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Summon' 

SUMMARY 

Detecting and locating the position of a mature cucumber are essential for robotic harvesting of cucumber 
fruits. Therefore, it is desirable to develop a sensing technique which can detect mature cucumbers within 
their environment. This has been the subject of this research. 

In most of former fruit detection studies, the difference in colours or brightness between fruits and the 
other parts of the plant has been used to detect the fruits within their environment or to determine the 
positions of the fruits. However, it is difficult to apply the same procedure to cucumbers as cucumbers 
have a colour close to that of their leaves and stems and may be (partly) hidden by their big leaves. 
Consequently, a sensing technique has to be found which would be capable of detecting cucumbers based 
on features different from their environment. Therefore, various imaging techniques have been reviewed 
and some have been proposed for their use in a harvesting robot. 

More research and a study on reflection properties of cucumbers and cucumber leaves, finally showed 
that the imaging technique of using some selected frequencies in the near-infrared range is the most 
promising imaging technique capable of detecting cucumbers within their environment. In agreement with 
literature, it has been found that reflectance of cucumbers in the near-infrared range is different in 
comparison with their leaves. 

Unfortunately, experiments in a greenhouse have not taken place and, consequently, it cannot be 
proved practically that the imaging technique of using near-infrared reflection is the way of detecting 
cucumbers within their environment. However, considering the results which have been obtained by 
literature and measurements made in laboratory, on the contrary, suggest there is an opportunity for this 
imaging technique and, in fact, only correct measurements in a greenhouse would be needed to prove its 
feasibility. 

Further, as cucumbers do not ripen at the same time, every cucumber has to be evaluated for ripeness 
prior to harvesting. The evaluation of cucumbers within their environment seemed to be a complex task, 
due to possible occlusion of cucumbers and influences of the unpredictable changing agricultural 
environment. Although, in the case of clearly visible cucumbers the maturity of a cucumber can be 
estimated from its volume by measuring its length and diameter (based on a two-dimensional image). The 
easiest way to determine the maturity of cucumbers seemed to be to harvest all cucumbers at a certain 
height. 

Another difficulty in developing a robot to selectively harvest cucumbers is the localisation of 
individual cucumbers. This specification is basic prerequisite to guide a harvesting device towards a 
cucumber, while avoiding collisions with obstacles. While three coordinates are normally required to 
describe the position of a cucumber within the plant, it has been shown that the output of an imaging 
sensôrTa two-dimensional image, is sufficient to define the location of the cucumber. However, m the case 
of occluded cucumbers the localisation seemed to be dependent on the possibility of the imaging sensor to 
detect these occluded cucumbers and the use of an additional ranging technique to guide the harvesting 
device towards them while avoiding obstacles. 

As a result, in this research a first step has been made towards the development of a harvesting robot of 
cucumber fruits. 



Preface 

PREFACE 

Many agricultural tasks have been mechanised for several decades now. Harvesting of soft fruits, however 
is an exception and has still remained exclusively manual. Meanwhile, the cost of manual harvesting of 
these kinds of fruits has become a larger part of the fruits final price (labour is even the main cost of fruit 
production in greenhouses). In the same time, the fruit prices have regularly declined, due to international 
competition, and a serious lack of qualified labour has appeared for the harvesting task. Therefore, in the 
present situation, to consolidate the competitivity of the Dutch horticulture the quality of the production 
systems has to be improved and the labour costs have to be lowered. 

Based on this motivation the aim of this project is the development of a harvesting robot of cucumber 
fruits. Cucumbers are chosen because this fruit has received only little attention for robotic harvesting 
(only in Japan). At the end of the project a prototype will be presented which can be tested in field. 

This research captures only the part of the project that deals with the detection of mature cucumbers 
within their environment. The detection technique will be based on computer vision. 

During this research several people have contributed directly or indirectly to my work. I would like to 
thank my supervisors Jos Balendonck, Zweitze Houkes and Paul Regtien, for giving me the opportunity to 
do this research and for their time, valuable inputs and advice, during very busy times for themselves. 
Further, I would like to thank the department of instrumentation and measurement technology at the 
Institute of Agricultural Engineering (IMAG) for her assistance, especially Jan Kornet and Peter Nijenhuis, 
and making available some of her equipment. 

IMAG-DLO. Wageningen, June 1997 

René Groenen 



Contents 

CONTENTS 

1 INTRODUCTION 1 
1.1 Background 1 
1.2 Goal 2 
1.3 Overview 2 

2 IMAGE ANALYSIS IN THE AGRICULTURAL ENVIRONMENT 4 
2.1 Image analysis for the harvesting of fruit 4 
2.2 Image analysis 4 
2.3 Image acquisition 5 

2.3.1 Lighting 7 
2.3.2 Optics 7 
2.3.3 Sensors 7 

2.4 Image processing 8 
2.4.1 Image enhancement 8 
2.4.2 Segmentation 8 
2.4.3 Feature extraction 9 

2.5 Image interpretation 9 
2.6 The development of an image analysis system for the harvesting of fruit 9 
2.7 Practical considerations 11 
2.8 Conclusions and discussion 12 

3 DETECTION OF THE FRUIT WITHIN ITS ENVIRONMENT 13 
3.1 Detection of the fruit 13 
3.2 Imaging techniques 14 

3.2.1 Imaging techniques using electromagnetic spectrum 14 
3.2.1.1 Radio wave detection and ranging (radar) 15 
3.2.1.2 Microwaves 16 
3.2.1.3 Near-infrared and visible range 18 
3.2.1.4 X-rays 24 

3.2.2 Imaging techniques using thermal infrared radiation 25 
3.2.3 Imaging techniques using nuclear magnetic resonance (NMR) 27 
3.2.4 Imaging techniques using ultrasonics 27 
3.2.5 Imaging techniques using luminescence 29 

3.3 Selection and testing of desired fruit features 29 
3.4 Conclusions and discussion 30 

4 DETECTION OF THE CUCUMBER WITHIN ITS ENVIRONMENT 32 
4.1 Detection of the cucumber 32 
4.2 Detection of the cucumber using microwaves 33 
4.3 Detection of the cucumber using near-infrared and visible range 34 

4.3.1 The reflection properties of a single cucumber 34 
4.4 Detection of the cucumber using thermal infrared radiation 36 
4.5 Conclusions and discussion 36 



Contents 

5 NEAR-INFRARED REFLECTANCE OF THE CUCUMBER IN COMPARISON 38 
WITH ITS ENVIRONMENT ~ 
5.1 Some selected frequencies in the near-infrared range 38 
5.2 Radiation in a greenhouse 38 
5.3 Experimental setup 39 
5.4 Results 40 

5.4.1 Results of measurements made in laboratory 41 
5.5 Conclusions and discussion 44 

6 CLASSIFY THE CUCUMBER WITHIN ITS ENVIRONMENT 45 
6.1 Harvest maturity 45 
6.2 Harvest maturity of cucumbers 45 
6.3 Determination of the cucumbers maturity 46 
6.4 Conclusions and discussion 47 

7 PRECISE LOCATING THE CUCUMBER WITHIN ITS ENVIRONMENT 49 
7.1 Precise locating the cucumber 49 

7.1.1 Ranging techniques 50 
7.2 Conclusions and discussion 51 

8 CONCLUSIONS AND FURTHER RESEARCH 52 
8.1 Results and conclusions 52 
8.2 Further research 53 

REFERENCES 55 

APPENDIXES 61 
A Specifications 
B High-wire cultivation method 
C Main features of the different imaging techniques 
D Single reflection measurements 
E Characteristics of the interference filters 
F Specifications of the camera 
G Chromatic aberration 
H Algorithm line histogram 
I Reflectance calibration standards 
J Some results of the 970 nm interference filter 



Chapter 1: Introduction 

INTRODUCTION 

'/•••/ Agricultural harvesting mechanisation is currently limited to crops which ripen at the same time and 
which do not require individual and delicate treatment. Mobile robotic systems have been proposed for the 
selective han'esting of easily-damaged fruits and vegetables. Such robotic systems could increase 
production efficiency and profitability, and improve overall fruit quality [...]' (Benady, 1992). 

However, a robot operating in an agricultural environment will need to receive, classify and analyse 
sensory inputs in order to navigate successfully, detect and locate the fruits, determine the maturity stage 
of the fruit and develop efficient plans for execution of tasks. 

The selective harvesting of cucumbers is an example of an agricultural process which would benefit 
from robotic manipulation. Cucumbers are delicate and fresh soft fruits which do not ripen at the same 
time. Thus, every cucumber has to be detected separately and evaluated for ripeness prior to harvesting. 

1.1 Background 

In horticulture harvesting of soft fruits (like citrus, apples, peaches, cucumbers, etc.), mainly those which 
are destined for the fresh market, is still a manual task. However, manual harvesting is a very labour 
intensive operation and determines a significant percentage of the total cost of fruit production. 
Furthermore, with the lack of labour for this kind of work, the decline of fruit prices and increasing 
demand for better fruit quality by consumer there is a valid justification for evaluating alternative methods 
to manual harvesting (Nienhuis, 1995 and Rabatel. 1994). 

Some technology already exists for harvesting fruit intended for processing and for fruit capable of 
absorbing relatively strong impacts and pressure without impairment of its quality (like walnuts, almonds 
and filberts). This technology is primarily based on automated fruit detachment using machines which 
shake the fruit off the tree (or plant), by vibrating the trunk or separate branches, or strip the fruit off by 
means of an air or water jet (United Nations 1987. p. 1). However, the application of this technology to 
soft fruit is limited because of possible damage to the fruit (bruising and crushing). 

Today's automated harvesting in which the plants are mown down with the fruit still on them and 
subsequently threshed in order to separate the fruit, also called the 'once-over' method, wouldn't be a 
solution also. This because of the lack of selective harvesting, which is an important requirement for soft 
fruits since the fruits do not ripen at the same time (especially for year-round soft fruits like cucumbers, 
tomatoes and paprikas). 

Fortunately, robotic technologies now offer a solution to automate the harvesting of soft fruit. The basic 
idea is to harvest the fruit individually, like a human harvester, to avoid any damage and to use the 
possibility of selective harvesting (to choose the mature fruits in between the non-mature ones), but now 
using a robotic manipulator. Although the harvesting operation is '[...] a very intricate process, involving a 
multitude of tasks which require dynamic, real-time interpretation of the environment and execution of 
various sensing dependent operations, advances in microprocessor and microelectronics in recent years 
make the application of robotics feasible [...]' (Sarig. 1993). 

The challenge of developing a robotic system for soft fruit harvesting has been taken up by researchers 
at several places in the world (Sarig. 1993). The major problems that have to be solved with a robotic 
harvesting system are detecting and locating the fruit, determining the maturity stage of the fruit and 
detaching it according to prescribed criteria, without damaging either the fruit or the tree (or plant) 
(Benady, 1992). In addition, the robotic harvesting system has to be an optimal and cost-effective alterna
tive method to manual harvesting (see appendix A). 
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1.2 Goal 

Cucumber harvesting for the fresh market is very labour intensive in comparison with harvesting of other 
fruits in horticulture. Cucumbers should be selectively harvested when the size and maturity are suitable 
for the market. However, the cucumbers grow so fast that one half day's delay of harvesting may damage 
its price in the market. Some farmers even harvest in midnight in order to obtain a higher price. Hence, it 
is beneficial to automate the harvesting of cucumbers (Amaha, 1989). In this project it is this soft fruit 
which has to be harvested by the harvesting robot. 

Before being harvested the cucumber has to be detected, classified and located by the robot first. It is 
this part of the system which covers this research. The goal of this research is namely to derive sensing 
systems which are able to: 

• Detect and far locate the cucumber within its environment; 
• Classify the cucumber (determine its maturity stage); 
• Precise locate the cucumber (for handling and cutting). 

However, the accent in this research will address mainly the first point and to a lesser degree the last two 
points. 

Furthermore, especially the use of computer vision as the major sensing technique has to be evaluated. 
This because of the recognition of the potential of this technique for the guidance or control of agricultural 
processes (Tillen, 1990). It is capable of providing large amounts of scene information and its operational 
range covers small and large areas over a broad range of distances (Dobrusin, 1992). The envisioned 
computer vision system will have to encompass the sensing and the processing tasks, detect and classify 
(possibly providing an indication of the cucumbers maturity) the cucumber after which the cucumber can 
be located. This and maybe other sensing techniques will be developed by using literature and experimen
tal research. 

As already mentioned, no automatic harvesting system is available yet. Therefore, such a system has to 
be developed right from the start. The system requirements are: 

• The final harvesting results should be at least as good as the results produced by human harvesters; 
• The system should be economically justifiable; 
• For logistic and economic reasons the harvesting operations should not cause additional operations in 

the cultivation carried out in the greenhouse; 
• For some time the system should be able to operate without human supervision; 
• The specifications mentioned in appendix A. 

In addition, this research is limited to applications to the high-wire cultivation method which has almost no 
curved and bruised (deviating) fruits (see appendix B). The harvesting robot will be adapted to the 
physical properties of the cucumber plant in this cultivation method. No studies will be done in possibly 
changing the cultivation method in which the robot could work more easily. For example, the inclined 
trellis method (with its disadvantage of low production and very high cost price) used in Japan (Kondo, 
1994). 

1.3 Overview 

Although, the project is restricted to the harvesting of cucumber fruits. It can be expected that the 
developed sensing technique(s) (or its achievement) will be (partly) useful for the harvesting of other soft 
fruits, like tomatoes and paprikas. Because of this similarity it has been chosen to start this research with a 
general approach after which more and more attention will be focussed at the chosen fruit: the cucumber. 

Hence, in the next chapter, first, the practical use of image analysis for the harvesting of fruit is 
described. In chapter 3, various imaging techniques will be reviewed and their potential for the detection 
of fruits within their environment will be discussed. Finally, after this preliminary and general research an 
appropriate imaging technique will be chosen for its used in cucumber detection, which is described in 
chapter 4. and which will be tested by experiments in chapter 5. Further, as cucumbers do not ripen at the 
same time every cucumber has to be located separately and evaluated for ripeness prior to harvesting. This 
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is described, respectively, in chapter 7 and chapter 6. In chapter 8, the results are discussed, conclusions 
are drawn and ideas for future research are given. 



Chapter 2: Image analysis in the agricultural environment 

IMAGE ANALYSIS IN THE AGRICULTURAL ENVIRONMENT 

Image analysis and interpretation by computers, also called computer vision, has many potential 
applications for guiding or controlling agricultural processes (like grading, quality control, pruning, 
harvesting, etc.) (Tillett, 1990). The practical use of image analysis for an agricultural process will 
require the system to output data to guide or control a robotic system. A lot of applications in this area are 
at an early stage, being developed under laboratory conditions. Methods of extracting information from 
the image and using it to make correct decisions are studied. For practical use a lot more research is 
required to include the flexibility, robustness and speed necessary for the system to work under the varying 
conditions of the application and without human supervision (Sarig, 1993). 

Thus, although there is a lot of research being done, most of it concentrates on specific applications 
using, on the whole, very simple image analysis algorithms. These image analysis algorithms will be 
successful under certain constrained conditions, but for more flexibility and robustness there are generic 
problems to be overcome. These problems mostly relate to the variability of the agricultural objects being 
viewed and the lack of controllability' of the agricultural environment. 

2.I Image analysis for the harvesting of fruit 

There are many processes in agriculture where decisions are made based on the appearance of a product. 
The harvesting of fruit is a particular example, which depends mainly on human visual detection. All these 
applications involve agricultural objects, which have a natural variability. Consequently, any process or 
task which interacts with the agricultural objects has to be sufficiently flexible to deal with this variability. 
Humans use their eyes to achieve the required flexibility (Edan, 1995). 

Recently, advances in computer technology have produced an increase of interest in image analysis 
systems, also called computer vision. Researchers have demonstrated the technical feasibility of using an 
image analysis system to guide a robotic system in the harvest of fruit (Slaughter, 1989). But, as yet, there 
have been relatively few industrial applications of image analysis systems and very few within the 
agricultural industry (Sarig, 1993). 

Already existing industrial image analysis detection applications (to guide a robotic system) have 
potential use to automate the harvesting of fruit. However, they cannot simply be applied to the agricul
tural environment because of such problems, as already mentioned, as the variability of fruits and the 
difficulty in interpretation of the uncontrollable environments. These difficulties make it necessary to 
develop an image analysis system for the harvest of fruit from the very beginning. Basic techniques 
developed for industrial applications can be applied. However, for most steps in the development of an 
image analysis system, modifications are necessary in order to make them suitable for agricultural 
applications. To find an image analysis system for the harvesting of fruit, first an introduction and 
overview of the actual image analysis process is given. 

•> 7 Image analysis 

Generally, an image analysis system consists of an image sensor, a computer containing the electronics for 
a trame grabber and frame store, a lighting system, a display monitor and a terminal allowing the user to 
interact with the computer. The image sensor generates a signal representing the image of a scene, which is 
passed to the frame grabber. The frame grabber samples the signal and converts it to a digital form (the 
quantization). The image is stored in the frame store of the computer, linked with suitable electronics to a 
display monitor. This allows the image to be displayed to the operator (see figure 2.1 ). 

A stored image can be processed using algorithms written in the form of a computer program. The 
choice o\" algorithms which are appropriate depends greatly on the type and quality of the image.'[...) In 
machine-vision systems, the success of the image processing and analysis phases is highly dependent on 
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the quality of the information in the images. This, in turn, is highly dependent on the quality of the 
lighting, optics, and sensor used to capture the image [...]' (Burke 1996, p. 1). The algorithms may be very 
simple, such as counting the number of white pixels, or very complicated involving such things as the 
matching of models of likely objects to the image. The output of the algorithms may be quantities, such as 
lengths or areas, or scores associated with some references. The computer program has to combine this 
information with preprogrammed knowledge of the required task to draw out specific conclusions such as 
whether an object appears in the image, where it is, what size it is and if it is of sufficient quality. This will 
provide the final interpretation of the image, in order to guide or control further systems. 

\ 

fl 

/ 

ïooo 

Figure 2.1, Example of an image analysis system 

There are three essential subsystems in which the image analysis system can be divided: 

• Image acquisition; 
• Image processing; 
• Image interpretation. 

These three subsystems are very interdependent and one subsystem can be considered entirely in isolation 
from the others. The next three sections discuss some of the possible techniques in each subsystem. 

2.3 Image acquisition 

The first subsystem in the image analysis system is image acquisition. The image acquisition encompasses 
the proper selection of light sources, sensors and supporting optics, and their positioning with respect to 
the scene being imaged. If this is done correctly, the result should be an image with maximum information 
utility. Because an image analysis system is mostly contrast based the goal of the image acquisition is to 
acquire an image with high contrast between background information (noise) and any object features 
containing the needed information required to perform the required task. Thus, the information to be 
extracted has to be defined with respect to the overall image analysis system goals (Dorf 1990, p. 1101). 

In specifying the image acquisition to satisfy a set of image analysis system goals, one has varying 
degrees of control over the system's lighting, sensors and optics, all within the constraints of the specified 
task environment. For example, with respect to sensor specifications one can select for spectral response, 
sensitivity, speed and resolution, as will be discussed in the paragraphs below. 

2.3.1 Lighting 

The quality and quantity of the illumination of a scene are important factors that often affect the 
complexity of succeeding image analysis algorithms. The importance of the light source and its application 
is often undervalued with respect to the image analysis system. It is generally far easier to control lighting 
than to deal with the uncontrollability of analysing an image dependent only on ambient light. 
Furthermore, arbitrary lighting of the environment is seldom acceptable, resulting in low contrast images, 
specular reflections, shadows and extraneous details. A proper lighting system illuminates a scene such 
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that the complexity of the resulting image is minimised, while the information required is enhanced 
(Paulsen, 1986). — 

'[...] The source of illumination must provide the image analysis system with the best possible image of 
the object, e.g. the highest contrast between the features of interest and the background. The illumination 
source must be selected to match a given application's needs with respect to spectral content, source size, 
efficacy, directionality, reliability/service life, cost, steadiness of output and intensity [...]' (Burke 1996, p. 
128). 

One of the first considerations in selecting a light source is the spectral distribution required by the 
application. What wavelengths are needed? Most image analysis systems use visible light to illuminate the 
scene, but there are other types of light sources, including acoustic scans, X-rays, infrared, etc. Generally, 
the spectral range of the light source which should be used depends on the required task and the sensor 
requirements. Figure 2.2 shows the spectral responses of several types of light sources. In addition, 
illumination at unwanted spectral wavelengths can result in a source of problems (like glare, heating, etc.). 

200 400 600 800 1000 1200 

Wavelength (nm) 

1400 1600 1800 2000 

Figure 2.2. Spectral response of several light sources (Burke 1990, p. 129) 

Further, how intense should the light source be? This depends greatly on the reflectivity of the object, the 
sensitivity of the sensor and how large the area is which has to be illuminated (Burke 1996, p. 127-129 and 
Paulsen. 1986). 

In addition to considerations as the radiance of a light source, attention has to be given to the setup of 
scene illumination. One can seldom manipulate the object in the scene. In fact, the object features (size, 
reflectivity, colour, temperature, etc.) are usually what have to be measured by the image analysis system. 
But. one can often control the locations and orientations of light sources and sensors relative to the object. 
By controlling these positions, features of interest can be given enhanced contrast to background 
information. This can be done, for example, by using the following lighting possibilities (Burke 1996, p. 
109-124): 

Backlighting: 
To produce high contrast images. 
Frontlighting; 
To enhance the spectral features of the object. 
Structured lighting. 
To yield direct three-dimensional information about the object. 
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Generally, the type of lighting which should be used depends greatly on the required task and often cannot 
be determined straight at the beginning. The traditional way of deciding which type of lighting is best is to 
make preliminary tests. Further, the more control one has over lighting, background and orientation and 
position with respect to the object the easier subsequent analysis will be (Tillett, 1990). 

2.3.2 Optics 

The characteristic interactions between light source and scene are the primary source of information 
present in the image acquired by a sensor. On the other hand, the optics in an image analysis system (like 
lenses, mirrors, prisms, polarisers, filters, etc.) are the primary means of modifying and controlling the 
information, both between the light source and scene and between the scene and sensor (Dorf 1990, p. 
1102). 

There are actually two distinct optical subsystems within the image acquisition: the illumination optics 
(between the light source and scene) and the imaging optics (between the scene and sensor). Imaging 
optics are mostly used to gather and concentrate the energy (information) being emitted/reflected from the 
object. For example, the primary function of a lens is '[...] to gather enough energy from the object to form 
an image of good contrast while maintaining a sharp optical image on the surface of the sensor. This image 
should have sufficient resolution for the required task (which also determine the resolution of the sensor) 
and adequate irradiance to permit a good contrast image [...]' (Burke 1996, p. 285-286). The imaging 
optics selected will interact strongly with the sensor selected, sometimes compensating for limitations in 
the sensor and sometimes expanding its capabilities into new sensing paradigms. 

The function of the other optical subsystem (the illumination optics) is the manupilation of the radiance 
of the light source. Often a light source does not have either the required radiance, sufficient area or it 
cannot be positioned properly, etc. Optical components can then be used to change the characteristics of 
the light source. Like changing the intensity of the light source (concentrating it by the use of lenses or 
reflectors), diffusing the light source and varying its spectral characteristics (Burke 1996, p. 108). 

It can be concluded that the flexibility in the optics can be very useful in the image acquisition. 

2.3.3 Sensors 

"[...] The sensor is the image acquisition component most often overlooked for design manipulation. In the 
past, the sensing component of the image acquisition subsystem has been seen as a constraint rather than a 
design variable. More recent technological advances have now given the computer vision system designer 
a very flexible arsenal of sensing tools. It is now possible to select from a wide variety of specialized 
sensors [...]' (Burke 1996, p. 107). 

Sensors can be classified into two categories: contact and non-contact. A contact sensor measures the 
response of an object to some form of physical contact. This group of sensors responds to touch, force, 
torque, pressure, temperature, electrical or magnetic quantities. A non-contact sensor measures the 
response brought by some form of electromagnetic radiation. This group of sensors responds to light, X-
ra\ s. radar, acoustic, electric or magnetic radiation (Dorf 1990, p. 890). 

The primary task of the sensor in an image analysis system is to convert scene information (after 
properly illuminating the scene and collecting and focusing the energy onto the imaging sensor) into 
electrical signals suitable for image processing. Thus, the sensor represents, as Burke (1996, p. 540) has 
noted. *(...] the primary point of connection between the environment being examined and the image 
processing system [...]'. This conversion process is never ideal. The sensor is therefore of particular 
importance with respect to how faithfully it senses or converts the scene information and how it can 
present the transformed information to the image processing subsystem. 

To generate an acceptable image (one that contains enough information to accomplish the required 
task), appropriate parts of the electromagnetic spectrum can be sensed. However, most image analysis 
systems senses reflected visible light, but as seen in previous paragraphs, the utilization of reflected 
radiation from non-visible sources such as ultraviolet, acoustic scans. X-rays, infrared, etc., can also be 
used and may be more appropriate. Further, to select a sensor that will satisfy the required detail in the 
image analysis system the resolution characteristics of the sensor with respect to greyscale. spatial and 
temporal domains have to be viewed (Dorf 1990, p. 1101-1102). 
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In general, it is important to know the salient characteristics of the sensors, their advantages and 
limitations and how these impact on the required application. Further, the sensors which may be used will 
mainly be determined by the goals of the image analysis system. Lack of information about the image 
analysis system goals and their fit to the capabilities of the sensors can easily lead to overly complex 
sensing systems that are costly and slow or to overly simplistic sensing systems that simply do not work. 

2.4 Image processing 

Image processing is the manupilation and analysis of the acquired images. It can be considered to consist 
of three parts (Dorf 1990, p. 1096): 

• Image enhancement; 
Operations using the original image to create other images, finally resulting in an image that contains 
only desired information. 

• Segmentation; 
Process of separating objects features of interest from the background, partitioning an image into 
various regions. 

• Feature extraction. 
Operations that extract feature information from the enhanced and/or segmented image. 

2.4.1 Image enhancement 

Image enhancement improves the degradation of the image (low contrast, blurred, noisy) through 
operations which transform an image into a 'better' image or one more suitable for subsequent processing. 
There are three fundamental enhancement operations: pixel or point transformations, neighbourhood 
transformations and image or global transformations (Dorf 1990, p. 1103-1104). 

Pixel transformations 
Single pixel operations transform an image pixel by pixel, based on one to one transformations of each 
pixel's value. Like scaling, addition or subtraction of a constant to each pixel, inverting, etc. 

Neighbourhood transformations 
The operations transform an image by replacing each pixel with a value generated by looking at pixels in 
that pixel's neighbourhood. Like filtering, smoothing, etc. 

Global transformations 
In this case, an operation is performed on an entire image. Like smoothing, subtraction, multiplication, etc. 

2.4.2 Segmentation 

An important step in image processing is the segmentation of objects features of interest from the 
background. The simplest way to segment an image is by using a threshold. '[...] Segmentation, using grey 
level thresholding can be performed extremely fast since the operation is easily handled in hardware at 
standard video rates. Once a binary image has been constructed, a quick and simple Boolean operator is 
sufficient to determine if a pixel is object or background [...]' (Slaughter, 1989). The main difficulty with 
thresholding is to choose a threshold which distinguishes object feature from background. When the object 
feature and its background have highly contrasting colours, colour can sometimes be used to segment the 
image. This generally results into a much more refined segmentation, since it is based on several features 
rather than a single one (Tillett, 1990). However, in many situations the contrast between object feature 
and background is poor and a more complex approach is required. 

There is a large set of techniques documented in the image processing literature such as edge detection, 
texture analysis and region growing and splitting which can be used to segment an image. However, these 
techniques tend to be complex and time-consuming. Faster techniques involving joining edge segments 



Chapter 2: Image analysis in the agricultural environment 

will give partial segmentation of the image, but to understand the results of the segmentation, knowledge 
on a higher level is required. The higher level contains, for example, knowledge about the objects' size, 
shape and connectivity between the elements to form objects. In this way clusters of pixels are labelled as 
elements of an object or disregarded as noise or background. 

2.4.3 Feature extraction 

Feature extraction is the process of deriving some values from the enhanced and/or segmented image, 
containing the objects features of interest. These values are usually dimensional (like area, length, width, 
perimeter, convex hull area, moments), but may be other types such as roundness, density ratio, intensity 
and shape. In addition, measurements of features with dimensions always implies the need for calibration. 
The advantage of dimensionless features is that no calibration is needed. The features which have to be 
measured strongly depend on the application. 

For simple images, feature extraction may be easy once the image is segmented. The length, width, 
area, principal axes, moments and so on of an object feature in the image will be easy to measure once the 
edge is defined. These features can be described mathematically and have a clear meaning. In the case of 
more complex features it will be difficult to describe them mathematically and locate reliably. These 
features are application dependent and require some knowledge of the application either implicitly or 
explicitly included in the computer program (Dijkstra 1994, p. 31-35). 

2.5 Image interpretation 

After feature extraction, the results of the image processing have to be interpreted to provide the output of 
the image analysis system. The interpretation is based on one or more features processed in a linear or 
non-linear mathematical model, called the decision model. In some situations the simple features are all 
that are required, but often more refined conclusions have to be drawn. Application specific knowledge has 
then to be included to make sensible evaluations of the features found. The simplest way of including 
knowledge involves cluster analysis (the clustering of points in the feature space). Regions can be 
distinguished which belong to a certain object based on similarity to some reference. In the case of a 
homogeneous distribution in the feature space (no clusters can be distinguished) the use of a linear model 
would be a possible solution. For the development of such a linear model, multiple linear regression 
analysis can be used as a method for finding weights which have to be combined with features. However, 
these techniques require well understood and constrained conditions. For more flexibility there has to be a 
more general inclusion of knowledge, allowing it to be applied over varying conditions. For these non
linear cases, decision models can be developed using fuzzy logic (like artificial intelligence) and neural 
networks (Dijkstra 1994, p. 35-36). 

2.6 The development of an image analysis system for the harvesting of fruit 

On the basis of the different subsystems in an image analysis system for the harvesting of fruit, a strategy 
tor the development of such a harvesting system is needed first. 

The harvesting system has to result into the detection of mature fruits within their environment, called 
the Harvesting System Detection Output (HSDO), after which the fruits can be located. This detection 
output determines among others the goals of the harvesting system. These goals are called the harvesting 
task. In turn, the harvesting task determines the setup of the harvesting system, because the harvesting task 
determines which fruit features have to be used to result into the HSDO. In figure 2.3 the subsystems 
(including the image flow and knowledge flow) are shown in the harvesting system development stage. 

It can be seen that there are two layers: 

• The lower level (system knowledge); 
representing the image flow with the features. 

• The higher level (human knowledge). 
representing the knowledge flow. 



Chapter 2: Image analysis in the agricultural environment 10 

SYSTEM KNOWLEDGE 
O -

\ 

£ image 
O 
E! 

fruit 

features 

I 
detection 

1 ̂  
• 

1 rV 

-o HUMAN KNOWLEDGE 

image processing v 
length, width, area, etc. 

unage interpretation 

mature fruit 

V 

knowledge 
•bout 

limage interpretatie 

image actgujtmoo 

t 
deaired 5T ' 

• j < 
St. 
CD 

s; 
M t 

desired O 

fruit! 

t 
-«V harvesting talk 

HSDO 

Figure 2.3. Image and knowledge flow in the harvesting system development stage 

The human knowledge about the harvesting task is embedded in the knowledge flow, while the system 
knowledge about the harvesting task is embedded in the image flow. The knowledge flow goes from the 
total impression of the agricultural environment to a single feature of the fruit. Humans are able to detect 
fruit within its environment, based on comparison. However, they are not able to measure features of a 
single fruit without tools. The image flow goes from the single features of a fruit to the total impression of 
the agricultural environment (the detection, maturity estimation and localisation). As the image analysis 
system is capable of measuring single features of a fruit. However, it is not able to detect mature fruit 
within its environment without additional knowledge. 

Thus, the harvesting system needs knowledge for the detection (and finally locating) of the mature 
fruits within their environment (HSDO). Therefore, during the development stage of a harvesting system 
the two flows have to interact with each other in the subsystems. A combination of the desired output of a 
subsystem with the knowledge about the subsystem leads to the desired input of that subsystem. So. 
knowledge about the image interpretation combined with the harvesting task results into a list of desired 
Iruit leatures. Knowledge about image processing combined with the desired fruit features results in the 
characteristics of the input image. The input image has to contain information about the desired features. 
Knowledge about image acquisition combined with the desired image characteristics results into an image 
acquisition (see figure 2.3) (Dijkstra 1994. p. 37-39 and Edan, 1995). 

l-urther. an important requirement of a harvesting system is its operation without human supervision. 
I or a proper system operation, control is needed over the decisions of the harvesting system. In figure 2.4 
an automatic harvesting system is shown. Each subsystem makes decisions in the image flow. The status 
el the decision is reported to the 'supervision layer'. If an error status is reported by one of the subsystems 
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the analysis is stopped and the image has to be recaptured. In this way the system is prevented from taking 
false decisions from incorrect images. 
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Figure 2.4, An automatic han^esting system 

2.7 Practical considerations 

In all subsystems, errors will be introduced into the measurements. The several sources of error will have 
their influence on the reliability of the harvesting system output. Some sources of error (like insufficient 
resolution, too large variation in the distance between sensor and fruit, etc.) can be minimised by choosing 
a correct setup. Other sources, mainly caused by the agricultural environment (like the variability of fruits, 
occlusion of essential fruit features, variation in illumination, motion of the fruit, etc.), are difficult to 
influence and have to be taken into consideration during measurements. Consequently, for practical use the 
harvesting system has to achieve requirements in flexibility, robustness and speed necessary for the 
harvesting system to succeed in the agricultural environment (Burke 1990, p. 689 and Tillett 1990). 

Therefore, the image processing has to be flexible and robust in the sense that they allow for changes in 
illumination (sun direction, clouds), variability in the fruits and uncontrollability of the agricultural 
environment. The image processing should work reliably under all the extremes likely to be encountered. 
This may require 'extra' algorithms to control the system and guide error recovery. 

Also, the sensors have to be robust to the likely conditions in the agricultural environment, such as 
temperature changes, dirt, dust, extreme humidity, etc. Further, they have to work many hours a day with 
little attention paid to maintenance. 
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Besides, the speed of the harvesting system may be a critical part of the automatic harvesting process 
(has to work in real-time). To some extent the speed can be increased by using more expensive hardware, 
but much more increases can be achieved by making sure only necessary processing is done. Techniques 
for segmenting the image and extracting the important fruit features as soon as possible allow further 
processing to be restricted to these segmented images. However, reducing the amount of further processing 
may, of course, adversely affect the robustness of the image processing. Another method of increasing 
speed is by using parallel processing (Burke 1990, p. 1076). 

In addition, the flexibility in the harvesting system may allow it to be used for similar processes, such 
as the harvesting of similar types of fruits. 

2.8 Conclusions and discussion 

In this chapter the application of image analysis in the agricultural environment, in this case for the 
harvesting of fruit, has been discussed. In industry different applications have already been developed. 
However, they cannot be directly applied in agriculture because of the difference in objects and 
controllability of the environment. Therefore, most steps for an image analysis system for the harvest of 
fruit have to be developed from the very beginning. Knowledge and fruit features are required to meet the 
mature fruit detection goal. 

To setup a harvesting system a harvesting task has to be formulated (to determine which fruit features 
have to be used to result into the HSDO). An important part of the development of a harvesting system is 
the information about fruit features that have to be measured and their processing in a decision model to 
come to the detection of the mature fruit. If desired fruit features are not measurable in the input image, 
other useful fruit features and/or another setup (like changing the sensor) have to be chosen. Further, the 
use of the different subsystems in an image analysis system reduces the complexity of the harvesting 
system setup. 

The strength of using image analysis in the harvesting of fruit is its ability to measure many fruit 
features in an objective way. However, for the detection of the mature fruit it requires considerable 
additional knowledge. Humans, on the other side, are good in analysing complex images and comparing 
them with each other. Consequently, during the development stage of a harvesting system the two have to 
interact strongly which each other. 

Errors in the harvesting system setup could result in a nonsatisfactory Harvesting System Detection 
Output (HSDO). The errors can occur in all subsystems and, consequently, require for practical use of the 
harvesting system to include flexibility, robustness and speed necessary for the harvesting system to work 
in the agricultural environment and without human supervision. 
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3 DETECTION OF THE FRUIT WITHIN ITS ENVIRONMENT 

The first major harvesting task of the harvesting system is to detect the fruit within its environment.'[...] 
While humans can recogniie familiar objects from almost any angle, over a broad range of distance and 
lighting, and incorporate hearing and other senses, to aid in the vision operation, it is most difficult to 
replicate this intricate process by machine vision [...]' (Sarig, 1993). Unfortunately, the fruit features (to 
meet the fruit detection) are not well defined since they vary in shape, size, texture and colour. Fur
thermore, the fruit features are dependent on environmental influences, such as changing illumination 
conditions (clouds, sun direction), shadows or occluding leaves, which may change or hide the fruit 
features. In addition, the locations of the fruits are random. While this all doesn't present a major obstacle 
for human vision it may be a considerable technical challenge for an image analysis system. 

Nevertheless several researchers have attempted, with reasonable success, to develop an image 
analysis system capable of detecting fruits within their environment (Amaha, 1989; Balerin, ?; Benady, 
1992; Bracy 1992; Dario, 1994; Dobrusin, 1992; Edan, 1995; Fujiura, 1992; Hayashi, 1996; Kondo, 
1994; Kondo, 1994; Kondo, 1995; Moltó, 1992; Namikawa, 1988; Pia, 1993; Rabatel, 1994; Rabatel, 
1995; Sarig, 1993; Sevila, 1991; Slaughter, 1989; Tillen, 1995; et al.). 

3.1 Detection of the fruit 

In horticulture the environment of fruits is complex and loosely structured. The fruit locations are random 
and the fruits can be difficult to detect and reach (may be hidden by leaves). The shape, size, texture and 
colour of the fruits are variable and the environmental conditions (in field and in greenhouses) are hostile 
due to changing illumination (clouds, sun direction), shadows, dust, dirt, temperature changes and extreme 
humidity (Edan, 1995). The uncertainties in the fruits location, shape, size, texture and colour (the fruit 
features) necessitate a sophisticated image analysis system which has to detect fruits that may partially be 
occluded in constantly changing environment conditions. In addition, imaging sensors tend to be the most 
suitable technique for dealing with these problems (Sevila, 1991). 

The fruit features which should be interpreted in the image interpretation, used in the harvesting system 
for the detection of fruits (the harvesting task), depend on the character of the fruit of interest. The 
resulting desired fruit features, which have to be measured, may be detected (in the image processing) by 
examining intensity levels in a grey level image of the agricultural scene. As intensity levels result from 
two components: the reflectance properties of the fruit within its environment and the ambient 
illumination. However, grey level thresholding requires that in the image the fruit features and their 
environment have different levels of intensity. The threshold is then the intensity level that allows fruit to 
be detected within its environment. 

Unfortunately, due to among others the natural variability of the illumination conditions during the day 
the fruit features are not easily to detect within their environment. Under daylight conditions, the following 
problems are usually encountered: 

• In scenes with light and shadow, fruits located in the dark area are difficult to detect; 
• Direct sunlight is reflected from leaves, making them appear brighter than fruits in the shadow; 

"/•••/ In the laboratory; with a proper selection of filters, a f ruit can be distinguished from leaves, 
whereas in the field the sky, clouds and soil may sometimes be classified as fruits. A fruit in sunlight 
ma\ appear brighter than a leaf in sunlight, while in the shade a leaf could appear brighter than a fruit 
I...)• (Sarig, 1993). 

• Throughout the day the illumination varies, due to changes in the incidence angle of the direct sunlight 
and the passage of clouds. 

Although there is a lot of research being done in this area (Moltó, 1992; Pia, 1993; Rabatel. 1994; et al.), 
must research in the detection of fruits have employed controlled illumination, in which the image analysis 
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system does not run the risk of the extremely variable conditions that occur in field or in greenhouses. So 
used Dobrusin et al. (1992) grey level imaging to detect melons. However, the performance was improved 
by adding knowledge and some melons could not be detected because of occlusion by leaves and other 
melons. 

Research on oranges, peaches and other colourful fruits have found that fruit can possibly be 
distinguished from occluding leaves by colour (Rabatel, 1995 and Slaughter, 1989). The technique of 
colour segmentation gives good results when in the image the fruit features and their environment have 
highly contrasting colours. Colour filtering was used by Rabatel et al. (1994) in an image analysis system 
for harvesting apples and by Balerin et al. (?) and Hayashi et al. (1996) for harvesting tomatoes. However, 
in the case of clusters of fruit problems may arise in segmenting these clusters into single fruit (Bree, 
1994). Further, avocado, apples (as 'Granny Smith'), melons and, of course, cucumbers may have colours 
close to the plants leaves and stem. These fruits are, therefore, difficult to detect within their environment 
based on intensity or colour only. 

Texture can also be used (as a desired fruit feature) to detect fruits within their environment (as it 
impacts the reflectance). Some fruit have textures different from their leaves. Some are smooth while 
others are rough. Texture analysis has been used (Dobrusin, 1992 and Qiu, 1991) and might be a way to 
detect some specific fruit (like using the different edges intensity (netting) in melons and leaves). 

Another feature characterising a fruit is its shape. The main problem of shape analysis techniques is to 
expose the edges in noisy images or in images which are 'contaminated' with occlusion. Under these 
conditions, edge detection techniques are likely to give only partial information on the desired edges and a 
large amount of extra unwanted edge information from its environment. Techniques which are suitable for 
this situation must include some knowledge of the fruit. Parts of edges can then be linked together by using 
knowledge of the expected fruit. Or in the case of a topdown approach a model of the fruit can be matched 
to the image. However, the model must be allowed to deform or change to match the likely variations of 
the fruit. Another useful technique may be the Hough transform technique which is specially designed for 
applications with noise and occlusion. So used Whittaker et al. (1987) the circular Hough transform for the 
detection of tomatoes. 

Much of the research mentioned above has been directed towards the interpretation of images obtained 
in the visible range. Relative little attention has been given to improve the information collected by the 
image analysis system or in examining other techniques which could be used to generate an image which 
highlight desired fruit features even better. 

There are several reasons for the large interest in the use of the visible range of the electromagnetic 
spectrum. Firstly, the image obtained corresponds closely to our own perception and secondly, because 
more and more attention has been paid to this kind of cameras their performance have been increased and 
lowered their prices. Moreover, these cameras have become smaller and more robust, making them more 
attractive for incorporating in robotic systems (Bull, 1993 and Sevila, 1991). 

Although detection techniques using the visible range give acceptable results, they do not include the 
possibility of detecting fruits which have a colour close to that of the rest of the plant. Furthermore, the 
output of the sensing is a two-dimensional (2D) image, whereas the agricultural environment has a three-
dimensional (3D) nature. The plants have volume that is filled by stems, leaves and fruits, which may 
obstruct the fruit. The desired fruit features may be distorted by occlusion so that sometimes they cannot 
be detected at all. Under these circumstances, it is therefore difficult for an imaging sensor, working in the 
visible range, to detect fruit within its environment. However, as already mentioned, there are other 
imaging techniques which can give additional or more specific information about desired fruit features to 
that obtained in the visible range. A few of these techniques will be described below and its potential for 
the use in the detection of fruits within their environment will be evaluated. 

3.2 Imaging techniques 

3.2.1 Imaging techniques using electromagnetic spectrum 

For clarity, first a general description of the electromagnetic spectrum will be given. One of the 
characteristic quantities of an electromagnetic wave is its wavelength (A.). The electromagnetic spectrum is 
known to exhibit wavelengths from less than 10'° urn to over 10' km which are commonly and 
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conveniently divided into the following bands: long electrical oscillations, radio waves, microwaves, 
infrared, near infrared, visible light, ultraviolet, X-rays, gamma rays and cosmic rays. Further, three 
different processes characterise the interaction of an electromagnetic wave with an object, namely: 

• Reflection; 
• Absorption; 
• Transmission. 

When illuminating an object part of the radiation is reflected by the surface (specular reflection) and the 
remaining radiation is transmitted into the object. From the transmitted energy part is absorbed (i.e. the 
conversion from electromagnetic energy into other forms of energy such as heat, chemical changes or 
luminescence), part is reflected back to the surface (diffuse reflection) and part is transmitted through the 
object (see figure 3.1) (Heijden van der 1994, p. 9). The magnitude of these quantities, which vary with the 
wavelength, are dependent on the physical condition and the chemical composition of the object. 

Figure 3.1, A schematic diagram of the interaction of radiation and an object: (a) specular reflection; (b) diffuse 
reflection; (c) absorption 

The potential of some of the electromagnetic bands to generate useful images (for the detection of fruits 
within their environment) based on reflectance and transmission quantities (it is hoped that the fruits to be 
detected respond differently to the wavelength in comparison with their environment) is discussed in the 
next section. 

3.2.1.1 Radio wave detection and ranging (radar) 

'[...] In radar systems, a short duration electromagnetic pulse (in the frequency range of 3 kHz to 300 
MHz) is transmitted from an antenna. A proportion of the electromagnetic pulse will be reflected back to 
the antenna by discontinuities in the dielectric constant of the propagating media. The amplitude of these 
reflections are measured with respect to time and displayed graphically. If the antenna is subsequently 
moved it is possible to obtain an image of the reflecting discontinuities [...]' (Bull, 1993). This approach 
has been used for several agriculture related measurements. For example, in detecting and monitoring the 
movement of insects (Beerwinkle, 1995), mapping well defined discontinuities in the soil profile using 
ground penetrating radar (Weiler, 1995) and remote identification of crops (Holmes, 1990 and Buiten. 
1993). The latter may offer the most interesting opportunities for the detection of fruits. Furthermore, radar 
has its own source of radiation (is an active sensor) and is not largely affected by the natural variability of 
the illumination conditions during the day. Radar has also the advantage of being able to measure the 
distance or range to the object (using the principle of time-of-flight (TOF)). 
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In literature (Buiten 1993, p. 203-217; Holmes, 1990 and Skolnik, 1980) it can be found that, in 
general, the amount of reflected energy (the radar sensitivity) is determined by the type of the object, i.e. 
the physical and electrical properties (the electrical properties are described by means of the dielectric 
constant which is closely linked to the moisture content), the size, the roughness of the object and also the 
orientation of the object towards the antenna (the incident angle). Further, some research (Brakke, 1994; 
Buiten 1993, p. 34 and Chun, 1995) suggested that in addition to the foregoing aspect of reflected energy, 
the polarization characteristics of an object may also be important for detection applications. As the 
polarization and the phase of the impinging polarized wave will be changed by the object, pertaining to its 
specific structure (i.e. size, shape and roughness) and its physical and electrical properties. Depolarization 
may occur at a rough surface (rough with respect to the wavelength of the transmitted wave) for example. 
In addition, although few studies have been made to the use of this technique, undoubtedly polarimetry 
will become of great significance in the future, but the full potential still has to be assessed (Buiten 1993, 
p. 34 and 43). 

From the preceding generalizations and discussions made by Holmes et al. (1994) on parameters 
affecting the reflected energy from vegetation, it follows that with respect to the detection of fruit within 
its environment the crucial features in determining the proportion of the reflected energy are the biomass, 
the dielectric constant and the geometry of the plant and its components (stem, fruits and leaves), which in 
turn depend on the character of the plant of interest and its physiological age. 

However, research (Lewandowski, 1994) and field experiments (Holmes, 1990) have demonstrated that 
radar sensitivity (the reflected energy) from different objects become more distinct by using frequencies 
that span the natural electromagnetic resonance of these objects. For example, detection of a 10 cm tall 
object should be based on waves containing frequencies in the neighbourhood of 3 GHz. Because the 
wavelength range of radio waves is approximately from 1 m to 100 km this limits its use for the detection 
of the 'small' fruits. More research in this area is required to fully exclude the use of radio waves. 
However, radar also operates at lower wavelengths, the microwave range (which is discussed in the 
paragraph below), and it may be suggested that this range is likely to give more opportunities for the 
detection of fruits. As it will have the same interesting features, as discussed with radio waves, because of 
the generality of radar. Because of this, the use of radio waves for the detection of fruit within its 
environment is no longer investigated in this research. 

3.2.1.2 Microwaves 

First, it is important at this stage to discriminate between active and passive forms of microwave sensors. 
Active microwave sensors provide their own source of energy and measure the reflected (the radar 
sensitivity, as described in the above paragraph) or transmitted energy, whereas passive sensors measure 
the microwaves emitted by the objects. This paragraph restricts itself to active microwave sensors. In 
adJition. because of the very long integration time and the poor resolution of passive microwave sensors 
this imaging technique will not be considered at all (Buiten 1993, p. 49-60 and p. 155). 

Bull et al. (1993) found when microwave energy, with frequencies of 300 Mhz to 300 GHz, passes 
through agricultural objects the energy is strongly absorbed and reflected by water molecules. 
Transmission of microwave energy may therefore be useful to determine the quantity of water in an object 
between the microwave source and detector. However, this measurement can be ambiguous as a high 
density object of low moisture content will give the same response as a low density object of high moisture 
content. This limits the usefulness of microwave transmission as an imaging technique. For example, one 
investigation (Timm. 1989) which attempted to detect the presence of pits in tart cherries using microwave 
transmission found that the size difference in the cherries has a more profound effect on the transmission 
tli.m the presence or absence of fruit defects. Furthermore, the sensing of this imaging technique, is by 
phssical contact which precludes its use for fruit detection. 

However, microwave transmission techniques have been successfully used to determine the microwave 
permittivities of fruits and vegetables (Nelson. 1994). In general, the microwave permittivities or dielectric 
properties of objects are important because these properties determine the nature of interaction of 
electromagnetic energy with the objects at microwave frequencies. The object permittivity influences the 
propagation of electromagnetic waves through the object, reflections of waves from the surface of the 
object and the attenuation of the wave energy as it traverse the object. The permittivity is represented as e 
= c" - je" , where the real part e' is the dielectric constant and the imaginary part e " is the dielectric loss 
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factor. The dielectric constant e' influences the electric field distribution and the phase of waves travelling 
through the object, whereas the energy absorption and consequent attenuation is influenced principally by 
the loss factor e". In fruits both e' and c" are highly correlated with moisture content, because the 
permittivity of water greatly exceeds that of the dry matter of fruits (usually present in fruits in small 
quantities) (Nelson, 1994). 

Unfortunately, measurements of dielectric properties on fruits are not straightforward and, largely for 
that reason, are not common in literature. As with most biological materials, considerable variation can be 
expected in permittivity values among different kinds of fruits and more important within given kinds. 
Moisture content is a dominant variable that influences the permittivity values, but there are also other 
sources of variation (Nelson, 1994). More research on the permittivity and loss factors are essential for an 
understanding of the attenuation of microwaves by fruits (in comparison with their environment) and for 
the use in their detection. 

One of the properties of radiation in the microwave range is that its able to penetrate into an object. For 
the detection of fruits this provides a potential for studying not only the surface of the plant directly in 
front of the sensor, but also behind it. As was demonstrated in a recent study of surveying vegetation by 
radar remote sensing (Holmes, 1990). It was found that the penetration depth of an incident microwave 
depends on its polarization and frequency, such that the optical thickness of the vegetation increases with 
increasing frequency. Further, vertically polarized radiation (by observing from above) is much more 
strongly attenuated than horizontally polarized radiation and there is a marked increase in the attenuation 
of the vertically polarized radiation with increasing incidence angle. Horizontally polarized radiation, on 
the other hand, penetrates deeply into the vegetation and shows negligible dependence on incidence angle 
(see figure 3.2 and 3.3). 

1 3 5 7 9 
Frequency (GHz) 

11 30 60 90 
Incidence angle (deg) 

Figure 3.2, Wavelength dependency for microwave 
penetration into corn canopy. Penetration depth is 
defined as the depth at which the incident power 
is reduced to 377c ofthat incident. The data 
presented are for incidence angle of 40 ", LAI (leaf 
area index) = 2.R, plant height = 2.7 in, leaf 
volumetric moisture content = 0.65, stalk volumetric 
moisture content = 0.47 (Holmes, 1990) 

Figure 3.3, Polarization and incidence angle 
dependency for microwave penetration into a 
corn canopy. Penetration depth is defined as the 
depth at which the incident power is reduced to 
377c ofthat incident. LAI = 2.8, plant height = 
2.7 m, leaf volumetric moisture content = 0.65. 
stalk volumetric moisture content - 0.47(Holmes, 
1990) 
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An important practical aspect of this type of observation is that vertically polarized data provide 
information which is predominantly related to the physical characteristics of the vegetation, whereas the 
horizontally polarized radiation is largely penetrating the vegetation and therefore providing information 
on the vegetation behind it. However, this statement must be considered in the context of the wavelength 
used. Longer wavelengths tend to penetrate deeply into vegetation, whereas shorter wavelengths are 
scattered at the surface. As a result, discrimination between polarizations may be impossible at shorter 
wavelengths (see figure 3.2). The detection can be further enhanced by using cross-polarization or multi-
polarization (cross- and like-polarization) analysis (Holmes, 1990). 

From the phenomena mentioned above, it follows that for the use in the detection of fruits within their 
environment it is necessary that multi-polarization and multi-frequency data should be fully exploited. 
This should be done at different growth stages. Such information can then be used for the formation of a 
reflection model of fruit in relation with its environment. 

Research in using microwave reflectance as an imaging technique has already been done for soil 
moisture content. There it was concluded that the predominant factors affecting reflection are the 
morphology (roughness and texture) and the dielectric constant (moisture content) (Whalley, 1991 and 
Fall, 1990). But, what actually happens to the microwave at the soil surface is still not understood. The 
dielectric properties are usually unknown and other quantities, unrelated to these properties, are used in the 
current soil descriptions. Further, the surface and medium quantities are usually badly described and 
difficult to determine separately. Hence, it is very difficult to create a reflection model. These limitations 
and difficulties should be noted to avoid misinterpretation of the results. 

It can be concluded that the use of microwaves might be a way to detect fruits within their environment. 
However, research on using microwave reflection as an imaging technique of soil moisture content has 
shown that this technique can be highly problematic as the microwave reflection depends not only on one 
parameter but on different and very complex parameters, which would result in a very complicated and 
time-consuming research to understand the process. 

3.2.1.3 Near-infrared and visible range 

'[...] There is a certain consensus in the literature on the optimal bands necessary to acquire characteristic 
spectral information about vegetation. These bands are situated in the visible (green and red) and the near-
infrared (NIR) part of the electromagnetic spectrum [...]' (Buiten 1993, p. 178). 

Figure 3.4, Average course of reflectance, absorplance and transmittance of a green healty plant leaf as a 
percentage of the irradiation (Buiten 1993, p. 91) 

The characteristics of vegetation and their influence on remote sensing have recently been reviewed bv 
Buiten et al. (1993). In their work the reflection of vegetation in the near-infrared and visible range has 
been dealt within detail. It was found that differences in reflection can provide information on vegetation. 
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It is not intended to repeat the information in this current work but to emphasise only the areas in which 
there is a potential for the detection of fruits within their environment. In order to show clearly the 
difference between the two frequency ranges first the two ranges are treated side by side, then, to maintain 
the generality of this research, each range will also be dealt separately in a broader context. 

'[...] A general characteristic of vegetation is its green colour during most of the growing season. The 
green colour is caused by the pigment chlorophyll [...]' (Buiten 1993, p. 89). In the visible range (0.4 //m 
to 0.7 ^m) various pigments in vegetation, such as chlorophyll, xanthophyll (yellow) and carotene 
(orange), influence the reflection. In most plants two types of chlorophyll (a and b) determine to a large 
extend the reflection, mainly by absorption of blue (±0.45 /im) and red light (±0.65 ^m) and to a lesser 
degree of green light (±0.54 ^m) (provided the plant is functioning well) (see figure 3.4). The other leaf 
pigments, xanthophyll and carotene, absorb mainly in the blue region of the spectrum. However, they are 
not visible since chlorophyll (usually present in leaves in large quantities) also absorbs in the blue. Diffe
rences in pigment content, causing differences in hue, may so be useful for detection applications (see 
figure 3.5). 

Figure 3.5, Spectral reflectance of representative leaves of four agricultural crops measured with a Beekman 
DK-2A laboratory- spectrometer (Buiten 1996, p. 94) 

Another characteristic of vegetation which causes differences of reflection is the structure of the plant. 
Examples are the position of the leaves and their distribution. Because of this, information on reflectance 
acquired by measurements on individual leaves only cannot be applied directly to the whole plant. 

Further, differences in reflection may originate from differences in the surface of the vegetation. For 
example. leaves may be covered with wax or have a hairy coat. Also, the growth stage of the plant has an 
influence on the reflection. This may be caused by differences of structure as well as by differences in 
colour. 

Under field conditions one has to take account of even more factors influencing the reflectance. 
Examples are the conditions of nutrition, water supply and infections of the plant causing an immediate 
change in both the signature of the leaves and the plant structure. 

In contrast with the visible range the first part of the near-infrared range (0.7 ^m to 1.3 /urn) is mainly 
determined by the absence of absorption by pigments (see figure 3.4). This means that the radiation passes 
through the leaves or is reflected. From various reflectance curves in literature (measurements on individu
al leaves) it is apparent that approximately 50^- of the NIR energy is reflected by the leaf. However, figure 
3.5 shows that this percentage varies widely for different plants. Various experiments have tried to obtain 
insight into which parts of the leaf are responsible for the reflection. It has been established for this range 
ot wavelengths that a leaf becomes very transparent if the air channels between the cells of the leaf are 
filled with fluid (see figure 3.6). 

In the second part of the near-infrared range (1.3 [um to 2.5 <̂m) a great part of the radiation is absorbed 
by water in the cells (see figure 3.4). The figure shows, like figures 3.5 and 3.6, that the absorption peaks 
tall at 1.4 and 1.9 ^m. In addition, weak absorption bands of water also occur at 0.96 and 1.1 ^m. 
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Figure 3.6, Total reflectance of fresh and dried cotton leaves measured with a laboratory spectrometer (Buiten 
J 993, p. 96) 

Measurements on leaves with differences of moisture content gave the reflectance curves shown in figure 
3.7. The reflectance in the range of 0.7 to 1.3 ^m as well as in the range of 1.3 to 2.5 ßm increases with a 
decreasing moisture content. Thus, the ratio of the minimal reflectance caused by water and the maximum 
reflectance in the adjacent region of the curve can provide information on the moisture content. 
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Figure 3.7, Influence of the moisture content of maize leaves on the spectral reflectance (Buiten 1993, p. 98) 

From the preceding, it follows that the reflection in the visible range occurs mainly in the leaves directly in 
front of the sensor. Dependent on the characteristics of the fruit and the rest of the plant it might be 
possible to detect the fruit. This in contrast with the first part of the NIR range (0.7 to 1.3 /urn) which may 
not give information about leaves directly in front of the sensor, but also behind these leaves. The 
following will make this clear. 

The reflectance and the transmittance of a green leave in the visible range amounts to 10% or less each 
(see figure 3.4). This means the absorptance is at least 80%. If 10% of the incident radiation is reflected by 
the first leaf, the contribution to the total measured reflectance of a second leaf behind the first leaf would 
be approximately 1% of the reflectance of the first leaf (see figure 3.8). This implies that, in the visible 
range, the reflectance of only the first leaves would determine the total reflectance of a plant. In addition, 
visual observation of plants confirms this reasoning. On the other side, in the first part of the NIR range, 
the reflectance and transmittance of a green leaf amounts to approximately 50% each (see figure 3.4). A 
green leaf hardly absorbs any NIR radiation. Under these conditions, leaves behind the first ones 
contribute significantly to the total measured reflectance. In the simplest case of the reflectance and 
transmittance both amounting to 50%, the contribution of a second leaf would be about 15% of the 
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incident radiation (see figure 3.8), which is not negligible. However, these considerations grossly simplify 
the reality, but they do explain the general concept. 

\ 

Figure 3.8, Schematic illustration of reflectance and transmittance of radiation through crop layers (leaf canopy) 
in the visible and NIR range, respectively (Buiten 1993, p. 189) 

Using this concept and the possibility that the fruit and the rest of the plant react differently on the first 
part of the NIR radiation (because of their characteristics, for example moisture content) it might be 
suggested that the first part of the NIR should be capable of detecting some occluded fruits. However, 
fruits generally consist of a very large amount of water (Nelson. 1994) and because of the (weak) water 
absorption bands in the first part of the NIR only less information (most is absorbed) can be obtained about 
occluded fruits. 

In view of what has been said about the changes of reflection in the second part of the NIR range (1.3 
to 2.5 ^m) by water in the cells and, as already mentioned, because fruits consist of a very large amount of 
water, this range may be useful for the detection of visible fruits. In addition, the water absorption bands in 
this part of the NIR are stronger than in the first part of the NIR. Moreover, because of the stronger 
absorption even less information can be obtained about occluded fruits in comparison with the first part of 
the NIR. 

As seen each range might have some possibilities for the detection of fruits within their environment. 
The visible range for the detection of leaves and perhaps fruits which are not occluded, the first part of the 
NIR range for the detection of some hidden (and visible) fruits (when enough information can be gathered) 
and the second part of the NIR range for the detection of visible fruits. Let's now assume that all these 
three ranges can only be partly used, then for an optimal detection of fruits it can be thought to make use 
of a multispectral classification. This means that fruits and their environment are characterised by a special 
combination of frequencies in these ranges. Studies on fruit detection (Fujiura, 1992; Kondo, 1996; Moltó, 
1992; Namikawa, 1988; et al.) already emphasise the use of different frequencies in the visible and near-
infrared range. However, further and thoroughly research has to make clear which frequencies exactly 
should be used to make clustering possible. 

In addition, polarization measurements in the visible and NIR range may have some interesting 
possibilities also (Brakke, 1994). For example in the visible range, the specular component of the reflected 
radiation yields information independent from the non-polarized diffuse radiation component. The latter is 
reflected by the interior of a leaf. The former (the specular component) is reflected and polarized by the 
interface between air and the surface of a leaf (it never enters the leaf) (Buiten 1993. p. 101). Thus, for 
detection applications, polarization data, can provide additional information. 
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Near-infrared 

In agriculture, research on near-infrared reflectance and near-infrared transmission have mainly been 
directed to compositional analysis of agricultural objects (Bull, 1993 and Chen, 1991). Most of these 
studies have measured the integrated reflection or transmission response of the object with no spatial 
resolution. This is perhaps reasonable as the object is usually prepared in such a way as to ensure that it is 
homogenous and that the surface reflectance, or point transmission, is representative of the composition of 
the whole object. There are, however, applications in which there will be interest in the inhomogeneity of 
the object. For example, in monitoring of mixing and varying composition of a whole object. Research in 
this area suggested that '[...] in most cases it would be impractical to generate an image of the compo
sitional changes across an object by measuring its reflection or transmission characteristics over a wide 
wavelength range, at a representative number of sampling points. Consequently, analysis techniques which 
quantify compositional changes by looking at changes in the shape of the reflection or transmission spectra 
are unlikely to be adopted in image analysis systems, especially when the acquisition and analysis of the 
image must be rapid. There is, however, some potential in obtaining a series of near-infrared images of the 
sample at selected wavelengths and then combining these images, in an appropriate manner, in order to 
obtain a calibrated image that shows spatial variation of the sample constituents [...]' (Bull, 1993). Using 
this concept, one may suggest that the use of some selected wavelengths might be interesting for the 
detection of fruits within their environment, because the agricultural scene can be considered as a varying 
composition of stems, fruits and leaves. This would strengthen the experience to use different frequencies 
already found in the paragraph above. However, fruits and the rest of the plants have to react differently on 
the NIR radiation first. 

Another aspect of near-infrared reflection that has been exploited is its use for internal quality 
assessment (Kawano, 1994). It has been found that it may be the key to examining surface and near 
surface damage of agricultural objects. '[...] When material is deformed, its surface cell structure alters. 
Even if this is not accompanied by chemical changes, it should be possible to detect surface damage by the 
NIR reflection technique because of its sensitivity to the structure of the material [...]' (Bull, 1993). For 
example, there has been some research (Taylor, 1985) on imaging of a bruised apple at wavelengths up to 
1.1 ̂ m. '[...] A bruise in a fruit or vegetable results in massive cell rupture and redistribution of free water. 
Thus, a bruised region contains more free water per unit volume than the neighbouring region [...]' (Chen. 
1989). However, the water absorption bands at 0.96 and 1.1 /um are weak so for greater sensitivity to 
structural damage it would be more sensible to use the stronger absorption wavelengths at 1.4 and 1.9 ^m, 
as was concluded by Bellon et al. (1990) and Kawano et al. (1994). As a result of this and with the 
information that fruits generally consist of a very large amount of water (Nelson, 1994) these frequencies 
should be useful for detection of fruits. 

From the above applications it follows, cautiously, that the use of a combination of some selected 
frequencies in the NIR (especially, the use of frequencies in the water absorption bands) might be a way to 
detect some visible fruit within their environment. This confirms the suggestions already made in the 
paragraph above. However, more research is needed to prove its capability of detecting occluded fruits. 

In addition, near-infrared reflection has also been used in laser-ranging instruments (using the principle 
ot time-of-flight (TOF)). However, these laser instruments tend to be very expensive, are somewhat fragile 
and require careful tuning and optical alignment (Dorf 1990, p. 874). 

\ 'isible range 

In industry the measuring of reflectance of agricultural objects at a number of discrete wavelengths in the 
UMMC range in order to detect colour differences for inspection, sorting or grading operations is well 
established. Applications include, for example, colour sorting, as in sorting green and red tomatoes, 
detection of surface defects and contamination, such as defects on dried prunes and bruise on apples, 
separation of foreign materials, such as stones and dirt clods, from potatoes, onions or tomatoes, etc. 
(Chen. 1991 ). In contrast, there has been relatively very little research directed towards the application of 
colour image processing to agriculture. 

' | . .. | By sight humans can use visible differences in the reflection of sunlight to recognize vegetation 
and fruit |...J" (Buiten 1993. p. 89). It is therefore sensible to take advantage of those differences. Two 
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major imaging systems for colour representation of fruits within their environment have been reported 
(Sarig, 1993): 

• A system of three monochromatic sources (R, G, B), where any colour is represented vectorially 
according to the luminous flux of the primary colours, red (R), green (G) and blue (B) in the three-
dimensional space; 

• A chromaticity system (r, g, b), where colour is described according to its hue and saturation. The 
components r, g and b are known as the chromaticity coordinates and are defined as the ratio between 
the luminance of one of the primary colours and the sum of all three (i.e. r = R / (R + G + B)). 

Various tests (van Bree 1994, p. 20-37 and Searcy, 1989) have shown that the detection of coloured fruit, 
such as tomatoes, in each of the aforementioned systems can be done with only two components. This 
means that to detect tomatoes in the primary system (R, G, B), for example, only the red and the green 
components have to be used (the r and g components in the chromaticity system (r, g, b)). 

However, '[...] the colour of an object is perceived differently depending upon the illumination, since 
colour can be difficult to distinguish in an image that is too dark or too bright [...]' (Sarig, 1993). Even in 
the case of ripe orange fruits, whose colour is very different from their leaves, the effects of a sunny 
weather cause a lot of erroneous or missing detections, due to shadowed areas and bright specular 
reflection spots on fruits and leaves (Rabatel, 1995). To overcome this problem it may be thought of using 
powerful photographic flashes (Rabatel, 1994). Moltó et al. (1992) have shown that the use of flashes 
improves substantially the quality of the image taken under daylight conditions and increases the 
percentage of fruits detected. 

Once the lighting conditions are controlled, the method of colour segmentation may give good results 
when in the image the fruits and their environment have highly contrasting colours. For example, a 
classification model has been developed which could detect oranges within their environment using only 
colour information (Slaughter, 1989). 
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Figure 3.9, Difference between the spectra of mature fruits and young leaves (Moltó, 1990) 

In another research (Moltó, 1992) the reflection spectrum in the visible range of the peel of citrus fruits 
and leaves have been conducted during the harvesting period. It was observed that during the whole 
season, the spectrum of the leaves was slightly variable and, in addition, the curves nearest to the citrus 
fruit are those of young leaves. This was also concluded by Edwards et al. (1988) which studied changes 
in spectral reflection of grapefruit leaves with age, air temperature and time of day. Figure 3.9 shows the 
percentage of reflectance and the wavelength of the mean of citrus fruits at full maturity and the upper and 
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lower surfaces of young leaves, since these represent the most unfavourable conditions for detection. Two 
methods for the detection of the citrus fruits had been developed: one based on thresholding of an image 
taken with a red filter and the other using information from two images filtered in the red and green bands 
respectively. The latter proved capable of detecting the largest percentage of citrus fruit. However, early 
citrus varieties, which are usually very profitable to the grower, presented detection problems because of 
their green colour during the initial stages of maturation (their reflection spectrum is similar to that of 
leaves). It was concluded that the vision system of the harvesting robot cannot be based exclusively on 
partial data of colour of the citrus fruits, because this reduces the percentage of detection. 

Further, detailed analysis in the visible and near-infrared range of fruits and leaves have been made for 
both apples and oranges (Rabatel, 1994). Promising results have been obtained even for fruits whose 
colour is very close to the colour of their leaves, such as 'Granny Smith' apples, by using a combination of 
visible and near-infrared wavelengths. 

Thus, as already suggested, a combination of visible and near-infrared range might be a way to detect 
fruits within their environment. However, problems may arise with the detection of occluded fruits. 

Structured lighting 

Although the goal of lighting has primarily been the enhancement of contrast of particular object features, 
the goal of structured lighting is to yield direct three-dimensional information about the object. The basic 
approach with structured lighting is to project a known (structured) pattern of visible light onto an object 
and then use the distortions in this pattern in the reflected image to calculate the three-dimensional 
characteristics of the object's surface. This is, therefore, a form of ranging. 

The application of this technique on a scene would result in a surface map which may be used for the 
detection of some objects (Bloemen, 1996 and Yang, 1993). As this lighting technique has two important 
advantages for detection applications. First, it uses a known pattern on the scene and disturbances of this 
pattern indicate the presence of an object, thus simplifying the object detection problem. Second, by 
analysing the way in which the light pattern is distorted, it is possible to gain insight into the three-
dimensional characteristics of the object. 

For the detection of fruits within their environment, it is first necessary that the three-dimensional 
shapes of the fruits are known. Using these shapes and the generated surface maps it should be possible to 
detect the fruits. However, in the agricultural environment fruits and their environment are complex and 
loosely structured so distortions of the light pattern would be very complex and difficult to detect (because 
of the variability of the fruits and the lack of controllability of the environment). In turn, this results in a 
very complicated scene analysis, especially in the case of (partly) occluded fruits. 

Therefore, as a final note, the use of 'normal' lighting for the detection of fruits within their 
environment would be preferred to structured lighting (more controllability). 

3.2.1.4 X-rays 

In literature (Bull, 1993) it can be found that X-rays have short wavelengths (1 pm to 10 'nm) but high 
energies which enable them to penetrate into most agricultural objects. The penetration of these rays 
depends mainly on the thickness of the object and other parameters such as structure, absorption 
coefficient and density of the material. Further, the depth of penetration depends also upon its energy. 
Consequently, low energy (or soft X-rays) are more suitable for agricultural objects which have relatively 
low densities and which may be sensitive to the destructive nature of high energy (or hard) X-rays (Chen, 
1991). 

There are a number of studies in which X-ray imaging has been used to evaluate the physical properties 
of agricultural objects. Examples are the detection of disorders in 'Alphonso' mango (Thomas, 1993), the 
detection of impact damage of sweet onions (Maw, 1995) and the detecting of bruises in apples (Rotz, 
1978). 

One of the problems with X-ray imaging is its complexity. The intensity at each point of the image is a 
function of the integrated absorption properties of the object between that point and the source. For 
example, a potato with an internal void will have the same absorption at its centre as an irregular shaped 
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potato with a tapered centre. This ambiguity could be alleviated by a simultaneous determination of the 
object topology (Bull, 1993). 

Another way to overcome this problem is the use of X-ray computed tomography (X-ray CT), where 
the object is reconstructed from multiple X-ray scans through it. Each point on a CT image represents a 
small volume in the plane scanned by the X-ray system, while a point on a normal X-ray image represents 
a volume average of many volume elements. This technique, which is commonly used in diagnostic 
radiography, has been used for damage assessment in fruits and vegetables (Tollner, 1992). It was 
concluded that internal differences in X-ray absorption within scans of fruit are largely associated with 
differences in volumetric water content. '[...] The lighter grey areas generally represent a more 
concentrated presence of water and the darker grey areas generally represent a more notable presence of 
air [...]' (Thomas, 1993). Thus, any process such as storage and associated moisture loss should cause 
changes in X-ray CT outputs. 

Because fruits consist of a very large amount of water (Nelson, 1994) both X-ray techniques are likely 
to offer some opportunities for the detection of fruits. However, the use of multiple X-ray scans would 
result in more complicated measurements and, consequently, reducing the operation speed which would 
not be very practicable for a real-time detection of fruit. Thus, the use of only one X-ray scan would be 
preferred. 

For an on-line detection of fruits the plants have to be scanned with a system, for example, similar to 
that used by airport security personnel to check baggage. The plants have to be moved in a single row 
between the two plates as if they were placed on a conveyer belt. Mostly, this is impossible in the used 
cultivation method or it results in very complicated measurements because of unavoidable large distances 
between the plates (more volume averaging). 

Under these conditions, it follows that X-ray imaging would not be a very promising way to detect fruit 
within its environment. A solution would be to change the cultivation method, which probably makes the 
use of X-ray imaging more attractive. 

3.2.2 Imaging techniques using thermal infrared radiation 

In general, all objects with a temperature above absolute zero continuously emit thermal infrared radiation 
(TIR). The quantity of the emitted radiation depends on the temperature of the object. This property is 
expressed by means of the law of Stefan-Boltzmann for a blackbody (an ideal perfect radiator): 
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absolute temperature of the object (in K). 

Because real objects are not ideal blackbodies. they emit less energy than that corresponding with their 
temperature. The ratio (per unit of area) is determined by the emissivity e (e = 1 for a blackbody) which is 
dependent on the physical properties of the object. For an opaque object e = 1 - p (where p denotes the 
reflectance). Both e and p are dependent on the wavelength. This means that in the TIR the reflected 
radiation must be taken into account, as each object receives and subsequently reflects radiation from the 
environment. This often complicates the determination of the objects temperature from the observed 
radiant temperature (Buiten 1993. p. 30-36). 

Thermal imaging has been extensively used for missile tracking systems, remote temperature sensing, 
military and civilian surveillance and in medical applications such as tumour detection. However, 
applications within agriculture have been very limited (Bull, 1993). 

lnoue et al. (1991) have used thermal imaging to measure physiological status in stressed and non-
stressed maize and wheat canopies. It was found that thermal imaging is highly effective in detecting 
physiological depression or comparing various canopies in their physiological status on a remote and real
time bases. Further, a method has been presented for estimating leaf transpiration and stomatal resistance. 
As leaves have adjustable pores in the lower epidermis called stomata. The opening and closing of the 
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stomata are determined by the plant taking up sufficient water, usually through the roots, to maintain the 
turgor. If there is sufficient moisture available there is a constant flow of water transpirating through the 
stomata. This withdraws thermal energy from the surface of the leaves, so that the plant temperature drops 
in respect of the surrounding air. The lower temperature can be measured and provide the possibility of 
tracing for example a shortage of water (Buiten 1993, p. 101-102). With regard to the detection of fruits 
within their environment, these measurements may suggest there is an open area for thermal imaging. As it 
can be assumed that differences in heat capacities of fruits and their environment have to cause different 
rates of heating and cooling (transpirating) and, consequently, temperature differentials which could be 
recorded by thermal imaging. 

O 
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Figure 3.10, Daily course of standard deviation of measured leaf temperature at three levels and orientations in 
a tomato canopy for, respectively, a cloudy day and a LAI (leaf area index) of 3 (thick line) and a sunny day and 
a LAI of 1.5 (broken line) 

However, measurements on leaf temperature of a glasshouse tomato plant at three levels in the plant and 
with various orientations (Jong de, 1996), have shown variation in standard deviation of the measured leaf 
temperature during the day, with an upper limit of 2.5 °C (see figure 3.10). Let's now assume that the 
temperature distribution within the leaves would be normal and that 2.5CC would indeed be its standard 
deviation (in the worst case). Then, at any time, some 1% of the leaves would have a temperature differing 
by more than three standard deviations (7.5 °C) from the mean. Then one can stipulate, that in order to 
ensure that all fruits can be detected, the difference in temperature between fruits and leaves has to be 
more than 7.5 °C. In addition, stress in plants changes the leaf temperature even more (Inoue, 1991). Under 
these circumstances, the detection of fruits within their environment, based on difference in temperatures, 
might be complicated and more research in this area is needed. 

However, as can be seen in figure 3.10, the standard deviation of the measured leaf temperature after 
sunset and in the early morning is rather constant and not so large (0.75 °C). By using this part of the day 
more promising possibilities are created. This was also concluded in a recent study (Dobrusin, 1992) 
which detected melons in field using thermal infrared images. By analysing the images, it was found that 
the temperature differentials of melons, leaves and ground were considerably dependent on the time of day 
and reached maximum values after sunset. Furthermore, it was found that it is not particularly difficult to 
distinguish a melon from its leaves in the infrared spectrum and errors are only to be expected by the open 
ground patches which temperature is commensurable with that of melons. In turn, this favours the fruit 
detection. 

Thus, in regard of the use of thermal imaging for the detection of fruits within their environment, care 
should be taken to avoid complication of the background, especially when sparse vegetation is being 
measured. Factors such as ambient air temperature, atmospheric influences, field of view and angle of 
incidence of the camera should be noted (Meyer, 1994). Under these conditions, thermal imaging can 
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possibly be used as an imaging technique for the detection of fruits. However, a reasonable temperature 
difference between fruits and their environment has to be found first. 

3.2.3 Imaging techniques using nuclear magnetic resonance (NMR) . 

'[...] Nuclear magnetic resonance imaging is a spectroscopic method used to noninvasively generate 
internal images based on the magnetic properties of nuclei. In particular, nuclear magnetic resonance 
(NMR) can detect the concentration and state of hydrogen nuclei within a sample. For standard nuclear 
magnetic resonance spectroscopy, a sample is placed in a large, homogeneous magnetic field. Nuclei 
which have a net magnetic moment precess when placed in an external magnetic field. The rate of 
precession is the Larmor frequency, defined by the following equation: 

v=y-B/2n, (F 3.2) 

with 

v = the frequency of precession, 
y = the magnetogyric ratio, 
B = the external magnetic field strength. 

A pulse of radio frequency (RF) energy applied at the Larmor frequency excites the nuclear spin system. A 
radio frequency signal is given off by the sample as it returns to equilibrium. This signal is recorded and 
Fourier transformed to yield intensity versus frequency. This spectrum provides information concerning 
the chemical environment of the nuclei [...]' (Chen, 1989). However, the frequency spectrum of the sample 
will give no information about the spatial location of the nuclei. The extension of standard nuclear 
magnetic resonance to imaging begins by applying linear gradients in the external magnetic field. The 
Lamor frequency then becomes a function of the position. 

NMR imaging is mainly used in medical field to detect tumours and other abnormalities in humans. Its 
use in agriculture is much more limited and NMR imaging studies have mainly been directed to internal 
quality evaluation of fruits and vegetables. Some experiments (Bellon, 1994 and Chen, 1989) have 
demonstrated that NMR imaging is suitable for detecting internal defects and various quality factors such 
as bruises, dry regions, worm damage, stage of ripeness and the presence of voids, seeds and pits. Further, 
it was found that by variation of experimental parameters, such as echo delay and resolution, specific 
internal features of the fruit can be enhanced. However, a higher resolution and longer echo delay require a 
longer time to scan. 

However, one major drawback of this technique is that the magnetic field at any point in the imaging 
field has to be constant and well defined which emphasises the use of very costly magnets. This eco
nomical reason therefore tends to limit the size of the object which can be imaged, since the object must be 
smaller than the pole size of the magnet and the cost of a magnet increases with its size. At the moment, it 
can be concluded that NMR imaging for the use in detecting fruits within their environment is too limited 
(very big magnets have to be used). 

3.2.4 Imaging techniques using ultrasonics 

The high part of the ultrasonic frequency range (1 to 100 Mhz) has the ability to propagate through soft 
biological materials suffering only moderate attenuation. For this reason, it has been widely and 
successfully used for measurements and imaging in medicine and industry (Mizrach, 1991). '[...] The basis 
of the technique is that at an interface between two acoustically different types of tissue, ultrasound energy 
will be partly reflected and partly transmitted. The reflected energy can be collected and used as an 
indication of position of the interface by reference to the timebase, together with knowledge of the 
propagating velocity [...]' (Bull, 1993). 

In spite of the wide use and success in medicine and industry, very little has been done to employ this 
technique in agriculture. Several researchers used methods and equipment that were available in medical 
and industrial applications for transmission and detection of ultrasonic waves in agriculture objects. Some 
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of them indicated difficulties in the penetration of ultrasonic waves into fruits and vegetables. Others 
reported that the high attenuation of the signal does not allow satisfactory examination of the internal 
structure of the fruit. Upchurch et al. (1987) tried unsuccessfully to use 1 Mhz ultrasound to distinguish 
between damaged and undamaged apples, for example. It was concluded, because of the porous nature of 
fruits, high frequency ultrasound cannot penetrate deeply into fruits. Analysis of the results led to the 
conclusion that the difficulties caused by high attenuation may overcome by using lower frequencies 
(within the frequency range of 50 to 500 kHz) and by increasing the needed power of ultrasound, as long 
as it does not exceed the limit for fruit damage (Mizrach, 1989). 

However, one of the primary problems of ultrasonic testing in the high frequency range, and certainly 
for the detection of fruits, is that the ultrasonic transducer and object need to be acoustically coupled 
(because of the high acoustic impedance between transmitter and air). This has tended to mean that 
ultrasonics in the high frequency range has mainly been used as a contact probe (Bull, 1993). 

More interesting should be the use of the low frequency range of ultrasonics (<100 kHz) which can be 
used for (contactless) range measurements (using the principle of time-of-flight (TOF)) (because of the 
less attenuation of the signal due to atmospheric absorption at these frequencies). There have been several 
attempts to use this technique as the basis of a machine vision system (because of the low cost and simple 
construction of ultrasonic transducers). Surface maps have been generated using either a single transducer 
or a set of transducers (Bull, 1993). Using these surface maps and known three-dimensional shapes of 
objects it should be possible to detect objects (as in the case of the structured lighting technique). 
Furthermore, this technique has the possibility to distinguish between foreground and background objects 
(because of different TOF) which makes it interesting for the detection of partly occluded objects and, 
consequently, preferable to the structured lighting technique. 

However, several problems are encountered in applying ultrasonics to dense ranging in support of 
three-dimensional scene analysis. First, simple ultrasonic transducers tend to have relative large solid angle 
beam spreads (in the vicinity of 30°) so that only very low spatial resolution can be provided. Narrowing 
the beam only partly increases the resolution. Moreover, ultrasonic waves reflected away from the 
transmitter/receiver pair when hitting a surface whose normal makes an angle with the ultrasonic axis of 
the imaging system. Further, ultrasonics is very sensitive to disturbances of the environment such as 
temperature changes, humidity, fluctuations in air, etc. (Dorf 1990, p. 874 and Lach, 1991). These 
problems make this technique less attractive for the detection of fruits. 

Another technique, using the benefits of the low frequency range of ultrasonics, is to look at the (shape) 
features of reflected signals returned by objects when radiated with pulsed or bursted ultrasonic waves. 
The reflected signals show patterns that are characteristic for the object's shape and, therefore, might be 
useful for the detection of fruits. Moreover, many of the problems described above do not play a role when 
using this signature technique. '[...] With a fixed geometry and stable stimulus, the classification of an 
arbitrarily shaped object follows from a comparison between received echo pattern and a reference pattern. 
The comparison process may be performed either in the frequency domain or in the time domain. With this 
simple technique it is possible to distinguish between different objects whose shapes are quite different, or 
between orientation (normal versus upside-down position) [...]' (Regtien, 1995). Under certain conditions 
it is even possible to distinguish between both sides of a coin (Abreu, 1992). However, one of the main 
problems with this technique is its sensitivity to changes in the object's position. A slight change in the 
position may change the reflected signal to such a degree that correlation with the corresponding reference 
pattern is lost. 

From the discussions above, it follows that ultrasonics (in the low frequency range) posses several 
attractive attributes for dense ranging and signature applications. However, their primary disadvantages of 
low resolution (the dense ranging technique) and large sensitivity to small changes in the object's position 
«the signature technique) make this imaging technique less attractive for the many uncertainties in the 
detection of variable fruits within its uncontrollable environment. 

In addition, because ultrasonic systems use very little power, are relative simple and inexpensive and 
ha\c the ability of range measurements (by using only one ultrasonic transducer) and. furthermore, the 
possibility of detecting partly occluded objects it can be thought to use this technique as an extra sensor 
which can give additional information. 
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3.2.5 Imaging techniques using luminescence 

Many organic material, and some inorganic material, will emit radiant energy after they have first been 
exposed to radiation of some particular frequency. This behaviour is known as photoluminescence (Chen, 
1991). If there is a measurable time delay between the absorption and re-emission of the energy, the effect 
is called phosphorescence. If there is no measurable time delay the effect is known as fluorescence (X-ray 
and chlorophyll). Because of this, the latter is more attractive for fruit detection (has to work in real-time). 

In agriculture the X-ray fluorescence is mainly used in constituent analysis of agricultural objects. For 
example, it can be used to determine the concentration of various metals and vitamins within an object 
(Glidewell, 1993). '[...] As many plant and animal materials fluorescence, it is necessary to isolate the 
material carefully before making the fluorescent determination. In many procedures, the total fluorescence 
of a mixture is first determined. Then the desired substance is destroyed or converted to a non-fluorescing 
substance and the residual fluorescence is measured. The difference between the two fluorescence readings 
is taken as the amount due to the substance desired. Fluorescence is also strongly affected by the 
environment of the fluorescing material, for example pH, temperature and solvent [...]' (Bull, 1993). The 
quantitative use of X-ray fluorescence therefore requires careful object preparation. Consequently, most of 
the sensitivity and selectivity of the technique cannot be realised in non-destructive measurements, as is 
essential for fruit detection. 

'[...] Many of the chlorophyll fluorescence techniques relate to the induction kinetics or initial rise 
(±200 ms) and subsequent decay (±5 min) of fluorescence from a pre-darked object which has been 
subjected to a pulse of light (for instance a laser or flash light) [...]' (Bull, 1993). The chlorophyll 
fluorescence technique has already shown its potential as a field sensor of stress related factors (Miranda, 
1995). However, because of the requirement to pre-darken the leaves this technique has only been used to 
monitor isolated leaves of a plant. In order to control the agricultural process, one would require a 
measurement over the whole or a large representative part of the field. As will be needed in fruit detection. 
The possibility of making measurements at night should be considered although the long measurement 
times would still preclude rapid sensing and, therefore, its use for the detection of fruits. More promising 
techniques can be found by using the other imaging techniques described in the previous paragraphs. 

In addition, a possible application of fluorescence techniques is to monitor the application of sprays on 
fruits by mixing herbicides or pesticide with a fluorescent dye. Although it would be desirable to monitor 
spray deposits on fruits as part of the detection within their environment, it is unlikely that the fluorescence 
technique could be used unless a biological safe dye could be used and the practice is acceptable to the 
consumer. 

3.3 Selection and testing of desired fruit features 

The importance of knowing which imaging technique has to be used in order to develop a harvesting 
system has been discussed in the paragraphs above. For clarity, the main features of the different imaging 
techniques and their potential for fruit detection have been summarised in appendix C. 

With choosing an imaging technique, desired fruit features have to be selected and tested so that the 
harvesting task can be performed. In order to select and test the fruit features the following steps have to 
be carried out: 

• Selection of desired fruit features which have to be measured for the harvesting task; 
A f ruit feature is a characteristic of a fruit measured by the imaging technique. These features are used 
to detect fruits within their environment. A method to select desired fruit features is to study literature 
about the imaging technique in combination with the character of the fruit of interest within its 
environment. 

• Testing to see whether the desired fruit features are measurable in the image; 
After having chosen a fruit feature, a check has to be done whether the feature can be measured. 

• Testing the quantitative properties of the fruit feature; 
The quantitative properties of a fruit feature describe its reproducibility, called 'consistency', its range 
(has to be large enough in comparison with its environment) and its relationship to the actual value of 
the feature. 
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• Testing the qualitative properties of the fruit feature; 
The qualitative properties of a fruit feature describe its relation to the Harvesting System Detection 
Output (HSDO). The better the relation of the feature to the HSDO, the higher its quality as fruit 
feature. 

• Testing the performance of the fruit feature in combination with a decision model. 
After the qualitative properties of a fruit feature have been determined, its performance is tested in 
decision models. 

In figure 3.11, the overall selection and testing of desired fruit features in combination with an imaging 
technique is shown. 

harvesting task 

( detection , 

i 

T 
; agreement with the HSDO 

no 

i 

k 

1 
i 
; 

desired fruit features 

availability in image 

satisfying 

yes 

quantitative properties 
not 

yes satisfying 

fruit features 

Figure 3.11, The selection and testing of desired fruit features 

3.4 Conclusions and discussion 

In this chapter various imaging techniques have been reviewed and their potential for the detection of 
fruits within their environment have been discussed. Clearly, the most appropriate imaging technique 
depends on the character of the fruit of interest, its interaction with its environment (such as changing 
illumination conditions, shadows and occluding by leaves) and other practical restrictions such as imaging 
time (real-time). 

Up to now, much of the research on the detection of fruits within their environment have been directed 
towards images obtained in the visible range. Although this range has given acceptable results, it does not 
include the possibility of detecting fruits which have a colour close to that of the rest of the plant or which 
are occluded. This review has shown there are other imaging techniques such as the use of microwaves, a 
combination of some selected frequencies in the near-infrared and visible range and thermal infrared 
radiation which might be capable of detecting fruits within their environment. However, problems may 
still arise with the detection of occluded fruits. But, as microwaves and near-infrared are able to penetrate 
into objects (leaves) these imaging techniques are likely to offer the most promising opportunities for those 
problems. Further, a combination with polarization data might improve the performance of the detection of 
(occluded) fruits within their environment. At the moment, the potential of the other imaging techniques 
such as X-rays, nuclear magnetic resonance and fluorescence are too restricted. However, some imaging 
techniques have received little attention in which there is a potential as an additional sensor for ranging 
such as ultrasonics and lasers (near-infrared). 

Further, the selection and testing of desired fruit features for their quantitative and qualitative properties 
and their performances in a harvesting system were discussed. The quality of a feature is determined by 
the strength of its correlation with the HSDO. The quantitative properties of a feature also influence the 
qualitative properties. As low consistency and a small range weaken the correlation. 
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In general, features for detection applications can be measured more accurately in industry than in 
agriculture. As the definition of the objects is much better in industry than in agriculture and, 
consequently, the measurements can be performed more accurately. However, the consequences of false 
detection in agriculture are, in general, not so serious as in industry because of the relatively low prices of 
the objects and the low penalty cost. 
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4 DETECTION OF THE CUCUMBER WITHIN ITS 
ENVIRONMENT 

Detecting and locating the position of a fruit are essential for robotic harvesting. In most of former 
studies, the difference in colours or brightness between fruits and the other parts of the plant has been 
used to detect the fruits within their environment or to determine the positions of the fruits. However, it is 
difficult to apply the same procedure to plants whose fruits have a colour close to that of their leaves and 
stems (Amaha, 1989). 

As cucumbers have a colour close to that of their leaves and stems and may be (partly) hidden by their 
big leaves, the detection of cucumbers within their environment will be a complex task. Furthermore, the 
variability of the fruit and influences of the unpredictable changing environment complicate the detection 
process even more. Consequently, under these circumstances, it is necessary that an imaging technique be 
capable of detecting cucumbers within their environment which has undetermined features different from 
the cucumbers to be detected should be found. 

4.1 Detection of the cucumber 

Cucumbers (Cucumis sativus L.) are delicate and fresh soft fruits. They grow rapidly and their locations 
are randomly scattered within the plant. The main visual characteristics of cucumbers are: 

• Shape; 
The shape of a cucumber is like a column (which may be curved a bit) and usually has a short neck on 
the stem end. 

• Size; 
The mature cucumber length is variety dependent and varies from 300 to 500 mm. The width is fairly 
uniform throughout the length and varies from 50 to 100 mm. 

• Colour; 
The cucumber colour changes from green at the early stages of growth to uniformly dark green at the 
mature stages. 

• Texture. 
Mature cucumbers have a slightly wrinkled surface and are slightly ridged lengthwise. 

Cucumbers do not ripen at the same time and, consequently, every cucumber has to be detected separately 
and evaluated for ripeness prior to harvesting. 

Most of the work in fruit detection has lead to implicit colour detection (use of interferometric filters) 
or explicit colour detection (image processing using RGB (red, green and blue) or IHS (intensity, hue and 
saturation)). However, cucumbers have a colour close to that of their leaves and stems and may be (partly) 
occluded by their big leaves. As a result of this, an imaging technique has to be found which would be 
capable of detecting cucumbers based on features different from their environment. In chapter three it has 
been shown that there are other imaging techniques which might be capable of detecting fruits within their 
environment, namely the use of microwaves, a combination of some selected frequencies in the near-
infrared and visible range and thermal infrared radiation. Before reviewing these imaging techniques for 
their use in cucumber detection it has sense to expose some cucumber features in more detail first. 

Generally, fruit production, and so cucumber production, is the result of a complex system of 
interacting processes with both short term and long term responses (see figure 4.1). Photosynthesis (the 
absorptance of irradiation in the PAR (Photosynthetic Active Radiation) range, 400-700 nm) is often 
considered as the driving force for fruit production. The assimilates or dry matter, produced by photosyn
thesis, can be stored or partitioned among the different plant components. For optimal fruit production, just 
sufficient dry matter should be partitioned into the vegetative plant parts to realise and maintain a high 
production capacity, while the remaining dry matter is partitioned into the fruits. In the case of cucumbers. 
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the dry matter percentage (% of fresh weight) changes during their development. Initially the dry matter 
percentage decreases rapidly (from about 10%). This decrease then slowed down and finally becomes 
nearly constant (about 3.2%) (Marcelis 1994, p. 58-59). Consequently, a (mature) cucumber has a high 
moisture content (about 96%) (Nelson, 1994 and Boersma, 1995). In addition, the dry matter percentage of 
the (thin) skin of a cucumber (about 4.5%) is a bit higher than the flesh of a cucumber. Further, the skin of 
a cucumber is liked to be waxed to prevent the cucumber from moisture loss. 

Figure 4.1, A simplified relation diagram of fruit production, such as cucumbers (Marcelis 1994, p. 2) 

Plant growth and development is not only a function of the production and partioning of dry matter (left 
side of figure 4.1), but also of the plant water relations (right side of figure 4.1). Water and dry matter 
relations interact with each other, for example via leaf temperature, stomatal conductance, relative water 
content of the plant (ratio of actual to maximum water content) and leaf area (Marcelis 1994, p. 1-5). In 
turn, these relations will have their impact on the imaging technique which should be selected (based on 
different responses (features) of cucumbers in comparison with their environment). 

4.2 Detection of the cucumber using microwaves 

As already mentioned in paragraph 3.2.1.2, in fruits the dielectric properties (which determine the nature 
of interaction with the electromagnetic energy at microwave frequencies) are highly correlated with 
moisture content, because the permittivity of water greatly exceeds that of the dry matter of fruits. More 
specific, the behaviour of the dielectric constant is more regular than that of the loss factor with respect to 
changes in moisture content and the frequency (Nelson, 1994). In cucumbers the dry matter percentage is 
about 3.2% and, consequently, the dielectric properties of a cucumber, and so the attenuation of 
microwaves, should be influenced by its moisture content. Thus, if there would be a difference in moisture 
content between cucumbers and their environment a difference in microwave reflectance might be 
detected. 

However, a simple (idealised) assessment (Whalley, 1991) of microwave reflectance as a technique for 
estimating volumetric water content pointed out some general statements: 

Reflectance measurements have to be taken over a large range of frequencies (for example from I to 10 
GHz); 
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• When the difference in water content is small the magnitude of the frequency dependent effects in 
reflectance are small too; 

• Calibrating microwave reflectance is complex. 

Combining these statements with the changing moisture content of cucumbers and leaves during the day 
(Graaf de, 1992), the scattering of microwave reflectance due to among others surface roughness and the 
known information that moisture content is a dominant variable that influences the permittivity value, but 
there are also other sources of variation (Nelson, 1994 and paragraph 3.2.1.2) it can be concluded that 
microwave reflectance would not be a promising imaging technique for the detection of cucumbers within 
their environment. Especially, because of the complexity of the agricultural environment in combination 
with the dependency of this imaging technique on different and very complex parameters. 

In addition, '[...] active radar studies are by no means perfect. Even less is understood about the 
interaction of microwaves with soil and vegetation than is the case in the visible waveband [...]' (Holmes, 
1990). 

4.3 Detection of the cucumber using near-infrared and visible range 

When colour or spectral reflectance of an object is different from those of others, detection might be 
possible by using R, G, B (red, green and blue) signals from a colour camera or by using optical filters. 
For example, tomatoes and leaves can be detected by comparing the R (red) signal with the G (green) 
signal (Searcy, 1989). As cucumbers have a colour close to that of the rest of the plant their detection can 
not be based exclusively on data obtain from the visible range. However, in literature (Fujiura, 1992; 
Kondo, 1993; Kondo, 1996 and Namikawa, 1988) it can be found that cucumbers have different 
reflectance as compared to their leaves and stems reflectance in the near-infrared range. Thus, it can be 
assumed that cucumbers might be detectable within their environment by using some interference filters in 
the near-infrared range. 

Measurements by Czamowski (1994) of optical properties of single cucumber leaves showed that they 
are characterised by high absorptance (75-80%) of irradiation in the PAR range (400-700 nm). The highest 
PAR absorptance occurred in the blue and red ranges, while a small decrease in absorptance was observed 
in the green one. The maximum reflectance and transmittance within the PAR range occurred at wave
lengths from 540 to 560 nm (particularly by young leaves). Conversely, in the near-infrared range very 
low absorptance (6-8%), high reflectance (about 45%) and high transmittance (about 45%) did occur. This 
protects the leaves from overheating and also from inhibition of the process of photosynthesis. Basic 
optical properties (reflectance, transmittance and absorptance) of single cucumbers were not found in 
literature (by the author). It is, therefore, difficult to select some frequencies in the near-infrared range 
which might be effective for the detection of cucumbers within their environment. In general, the water 
absorption band such as 970 nm and 1170 nm, the chlorophyll absorption band and the 850 nm 
wavelength band are especially effective for detection purpose (Fujiura, 1992; Kondo, 1996 and 
Namikawa. 1988). 

Nevertheless, because of the experience found in literature (and paragraph 3.2.1.3) on difference in 
reflectance of cucumbers and their leaves and stems it can be concluded that the imaging technique of 
using some selected frequencies in the near-infrared range might be capable of detecting cucumbers within 
their environment. However, to make a proper selection of some interference filters it would be sensible to 
execute some experiments in laboratory first to study the reflection properties of a single cucumber. After 
w Inch, the imaging technique can be tried in a greenhouse (to criticise its dependency on external factors). 

•/..?. / The reflection properties of a single cucumber 

To study the reflection properties of a single cucumber, samples of cucumbers (and also of some cucumber 
leaves) were collected (bought in a normal greengrocery). In general, to measure the reflectance of a 
sample different methods can be applied. In this experiment it was chosen to illuminate the samples (the 
cucumbers and the two sides of the cucumber leaves) diffusely (using a fenced 150 Watt halogen lamp) 
and to measure the reflected light perpendicular on each sample. To carry out such an experiment a 'Ball 
oi Ulbricht' had been used, which was painted white inside. The samples were placed on a circular 
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transparent opening, with a diameter of 30 mm, in the ball (which has an inner diameter of 85 mm itself)-
The resulting reflected light of the sample was sent to a monochromator (Jobin-Yvon, model HR320) via 
an opening in the ball, a rotatable mirror and two lenses with a diafragma between them. The output of the 
monochromator was connected to a Peltier cooled detector, a Hamamatsu photomultiplier model R636, 
which in turn was connected to a computer. The input and output of the monochromator had a setup of AA. 
= 3 nm and measured the reflectance in the range of 350 to 1650 nm with intervals of 5 nm. 

As reflection standard was chosen fora white standard: BaS04(Merck, norm DIN 5033). This because 
the area of the sample opening was not negligible in comparison with the area of the ball and additional 
measurements had to be done, namely the reflection measurement of the sample, the reflection 
measurement of the innerside of the ball with the sample on the sample opening, the reflection 
measurement of the white standard and the reflection measurement of the innerside of the ball with the 
white standard on the sample opening. The reflection factor (p) of the sample can then be expressed as: 

samph „<*) _W( A l innerside of ball with standard a) 
standard a) innerside of ball with sarnpl >a> • p standard a) (F 4.1) 

with 

/ photomultiplier current {in niA). 

Finally, this resulted into the reflection properties of the sample. Figure 4.2 shows the average percentage 
of reflected light of the samples of cucumbers and the upper surface of cucumber leaves (as these represent 
the most unfavourable conditions for detection) and the wavelength. Single measurements of the 
cucumbers and the two sides of cucumber leaves can be found in appendix D. 
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Figure 4.2, The average percentage of reflected light of samples of cucumbers and the upper surface of cucumber 
leaves and the wavelength 

From the results it can be observed that in the PAR range the reflection properties of a cucumber is 
approximately the same as the reflection properties of a cucumber leaf (using literature and the results of 
the experiment). Further, the cucumbers showed in the near-infrared range that they are characterised by a 
successively high (about 639?-) and low reflectance (about 35%). The high reflectance within the near-
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infrared range occurred at wavelengths from 750 to 900 nm and the low reflectance occurred at 
wavelengths from 950 to 1000 nm. This in contrast with the upper surface of cucumber leaves which 
showed in the near-infrared range a nearly constant reflectance (about 45%). 

As a result of this small experiment (only five cucumbers and five leaves had been measured) it can be 
concluded cautiously that in the near-infrared range a difference in reflection properties between 
cucumbers and cucumber leaves exist (which is in agreement with literature). The largest difference 
between the spectra can be found between 750 and 900 nm and a smaller one between 950 and 1000 nm. 
Consequently, in these ranges some frequencies should be selected which might be capable of detecting 
cucumbers within their environment (as was also suggested in literature). 

4.4 Detection of the cucumber using thermal infrared radiation 

Thermal imaging allows to obtain a simultaneous measurement of different temperatures (infrared 
radiation) within a scene (a 'thermal map'). Further, as it can be assumed that cucumbers and their 
environment (leaves and stems) have a difference in heat capacity this would result in different rates of 
heating and cooling (transpirating) (Dobrusin, 1992). In turn, these temperature differentials could be 
recorded by thermal imaging and used for the detection of cucumbers. 

However, cucumbers have big leaves so it can be expected that the temperature distribution within a 
single leaf will be different (and probably relatively large). Especially, between the middle and the side of 
a leaf. As in the latter the temperature increases or decreases more rapidly (Lefebvre, 1993). Besides, 
mutual shading of leaves (and cucumbers) and their various orientations and positions within the canopy 
cause an additional variation in their temperatures. Furthermore, as already noted in paragraph 3.2.2, care 
should be taken to avoid complication of the background. As factors such as air temperature, weather 
conditions, time of the day, time of the year, position in the greenhouse, field of view and angle of the 
camera, etc. will have their influence on the measurement temperatures. 

From the above discussion (and paragraph 3.2.2), it can be concluded that it is not yet clear whether or 
not this imaging technique is feasible for the detection of cucumbers within their environment. As it is still 
not known if the temperature difference between cucumbers and their environment will be reasonable 
enough to detect the cucumbers. First, various complex issues have to be solved, such as the dependency 
of the background, the time of the day, the time of the year and a lot more factors influencing the 
temperature measurements. Further, and also important, the expense of the equipment (tend to be very 
expensive) has to be evaluated and accounted. Consequently, because of this and the many uncertainties, 
the use of thermal infrared radiation for the detection of cucumbers within their environment is no longer 
investigated in this research. 

4.5 Conclusions and discussion 

In this chapter selected imaging techniques have been reviewed for their use in cucumber detection. As 
cucumbers have a colour close to that of their leaves and stems the most appropriate imaging technique 
should be based on different responses (features) of cucumbers in comparison with their environment. 

This review has shown that the imaging technique of using some selected frequencies in the near-
intrared range might be the most promising imaging technique capable of detecting cucumbers within their 
environment. In agreement with literature, it has been found (by experiment) that the reflectance of 
cucumbers in the near-infrared range is different in comparison with their leaves. The largest difference 
between the spectra can be found between 750 and 900 nm and a smaller one between 950 and 1000 nm. 
Consequently, in these ranges some frequencies (the interference filters) should be selected which might 
be capable of detecting cucumbers within their environment. 

The potential of the other imaging techniques for their use in cucumber detection are doubtfully. The 
imaging technique of using microwaves is dependent on different and complex parameters. Furthermore, 
the reflection measurements have to be taken over a large range of frequencies while their effects will 
probably be only small and unpredictable. In the case of thermal infrared radiation it is still not known if 
the temperature difference between cucumbers and their environment will be reasonable enough. As there 
are too many factors influencing the temperature measurements which have to be solved first. Further, and 
also important, the equipment tend to be very expensive. 
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At the moment, problems may still arise with the detection of occluded cucumbers. However, as near-
infrared is able to penetrate into leaves this technique might offer some opportunities and more research in 
this area is needed first. 
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5 NEAR-INFRARED REFLECTANCE OF THE CUCUMBER IN 
COMPARISON WITH ITS ENVIRONMENT 

In the previous chapter it has been shown that the near-infrared reflectance of a single cucumber is 
different in comparison with a single cucumber leaf. This difference can yield useful information for the 
detection of cucumbers within their environment. Especially, when some frequencies in the near-infrared 
range are selected which combination will be characteristic for a cucumber within its environment (its 
leaves). 

However, radiation reflected by a tall plant, as in the case of cucumbers, in a greenhouse cannot in 
practice, be related straightforwardly to single reflection measurements made under laboratory conditions 
or even made in a greenhouse, due to the many factors influencing the reflection and the large variations 
from place to place of the reflected radiation (Stanghellini 1987, p. 62-74). 

5.1 Some selected frequencies in the near-infrared range 

Near-infrared reflectance of single cucumbers are characterised by a successively high (because of a rise of 
the reflectance) and low (because of a decline of the reflectance) reflectance, which occur respectively at 
wavelengths from 750 to 900 nm and from 950 to 1000 nm. On the contrary, single cucumber leaves show 
a nearly constant reflectance in the near-infrared range (see paragraph 4.3.1 and figure 4.2). Using this 
information, it follows that a combination of the reflection of only two frequencies will be sufficient to 
distinguish between a cucumber and a cucumber leaf (this by using the minimal reflectance caused by 
water and the maximum reflectance in the adjacent region of the curve). However, this would be the case 
of measurements made under laboratory conditions and further experiments in a greenhouse have to prove 
ils use for the detection of cucumbers within their environment. Therefore, two interference filters of the 
following characteristics (see also figure 4.2 and appendix E) have been chosen: 

• 850 ± 3.5 nm interference filter; 
Band width of 25 ± 3.5 nm and 45% minimum peak transmittance. 

• 970 ± 2 nm interference filter. 
Band width of 11 ±2 nm and 45% minimum peak transmittance. 

By expressing the resulting data of these filters as a ratio, the variation caused by difference in total 
irradiance of the spectral data at the time of collection is minimised (Edwards, 1988). This spectral ratio 
(SR) is defined as the reflection intensity value at 850 nm with respect to the reflection intensity value at 
970 nm. 

As a result, in the case of a cucumber the SR value should be larger than one and in the case of a 
cucumber leaf about one. But, experiments in a greenhouse have to make this clear first. At the same time, 
this is the objective of this chapter too. It has to be determined if spectral reflectance at the selected 
frequencies in the near-infrared range of a cucumber is different from a cucumber leaf during the time of 
only one day at a fixed place in a greenhouse. Besides, this experiment has to be seen as a basis to decide 
il the imaging technique of using near-infrared reflection should be a way of detecting cucumbers within 
their unpredictable changing environment. 

5.2 Radiation in a greenhouse 

In general, reflection of radiation by a plant in a greenhouse occurs by either the components of the plant 
or the underlying soil surface. Further, it can be assumed that the reflectance of a component of a plant, in 
this case a cucumber or its leaf, in a greenhouse will be smaller than the single reflection measurements of 
the same component made under laboratory conditions. Since mutual shading and multiple scattering 



Chapter 5: Near-infrared reflectance of the cucumber in comparison with its environment 39 

within the plant result in a sort of 'cavity' effect, which causes an additional absorption of radiation 
(Stanghellini 1987, p. 66). 

Besides, it can be found that the radiation at the upper surface of the plants is by no means isotropic and 
it is disturbed further as it penetrates into the plants. The incoming radiation at the upper surface of the 
plants depends among others on the transmissity of the greenhouse, which in turn is dependent on the 
nature of light (amount of direct and diffuse light, atmospherical circumstances, weather conditions, etc.), 
the time of the day, time of the year, position and construction of the greenhouse, position in the 
greenhouse, etc. (Bakker, 1985; Elgersma, 1985 and Middendorp, 1985). 

How a component of a plant will interact with the incoming radiation depends on the kind of 
component and its production (growth). As seen in paragraph 4.1, in the case of cucumbers the latter is the 
result of complex water and dry matter relations which interact with each other. In turn, these relations will 
have their impact on the amount of reflection. Since the reflection in the near-infrared range depends on 
leaf area index (LAI, the total one-sided area of the leaves per unit of ground area), (air) temperature, 
transpiration and water absorption (humidity), age, time of the day, etc. (Czamowski, 1994; Edwards, 
1988 and Graaf de, 1992). 

From above it follows that the resulting 'wild scattering' of radiation at different places is, in fact, a 
common problem with greenhouse experiments and, therefore, should be kept in mind. In addition, '[...] an 
exhaustive theoretical description of the radiative exchanges of a canopy is made almost impossible [...]' 
(Stanghellini 1987, p. 62). 

5.3 Experimental setup 

The experimental determination of the spectral reflection at the selected frequencies, 850 nm and 970 nm, 
have to be performed for a cucumber and a cucumber leaf growing in a greenhouse. The latter is a single-
glass, Venlo-type, East-West orientated one. The cucumbers are produced by a high-wire cultivation 
method (see appendix B). The plants grow on rockwool mats and both soil and rockwool are covered with 
white plastic sheets so that no evaporation can take place and to increase the radiation available for the 
plants (a fairly common practice in The Netherlands). 

Incoming radiation has to be measured, by means of a solarimeter, where the spectral reflection 
measurements have to take place. This measurement is needed because the spectral reflection is dependent 
on the amount of incoming radiation (which is position dependent). In fact, it is worthwhile pointing out 
once more that the reflection measurements will be influenced by many factors. In other words, for a 
correct measurement a large number of additional measurements, to determine the influence of each factor, 
have to be carried out at several places. However, in this experiment only a possible difference in spectral 
reflectance has to be detected (and not determinated precisely). Therefore, it is sufficient to capture only 
those factors which have to be known to provide an indication of the circumstances under which has been 
measured. So, at least, temperature and humidity in the greenhouse have to be known. 

As the measurements have to be carried out at only one fixed place in the greenhouse (because of lack 
of time) an appropriate place has to be chosen. Since this experiment has to be seen as a basis, it has sense 
to choose for a favourable place: the middle of the greenhouse under a ridge (because of the more steady 
conditions there). 

Further, to improve the quality of the images acquired under conditions of natural illumination an 
additional light can be used. One of the first considerations in selecting an illumination source is the 
spectral distribution required by the application (see paragraph 2.3.1). '[...] You should choose a lamp with 
high output in your desired spectral region and low output at wavelengths that could cause stray light or 
other problems [...]' (Burke 1996, p. 128-129). Here, the spectral reflection in the near-infrared range has 
to be measured, so it would be preferred to use an illumination source which contains this spectral range, 
for instance a halogen lamp (see figure 4.2). 

In addition to considerations as the radiance of a light source, also attention has to be given to the setup 
of the scene illumination (see paragraph 2.3.1). In this case frontlighting should be chosen to enhance the 
spectral features. However, it can be thought to illuminate the scene not only from the front but also from 
the left or the right or from both sides as has been done by Amaha et al. (1989) to reduce the noise from 
leaves by comparing two images of the same area. 
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5.4 Results 

The reflection measurements in the greenhouse were carried out, from early in the morning (5.30h) on 14 * 
of May (at a rainy day), by means of a digital CCD black and white camera (Spindler & Hoyer, 280 SW-
D/C) with adjustable exposure time (needed to measure in the near-infrared range) and a computer 
interface. All camera parameters were computer adjustable (it was also possible to optimise the image at 
the moment of acquisition by using a lower and upper limit to adjust the digitalisation range and so 
reducing, for instance, the background noise) and the image captured by the camera was transferred 
directly into the main memory where it could be manipulated by the running image processing program 
SCIL-Image (see appendix F and figure 2.1)). A chosen (mature) cucumber and neighbour cucumber leave 
were recorded repeatedly (in the same image) by the camera (using the two interference filters) in the 
middle of the greenhouse at a height of 90 cm and a distance of 80 cm from the camera. 

Unfortunately, it seemed that with a spectral irradiance of about 24 W/m2 (measured in the morning 
with a Kipp 18, 1271 solarimeter), it was impossible to create a visible image of the scene when using the 
970 nm interference filter. Even when the exposure time was increased to 21.51 min (the 850 nm 
interference filter needed only an exposure time of 1.22 min) and it was decided to use an additional light 
source: a 1000 Watt halogen-U-lamp. Consequently, the exposure time could be reduced to less than 6 min 
to create an image of the scene. However, a disturbing circular darkened border around the image was 
formed now (see figure 5.1). It seemed that this was caused by the used lens (TV lens, Ernitec of Denmark 
with f = 8 mm and 1:1.3) which was subjected to spherical aberration. 

Figure 5.1. Recorded scene using the 970 nm interference filter and an additional light source (exposure time = 
5.2S mini 

In addition, generally, because of the spherical nature of the iens (the ideal lens is actually aspherical), the 
center point of an image may be in focus while its edges are out of focus. This is called spherical 
aberration or SA and is mainly be found in cheap or large-aperture lenses. '[...] Spherical aberrations arise 
troin the use of spherical surfaces. The required degree of refraction is not constant but varies in each 
concentric annular zone of a spherical surface [...]' (Burke 1996, p. 356). For a converging lens with 
spherical surfaces, the outer rays come to a focus to soon (between the lens vertex and the focal point 
instead of at the focal point). Likewise, for a diverging lens the outer rays tend to intersect after the central 
focal point. The degree of SA is the percentage distance the focal point is displaced for outer versus central 
ra\s. 

A simple method to minimise SA is to use only the central portion of the lens and avoid the outer 
edges. The degree of SA thus varies with the aperture of the lens (it is less for a small aperture). In 
addition, stopping down the aperture reduces SA. but this also greatly reduces brightness. Further, a more 
difficult solution to decrease SA is to manipulate the lens shape. 

It follows that in this experiment the aperture of the used lens should have been kept small to obtain 
less distorted images. Further, only the middle part of the images should have been used to reduce this 
distortion even more. However, more experiments in laboratory (see appendix G) found that the used lens 
was also subjected to chromatic aberration (the lens seemed to be susceptible to this kind of aberration). 
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which results from the fact that the index of refraction of the lens material varies with the frequency. 
Different frequencies have different refractive indices and are, therefore, focused at different points. 

In fact, the stated focal length of the used lens was not correct for the near-infrared measurements. 
Because of this, the gray scale variations in the obtained images in the near-infrared range were not correct 
(the images were out of focus), which precluded them to be used in the possible detection of cucumbers 
within their environment. Generally, the true focal length of a lens increases with increasing frequency into 
the near-infrared range. Thus, a possible remedy to this problem should have been the use of an extension 
tube. However, more experiments in laboratory have to prove this first. In addition, to expect any lens to 
focus the entire 400 to 2000 nm range (the visible and near-infrared range) simultaneously is unrealistic. 

Regrettably, the above problems were noticed too late and future (more) correct measurements in the 
greenhouse were not possible anymore (because of lack, of time) and only measurements made in 
laboratory could be evaluated. In these measurements also spherical and chromatic aberration occurred, 
but these could be more controlled because of the smaller exposure times and only a small aperture had to 
be used (in comparison with the measurements made in the greenhouse). It is worthwhile pointing out once 
more that the significance of nearly all aberrations increases with increasing aperture. Further, as a general 
rule any optics that work, in the visible range will work satisfactory in the near-infrared range, but a few 
precautions have to be taken. For example, the stated focal length of the lens is often not correct for the 
near-infrared range (Burke 1996, p. 521). 

5.4.1 Results of measurements made in laboratory 

First, in order to determine the amount of distortions (the incorrect gray scale variations) caused by the 
aberrations (using a small aperture) as good as possible reflection calibration standards were used (see 
appendix I). Because of this, the measurements of both interference filters could be better understood and, 
therefore, correct conclusions could be drawn. 

The standards were recorded, successively, with and without the two interference filters at a distance of 
74 cm from the camera and with the use of an additional light source (a 1000 Watt halogen-U-lamp). 
Further, the aberrations were reduced as good as possible by stopping down the aperture. The results (the 
different reflections) are shown in figure 5.2 and table 5.1. 
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Figure 5.2. The standards recorded, successively, without and with the 850 nm and 970 nm interference filter 
(exposure time (respectively) = 100 us. 10.24 s and 20.48 s and distance - 74 cm) 
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Certified reflectance 
factor values of the 

calibration standards 

[-1 

0.02 

0.52 

0.76 

0.99 

Without an interference 
filter 

[gray value] 

24-25 

125-130 

187- 193 

239 - 245 

With an 850 not 
interference filter 

[gray value] 

38-40 

106 - 109 

139- 142 

172-175 

With a 970 nm 
interference filter 

[gray value] 

35-37 

93-96 

138- 142 

151-153 

Table 5.1, The measured reflectance values of the standards with and without the use of the interference filters 

From the results it could be seen that the mutual ratios between the calibration standards for the 
measurements without an interference filter and with the 850 nm interference filter were (on average) in 
agreement with the mutual ratios between the certified reflectance factor values. In addition, it could also 
be seen that the camera was contaminated with an offset. From this, it followed that the amount of 
distortions under those circumstances and with or without the 850 nm interference filter could be 
considered as almost negligible (the results had a linear relation). However, measurements with the 970 
nm interference filter showed a deviant result. The mutual ratios at this frequency were not in agreement 
with the certified reflectance factor values anymore. Especially, in the reflectance range between 0.52 and 
0.99. At the same time, this is also the range where the reflection properties of the cucumbers (and 
cucumber leaves) are approximately situated (see figure 4.2). Consequently, the images obtained at this 
frequency would not have been correct, which precluded them to be used in future measurements with 
cucumbers and cucumber leaves (at this frequency distortions (incorrect gray scale variations) played an 
important part in the measurements). It followed that only the 850 nm interference filter could be used for 
future (correct) measurements. 

Anyhow, to determine a possible reflectance difference between a cucumber and cucumber leaf it was 
decided to use only the 850 nm interference filter. For this purpose a single cucumber leaf was sticked to a 
board against which a cucumber was hold. This scene was recorded with the 850 nm interference filter, 
under the same circumstances as described above. Then, from the obtained image the gray values of the 
pixels at different chosen lines were depicted on different graphs (using the written algorithm in appendix 
H) (see figure 5.3). 

From these graphs it could be seen that the reflectance of the cucumber was always higher than its 
surrounding leaf (the hole in the graph was caused by the shadow of the cucumber). Unfortunately, 
because of a different exposure time (in comparison with the standards) nothing could be said about the 
amount of reflection (there was no reference). The only thing that could be said more is that the ratio 
between the reflectance of the cucumber and the cucumber leaf was a bit lower in comparison with the 
ratio of the corresponding values in figure 4.2. 

In addition, although the images obtained with the 970 nm interference filter were not correct, 
nevertheless, little attention had been given to these measurements. Some graphs had been depicted and, 
furthermore, some corresponding SR values had been determined (by using different thresholds) (see 
appendix J). However, because of preciseness only little attention should be given to these results and 
more research is needed first. 
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5.5 Conclusions and discussion 

In this chapter the near-infrared reflectance of cucumbers in comparison with their environment have been 
discussed. It was found that the discrimination between the cucumber and its leaf is considered to be 
possible by the value of the spectral ration (SR). However, this would be the case of measurements made 
under laboratory conditions. 

Unfortunately, experiments in a greenhouse could not take place because the used lens was subjected to 
several aberrations (spherical and chromatic aberration). In practice, altering the aperture is the main tool 
to control these distortions. However, the use of calibration standards showed that the images obtained 
with the 970 nm interference filter were not correct (suffer from incorrect gray scale variations). 
Consequently, measurements in laboratory could only be carried out with the 850 nm interference filter 
and showed a reflectance difference between a cucumber and a cucumber leaf (their ratio is larger than 
one) at this frequency. 

However, these measurements cannot in practice be related straightforwardly to measurements made in 
a greenhouse due to the many factors influencing the reflection and its large variation from place to place 
there. The interaction of radiation with a plant in a greenhouse is actually the interaction with a huge 
amount of (different) components of that plant. Generally, the resulting 'wild scattering' of radiation at 
different places is, in fact, a common problem with greenhouse experiments. Consequently, it cannot be 
proved practically that the imaging technique of using near-infrared reflection is the way of detecting 
cucumbers within their environment. In fact, correct measurements (without distortions) in a greenhouse 
are needed first. 

Further, it follows that the used camera was not an appropriate choice for near-infrared measurements 
in a greenhouse. As changing lighting (weather) conditions during the large exposure times (needed for 
near-infrared measurements) can influence the measurements badly. However, the use of an additional 
light source can reduce the exposure time significantly. 

In addition, near-infrared images look blurry because of among others residual aberrations (including 
SA), reduced modulation transfer function (MTF) of the lens at longer wavelengths and influences of the 
anti-reflection coating of the lens in the near-infrared range. 
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6 CLASSIFY THE CUCUMBER WITHIN ITS ENVIRONMENT 

As already mentioned, cucumbers do not ripen at the same time and, consequently, every cucumber has to 
be evaluated for ripeness (classified) prior to harvesting. Thus, another important harvesting task of the 
harvesting system is to determine the maturity stage of the cucumbers. 

In general, '[...] the principles which dictate at which stage of maturity fruits should be harvested is 
crucial to their subsequent storage and marketable life and quality. These may be defined in terms of 
either their physiological maturity or their horticultural maturity, and are based on the measurement of 
various qualitative and quantitative factors [...]' (Thompson 1996, p. 26). 

6.1 Harvest maturity 

There are certain guiding principles to be followed when selecting fruit to be harvested. Harvest maturity 
should (Thompson 1996, p. 26): 

• Be at a stage which will allow it to be at its peak condition when it reaches the consumer; 
• Be at a maturity that allows it to develop an acceptable flavour or appearance; 
• Be at a size required by the market; 
• Have an adequate shelf life. 

The methods used to determine the maturity of fruits may be based on the subjective estimate of people 
carrying out the harvesting task. To achieve this, sight, touch, smell, morphological changes and resonance 
may be used. However, the goal of this project is the development of a harvesting robot of soft fruits. 
Furthermore, especially the use of computer vision as the major sensing technique has to be evaluated. 
Thus, under these circumstances, appropriate features have to be used in the harvesting system to 
determine the maturity of fruits. In addition, this results in a more objective and perhaps more consistent 
determination of the maturity of fruits. 

Image analysis systems have already been widely applied during the last years in the inspection and 
classification of fruits for their use in automatic sorting and grading machines (Chen, 1991). Different 
quality features have been studied, using different image analysis techniques (use of a solid-state TV 
camera, line-scan camera. X-ray scanning, ultrasonic scanning, NMR imaging, etc.), like size, shape, 
colour (for both maturity estimation and detection of irregular fruits) and external damages (bruises, 
blemished or rotten fruits). However, these systems cannot simply be applied to the agricultural 
environment (in which the maturity of fruits have to be determined) because of such problems as occlusion 
of fruits and influences of the unpredictable changing environment (sun illumination, shadows, etc.). Basic 
techniques developed for automatic sorting and grading can be applied. However, modifications are 
necessary in order to make them suitable for the determination of the maturity of fruits within their 
(variable) environment. 

6.2 Harvest maturity of cucumbers 

In practice, the main criterion to determine when a cucumber should be harvested is the size of the 
cucumber (400-600 g fresh weight). Generally, changes in size of a fruit as it is growing are frequently 
used as the main criterion for its harvest. In fruits this may simply be related to the market requirement. 
Nevertheless, a cucumber is harvested at a larger size when its average growth rate increases and, 
therefore, the harvest size changes during the season (400 g fresh weight in spring. 500-600 g fresh weight 
in summer and 300 g fresh weight in autumn). In addition, the harvest date may also depend on shape of 
the cucumber, number of cucumbers growing on the plant, price of the cucumber, availability of labour 
and the personal view of the grower. Further, besides size there are other parameters which determine the 
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quality of the cucumber: ratio between length and thickness (determines to a great extent its shape), 
curvature, taste, shelf life, firmness, etc. (Marcelis, 1994 and Marcelis 1994, p. 55-63). 

At harvest, cucumbers are not physiologically mature. They could keep on growing for a long period. 
Some are harvested even before they reach the maximum growth rate, while others are harvested when 
they are more than twice as old. When the growth rates of the cucumbers are high they are harvested at an 
earlier development stage, which has important implications for the quality of the cucumber. The average 
growth rate of a cucumber depends primarily on the net assimilation rate, the competition from other 
cucumbers for the available assimilates and the temperature. With increasing temperature the age at 
harvest (days from anthesis until harvest) decreases, but not necessarily the development stage. When 
cucumbers are harvested at an early development stage they are more susceptible to the incidence of 
rubber necks (low firmness and shrivelled skin). On the contrary, when cucumbers are harvested at a later 
development stage they soon start to yellow (overripe) (Haghuis, 1991; Marcelis 1994, p. 55-63 and Roest 
van der, 1991). 

6.3 Determination of the cucumbers maturity 

In automatic sorting and grading machines colour is commonly used as a decisive factor in the 
determination of the maturity of fruits, where the colour of the fruit changes as the fruit matures (Moltó, 
1996). However, in the case of cucumbers there is no perceptible colour change during maturation. 
Therefore, global or average colour cannot be used as an indicator of maturity for cucumbers. 

On the contrary, as already mentioned in the above paragraph, cucumber fresh weight can be 
considered as the major parameter for maturity determination of cucumbers. Thus, to determine the 
maturity of cucumbers an accurate nondestructive method for estimating the fresh weight of cucumbers 
has to be found. Literature showed that this can be done by measuring the volume of a fruit, as has been 
reported for tomato (Marcelis 1994, p. 62), pear (Mitchell, 1986) and eggplant fruit (Barbieri, 1990) where 
relationships have been described that relate fruit size (fresh weight) to volume by converting diameter or 
circumference (X) to volume (Y) by means of logarithmic transformation Y = aXb. 

3000 

1000 2000 

calculated volume (cnr*) 

3000 

tu: u re 6.1. Cucumber fresh weight as a function of volume calculated from length and circumference (average of 
cinumfcrcncc at a quarter, half and three quarters of the cucumber length). Each symbol represents one 
tin umber from plants with one or seven cucumbers, grown at 20, 25 or 30°C and 75 or 135 Win2 PAR. The 
< m umbers were harvested between 0 and 40 days after flowering 

Assuming a cucumber to be cylindrical, its volume can be estimated from its length and circumference. 
Although this would result in an overestimation of the volume, research by Marcelis (1994, p. 55-63) 
showed that the fresh weight will be proportional to the calculated volume independent of cucumber age. 
cucumber si/.e or temperature (see figure 6.1). Furthermore, it was found that the best relationship between 
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calculated volume and fresh weight was obtained when circumference was measured at three places along 
the length of a cucumber, but measuring the circumference only halfway along the cucumber also yielded 
a close linear relationship. 

It follows to determine the maturity of cucumbers by a harvesting robot the harvesting system should 
be capable of measuring the volume of a cucumber. Because normally the output of the sensing is a two-
dimensional image the volume of the cucumber has to be estimated from its length and diameter (at one or 
more places). However, the agricultural environment has a three-dimensional nature. The plants have 
volume that is filled by stems, leaves and cucumbers, which may obstruct the cucumber of interest, 
disturbing evaluation of size (respectively volume). Further, the cucumber may be distorted by occlusion 
so that sometimes it cannot be recognized at all. Needed analysis of the complex images and reconstruction 
of the cucumber from an occluded image demand, however, for sophisticated processing techniques that 
are time consuming and make them less attractive for their use in robotic (real-time) harvesting. As a result 
of this, the robotic harvesting of mature cucumbers calls for three-dimensional information to avoid 
obstacles (occlusion). Although, the above method, based on a two-dimensional image, can be suitable in 
the case of clearly visible cucumbers. However, it should be kept in mind that errors can possibly be 
introduced in measuring the length and diameter of the cucumber in the two-dimensional image because of 
such problems as insufficient resolution, too large variation in distance between imaging sensor and 
cucumber, threshold results are not consistent because of shading, etc. 

Another possible method to determine the maturity of cucumbers is to compute the time between 
flowering and cucumber being ready for harvesting. Marcelis (1994, p. 55-63) found that length, 
circumference and fresh weight of cucumbers followed sigmoid curves from which the cumulative growth 
and growth rates of the cucumbers can be described accurately. However, as with most fruit it is difficult 
to utilize this consistency in practice. Forecasting harvest fruit size requires knowledge of the reaction of 
the fruits to different environmental factors (Weite, 1990). 

Before using one of the above (sophisticated) methods it is important to remind that this research is 
limited to applications to the high-wire cultivation method. In this cultivation method most mature fruits 
can be found at a height of 1200-1250 mm to 1750-2000 mm, certainly in period of maximum possible 
output from halfway of February till end of October (see appendix B). Furthermore, and also important, at 
these heights the cucumbers are very uniform in length and fresh weight. So it would be preferable to 
harvest all cucumbers, which are detected by the harvesting system, at these heights. As the consequences 
of false determination of maturity are. in general, not so serious because of the relatively low prices of 
cucumbers and the low penalty cost and the large probability of detecting uniformly mature cucumbers at 
these heiehts. 

6.4 Conclusions and discussion 

In this chapter the détermination of the maturity of cucumbers has been discussed. Because the maturity 
estimation has to be carried out by the harvesting robot appropriate features in the harvesting system have 
to be used. The strength of using image analysis in the determination of the maturity of cucumbers is its 
ability to measure maturity in an objective way. 

The evaluation of cucumbers within their environment is a complex task, due to the three-dimensional 
nature (possible occlusion of cucumbers) and influences of the unpredictable changing agricultural 
environment. Consequently, the robotic harvesting of mature cucumbers calls for three-dimensional 
information to avoid obstacles (occlusion). Although, in the case of clearly visible cucumbers the maturity 
of a cucumber can be estimated from its volume by measuring its length and diameter (at one or more 
places) based on a two-dimensional image. However, errors can possibly be introduced in these measure
ments. 

Another possible method to determine the maturity of cucumbers is to compute the time between 
flowering and cucumber being ready for harvesting. However, as with most fruit it is difficult to utilize this 
consistency in practice. 

Because of the use of the high-wire cultivation method in this research most mature cucumbers can be 
found at a height of 1200-1250 mm to 1750-2000 mm. Furthermore, at these heights the cucumbers are 
very uniform in length and fresh weight. As a result of this, the easiest way to determine the maturity of 
cucumbers is to harvest all cucumbers, which are detected by the harvesting system, at these heights. 
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Furthermore, the consequences of false determination of maturity are, in general, not so serious because of 
the relatively low prices of cucumbers and the low penalty cost. 
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7 PRECISE LOC A TING THE CUCUMBER WITHIN ITS 
ENVIRONMENT 

'[...] Fruits are not isolated objects. They are scattered in a three-dimensional space among vegetation. 
To reach them human pickers use an arm with many joints and 3-D vision / . . . / ' (Rabatel, 1994). In the 
same way, the har\>esting robot requires a sensing system to precisely locate the cucumbers and a 
mechanical arm, also called the manipulator, to reach and harvest them. 

Due to the three-dimensional nature of the agricultural environment, which may obstruct the cucumber 
of interest, robotic harvesting calls for three-dimensional information to direct the harvesting device and 
to avoid obstacles in the unpredictable changing agricultural environment. 

7.1 Precise locating the cucumber 

As shown in previous chapters, computer vision plays a privileged role in robotic harvesting. Using this 
approach, cucumbers have to be localised by means of an imaging sensor placed in front of the plants, in 
order to control the motion of a harvesting device that will harvest the cucumbers one by one. However, 
this localisation is not a simple task. The agricultural environment is fairly complex to deal with, because 
cucumbers have to be localised among a lot of variable objects presented in a greenhouse (like stems, 
leaves, wires, pipes, sky, etc.) which may obstruct or even occlude the cucumber of interest. Therefore, 
three-dimensional information is needed to locate the cucumber and to direct the harvesting device to it. 

Although most of the computer vision techniques appear quite sophisticated, they are inherently two-
dimensional (the output is a two-dimensional image) and are strictly speaking not suited for dynamic robot 
guidance. However, once a cucumber has been detected (partly or fully), an efficient way of linking 
detection and finally harvesting is to use the straight line between the imaging sensor and each visible 
cucumber as a trajectory for the harvesting device to reach the cucumber, because this line is guaranteed to 
be free of obstacles (otherwise it would not be (partly) visible). Then, only the latitude and longitude 
coordinates of the harvesting device trajectory have to be determined. But, because these are directly 
related to the coordinates in the two-dimensional image, the localisation of the cucumber in this image is 
sufficient to determine the angular orientation of the harvesting device trajectory and to start its motion 
(see figure 7.1). The cucumber distance remains unknown, but the harvesting device motion can be 
stopped by means of a local sensor when the cucumber is reached (Rabatel, 1991 and Rabatel, 1994). This 
results in a very simple way of locating cucumbers within their environment. 

Q> 

Fruit 

Picture Computation Camera 

Figure 7.1. Detection and motion principle (Rabatel, 1994) 

In addition, obviously the task of the harvesting robot is to locate every cucumber within the plant that is 
visible from the imaging sensor. However, it does not mean that every cucumber in the plant will be 
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located. This depends on how many cucumbers can be detected by the imaging sensor, which in turn will 
be related to the amount of occlusion (the plant structure) and the possibility of the imaging sensor to 
detect these occluded cucumbers. 

7.1.1 Ranging techniques 

This paragraph is essentially a brief survey of techniques that can be used for distance measurements 
which may additionally support the localisation mentioned above. Since the third dimension is not known 
until the cucumber is reached, these techniques can be used to obtain spatial (3D) information of the 
agricultural scene beforehand and might so be useful, for example, to guide a harvesting device towards 
(fully) occluded cucumbers (if detected) by a roundabout way, while avoiding collisions with obstacles. 
Some potential ranging techniques are given below: 

• Stereo vision; 
If two images of a scene taken from different known positions (laterally displaced along a defined 
baseline) are obtained and the two image points corresponding to a given scene point P can be 
detected, then the position of the point in space (its distance) can be calculated by triangulation 
(similar to the function of human eyes). In the case that the imaging sensor is attached to the end of a 
manipulator, the sensor is moved into the scene and the sequence of images (taken at predetermined 
motion intervals) provides the data for distance measurements. As the number of pixels representing a 
given scene point (object) increases when the manipulator moves into the scene. 

The main difficulties with both types of stereo ranging techniques are that corresponding pairs of 
image points are not easy to detect, the diminishing accuracy with distance and both are computational 
intensive (slow and expensive). On the contrary, the most obvious advantage is their wide applicability 
without the need for special lighting and the simplicity of combining range with image intensity data. A 
less obvious strength is that they correspondence with human visual process permitting advantage to be 
taken of what is known about that process to improve the technique (Dorf 1990, p. 871). 

• Structured lighting; 
The basic approach with structured lighting is to project a known (structured) pattern of light on a 
three-dimensional scene and to use the distortions in this pattern to retrieve the three-dimensional 
information of the scene (see also paragraph 3.2.1.3). Absolute ranging data can be derived using 
simple triangulation geometry of the projector and imaging sensor positions relative to the scene and 
optical parameters. 

However, this technique is restricted in application to those situations where structured lighting is 
possible and acceptable. Further, it is computational expensive. 

• Ultrasonics; 
Ultrasonic range sensors are based on the time-of-fiight (TOF) principle. A narrow-band pulse of 
ultrasound is transmitted into the scene by a transducer that can act both as a transmitter and a 
receiver. The time it takes for the pulse to travel to the object of interest and back is proportional to the 
range (see also paragraph 3.2.4). 

Ultrasonic systems use very little power, are relatively simple and inexpensive and can be 
compactly packaged into robust modules. Thus, at first sight ultrasonics seems to offer an ideal 
technique for ranging. 

• Laser systems. 
Laser range instruments are also based on the TOF principle. It measures the transit time of a very 
short laser pulse to and from the object of interest. However, laser instruments tend to be ven 
expensive, are somewhat fragile and require careful tuning and optical alignment. The\ also tend to be 
bulky (Dorf 1990, p. 874). 

A better method which uses the same principle but is much cheaper and relatively simple is the use 
of a photoelectric sensor (Fujiura, 1992). 
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7.2 Conclusions and discussion 

In this chapter the precise locating of the cucumber within its environment has been discussed. A difficulty 
in developing a robot to selectively harvest cucumbers is the localisation of individual cucumbers. This 
specification is basic prerequisite to guide a harvesting device towards a cucumber, while avoiding 
collisions with obstacles. 

While three coordinates are normally required to describe the position of a cucumber within the plant, it 
has been shown that the output of an imaging sensor, a two-dimensional image, is sufficient to define the 
location of the cucumber. The third dimension is not known until the cucumber is reached and sensed by a 
local sensor. This seemed to be the easiest way to locate the cucumber within its environment. 

However, in the case of (fully) occluded cucumbers the localisation depends on the possibility of the 
imaging sensor to detect these occluded cucumbers and the use of a ranging technique, such as stereo 
vision, structured lighting, ultrasonics and laser systems, to guide the harvesting device towards the 
occluded cucumbers, while avoiding collisions with obstacles. 

In general, accuracy, resolution speed, range of applicability, reliability and cost are the crucial 
parameters of any ranging techniques. In fact, these five measures will determine the feasibility of using a 
ranging technique for any particular application. In this case, ultrasonics and the use of a photoelectric 
sensor have the most promising possibilities in the given unpredictable changing agricultural environment, 
because they are relatively simple, inexpensive and, furthermore, very accurate and very fast (in 
comparison with the other methods). 
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8 CONCLUSIONS AND FURTHER RESEARCH 

The goal of this research was to derive a possible imaging technique(s) which should be capable of 
detecting mature cucumbers within their environment for its use in a harvesting robot. Finally, this has to 
result in a harvesting system which should have to encompass the sensing and the processing tasks, 
detection and classification of the cucumber after which the cucumber can be located. However, the accent 
of this research has mainly been addressed to the detection problem and to a lesser degree to the other 
ones. 

8.1 Results and conclusions 

In this research a first step towards the development of a harvesting robot of cucumber fruits has been 
made. This has to be done from the very beginning due to the variability of cucumbers and the difficulty in 
interpretation of the uncontrollable agricultural environment (like changing illumination conditions, 
shadows and occluding cucumbers). Therefore, various imaging techniques were reviewed and, finally, 
some were proposed for their use in a harvesting robot. These are: 

• the use of microwaves; 
• the use of a combination of some selected frequencies in the near-infrared and visible range; 
• the use of thermal infrared radiation. 

In addition, the strength of using image analysis in the harvesting of cucumbers is its ability to measure 
many cucumber features in an objective way. Further, knowledge and cucumber features (like length and 
diameter) seemed to be required to meet the detection of mature cucumbers. 

After more research and a study on reflection properties of cucumbers and cucumber leaves, it was 
shown that the imaging technique of using some selected frequencies in the near-infrared range is the most 
promising imaging technique capable of detecting cucumbers within their environment. The potential of 
the other imaging techniques for their use in cucumber detection are doubtfully. In agreement with 
literature, it was found that reflectance of cucumbers in the near-infrared range is different in comparison 
with their leaves. This difference can yield useful information for the detection of cucumbers within their 
environment and was considered to be possible by the value of the spectral ratio (SR). However, this 
would have been the case of measurements made under laboratory conditions. 

Unfortunately, experiments in a greenhouse could not take place and only measurements with the 850 
nm interference filter could be carried out in laboratory. These measurements showed a reflectance 
différence between a cucumber and a cucumber leaf at this frequency. However, these measurements 
cannot in practice be related straightforwardly to measurements made in a greenhouse due to the many 
t.tctors influencing the reflection and its large variation from place to place there. Generally, the 'wild 
scattering" of radiation at different places is, in fact, a common problem with greenhouse experiments. 
Consequently, it cannot be proved practically that the imaging technique of using near-infrared reflection 
is the way of detecting cucumbers within their environment. However, considering the results obtained by 
literature and measurements made in laboratory, on the contrary, suggested there is an opportunity for this 
imaging technique and, in fact, only correct measurements in a greenhouse are needed to prove its 
feasibility. 

Further, an also important harvesting task of the harvesting system is to determine the maturity stage of 
cucumbers. This is needed because cucumbers do not ripen at the same time and, consequently, every 
cucumber has to be evaluated for ripeness prior to harvesting. The evaluation of cucumbers within their 
eimronmenl was seen to be a complex task. However, because of the use of the high-wire cultivation 
method in this research most mature cucumbers can be found at a height of 1200-1250 mm to 1750-2000 
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mm. Furthermore, at these heights the cucumbers are very uniform in length and fresh weight. As a result 
of this, the easiest way to determine the maturity of cucumbers is to harvest all cucumbers, which are 
detected by the harvesting system, at these heights. 

Another difficulty in developing a robot to selectively harvest cucumbers is to locate the individual 
cucumbers. While three coordinates are normally required to describe the position of a cucumber within 
the plant, it was shown that the output of an imaging sensor, a two-dimensional image, is sufficient to 
define the location of the cucumber. The third dimension is not known until the cucumber is reached and 
sensed by a local sensor. However, in the case of (fully) occlusion the use of an additional ranging 
technique, such as ultrasonics or the use of a photoelectric sensor, is needed to guide the harvesting device 
towards the occluded cucumber by a roundabout way while avoiding obstacles. 

Obviously, the task of the harvesting system is to locate every cucumber within the plant that is visible 
from the imaging sensor. However, it does not mean that every cucumber in the plant will be located. This 
depends on how many cucumbers can be detected by the imaging sensor, which in turn will be related to 
the amount of occlusion and the possibility of the imaging sensor to detect these occluded cucumbers. At 
the moment, problems may still arise with the detection of occluded cucumbers. However, as near-infrared 
is able to penetrate into leaves this technique might offer some opportunities and more research in this area 
is needed. 

In addition, there are more aspects where the image analysis system can be helpful in improving the 
harvesting system. One example is the harvesting procedure management. Which cucumber has to be 
picked first? Or how should the harvesting device motion be adapted for cucumbers which are very close 
to the main stem (difficult to grasp and cut)? Should the cucumber be harvested now or wait for better 
visibility? All these aspects (and more) require the image analysis to go further than a simple evaluation of 
location coordinates. 

In conclusion, many problems have to be solved in finding or in later extending the reliable cucumber 
detection algorithm(s) (including the imaging technique) to a really efficient harvesting system. Some of 
these problems have already been solved, while others are still being studied. In all cases, this requires 
specific image processing developments, but, above all, a lot of in field experiments and strong links with 
the design of the other components of the robot. 

8.2 Further research 

In general, there is no consensus on the viability of the robotic harvesting system as an alternative method 
for the current manual harvesting. While all will agree that no commercial cost-effective product is yet 
available on the market, some will argue that it is only a matter of time and money required for further 
research and development before robots will replace manual harvesting. Others, however, still maintain 
that robotic harvesting will never be economically practical. These diverse and contradictor»' opinions, are 
the result of the uncertainty in solving successfully the various problems still associated with the 
implementation of the harvesting robot. 

While in this research some progress has been made with the detection, classification and localisation 
of the cucumber under laboratory conditions, still correct and validating measurements in a greenhouse 
have to be carried out to prove, for example, that the imaging technique of using near-infrared reflection is 
the way of detecting cucumbers within their environment. More (correct) research in this area is needed 
and. perhaps, the other imaging techniques have to be considered again. 

Besides, variability in lighting conditions and occlusion of cucumbers require further research. 
Artificial lighting and shading effects have to be studied and, in the case of occlusion, some look through' 
experiments (using backlighting) have to be carried out to possibly improve the detection results. Further. 
the use of an air blower has to be considered to blow away the cucumber leaves and expose the cucumbers 
which are normally occluded by them. 

In addition, the rate at which the robot will function may very well determine its economic viability, it 
is crucial to minimise the time required for the harvesting cycle and thus increase its productivity, to make 
the harvesting robot competitive with manual harvesting. An attempt to minimise the harvesting cycle time 
can possibly be achieved by preplanning the sequence of the robot (harvesting device) motions before 
beginning the harvesting process. According to this approach, cucumbers should be recorded prior to 
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harvesting. However, these locations might have to be updated at a very high sampling rate to account for 
changes in cucumber positions due to growth or neighbour cucumber detachment for example. 

In conclusion, although under current conditions a harvesting robot is not justifiable, it is by no means a 
hopeless situation. The increasing costs of labour and decreasing costs of computers, vision systems and 
robotic equipment may pave the way for its future commercial implementation. However, much more 
research is needed first. 
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SPECIFICATIONS 

Although a decision to start a new technological development is sometimes influenced by political motives 
such as prestige or future technological developments, in general it is necessary to determine beforehand 
the justification for investment in a complex project such as the harvesting robot of cucumber fruits. 

A. 1 Robot specifications and economical analysis 

For the harvesting robot the following specifications have been made (see table A.l and A.2): 

Harvesting rate 
[s/cucumber] 

2.94 

Sorting rate 
[s/cucumber] 

0.96 

Total rate: 3.9 [s/cucumber] 

Table A.l, Hanesting and sorting rate under the present situation 

No. 

1 

i 

3 

4 

5 

Handling 

Robot displacement (every 60 cm) 

Detection of the cucumber (far locate, classify and precise locate 
the cucumber) 

Reaching, handling and cutting the cucumber by the 
manipulator/end-effector 

Put the cucumber in the right crate 

Manipulator/end-effector back to start position 

Rate 
[s/cucumber] 

2-2.5 

5-8 
(aimed at 2) 

1 -2.5 

1-3 

to 0.5 

Total rate: 9 -16.5 [s/cucumber] 

Table A.2. Harvesting and sorting rate with robotic harvesting 

Further, the robot should work up to 12 hours a day (the cucumbers should be harvested before afternoon), 
regularly during the whole harvesting season. Under these assumptions, the cost of the robot should be less 
than FL 150.0(X).-. In addition, this will not justify the cost of development. Thus, from the point of view 
of the manufacturer, it would not be an economic investment. 

However, with a proper design of the robot, the future robot will classify the cucumbers better and 
more uniform and. besides, it will handle the cucumbers more gently, resulting in higher cucumber quality 
than that obtained with manual harvesting. Hence, a dominant factor in the robotic harvesting will be the 
overall cucumber quality. 
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B HIGH- WIRE CULTIVA TION METHOD 

More and more cucumber growers use or will use in the future the high-wire cultivation method. 
Therefore, it will be obvious to limit the development of a harvesting robot of cucumbers to applications to 
this cultivation method, which has almost no curved and bruised (deviating) cucumbers (and so a high 
quality) and, fitrthermore, it has been proved to give a high production. 

B.l Basic principle 

In the high-wire cultivation method every plant is tied (screwed) to a wire, which is stretched at about 4 m 
height by rolling the wire up at a spool and fixing it to the cropwire (one of the parallel horizontal wires at 
about 4 m height) (see figure B.l). When the top of the plant reaches the cropwire the wire is rolled off 
and the top of the plant hangs again approximately 500 mm under the cropwire. At the same time, every 
spool on the cropwire is simultaneously displaced horizontally. Consequently, after some time the top of 
the plant will not be straight above its roots. 

Before lowering the plant, first all leaves at the bottom of the plant are removed (nearby the main stem 
to prevent mycosis). In addition, the average growth of the plant is about 450 mm a week (often a bit less 
in summer). 

B.2 Handling and harvesting 

Cucumbers are harvested from January until November for fresh market consumption. These cucumbers 
are produced by one crop or by two or three subsequent crops per year. In this cultivation method only 
cucumbers on the main stem are harvested (all side shoots are removed manually). The cucumbers are 
formed in the axils of the leaves. In principle, more than one cucumber can be formed in each axil, but this 
is manually restricted to one cucumber per two axils. Some other (intensive) manual handlings are: 
screwing of the plants into the wires, removing of the lowermost leaves and lowering of the wires. 

In this cultivation method most mature cucumbers can be found at heights of 1200-1250 mm to 1750-
2000 mm, certainly in period of maximum possible output from halfway of February till end of October 
(initially they hang lower in the plant) (see figure B.l). At these heights the cucumbers are very uniform in 
length and fresh weight (400 g in spring. 500-600 g in summer and 300 g in autumn). Moreover, in this 
cultivation method there are almost no curved or bruised (deviating) cucumbers (only approximately l?r 
of the crop) and it can be said that the cucumbers of this cultivation method are of high quality. 

The cucumbers are harvested two till three times a week. The yield per square metre of greenhouse 
vegetables varies between 0.5 and 4 cucumbers/m: and it has been proved that this cultivation method 
results in a high production. 



gmnhouse 

cucumber 
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Figure B.l, Sketch of a greenhouse with the high-wire cultivation method (not a scale drawing) 
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MAIN FEATURES OF THE DIFFERENT IMAGING 
TECHNIQUES 

Imaging technique 

Radio wave detection and ranging 
(radar) 

Microwaves 

Near-infrared and visible range 
(with respect to vegetation) 

Near-infrared 

Main features 

(i) The reflected energy is a 
function of the frequency, 
polarization, incidence angle and 
object properties, 
(ii) The object features which 
determine the reflected energy to a 
large extend are the geometric and 
electric properties of the object, 
(iii) The reflected energy from 
different objects become more 
distinct by using frequencies that 
span the natural electromagnetic 
resonance of these objects. 

(i) Same main features as radio 
waves. 
(ii) Its able to penetrate into an 
object. 

(i) In the visible range various 
pigments in vegetation influence 
the reflection. 
(ii) The first part of the NIR is 
mainly determined by the absence 
of absorption (by pigments), 
(iii) In the second part of the NIR 
a great part of energy is absorbed 
by water in the cells, 
(iv) The first part of the NIR may 
not give information about leaves 
directly in front of the sensor only, 
but also behind these leaves 

(i) Sensitive to absorption by the 
CH. NH and OH bonds. 
(ii) To determine the mixing and 
varying composition of an object 
the reflected image at a number of 
discreet NIR wavelengths can be 
measured. 

Potential for the use in the fruit 
detection 

The influence of the wavelength 
range of radio waves in 
combination with the small size of 
fruits on the radar sensitivity 
strongly limits its use for 
detection. 
As radar also operates at lower 
wavelengths, the microwave 
range, more promising 
opportunities may be found in 
using this range. 

The use of microwaves might be a 
way to detect fruits. However, 
research on using microwave 
reflection as an imaging technique 
of soil moisture content has 
shown that this technique can be 
highly problematic as the 
microwave reflection depends on 
different and very complex 
parameters. 

Each range might have some 
possibilities for the detection of 
fruits. The visible range for the 
detection of leaves and perhaps 
fruits which are not occluded, the 
first part of the NIR for the 
detection of some hidden (and 
visible) fruits and the second part 
of the NIR for the detection of 
visible fruits. 
Promising results might be 
obtained by using a combination 
of some selected frequencies in 
the NIR and visible range. 

For the detection the use of some 
selected frequencies in the NIR 
might be very interesting. 
Especially, the use of the 
frequencies in the water 
absorption bands. 



Imaging technique 

Visible range 

X-rays 

Thermal infrared radiation 

Nuclear magnetic resonance 
(NMR) 

Ultrasonics 
(in the high frequency range) 

Main features 

(i) Highly contrasting colours 
between object and background 
improves segmentation, 
(ii) The colour of an object is 
perceived differently depending 
on the illumination. 

(i)The penetration of these rays 
depends mainly on the thickness 
of the object and other parameters 
such as structure, absorption 
coefficient and density of the 
object. 
(ii) Gives a two-dimensional 
image integrated along the third 
axis, although X-ray computed 
tomography can be used to obtain 
a three-dimensional image, 
(iii) The X-ray technique has to be 
combined with surface topography 
measurements to remove the 
ambiguities in the integrated two-
dimensional X-ray images 

(i) All objects with a temperature 
above absolute zero continuously 
emit thermal radiation, 
(ii) Care should be taken to avoid 
complication of the background. 

(i) Can detect the concentration 
and state of hydrogen within an 
object. 
(ii) The equipment is expensive 
and this has implications on the 
maximum size of an object which 
can be scanned. 

(i) It has the ability to propagate 
through soft biological materials 
suffering only moderate 
attenuation. 
(ii) The transducer and object 
need to be acoustically coupled 
because of the high acoustic 
impedance between transmitter 
and air. 

Potential for the use in the fruit 
detection 

A combination of visible and 
near-infrared range might be a 
way to detect fruits. 

Because of the complexity of this 
technique if applied in the used 
cultivation method (more volume 
averaging) X-ray imaging would 
not be a very promising way to 
detect fruit. However, changing 
the cultivation method would 
probably make the use of X-ray 
imaging more attractive. 

Under the condition that factors 
influencing the radiation have 
been taken into account thermal 
imaging can possibly be used as 
an imaging technique for the 
detection. However, a reasonable 
temperature difference between 
the fruits and their environment 
has to be existed first. 

There might be opportunities for 
the use of NMR imaging in 
detection applications. However, 
in the near future the cost is likely 
to be prohibitive to its use in the 
fruit detection. 

Because the ultrasonics in this 
range has been predominantly 
used as a contact probe it has no 
opportunities for the detection. 



Imaging technique 

Ultrasonics 
(in the low frequency range) 

Luminescence 

Main features 

(i) Posses several attractive 
attributes for dense ranging and 
signature applications (because of 
less attenuation of the signal at 
these frequencies), 
(ii) Can distinguish between 
objects in the foreground and 
background. 

(i) Many biological materials 
fluorescence. 
(ii) Quantitative use of X-ray 
fluorescence requires careful 
object preparation and a 
controlled environment. 
(iii) Measurements of chlorophyll 
fluorescence have to be made on 
pre-darkened objects which are 
subjected to a pulse of light. 

Potential for the use in the fruit 
detection 

Their primary disadvantages of 
low resolution and large 
sensitivity to small changes in the 
object's position make this 
imaging technique less attractive 
for detection. 
Because ultrasonic systems use 
very little power, are relative 
simple and inexpensive and have 
the ability of range measurements 
and, furthermore, the possibility 
of detecting partly occluded 
objects it can be thought to use 
this technique as an extra sensor. 

Because most fluorescence 
measurements cannot be realised 
in non-destructive measurements 
or have to be made by physical 
contact the use of this technique is 
very limited. 
The possibility of making 
measurements at night should be 
considered although the long 
measurement time preclude rapid 
sensing and, therefore, its use for 
detection. 
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' "^ss ranrje (7 7mm - 9.2mm) 

LOCKED FILTER SEE DATA CURVE NO 25 

~ • ters and sizes available upon request. Refer to page 106 for filter sets. 
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BATA CURVE MO. 16 
• Rejection (Spectral) • Design Goal 

Range: X-ray to Far I.R. 
Degree: <0.01% T or <104 

• Rejection (Signai/Noise) - Design Goal 
Radiant source: Tungsten at 2800°K; 
Detector: Silicon 
S/N>1000/1or£3.0O.D. 

• Effective Index: n, = 1.47 

• AA-o/AC0 = 0.02nm/°C 

• Operating Temperature Limits: -50°C to 
+100°C 

• Humidity: Per MIL-STD-810E, Method 507.3 
Procedure III, Modified to 7 cycles 

DATA CURVE MO. 17 
» Rejection (Spectral) • Design Goal 

Range: X-ray to Far I.R. 
Degree: <0.01% T or <104 

> Rejection (Signal/Noise) - Design Goal 
Radiant source: Tungsten at 2800°K; 
Detector: Silicon 
S/N>1000/1 or>3.0O.D. 

• Effective Index: ne = 1.55 

'A\o/AC° = 0.01nm/°C 

. Operating Temperature Limits: -50°C to 
+80°C 

• Humidity: Per MIL-STD-810E, Method 507.3 
Procedure III, Modified to 7 cycles 

DATA CURVE MO. 18 
' Rejection (Spectral) - Design Goal 
Range: X-ray to Far I.R. 
Degree: <0.01%T or <104 

> Rejection (Signal/Noise) - Design Goal 
Radiant source: Tungsten at 2800°K; 
Detector: Silicon 
S/N>1000/1 or>3.0O.D. 

Effective Index: ne = 2.0 

AWAC° = 0.018nm/°C 

Operating Temperature Limits: -50°C to 
+100°C 

Humidity: Per MIL-STD-810E. Method 507.3 
Procedure III, Modified to 7 cycles 
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• Rejection (Spectral) - Design Goal 
Range: X-ray to Far I.R. 
Degree: <0.01%Tor <104 

• Rejection (Signal/Noise) - Design Goal 
Radiant source: Tungsten at 2800°K; 
Detector: Silicon 

S/N>1000/1 or>3.0O.D. 

• Effective Index: n, = 1.5 

•AXa/ACo = 0.015nm/6C 
• Operating Temperature Limits: -50°C to 

+100°C 

• Humidity: Per MIL-STD-810E, Method 507 
Procedure III, Modified to 7 cycles 

OATA CURVE MO. 20 
i Rejection (Spectral) - Design Goal 
Range: X-ray to Far I.R. 
Degree: <0.01% Tor <104 

Rejection (Signal/Noise) - Design Goal 
Radiant source: Tungsten at 2800°K; 
Detector: Silicon 
S/N>1000/1 or>3.0O.D. 

Effective Index: ne= 1.9 

AXr/AC = 0.022nm/°C 

Operating Temperature Limits: -50°C to 
+100°C 

Humidity: Per MIL-STD-810E, Method 507. 
Procedure III, Modified to 7 cycles 

DATA CURVE MO. 21 
» Rejection (Spectral) - Design Goal 
Range: X-ray to Far I.R. 
Degree: <0.01% T or <104 

. Rejection (Signal/Noise) - Design Goal 
Radiant source: Tungsten at 2800°K; 
Detector: Silicon 
S/N>1000/1 or>3.0O.D. 

' Effective Index: ne = 1.47 
1 AXo/AC0 = 0.002nm/°C 
1 Operating Temperature Limits: -50°C to 
+100°C 

' Humidity: Per MIL-STD-810E. Method 507. 
Procedure III. Modified to 7 cycles 
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APPENDIX F, SPECIFICA TIONS OF THE CAMERA 
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Digital CCD Black and White Cameras NEW 

The CCD 2K0 is a Cully digital video camera with a computer 
interface. All camera parameters are computer adjustable and 
the image captured by the camera is transferred directly into 
ill«." main memory. This creates ideal conditions for solving 
high grade image processing tasks. The images can be printed 
on a laser or inkjet printer. 

The camera can be precisely adjusted to optimize the image 
at the moment of acquisition. This is particularly useful when 
dealing with low contrast samples in microscopy. Chromoso
me- images, which do not have a good contrast, can be 
rendered with full contrast. Irrelevant gray values can be 
suppressed with the analog-to-digital converter. 

The camera is ideal for applications in automation and 
measurement technology. The precise digitization guarantees 
a high geometric stability. 

Digital and Analog Video Output 
The digital and analog output is used to transfer information 
to various devices. The digital output transfers the image into 
a computer; the analog output allows you to simultaneously 
record the image on a video recorder or video printer. The 
analog output is also used to display the image on a monitor 
so adjustments can be made before the image is stored in the 
computer. 

Exceptionally High Resolution 
The actual resolution is 752 by 582 at high MTF values and at 
the resolution limit for a single chip camera. 

Exact, Pixel Synchronous Digitization 
The CCD signal is pixel synchronously stored in real time. 
This means that the camera digitizes the signal exactly at a 
point when the analog signal of one pixel is "true". 

Wide Spectral Range 
The spectral response of the camera is from the ultraviolet to 
the near infrared. Images can be captured at about 250 nm. 
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High Dynamic Range 
The CCD chip can have a higher dynamic range than the 
usual 8 bits. This is accomplished by capturing the same scene 
twice with different parameter settings of the A/D converter. 

Exposure Time 
The exposure time may be controlled over a wide range. At 
ambient temperatures the upper limit is ten seconds with a 
resulting sensitivity of 5 x 10 4 lux. Extending the exposure 
bevond this lime will show dark current artifacts. By cooling 
the CCD camera to -9 °C, we can achieve exposure times up 
to 15 minutes and achieve a sensitivity of 5 x 10 * lux. 

Software and Interface Card 
The application package includes the camera, ISA card, a 
cable to connect the two units and application software which 
runs under Windows™ . The software records images as DIB 
or as TIF files that can be processed in other image processing 
or analysis programs 

Simple Operation under Windows™ 
Inexperienced users can control the camera parameters 
intuitively. A Windows DLL, included in the package, 
provides the opportunity to tie the camera function into your 
own program. 

F*> O T : 

t « o j m w p < 

^«' pmviilc lin- pui-oiil <i| .ill interf.ues and inliirtiuiiioii ol 
thru It»t«i< lunc lion Tin-» will give users with computer 
kiniwlrdm- 'I»' oppuiumnv to develop their own hardware or 
s o l I W . I l f . 

il««»»«!:« Camera Cantrol »«tets»» O 

w i uifï 
Ofhat 

M 1*11 » 

1 üT** <$ 0.45 

Hwmmf 

UpMrUa» 
1.1 U 1*11 m 
LOMNpf (Jpjjt 

UIIJ kilo 
GatftJEkJ Kl 

D A G C 

H F . 

s 

-V~NN> 

<$Caama 
OMaamy 

ORaM 

<$Ffaa» 

Integration - Uve » 

fTl | Nonaal | m 

Ml« " I N 

Raatairang 
Tiaw: 

I " " I 
I Load | | Fiaa» | • Autoawbc 



SPINDLER 
& HOYER 

Digital Black and White CCD-Cameras 

• CCD caméra with a PC interface 

• full digital image transfer from CCD to PC 

• all camera parameters controlled from your PC 

• easy to use Windows™ software 

• 100 us to 15 min exposure times 

(up to 3 hours, on request) 

• display live or stored images 

CCD 280 SW-D/MB 

Technical Data 

Video standard 
Integration mode 
Image sensor 
Image sensor area 
Number of pixels 
Pixel size 
Resolution 
Synchronization 
Video output 
Signal output 
Responsivity 
Mm. responsivity 
Gain 
Offset for analog output 
A/D converter levels 
Gamma correction 
Exposure time 
Exposure time regulation 
Voltage supply 
Operating temperature 

CCD 280 SW 

CCIR, 2:1 interlaced 
Field / Frame, adjustable 
1/2" Interline Transfer CCD with microlenses 
6.4 mm (H) x 4.8 mm (V); equivalent to 1/2" 
752 (H) x 582 (V) effective / 768 (H) x 494 (V) effective, 
8.6 pm (H) x 8.3 urn (V) /8.4 urn (H) x 9.8 urn (V) EIA 
752 TV Lines 
internal 
BAS 1 Vpp 
8 Bit parallel 
0.12 lux (without IR filter, 41 dB S/N) 
5 x 10 •• lux, 15 minute exposure (cooled version) 
manual / automatic / fixed 
manually adjustable / fixed 
fixed / manually adjustable 
0.45 or 1, switch selectable 
100 ps to 15 minutes ' 
automatic, from 100 ps to 20 ms 
12 V DC, 800 mA from PC or external supply 
-10°Cto + 50°C 

EIA RS 170 

The digital CCD camera 280 SW 
is available in three models: 

CCD 280 SW-D 
CCD 280 SW-D/MB 
CCD 280 SW-D/C 

43 0022 
43 0023 
43 0025 
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Digi tal CCD-Camera, 280 SW-D 

The CCD 280 SW-D is the most basic digital camera in the series. It consists of a compact camera, a connecting 
cable, a PC card and Windows™ software for driving, controlling and selecting digital images. The control electronics 
are in the camera. 

Technical Data 

Minimum Sensitivity 
Camera Size 
Connecting Cable 
Objective Mount 
Mount to Array Distance 
Part No. 

CCD 280 SW-D 

5 x 10 * lux with 10 s exposure 
70 mm (W) x 61.5 mm (H) x 170 mm (L) 
37 pin, 2 m long 
C-Mount(1"x32TPI) 
17.526 mm 
43 0022 

Digital CCD-Camera, 280 SW-D/MB 

For Microbench applications, using the CCD 280 SW-D/MB, the control electronics are separate from the camera 
head. This results in an extremely small camera head with a 25 mm outside diameter. The CCD 280-D/MB consists of 
camera head, separate control electronics, connecting cable, a PC card and Windows™ software for driving, controlling 
and selecting digital images. 

Technical Data 

Minimum sensitivity 
Camera head, size 
Camera head, weight 
Control electronics, size 
Connecting cable, camera head 
Connecting cable, control electronics 
Objective mount 
Mount to array distance 
Part No. 

CCD 280 SW-D/MB 

5 x 10 ' lux with 10 s exposure 
0 25 mm x 35 mm 
< 8 0 g 
210 mm (W) x 75 mm (H) x 245 mm (L) 
2m long 
37 pin, 2 m long 
25.4 mm outside external thread 
17.526 mm 
43 0023 

Digital CCD-Camera, 280 SW-D/C 

The CCD 280 SW-D/C is the cooled version in the camera series. The camera is air cooled and can achieve exposure 
times up to 15 minutes. The camera consists of a compact camera, and power supply for the cooling unit, connecting 
cable, a PC card and Windows™ software for driving, controlling and selecting digital images. The control electronics 
and cooling unit are in the camera head. 

Technical Data 

Minimum sensitivity 
Camera size 
Connecting cable 
Objective mount 
Mount to array distance 
Power supply, size 
Part No. 

CCD 280 SW-D/C 

5 x 10 6 lux with15 minutes exposure 
70 mm (W) x 61.5 mm (H) x 190 mm (L) 
37 pin, 2 m long 
C-Mount (Tx32TPI) 
17.526 mm 
210 mm (W) x 75 mm (H) x 245 mm (L) 
43 0025 

The cameras can be equipped with optional water cooling. This provides a response down to 10 ' lux with an 
exposure time up to 3 hours. 
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G CHROMATIC ABERRATION 

It is theoretically impossible to make a perfect lens. Therefore, most lenses are subjected to various types 
of distortions or aberrations. One such a class of aberrations is the chromatic aberration, which results 
from the fact that the index of refraction of the lens material varies with the frequency. 

G.l Chromatic aberration 

In literature (Burke 1996, p. 289) it can be found that the index of refraction of glass (n g) is a function of 
the frequency. Moreover, it can be found that the focal length F of a lens is critically dependent on n 
(index of refraction). Therefore, the focal length F will vary with the frequency. 

The used (glass) lens in this research is susceptible to this kind of aberration. As will be shown by the 
following experiment. First, in laboratory a white board at a distance of 59 cm from the camera is recorded 
(with a small aperture to reduce spherical aberration) without an interference filter and with the use of an 
additional light source (a halogen lamp). Then, successively, different interference filters are chosen (403 
nm, 577 nm, 692 nm, 747 nm, 850 nm and 970 nm) and used to record the white board again (also with a 
small aperture). Finally, from each obtained image of the white board the gray values of the pixels at a 
chosen line (the horizontal line) are depicted on a graph (using the written algorithm in appendix H) (see 
figure G.l till figure G.7). 

It can be seen that only the interference filter of 692 nm gives approximately the same graph as the 
graph without an interference filter. Further, a decrease or increase of the frequency of the interference 
filter at this frequency will deteriorate the graph more and more. In addition, the digitalisation range has 
been adjusted with a high lower limit which caused the quite straight sides of the graphs. Because of this 
dispersion phenomenon, the focal length of the lens is not constant but varies for the different frequencies. 
This causes differing frequencies to focus at different distances (see also figure G.8 and G.9). 

In fact, it follows that the stated focal length in this lens is not correct for measurements in the near-
infrared range. Generally, the true focal length of a lens increases with increasing frequency into the near-
infrared range. Therefore, a possible remedy to this problem should be the use an extension tube. 
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FInurc G.l, Recorded white board without using an interferece filter and the corresponding line histogram 
I exposure time = 250 us and distance = 59 cm) 



• - . - " • . ' - • . . ' . ' r - ' '• - *î" ', '.< . 

' . :-* i'*.''.\ -*"»',. ".|î•.'."'•;"' 
i ' W ^ * * * * f c - * - v- * . * .«V * 

( • « * i * ^ * t •to-iiiii**, 
•v** * -"i 

' - Ï . >-„, . .> . 

* '" 31 
*"'•- -*î *"' •-

» - * i3 * • / * 

"* a ' •* * * * * 

- *i '.' 

• * ' * 

\ . . .. Î * . 

, - - - f - * ; • • . 

' ' ' '"^ ' " J^r*'^^Lm« "'"•' •'" 
* ' . . , > - • • • 

•i - *s " - * • > * • • * * ' * i- " r . - - * *" 

ISS 

o 

M*+*t* CSAU>WI * » ^ - M I T M £ - A M - - W 4 *«*%£ 

' * f • " > *•* 
. »• . - - . . T" 

t«,J<JWaiOfcw. »•M»W»<1|. .•» • - A u ' H - , . " . " * ; 

*»f | * -»fi 

1 i •' 

1 L '! 
j i -r t4 IWvr..-.*** 

Pixel 

Figure G.2, Recorded white fcoanf using the 
(exposure time - 200 ms and distance - 59 cm 

403 nm interference filter and the corresponding line histogram 
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Figure G.3. Recorded white board using the 577 
(exposure time = 20 ms and distance = 59 cm) 

nm interference filter and the corresponding line histogram 
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Figure G.4. Recorded white board using the 692 nm interference filter and the corresponding line histogram 
(exposure time = 10 ms and distance = 59 cm) 
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Figure C.5, Recorded white board using the 747 nm interference filter and corresponding line histogram 
(exposure time = 80 ms and distance - 59 cm) 
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F/g«re G.6, Recorded white board using the 850 nm interference filter and the corresponding line histogram 
(exposure time = 20.48 s and distance = 59 cm) 
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f/^wré' G.7. Recorded white board using the 970 nm interference filter and the corresponding line histogram 
(exposure time = 41.04 s and distance = 59 cm) 
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Figure G.8, Recorded white board using the 970 nm interference filter and the corresponding line histogram 
-(exposure time = 41.08 s and distance = 74 cm) 
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Figure G.9. Recorded white board using the 970 nm interference filter and the corresponding line histogram 
(exposure time = 20.56 s and distance = 44 cm) 



/* 
(SCIL) C programma LineHist.c 
Determines the gray values at a given line and depicts this on a 

graph 
*/ 

#include "image.h" 

linehist(in,out,starty,startx,endx,axis) 
IMAGE *in *out; 
int starty,startx,endx,axis; 
{ 

int i, j=0, lijst[2000]; 

copy_im(in,out); 
clear_im(out); 
doff (); 
for (i=startx;i<=endx;++i) 
{ 

lijst[j]=atoi(pix_value_str(in,i,starty, 1) ) ; 
/* put_pixel(out,i,255-lijst[j],255); */ 

draw_line(out,i,255,i,255-lijst[j],180) ; 
j + + ; 

} 

if (axis>0) 

{ draw_line(out,startx,0,endx,0,255); 
draw_line(out,startx,64,endx, 64,255); 
draw_line(out,startx,128,endx,128,255) 
draw_line(out,startx,192,endx, 192,255) 
draw_line(out,startx,255,endx,255,255) 

draw_line(out,startx,255,startx,0,255); 
draw_line(out,startx*(endx-startx)/4,255,startx+(endx-

startx)/4,0,255); 
draw_line(out,startx*(endx-startx)12. 255,startx+(endx-

startx) 12, 0,255); 
draw_line(out,endx-(endx-startx)/4,255,endx-(endx-

startx) /4,0,255); 
draw_line(out,endx,255,endx, 0,255) ; 
draw_line(in,startx,starty,endx,starty,255); 

} 
don(); 
display_image(out) ; 
display_image(in); 
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APPENDIX ƒ, REFLECTANCE CALIBRATION STANDARDS 



REFLECTANCE CALIBRATION 
STANDARDS 

Here 
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CALIBRATION CERTIFICATE 

8°/HEMISPHERICAL SPECTRAL REFLECTANCE FACTOR 

Customer: OPTILAS BV 

Report No.: 14907-A 

Standards in Kit: 1 -
1 -
1 -
1 -

SRS-99-020 
SRS-75-020 
SRS-50-020 
SRS-02-020 

The standards identified above were measured for 8°/Hemispherical 
Spectral Reflectance Factor using a double beam ratio recording 
integrating sphere reflectometer. The certified reflectance 
factor values at an incident angle of 8° from normal were 
determined in the following way. The radiance of the internal 
surface of the integrating sphere produced by incident flux 
reflected from the standards was directly proportioned to that 
reflected from a laboratory working standard. The laboratory 
working standards are periodically compared to laboratory master 
standards. These laboratory master standards, SRM-2019a and 
SRM-2021 ceramic tiles, SRM-2003-G1 National Institute of 
Standards and Technology calibrated first surface aluminum 
mirror, IRS-94-020-M1 diffuse gold standard, and SRS-99-010-M2 
diffuse white standard, were calibrated by the National Institute 
of Standards and Technology using the highly accurate NIST 
reference reflectometer. 

Reflectance factor values are provided at 50nm intervals for a 
spectral range of 250nm to 2500nm. 

NOTE: The random uncertainty of reflectance factor measurements 
performed by Labsphere, Inc. (expressed as the standard 
deviation) is estimated to be less than 0.005 over the spectral 
range: 300-2200nm, and less than or equal to 0.02 over the 
spectral range: 250-2500nm. 

Calibration Date: 11-17-95 Calibrated by JjdLâ(Uy' LÜdUOLKJ 
Title: ReflectancevL^b Technician 
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mata 

Approved by: 
Title: Reflect Lab Manager 



Report No.: 14907-A 
Standard I.D. No.: SRS-99-020 

Wavelength 8°/Heaispherical 
(um) Reflectance Factor 

0.250 0.967 
0.300 0.981 
0.350 — 0.987 
0.400 0.990 
0.450 0.991 
0.500 0.992 
0.550 0.992 
0.600 0.992 
0.650 0.992 
0.700 0.992 
0.750 0.991 
0.800 0.990 
0.850 0.993 
0.900 0.990 
0.950 0.991 
1.000 0.991 
1.050 0.992 
1.100 0.990 
1.150 0.992 
1.200 0.989 
1.250 0.991 
1.300 0.989 
1.350 0.988 
1.400 0.988 
1.450 0.988 
1.500 0.988 
1.550 0.987 
1.600 0.988 
1.650 0.987 
1.700 0.985 
1.750 0.987 
1.800 0.984 
1.850 0.981 
1.900 0.977 
1.950 0.978 
2.000 0.974 
2.050 0.963 
2.100 0.953 
2.150 0.952 
2.200 0.966 
2.250 0.967 
2.300 0.962 
2.350 0.954 
2.400 0.947 
2.450 0.945 
2.500 0.937 



Report No.: 
Standard I.D. No. 

Wavelength 
(um) 

0.250 
0.300 
0.350 
0.400 
0.450 
0.500 
0.550 
0.600 
0.650 
0.700 
0.750 
0.800 
0.850 
0 . 9 0 0 
0 . 9 5 0 
1 . 000 
1 . 050 
1 . 100 
1 . 150 
1 . 200 
1 . 250 
1 . 300 
1 . 350 
1 . 400 
1 . 450 
1 . 500 
1 . 550 
1 . 600 
1 . 650 
1 . 700 
1 . 750 
1 . 800 
1 . 850 
1 . 900 
1 . 950 
2 . 0 0 0 
2 . 0 5 0 
2 . 1 0 0 
2 . 1 5 0 
2 . 2 0 0 
2 . 2 5 0 
2 . 3 0 0 
2 . 3 5 0 
2 . 4 0 0 
2 . 4 5 0 
2 . 5 0 0 

14907-A 
SRS-75-

8°/Hemii 

020 

spherical 
Reflectance Factor 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0, 
0 
0, 
0, 
0. 
0, 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

.766 

.764 

.761 

.760 

.760 

.761 

.761 

.761 

.762 

.762 

.762 

.762 

.765 

.764 

.764 

.765 

.766 

.766 

.767 

.766 
,768 
.768 
,768 
.769 
.770 
.770 
,772 
,773 
,773 
,775 
776 

,775 
,774 
,774 
776 

,779 
779 

,778 
781 
780 
781 
784 
782 
783 
780 
779 



Report No.: 14907-A 
Standard I.D. No.: SRS-50-020 

Wavelength 8°/Heniispherical 
(um) Reflectance Factor 

0.250 0 .523 
0 .300 0 .514 
0 .350 0 .511 
0 .400 0 .511 
0 .450 0 .511 
0 .500 0 .514 
0 .550 0 .515 
0 .600 0 .517 
0 .650 0 .519 
0 .700 0 .520 
0 .750 0 .522 
0 .800 0 .522 
0 .850 0 .526 
0 .900 0 .525 
0 .950 0 .524 
1.000 0 .525 
1.050 0 .527 
1.100 0 .527 
1.150 0 .528 
1.200 0 .528 
1.250 0 .529 
1.300 0 .529 
1.350 0 .529 
1.400 0 .530 
1.450 0.532 
1.500 0 .531 
1.550 0 .532 
1.600 0 .533 
1.650 0 .533 
1.700 0 .534 
1.750 0 .535 
1.800 0 .534 
1.850 0 .533 
1.900 0 .533 
1.950 0 .535 
2 .000 0 .537 
2 .050 0 .537 
2 .100 0 .538 
2 .150 0 .541 
2 .200 0 .539 
2 .250 0 .538 
2 .300 0 .541 
2 .350 0 .540 
2 .400 0 .541 
2 .450 0 .539 
2 .500 0 .535 



Report No.: 14907-A 
Standard I.D. No.: SRS-02-020 

Wavelength 8°/Hemispherical 
(um) Reflectance Factor 

0 . 250 0 . 0 1 8 
0 . 3 00 0 . 0 1 8 
0 . 350 0 . 0 18 
0 . 4 00 0 . 0 18 
0 . 450 0 . 0 1 8 
Ö.500 0 . 0 18 
0 . 550 0 . 0 18 
0 . 6 00 0 . 017 
0 . 6 50 0 . 0 1 7 
0 . 7 0 0 0 . 0 17 
0 . 750 0 . 017 
0 . 8 00 0 . 0 17 
0 . 8 50 0 . 0 1 8 
0 . 9 0 0 0 . 0 1 7 
0 . 950 0 . 0 1 4 
1 . 000 0 . 0 13 
1 . 050 0 . 0 1 3 
1 .100 0 . 0 1 4 
1 . 150 0 . 0 1 4 
1 . 200 0 . 0 1 4 
1 .250 0 . 0 1 4 
1 . 300 0 . 0 1 5 
1 .350 0 . 0 1 5 
1 .400 0 . 0 16 
1 .450 0 . 0 17 
1 .500 0 . 0 18 
1 .550 0 . 017 
1 .600 0 . 019 
1 .650 0 . 019 
1 .700 0 . 0 21 
1 .750 0 . 0 2 1 
1 . 800 0 . 0 22 
1 .850 0 . 0 22 
1 . 900 0 . 0 2 4 
1 . 950 0 . 0 2 6 
2 . 0 00 0 . 024 
2 . 0 50 0 . 026 
2 . 1 0 0 0 . 029 
2 . 1 50 0 . 032 
2 . 2 0 0 0 . 0 32 
2 . 2 50 0 . 031 
2 . 3 00 0 . 0 35 
2 . 3 50 0 . 030 
2 . 4 00 0 . 0 35 
2 . 4 5 0 0 . 0 31 
2 . 5 00 0 . 0 35 
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Appendixes 

APPENDIX J, SOME RESULTS OF THE 970 NM INTERFERENCE 
FILTER 
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Fï/»i<r* J.3. Resulting SR values, using the 850 nm scene depicted in figure 5.3 and the 970 nm scene depicted in 
figure J.l, and the use of a threshold which is chosen at 1.0 
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Figure ƒ 4, F/if c/ios<?n thresholds are respectively 0.9 and 1.1 
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SOME RESULTS OF THE 970 NM INTERFERENCE FILTER 

Figure J. J, Recorded scene using the 970 nm interference filter (exposure time = 20.48 s and distance - 0.74 m) 
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riytire J.2. Corresponding line histograms 


