Developing biomarkers for livestock Science

Ongoing research and future developments
Marinus te Pas

L_ LIVESTOCK RESEARCH

Outline

- Introduction
- What are biomarkers
- Why do we need them
- Examples
- omics levels
- The future
- Big data
- Systems biology / Synthetic biology

Introduction: What are biomarkers?

- Biological processes underlie all livestock (production) traits
- Measure the status of a biological process = know the trait!
- Can be any molecule in a cell
- No need to know the causal factor for a trait
- Well known example: blood glucose level for diabetes

Introduction: Why do we need biomarkers?

- The mission of WageningenUR: Sustainably produce enough high quality food for all people on the planet with an ecological footprint as low as possible

What can the industry do with biomarkers?

- Diagnostic tool
- What is the biological mechanism underlying a trait?
- Prediction tool
- What outcome can I expect from an intervention?
- Monitoring tool
- What is the actual status of a process?
- Speed up your process, improve your traits

Why Biomarkers for meat quality?

- Meat quality has low heritability ($h^{2}=0.1-0.2$)
- Predictive capacity of genetic markers low
- High environmental influence
- Feed, animal handling (stress), management (housing), ...
- Meat quality can only be measured after 1-several days

■ Need to differentiate between retail, processing industry, restaurants,

- Biomarkers can do all that and more

Example: Transcriptomics biomarkers for meat quality

- Pork production chain
- German high quality fresh pork production chain
- Pietrain based
- Verification: Yorkshire based chain
- Biomarker type: RNA expression
- Availability: Microarray / PCR test
- Biomarkers for traits
- Meat colour
- A* 14
- L*

4

- Reflection
- Drip loss2
- Ultimate pH 6
- BFT
- Carcass weight 4
- Meat thickness 2
- Lean meat \% 3

Biological Mechanism: Prenatal events that determine the post mortem meat quality

- Muscle fiber development is an exclusive prenatal event
- The number of muscle fibers is determined prenatal
- The number of muscle fibers relates to the thickness of the fibers at slaughter
- Thicker muscle fibers usually relates to more pale and exudative meat

Background: Muscle (fiber) development and growth

(Muscle development of livestock animals, eds. Te Pas, Everts, Haagsman)

LIVESTICK RESEARCH

Experimental design

-Slaughter pregnant sows at days of gestation:

- 14, 21, 35, 49, 63,
77,

- Use microarrays to find genetic factors involved

Pig muscle fiber development - Results

Genes, networks, pathways, networks of pathways

—— LIVESTICK RESEARCH

Bioinformatics - Results 1 A simple pathway without subpathways

Bioinformatics - Results 2
 A more complex pathway

Bioinformatics: From pathways to networks

Example Proteomics

- 150 LW x Duroc
- Longissimus
- Sows and castrates
- Meat quality measurements
- Proteomics
- SELDI-TOF
- M/z ratio profiles
- Association studies
- Analysis of optimum predictive set of peaks
- FTMS
- Identification of proteins and Bioinformatics

Biomarker analysis

- Associations Protein peak heights - meat quality traits
- Long list, but...
- Predictive test development
- PSLR: find combinations of peaks with highest predictive capacity for meat quality traits
- Calculated mean, minimal, and maximal predictive values

Biomarkers: Predictive capacity and protein numbers

Proteomic relations between 2 traits

- Meat quality traits are related
- Biomarkers for drip loss and ultimate pH share a number of proteins / biological mechanisms

Proteins	Drip loss				Ulimate pH			
	High		Low		High		Low	
	Up	Down	Up	Down	Up	Down	Up	Down
Antichymotrypsin (SERPINABN)	X						x	
Calsequestrin		x		x				
F1RK48 (unknown)	X				X			
F1SUE1 - OGN (Osteoglycin)	X			X	X			
Haptoglobin				X	X			x
I socitrate dehydrogenase	X		x				x	
Lactate dehydrogenase	x		x					
Pyruvate kinase			X		X			

The Biology underlying the Biomarkers

Biological activities	Drip loss				Ultimate pH			
	High		Low		High		Low	
	Up	Down	Up	Down	Up	Down	Up	Down
Energy metabolism	4	2	3	3	2	1	3	1
Protein degradation	1	3		1	1	1	1	
ECM	1			1	1			1
Signal transduction	1	2		4	2			1
Chaperonin (structural)	1							
Muscle structural protein		3		1	2	1		
Calcium metabolism		2		3	2			1
Apoptosis		1		1		1		1
Nucleotide metabolism		1		1	2			
Muscle mass determination				1				1
Anti-oxidant				2		1		
HSP	1	2		1				

Proteomic biomarkers for Reproduction management in dairy cattle

- Required for continued productivity
- Detection of oestrus necessary, but increasingly difficult
- Detection of early pregnancy could help
- Present situation:
- Earliest reliable detection of pregnancy at day 35 after insemination
- Earliest re-insemination at day 21 after previous insemination
- Re-insemination of pregnant animal has risk of loosing embryo

What a new test should offer

- Pregnancy detection before day 21 after previous insemination
- Preferably in easy to collect biological samples
- High reliability
- Preferably on-site / in-line

Experimental design

- 30 pregnant cows
- 30 non-pregnant cows
- Pregnancy detected at day 35: PAG and transrectal ultrasonography
- Milk samples at day 19 after insemination
- Proteomics and

Progesterone measurement

- If Progesterone < 5 $\mathrm{ng} / \mathrm{ml}$: not pregnant
- If Progesterone > 5 ng/ml: no pregnancy status detection possible
- PAG test showed no results at day 19
- Therefore: additional markers necessary
- Proteomics

Our Biomarker

No. of Components	Components	Mean Sensitivity	Mean Specificity	Mean Correctly classified
$\mathbf{1}$	Progesterone	0.8	0.67	0.73
$\mathbf{2}$	MFGM660; Progesterone	0.82	0.8	0.81
$\mathbf{3}$	MS147; MS9; Progesterone	0.86	0.85	0.85
$\mathbf{4}$	MS147; MS9; MFGM713; Progesterone	0.92	0.93	0.92
$\mathbf{5}$	MS147; MS9; MFGM661; MFGM197; Progesterone	0.96	0.93	0.94
$\mathbf{6}$	MS147; MS9; MFGM661; MFGM197; MS92; Progesterone	$\mathbf{0 . 9 6}$	$\mathbf{0 . 9 6}$	$\mathbf{0 . 9 6}$

Patent pending

The determination of pregnancy

- The combination of all components is required for pregnancy detection
- The relative abundances of the proteins determine the detection of pregnancy

```
Y = (6163.87 + (-247.94*CSN3) +
(-969.05*P4HB) + (100.93*RhoB) +
(100.38*ALOX12) + (-17.25*CTSZ)
+
(15.49*Progesterone)
```

If $Y>0$, than the cow is pregnant.

The biology of the Biomarker

Protein fraction	Protein name	Embryo	Placenta	Mammary gland lactation
MS147	Kappa-casein (CSN3)	$+/-$	-	+
MFGM661	Rho-related GTP-binding protein (RhoB)	$+/-$	+	+
MS9	Protein disulfide-isomerase (P4HB)	+	+	-
MFGM197	Arachidonate 12- lipoxygenase, 12S-type (ALOX12)	+	-	-
MS92	Cathepsin Z (CTSZ)	+	+	-
MFGM713	Osteoclast-stimulating factor 1 (OSTF1)	+	+	-

Example Metabolomics: Dairy cattle - diet and milk composition

- Milk composition is important for uses
- Diet influences milk composition
- Directly: feed components in milk
- Via cow metabolism
- Via metabolism gut microbiota
- Metabolomics
- Measures metabolite composition in milk
- NMR / GCMS / LCMS

Experimental design

- Mid lactation dairy cows fed 2 diets for 10 weeks
- Control diet = standard diet
- Experimental diet = control diet + PUFA
- Collect milk after 10 weeks feeding
- Fatty acid composition was published before
- Did the diet also change the polar metabolite composition?
- Must be via metabolism: cow or microbiota
- Unknown mechanism

Results summary

Polar metabolites	N
Identified	49
Association with diet	14
Association with DGAT1 genotype	8
Interaction: diet-DGAT1	15

- NMR
- Animal-specific reactions to the diet: may be DGAT1 genotyperelated

Acetate	Hippurate
Acetoacetate	Inositol myo- (putative)
Acetylcarnitine and butyrate (probable)	Lactate
Acetylcarnitine and isovalerylcarnitine (probable)	Lactose
Aconitate	Lactose (probable)
Alanine	L-Choline; Phosphate-choline; Gpcholine
Ascorbate	Lysine
Aspartate	Maleate
Betaine	Malonate (putative)
BHBA	Nacetylmannosamine (probable) or neuraminate
Butyrate	Orotate
Carnitine	Oxaloacetate
Carnitine acyl-	Oxoglutarate
Choline (glycero)phosphoryl-	Pantothenate
Citrate	Proline
Creatine-phosphate	Pyruvate
Creatinine	Serine phospho-
Formate	sialolactose or lactose
Fumarate	Succinate
Galactose	UDP
Galactose-1-phosphate	Uridine
Gluconolactone	Uridine conjugate
Glucose	Valine
Glutamate	Xanthine
Glycerol phospho-	Xylose

The future

- Biology is integration of all levels
- DNA
- Epigenetic modifications
- Expression (transcriptomics / proteomics)
- Metabolism (=function)
- Phenotypes (phenomics)
- To understand life (traits) we need to include all levels:
- Integration!!

Integration at ABGC

Integration is biology

- Interactions between and within levels
- Influence of the environment on genome / genetic functioning
- Traits are the end products of the entire chain

Big data: The future now!

- High throughput analyses
- Many data on all biological levels
- Consequence: large data
 and higher...!)
- Storage
- Handling
- Understanding

System biology -> Synthetic biology The future?

- A systems biology mathematical model for dairy cattle reproduction
- Modify biological pathways and networks to improve biology? (of our traits)

Thank you for your attention

Questions?

