 
Citral 5392-40-5 TP TP 
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Table B3: Experimental sample tested with the h-CLAT(borderline substances in bold) 

Chemical name CAS no 
Sensitisation potential1 in mice or 

humans (by conventional 
approach, assessed without BR) 

  LLNA Human 
4-phenylenediamine 106-50-3 P P 

Phenyl benzoate 93-99-2 P P 
Ethylene diamine 107-15-3 P P 

Aniline 62-53-3 P P 
Farnesal 502-67-0 P - 

Methyldibromo Glutaronitrile (MDGN) 35691-65-7 P P 
p-Benzoquinone 106-51-4 P P 

Propyl gallate 121-79-9 P P 

MCI/MI 26172-55-4 & 2682-20-
4 TP TP 

1-chloro-2,4-dinitrobenzene 97-00-7 TP - 
Cobalt chloride 7646-79-9 TP TP 

Citral 5392-40-5 TP TP 
Cinnamic alcohol 104-54-1 TP TP 

Methylmethacrylate 80-62-6 TP TP 
Isopropanol 67-63-0 TN TN 

DL-lactic acid 50-21-5 TN TN 
Methyl salicylate 119-36-8 TN TN 

Sodium lauryl sulfate 151-21-3 FP TN 
Ethylene glycol dimethacrylate (EDGMA) 97-90-5 TP TP 

Xylene 1330-20-7 FN TN 
Sulfanilamide 63-74-1 TN TN 

2,4,6-trinitrobenzenesulfonic acid 2508-19-2 FN - 
2,3-butanedione 431-03-8 TP - 

2-phenylpropionaldehyde 93-53-8 TP TP 
4-allylanisole 140-67-0 TP - 

Benzylidene acetone 122-57-6 TP TP 
Diethyl maleate 141-05-9 TP TP 

Fumaric acid 110-17-8 TN TN 
Glucose 50-99-7 TN TN 

Hydroxycitronellal 107-75-5 TP TP 
p-aminobenzoic acid 150-13-0 TN TN 
Phthalic anhydride 85-44-9 FN TP 

Undecylenic acid 112-38-9 TP TP 
Vanillin 121-33-5 TN TN 

Propyl-4-hydroxybenzoate 99-76-3 FP FP 
Tartaric acid 87-69-4 TN TN 

n-hexane 110-54-3 TN TN 
Hexadecyltrimethylammonium bromid 57-09-0 TN TN 

Glycerol 56-81-5 TN TN 
Propylene glycol (1,2-Propanediol) 57-55-6 TN TN 
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Table B4: Experimental sample tested with the ‘2 out of 3’ITS approach (borderline substances in bold) 

Name CAS no 
Sensitisation potential1 in mice or 

humans (by conventional 
approach, assessed without BR) 

  LLNA Human 
Phenyl benzoate 93-99-2 P P 

Ethylene diamine 107-15-3 P P 
Methyldibromo glutaronitrile (MDGN) 35691-65-7 P P 

Propyl gallate 121-79-9 P P 
Propylene glycol (1,2-Propanediol) 57-55-6 TN TN 

Tartaric acid 87-69-4 TN TN 
Glycerol 56-81-5 TN TN 

n-Hexane 110-54-3 TN TN 
Propyl paraben (Propyl-4-Hydroxybenzoate) 99-76-3 FP FP 

Sulfanilamide 63-74-1 TN TN 
Vanillin 121-33-5 TN TN 

Isopropanol 67-63-0 TN TN 
Lactic acid 50-21-5 TN TN 

Methyl salicylate 119-36-8 TN TN 
Fumaric acid 110-17-8 TN TN 

Glucose 50-99-7 TN TN 
p-Aminobenzoic acid 150-13-0 TN TN 

Hexadecyltrimethylammonium bromide 
(Cetrimide) 

57-09-0 TN TN 

Xylene 1330-20-7 FN TN 
Methylmethacrylate 80-62-6 TP TP 

Aniline 62-53-3 FN FN 
Ethylene glycol dimethacrylate (EGDMA) 97-90-5 TP TP 

Undecylenic acid 112-38-9 TP TP 
Hydroxycitronellal 107-75-5 TP TP 
Cinnamyl Alcohol 104-54-1 TP TP 

4-Allylanisole 140-67-0 TP  
Sodium lauryl sulfate / sodium dodecyl sulfate 

(SDS) 
151-21-3 FN TN 

Farnesal 502-67-0 TP  
2,3-Butanedione 431-03-8 TP  

Citral 5392-40-5 TP TP 
2-Phenylpropionaldehyde 93-53-8 TP TP 

Benzylidene acetone (4-Phenyl-3-buten-2-one) 122-57-6 TP TP 
Diethyl maleate 141-05-9 TP TP 
Cobalt chloride 7646-79-9 TP TP 

2,4,6-Trinitrobenzenesulfonic acid 2508-19-2 TP  
Phthalic anhydride 85-44-9 FN TN 

1,4-Phenylenediamine 106-50-3 TP TP 
1-Chloro-2,4-dinitrobenzene 

(Dinitrochlorobenzene, DNCB) 
97-00-7 TP TP 

p-Benzoquinone 106-51-4 TP TP 
MCI/MI 26172-55-4 & 

2682-20-4 
TP TP 
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Table B5: Experimental sample tested with the LLNA (borderline substances in bold) 

Chemical name CAS no 
Sensitisation potential1 in mice or humans 

(by conventional approach, assessed 
without BR) 

  LLNA Human 
Salicylic acid 69-72-7 N TN 

Methyl methacrylate 80-62-6 P P 
Chlorobenzene 108-90-7 N  
Nickel chloride 7718-54-9 N P 

Phenyl benzoate 93-99-2 P P 
Methyl salicylate 119-36-8 N TN 

DL-Lactic acid 50-21-5 N TN 
2-Mercaptobenzothiazole 149-30-4 P TP 

MCI / MI 26172-55-4 & 2682-20-
4 P TP 

Sodium dodecyl sulfate 151-21-3 P FN 
Imidazolidinyl urea 39236-46-9 P TP 

Ethylenglycolmethacrylate (EGDMA) 97-90-5 P TP 
Cinnamic alcohol 104-54-1 P TP 

Isopropanol 67-63-0 N TN 
Isoeugenol 97-54-1 P TP 

Xylene 1330-20-7 P FN 
Alpha-Hexylcinnamaldehyde 101-86-0 P TP 

p-Phenylenediamine 106-50-3 P - 
Citral 5392-40-5 P TP 

Cobalt(II) chloride 7646-79-9 P TP 
Eugenol 97-53-0 P TP 

1-Chloro-2,4-dinitrobenzene (DNCB) 97-00-7 P TP 
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Appendix C  
Distributions of accuracy metrics for non-animal testing methods and the “2 out of 3” 
ITS - Using the LLNA as reference test 

DPRA (test results compared to LLNA data) 

  
Figure C1: Distribution of sensitivity, derived 
from randomised samples including borderline 
substances  

Figure C2: Distribution of sensitivity, derived 
from randomised samples excluding borderline 
substances  

  

  

Figure C3: Distribution of specificity, derived 
from randomised samples including borderline 
substances  

Figure C4: Distribution of specificity, derived 
from randomised samples excluding borderline 
substances 

  

  
Figure C5: Distribution of concordance, 
derived from randomised samples including 
borderline substances 

Figure C6: Distribution of concordance, derived 
from randomised samples excluding borderline 
substances 

  
LuSens (using the LLNA as reference test) 

  
Figure C7: Distribution of sensitivity, derived Figure C8: Distribution of the sensitivity, 
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from randomised samples including borderline 
substances 

derived from randomised samples excluding 
borderline substances 

  

  

Figure C9: Distribution of specificity, derived 
from randomised samples including borderline 
substances 

Figure C10: Distribution of the specificity, 
derived from randomised samples excluding 
borderline substances 

  

  
Figure C11: Distribution of the concordance, 
derived from randomised samples including 
borderline substances 

Figure C12: Distribution of the concordance, 
derived from randomised samples excluding 
borderline substances 

  
h-CLAT (using the LLNA as reference test) 

  

Figure C13: Distribution of the sensitivity, 
derived from randomised samples including 
borderline substances 

Figure C14: Distribution of the sensitivity, 
derived from randomised samples excluding 
borderline substances 

  

  
Figure C15: Distribution of the specificity, Figure C16: Distribution of the specificity, 
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derived from randomised samples including 
borderline substances 

derived from randomised samples excluding 
borderline substances 

  

-  
 

Figure C17: Distribution of the concordance, 
derived from randomised samples including 
borderline substances 

Figure C18: Distribution of the concordance, 
derived from randomised samples excluding 
borderline substances 

  
“2 out of 3” ITS (using the LLNA as reference test) 

  
Figure C19: Distribution of the sensitivity, 
derived from randomised samples including 
borderline substances 

Figure C20: Distribution of the sensitivity, 
derived from randomised samples excluding 
borderline substances 

  

  
Figure C21: Distribution of the specificity, 
derived from randomised samples including 
borderline substances 

Figure C22: Distribution of the specificity, 
derived from randomised samples excluding 
borderline substance 
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Figure C23: Distribution of the concordance, 
derived from randomised samples including 
borderline substances 

Figure C24: Distribution of the concordance, 
derived from randomised samples excluding 
borderline substances 

 

Distributions of accuracy metrics for non-animal testing methods and the “2 out of 
3”ITS - Using human data as reference test 

DPRA (using human data as reference test results) 

  
Figure C25: Distribution of sensitivity, derived 
from randomised samples including borderline 
substances  

Figure C26: Distribution of sensitivity, derived 
from randomised samples excluding borderline 
substances  

  

 
 

Figure C27: Distribution of specificity,6 
derived from randomised samples including 
borderline substances  

Figure C28: Distribution of6 specificity, 
derived from randomised samples excluding 
borderline substances 

  

  
Figure C29: Distribution of concordance, Figure C30: Distribution of concordance, 
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derived from randomised samples including 
borderline substances 

derived from randomised samples excluding 
borderline6 substances 

  
LuSens (using human data as reference test results) 

  
Figure C31: Distribution of sensitivity6, 
derived from randomised samples including 
borderline substances 

Figure C32: Distribution of 66the sensitivity, 
derived from randomised samples excluding 
borderline substances 

  

 

 
Figure C33: Distribution of specificity, derived 
from randomised samples including borderline 
substances 

Figure C34: Distribution of the specificity, 
derived from randomised samples excluding 
borderline substances 

  

  
Figure C35: Distribution of the concordance, 
derived from randomised samples including 
borderline substances 

Figure C36: Distribution of the concordance, 
derived from randomised samples excluding 
borderline substances 

  
h-CLAT (using human data as reference test results) 
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Figure C37: Distribution of the sensitivity, 
derived from randomised samples including 
borderline substances 

Figure C38: Distribution of the sensitivity, 
derived from randomised samples excluding 
borderline substances 

  
Figure C39: Distribution of the specificity, 
derived from randomised samples including 
borderline substances 

Figure C40: Distribution of the specificity, 
derived from randomised samples excluding 
borderline substances 

  

  
Figure C41: Distribution of the concordance, 
derived from randomised samples including 
borderline substances 

Figure C42: Distribution of the concordance, 
derived from randomised samples excluding 
borderline substances 

  
“2 out of 3” ITS (using human data as reference test results) 

  
Figure C43: Distribution of the sensitivity, 
derived from randomised samples including 

Figure C44: Distribution of the sensitivity, 
derived from randomised samples excluding 
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borderline substances borderline substances 

  

 
 

Figure C45: Distribution of the specificity, 
derived from randomised samples including 
borderline substances 

Figure C46: Distribution of the specificity, 
derived from randomised samples excluding 
borderline substances 

  

 
 

Figure C47: Distribution of the concordance, 
derived from randomised samples including 
borderline substances 

FigureC48: Distribution of the concordance, 
derived from randomised samples excluding 
borderline substances 
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Appendix D 

Accuracy metrics of testing methods when compared to human reference data  

Table D1: Number of substances in the experimental samples (n) used for calculating accuracy 
metrics of non-animal testing methods and the “2 out of 3”ITS (test results compared to hu man 

data) 

 Including borderline substances Excluding borderline substance 
DPRA 107 95 

LuSens 62 58 
h-CLAT 35 28 

“2 out of 3”ITS  35 32 

 

 
Table D2: Minimum and maximum number of substances in randomised samples resulting 

from bootstrap resampling, after borderline substances  were excluded (test results compared 
to human data) 

Randomised 
sample size (n) DPRA LuSens h-CLAT “2 out of 3” ITS  

Min 80 52 19 24 
Max 105 62 35 36 

Source: Own calculations. 
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Table D3: Accuracy metrics of the DPRA, LuSens, the h-CLAT and the “2 out of 3”ITS approach 
derived from experimental test results and randomised samples using bootstrap resampling 

(test results compared to human data) 

 

Experimental 
samples of 
substances 

Randomised samples from 
bootstrap resampling 

 Mean ± SD 95%CI 
DPRA n=107   

 
Sensitivity [%] 85 85±4 (76;93) 
Specificity [%] 80 80±7 (66;93) 
Concordance [%] 83 83±4 (76;90) 

  n=95   

Reduced sample 
(excluding borderline 
substances) 

Sensitivity [%] 89 89±4 (81;96) 
Specificity [%] 87 87±6 (73,97) 
Concordance [%] 88 88±4 (82,95) 

LuSens n=62   
Complete samples 
(including borderline 
substances) 

Sensitivity [%] 79 79±7 (65;91) 
Specificity [%] 83 83±8 (67;96) 
Concordance [%] 81 81±5 (69;90) 

  n=58   

Reduced sample 
(excluding borderline 
substances) 

Sensitivity [%] 80 80±7 (66;92) 
Specificity [%] 82 83±8 (65;96) 
Concordance [%] 81 81±5 (71;91) 

h-CLAT n=35   
Complete samples 
(including borderline 
substances) 

Sensitivity [%] 100 100±0 (100;100) 
Specificity [%] 94 94±6 (80;100) 
Concordance [%] 97 97±3 (91;100) 

  n=28   

Reduced sample 
(excluding borderline 
substances) 

Sensitivity [%] 100 100±0 (100;100) 
Specificity [%] 94 94±6 (80;100) 
Concordance [%] 96 96±4 (88;100) 

“2 out of 3” ITS  n=35   

Complete samples 
(including borderline 
substances) 

Sensitivity [%] 95 95±5 (82,100) 
Specificity [%] 94 94± 8 (80,100) 
Concordance [%] 94 94±4 (86,100) 

  n=32   

Reduced sample 
(excluding borderline 
substances) 

Sensitivity [%] 93 93±7  (78,100) 
Specificity [%] 94 94±6  (80,100) 
Concordance [%] 94 94±4  (84,100) 

Source: Own calculations. 
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Summary  

Nowadays large amounts of chemicals are in use worldwide. Still, detailed knowledge 

about the hazardous properties has become available for just few chemicals. This has 

stimulated discussions among scientists and policy-makers on how adequate information 

about the hazards and risks of chemicals can be provided within a realistic time-frame while 

reducing testing costs and avoiding animal testing. During the past decade, much progress has 

been made in the development of non-animal testing methods for several toxicological 

endpoints. None of the existing non-animal testing methods, however, is considered to 

provide sufficient and adequate information to fully replace an animal test if applied as a 

standalone method. Using information from different non-animal methods integrated in forms 

of testing strategies, also called “Defined Approaches” (DAs), has been proposed as a 

promising solution to replace animal testing. Moreover, DAs have been widely considered to 

allow for an economically efficient way to assess hazards and risks, because they are assumed 

to deliver information about substances’ hazardous properties faster and cheaper than the 

“gold standard” animal tests, and to avoid the use of laboratory animals.  

Efforts to develop non-animal testing strategies have given specific attention to the 

assessment of skin sensitisation which is the toxicological endpoint assessing a substance’s 

potential to cause acute contact dermatitis (ACD) in humans. This can be explained by several 

reasons. First, within the European Union, the REACH (Registration, Evaluation, Authorisation 

and Restriction of Chemicals) legislation prescribes skin sensitisation testing for industrial 

chemicals produced or imported in amounts more than one tonne per year. Second, 

substances used as ingredients in cosmetic products require skin sensitisation testing as a 

default. The Cosmetics Regulation, which entered into force in 2009, has enforced a marketing 

ban on all cosmetic products that contains chemicals tested in animal tests. This stimulated a 

scientific movement to develop non-animal methods and strategies for skin sensitisation 

assessment, based on in vitro, in silico and in chemico methods. Third, the adverse outcome 

pathway (AOP) which describes the sequence of biological and mechanistic events leading to 

the adverse outcome (i.e. the manifestation of ACD) is well-explored for skin sensitisation. The 

AOP has, therefore, been suggested as a guiding tool for the construction of testing strategies 

covering some or all key event in the skin sensitisation AOP. Still, there has been a need to 

gain better understanding in the conceptual requirements to develop resource-efficient 

testing strategies from an economic perspective. In this context, key conceptual challenges 

focus on (i) which non-animal testing methods to select in order to provide adequate hazard 

information, (ii) how to combine these methods into a testing strategy, and (iii) when testing 
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should stop. This also requires that non-animal testing methods’ precision, and uncertainties 

underlying to their predictivity, need to be well- understood and transparently documented.  

The objective of this thesis is to develop and apply an economic approach to the 

development of optimised non-animal testing strategies used for skin sensitisation potential 

(hazard) assessment. Furthermore, the thesis examines the uncertainty of test information 

due to the biological and technical variability and explores the impact of this uncertainty on 

non-animal testing methods predictive accuracy. Predictive accuracy is the ability of a non-

animal testing method to predict the test result of a reference animal test for tested 

substances.  

To provide a systematic overview of the current state-of-work regarding non-animal 

testing for skin sensitisation, Chapter 2 surveys the criteria suggested in the toxicological 

literature for the development of testing strategies. Furthermore, Chapter 2 suggests 

conceptual criteria and informational requirements in order to develop resource-efficient 

testing strategies. As a follow-up step existing testing strategies (i.e. DAs) combining 

information from different (non-animal) testing methods for skin sensitisation potential or 

potency, are qualitatively evaluated applying conceptual and informational criteria. We 

observe that existing testing strategies for skin sensitisation assessment focus predominantly 

on the maximisation of information, which is related to mechanistic criteria e.g. either 

covering the key events in the AOP or increasing the predictive accuracy estimates. Although 

the need to account for direct and indirect costs of testing has been widely acknowledged in 

the literature, cost components have been largely ignored in the development of integrated 

testing strategies. Optimising toxicity testing requires, however, balancing information 

outcomes with costs. The challenge is, therefore, to develop a methodological approach that 

guides the construction of resource efficient non-animal testing strategies. 

Chapter 3 introduces a Bayesian Value of Information (VOI) model as an economic 

approach to the optimisation of non-animal testing strategies for the assessment of skin 

sensitisation potential. A set of non-animal testing methods (i.e. the DPRA, LuSens, 

KeratinoSensTM, the h-CLAT and the OECD toolbox) are evaluated according to their Expected 

Value of Test Information (EVTI), which quantifies the expected net welfare gains from 

decision-making upon the use of a substance with additional information from testing. The 

EVTI is quantified for all individual non-animal testing methods, and their combinations into 

battery- and sequential combinations. Results are compared to those of the reference animal 

test (LLNA). Expected welfare gains or losses from using a (toxic) substance substances are 

approximated by estimating health damage costs from ACD caused, using the case of cosmetic 
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ingredients (i.e. Kathon CG) as an illustrative example. The Bayesian VOI model is offers a 

probabilistic method guiding (i) the selection of testing methods, (ii) the order of testing 

methods and (iii) when testing should stop. The stopping rule is an endogenous component of 

the VOI model. Testing has a positive (economic) value if and only if the information gains net 

of testing costs are positive. Chapter 3 concludes that combinations of non-animal testing 

methods into either batteries or sequential strategies reveal a higher EVTI than the reference 

animal test. Furthermore, it can be shown that resource efficient testing strategies do not 

need to cover all key events and do not have to follow the order of key events in the skin 

sensitisation AOP. Rather, the optimal selection of testing methods depends on the interplay 

of multiple parameters, such as a decision-maker’s prior beliefs upon the true properties of a 

substance, the predictive accuracy of testing methods, the expected welfare gains from 

marketing a substance, and, finally, testing costs.  

Chapter 4 examines the impact of biological and technical variability on the precision of 

testing methods for assessing skin sensitisation potential. Precision denotes a non-animal 

testing method’s ability to show concordant results in repeated applications. In general, for 

classification purposes conclusions on the hazardous properties of chemicals are based on 

binary “positive/negative” outcomes. Binary outcomes are derived by applying classification 

thresholds into continuous readouts from testing. However, for substances for which test 

results are close to the classification threshold non-animal testing methods, but also animal 

tests, can deliver discordant results in repeated testing. More specifically, we can quantify a 

range to the left and the right of the classification threshold within which discordant results 

can be expected with a certain probability. This range is called “grey zone” or “borderline 

range” around the classification thresholds of testing methods’ prediction models. In Chapter 

4 we quantify the borderline range for the LLNA as the reference animal test, the DPRA, 

LuSens, and the h-CLAT as non-animal testing methods, and for a combination of these 

methods into an integrated testing strategy i.e. the “2 out of 3” ITS. Furthermore, we identify 

the number of substances in the experimental samples of these methods for which test 

outcomes fall within the borderline range. Chapter 4 concludes that the technical and 

biological variability of testing methods impacts the precision of testing methods. Substances 

which are borderline, i.e. which revealed test results in the borderline range of the testing 

method, cannot unambiguously be classified as “hazardous/non-hazardous” thus indicating 

its ability to cause an effect or not. For such substances, a clear-cut classification is, therefore, 

not possible. Rather, further testing might be required to gain additional evidence on a 

substance’s intrinsic properties. Chapter 4 suggests that the borderline range should be 
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quantified and documented as a default for non-animal testing methods and the animal tests 

to provide transparent information about testing methods’ precision.  

Chapter 5 examines the impact of different types of uncertainties in testing methods’ 

predictive accuracy. In particular, the impact of limited precision, and the impact of varying 

sample  size and composition is examined in three steps. First, we examine the impact of non-

animal testing methods’ limited precision on predictive accuracy metrics. This is done by 

comparing sensitivity, specificity and concordance derived from experimental substances’ 

samples including borderline substances (i.e. the “complete” samples) with accuracy metrics 

derived after excluding borderline substances (i.e. the “reduced” samples). Second, we 

examine the impact of sample composition on accuracy metrics. Comparing accuracy metrics 

from randomised “complete “and “reduced” samples capture the joint effect from sample 

composition and limited precision. Third, we examine the joint impact of limited precision, 

variations in sample composition and variations of sample size on non-animal testing 

methods’ accuracy. To create randomised samples we use the non-parametric bootstrap 

analysis. The analysis is applied to experimental samples tested with the DPRA, LuSens, the h-

CLAT and the “2 out of 3” ITS. Results suggest that the impact of limited precision, sample size 

and composition on non-animal testing methods’ predictive accuracy depends on the 

relationship of borderline substances and substances with a clear-cut classification (non-

borderline) in experimental samples. Chapter 5 suggests using ranges for the accuracy 

metrics, rather than point estimates, to better reflect uncertainties, and to facilitate a 

transparent comparison, of non-animal methods’ predictive accuracy in a regulatory context.  

Using skin sensitisation as an illustrative example, this research has shown the 

importance of applying an economic approach to the development of testing strategies. 

Furthermore, this thesis has offered novel insights regarding the impact of different types of 

uncertainty on non-animal testing methods’ predictive accuracy, which is a key parameter for 

determining the information outcomes and, thus, the “informational value” from testing. 

These aspects are relevant for the evaluation of individual testing methods and for guiding the 

optimisation of non-animal testing strategies, for both scientific and regulatory purposes. The 

insights offered in this thesis, therefore, support the development of optimised, i.e. resource 

efficient, approaches to toxicological testing ensuring better-informed decision-making for a 

safe use of chemicals.  
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