# The effect of dairy farm management on GHG emissions and soil carbon

#### Frits van Evert, Ben Rutgers, Jan Verhagen, Hein ten Berge, Hugo van der Meer





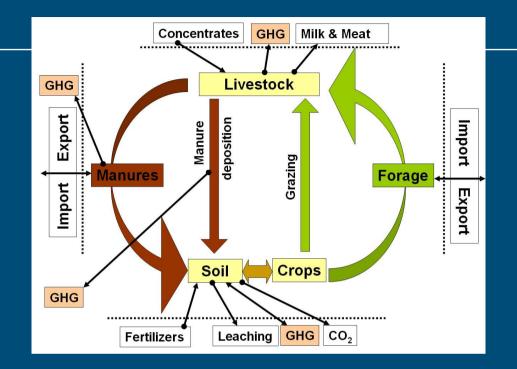
#### Introduction

 Climate change impacts agriculture; Agriculture contributes to climate change
 Agricultural management impacts:

 Carbon sequestration
 GHG emissions






#### Identify effective strategies for reduction of GHG emissions and for carbon sequestration



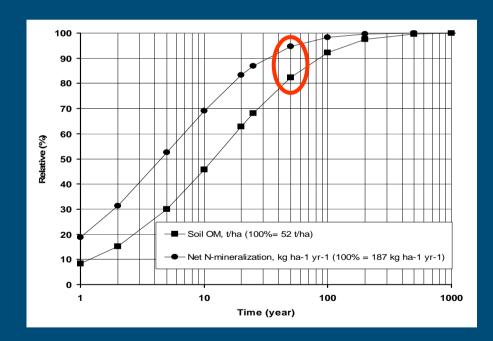
# <u>FarmMin</u>

- Dairy farm carbon and nutrient flows
- Static (non-dynamic)
- Simple but realistic relationships (e.g., emission factors)
- Suitable for exploring management alternatives





# Soil organic carbon and nitrogen in FarmMin


•  $C_t = C_0 \exp(-R_9 t^{1-S})$ where  $C_0 = \text{soil org. C}$  added at t=0  $C_t = \text{soil org. C}$  remaining at t=t  $R_9 = \text{parameter for rate of decomposition at 9 °C}$  S = rate of ageingYang and Janssen (1997, 2000)

•  $N_t = (N_0 - C_0/r_{cnmic}) (C_t/C_0)^p + C_t/r_{cnmic}$ where  $N_t = \text{soil org. N at time t}$   $r_{cnmic} = C:N \text{ of microbial biomass}$  p = related to ratio of assimilation and disassimilationBos, Ten Berge en De Willigen (pers. comm.)



#### Dynamics of soil C after management change

Hundreds of years needed to reach equilibrium
Most of the change happens within 50 years





# Scenario's

Aggregated farms

- Stocking rate ≈1.6 dairy cows ha<sup>-1</sup>
- Maize 30% (none on peat)
- Management
  - Hours of grazing: 0  $\rightarrow$  20 hours d<sup>-1</sup>
  - Application limit N from manure:  $170 \rightarrow 250 \text{ kg ha}^{-1}$
  - Dairy cow productivity:  $6000 \rightarrow 9000 \text{ kg yr}^{-1}$
  - Grassland productivity:  $11 \rightarrow 15$  t ha<sup>-1</sup>

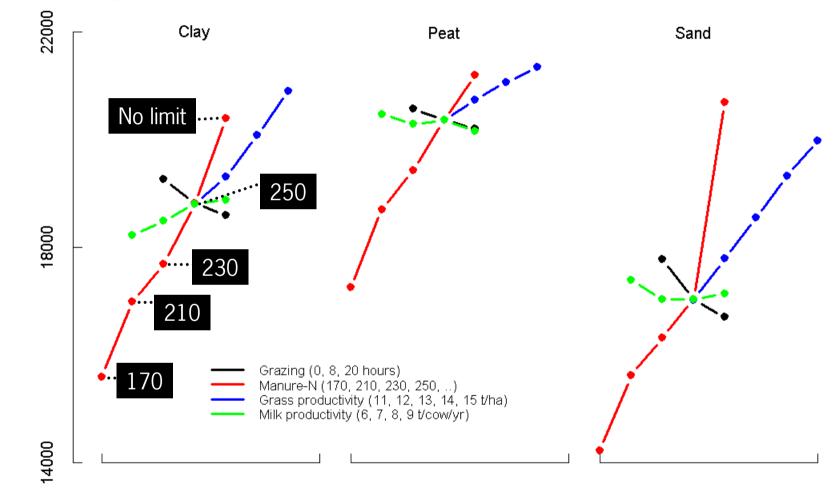


#### Dry sand, 8000 kg milk, 8 hours grazing, 250 kg manure-N

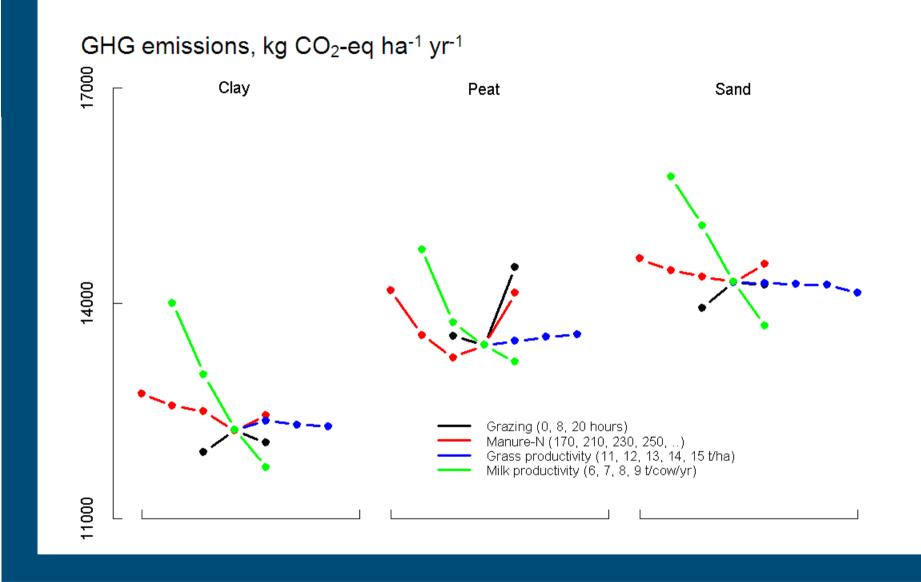
| Soil OM C, kg ha⁻¹                                                | 17025 |
|-------------------------------------------------------------------|-------|
| Soil OM N, kg ha⁻¹                                                | 1316  |
| N mineralization, kg ha <sup>-1</sup> yr <sup>-1</sup>            | 131   |
| Emission CH <sub>4</sub> , kg ha <sup>-1</sup> yr <sup>-1</sup>   | 413   |
| Emission N <sub>2</sub> O-N, kg ha <sup>-1</sup> yr <sup>-1</sup> | 10.3  |
| Emission NH <sub>3</sub> -N, kg ha <sup>-1</sup> yr <sup>-1</sup> | 53.8  |
| Groundwater NO <sub>3</sub> , ppm                                 | 50.2  |
| "Cost", € ha⁻¹                                                    | 1471  |



PLANT RESEARCH INTERNATIONAL WAGENINGEN UR


#### Dry sand, 8000 kg milk, 8 hours grazing

|                                                                   | Manure-N application limit |       |       |  |
|-------------------------------------------------------------------|----------------------------|-------|-------|--|
|                                                                   | Ø                          | 250   | 170   |  |
| Soil OM C, kg ha⁻¹                                                | 20701                      | 17025 | 14223 |  |
| Soil OM N, kg ha⁻¹                                                | 1628                       | 1316  | 1082  |  |
| N mineralization, kg ha <sup>-1</sup> yr <sup>-1</sup>            | 177                        | 131   | 104   |  |
| Emission CH <sub>4</sub> , kg ha <sup>-1</sup> yr <sup>-1</sup>   | 413                        | 413   | 413   |  |
| Emission N <sub>2</sub> O-N, kg ha <sup>-1</sup> yr <sup>-1</sup> | 10.9                       | 10.3  | 11.0  |  |
| Emission NH <sub>3</sub> -N, kg ha <sup>-1</sup> yr <sup>-1</sup> | 63.0                       | 53.8  | 51.7  |  |
| Groundwater NO <sub>3</sub> , ppm                                 | 70.8                       | 50.2  | 48.2  |  |
| "Cost", € ha <sup>-1</sup>                                        | 1131                       | 1471  | 1765  |  |




WAGENINGENUR

#### Soil organic matter C, kg C ha-1









# Summary

Limit application of manure-N → decrease soil C
 Increase grass productivity → increase soil C
 Increase productivity of cows → decrease GHG emissions
 Grazing has opposite effects → ≈GHG neutral

Management effects on GHG emissions are more important than effects on soil carbon stocks



# Conclusion

Increasing the productivity of dairy cows is an effective strategy for reduction of GHG emissions
 Increasing the productivity of grass is an effective strategy for carbon sequestration

Manure application limits reduce carbon sequestration

