Developing biomarkers for livestock Science

Ongoing research and future developments

Marinus te Pas

Outline

- Introduction
 - What are biomarkers
 - Why do we need them
- Examples
 - omics levels
- The future
 - Big data
 - Systems biology / Synthetic biology

Introduction: What are biomarkers?

- Biological processes underlie all livestock (production) traits
 - Measure the status of a biological process = know the trait!
- Can be any molecule in a cell
 - No need to know the causal factor for a trait
- Well known example: blood glucose level for diabetes

Introduction: Why do we need biomarkers?

 The mission of WageningenUR: Sustainably produce enough high quality food for all people on the planet with an ecological footprint as low as possible

What can the industry do with biomarkers?

- Diagnostic tool
 - What is the biological mechanism underlying a trait?
- Prediction tool
 - What outcome can I expect from an intervention?
- Monitoring tool
 - What is the actual status of a process?
 - Speed up your process, improve your traits

Why Biomarkers for meat quality?

- Meat quality has low heritability (h²=0.1-0.2)
 - Predictive capacity of genetic markers low
- High environmental influence
 - Feed, animal handling (stress), management (housing), ...
- Meat quality can only be measured after 1-several days
- Need to differentiate between retail, processing industry, restaurants,

Biomarkers can do all that and more

Example: Transcriptomics biomarkers for meat quality

- Pork production chain
- German high quality fresh pork production chain
- Pietrain based
- Verification: Yorkshire based chain
- Biomarker type: RNA expression
- Availability: Microarray / PCR test

Biomarkers for traits

Meat colour	N
• A*	14
L*	4
Reflection	10
Drip loss	2
Ultimate pH	6
■ BFT	4
Carcass weight	4
Meat thickness	2
• Lean meat %	3
	·

Biological Mechanism: Prenatal events that determine the post mortem meat quality

- Muscle fiber development is an exclusive prenatal event
- The number of muscle fibers is determined prenatal
- The number of muscle fibers relates to the thickness of the fibers at slaughter
- Thicker muscle fibers usually relates to more pale and exudative meat

Background: Muscle (fiber) development and growth

(Muscle development of livestock animals, eds. Te Pas, Everts, Haagsman)

Experimental design

Slaughter pregnant sows at days of gestation:

14, 21, 35, 49, 63,77, 91

Use microarrays to find genetic factors involved

Pig muscle fiber development – Results

Genes, networks, pathways, networks of pathways

Bioinformatics – Results 1 A simple pathway without subpathways

Bioinformatics – Results 2

A more complex pathway

Bioinformatics: From pathways to networks

Example Proteomics

- 150 LW x Duroc
 - Longissimus
 - Sows and castrates
 - Meat quality measurements
- Proteomics
 - SELDI-TOF
 - M/z ratio profiles
 - Association studies
 - Analysis of optimum predictive set of peaks
 - FTMS
 - Identification of proteins and Bioinformatics

Biomarker analysis

- Associations Protein peak heights meat quality traits
 - Long list, but...
- Predictive test development
 - PSLR: find combinations of peaks with highest predictive capacity for meat quality traits
 - Calculated mean, minimal, and maximal predictive values

Biomarkers: Predictive capacity and protein numbers

Trait	Mean	s.d.	Min	Max
Drip loss	0.481	0.148	0.181 (0.800
Fat34FOM	0.466	0.161	0.140	0.720
Loin34FOM	0.202	0.232	-0.276	0.678
IMF	0.285	0.176	-0.088	0.593
Fatthickham	0.374	0.168	0.064	0.609
NPPCmarbling	0.292	0.194	-0.181	0.728
NPPCcolor	0.164	0.148	-0.117	0.511
Ultimate pH LD	0.382	0.221	-0.152	0.695
Ultimate pH SM	0.515	0.160	0.069	0.841

ı			
	Trait	Sele	ected proteins
		N	Proteins
	Drip loss	5	C06624_7, C08453_2, I05698_9, Q01350_8,
			Q02622_1
	Fat34FOM	5	C03140 9, C06624 7, I03904 9, I04417 7,
			I06617 2
	Loin34FOM	4	C03140_9, C08453_2, I06617_2
J	IMF	1	104417_7
	Fatthickham)	C08453_2, I04417_7, I06617_2
	NPPCmarbling	7	C03140_9, C03905_2, C06110_0, C06624_7,
			C08453_2, I03904_9, I04417_7
	NPPCcolor	5	C04419_7, C05001_4, C06624_7, C08453_2,
			C010260_
	Ultimate pH	9	C04419_7, C05702_9, C06624_7, C08453_2,
	LD		I03904_9, I04417_7, I06617_2, Q01350_8,
			Q02622_1
	Ultimate pH	20	C03140_9, C03612_5, C03905_2, C03975_1,
	SM		C04419_7, C04988_6, C05620_4, C05702_9,
			C06110_0, C06624_7, C08453_2, C08478_3,
			C010260_, I03904_9, I04417_7, I06617_2,
			I08447_3, Q01288_2, Q01350_8, Q02622_1

Proteomic relations between 2 traits

- Meat quality traits are related
- Biomarkers for drip loss and ultimate pH share a number of proteins / biological mechanisms

	Drip I	oss			Ultim	ate pH		
	High		Low		High		Low	
Proteins	Up	Down	Up	Down	Up	Down	Up	Down
Antichymotrypsin (SERPINA3N)	Х						Х	
Calsequestrin		X		X				
F1RK48 (unknown)	Х				Х			
F1SUE1 - OGN (Osteoglycin)	Х			Х	Х			
Haptoglobin				Х	Х			Х
Isocitrate dehydrogenase	Х		Х				Х	
Lactate dehydrogenase	Х		Х					
Pyruvate kinase			Х		Х			

The Biology underlying the Biomarkers

	Drip Id	oss			Ultima	ate pH		
	High		Low		High		Low	
Biological activities	Up	Down	Up	Down	Up	Down	Up	Down
Energy metabolism	4	2	3	3	2	1	3	1
Protein degradation	1	3		1	1	1	1	
ECM	1			1	1			1
Signal transduction	1	2		4	2			1
Chaperonin (structural)	1							
Muscle structural protein		3		1	2	1		
Calcium metabolism		2		3	2			1
Apoptosis		1		1		1		1
Nucleotide metabolism		1		1	2			
Muscle mass determination				1				1
Anti-oxidant				2		1		
HSP	1	2		1				

Proteomic biomarkers for Reproduction management in dairy cattle

- Required for continued productivity
- Detection of oestrus necessary, but increasingly difficult
- Detection of early pregnancy could help
- Present situation:
 - Earliest reliable detection of pregnancy at day 35 after insemination
 - Earliest re-insemination at day 21 after previous insemination
 - Re-insemination of pregnant animal has risk of loosing embryo

What a new test should offer

- Pregnancy detection before day 21 after previous insemination
- Preferably in easy to collect biological samples
- High reliability
- Preferably on-site / in-line

Experimental design

- 30 pregnant cows
- 30 non-pregnant cows
 - Pregnancy detected at day 35: PAG and transrectal ultrasonography
- Milk samples at day 19 after insemination
- Proteomics and Progesterone measurement

- If Progesterone < 5 ng/ml: not pregnant
- If Progesterone > 5 ng/ml: no pregnancy status detection possible
- PAG test showed no results at day 19
- Therefore: additional markers necessary
 - Proteomics

Our Biomarker

No. of Components	Components	Mean Sensitivity	Mean Specificity	Mean Correctly classified
1	Progesterone	0.8	0.67	0.73
2	MFGM660; Progesterone	0.82	0.8	0.81
3	MS147; MS9; Progesterone	0.86	0.85	0.85
4	MS147; MS9; MFGM713; Progesterone	0.92	0.93	0.92
5	MS147; MS9; MFGM661; MFGM197; Progesterone	0.96	0.93	0.94
6	MS147; MS9; MFGM661; MFGM197; MS92; Progesterone	0.96	0.96	0.96

Patent pending

The determination of pregnancy

- The combination of all components is required for pregnancy detection
- The relative abundances of the proteins determine the detection of pregnancy

```
Y = (6163.87 + (-247.94*CSN3) +
(-969.05*P4HB) + (100.93*RhoB) +
(100.38*ALOX12) + (-17.25*CTSZ)
+
(15.49*Progesterone)
```

If Y>0, than the cow is pregnant.

The biology of the Biomarker

Protein fraction	Protein name	Embryo	Placenta	Mammary gland / lactation
MS147	Kappa-casein (CSN3)	+/-	•	+
MFGM661	Rho-related GTP-binding protein (RhoB)	+/-	+	+
MS9	Protein disulfide-isomerase (P4HB)	+	+	-
MFGM197	Arachidonate 12- lipoxygenase, 12S-type (ALOX12)	+	•	•
MS92	Cathepsin Z (CTSZ)	+	+	-
MFGM713	Osteoclast-stimulating factor 1 (OSTF1)	+	+	-

Example Metabolomics: Dairy cattle – diet and milk composition

- Milk composition is important for uses
- Diet influences milk composition
 - Directly: feed components in milk
 - Via cow metabolism
 - Via metabolism gut microbiota
- Metabolomics
 - Measures metabolite composition in milk
 - NMR / GCMS / LCMS

Experimental design

- Mid lactation dairy cows fed 2 diets for 10 weeks
 - Control diet = standard diet
 - Experimental diet = control diet + PUFA
- Collect milk after 10 weeks feeding
- Fatty acid composition was published before
- Did the diet also change the polar metabolite composition?
 - Must be via metabolism: cow or microbiota
 - Unknown mechanism

Results summary

Polar metabolites	N
Identified	49
Association with diet	14
Association with DGAT1 genotype	8
Interaction: diet-DGAT1	15

- NMR
- Animal-specific reactions to the diet: may be DGAT1 genotyperelated

Acetate	Hippurate
Acetoacetate	Inositol myo- (putative)
Acetylcarnitine and butyrate (probable)	Lactate
Acetylcarnitine and isovalerylcarnitine (probable)	Lactose
Aconitate	Lactose (probable)
Alanine	L-Choline; Phosphate-choline; Gpcholine
Ascorbate	Lysine
Aspartate	Maleate
Betaine	Malonate (putative)
ВНВА	Nacetylmannosamine (probable) or neuraminate
Butyrate	Orotate
Carnitine	Oxaloacetate
Carnitine acyl-	Oxoglutarate
Choline (glycero)phosphoryl-	Pantothenate
Citrate	Proline
Creatine-phosphate	Pyruvate
Creatinine	Serine phospho-
Formate	sialolactose or lactose
Fumarate	Succinate
Galactose	UDP
Galactose-1-phosphate	Uridine
Gluconolactone	Uridine conjugate
Glucose	Valine
Glutamate	Xanthine
Glycerol phospho-	Xylose

The future

- Biology is integration of all levels
 - DNA
 - Epigenetic modifications
 - Expression (transcriptomics / proteomics)
 - Metabolism (=function)
 - Phenotypes (phenomics)
- To understand life (traits) we need to include all levels:
 - Integration!!

Integration at ABGC

Integration is biology

- Interactions between and within levels
- Influence of the environment on genome / genetic functioning
- Traits are the end products of the entire chain

Big data: The future now!

- High throughput analyses
- Many data on all biological levels
- Consequence: large data sets (up to exabytes (10¹⁸ and higher...!)
 - Storage
 - Handling
 - Understanding


```
## Set directory
 rm(list=ls())
setwd("D:/Mijn_werkdocumenten/Projecten/PIP-SB/Data/GSE_downloads/GSE24277");
#Load library\
library(GEOquery)
#Annotation file
AnnotationFile = "D:\\Mijn_werkdocumenten\\Projecten\\PIP-SB\\Data\\GSE_downloads\\GSE24277\\GPL570-13270_annotation.txt'
DirRaw = "D:\\Mijn_werkdocumenten\\Projecten\\PIP-SB\\Data\\GSE_downloads\\GSE24277\\"
#File name
ExpName = "GSE24277"
##Complete file name
filein = paste(DirRaw, ExpName, "_RAW.tar", sep = "")
AnnotationFile = "D:\\Mijn_werkdocumenten\\Projecten\\PIP-SB\\Data\\GSE_downloads\\GSE24277\\GPL570-13270_annotation.txt"
print(AnnotationFile)
##Read raw dta from directory
#uncompress tar files and save them correspondig directory
dircel = paste(DirRaw,ExpName,sep="")
dir.create(dircel, showWarnings = TRUE)
untar(filein, exdir = dircel)
cels <- list.files(dircel, pattern = "[gz]")
sapply(paste(dircel,cels,sep="\\"), gunzip
```


System biology -> Synthetic biology The future?

- A systems biology mathematical model for dairy cattle reproduction
-
- Modify biological pathways and networks to improve biology? (of our traits)

Thank you for your attention

Questions?

