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“Theories crumble, but good observations never fade.”
- Harlow Shapley





Foreword

Harlow Shapley (1885-1972), the person to which the words on the previous page have
been assigned, was an American astronomer, mainly known for his studies on the size
of the Milkyway. However, this thesis does not contain anything related to astronomy,
nor to the Milkyway. I also have to disappoint everyone who expects a thesis based on
my own measurements or observation techniques. For this complete thesis, not a single
measurement has been carried out by myself. You might wonder why I decided to use
this quote at all. The reason is that it reflects what I have learned during my thesis work.
During a discussion for a workshop in Bertinoro, Italy (2016), hydrological models were
at some point described as "a sandwich of theories". Testing hydrological models is thus
testing a set of theories. But, in order to test theories, observations are needed to confirm
or reject the theory. If we want to increase our understanding of planet Earth, we have to
critically reflect on our theories, and extend or reject them. And that is where more, and
new types of observations are needed. It should, however, not be neglected that theories
and observations are linked and dependent in many ways, and that there is still a path
ahead in developing both new theories and new ways to observe.
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Chapter 1

Introduction

It is tempting to start this introduction with stressing the importance of hydrology, fol-
lowed by an enumeration of hydrological catastrophes, supported by numbers of casu-
alties or economic losses. The goal of this thesis, however, is not to prove how important
hydrology is in every day life, but to evaluate hydrological modelling practice, by apply-
ing several models at different scales. In order to understand why models are applied
the way they are nowadays, and to understand why I consciously left out the buzzwords
'flood’, 'drought’, or 'climate change’ in the first sentence, we first need to take a small step
back in the history of hydrology.

1.1 A short history of hydrology
Water is essential for life. It is therefore not surprising that even for the oldest civiliza-
tions, evidence has been found for hydrologic engineering. One of the oldest examples
dates back to 3000 years B.C., when Pharao Menes ordered the construction of a dam in
the Nile, which diverted the course of the river (Biswas, 1970). Around that same time,
in several cultures, from Mesopotamia to the Indus valley, water supply and irrigation
systems were employed. Hydrologic engineering is thus as old as human civilization. In-
deed, understanding the relation between water availability, water management and so-
cial structures is considered one of the key themes in archaeological research (Mithen and
Black, 2011).

The interest in water itself, rather than in its engineering application, started only many
centuries later with the Greek philosopher Thales from Milete (∼600 B.C.). Thales tried
to explain what he observed around him, and concluded that water is "the source of every-
thing" (Biswas, 1970; Fearn, 2001; Ten Bos, 2014). Although Thales leans on mythology in
many parts of his work, his manuscripts are often recognized as the beginning of West-
ern science (see e.g. O'Grady, 2016), from which it can be concluded that water played an
important role in the beginning of science.

Thales’ approach stimulated the search for theories to explain the environment. Brutsaert
(1988) provides a comprehensive overview on the history of the perception of evapora-
tion. Here, however, I will discuss some historical theories on how river runoff is gener-
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Chapter 1. Introduction

ated, since this is more related to the topics in this thesis. Plato (∼400 B.C.) formulated
two hypotheses to explain the occurrence of rivers and streams. Although he refers to
rain in some work as water source, his most known theory is based on ‘Tartarus’, an end-
less underground water basin where all streams and rivers originate from (Biswas, 1970).
This theory was heavily criticized by his pupil Aristotle, who formulated a theory for rivers
and streams which is based on what we currently know as the water cycle, although in his
theory water condensates inside the earth like clouds, which cause rivers and streams to
flow (Baker and Horton, 1936). Over the centuries, many alternative theories have been
proposed, e.g. Leonardo da Vinci's water veins which supposedly transported water from
the sea through the Earth into the mountains to flow out as rivers (Pfister and Savenije,
2006). Aristotle's hydrological theories have not been formally rejected for over 2000
years. Only in the 17th century, when Francis Bacon formalized the empiricist method in
science in his work "Novum Organum" (1620), theories were tested against observations.
Quantitative hydrology developed: hydrological states and fluxes were quantified with
the use of observations. Pierre Perrault (∼1650) is considered the first one who demon-
strated, based on observations, that precipitation as a water source is, in numbers, suf-
ficient to feed the French river Seine (Dooge, 1959; Gottschalk, 1992). Perraults’ study con-
firmed the pluvial theory.

The notion of hydrology as a separate branch of science began to grow in the 18th cen-
tury. Hydrology is, according to the Oxford dictionary, “the branch of science concerned with
the properties of the earth's water, and especially its movement in relation to land". The earliest
notation of this word, according to the Oxford dictionary, stems from 1762. Although the
previous sections describe the starting point of hydrology as a science in the old Greek
civilization, 1762 was the year that Paul Frisi published his work "Treatise of Rivers and Tor-
rents", considered by Horton (1931) as the work in which the discussion on the origin of
rivers and streams is finally settled in favour of the pluvial explanation. Horton (1931)
considered hydrology therefore as a new science, at time of his writing “little more than
a birth-certificate".

Based on this very short and far from complete history of hydrology, it can be concluded
that Thales from Milete was the first one to ask questions about the source of water, the
quantitative hydrologists in the 17th and 18th centuries were the first ones to answer these
questions according to current scientific practice in which theories are tested with obser-
vations. The establishment of scientific practice, mainly by induction, has been devel-
oped further in the 19th and 20th centuries (Chalmers, 1999).

1.2 Science versus engineering
Science is defined as ‘knowledge for its own sake’, in case of hydrology focused on increas-
ing our understanding of the hydrological cycle. Engineering, on the contrary, is focussed
on solving practical problems. Thales’ interests in water itself rather than its application
was a breakpoint to distinguish science from engineering. Plato's ‘Tartarus’ theory or da
Vinci's water veins theory did not directly solve any practical problem but were attempts
to understand system Earth, and can therefore clearly be classified as science (although
not according to current day scientific practice).
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1.2. Science versus engineering

The introduction of quantitative hydrology, where hydrological fluxes are quantified with
observations to test theories, seems to bring science and engineering together again. The
development of quantitative hydrology lead to the formulation of mathematical rainfall-
runoff models to describe hydrological phenomena, for example with the Rational Method
proposed by Mulvany (1851) to describe the relation between time of concentration and
peak flow (Todini, 2007). Because mathematical models can have a clear practical appli-
cation, in contrast to the theories that Aristotle and others had formulated over the last
2,400 years, science started to support engineering: increased understanding of the sys-
tem could directly be applied to solve practical problems. The Industrial Revolution in the
19th century and the associated urbanization increased the demand for practical knowl-
edge, which pushed science further at the service of engineering (Eagleson, 1991).

Defining hydrology as a pure science suffers from several difficulties. One difficulty is of
practical nature and inherent to all Earth and Life sciences: fully controlled experiments
are difficult to conduct due to the large number of variables and the lack of clear system
boundaries (in contrast to e.g. hydraulic experiments in the lab). Hydrological ‘experi-
ments’ are therefore seldom repeatable. A natural extreme event, for example a flood
or a drought, can neither be repeated nor be completely controlled. This leads to uncer-
tainty: there are hidden variables in the complex system Earth, and the researcher has
to rely on historical data. Other obstacles to perceive hydrology purely as a science have
been brought forward by Yevjevich (1968), Klemeš (1986a), and Eagleson (1991). Yevjevich
(1968) states that hydrology as a science is often downgraded to an appendage of hy-
draulic engineering. Klemeš (1986a) agrees with this, stating that hydrology is often only
considered as a “dull subject which one had to take" as part of a study in other sciences such
as geology. A clear turning point was advocated by the National Research Council (1991) in
their book "Opportunities in the Hydrologic Sciences", which provides constructive directives
to improve the position of hydrologic science, especially compared to hydrologic engi-
neering: "We cannot build the necessary scientific understanding of hydrology at a global scale
from the traditional research and education programs that have been designed to serve the prag-
matic need of the engineering community" (p.1). Also the Foresight Committee on Hydrological
Science in The Netherlands (2005) presented an exploratory study on how hydrologic sci-
ences should develop in the Netherlands, but unfortunately the Foresight Committee on
Hydrological Science in The Netherlands (2005) could not resist the temptation to link hydro-
logic research directly to societal relevance. Despite the pleas from Yevjevich and Klemeš
and the massive effort from the National Research Council (1991) more than twenty years
ago, hydrology programmes are often still linked to environmental sciences or engineer-
ing programmes.

The history of hydrology shows that hydrologic engineering is centuries older than hy-
drology as a science, for the logic reason that civilizations need hydrologic engineering
to develop. It is tempting to apply hydrological knowledge to solve practical problems
(engineering), rather than to further investigate state-of-the art hydrological knowledge
(science). Scientific knowledge does not exclude engineering or vice versa. Hydrology is
therefore sometimes described as an ‘Engineering science’ (Sivapalan, 2003), where sci-
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Chapter 1. Introduction

ence serves society. This term, however, can be misleading because the type of research
and the goal of research are different for engineering and scientific purposes. Current
day scientific literature often shows how both approaches are mixed, admittedly not in
the last place in the chapters of this thesis, where almost every introduction starts with
summing up the practical application of the hydrological knowledge gained.

1.3 The philosophy of hydrological modelling
A mathematical formulation of hydrologic theory, what quantitative hydrologists strived
for, can be perceived as a quantitative hydrological model. I adopt the definition of a hy-
drological model from Savenije (2009): “a hypothesis of how a system works, codified in quan-
titative terms". A hydrological model can consist of a single mathematical description of a
hydrological phenomenon, or it can consist of a set of equations describing several parts
of the hydrological cycle. Models are valuable instruments in modern science, but they
give way to several questions concerning the philosophy of science (Frigg and Hartmann,
2012), for example in semantics (if a model is an abstract entity, how can it have explana-
tory power for the physical world? See Psillos, 2011), epistemology (what do we learn from
models?) and in general philosophy of science (how do models relate to theory?). The an-
swers to these questions, however, depend on whether hydrology is considered as science
or as engineering. In the next paragraph, I will give an example of both perceptions.

Oreskes et al. (1994) advocates that models in Earth sciences should only be used for heuris-
tic purposes, “useful for guiding further study but not susceptible to proof ”. Models should be
used to test theories, but theories can only be falsified, or at best, confirmed. In contrast,
black box models do not provide insight in the system and generally lack explanatory
power, but do provide a prediction which can be used for practical application (in other
words: engineering). The heuristic approach versus the black-box approach is an exam-
ple which clearly demonstrates the contrast between the goal of modelling in science and
in engineering. In the scientific approach, the focus of the research is on the model itself
and a correct understanding and parameterization of the processes, i.e., on being “right
for the right reasons" (Kirchner, 2006), whereas for the engineering approach, the focus is
on the model output, which is relevant and should be correct (also if this implies being
right for the wrong reasons). Or, as expressed by Savenije (2009): “From the perception of
the engineer (...) a model is essentially a tool." The difference between a scientific and an en-
gineering approach in hydrological modelling can be diminished or further emphasized,
dependent on which scientific philosophy is followed.

Three philosophies of science can be distinguished in which theories are linked to ob-
servations (thereby ignoring more overarching views on the process of gaining scientific
knowledge, for example by Feyerabend and Kuhn); verificationism, falsificationism, and
Bayesianism (Chalmers, 1999). In the following paragraphs, a very short summary of each
philosophy is given, neglecting important reflections and the development over time.
We refer to Chalmers (1999) and Carnap (1966) for a clear overview of scientific philoso-
phies and the advantages and drawbacks of each philosophy.

In verificationism, also referred to as logical positivism, a theory is formulated, based on
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1.4. The six steps of hydrological modelling

observations (inductivism). Subsequently, the theory is verified against more observa-
tions. If the observations do not confirm the theory, the theory is discarded. New obser-
vations can also stimulate to further develop, adapt, or extend the theory. If the theory is
supported by the observations, the theory becomes "more true". Verificationism requires
hypothesis-testing and rejects every statement that cannot be tested. The Vienna Circle
(Wiener Kreiss), a group of scientists at the beginning of the 20th century, where the first
ones to aim to formalize the laws of verificationism, although full agreement was never
reached. The pressing question how often a theory has to be confirmed by observations
in order to be "true" has never been answered.

Half way the last century the theory of falsification developed in a response to logical pos-
itivism. Karl Popper, the main founder of this theory, specifically criticized the assump-
tion of verificationism (and inductivism) that observations are objective and free of theo-
ries in itself, and denounced the unsatisfactory feeling that a theory can only be proven to
be true when it is supported by an infinite number of observations. Popper adopted the
practice of hypothesis-testing from the logical positivists, but added a second require-
ment: the hypothesis should be falsifiable (Popper, 1968). In other words, it should be
possible to proof that the hypothesis is not true. A scientist should constantly search for
proof to reject their theories. Rejected theories are replaced with new theories, which sci-
entists then again try to falsify. There is a clear drive to advance knowledge rather than
to confirm knowledge.

Bayes’ theorem has become popular with the advance of computational capabilities, but
is based on theory of the 18th century mathematician and Presbyterian minister Thomas
Bayes. The probability for a given theory to be true is defined based on available knowl-
edge, the so-called prior. Defining the prior is clearly an inductive element of Bayesian-
ism. For every new observation, the likelihood of this observation based on the prior is
determined, which then determines the probability of the theory to be true after the ob-
servation - the so-called posterior. Adding more observations will constantly influence
the posterior. Bayesianism can be perceived as a mathematical formalization of verifica-
tionism, because the posterior probability of a theory to be true is a quantification of the
degree of belief that a theory is true.

In developing a hydrological model, different steps can be distinguished (Beven, 2012). I
will demonstrate in which steps the differences between a scientific and an engineering
approach and among the three scientific philosophies are most pronounced. Of course
philosophies generally do not engage in structural schemes, and I do not consider all the
subdivisions within each philosophy. Therefore, this section should be read as a broad
directive rather than a complete overview.

1.4 The six steps of hydrological modelling
I. The perceptual model - deciding on the processes
The perceptual model is the conceptualization of the system. A model is always a sim-
plification of reality, but the degree of simplification is a gradual transition. Usually, the
conceptualization is determined by the goal of the study. Engineers are not necessarily
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Chapter 1. Introduction

interested in the underlying processes of the system, but rather in the practical applica-
bility. Therefore, user-friendliness of the model and the availability of the required input
data are considerations. This can be a motivation to simplify the conceptualization or
choose for a black box approach. In a scientific approach, the perceptual model should
be based on a theory or a set of theories (Clark et al., 2016a), where each theory can be con-
sidered as a hypothesis of (a part of) the real world's functioning. These considerations
explicitly demonstrate the difference between a scientific and an engineering approach.

II. The conceptual model - deciding on the equations
After the perceptual model is formulated, the equations to describe the processes in the
perceptual model should be defined. An engineer can choose for a model which has
shown to perform well under the given circumstances, or identify a statistical regres-
sion model based on available data. A scientist should develop equations which describe
the theories that were defined in the previous step. In an inductive approach, theory
follows from observations. Consequently, within verificationism and Bayesianism, sta-
tistical regression between some variables to describe the processes in the perceptual
model could be applied. Falsificationism, contrastingly, stresses that observations of-
ten depend on the background knowledge and available measurement techniques in a
scientific branch, and therefore acknowledges the drawbacks of, for example, statistical
regression. New equations can be defined based on the conceptual understanding of
the system, rather than on observations alone. In this step of model development, verifi-
cationism and Bayesianism are closer to engineering, whereas falsificationism diverges
from the engineering approach.

III. The procedural model - getting the code to run on a computer
Many (physical) equations do not have an analytical solution, and therefore need a nu-
merical solver. The choice of the numerical solver, however, can have a large impact on the
model results (Clark and Kavetski, 2010; Kavetski and Clark, 2010). An engineer can choose
the Euler forward method because it is easy to implement, or the Runge-Kutta scheme
because it is more stable; after all the main motivation for an engineer is to have a good
model performance. A scientist should be more careful, because the numerical scheme
impacts the model output and therefore can lead to a false rejection or confirmation of
the tested theory. All the scientific philosophies accept the risk to reject (or adapt the pos-
terior in case of Bayes’ theorem) a theory based on model output that was manipulated
by the numerical solver. The opposite can also happen, which is even more worrisome:
the verificationist risks to confirm a theory which might actually be corrected due to the
numerical scheme.

IV. Calibration - getting values for parameters
In the context of hydrological modelling, calibration is defined as "tuning the parameters to
fit the model output with observations" (Steele and Werndl, 2015). From a certain perspective,
calibration is by definition engineering, because the model is adapted for a particular sit-
uation, which would imply that the model does not describe the system correctly (Steele
and Werndl, 2015). This is not necessarily true. The equation (∼theory) describing the re-
lation between two variables at a particular scale could be correct, but calibration can be
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1.4. The six steps of hydrological modelling

needed in order to estimate the parameters at the applied scale (the so called ‘effective
parameters’). Furthermore, the model can contain conceptual parameters which are not
directly measurable in the field and therefore need calibration. Calibration of hydrologi-
cal models is therefore almost inevitable (Beven and Cloke, 2012; Koskela et al., 2012). It is,
admittedly, difficult to distinguish between wrong equations of the underlying theory,
and scaling of parameters.

Another recurring issue in hydrological modelling is that the optimization problem is ill-
defined; the information in the data does not provide sufficient information to identify
unique parameter values (a so-called ill-posed problem), leading to equifinality (Beven,
2006c). A rule of thumb is that discharge time series generally only provide sufficient
information to identify 4 or 5 parameters (Jakeman and Hornberger, 1993). This makes cal-
ibration of a distributed model based on discharge data, where, in principle, each cell
could have multiple unique parameter values, highly non-trivial.

The theory of how to calibrate a model is closely related to modelling steps V and VI: eval-
uation and uncertainty analysis. Klemeš (1986b) proposed the differential split sample
test as calibration procedure for operational (engineering) models. The same procedure
is advocated by Kirchner (2006) and Andréassian et al. (2009). The differential split sam-
ple test can be applicable for engineering, verificationism, and falsificationism (but see
also the next section on evaluation). In Bayesian theory, a split sample test is not a pre-
requisite: it is even inherent to the theory not to apply a split sample, because it is part of
the theory to add new information to the model and adapt the model based on the new
information (Steele and Werndl, 2015). Calibration algorithms have been developed based
on Bayes’ theorem, for example DiffeRential Evolution Adaptive Metropolis (DREAM1,
Vrugt et al., 2008), but these algorithms are often still applied in a split-sample frame-
work.

A thorough calibration procedure is important for the same reason as mentioned under
step III: the underlying theory of a model can be falsely rejected (or accepted in an verifi-
cationist framework) if the parameters have been carelessly identified.

V. Evaluation - confronting model output with observations
‘Validation’ is currently the most widely used term in hydrology when model output data
are confronted with independent observations, and it is also the term that is used in this
thesis, but it is not undisputed. Oreskes et al. (1994), advocating the falsificationist ap-
proach, states that models in Earth sciences can never be verified (‘establishment of truth’)
or validated (‘establishment of legitimacy’), because of the lack of a closed and controlled
system. At its best, models can be confirmed by the data. In contrast, model confirmation
is a way of model verification for a verificationist or an engineer. The model evaluation
procedure clearly drives a wedge between verificationists and falsificationists. Further-
more, falsification theory stimulates a more thorough model evaluation than verifica-

1It is important to note that DREAM only considers the calibration-step in a Bayesian framework, not the
complete theory testing.
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Chapter 1. Introduction

tionism does, e.g. regarding internal consistency.

VI. Uncertainty analysis - estimating the uncertainty of the model (output)
For an engineer, uncertainty analysis could be relevant in order to help in decision mak-
ing, but when it for example comes to hydrologic infrastructure design, the motivation
is to be on the safe side, not to thoroughly understand the uncertainty in the model. For
scientists, Beven (2006a) states that it is simply unscientific nót to do uncertainty anal-
ysis, which is a valid point given the difficulties of Earth sciences concerning controlled
and repeatable experiments. Hydrological models are prone to uncertainty, for several
reasons (Wagener et al., 2004);

1. Measurement, model, and scaling errors in the input data

2. Unknown values of the parameters

3. The model structure does not capture all relevant processes

Uncertainty analysis is needed because it can be a reason to not reject a theory despite
a bad model performance, for example when it can be shown that the model is not per-
forming well because of the input data, rather than because of the underlying theory. It
can also be a reason to reject a theory despite good model performance, because the pa-
rameters show to be highly uncertain. How the uncertainty analysis should be conducted
is a matter of dispute or even a matter of taste. In Bayesianism, uncertainty analysis is in-
herent, because with a Bayesian approach probabilities are assigned, which already indi-
cate a notion of uncertainty. Bayesian approaches like DREAM (Vrugt et al., 2008) are pop-
ular, but Beven (2006a) argues that many assumptions of a formal Bayesian analysis can-
not be proven to be valid in hydrological models (see p.44 where some of these assump-
tions are discussed and tested). To relax these assumptions, Beven and Binley (1992) have
proposed the Generalized Likelihood Uncertainty Estimation (GLUE) method, which in-
directly accounts for input data and parameter uncertainty.

Based on the different steps in developing a hydrological model, it was shown that the
largest differences between a scientific and an engineering approach occur in the per-
ceptualization and conceptualization of the system. It was shown that verificationism
sometimes closely resembles the engineering approach, whereas falsificationism clearly
calls for a different practice, especially in model evaluation.

In many hydrological modelling studies science and engineering approaches are mixed.
This is worrying, because the goal of both disciplines is different. On the basis of six steps
in hydrological modelling, the difference between the scientific and the engineering ap-
proach was demonstrated. Without judging or expressing a preference for any of the
philosophies of science (yet), which all have their advantages and drawbacks, it is im-
portant that a scientist is aware of the applied approach (some implications are nicely
discussed in Nearing et al., 2016), and critically reflects on this approach. Considering hy-
drology as an ‘engineering science’ does not stimulate thorough and critical analysis of
the system under study.
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Figure 1.1: Overview of the spatial and temporal scales and the complexity of the employed hy-
drological models (defined here as the degree to which involved processes are explicitly described)
covered in this thesis. The numbers refer to the chapters of this thesis. Thex, y-axes are based on
Figure 7.1.

1.5 Positioning of the chapters in this thesis

The first three modelling steps (perceptual, conceptual, procedural) as discussed in the
previous section in practice often result in simply using an existing model, where the
model choice might sometimes be motivated by experience within the research group,
available time in a (PhD-)project, habits, or code availability, rather than on the percep-
tual understanding of the system. The available hydrological models vary widely in com-
plexity; from highly conceptual models describing only the main components of runoff
generation (like the unit-hydrograph concept), to fully coupled surface water-ground wa-
ter models based on physics (Paniconi and Putti, 2015). The hydrological cycle comprises
many processes that cover a broad range of spatial and temporal scales, as demonstrated
in Figure 1.1. Therefore, the spatial and temporal scales covered by hydrological models
also varies greatly; from models that only describe the processes at the smallest scale,
e.g. pore flow and capillary rise, to models that describe large-scale processes such as
long-term climate response or hydrological drought. Summarizing, hydrologic science
concerns processes that cover a broad range of spatial and temporal scales and can be
approached with models of a wide variety of complexities. The models can be applied to
many different basins for which observations are available; all in all, many (subjective)
choices for a modeller (as discussed in Chapter 5 and demonstrated in Figure 5.1).
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Chapter 1. Introduction

In this thesis, I put hydrological modelling practice to the test and therefore apply widely
used hydrological models; in other words, I do not take the royal scientific modelling
road either, where I should start with a perceptual understanding of the hydrological sys-
tem and hypothesize about the dominant processes, but rather use readily available and
commonly used hydrological models which substitute modelling step I, II, and III. A clear
example of mixing engineering and science approaches, since almost all of the selected
models have been developed mainly for projections (as discussed in the next chapter).

Figure 1.1 provides an overview of the spatial and temporal scales covered in each of the
chapters of this thesis, and the relative complexity (defined here as the degree to which
involved processes are explicitly described) of the models employed. Each chapter fo-
cuses on a specific step in the hydrological modelling process.

Chapter 3 discusses the data requirements for different parameter identification meth-
ods in order to obtain stable parameters in the calibration procedure (IV. Calibration). In
Chapter 4, parameter transferability is investigated and used as indicator for how well
the model represents the spatial and temporal variability (IV. Calibration). In Chapter 5,
the impact on model output of several modelling decisions during the procedural model
and calibration steps is investigated (III. Procedural model and IV. Calibration). Chapter 6
presents an uncertainty analysis, where the three sources of uncertainty are investigated
for a large sample of basins (VI. Uncertainty analysis). Chapter 7 is a plea for more thorough
model validation, supported by a literature survey (V. Evaluation). Finally, the considera-
tions from this introduction and the five research chapters are combined in the synthesis
of Chapter 8.
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Chapter 2

Catchments, data, models, and methods

The fist part of this chapter discusses the catchments and the available data that have
been used to conduct the studies presented in the following chapters of this thesis. The
catchments cover a range of spatial scales as demonstrated in Figure 1.1. The second part
of this chapter provides a description of employed hydrological models, which cover a
range of complexities (Figure 1.1). The last part of this chapter describes employed sam-
pling and sensitivity analysis methods.

2.1 Study areas and data

The catchments discussed in this section are ordered from small to large spatial extent.
Per catchment, the available input and validation data will be discussed.

Mosnang

Büel

100 km
10 km

2.502 m

1 km

950 m

Figure 2.1: Elevation map of Switzerland, the Thur catchment, and the Rietholzbach catchment
with the measurement stations indicated.
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Figure 2.2: The 32 year smoothed average
and standard deviation of hydro-meteorological
characteristics in the Rietholzbach catchment.

Table 2.1: Climate summary for the Riet-
holzbach catchment based on 32 years of
data (Seneviratne et al., 2012)

Climate Variable Average

Temperature (2m) 7.1◦C
Precipitation 1459 mm yr−1
Discharge 1063 mm yr−1
Actual ET 560 mm yr−1

Rietholzbach catchment

The Rietholzbach catchment, subject of study in Chapter 3, is situated in North-East Swit-
zerland, as shown in Figure 2.1. The catchment is small (3.3 km2), but very well-studied
as research catchment of ETH Zürich since 1976 (Seneviratne et al., 2012).

The altitude in the catchment ranges from 950 to 682 m; the average elevation is 795 m.
The catchment has an average slope of 8.3◦ based on a 200×200 m DEM, but a slope of
14.5◦ according to Seneviratne et al. (2012). Land use consists mainly of pastures (71.9%)
and forest (25.6%), while smaller portions of the area consist of orchards (1.2%) and set-
tlements (1.3%). Due to the pronounced relief and variation in parent rock types (mainly
‘nagelfluh’, limestones, dolomites and conglomerates), a large variety in soil types can be
found in the area. The lower part of the catchment contains gleysols and gleyic cambisols
(41.6%), while in the higher part of the catchment acidic and calcaric cambisols (40.7%)
and regosols (17.6%) can be found. The soil depth is highly variable, and varies from 20
to 50 cm at the steep slopes, to several meters in the valley bottom.

Thirty-two years of evapotranspiration and most hydro-climatological measurements
were available for the period 1976–2007 at an hourly time resolution. The hourly reso-
lution is larger than the typical travel time in the stream within the catchment, but con-
siderably smaller than the response time of the system (Teuling et al., 2010). The main
discharge gauge is ‘Mosnang’ at the outlet of the catchment (see Figure 2.1). This gauge
is operated by the Federal Office for the Environment (FOEN, Hydrology Division, Bern,
Switzerland), but data were made available by ETH Zürich. Forcing data, like precipita-
tion, temperature, and radiation, were measured at the ‘Büel’ station in the centre of the
catchment, which is maintained by the ETH Zürich. At the same location, actual evapo-
transpiration is measured with a weighing lysimeter.
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Table 2.1 and Figure 2.2 contain a summary and the average yearly cycle of several me-
teorological characteristics. Note that the water balance based on measured precipita-
tion, discharge and evapotranspiration does not close. The non-closure of 8% is within
the range that can be caused by measurement errors. Gurtz et al. (2003) showed with
a comparison between the rain gauge and the lysimeter that the largest discrepancies
in precipitation measurements exist during winter (15-25% for rainfall, and 55-65% for
snowfall), while in other periods both devices agree well. The maximum measurement
error in local evapotranspiration by the weighing lysimeter is estimated to be 0.032 mm
per measurement, based on the resolution of the electronic measurement device. Addi-
tional uncertainty is induced by the design of the lysimeter, e.g. due to a lack of connec-
tion to groundwater storage. Instrumental drift has been reported for the lysimeter, but
the data has been corrected for drift with linear detrending. The lysimeter is covered with
grass, which is the main land use in the Rietholzbach. Therefore it is assumed that the
lysimeter is representative for the whole catchment. For the discharge measurements,
based on a calibrated stage-discharge relation, errors of around 5 to 10% have been re-
ported (Seneviratne et al., 2012). Overall, measurement errors are relatively small and the
data of the Rietholzbach is considered to be of high quality. However, the non-closure
of the water balance allows for the possibility that some parts of the data are physically
inconsistent: so-called disinformation (Beven and Westerberg, 2011).

Thur catchment
The Rietholzbach catchment is nested within the Thur catchment (1703 km2), as shown in
Figure 2.1. The Thur catchment, object of study in Chapter 4 and 5, was selected as study
area because of the excellent data availability and because of its relevance as a tributary
of the river Rhine (Hurkmans et al., 2008). The main river in the catchment (the Thur) has
a length of 127 km. The average elevation of the catchment is 765 m a.s.l., the mean slope
is 7.9◦ (based on a 200×200 m resolution DEM and slope file). The catchment outlet is
situated at Andelfingen at an elevation of 356 m a.s.l. (Gurtz et al., 1999).

The catchment has an alpine/pre-alpine climatic regime, with high temperature varia-
tions both in space and time (Figure 2.3). Precipitation varies from 2500 mm yr-1 in the
mountains to 1000 mm yr-1 in the lower areas. Part of the year the catchment is covered
with snow. The most striking feature in the Thur catchment is the Säntis, an Alpine peak
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Figure 2.3: Distribution of main climate characteristics in the Thur over the period 1/8/2002 –
31/8/2003. Left: the precipitation sum. Right: the average temperature.
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with an altitude of 2502 m. The dominant land use is pasture. The Thur has been subject
of many previous studies, see for example Gurtz et al. (1999, 2003); Jasper et al. (2004); Ab-
baspour et al. (2007); Yang et al. (2007). Within the Thur catchment, measurements for
nine (nested) sub-catchments are available, which are indicated in Figure 2.4. The small-
est gauged sub-catchment is the Rietholzbach catchment (3.3 km2, discussed in the pre-
vious section), the largest is Halden (1085 km2). Descriptors of the Thur catchment and
the nine sub-catchments are summarized in Table 2.2.

For the station at the Thur outlet (Andelfingen) and eight sub-catchments hourly dis-
charge measurements for the period 1974–2012 were made available by the Swiss Fed-
eral Office for the Environment (FOEN). All discharge measurements have been obtained
using a stage-discharge relation, based on several measurements conducted by FOEN
throughout the years, a.o. with an Acoustic Doppler Current Profiler (ADCP). The dis-
charge measurements for the Rietholzbach catchment were made available by ETH Zürich.

Forcing data were made available by the Swiss Federal Office for Meteorology and Clima-
tology (MeteoSwiss). These data have previously been used for numerous applications
of hydrological models in the Thur (Jasper et al., 2004; Abbaspour et al., 2007; Fundel and
Zappa, 2011; Fundel et al., 2013; Jörg-Hess et al., 2015). The data are available in the form
required to implement the PREVAH model (Viviroli et al., 2009a,b). Data from nine dif-
ferent meteorological stations in and around the catchment (Güttingen, Hörnli, Reck-
enholz, Säntis, St.Gallen, Tänikon, Wädenswil, Zürich and Rietholzbach) were available
with an hourly time resolution and spatially interpolated with the use of the WINMET
tool of the PREVAH modelling system (Viviroli et al., 2009a), using elevation-dependent
regression (EDR) and inverse distance weighting (IDW) and combinations of IDW and
EDR. The data is available for the period 1981–2004, for which a stable configuration of
stations is available. In this thesis, only data for the period May 2002 – August 2003 were

Halden

StGallen
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Appenzell

Mogelsberg

Rietholzbach

Jonschwil

Wängi

Frauenfeld

Andel�ngen (Thur outlet) 
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47.597N,8.681E
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Figure 2.4: The Thur catchment and the nine sub-catchments for which data were available.
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Table 2.2: Descriptors of the Thur catchment and the nine sub-catchments

Catchment Area Mean elev. Mean Dominant
(km2) (m asl) slope (◦) land use

Rietholzbach 3.3 795 8.3 Pastures
Herisau 17.8 834 6.8 Pastures
Appenzell 74.2 1255 18.9 Sub-alpine meadow
Wängi 78.9 650 5.6 Pastures
Mogelsberg 88.2 938 11.1 Pastures
Frauenfeld 212.0 592 4.9 Pastures
St.Gallen 261.0 1040 12.5 Pastures
Jonschwil 493.0 1016 13.4 Pastures
Halden 1085.0 909 10.5 Pastures
Thur 1703.0 765 8.1 Pastures

used. This period is characterized by extreme high flows and an extreme drought event.

Land use, hydraulic conductivity, elevation, and soil water storage capacity maps, all with
a spatial resolution of 200×200 m, were provided by the Swiss Federal Institute for For-
est, Snow and Landscape Research (WSL) under license of Swisstopo (JA100118). Also in
this case the pre-processing routines created to implement the PREVAH modelling sys-
tem were used (Viviroli et al., 2009a). Other soil characteristics, such as bulk density, have
been obtained from the Harmonized World Soil Database (FAO et al., 2012), which has a
spatial resolution of 1×1 km.

605 catchments throughout the contiguous United States

Chapter 6 of this thesis uses a data set of 605 catchments throughout the contiguous
United States (CONUS). This dataset is a sub-sample of the set which is presented and
described by Newman et al. (2015). The catchments cover a wide range of climatic and
hydrological conditions. Figure 2.5 illustrates the long-term average observed precipita-
tion, temperature, and discharge for each catchment.

The median size of the catchments in the data set is 361 km2, but areas range from 4
to 25,800 km2 (see left panel of Figure 2.6). The mean elevation from the catchments
ranges from 14 to 3640 m, with a median elevation of 454 m (middle panel of Figure 2.6).
The steepest catchment has a mean slope of 14.3◦, the most gentle catchment a slope
of 0.05◦, and the median slope of the catchments in the data set is 1.5◦ (right panel of
Figure 2.6). Land use in the catchments varies from mixed forest to grassland and from
savannah to crop land.

For all catchments, lumped forcing data were available based on the Daymet data set dis-
tributed by NASA. Daymet data has a temporal resolution of one day, and a spatial res-
olution of 1×1 km. The data is available from 1980 to present. The variables in Daymet
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Figure 2.5: Distribution of main climate characteristics in the 605 basins throughout the contigu-
ous United States based on observations over the period 1980–2008. Top left: yearly precipitation
sum. Top right: the average temperature. Bottom left: yearly discharge sum. Bottom right: arid-
ity defined as potential evapotranspiration (PET) divided by precipitation (P). PET was determined
using the Priestley-Taylor method (Lhomme, 1997).

that were used to force hydrological models are the daily maximum and minimum tem-
perature, precipitation, shortwave downward radiation, day length, and humidity. The
Mountain Climate Simulator (MT-CLIM) was used to estimate shortwave radiation and
humidity. If potential evapotranspiration (PET) was required as input variable for a hy-
drological model, PET was obtained using the Priestley-Taylor method. For all 605 catch-
ments, United States Geological Survey (USGS) daily streamflow observations were avail-
able over the period 1980 to present.

2.2 Model descriptions
The perceptual, conceptual, and partly the procedural modelling step have been substi-
tuted by using readily available hydrological models. Because the goal of this thesis is to
put hydrological modelling practice to the test, we made use of commonly used hydro-
logical models. Throughout the research chapters of this thesis, four different rainfall-
runoff models have been explored with various complexity: The simple dynamical sys-
tems approach (Kirchner, 2009), used in Chapter 3, is highly conceptual and clearly chooses
a lumped approach for catchment functioning. The Sacramento Soil Moisture Account-
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Figure 2.6: Cumulative distribution function (CDF) of catchment size (left), mean elevation (mid-
dle) and mean slope (right) for the dataset of 605 catchments.

ing model (SAC-SMA, Burnash et al., 1973) and the Hydrologiska Byråns Vattenbalansavdel-
ning model (HBV, Bergström, 1976), explored in Chapter 6, describe several processes ex-
plicitly in more detail, such as soil storage and surface runoff. The Variable Infiltration
Capacity model (VIC, Liang et al., 1994), used in Chapter 4–7, also explicitly describes pro-
cesses such as root water uptake and transpiration coupled to stomatal resistance. The
four hydrological models are described in more detail below, ordered from low complex-
ity to high complexity, where we define complexity as the degree to which involved pro-
cesses are explicitly described

Simple dynamical systems approach
In the ‘Catchments as simple dynamical systems’-approach, the main assumption is that
discharge solely depends on the amount of water stored in a catchment, and that the
function describing this relation is unique. A motivation for this approach is that the
physical processes taking place in catchments are highly complex and heterogeneous.
In this approach, these processes are considered in a lumped fashion at the catchment
scale (Kirchner, 2009). This approach is derived from the water balance:

dS
dt

= P − E −Q, (2.1)

with dS being the change in storage in the catchment over time dt,P is precipitation,E
evaporation andQ discharge. It is assumed that there is a function f describing the re-
lation between discharge and storage, and that this relation is invertible (no hysteresis):

Q = f(S), S = f−1(Q). (2.2)

The change in discharge over time can be related to the water balance:

dQ
dt

=
dQ
dS

dS
dt

=
dQ
dS

(P − E −Q), (2.3)

in which dQ
dS is the sensitivity of discharge to changes in storage. This is the derivative

of the function f describing the relation between storage and discharge. Generally, this
derivative would be expressed in terms of storage, but catchment storage is not directly
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measurable. Discharge is, and since it is assumed that the relation between storage and
discharge is invertible, the derivative can be expressed as a function of discharge:

dQ
dS

= f ′(S) = f ′(f−1(Q)) = g(Q). (2.4)

The function describing the derivative of discharge to storage is typically referred to as the
sensitivity function g(Q). While g(Q) is not restricted to a particular form, the common
power-law representation was chosen (Brutsaert and Nieber, 1977; Kirchner, 2009; Troch
et al., 2013) in Chapter 3. Applying a power-law results in a model with only two parame-
ters:

g(Q) =
dQ
dS

= αQβ . (2.5)

The change in discharge (dQ) due to a change in storage (dS) is described by the param-
etersα and β and the dischargeQ. Note that the dimension ofα depends on the value
ofβ. There are fundamental differences in the behaviour of the system forβ < 1,β = 1
and β > 1 (Kirchner, 2009). For example, β < 1 implies that there is a residual storage
S0 which remains in the catchment if discharge reduces to zero, for β = 1 there will be
discharge at all storage values, which implies that storage can decline indefinitely, and
forβ > 1S0 is no longer the lower but the upper bound of storage in the catchment. For
a comprehensive discussion on the effect ofβ, we refer to Kirchner (2009).

The ‘Catchments as simple dynamical systems’-approach has been explored in the Riet-
holzbach catchment. The Rietholzbach experiences intermittent snow cover in winter,
and therefore snowmelt had to be accounted for. SnowmeltM (mm h-1) is assumed to
be dependent on radiation and temperature, following the Restricted Degree-Day Radi-
ation Balance approach by Kustas et al. (1994):

M = F1(T2m − T0) + F2Rg. (2.6)

F1 (mm h-1 ◦C-1) andF2 (mm h-1(W m-2)-1) are parameters controlling the melt rate,T2m
(◦C) is the measured temperature at 2 m height,T0 (◦C) is a threshold temperature, and
Rg (W m-2) is, in contrast to the net radiation which Kustas et al. (1994) proposed, the
global radiation. Teuling et al. (2010) argued that for small catchments with partial snow
cover, like the Rietholzbach, net radiation is highly variable and therefore global radia-
tion was used, which is independent of local surface conditions.

When the snowmelt parameters, and the parametersα andβ of the sensitivity function
g(Q) are identified, the discharge can be simulated. Due to the strong non-linearity
of g(Q), numerical stability improves if changes in log(Q) are simulated, rather than
changes inQ (Kirchner, 2009). This leads to the following differential equation:

d(log(Q))
dt

=
1

Q

dQ
dt

= g(Q) ·
(
P +M − ET

Q
− 1

)
, (2.7)

where P is rainfall (mm h-1), M snowmelt (mm h-1) and ET evapotranspiration (mm
h-1). Equation 2.7 is solved with a fourth-order Runge-Kutta scheme with variable time
step as proposed by Kirchner (2009) and adopted by Teuling et al. (2010) and Brauer et al.
(2013).
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The SAC-SMA model
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Figure 2.7: Overview of the processes incorporated in the Sacramento Soil Moisture Accounting
model (SAC-SMA). Adapted from National Weather Service (2002).

The Sacramento Soil Moisture Accounting model (SAC-SMA, Burnash et al., 1973) was de-
veloped by the US National Weather Service, with the goal to provide relatively short-
term discharge predictions. The following description of the SAC-SMA model (from now
on referred to simply as SAC) is based on the report of the National Weather Service (2002).
The two basic components of SAC are tension water, water present in the soil but due to
absorption to soil particles only removable through evaporation and transpiration, and
free water, water that is available for percolation and drainage. Furthermore, SAC divides
the soil into an upper and a lower zone. The tension water in the upper zone (represented
in the UZTWM parameter) represents the amount of water which can be absorbed by
the soil before drainage takes place. The free water in the upper zone (represented in
the UZFWM parameter) either moves laterally through the soil as interflow, or drains
vertically into the deeper soil. In the lower zone, the tension water (LZTWM) represents
the amount of moisture necessary to satisfy the moisture requirements of the soil due to
molecular attraction. The free water in the lower zone provides the reservoirs which gen-
erate base flow. Free water in the lower zone is divided into a primary type (LZFPM), which
represents slow drainage, and a secondary type (LZFSM), which represents fast drainage
after a recent rainfall event. The fast drainage can supplement the slow drainage. Direct
runoff is generated from impervious areas (which can be parameterized with the PCTIM
parameter) and when rainfall intensity exceeds the infiltration rate of the soil or when
the soil is saturated. An overview of the processes described in the SAC model is given in
Figure 2.7.
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The HBV model
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Figure 2.8: Overview of the processes incorporated in the HBV model. Adapted from Uhlenbrook
et al. (1999).

The Hydrologiska Byråns Vattenbalansavdelning model (HBV, Bergström, 1976) was de-
veloped in Sweden with the aim to use the model for hydrological forecasting. Partic-
ular attention was given to snow processes due to the relevance of snow in Scandina-
vian areas. The following model description is mainly based on Bergström (1992). The
HBV model consists of three main components: snow accumulation and melt (the snow
routine), soil moisture (the soil routine), and response and river routing (response func-
tion and routing routine). The model is semi-distributed since different elevation and
vegetation zones can be defined. Snow accumulation and snowmelt are parameterized
with a degree-day expression, based on two parameters, one (Tm) which represents the
threshold level above which snowmelt starts and one (Tr) below which precipitation falls
as snow (sometimes these two parameters are combined in one parameter named TT).
If rain falls on snow, runoff is generated only if the liquid holding capacity of the snow
(usually fixed at 10%) is exceeded. The soil routine is controlled by three parameters;
FC, BETA, and LP. FC represents the maximum soil moisture storage, BETA is the coeffi-
cient of a non-linear function that describes the relation between soil moisture level and
recharge; a higher soil moisture level results in a higher recharge to the lower reservoirs.
The LP parameter links the soil moisture level to evaporation; if the soil moisture level is
lower than LP, actual evapotranspiration is reduced. Recharge from the soil moisture rou-
tine is transformed into discharge using two reservoirs: a fast responding reservoir, and
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a slow responding reservoir that is fed with percolation water from the fast responding
reservoir. The final outflow is smoothed using a triangular weighting function (MAXBAS)
to account for river routing. An overview of the processes described in the HBV model is
given in Figure 2.8.

The VIC model

Figure 2.9: Overview of the processes incorporated in the Variable Infiltration Capacity (VIC) mo-
del. Source: http://vic.readthedocs.org.

The VIC model (Liang et al., 1994, 1996) was initially developed for large scale applications,
to couple climate models to hydrological processes. It is a land-surface model that solves
both the water and the energy balance. Sub-grid land use variability is accounted for by
providing vegetation tiles that each cover a certain percentage of the total surface area.
Three different types of evaporation are considered by the VIC model: Evaporation from
the bare soil (Eb), transpiration by the vegetation (T ), considered per vegetation tile, and
evaporation from interception (Ei). The total evapotranspiration is the area-weighted
sum of the three evaporation types. The fraction of land that is not assigned to a partic-
ular land use type is considered to be bare soil. Evaporation from bare soil only occurs at
the top layer (layer 0). If layer 0 is saturated, bare soil evaporation is at its potential rate.
Potential evaporation is obtained with the Penman-Monteith equation. If the top layer is
not saturated, an Arno-formulation (Francini and Pacciani, 1991), which uses the structure
of the Xinanjiang model (Zhao et al., 1980), is used to reduce the evaporation.

For the upper two soil layers, the Xinanjiang formulation (Zhao et al., 1980) is used to de-
scribe infiltration. This formulation assumes that the infiltration capacity varies within
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an area. Surface runoff occurs when precipitation intensity exceeds the local infiltration
capacity of the soil. Moisture transport from layer 0 to layer 1 and from layer 1 to layer 2
is gravity-driven and only dictated by the moisture level of the upper layer. It is assumed
that there is no diffusion between the different layers. Layer 2 characterizes the long term
soil moisture response, e.g. seasonality. It only responds to short-term rainfall when both
top layers are fully saturated. The gravity-driven moisture movement is regulated by the
Brooks-Corey relationship:

Qi,i+1 = Ksat,i

(
Wi −Wr,i

W c
i −Wr,i

)expti
. (2.8)

Qi,i+1 is the flow (L T-1) from layer i to layer i + 1. Ksat,i is the saturated hydraulic con-
ductivity of layer i, Wi is the soil moisture content in layer i, W c

i is the maximum soil
moisture content in layer i,Wr,i the residual moisture content in layer i. The exponent
of the Brooks-Corey relation, expti, is defined as follows: 2

Bp
+ 3, in whichBp is the pore

size distribution index. The exponent as a whole is often calibrated.

Base flow is determined based on the moisture level of layer 2. Base flow generation fol-
lows the conceptualization of the Arno model (Francini and Pacciani, 1991). This formula-
tion consists of a linear part (lower moisture content regions) and a quadratic part (in the
higher moisture regions). Base flow is modelled as follows:

Qb =


dsdm
wsW c

2
·W2 if 0 ≤W2 < wsW

c
2

dsdm
wsW c

2
·W2 +

(
dm − dsdm

ws

)(
W2−wsW

c
2

W c
2 −wsW c

2

)g
if W2 ≥ wsW c

2

(2.9)

In this equation,Qb is the total base flow over the model time step, dm is the maximum
base flow, ds the fraction of dm where non-linear base flow begins,ws is the fraction of
soil moisture where non-linear base flow starts. W c

2 is the maximum soil moisture con-
tent in layer 2, calculated as a product of porosity and depth. The exponentg is by default
set to two (Liang et al., 1996).

Since the grid-size of the VIC model is often larger than the characteristic scale of snow
processes, sub-grid variability is accounted for by means of elevation bands. For each grid
cell the percentage of area within certain altitude ranges is provided. The snow model is
applied for each elevation band and land use type separately; the weighted average pro-
vides the output per grid cell. This output consists of the Snow Water Equivalent (SWE)
and the snow depth. The snow model is a two-layer accumulation-ablation model, which
solves both the energy- and the mass balance. At the top layer of the snow cover the en-
ergy exchange takes place. A zero energy flux boundary is assumed at the snow-ground
interface.

In order to apply VIC in a distributed fashion, a routing model is required to transport
the water between the different grid cells. Therefore, the mizuRoute routine (Mizukami
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et al., 2016) was implemented. The routing is based on the same concept as the default
VIC-routing developed by Lohmann et al. (1996), except that in mizuRoute the response is
determined per sub-catchment instead of per grid cell.
With the linearised St. Venant equation,

∂Q

∂t
= D

∂2Q

∂x2
− C ∂Q

∂x
, (2.10)

water is transported from the boundary of the sub-catchment to the next sub-catchment
and finally to the outlet. In Equation 2.10, D (L2T-1) represents the diffusion coefficient
andC (L T-1) the advection coefficient.

In the default VIC routing of Lohmann et al. (1996), water is routed per grid cell and there-
fore dependent on the spatial resolution of the VIC model. By applying mizuRoute based
on pre-defined sub-catchments (~1 km2), the effect of the spatial resolution on the rout-
ing process is excluded.

2.3 Parameter sampling strategy
For the VIC model, described in the previous section, a GLUE-based approach (Beven and
Binley, 1992) was employed for parameter sampling. This approach requires that the mo-
del is run with a large number of parameter sets (preferably covering the complete pa-
rameter space). Subsequently only the behavioural runs are selected. Different defi-
nitions for ‘behavioural’ can be adopted, dependent on the goal of the study. In Chap-
ter 4 for example, a different definition is used than in Chapter 6, because in the first
one mainly a sensitivity analysis is conducted, while in the latter model confirmation is
needed to estimate model credibility.

The VIC model has a large number of parameters, divided over three sections: soil pa-
rameters, vegetation parameters, and snow parameters. Sampling all parameters com-
pletely would be a heavy computational burden (see Figure 2.10a for a 3-parameter mo-

P1
P2

P3

P1 P2 P3 P1 P2 P3 P1 P2 P3

P3

P2

P1 P2 P3

P3

P2a b c d

Figure 2.10: Parameter sampling strategy. (a) Example situation when sampling for a model with
three parameters. (b) Sensitivity analysis can be conducted to decrease the dimensions of the sam-
pling space. (c) Latin Hypercube sampling is structured and more efficient: one sample in each
row and each column, as indicated with the bands. The number of samples has to be determined
beforehand. (d) Hierarchical Latin Hypercube sampling allows to extend the sample if necessary,
while conserving Latin Hypercube structure.
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del example). Therefore, several strategies have been combined to make the sampling
more efficient. The number of parameter samples needed to cover the full parameter
space can decrease significantly by selecting only the most sensitive parameters (see Fig-
ure 2.10b), as described in the next section. The number of parameter sets can be further
reduced by choosing an efficient sampling strategy (Figure 2.10c and d).

Sensitivity analysis

To determine which parameters have the largest influence on the modelled discharge,
a sensitivity analysis was conducted on a broad selection of parameters in the model
(see Table 2.3). The parameter selection was made such that the main hydrological pro-
cesses were represented and included 28 VIC parameters from the three different sec-
tions. Sensitivity analysis was conducted using the Distributed Evaluation of Local Sensi-
tivity Analysis (DELSA) method (Rakovec et al., 2014). DELSA is a hybrid local-global sen-
sitivity analysis method. It evaluates parameter sensitivity based on the gradients of the
objective function for each individual parameter at several points throughout the param-
eter space. Note that this method only provides first-order sensitivities and thus does not
account for parameter interaction.

A base set of 100 parameter samples was created. For each parameterk that is accounted
for in the analysis, the base set of parameter samples is perturbed. In total, including the
base set, this leads to (number of parameters+1)× 100 parameter samples that need to
be evaluated. To save computation time, the sensitivity analysis was conducted on the
lumped VIC model for the Thur. To study the effect of spatial scale on sensitivity, also two
lumped models for sub-catchments of the Thur have been constructed: The Jonschwil
catchment (495 km2) and the Rietholzbach catchment (3.3 km2). The Rietholzbach catch-
ment is nested inside the Jonschwil catchment, which is again nested in the Thur catch-
ment (Figure 2.4). The three catchments have comparable land use. Three objective func-
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Figure 2.11: DELSA parameter sensitivity (scaled from 0 to 1) for three nested catchments with
a different size (Rietholzbach; 3.3 km2, Jonschwil; 493 km2, Thur; 1703 km2). The numbers on
thex-axis refer to the parameters in Table 2.3. The sensitivity as shown in this figure is based on
NSE(Q) as objective function. Results are shown based on a daily and hourly time interval.
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Table 2.3: Description and bounds of VIC parameters that have been considered in the DELSA sen-
sitivity analysis.

Parameter Units Lower
value

Upper
value

Description

Soil parameter file

1 bi - 10-5 0.4 Variable infiltration curve parameter
2 ds - 10-4 1 Fraction of dm where non-linear base flow

starts
3 dm mm d−1 1 50 Maximum base flow
4 ws - 0.5 1 Fraction of maximum soil moisture where

non-linear base flow starts
5 c - 1 4 Exponent used in the base flow curve
6 expt0 - 4 30 Exponent of the Brooks-Corey drainage

equation layer 0
7 expt1 - 4 30 Exponent of the Brooks-Corey drainage

equation layer 1
8 expt2 - 4 30 Exponent of the Brooks-Corey drainage

equation layer 2
9 Ksat0 mm d−1 100 1000 Saturated hydrologic conductivity layer 0
10 Ksat1 mm d−1 100 1000 Saturated hydrologic conductivity layer 1
11 Ksat2 mm d−1 100 1000 Saturated hydrologic conductivity layer 2
12 Depth0 m 0.01 0.5 Thickness of soil layer 0
13 † Depth1 m Depth0+0.1 Depth0+4 Thickness of soil layer 1
14 Depth2 m 0.1 4 Thickness of soil layer 2
15 bulk density0 kg m−3 1500 2685 Bulk density of soil layer 0
16 bulk density1 kg m−3 1500 2685 Bulk density of soil layer 1
17 bulk density2 kg m−3 1500 2685 Bulk density of soil layer 2
18 Wcr-FRACT0 - 0.30 0.47 Fractional soil moisture content at critical

point layer 0
19 Wcr-FRACT1 - 0.30 0.47 Fractional soil moisture content at critical

point layer 1
20 Wcr-FRACT2 - 0.30 0.47 Fractional soil moisture content at critical

point layer 2
21 snow-rough m 5·10-5 0.5 Surface roughness of the snow pack

Vegetation parameter file

22 Root depth 0 m 0.1 3 Root zone thickness layer 0
23 Root depth 1 m 0.1 3 Root zone thickness layer 1
24 Root depth 2 m 0.1 3 Root zone thickness layer 2

Vegetation library file

25 rmin s m-1 30 300 Minimum stomatal resistance of vegetation
26 ?LAI - 0.7 1.3 Leaf Area Index

Global parameter file

27 Tmin
◦C -1.5 0.0 Minimum temperature at which rain can fall

28 †Tmax
◦C Tmin+0.5 Tmin+1.5 Maximum temperature at which snow can

fall
† Value of this parameter must be greater than the related parameter mentioned in the parameter boundaries.
? Implemented as a multiplication factor to the default parameter values.
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tions were used to assess the sensitivity of the parameters:

• The Kling-Gupta Efficiency (KGE) (Gupta et al., 2009):

KGE(Q) = 1−
√

(r − 1)2 + (α− 1)2 + (β − 1)2, (2.11)

wherer is the correlation between observed dischargeQo and modelled discharge
Qm, α is the standard deviation ofQm divided by the standard deviation ofQo,
andβ is the mean ofQm (Qm) divided by the mean ofQo (Qo) .

• The Nash-Sutcliffe Efficiency (NSE) of the discharge to describe the model perfor-
mance for the higher discharge regions (Nash and Sutcliffe, 1970):

NSE(Q) = 1−
∑T
t=1(Qto −Qtm)2∑T
t=1(Qto −Qo)2

= 2 · α · r − α2 − β2
n, (2.12)

in whichβn is the bias normalized by the standard deviation.

• The Nash-Sutcliffe Efficiency of the logarithm of the discharge NSE(logQ) to test
the model performance for low discharges (Krause et al., 2005).

The analysis showed that parameter sensitivity did not notably change over the assessed
scales: the same parameters were found to be most sensitive, but in a slightly different or-
der (see Figure 2.11). There are four parameters which, for all scales and for all objective
functions, proved to be highly sensitive: The parameter describing variable infiltration
(bi), the parameter that defines the fraction ofdm where non-linear base flow starts (ds),
the maximum base flow (dm) and the exponent of the Brooks-Corey relation ( 2

Bp
+ 3,

expt1, see Equation 2.8). Other parameters that showed sensitivity in some cases were
the depth and bulk density of soil layer 1, the depth and bulk density of soil layer 2, and
the rooting depth of layer 0. The selection of sensitive parameters closely resembles the
results of Demaria et al. (2007), who applied a sensitivity analysis on VIC over different
hydro-climatological regimes. Next to the four identified most sensitive parameters, De-
maria et al. (2007) found that the depth of soil layer 1 (Depth1) was highly sensitive.

Parameter sampling
Based on the sensitivity analysis and the study of Demaria et al. (2007), five parameters in
the VIC model were selected for parameter sampling (parameters 1-5 in Table 2.4). Fur-
thermore, the two mizuRoute-parameters were added to the selection because they con-
trol the lateral exchange of water between grid cells (parameters 6-7 in Table 2.4). The
selected parameters have been sampled using a Latin Hypercube Sample (LHS). This is a
variance reduction method which efficiently samples the parameters within each region
with equal probability in the parameter distribution (Vor̂echovský and Novák, 2009). To
limit calculation time, the LHS should preferably be as small as possible, while still being
able to provide insights in e.g. posterior parameter distributions. For a Monte Carlo (MC)
sample, it is easy to start with a small sample, and add more samples if this shows to be
necessary, e.g. based on the sample variance. For a variance reduction technique such as
LHS this is not that straight forward. Therefore, we make use of the Hierarchical Latin Hy-
percube Sample (HLHS), recently developed by Vor̂echovský (2015). This method allows
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us to start with a small LHS and add more samples if necessary, while conserving the LHS-
structure. Inherent to this method is that every sample extension is twice as large as the
previous sample, which results in a total number of simulations after r extensions:

Nsim,r = 3r ·Nstart, (2.13)

withNsim being the total number of simulations, r the number of extensions, andNstart
the initial number of samples. As a starting sample size 350 was chosen, which is sam-
pled based on a space-filling criterion. For the seven parameters in the HLHS sample a
uniform prior is assumed in order the study the full parameter space. The starting sam-
ple can be increased by a first extension to 1,050 samples in total, further to 3,150, and
even up to 9,450. After each extension, the cumulative distribution function (CDF) of
the objective functions (KGE, NSE) is compared with the CDF of the previous extension.
A Kolmogorov-Smirnov test is used to test if the CDFs are significantly different. It was
found that the CDF estimated from 3,150 samples was not significantly different from
the CDF based on 1,050 samples at a 0.05-significance level. Therefore, 3,150 samples
was considered sufficient to sample the parameter space. The seven sampled parameters
(Table 2.4) have been applied uniformly over the study-catchments (Section 2.1), whereas
the other soil- and land use parameters have been applied in a distributed fashion (sep-
arate value for each grid cell) based on data provided by the Swiss Federal Institute for
Forest, Snow and Landscape Research (WSL) and the Harmonized World Soil Database
(FAO et al., 2012).

Table 2.4: Sampled VIC parameters, selected based on sensitivity analysis.

Par. Units Lower
value

Upper
value

Description

1 bi - 10-5 0.4 Variable infiltration curve parameter
2 ds - 10-4 1.0 Fraction of dm where non-linear base flow

starts
3 dm mm d-1 1.0 50 Maximum base flow
4 expt1 - 4.0 18.0 Exponent of the Brooks-Corey drainage

equation layer 1
5 Depth1 m Depth0+0.1 Depth0+3 Thickness of soil layer 1
6 C m s-1 0.5 4 Advection coefficient of horizontal routing
7 D m2 s-1 200 4000 Diffusion coefficient of horizontal routing
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Chapter 3

Parameter identification methods
compared for a lumped model

In many rainfall-runoff models at least some calibration of model parameters has to take
place. Especially for ungauged or poorly gauged basins this can be problematic, because
there is little or no data available for calibration. A possible solution to overcome the
problems caused by data scarcity is to set up a measurement campaign for a limited time
period. In this study we determine the minimum amount of data, required to determine
robust parameter values for a simple model with two parameters. The model is con-
structed such that the parameters can be determined not only with automatic calibra-
tion, but also by recession analysis and a priori from Boussinesq theory. The model has
been applied to a research catchment in Switzerland. For automatic calibration and re-
cession analysis one season (five months) is found to be sufficient to give robust param-
eters for simulation of high flows over the full observation period. For automatic calibra-
tion, this should be the season with the highest precipitation, for recession analysis the
season with least evapotranspiration. The Boussinesq equation is able to give good pa-
rameter estimates for modelling high flows, but detailed in-situ knowledge of the catch-
ment is required. Automatic calibration outperforms recession analysis and Boussinesq
theory by far when it comes to parameter estimation with a focus on prediction of low
flows.

This chapter is based on: Melsen, L., A. Teuling, S. van Berkum, P. Torfs, and R. Uijlenhoet (2014), Catchments
as simple dynamical systems: A case study on methods and data requirements for parameter identification,
Water Resour. Res., 50, 5577-5596, doi: 10.1002/2013WR014720.
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3.1 Introduction

Modelling the discharge dynamics of catchments is an ever lasting challenge within the
science of hydrology. Models are used to extrapolate the available measurements in space,
e.g. to ungauged or poorly gauged basins, and time, e.g. to assess future hydrological
change (Beven, 2012). Because the parameters in hydrological models often represent a
different spatial scale than the observation scale, or because conceptual parameters have
no directly measurable physical meaning, calibration of hydrological models is almost al-
ways inevitable (Beven, 2012; Koskela et al., 2012).

Efforts to predict or simulate discharge in a catchment are often hampered by data lim-
itations, especially in ungauged basins (Kileshye Onema et al., 2012). An ungauged basin
is a basin with inadequate records of hydrological observations, both in terms of data
quality and quantity, for a certain variable of interest (Sivapalan et al., 2003). The Predic-
tion in Ungauged Basins (PUB) initiative was one of the main themes in hydrology during
the last decade (Blöschl et al., 2013), although numerous challenges remain. Since esti-
mated model parameters often depend on factors such as the employed time step or the
model structure (see for example Chapter 7 and 6), options for regionalization of model
parameters to ungauged basins are limited (Kavetski et al., 2011; Wagener and Wheater,
2006). Seibert and Beven (2009) and Tada and Beven (2012) state that field measurements
of discharge during a short observation period might be a cost-effective strategy to im-
prove the predictability in ungauged basins. Many studies have been conducted to iden-
tify the minimal length of this ‘short observation period’ in order to obtain reasonable
model results, e.g. Sorooshian (1983), Yapo et al. (1996), Gan et al. (1997), Brath et al. (2004),
McIntyre and Wheater (2004), Perrin et al. (2007), Seibert and Beven (2009), and Tada and
Beven (2012). The problem of ungauged basins (hence their name) is their lack of valida-
tion data (Sivapalan et al., 2003). Therefore these studies, without exception, used heavily
gauged basins to test their theories. This is the so-called PUB paradox (Bonell et al., 2006):
using well-gauged catchments for testing methods designed for data scarce catchments.

Yapo et al. (1996) found that eight years of daily data are necessary to calibrate parame-
ters which are relatively insensitive to the calibration period. Brath et al. (2004) analysed
the influence of data availability on model calibration for a spatially-distributed hydro-
logical model and came up with three months as minimum data length before signif-
icant deterioration of model performance occurred. Perrin et al. (2007) used discontin-
uous data for calibration, and found that 365 calibration days over a longer period, in-
cluding wet and dry periods, is sufficient for robust parameter estimation. Seibert and
Beven (2009) reported 32 daily observations as a plateau, after which additional observa-
tions did no longer significantly improve the model performance. Tada and Beven (2012)
found for two out of three catchments a significant decrease in model performance when
data availability was halved from 256 days to 128 days, which implied that there was a
characteristic length or time scale in the catchment that should be included in the in-
formation. The required data for robust model parameters varied widely between all
the studies, from three months to eight years. Climate could play a role, but also catch-
ment and model type are important (Gan et al., 1997). Yapo et al. (1996) for example, used
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the NWSRFS-SMA model with thirteen optimized parameters, whereas Tada and Beven
(2012) used TOPMODEL (Beven and Kirkby, 1979) with eight optimized parameters. Perrin
et al. (2007) used a model with four and a model with six parameters, and showed that
the more parsimonious model required fewer calibration data to obtain stable and ro-
bust parameters.

An ‘extreme’ example of a parsimonious model, which allows for a minimal number of
parameters, is the simple dynamical systems approach as described by Kirchner (2009),
which is based on a similar framework as the Input-Storage-Output (ISO) function model
described by Lambert (1972). The fundamental assumption of the approach of Kirchner
(2009) is that the discharge of the stream depends solely on the amount of water stored
in the catchment. This is an important conceptual simplification. Seibert et al. (2003), for
example, showed that this might only be true for the riparian zone in a hillslope catch-
ment. Uchida et al. (2004) found a strong relation between hillslope discharge and ups-
lope subsurface saturated area, suggesting that a unique relation between storage and
discharge might be a valid assumption. If a function describing the relation between dis-
charge and storage can be found, the discharge can be modelled using only precipitation
and evaporation data.

Each of the studies that investigated the minimal data requirements for parameter iden-
tification used automatic calibration for optimization of the parameters. However, in this
study, a parsimonious simple dynamical systems model (Kirchner, 2009) was constructed
such that the parameters could be identified not only with automatic calibration, but
also with recession analysis (Brutsaert and Nieber, 1977), which is based on the recession
periods in the discharge, and a priori based on the physical approach of Boussinesq (Rupp
and Selker, 2006), a method to identify parameters based on catchment characteristics.
Automatic calibration and recession analysis are applied to determine the length of the
data series necessary to obtain robust parameters for a small mountainous catchment,
and which time of the year suits best if a short measurement campaign would be car-
ried out in a data scarce region. The a-priori estimate of the subsurface parameters with
Boussinesq theory provides a null hypothesis against which the other results could be
evaluated. The two main objectives in this chapter are:

1. To determine which method (automatic calibration, recession analysis, Boussinesq
theory) provides the parameters of the simple dynamical systems model that yield
the best discharge simulations for the catchment.

2. To examine which length and timing of discharge data are necessary to obtain reli-
able parameters and well-estimated discharges, with emphasis on both high and
low flow conditions.

This study is conducted in the Rietholzbach basin, a very well-gauged basin and there-
fore, ironically, in accordance with the PUB-paradox. Section 2.1 describes the catchment
and the available data.
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Snow = f (T, P) 
M = Snowmelt = f ( T, R, Snow)    
M = max (Snow, F1 T − T0 + F2 ∙ R))) 

Forcing (T < T0) = -ET 
Forcing (T ≧ T0) = P+M-ET 
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Figure 3.1: Overview of the model built for this study.

3.2 Methods
We define a parsimonious model where the Rietholzbach catchment is considered as a
simple dynamical system, following the approach of Kirchner (2009). A fundamental un-
derlying assumption of this approach is that the discharge depends solely on the volume
of water in storage, and that this relation is invertible. The next section describes the iden-
tification procedure for the snow parameters, followed by a description of the three dif-
ferent identification methods for the parameters of the sensitivity function: automatic
calibration, recession analysis, and Boussinesq theory.

Model
The model employed in this study is comprehensively described in Section 2.2. In this
study the common power-law representation as sensitivity function g(Q) was chosen
(Brutsaert and Nieber, 1977; Kirchner, 2009; Troch et al., 2013), see Equation 2.5 on p.20.
While more complex representations of g(Q) might lead to better results, the power-
law function has the advantage that theoretical approaches exist which link the power-
law coefficients to landscape and soil physical properties, e.g. the Boussinesq equation
(Boussinesq, 1877; Rupp and Selker, 2006), and the simple model set-up allows for exten-
sive optimization over time periods up to 32 years. The power-law function also allows
recession analysis as a method to estimate the parameters.
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Because the Rietholzbach catchment has intermittent snow cover in winter, snowmelt
was accounted for by using a Degree-Day radiation balance approach (Kustas et al., 1994),
see Eq. 2.6 on p. 20. For two typical snow months with a clear snowmelt signature visible
in the runoff (November 1992 and February 2002) the three snow parametersF1,F2 and
T0 were optimized with the DREAM-algorithm (Section 3.2), with the Sum of Squared Er-
rors (SSE)-based likelihood function as implemented in DREAM (Vrugt et al., 2008). The
obtained values for the snow parameters in the two calibrations were nearly equal and
therefore the averages (F1=0.18,F2=0.00050 andT0=0.99) were used as fixed snow pa-
rameters for the remainder of this study. F2 was found to be the lower boundary value,
indicating that snow melt is temperature driven rather than radiation driven in the Riet-
holzbach catchment. This is confirmed in the study of Orth and Seneviratne (2013), who
showed that a solely temperature-based model performed well in this catchment.

Model efficiency is expressed in terms of the Nash-Sutcliffe Efficiency NSE (Nash and Sut-
cliffe, 1970), Eq. 2.12. We use the NSE(Q) computed on the basis of observed discharges to
put emphasis on prediction of peak flows (due to the large sensitivity of the NSE to high
flows Krause et al., 2005), whereas the NSE computed using the logarithmically trans-
formed discharges, NSE(logQ), was used to evaluate model prediction of low flows (Krause
et al., 2005). In the remainder of this chapter, statements concerning model performance
for low flows refer to NSE(logQ), while statements concerning the model performance
for high flows refer to NSE(Q).

An overview of the simple low-dimensional rainfall-runoff model set-up used in this study
can be found in Figure 3.1. For automatic calibration and recession analysis, the model
has been fed with hourly hydro-climatological data for a monthly time period, a seasonal
time period (with summer defined from May until September, and winter from Novem-
ber until March), a yearly time period, a 10-yearly time period (1976–1985, 1986–1995,
1996–2005) and for the full period of 32 years (1976–2007) for which data were available.

Calibration using Bayesian-based DREAM
To determine the optimal parameters of the model with automatic calibration, the Dif-
ferential Evolution Adaptive Metropolis (DREAM) algorithm (Vrugt et al., 2008) was used.
The DREAM algorithm uses a Markov Chain Monte Carlo (MCMC) sampler to explore the
posterior distribution of the parameters within a Bayesian framework. The method starts
with an initial population of points which strategically covers the response surface, which
was constrained such thatβ lies between 0 and 3 andαbetween 0 and 2, based on values
typically found in natural catchments (Kirchner, 2009). The use of more chains with differ-
ent starting points enables to deal with multiple regions with large attraction. From this
initial population, candidate points are generated. Candidate points are accepted or re-
jected using the Metropolis acceptance probability (Vrugt et al., 2008). In the end, several
chains move over the response surface, searching for the global minimum. Ten Markov
chains were used. The prior distribution of the parameters, α and β, was assumed to
be uniform. The first discharge measurement of the calibration period was used as ini-
tial condition. With an SSE-based likelihood function as implemented in DREAM (Vrugt
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et al., 2008) the optimal parameter set was determined as the set with the lowest SSE.
Calibration has been applied directly to the observed data (minimizing the SSE for the
discharge Q) and to the log-transformed data (minimizing the SSE for the logarithm of
the discharge, logQ).

The DREAM algorithm is especially designed for complex high-dimensional non-linear
problems, while the model used in this study is certainly not high-dimensional. At first
sight, the DREAM algorithm therefore seems too sophisticated for the problem at hand.
However, this algorithm was used because it also provides insight into the uncertainty of
the parameters. To show that the response surface of this model is not complex and to
show that the parameters can be identified by a simpler algorithm, the local Levenberg-
Marquardt (LM) optimization algorithm (Reed and Marks II, 1999) was used in addition to
DREAM. The classical LM algorithm is a compromise between Newton's method and gra-
dient descent. Although the classical Levenberg-Marquardt algorithm has no parameter
constraints, constraints have been implemented here by means of a penalty value if β is
lower than 0 or higher than 3, or if α is lower than 0 or higher than 2. First guesses for
each parameter were kept constant for each calibration at α=0.01, β=0.8 and Q0=first
discharge measurement. These numbers are based on Shaw and Riha (2012) and have
been determined without prior knowledge of the parameter values for the catchment
used in this study. The sum of squared errors (SSE) was used as objective function, both
for calibration directly to the observed data and to the log-transformed data. Finally, op-
timization with DREAM and the LM algorithm has been conducted for several calibration
periods; a monthly time period, a seasonal time period, a yearly time period, a 10-yearly
time period and for the full data period (32 years).

Recession analysis
The method to determineαandβ, and thus finally the sensitivity functiong(Q), from re-
cession analysis (Brutsaert and Nieber, 1977) was proposed by Kirchner (2009) and is based
on discharge observations. Recession analysis can be an interesting alternative to auto-
matic calibration, for example in regions where information on occurrence of precipita-
tion is more accurate than the amounts, which is relevant for poorly gauged basins. Fig-
ure 3.2 shows the recession analysis procedure which has been employed with different
calibration periods.

During recession, i.e. excluding rainfall (P ) and snowmelt (M ), and during night time
(which makes it possible to neglect evapotranspiration), the sensitivity function can be
expressed as (see Eq. 2.7):

g(Q) =
dQ
dS

= αQβ ≈ − 1

Q

dQ
dt
|P,M,ET<<Q. (3.1)

In order to use Equation 3.1 to determine the sensitivity function parameters, the ob-
served data has to be selected carefully. In this study, two different criteria for data se-
lection have been used:

1. Dry and dark periods, too warm for snow cover to be present.
2. Dry and dark periods, too cold for snow melt to occur.
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For an exact description of the criteria per set, see Teuling et al. (2010). The strict criteria
for data selection only leave part of the data available for recession analysis. From the se-
lected data (shown in the left panel of Figure 3.2), g(Q) is determined (middle panel of
Figure 3.2) with Equation 3.1. Because of measurement errors and a possible difference
between catchment representation and reality, there is some scatter in the selected data.
Therefore, the data has been binned according to the method used by Teuling et al. (2010).

If 30 or less data points were selected for the two sets together, α and β were fitted di-
rectly on all data points larger than zero (negative data points could exist due to small
increases in discharge, e.g. due to the diurnal cycle in evapotranspiration or due to mea-
surement errors), with a minimum of three data points. If more than 30 data points were
selected, but only two bins or less, α and β were also determined on all individual data
points above zero. If more than 30 data points and more than two bins were available,α
and β were fitted on the binned data. These criteria are especially important during re-
cession analysis for a monthly time period, because the number of selected data points
per month can be limited. The α (intercept) and β (slope) were determined by plotting
the logarithm of g(Q) versus the logarithm ofQ and fitting a straight line log(α) + β ·
log(Q) (right panel in Figure 3.2), which is the classical approach of recession analysis
as described by Brutsaert and Nieber (1977) and referred to as ‘logRA’ in the sequel of this
Chapter. In addition, α and β were determined on linear axes for both g(Q) andQ, fit-
ting a power law. This method is further referred to as ‘linRA’.

Boussinesq equation for sloping aquifers
Boussinesq (1877) derived an equation describing groundwater flow in an unconfined aqui-
fer overlying an impermeable layer. An important assumption of this approach is the
Dupuit-Forchheimer approximation, assuming that groundwater moves parallel to the
impermeable layer in an unconfined aquifer and that groundwater discharge is propor-
tional to the thickness of the saturated aquifer (Troch et al., 2013). With this assumption,
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Figure 3.2: The process of recession analysis for a randomly selected month. Left panel: data are
selected according to different criteria. Middle panel: sensitivity function g(Q) is determined for
each of the selected data points, based on Equation 3.1. Right panel: the points are binned, and a
line is fitted through the data, α is represented by the intercept of the line, β by the slope of the
line.
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Boussinesq (1877) adapted Darcy's law and combined it with the continuity equation. An
important property of the Boussinesq equation (or its linearisations) is that analytical
solutions of the equation can be expressed in the form of Equation 2.5 (Rupp and Selker,
2006), which gives the opportunity to estimate the two simple dynamical system param-
eters in this study with the use of Boussinesq theory. The advantage of using a physically-
based method such as the Boussinesq equation is that it does not need time consuming
and costly discharge measurements. Disadvantage is that effective values for subsurface
parameters at the catchment scale have to be estimated. It represents the whole catch-
ment as a single hillslope draining to a channel, as shown in Figure 3.3, not taking into
account heterogeneity in the topography or subsurface of the catchment. It is therefore a
strong simplification of reality, especially in a catchment like the Rietholzbach with com-
plex topography.

Nowadays, many different forms of the Boussinesq equation are in use, see for example
the overview given in Rupp and Selker (2006). For the Boussinesq equation adapted for
sloping aquifers, relevant in this study, Rupp and Selker (2006) used numerical simula-
tions to empirically derive an analytical solution to the non-linear Boussinesq equation
for the late part of the recession. Assumptions of the applied Boussinesq equation are
that no water flows through the bottom and water divide boundaries (see Figure 3.3),
and that the water level in the stream is constant. Rupp and Selker (2006) present the fol-
lowing equations forα andβ in terms of physical parameters:

α =
(n+ 1)2

(n+ 0.01)ϕA
·
[

2kDLsinφ
(n+ 1)Dn

] 1
n+1

· (10−3A)β , (3.2)

β =
n

n+ 1
. (3.3)

Φ  
L 

h0 

Figure 3.3: Water table profile for the applied Boussinesq model, which is adapted for sloping
aquifers. Zero flux boundaries at the right hand side and at the bottom are assumed. Parameters
D,φ, andL have to be estimated from a Digital Elevation Model (DEM).
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Table 3.1: Parameter values for the Boussinesq equation

Unit Value Description

k m h−1 range: Saturated hydraulic conductivity
6.5·10−5 Rietholzbach average (König and Lang, 1994)
0.1170 Nagelfluh (König and Lang, 1994)
0.0360 Lowest estimate (Lehner and Seneviratne, 2010)
1.8 Highest estimate (Lehner and Seneviratne, 2010)

L m 2500 Channel length
ϕ - 0.1;0.2;0.25;0.3;0.35 Drainable porosity
A m2 3.31 · 106 Catchment area
φ ◦ 14.5 Average slope
D m 1 Average depth of the soil
n - 0;1;10;20;30;40;50;60;70 Saturated hydraulic conductivity profile parameter

With ϕ (-) the drainable porosity, A (m2) the catchment area, kD (m h-1) the saturated
hydraulic conductivity at depthD,L (m) the length of the aquifer, φ (-) the slope of the
aquifer, andD (m) the depth of the aquifer. The n-parameter determines the saturated
hydraulic conductivity profile, with the following equation (Rupp and Selker, 2006):

k(z) = kD(z/D)n. (3.4)

Forn=0, no variation with depth is assumed,n=1 indicates a linear profile with saturated
hydraulic conductivity decreasing with depth, n >1 leads to power law profiles. Note
that forn=0,β=0 (thus leading to a linear reservoir). Experience from earlier studies (e.g.
Kirchner, 2009; Teuling et al., 2010; Brauer et al., 2013) showed thatβ is hardly ever equal to
zero, so a range of possible values fornwas used. The kD in Equation 3.2 and 3.4 differs
from the average k̄ in the area (see e.g. König and Lang, 1994). Integration of Equation 3.4
leads to the following relationship:

kD = (n+ 1) · k̄. (3.5)

The parameter values that have been used for Equation (3.2) and (3.3) are given in Table
3.1. For the saturated hydraulic conductivity k̄, the drainable porosity ϕ, and the satu-
rated hydraulic conductivity profilen, exact values were unknown, hence a range of val-
ues was used (Table 3.1). This lead to 180 different parameter sets. For each set the model
efficiencies, NSE(Q) and NSE(logQ), over the full validation period were determined.

3.3 Results and discussion
First the results from the automatic calibration procedure are discussed, followed by the
results obtained with recession analysis and Boussinesq theory. Finally, a comparison
between the three methods is made. The discussed model efficiencies are based on a
common validation period covering the full data length, which was 32 years, so that all
reported NSE values refer to the same 32 year period and can be compared directly. No
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split sample validation was employed. Hence, there is at least one month overlap be-
tween the calibration and the validation period. The overlap between calibration and
validation period increases further with longer calibration periods: for the calibration
period of 32 years, the calibration and validation period are identical. Since the analy-
sis focusses on much shorter periods than the full validation period, the effects of this
approach on the results are believed to be small.

Calibration with DREAM
Both with the DREAM algorithm (Vrugt et al., 2008) with an SSE-based likelihood func-
tion, and with the Levenberg-Marquardt (LM) algorithm with the SSE as objective func-
tion, α and β were calibrated. The model was calibrated directly on the data, maximiz-
ing the NSE(Q), and on a log-transformation of the data, maximizing NSE(logQ). As ex-
plained in the Methods section, DREAM is a heavy algorithm for such a simple problem
and this is recognized in the runtime of the process. For optimization with one month of
calibration data, the fastest convergence was reached after 152 seconds, while the longest
optimization took over 30 hours (median: 29 minutes). On the contrary, with the LM al-
gorithm the fastest optimization on one month of data took less than a second, while the
slowest optimization took 123 seconds. The number of forward runs is also much lower
for the latter; on average 15.6 evaluations for the monthly calibration, while DREAM uses
4000 function evaluations. Calibration results for both algorithms are comparable. Roun-
ded to one decimal, both algorithms found equal values in 84% of the cases based on
monthly data (log monthly: 86%), increasing to 97% (log: 97%) and 100% (log: 100%)
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Figure 3.4: Box-plots showing the distribution of the parameter sample obtained with DREAM,
with each panel showing a different calibration period: one month (only July is shown), a sum-
mer season, a winter season, and a year. Each box-plot represents one optimization, with 32 opti-
mizations in total per calibration period, corresponding to 32 years of available data (for the period
1976-2007) .
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for year and 10 year calibration periods respectively. It is thus shown that optimization
of the parameters in the simple model can be achieved with a simple local optimization
algorithm. The discussion of the results from now on will only consider the results ob-
tained with DREAM.

With the Gelman and Rubin criterionR̂ (Gelman and Rubin, 1992), implemented in DREAM,
it was shown that for some calibration months the Markov Chains were not yet com-
pletely converged (i.e., the R̂was larger than 1.2). These were also the months with the
longest run time for the DREAM algorithm. For calibration directly on the data, in 15% of
the calibration-months the chains had not completely converged for eitherα,β or both.
For calibration on the log-transformed data this was the case for 8% of the months. Non-
convergence was not restricted to one particular month or period but occurred through-
out the year. Examination of the paths of the Markov Chains learned that a strong corre-
lation betweenα andβ was found for these particular months, which makes exact iden-
tification of the parameters impossible. For calibration periods longer than one month,
the chains always converged for both parameters.

The DREAM algorithm is a MCMC sampler, and therefore provides insight in how well the
parameters are defined. Figure 3.4 shows the distribution of the complete posterior for
each optimization that was conducted on the discharge, for different calibration periods.
The figure shows that bothα and β are not clearly identifiable with a calibration period
of one month (an example for July is shown). If the calibration period is increased to one
season or one year, the parameter identifiability already strongly improved. Model effi-
ciencies for the calibration period were in general high (not shown). The median of the
NSE(Q) for different calibration periods varied from 0.71 to 0.75, with maxima reaching
up to a NSE(Q) of 0.99 for calibration on one month of data. The model efficiency for the
log-transformed data during the calibration period varied between a NSE(logQ) of 0.76
and 0.80 for different calibration periods, with again a maximum of 0.99 for calibration
on one month of data. The model efficiencies obtained for the calibration period shows
that the model can perform well in this catchment, but validation of the model is im-
portant to determine the applicability for poorly gauged basins with a short observation
record. The results of the optimization for the 32-year-validation period are presented in
Figure 3.5, the upper row for calibration directly on the data, and the third row for cali-
bration on the log-transformed data.

Calibration on the original data
The optimal parameter values obtained based on 32 years of data wereα = 0.083 and
β=0.943 (NSE(Q)=0.71, NSE(logQ)=0.18). Figure 3.5 (upper row) shows that reasonable
model results (NSE(Q) >0.6) can be obtained as soon as one season of data or longer
is available for calibration. The median model efficiency obtained with one season of
data is NSE(Q)=0.67. This increased only slightly (NSE(Q)=0.69) when one year of data
was used, and was the highest for 32 years of data (NSE(Q)=0.71). Figure 3.6 shows the
distribution of model efficiencies for the summer and winter season separately. The fig-
ure shows that the summer season (median NSE(Q)=0.69) as calibration period leads to
better results than the winter season (median NSE(Q)=0.62). The parameters obtained
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Figure 3.5: Box-plots showing the distribution of the optimal parameters (α, β) and the model
efficiencies (NSE(Q), NSE(logQ)) for the validation period of 32 years for different calibration pe-
riods and different optimization procedures (dependent on the calibration period; calibration on
one month of data is conducted 384 times, while calibration on one year of data was conducted 32
times). The blue box-plots (upper two lines) show results for calibration directly on the data (au-
tomatic calibration) or fitting on linear axes (recession analysis), the green box-plots (lower two
lines) show results for calibration on the log-transformed data (automatic calibration) or fitting
on logarithmic axes (recession analysis).
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Figure 3.6: Box-plots showing the distribution of NSE(Q) and NSE(logQ) obtained with models
that were calibrated on the summer (May until September) and the winter (November until
March) season. The blue box-plots (upper two lines) show the results for automatic calibration
on the original data and linear recession analysis, the green box-plots (lower two lines) show the
results for automatic calibration on log-transformed data and logarithmic recession analysis. Leg-
end according to Figure 3.5.

based on one summer of data perform equally well as parameters that were obtained
from calibration on one year of data. Although the parameters obtained with automatic
calibration directly on the data seem to be able to reasonably capture high flows in the
model, they are clearly not able to describe low flows, given the low NSE(logQ).

Calibration on the log-transformed data
Calibration on the log-transformed data leads toα=0.220 andβ=1.571 based on 32 years
of data (NSE(Q)=0.50, NSE(logQ)=0.76). Optimization on the log-transformed data im-
proved the capability of the model to predict low flows, but at the same time its capability
of describing high flows decreased. The third row of Figure 3.5 shows that again, one sea-
son of data seems sufficient for reasonable model results (NSE(logQ)=0.71), but the mo-
del efficiency improved slightly when one year of data were used (NSE(logQ)=0.75). Fig-
ure 3.6 shows that for calibration on log-transformed data, the summer season is more
appropriate (median NSE(logQ)=0.75) than the winter season (median NSE(logQ)=0.64).
The same was shown in the previous section. Again, the parameters obtained based on
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one summer of log-transformed data perform equally well as parameters that were ob-
tained from calibration on one year of log-transformed data.

A possible explanation for the fact that the summer season performs better for calibra-
tion than the winter season, is that in the Rietholzbach catchment the summer season is
wetter (more precipitation) than the winter season (see Figure 2.2). Calibration is, amongst
others, based on precipitation input data. The best result is apparently obtained during
high precipitation (summer). Another explanation could be the absence of uncertainty
related to snow processes in this period.

The above results show that, with the applied calibration strategy, the model is not able
to describe both the high and the low flows with a single set of parameters. This seems to
imply that the model structure is inappropriate, and probably a too simplified represen-
tation of reality. On the other hand, the response surface (Figure 3.7) shows correlation
between the two parameters of the model, suggesting that the model is already over-
parameterized Fowler et al. (2016) demonstrate that a different calibration strategy (e.g.
based on a Pareto-front) can improve the model performance for different flow condi-
tions using a single parameter sets. Before any conclusions can be drawn about the ap-
propriateness of the model structure, such a strategy should be tested. However, with the
same data set, namely with the length of one season, the optimal parameter set for high
flows (direct calibration on the data) and the optimal parameter set for low flows (cali-
bration on the log-transformed data) can be determined. Therefore, for the application
in ungauged basins, a measurement campaign with the length of one season seems able
to provide a good first estimate for the system parameters. This should, dependent on
the climate, preferably be the summer season.

Predictive uncertainty
In this section the predictive uncertainty is estimated based on the MCMC approach of

DREAM. Stochastic interpretation of results obtained with the SSE-based likelihood func-
tion assumes independent and identically distributed (i.i.d.) errors with a normal distri-
bution. Diagnostics on the residuals showed significant (at the 95% confidence level) au-
tocorrelation for the first five time steps. The assumption of an identical distribution of
the residuals is not met because the residuals tend to increase with increasing discharge
(i.e. the residuals show heteroscedasticity) . Because of the violation of the assumptions
(as discussed in Section 1.4 under uncertainty analysis), the predictive uncertainty de-
rived from the MCMC results will be biased.

To estimate the predictive uncertainty of the optimized parameters, the full parameter
sample obtained with DREAM after convergence according to the Gelman and Rubin
criterion (Gelman and Rubin, 1992). The calibration-months where no convergence was
reached have been excluded from this analysis, hence predictive uncertainty for calibra-
tion at a one-month period is underestimated.

Figure 3.8 focusses on the predictive uncertainty of simulations for an extreme flood event
(1994) and a severe summer drought (2003). The figure shows that the discharge range
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around the flood peak is large if only one month - only January is shown - is used for
calibration. The range becomes smaller when the calibration period is increased to one
summer season, although all the parameters in the converged posterior obtained with
calibration on a summer season miss the first peak of the flood. Remarkably enough the
predictive uncertainty does not clearly decrease when one winter season or a year of data
was used for calibration.

For predicting a drought event (lower panels in Figure 3.8), it is again visible that the
width of the discharge range declines when the calibration period is extended from a
monthly calibration period to a summer season calibration period. The predictive uncer-
tainty band for calibration on the winter season and a year of data is broad; even broader
than the predictive uncertainty band for calibration on January only. This is consistent
with the results shown in Figure 3.5 and Figure 3.6 for NSE(logQ); for automatic calibra-
tion directly on the data, the median NSE(logQ) for calibration on a monthly time period
is higher than the NSE(logQ) obtained with a calibration period of a winter season and
a year. The predictive uncertainty for parameters obtained with calibration on the log-
transformed data lead to similar results (not shown), although in this case the drought is
projected much better than the flood. Again, the discharge range for calibration on the
summer season is clearly smaller than the discharge range obtained with calibration on
a winter season or one year of data.

Recession analysis

Figure 3.5 (second and fourth row) shows the results for the recession analysis, both when
the equation was fitted on linear axes (linRA) and on logarithmic axes (logRA). The pa-
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Figure 3.7: Fraction of the response surface for the two model parameters α and β based on 32
years of data (noteα is only shown from 0 to 0.5). The left panel shows the response surface for di-
rect calibration on the data (NSE(Q), the right panel for calibration on the log-transformed data,
NSE(logQ). Contours are shown for NSE=0.4, 0.5, 0.6 and 0.7. The point indicates the highest
model efficiency as found in the part of the response surface that is shown. In the right panel, a
ridge with high model efficiencies is found, while in the left panel the area with the highest mo-
del efficiencies is concentrated around α=0.1. The figures also show the correlation that exists
between both parameters.
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Figure 3.8: The black line shows the measured discharge for a flood event in 1994 (upper panels)
and a drought event in 2003 (lower panels). The grey area shows the predictive uncertainty, based
on the converged part of the posterior for all 32 calibrations that have been executed per calibra-
tion period. The panels show different calibration periods, from left to right: Month (only January
is shown), summer season, winter season, year. The parameters in the posterior were obtained
with calibration directly on the data, which can explain the poor performance for the drought
event.

rameter values obtained with recession analysis on the full period of 32 years wereα=0.094,
β=0.747 (NSE(Q)=0.58, NSE(logQ)=-0.99) for fitting on linear axes, andα=0.106,β=0.894
(NSE(Q)=0.63, NSE(logQ)=-0.33) for fitting on logarithmic axes.

Figure 3.5 shows that the two recession analysis methods do not show many differences,
although the logRA method seems to perform slightly better, especially in case of low
flows. The model performance for high flows reaches acceptable values as soon as one
year of data is available for calibration for each of the recession analysis methods, with
a median model performance of NSE(Q)=0.58 for linRA and median NSE(Q)=0.60 for lo-
gRA. Figure 3.6, however, shows that model performance based on a calibration period
of one winter is even higher (NSE(Q)=0.62 and NSE(Q)=0.63 for linRA and logRA respec-
tively). This is in contrast with the automatic calibration results, where summer season
was found to be more effective.

Recession analysis is mainly based on discharge data, and shows to perform best during
high discharge (winter). It has been shown before that calibration for a wet catchment is
easier than for a dry catchment (Perrin et al., 2007; Yapo et al., 1996; Sorooshian, 1983), al-
though ‘wet’ can be interpreted both as high precipitation (for automatic calibration) or
high discharge (for recession analysis). Another explanation why recession analysis per-
formed better during winter is that recession analysis uses only part of the data supplied,
namely the data that met the criteria as described in Section 3.2. For the summer season,
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on average only 1.4% of the data was left for analysis, for the winter season this number
was more than five times as large: 8.0% on average. This puts more focus on high flows
and can also explain the poor performance of recession analysis in simulating low flows.
The third and probably most important explanation for the better performance of reces-
sion analysis on winter data above summer data is the effect of evapotranspiration. Due
to the diurnal cycle inET , the recession can show small increases during night time (Teul-
ing et al., 2010). During this small part of the recession,−dQdt becomes negative. These
negative values were taken into consideration when the data points were binned, and
can therefore suppress the value of the bin. This effect is larger in summer than in winter.
Especially the fact that the performance of the model for calibration on the winter sea-
son is better than the performance of the model calibrated on one year of data, seems to
imply that evapotranspiration is an important factor.

In addition to fitting the line through the (binned) data points (see Figure 3.2 right panel),
a 68% confidence interval for the fit was determined, in order to compare the parame-
ters obtained from recession analysis with the parameters obtained from automatic cal-
ibration. For each recession analysis parameter set, it was checked whether the obtained
parameters from automatic calibration with the same calibration period fell within the
68% confidence bounds. This has only been done for the automatic calibration param-
eters obtained from calibration directly on the data and not for automatic calibration
on the log-transformed data, because the recession analysis performance is poor in this
case. For the α and β obtained with DREAM based on one month of data, only 10.4%
and 12.0% for linRA and logRA fell, respectively, within the 68% confidence bound. For
summer season, this was 9.4% for both linRA and logRA, decreasing to 0% for winter
season calibration and longer calibration periods. Recession analysis and automatic cal-
ibration thus lead to substantially different parameter values. Most of the parameter sets
obtained with automatic calibration did not fall within one standard deviation from the
parameter sets obtained with recession analysis.

Recession analysis is especially relevant in areas where precipitation measurements are
inaccurate. In these areas, a seasonal data set (five months, preferably a winter season
with relatively low evapotranspiration) for recession analysis can provide a first estimate
of the model parameters. The logarithmic recession analysis (logRA) method is advised
above the linear recession analysis (linRA) method because it consistently leads to bet-
ter results. Somewhat counter-intuitive, recession analysis with the simple dynamical
systems model seems inappropriate if the focus of the study is on the prediction of low
flows.

Boussinesq analysis
For calculation of the model parameters α and β according to the Boussinesq theory, a
range of values was used for the saturated hydraulic conductivity, the porosity, and the
shape parameter of the saturated hydraulic conductivity profile (see Table 3.1), because
the exact value for each of these parameters was unknown.

If no validation data were available and if no further knowledge on the in-situ param-
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Table 3.2: The highest NSE(Q) and NSE(logQ) per shape parameter value (n) for the Boussinesq
model, with the accompanying porosity, saturated hydraulic conductivity andα-value

β NSE(Q) ϕ k α NSE(logQ) ϕ k α

n=0 0 0.49 0.3 0.0360 0.017 −0.15 0.1 6.5·10-5 9.2·10-5

n=1 0.50 0.60 0.2 1.8 0.032 0.48 0.2 0.1170 0.008
n=10 0.91 0.69 0.1 0.0360 0.092 0.65 0.2 6.5·10-5 0.026
n=20 0.95 0.71 0.25 0.1170 0.081 0.64 0.35 6.5·10-5 0.040
n=30 0.97 0.71 0.35 0.1170 0.086 0.42 0.35 6.5·10-5 0.068
n=40 0.98 0.70 0.35 6.5·10-5 0.096 0.14 0.35 6.5·10-5 0.096
n=50 0.98 0.61 0.35 6.5·10-5 0.124 −0.14 0.35 6.5·10-5 0.124
n=60 0.98 0.44 0.35 6.5·10-5 0.152 −0.42 0.35 6.5·10-5 0.152
n=70 0.99 0.32 0.35 6.5·10-5 0.181 −0.69 0.35 6.5·10-5 0.181

eters was available, the estimated ranges for the parameters based on the Boussinesq
equation would be very broad. The lowestα found was 2.6·10−5, the highestα equalled
2.542 (both extremes were found for n=0, so a constant saturated hydraulic conductiv-
ity profile). The lowest β was zero, the highest β 0.99. In total, 180 different α's were
obtained. The broad range of parameter values that has been found do not have any ad-
ditional value as a priori estimation, hence either more knowledge on the in-situ param-
eters has to be available, or data to validate the model.

Table 3.2 shows the highest NSE(Q) and NSE(logQ) values obtained per shape param-
eter n, also giving the porosity and saturated hydraulic conductivity belonging to this
model efficiency. The porosity and saturated hydraulic conductivity are for most NSE(Q)
and NSE(logQ) values about 0.35 and 6.5·10-5 m h-1, respectively, but remarkably enough
these numbers are different for those n-values that score the highest efficiencies. Next
to that, there seems to be a relation between the objective function and the saturated
hydraulic conductivity corresponding to the highest model efficiencies; the NSE(logQ)
criterion produces the highest model efficiencies only with low saturated hydraulic con-
ductivities. It also seems as if the optimal saturated hydraulic conductivity decreases with
increasingn for the NSE(Q). It is therefore difficult to determine what the optimal value
is of the porosity and the saturated hydraulic conductivity.

There were two n-values with the highest model efficiency for NSE(Q): n=20 and n=30,
which implies values of β of respectively 0.95 and 0.97. This approaches the value of β
obtained with automatic calibration, which was 0.94. The α for the discussed models
varies from 0.081 (n=20) to 0.086 (n=30). Theα obtained with automatic calibration on
32 years of data lies exactly within this range (α=0.083). So, based on NSE(Q), the satu-
rated hydraulic conductivity profile in the Rietholzbach is described with ann-value be-
tween 20 and 30 in Eq.3.4, a drainable porosity between 0.25 and 0.35 and a saturated
hydraulic conductivity of 0.1170 m h−1. These numbers are different if NSE(logQ) is used
as reference. For focus on low flows, NSE(logQ) values were highest for n=10 and n=20.
This lead to a β of respectively 0.91 and 0.95. The α obtained with the Boussinesq ap-
proach for these models varied from 0.026 (n=10) to 0.040 (n=20). This is almost one
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order of magnitude lower than the α obtained with calibration on the logarithm of 32
years of data, which was 0.220. This difference is probably caused by the difference inβ,
which was 1.571 after automatic calibration, but between 0.91 and 0.95 for the Boussinesq
approach. With the employed Boussinesq method, it is not possible to obtain a β larger
than one (see Equation 3.3). It therefore seems that the Boussinesq method of Rupp and
Selker (2006) is appropriate to give an estimate of parameters for the higher discharge
ranges, but not for the lower discharge ranges, even though this method was developed
for the late part of the recession (see Section 3.2).

Comparison of the three methods
Three different methods to determine the parameters of the simple dynamical systems
model have been employed: automatic calibration, recession analysis, and Boussinesq
theorem. Figure 3.9 shows the distribution of the model efficiency NSE(Q) for the models
obtained with automatic calibration using the DREAM algorithm, recession analysis fit-
ted on logarithmic axes (logRA) and the Boussinesq theory based on the different input
ranges for parameters with unknown values (see Table 3.1). For each calibration period
except for the winter season, automatic calibration scores the highest model efficiencies.
Recession analysis seems a useful alternative for automatic calibration if precipitation
data are inaccurate. The highest model efficiency that was found was NSE(Q)=0.71 for
calibration on 32 years of data, but with Boussinesq theory equally high model efficien-
cies were found (see Table 3.2). The Boussinesq theory therefore seems applicable to ob-
tain a-priori estimates for model parameters, but the distribution of model efficiencies
is broad due to uncertainty in several catchment properties.

When focussing on low flows and thus comparing NSE(logQ) among the different meth-
ods, the picture looks totally different (not shown). The median NSE(logQ) for all reces-
sion analysis calibration periods except two lies below zero, and the same holds for the
median NSE(logQ) from the Boussinesq theory. On the contrary, calibration with DREAM
on log-transformed data scores up to NSE(logQ)=0.76 for 32 years of data. For a study
with a focus on low flows, recession analysis and Boussinesq theory are therefore not suit-
able and automatic calibration is inevitable.

3.4 Implications and limitations of this case study
Gan et al. (1997) reported the following four factors that are important during a calibra-
tion procedure: The optimization algorithm, the objective function, calibration data, and
the model structure. Although Gan et al. (1997) focused only on automatic calibration, in
this study the ‘optimization algorithm’ was applied in a broader context: Three different
methods were employed to identify system parameters. The main focus was on the cali-
bration period, which was varied in length to study the effect of data availability on cal-
ibration performance. The objective function, calibration data, and the model structure
are discussed below.

Objective function
During calibration, one objective function was used, the SSE, but this has been applied
directly on the data and on the log-transformed data. Therefore, two different efficien-
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Figure 3.9: Model performance obtained with three different parameter identification methods:
automatic calibration with DREAM, recession analysis fitted on logarithmic axes, and Boussinesq
theory. The first two box-plots on the left show the model performance for the calibration period of
one month. All other box-plots show the distribution of the model efficiency for the full validation
period of 32 years for different calibration lengths. The numbers in the chart indicate the median
model efficiency NSE(Q). Legend according to Figure 3.5.

cies were calculated: NSE(Q) and NSE(logQ). Sorooshian (1983) showed that the obtained
optimal parameters can vary for different objective functions. This was confirmed in the
current study. The optimal parameters obtained with the SSE directly on the data were
different from the parameters obtained with the SSE criterion on log-transformed data.
Kirchner (2009) and Teuling et al. (2010) therefore used different parameter sets for differ-
ent values of β, because of the physically different behaviour of the catchment if β <1,
β=1 andβ >1 (see Section 3.2). This study showed that the parameter sets for both crite-
ria can be determined from the same data set, by calibrating either directly on the data
or on the log-transformed data. The objective function should thus reflect the goal of the
study. Other objective functions might have lead to different parameter values, but the
objective function (as long as it is based on the discharge) does not influence the data
needs for robust calibration.

Calibration data
Thirty-two years of hourly observations were used for calibration and validation. Impor-
tant was that actual evapotranspiration data were available from lysimeter measurements.
In most other catchments, and especially in ungauged catchments, actual evapotranspi-
ration data are not available. In these basins the potential evapotranspiration has to be
estimated first, e.g. based on the Priestley-Taylor or Penman-Monteith models, and sub-
sequently the actual evapotranspiration has to be estimated from the potential evapo-
transpiration. This increases the uncertainty and the number of parameters in the mo-
del, and hence might increase the data requirements for calibration. On the other hand,
given the constant development in satellite observations, evapotranspiration data might
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be available for many regions in the near future.

Another characteristic of the calibration data was the hourly resolution of the data. In
comparative research (e.g. Sorooshian 1983; Perrin et al. 2007; Seibert and Beven 2009) data
with a daily resolution was applied. A coarser time resolution of the data might lead to
different results as far as required data length is concerned, but this was not studied in
this research. The required time resolution depends on the goal of the study, but con-
sidering the measurement equipment available nowadays, an hourly measurement fre-
quency during a short measurement campaign is certainly feasible.

Last but not least, the quality of the data determines successful parameter identification.
Because the measured water balance of the Rietholzbach does not close (see Table 2.1),
the data series contain disinformative data (Beven and Westerberg, 2011). By not taking
into consideration these disinformative data, the required calibration data length might
be overestimated. Although beyond the scope of this study, it would be an interesting
exercise to identify and remove data inconsistencies beforehand (see e.g. Kauffeldt et al.,
2013), followed by a similar exercise as performed in this Chapter. Despite the presence of
disinformative data, the available data for the Rietholzbach are considered of high qual-
ity (Seneviratne et al., 2012). More or larger measurement errors and a lower accuracy of
the data, which is not uncommon within the field of hydrology, might increase the data
needs for parameter identification.

Model structure
The dynamical systems model that has been applied in this study has a very simple struc-
ture. The model assumes no hysteresis, and is therefore mainly applicable in catchments
with limited or no hysteresis (e.g. the Severn and Wye catchment in Wales, which were
employed by Kirchner 2009). In the Rietholzbach catchment, hysteresis does exist, but
still the model performs well (Teuling et al., 2010). This implies that the simple model does
not give a physically realistic representation of all the separate processes in the catch-
ment and is a strong simplification of reality. This introduces model structural uncer-
tainty in the results. Model structural uncertainty might be lower for more physically
based models, but this kind of models will again introduce more uncertainty due to the
large amount of required input data or the large number of parameters. Nevertheless,
the employed model structure has much in common with the subsurface representation
in more complex models. Therefore it is believed that the results presented in this chap-
ter can be extended to more complex models. In addition, the comparison between the
three different parameter identification methods is expected to be independent from the
model structure and thus broadly interpretable.

3.5 Conclusion
The minimal data requirement for automatic calibration of the two parameters in the
simple dynamical systems model (Kirchner, 2009) for the Rietholzbach catchment in Swit-
zerland to reach reasonable model efficiencies is one season of five months. This should
preferably be the summer season (May until September, with median NSE(Q)=0.69 and
NSE(logQ)=0.74). For focus on high flows, direct calibration on the data with the SSE
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as objective function will provide the optimal system parameters. If the focus is on low
flows, calibration should take place on the log-transformed data. Longer calibration pe-
riods only lead to marginal improvements.

For recession analysis, also one season of available data is found as threshold for rea-
sonable model results, although in this case the winter season (November until March,
with a median NSE(Q)=0.63) outperforms the summer season. The logarithmic recession
analysis (logRA) leads to higher model efficiencies than linear recession analysis (linRA)
and is therefore advised. Longer calibration periods for logarithmic recession analysis do
not lead to higher model efficiencies. Recession analysis seemed inappropriate to iden-
tify the parameters necessary to simulate low flows in the right way with this model, and
should therefore only be used for focus on high flows.

With Boussinesq theory an a-priori estimate of the parameters could be obtained. There
were many uncertainties in the physical characteristics of the catchment, necessary to
substitute in the corresponding expressions of α and β. This uncertainty lead to an ex-
tremely broad estimation range of the model parameters and thus model efficiencies.
In order to make the a priori estimates of added value, either more knowledge on in-
situ parameters, or validation data to determine the in-situ parameters indirectly, should
be available. It was shown that the employed Boussinesq model adapted for sloping
aquifers (Rupp and Selker, 2006) is able to give good estimates of the model parameters,
although a large restriction is thatβ cannot exceed one and the model therefore focusses
more on the higher discharge ranges.

Comparing the three employed parameter identification methods, it can be concluded
that automatic calibration leads to the best model results for high flows. Recession anal-
ysis only scores slightly lower with the same calibration length and is therefore a good
alternative for automatic calibration when precipitation measurements are inaccurate.
The identified parameter values with both methods, however, differ significantly. Also
for low flows, automatic calibration scores the highest model efficiencies. Boussinesq
theory and recession analysis are unable to identify the parameters to model low flows
with reasonable model efficiencies. For this application, automatic calibration is inevitable.
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Chapter 4

Parameter transferability across spatial
and temporal resolutions

The transfer of parameter sets over different temporal and spatial resolutions is common
practice in many large-domain hydrological modelling studies. The degree to which pa-
rameters are transferable across temporal and spatial resolutions is an indicator for how
well spatial and temporal variability are represented in the models. A large degree of
transferability may well indicate a poor representation of such variability in the employed
models. To investigate parameter transferability over resolution in time and space we
have set-up a study in which the Variable Infiltration Capacity (VIC) model for the Thur
basin in Switzerland was run with four different spatial resolutions (1×1 km, 5×5 km,
10×10 km, lumped) and evaluated for three relevant temporal resolutions (hour, day,
month), both applied with uniform and distributed forcing. The model was run 3,150
times using a Hierarchical Latin Hypercube Sample and the best 1% of the runs was se-
lected as behavioural. The overlap in behavioural sets for different spatial and tempo-
ral resolutions was used as indicator for parameter transferability. A key result from this
study is that the overlap in parameter sets for different spatial resolutions was much larger
than for different temporal resolutions, also when the forcing was applied in a distributed
fashion. This result suggests that it is easier to transfer parameters across different spa-
tial resolutions than across different temporal resolutions. However, the result also indi-
cates a substantial underestimation in the spatial variability represented in the hydrolog-
ical simulations, suggesting that the high spatial transferability may occur because the
current generation of large-domain models have an inadequate representation of spa-
tial variability and hydrologic connectivity. The results presented in this Chapter provide
a strong motivation to further investigate and substantially improve the representation
of spatial and temporal variability in large-domain hydrological models.

This chapter is based on: Melsen, L., A. Teuling, P. Torfs, M. Zappa, N. Mizukami, M. Clark, and R. Uijlenhoet
(2016), Representation of spatial and temporal variability in large-domain hydrological models: Case study for
a mesoscale prealpine basin, Hydrol. Earth Syst. Sc., 20, 2207-2226, doi: 10.5194/hess-20-2207-2016.
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4.1 Introduction

In Section 1.1, it was described how hydrological modelling started with the empiricist
approach in the 17th century. According to Todini (2007), the history of modern hydro-
logical modelling dates back to halfway the nineteenth century, starting with empiri-
cal models to predict peak flows. For a long time, hydrological models were developed
only at the catchment scale, evolving from empirically based to more physically based.
Computational power and increased data availability have driven the development of in-
creasingly complex and distributed hydrological models (Boyle et al., 2001; Liu and Gupta,
2007). Distributed hydrological models can incorporate spatially varying parameters,
including those reflecting land use and soil characteristics (Carpenter and Georgakakos,
2006), and spatially variable forcing. In 1989 the first Global Hydrological Model (GHM)
was presented (Vörösmarty et al., 1989; Sood and Smakhtin, 2015). Continuing improve-
ments in computational power and data availability provides new opportunities for GHMs,
for example expressed in the recent ambition to develop global models with a resolution
in the order of∼1 km and higher, the so-called hyper-resolution (Wood et al., 2011; Bierkens
et al., 2015; Bierkens, 2015).

The increased complexity of hydrological models and the increased application domain
has resulted in more complex and time consuming optimization procedures for the mo-
del parameters. Although recent developments in e.g. satellites and remote sensing can
provide spatially distributed data to construct and force models, discharge observations
(or other model output variables) are still required to calibrate and validate model out-
put. Both to decrease calculation time of the optimization procedure, and to be able to
apply the model in ungauged or poorly gauged basins and areas, many studies have fo-
cused on the transferability of parameter values over time, space, and spatial and tempo-
ral resolution (for example Wagener and Wheater, 2006; Duan et al., 2006; Troy et al., 2008;
Samaniego et al., 2010; Rosero et al., 2010; Kumar et al., 2013; Bennett et al., 2016).

Sometimes it is assumed that parameters are directly transferable, for example by cali-
brating on a coarser time step than the time step at which the model output will even-
tually be analysed (e.g. Liu et al., 2013; Costa-Cabral et al., 2013). Troy et al. (2008) rightly
question what the effect is of calibrating at one time step and transferring the parame-
ters to another time step. Their results suggest that the time step had only limited impact
on the calibrated parameters and thus on the monthly runoff ratio. On the other hand,
Haddeland et al. (2006) found that modelled moisture fluxes are sensitive to the model
time step. Several studies (e.g. Littlewood and Croke, 2013; Kavetski et al., 2011; Wang et al.,
2009; Littlewood and Croke, 2008) have found that parameter values are closely related
to the employed time step of the model. Chaney et al. (2015) investigated to what ex-
tent monthly runoff observations could reduce the uncertainty around the flow duration
curve of daily modelled runoff. They found a decrease in the uncertainty around the flow
duration curve when the monthly discharge observations were used, but the magnitude
of the reduction was dependent on climate type. Ficchì et al. (2016) conducted a thorough
analysis on the effect of temporal resolution on the projection of flood events, where it
was shown that the specific characteristics of the flood event determined the sensitivity
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for the temporal resolution.

Less intuitive and less common is to transfer parameters across different spatial grid reso-
lutions. Haddeland et al. (2002) showed that the output of the Variable Infiltration Capac-
ity (VIC) model was significantly different when the parameters of the model were kept
constant for several spatial resolutions. For the same model, Liang et al. (2004) showed
that model parameters calibrated at a coarse grid resolution could be applied to finer
resolutions to obtain comparable results. Troy et al. (2008) on the contrary, found that
calibrating the VIC model on a coarse resolution significantly affected the model per-
formance when applied to finer resolutions. Finnerty et al. (1997) investigated parameter
transferability over both space and time for the Sacramento model, and showed that it
can lead to considerable volume errors.

Although the ambition of GHMs is to move towards hyper-resolution (∼ 1 km and higher),
more physically-based catchment models have already been applied at spatial resolu-
tions in the order of 100 meters. Also for these models at this scale, the effect of spatial
resolution has been investigated (e.g. Vivoni et al., 2005; Sulis et al., 2011; Shrestha et al.,
2015). Even for fully coupled surface-groundwater land-surface models, the effect of spa-
tial resolution on hydrologic fluxes was found to be considerable (Shrestha et al., 2015).

The impact of transferring parameters across spatial and/or temporal resolutions on mo-
del performance is thus ambiguous, but relevant in the light of hydrological model devel-
opment, especially for GHMs which are at the upper boundary of computational power
and data availability. Calibration on a coarse temporal or spatial resolution and subse-
quently transferring to a higher resolution could potentially reduce computation time,
and it is therefore relevant to investigate the opportunities. But parameter transferabil-
ity across spatial and temporal resolutions is also interesting for another reason: it is an
indicator for the degree to which spatial and temporal variability are represented in the
model. Ideally, in a model that describes all relevant hydrological processes correctly, pa-
rameters should to a large extent be transferable over time because longer time steps are
simply an integration of the shorter time steps (although long-term cycles, e.g. seasonal
or decadal cycles, should still be accounted for). On the other hand, parameters should
not or hardly be transferable over space, because the physical characteristics which they
represent are different from place to place. Investigating parameter transferability across
spatial and temporal resolutions can thus provide insight in the model's representation
of spatial and temporal variability.

In this study, we employ the Variable Infiltration Capacity (VIC) model (Liang et al., 1994),
which has also been applied at the global scale (Nijssen et al., 2001; Bierkens et al., 2015),
to study parameter transferability across temporal and spatial resolutions, accounting
for the difference between uniform and distributed forcing. A description of the VIC mo-
del and the routing procedure can be found in Section 2.2. This study is conducted on a
well-gauged mesoscale catchment in Switzerland (the Thur basin, 1703 km2, see Section
2.1) on spatial resolutions that are relevant for hyper-resolution studies (1×1 km, 5×5 km
and 10×10 km, as well as a lumped model which represents the 0.5◦ grid used in many
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global studies). We use the most common temporal resolutions for which discharge data
are available (hourly, daily, monthly). We ran the models both with distributed forcing
(different forcing input for each grid cell) and with uniform forcing (same forcing input
for each grid cell), where the latter is in line with many of the datasets currently used for
forcing global hydrological models (e.g. WATCH forcing data, 0.5◦).

Several studies already investigated scale effects in the VIC model, for instance Hadde-
land et al. (2002); Liang et al. (2004); Haddeland et al. (2006); Troy et al. (2008); Wenger et al.
(2010); Wen et al. (2012). Novel in this study is that we choose a probabilistic rather than
a deterministic approach: essentially we employ a GLUE-based approach (Beven and Bin-
ley, 1992, 2014) in which we implicitly account for parameter uncertainty. We quantify
parameter transferability by evaluating the overlap in behavioural sets for different tem-
poral and spatial resolutions. To determine the behavioural sets, we make use of three
different objective functions focusing on high flows, average conditions, and low flows.
Novel is also that we test the effect of forcing on the results, and that we use several sub-
basins to explain the results. Our case study provides a benchmark for parameter trans-
ferability for models applied at larger scales, dealing with the same spatial and temporal
resolutions as employed here. The results of our study also provide an indication of the
current status of spatial and temporal representation in the VIC model, being represen-
tative for a larger group of land-surface models.

4.2 Experimental set-up
We have constructed four VIC models with different spatial resolutions: 1×1 km, 5×5 km,
10×10 km, as well as a lumped model. These models have been run with both uniform
and distributed forcing. Since for the lumped model there is no difference between uni-
form and distributed forcing, this leads to a total of seven different model set-ups. Be-
cause the runtime of the model combined with all the post-processing is rather long (on
average 2.5 hours for the 1×1 km model on a standard PC), an efficient sampling strat-
egy was designed as discussed in Section 2.3. The sampled parameters were applied uni-
formly over the catchment, whereas all other soil- and land use parameters have been
applied in a distributed fashion. After running the models with the parameter sample,
the output was evaluated and the best 1% of the runs was defined as behavioural. The
overlap in behavioural sets was used as an indicator for parameter transferability.

Spatial model resolution
Four VIC implementations with different spatial resolutions (0.0109◦ roughly correspond-
ing to 1×1 km, 0.0558◦ ≈5×5 km, 0.1100◦ ≈10×10 km, as well as a lumped model) were
constructed. The 1×1 km model represents the so-called hyper-resolution. Several stud-
ies already explore GHMs at this resolution, e.g. Sutanudjaja et al. (2014) for the Rhine-
Meuse basin. The model with the 10×10 km resolution can be characterized as ‘regional’.
The 5×5 km model is in between the hyper-resolution scale and the regional scale. The
lumped model, which represents an area of 1703 km2, is in the order of magnitude of
grid cells with a 0.5◦ resolution, which represents the original scale for which VIC was
developed. Figure 4.1 gives an overview of the cell size of the four models. The sampled
parameters (see Section 2.3) have been applied uniformly over the catchment, all other
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parameters have been applied in a distributed manner.

Temporal model resolution
The models are run at an hourly time step, implying that they solve both the energy and
the water balance. The hourly output of the routing model is aggregated to daily and
monthly time steps for further evaluation, see Figure 4.1.

Simulation period
The models are run for a period of 1 year and four months. The first three months are
used as spin-up period and not used for further analysis. Tests with the same parameter
set and different initial conditions revealed that three months are sufficient to eliminate
the effect of initial conditions (see Figure 4.2). The initial soil moisture content of the
model before spin-up was fixed at θ=0.9 because we found that the model reaches equi-
librium faster when starting from a wet state. The models have not been subjected to a
validation procedure on another time period, because in this particular application the
goal was not to identify the best performing model, but to investigate the role of tempo-
ral and spatial resolution on parameter transferability.

The analysed period is 1 August 2002 – 31 August 2003 (see Figure 4.2). This period is
characterised by three very high peaks (August, September 2002) as well as the severe
2003 drought (June, July, August 2003). The 2002 peaks (see e.g. Schmocker-Fackel and
Naef , 2010) have an estimated return period of 15 to 20 years. The peaks were caused by
a larger system that also caused the heavy floods in the Elbe and the Danube (Becker and
Grünewald, 2003). In contrast, the 2003 summer was extremely warm and dry in Western
and Central Europe (Miralles et al., 2014), with Switzerland being among the hottest and
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Figure 4.1: Overview of the spatial and temporal resolutions employed in this study. Top from left
to right: DEM grid cells for 1×1 km, 5×5 km, 10×10 km resolution and the lumped model. The
circle in the left panel shows the location of the Thur outlet where the discharge is measured. The
dotted lines in the right panel indicate a 0.5◦ grid. Bottom: The three temporal resolutions, ob-
served discharge at an hourly, daily and monthly time step.
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driest regions (Andersen et al., 2005; Rebetez et al., 2006; Zappa and Kan, 2007; Seneviratne
et al., 2012). With these two extremes the selected period covers a large part of the flow
duration curve, both in the high and the low flow regions (right panel in Figure 4.2).

Determination of behavioural sets and parameter transferability
After running the VIC model with 3,150 parameter sets, a selection is made of the best pa-
rameter sets, the so-called behavioural runs (Beven and Binley, 1992). For each model run,
three objective functions were evaluated: the KGE(Q), the NSE(Q), and the NSE(logQ),
defined in Eq. 2.11 and 2.12 on p.28. The objective functions are calculated for the seven
different VIC set-ups and based on hourly, daily and monthly time steps. The best 1%
(which is different for different objective functions and different model set-ups) of the
3,150 runs (32 members) are selected as behavioural. We value all 32 parameter sets
equally plausible and do not assign weights to the best performing sets within the be-
havioural selection, to account for uncertainty in the observations. Inherent to our ap-
proach, selecting a certain percentage of runs rather than applying a threshold level based
on an objective function, is that the selected runs do not necessarily comply to an accept-
able model performance. We expect that this neither positively nor negatively influences
our results concerning parameter transferability, because we essentially conduct a sen-
sitivity analysis.

We define parameter transferability θ←→ as the percentage agreement in selected beha-
vioural sets:

θ←→ = 100 ·#(ASi,Tj
∩BSk,Tl

)/n, (4.1)

in whichASi,Tj
is the set of selected behavioural members for spatial resolutionSi and

temporal resolution Tj , andBSk,Tl
are the selected members for spatial resolution Sk

and temporal resolution Tl. Then is the total number of selected members (in this case
32). Equation 4.1 expresses θ←→ as a percentage; if θ←→=100, this indicates that for two
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Figure 4.2: Daily discharge characteristics for the Thur basin. Left panel: the daily discharge in
the Thur for the selected model period. The black lines show three model runs with the same pa-
rameter set but with different initial conditions (θ=0.5,0.7,0.9). Right panel: part of the flow
duration curve covered within the model period. The flow duration curve is based on 39 years of
daily discharge observations in the Thur for the period 1974–2012.
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Figure 4.3: Model performance of the behavioural sets for different temporal resolutions and dif-
ferent spatial resolutions. The left panel shows the KGE(Q), the middle panel the NSE(Q) and the
right panel the NSE(logQ). Per objective function the most behavioural sets were selected. The box
shows the 25–75% quantile.

different resolutions (either spatial, temporal or both) exactly the same parameter sets
were selected as behavioural.

4.3 Results
First, the impact of temporal and spatial resolution on model performance is discussed
for both uniform and distributed forcing, followed by a discussion of the impact of the
temporal and spatial resolution on parameter distribution. The parameter transferabil-
ity across temporal and spatial resolution is assessed by determining the overlap in beha-
vioural sets as defined by Equation 4.1. After that, parameter transferability over tempo-
ral and spatial resolution combined is assessed. Finally, we investigate parameter trans-
ferability over the sub-basins of the Thur.

Impact of temporal and spatial resolution on performance and parameter distribution
Figure 4.3 shows the model performance of the behavioural sets for the different spatial
and temporal resolutions and the different objective functions, both for uniform and dis-
tributed forcing. We will first discuss the results for the uniform forcing.

With uniform forcing, the lumped model outperforms the distributed models for all three
objective functions and time steps. The monthly time step shows for all three objective
functions an increasing model performance with decreasing spatial resolution. It is re-
markable that the model with the monthly time step outperforms the models with daily
and hourly time step when the NSE(logQ) was used as objective function, while with the
NSE(Q) as objective function exactly the opposite is the case. It is important to notice
here that the monthly model results are simply an aggregation from the hourly model
results which might imply that the higher score on the monthly time step is the result
of errors which compensate for each other, and that the model performance scores for
the monthly time step are based on a considerable lower number of points. The KGE(Q)
as objective function does not lead to a remarkably different model performance for the
monthly time step. From the figure it seems that both the spatial and temporal reso-
lution have impact on the model performance. This is confirmed with a statistical test.
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Figure 4.4: The model performance for the three separate components of the Kling-Gupta Effi-
ciency of the behavioural sets for different temporal and spatial resolutions. The left panel shows
the correlationr, the middle panel the standard deviation of the model output divided by the stan-
dard deviation of the observations (α), and the right panel shows the mean of the model output
divided by the mean of the observations (β).

Analysis of Variance (see description on p.86) with two factors (temporal resolution; spa-
tial resolution), with three, respectively four levels (hourly, daily, monthly; 1×1 km, 5×5 km,
10×10 km and lumped) shows that both the spatial and the temporal resolution have sig-
nificant (p<0.05) impact on all three objective functions.

Distributed forcing leads in all cases except one (1×1 km, monthly, NSE(logQ)) to an im-
proved model performance compared to uniform forcing. Note that for the lumped mo-
del uniform and distributed forcing are the same - it should therefore be remarked that
while with uniform forcing the lumped model outperforms the other model set-ups, for
the distributed forcing the 10×10 km model outperforms the other spatial resolutions
(except for NSE(logQ)). An ANOVA analysis confirmed that also for distributed forcing,
both spatial and temporal resolution have significant (p<0.05) impact on the model per-
formance for all three objective functions.

Figure 4.4 shows the distribution of the behavioural sets for the three separate compo-
nents of the KGE(Q). Regarding the correlation r, the monthly time step scores higher
than the daily and hourly time step. On the other hand, the hourly and daily time steps
score higher with respect to the β (closer towards 1). Although Figure 4.3 gives the im-
pression that the model performance in terms of KGE(Q) is relatively insensitive to tem-
poral and spatial resolution, Figure 4.4 reveals this is actually the result of compensations
from the three different components of the KGE(Q): The monthly time step has a higher
correlation, while the daily and hourly time steps have a lower bias (higherβ).

Figure 4.5 shows the parameter distribution of the seven sampled parameters (Table 2.4),
and shows how the distribution varies as a result of temporal and spatial resolution, both
for distributed and uniform forcing. The distribution of the behavioural parameter sets
for the daily and hourly time steps are very much alike for all parameters, but the dis-
tribution for the monthly time step is in some cases broader, which implies that the pa-
rameters are less clearly defined. The parameter showing the clearest effect of tempo-
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parameter values of the behavioural sets, evaluated for the three objective functions using Analy-
sis of Variance (ANOVA).

ral resolution is the advection coefficient C (Figure 4.5). The C parameter, the velocity
component in the routing, becomes less well defined with increasing time step, which is
intuitive because timing becomes less relevant for longer time intervals.

The difference in the parameter distribution when comparing distributed and uniform
forcing is limited. The clearest difference can be found for the dm parameter with the
NSE(Q) as objective function. This parameter describes the maximum base flow, and can
potentially impact short term processes for which distributed forcing seems important,
like surface runoff. However, there are other parameters, such as the bi parameter, which
are more directly linked to infiltration and surface runoff processes and do not show a
clear difference in parameter distribution between distributed and uniform forcing.

With an ANOVA analysis, the significance of temporal and spatial resolution on the pa-
rameter distribution of the behavioural sets was tested. Figure 4.6 shows that the sig-
nificance of spatial and temporal resolutions on the parameter distribution depends on
which objective function was used to determine the behavioural sets. Uniform and dis-
tributed forcing show comparable patterns. In general, the temporal resolution has more
impact on the parameter distribution (at least four parameters are significantly affected
by temporal resolution) than the spatial resolution (only one parameter for one objective
function experiences significant impact of the spatial resolution). Only two parameters
are significantly impacted by the temporal resolution for all three objective functions: ds
andC .

Parameter transferability
The main research question in this chapter is to what extent parameters are transferable
across temporal and spatial resolutions, and we will use that as indicator for the repre-
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sentation of spatial and temporal variability in the model. We have defined parameter
transferability θ←→ as the percentage agreement in identified behavioural sets (Equation
4.1). Table 4.1 and Table 4.2 give an overview of θ←→ for different temporal and spatial res-
olutions, respectively, both for uniform and distributed forcing. Table 4.1 shows that the
θ←→ is generally high for different spatial resolutions, which suggests that the parameters

are to a large extent transferable across spatial scales. In contrast, Table 4.2 shows that
parameters are hardly transferable over the temporal scale. The selected sets for hourly
and daily time steps largely agree, but the selected sets on a monthly time step are clearly
different. Surprisingly, this is also strongly related to the objective function. The selection
based on the NSE(logQ) is less sensitive to temporal resolution than those based on the
KGE(Q) or the NSE(Q). A possible explanation is that the NSE(logQ) tends to put more fo-
cus on lower discharges with a longer time scale, with less focus on the short term flashy
response of a catchment. Parameter transferability over space is in general slightly lower
when distributed forcing is used compared to uniform forcing. On the other hand, pa-
rameter transferability over time is slightly higher for distributed forcing. Decreased sen-
sitivity for the temporal resolution and increased sensitivity for the spatial resolution can
indicate an improved physical representation with distributed forcing compared to uni-
form forcing, as one would expect.

Table 4.1 and 4.2 list the parameter transferability over only one dimension (either spatial
resolution or temporal resolution). We also investigated the combined effect of transfer-
ring parameters over both the spatial and the temporal resolution. Figure 4.7 shows the
relative impact of temporal and spatial resolution on parameter transferability based on
KGE(Q) for uniform forcing. To illustrate the relative impact of changes in spatial and
temporal resolution, we fitted a linear surface through the data points from our study
(R2=0.68). The figure clearly shows that temporal resolution has a stronger impact on
parameter transferability than spatial resolution. The linear regression equation that de-
scribes the surface in Figure 4.7 is given below:

θ←→KGE(Q) = 83.3− 12.6 · Tj
Tl
− 3.0 · Si

Sk
, (4.2)

in which Tj

Tl
is the ratio in temporal resolution between the two model set-ups over which

parameters are transferred and Si

Sk
is the ratio in spatial resolution (L/L) between the two

model set-ups. The effect of temporal resolution on parameter transferability is stronger
(slope of 12.6) than the effect of spatial resolution (slope of 3.0). Parameter transferability
decreases when the ratio between the original and the intended spatial and temporal
resolution increases. The surfaces based on NSE(Q) (R2=0.60) and NSE(logQ) (R2=0.75)
show a similar behaviour:

θ←→NSE(Q) = 88.6− 12.8 · Tj
Tl
− 2.8 · Si

Sk
, (4.3)

θ←→NSE(logQ) = 92.9− 7.4 · Tj
Tl
− 3.6 · Si

Sk
. (4.4)
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When we fit a surface through the points obtained for the models run with distributed
forcing, the linear regression equations (R2=0.66, 0.67, 0.88 respectively) look as follows:

θ←→KGE(Q) = 80.3− 11.4 · Tj
Tl
− 2.6 · Si

Sk
. (4.5)

θ←→NSE(Q) = 75.3− 10.3 · Tj
Tl
− 4.3 · Si

Sk
, (4.6)

θ←→NSE(logQ) = 91.3− 5.4 · Tj
Tl
− 2.8 · Si

Sk
. (4.7)

Also for the models with distributed forcing, the slope for the temporal resolution is steeper
than the slope for spatial resolution, implying that parameter transferability is more sen-
sitive to temporal than to spatial resolution. Compared to uniform forcing, the slope for
temporal resolution, and hence the impact of temporal resolution on transferability, is
less steep for distributed forcing, while the slope for spatial resolution is on average com-
parable for both forcing types.
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Figure 4.7: Parameter transferability as a function of ratio in temporal and spatial resolution. Ra-
tio of temporal resolutions is defined as follows: transfer from hourly to daily time step is a ratio
of 24, whereas transfer from hourly to monthly is a ratio of 732 (732 hours in one month of 30.5
days). The ratio of spatial resolutions is defined as the square root of the number of cells that would
fit in the other cell: from 1×1 km resolution to 5×5 km resolution is a ratio of

√
25=5. The beha-

vioural sets were determined based on the KGE(Q). The linear surface (R2 = 0.68) was fitted to
illustrate the relative impact of changes in spatial and temporal resolution.
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Table 4.1: Transferability of parameters across spatial resolution, expressed as percentage agree-
ment in detected behavioural runs for different spatial resolutions (in km) at different temporal
resolutions. The cell colours correspond to the percentage agreement (darker = higher transfer-
ability).

Uniform forcing (% agreement) Distributed forcing (% agreement)

HOUR

KGE(Q) NSE(Q) NSE(logQ) KGE(Q) NSE(Q) NSE(logQ)
1×1 vs 5×5 78 84 91 88 75 84
1×1 vs 10×10 72 81 81 78 56 78
5×5 vs 10×10 94 94 91 88 81 94
1×1 vs lumped 78 88 91
5×5 vs lumped 91 84 94
10×10 vs lum-
ped

88 81 88

DAY

KGE(Q) NSE(Q) NSE(logQ) KGE(Q) NSE(Q) NSE(logQ)
1×1 vs 5×5 94 84 84 91 84 91
1×1 vs 10×10 84 69 69 78 69 81
5×5 vs 10×10 91 84 84 89 84 91
1×1 vs lumped 91 81 88
5×5 vs lumped 91 88 94
10×10 vs lum-
ped

84 84 81

MONTH

KGE(Q) NSE(Q) NSE(logQ) KGE(Q) NSE(Q) NSE(logQ)
1×1 vs 5×5 75 88 88 84 84 91
1×1 vs 10×10 66 84 81 66 78 84
5×5 vs 10×10 88 91 94 78 88 94
1×1 vs lumped 78 72 94
5×5 vs lumped 78 75 88
10×10 vs lum-
ped

78 78 88
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Table 4.2: Transferability of parameters across temporal resolution, expressed as percentage
agreement in detected behavioural runs for different temporal resolutions at different spatial reso-
lutions. The cell colours correspond to the percentage agreement (darker = higher transferability).

Uniform forcing (% agreement) Distributed forcing (% agreement)

1×1 km

KGE(Q) NSE(Q) NSE(logQ) KGE(Q) NSE(Q) NSE(logQ)
hour vs day 56 81 81 69 63 75
hour vs month 3 6 34 6 9 47
day vs month 3 6 47 6 13 63

5×5 km

KGE(Q) NSE(Q) NSE(logQ) KGE(Q) NSE(Q) NSE(logQ)
hour vs day 66 88 81 69 69 81
hour vs month 3 6 38 9 6 53
day vs month 3 6 47 9 6 66

10×10 km

KGE(Q) NSE(Q) NSE(logQ) KGE(Q) NSE(Q) NSE(logQ)
hour vs day 63 75 78 59 72 78
hour vs month 3 3 44 13 6 59
day vs month 0 6 63 13 6 75

lumped

KGE(Q) NSE(Q) NSE(logQ) KGE(Q) NSE(Q) NSE(logQ)
hour vs day 66 84 81
hour vs month 3 0 44
day vs month 3 3 53
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Figure 4.8: Distribution of bulk density over the grid cells for the four different spatial resolutions.

Spatially distributed parameters
The advantage of distributed hydrological models over lumped models is that distributed
models can incorporate spatially varying parameters, including those reflecting land use
and soil characteristics (Carpenter and Georgakakos, 2006), and spatially varying forcing.
Figure 4.8 for example, shows how the spatial variation in bulk density decreases with in-
creasing resolution. In this study, as in most large-domain studies with distributed mo-
dels, the most sensitive parameters (i.e. the once that were calibrated) have, however,
been applied uniformly over the grid cells. The main motivation for this practice is that
the problem is ill-posed (too many parameters have to be identified with too little in-
formation), in addition to computational time. This implies that the advantage of a dis-
tributed model remains unused for the parameters that impact the model output most.
To test the spatial distribution of the most sensitive parameters for the Thur basin, we
have investigated parameter transferability between the Thur basin and the nine sub-
basins for which discharge data were available (see Section 2.1 and Figure 2.4). Table 4.3
gives an overview of transferability for a selected number of spatial and temporal resolu-
tions. The table shows that parameter transferability from the Thur to the sub-basins is
notably low. An extreme example is the St.Gallen catchment, which has maximum one
behavioural parameter set in common with the Thur basin. Table 4.3 therefore shows
that the spatial variation in the calibrated parameters is underestimated in the current
model set-up.

4.4 Discussion
Model performance
It seems counter-intuitive that the model performance is significantly affected by both
the temporal and spatial resolution, while the parameter distribution is mainly impacted
by the temporal resolution. This can be explained, however. Model performance can still
be significantly impacted by temporal and spatial resolution, even if the same param-
eters are selected for different spatial resolutions. This implies that the model perfor-
mance is mainly limited by the model structure or set-up, and much less by the parame-
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Table 4.3: Transferability of parameters from the Thur to the nine sub-basins, expressed as per-
centage agreement (%) in detected behavioural runs. The forcing was applied uniformly and the
KGE(Q) was used as objective function. The cell colours correspond to the percentage agreement
(darker = higher transferability).

Catchment (size) 1×1 km 5×5 km 10×10 km
hour day month hour hour

Rietholzbach (3.3 km2) 19 0 0 25 19
Herisau (17.8 km2) 16 6 0 16 16
Appenzell (74.2 km2) 28 25 9 28 16
Wängi (78.9 km2) 9 56 31 34 50
Mogelsberg (88.2 km2) 28 38 66 19 28
Frauenfeld (212 km2) 3 3 75 3 0
St.Gallen (261 km2) 3 0 0 3 0
Jonschwil (493 km2) 6 0 0 6 0
Halden (1085 km2) 19 9 0 18 13

ter values. This is confirmed by comparing the uniform and distributed forcing. Although
the distribution of the behavioural parameters was not very different for the two forcing
types, the model performance for distributed forcing was in almost all cases better than
the model performance for the uniform forcing.

Liang et al. (2004) defined a so-called ‘critical resolution’, beyond which a finer spatial
resolution would not lead to any improvement in the model performance. In the study
of Liang et al. (2004) this critical resolution for the VIC model was found to be 1/8◦(≈
12.5 × 12.5 km). All spatial resolutions applied in this study but the lumped one are be-
low this critical resolution. The results in this study are therefore consistent with the re-
sults from Liang et al. (2004), because we did not find any improvement in model perfor-
mance with increasing spatial resolution, neither for the uniform nor for the distributed
forcing. Rather, we find the contrary; for the uniform forcing the lumped model outper-
formed the higher resolution models, and for the distributed forcing the 10×10 km out-
performed the other models. If something like a critical resolution exists, it is probably
related to the processes represented in the model. Contradictory to our findings are the
results of Zappa (2002), who found that a critical spatial resolution in the Thur region is in
the order of 500×500 m using the PREVAH model, because of the complex topography
and snow processes in the catchment. This can either imply that the sub-grid variabil-
ity parameterization in VIC is effective, or that not all relevant hydrological processes are
included in the VIC model. In order to check this last suggestion, future research on pa-
rameter transferability should consider more hydrological fluxes and states besides the
discharge, e.g. evapotranspiration.

The high sensitivity for temporal resolution
The conclusion that parameters cannot be transferred across temporal resolution seems
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to contradict the results of Troy et al. (2008). The large difference is that Troy et al. (2008)
only used sub-daily time steps (1, 3, 6, 12 hours), whereas we did find agreement be-
tween the hourly and daily time step. Therefore, our results are not necessarily contradic-
tory. Troy et al. (2008) chose the sub-daily time steps in order to investigate if time could
be saved in the calibration process by calibrating on a coarser time step. Unfortunately,
the reality is that in most large-domain studies models are calibrated with monthly dis-
charge observations (see Chapter 7) rather than with sub-daily observations. Our results
suggest that models which were calibrated or validated at a monthly time step cannot
be interpreted at the daily or hourly time step. Chaney et al. (2015) showed that monthly
discharge observations could decrease the uncertainty around the daily flow duration
curve. The decrease in uncertainty by adding monthly discharge information differed for
different climates. The Thur basin, with a wet continental climate, would experience a
high reduction in uncertainty. This means that our results, which show that with monthly
data it is impossible to determine the optimal parameter set for the hourly or daily time
step, would even be stronger for dry climates (Chaney et al., 2015).

Kavetski et al. (2011) showed that parameter values can significantly change by changing
the temporal resolution (this is also demonstrated in Chapter 7). They found that the
sensitivity of a parameter to temporal resolution could be related to the model structure;
the parameters from simpler model structures were more sensitive to temporal resolu-
tion than the parameters from more complex models.

Figure 4.9 shows that the conclusions we draw from Table 4.1 and Table 4.2 are not only
valid for the best 1% of runs selected as behavioural. Figure 4.9 gives an overview for two
selected cases, which show that model performance deteriorates when parameters are
transferred over time, also for the best 10% up to higher thresholds, whereas the impact
of spatial resolution on model performance deterioration is limited.

Models versus nature: Do the current generation of models adequately represent spa-
tial variability?
The results of this chapter show that parameter transferability is more sensitive to tem-
poral than to spatial resolution. A key question is to what extent this result stems from
the model representation of spatial variability. Spatial variability can be reflected in three
domains of the model: the routing, the forcing, and the soil- and land use parameters.

In this study we excluded the effect of routing by using a high-resolution drainage net-
work based on sub-basins with a size of ~1 km2, independent of the resolution of the
hydrological model. We think that the effect of spatial resolution can be increased by
adapting the routing scheme accordingly. Drainage network resolution may affect the
projected hydrograph, for example with changes in the stream network and the channel
slope. However, this effect should then be assigned to the routing model, and not to the
runoff generation model (the hydrological model). For clarity, we decided to exclude the
effect of spatial resolution on routing in this study.

We investigated the effect of forcing by comparing the results for distributed and uni-
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formly applied forcing, and we tested the effect of spatially distributed soil- and land use
parameters by aggregating them for lower resolutions (Figure 4.8). Despite distributed
forcing and the decrease in variation in soil- and land use parameters, the model param-
eters showed low sensitivity to the spatial resolution. A possible explanation could be
the sub-grid parameterizations of the VIC model for land use and elevation, which de-
crease the effect of up-scaling these parameters to other resolutions, as shown by Hadde-
land et al. (2002). However, we think that Table 4.3 shows that spatial variability is under-
estimated by calibrating and applying the most sensitive parameters uniformly over the
basin.

The models in this study are configured in a similar way as many current day large-domain
hydrological models, using common data like the Harmonized World Soil Database and
uniform application of the most sensitive parameters. As such, this study is likely rep-
resentative for many large-domain studies. The limited sensitivity for spatial resolution
is arguable because our implementation of VIC substantially underestimates the spatial
variability in nature, and, importantly, that similar issues in representing spatial variabil-
ity is a common problem in large-domain hydrological modelling (see, e.g., the model
configuration in Mizukami et al., 2015). Many studies have considered spatial variabil-
ity in forcing (Adams et al., 2012; Lobligeois et al., 2014) and soil parameters (Mohanty and
Skaggs, 2001; Western et al., 2004). Kim et al. (1997) accounted for heterogeneity in soil
hydraulic properties using stochastic methods, based on the scaling theory of Miller and
Miller (1956). In fact, the effect of stochastic soil parameterizations on parameter trans-
ferability would be a valuable research topic (Maxwell and Kollet, 2008). We argue here
that the high spatial transferability may occur because the current generation of land-
surface models have an inadequate representation of spatial variability and hydrologic
connectivity, providing a strong motivation to substantially improve the representation
of spatial and temporal variability in models. This not only implies increasing the spa-
tial (and temporal) resolution of the model, but also including more relevant hydrolog-
ical processes. Promising techniques have been developed to allow spatial distribution
of calibrated parameters, for example with Multiscale Parameter Regionalization (MRP,
Samaniego et al., 2010; Kumar et al., 2013), which could and should be applied for large-
domain hydrological models.

Limitations of this case study
The results in our study are based on a limited number of model configurations for a sin-
gle basin, so the results presented here are only intended to provide an example of the
behaviour in the current generation of land-surface models. Our results show a low sen-
sitivity for the spatial resolution, whether applied with distributed forcing or not. The
observed impact of spatial resolution can therefore almost completely be attributed to
the effect of spatially distributed soil and land use parameters (including the calibrated
ones), which could be substantially underestimated. The impact of temporal resolution
on parameter transferability is large. We employed the temporal resolutions for which
most hydrological observations are available, thus our results are relevant for practical
applications. Based on the work of Chaney et al. (2015) we expect that parameter trans-
ferability will be lower for arid climates than the numbers we obtained, and based on
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the work of Kavetski et al. (2011) we expect that parameter transferability will be lower for
more parsimonious models. The general message from our study is the surprisingly high
spatial transferability, highlighting the need for a focused research effort to improve the
representation of spatial variability in large-domain distributed models (GHMs). A pos-
sible path forward is to develop computationally frugal process representations, as for
example presented by Hazenberg et al. (2015) for hillslope processes.

4.5 Summary and conclusions
A VIC model for the Thur basin was run with four different spatial resolutions (1×1 km,
5×5 km, 10×10 km, lumped) and evaluated at three different temporal resolutions (hourly,
daily, monthly). The forcing was applied both uniformly and distributed over the catch-
ment, and the drainage network for the routing routine was defined independent of the
model resolution. Three objective functions were used to evaluate model performance:
KGE(Q), NSE(Q) and the NSE(logQ). The model was run 3,150 times using a Hierarchi-
cal Latin Hypercube Sample and the best 1% of the runs was selected as behavioural and
used for further analysis. Parameter transferability was quantified by evaluating the over-
lap in behavioural sets for different temporal and spatial resolutions. From the results we
can draw the following conclusions:

• Both the spatial resolution and the temporal resolution of the VIC model had a sig-
nificant impact on the model performance, either expressed in terms of KGE(Q),
NSE(Q), or NSE(logQ). The model performance evaluated at a monthly time step
consistently increased with decreasing spatial resolution, while for the daily and
hourly time step no clear relation with spatial resolution could be found. Gener-
ally, the models applied with spatially distributed forcing performed better than
the models applied with uniform forcing.

• The spatial resolution of the model had little impact on the parameter distribution
of the behavioural sets. On the other hand, the temporal resolution significantly
impacted the distribution of at least four out of seven parameters, both when ap-
plied with uniformly and distributed forcing.

• Parameters could to a large extent be transferred across the spatial resolutions,
while parameter transferability over the temporal resolutions was less trivial. Pa-
rameter transferability between the hourly and daily time step was found to be
feasible, but the monthly time step lead to substantially different parameter val-
ues. This is crucial information, because many studies tend to calibrate the VIC
model on the monthly time step (see Chapter 7). The results of this study suggest
that the output from models calibrated on a monthly time step cannot be inter-
preted or analysed on a daily or hourly time step. This might seem obvious, but it
should be recognized that the increasing spatial resolution of large-domain land-
surface models might increase the expectations concerning temporal resolution
as well, as described in Chapter 7.

• We also investigated if parameters could be transferred across both the spatial
and the temporal resolution simultaneously. Parameter transferability decreases
when the ratio between the original and the intended spatial and/or temporal res-
olution increases. The ratio of temporal resolutions has a larger negative effect on
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parameter transferability than the ratio of spatial resolutions. It was also shown
that parameter transferability depends on the objective function. When the NSE
(logQ), which tends to put more emphasize on low flows, is used as evaluation
criterion, the parameter values at a monthly time step overlap much more with
the daily and hourly time steps than when KGE(Q) or NSE(Q) are used as objec-
tive functions. This means that parameter transferability across temporal resolu-
tion also depends on the time scale of the process to which a particular parameter
refers.

The most important result of our study is that it showed high parameter transferability
across spatial resolution, even when forcing was applied in a distributed fashion. This is
indicative of a substantial underestimation of the actual spatial variability represented
by the VIC simulations. We did, however, construct our model according to current day
standards for large-domain land-surface models, raising the point that the high spatial
transferability may occur because the current generation of models have an inadequate
representation of spatial variability and hydrologic connectivity. The results therefore
provide strong motivation to further investigate and substantially improve the represen-
tation of spatial and temporal variability in large-domain hydrological models. Large-
domain hydrological models have many applications, from water footprints (Gleeson et al.,
2012) and water scarcity (Hoekstra, 2014), to global water use (Wada and Bierkens, 2014)
and electricity supply (Van Vliet et al., 2012), but the spatial variability in the models is very
likely underestimated, which increases the uncertainty in the model results.
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Chapter 5

Subjective modelling decisions impact
hydrological predictions

It is generally acknowledged in the environmental sciences that the choice of a computa-
tional model impacts the research results. In this study we show, with an example of hy-
drological modelling of floods and drought, that modelling decisions during the model
configuration, beyond the model choice, also impact the model results. In our carefully
designed experiment we investigated four modelling decisions in ten nested basins: the
spatial resolution of the model, the spatial representation of the forcing data, the calibra-
tion period, and the performance metric. The simulation of both hydrological extremes
was affected by the four modelling decisions, with differing significance and magnitude.
The flood characteristics were mainly affected by the performance metric, whereas the
drought characteristics were mainly affected by the calibration period. Modelling de-
cisions during model configuration introduce subjectivity from the modeller. Multiple
working hypotheses during model configuration can provide insights on the impact of
such subjective modelling decisions.

This chapter is based on: Melsen, L., A. Teuling, P. Torfs, M. Zappa, N. Mizukami, P. Mendoza, M. Clark, and R.
Uijlenhoet (2016), Subjective modeling decisions significantly impact the simulation of hydrological extremes,
J. Hydrol., in review.
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5.1 Introduction

In jury sports, such as gymnastics, the jury is supposed to objectively determine the out-
come of the game. In a study on home advantage for the Summer Olympic Games it was,
however, shown that jury sports experience a significant home advantage, in contrast to
sports which are based on objective measurements (Balmer et al., 2003). It seems that the
jury is actually making subjective decisions, despite their expert knowledge and all the
rubrics and directives that have been drafted in order to objectify their decision.

It is generally acknowledged that models in Earth and environmental sciences are af-
fected by several sources of uncertainty (Oreskes et al., 1994). Uncertainty can, for exam-
ple, stem from the randomness of natural processes (so-called aleatoric uncertainty), or
from an insufficient representation of the involved processes (epistemic uncertainty). The-
re is agreement that the model choice, basically the choice for a particular representa-
tion of the processes, affects the output and thus the results of the study, as shown by
numerous model inter-comparison studies (see e.g. Joussaume et al. (1999) on climate
modelling, Clark et al. (2015) on hydrological modelling, Freni et al. (2009) on urban storm
water modelling and Bennett et al. (2013) on benchmarking environmental models). The
modeller or expert acts as jury to determine the most appropriate model for the question
at hand (Crout et al., 2009), while model inter-comparison studies provide the modeller
with rubrics and directives to judge the model performance in a fair way. As such, the mo-
del choice can be justified based on expert knowledge and the rubrics and directives from
model inter-comparison studies. It should be noted, however, that expert knowledge is
actually a mixture of opinion and knowledge (Krueger et al., 2012). The opinion-part of
expert knowledge introduces subjectivity in the model choice, in the same way that the
gymnastics jury at the Olympic Games showed to cause home advantage: different ex-
perts could make different choices based on the same information. Furthermore, model
choice is only the first decision in a sequence of decisions a modeller has to make during
model configuration. The impact of those modelling decisions is currently overlooked in
most, if not all, model inter-comparison studies, and an assessment of their relative im-
portance is lacking.

Several studies in different research disciplines have shown that individual modelling de-
cisions during model configuration can have a large impact on model results. Cosgrove
et al. (2003), for example, showed how the length of the spin-up period affects NLDAS
simulations, illustrating the large effects that chosen spin-up periods can have on land
surface modelling. This study explicitly validates a spin-up modelling decision in the NL-
DAS project. Different model configurations are, however, not always identified as ‘mod-
elling decisions’, and the subjectivity of these decisions is hardly ever acknowledged. For
instance, Ettema et al. (2009) showed that 24% more annual precipitation over the Green-
land ice sheet was obtained from a high-resolution regional climate model (RCM) com-
pared to coarser resolution RCM output. Though it may depend on the available data
or the available computational resources, the spatial resolution of the model is often a
choice of the modeller. Neal et al. (2010) compared three parallelization methods to mo-
del 2D flood inundations, where each method - i.e. modelling decision - had particular
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drawbacks. Neither Ettema et al. (2009) nor Neal et al. (2010) explicitly discuss their re-
sults as modelling decisions.

Some sources of uncertainty, for example concerning model choice (model inter-compari-
son studies) or “optimal” model parameters (calibration studies), have been scrutinized
in detail, whereas other sources of uncertainty, such as modelling decisions during mo-
del configuration, received considerably less attention or are not recognized as such, al-
though they might have an equally relevant impact on the model results. A possible ex-
planation can be that the uncertainty caused by modelling decisions is introduced before
the first model calculations start, making it difficult to quantify this source of uncertainty.
We note, however, a slowly growing interest in describing and comprehending modelling
decisions and their impact on model output, for example in the fields of water resources
(Maier and Dandy, 2000) and hydrology (Clark and Kavetski, 2010; Kavetski and Clark, 2010;
Clark et al., 2011a; Mendoza et al., 2015a,b; Fenicia et al., 2016). The attention for this topic in
the hydrologic sciences is a logical extension of the ambition to improve realism in hydro-
logical models (e.g. McDonnell et al., 2007; Clark et al., 2016a), which are generally known
for their conceptual nature, especially compared to other environmental sciences such
as meteorology and oceanography.

In this Chapter, we argue that the choice for a particular model is only one of several mod-
elling decisions, and we illustrate the importance of modelling decisions during model
configuration through an example from hydrology. In particular, we investigate the im-
pacts of four modelling decisions on the simulation of hydrological extremes (floods and
drought). The aim is to demonstrate the impact of multiple modelling decisions on mo-
del results, and to raise awareness to recognize the uncertainty introduced by modelling
decisions. Novel in this Chapter is that we systematically investigate and quantify the
statistical significance of multiple modelling decisions.

5.2 Modelling decisions in hydrology
The sources of uncertainty in hydrological modelling have been a grateful inspiration for
an abundance of scientific literature (e.g. Wagener and Gupta, 2005; Liu and Gupta, 2007),
and have led to methods to estimate and quantify uncertainty (among others Beven and
Binley, 1992; Vrugt and Sadegh, 2013). Vrugt and Sadegh (2013) developed a Bayesian evalu-
ation framework that explicitly recognizes six different sources of uncertainty (parame-
ters, forcing, initial state, model structure, output, and new states), as shown in the rect-
angle in Figure 5.1. Hydrological modelling, however, is surrounded by modelling deci-
sions, as shown in the ellipse in Figure 5.1 and discussed in Clark et al. (2011a, 2015). These
modelling decisions do not only introduce uncertainty not incorporated in the Bayesian
evaluation framework in Figure 5.1, they also influence the uncertainty estimated with
the developed framework. For example, they determine the prior in a Bayesian frame-
work, or parameter uncertainty as affected by the parameter boundaries.

Many modelling decisions are relevant during the process (sometimes called ‘the art’)
of modelling. In this Chapter we focus on four modelling decisions for which the scien-
tific literature provides ambiguous advice to the hydrological modeller: the spatial res-
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Figure 5.1: Bayesian model evaluation framework for a hydrological model, based on Figure 1 of
Vrugt and Sadegh (2013), which explicitly recognizes uncertainty in parameters, forcing data,
initial state, model structure, output and model state. The Bayesian framework is surrounded
by decisions that a modeller has to make during model configuration. Note that the modelling
decisions in this figure are non-exhaustive. The modelling decisions discussed in this Chapter are
highlighted in red.

olution, the spatial representation of the forcing, the calibration period, and the perfor-
mance metric. We recognize that, since we focus on only four modelling decisions, the
results of our study will be impacted by many other modelling decisions that we made
during model configuration. This is further discussed in Section 5.5.

Spatial resolution

An important decision that modellers make when setting up a distributed hydrological
model is the choice of the spatial resolution. This choice is often bounded by the available
data or the calculation time. Nowadays, both the availability of spatially distributed data
at high resolution and the computational power are increasing. This has lead to the call
for large-scale hyper-resolution hydrological modelling (Wood et al., 2011), which aims
to improve the physical realism of the models. Figure 7.3 illustrates that the spatial res-
olution at which the Variable Infiltration Capacity (VIC) model (Liang et al., 1994) is ap-
plied in the scientific literature has increased over the years. Several studies have inves-
tigated the effect of spatial resolution ( e.g. Haddeland et al., 2002; Liang et al., 2004; Troy
et al., 2008), but the reported results are ambiguous. Troy et al. (2008) for example, found
a high sensitivity of the optimal parameter values to the spatial resolution, whereas in
Chapter 4 exactly the opposite was found for the same model. In this study, we compare
three different spatial resolutions, ranging from the so-called hyper-resolution as advo-
cated by Wood et al. (2011) (1×1 km) to ‘regional scale’ hydrology (10×10 km) represent-
ing the finest test resolution of Troy et al. (2008), and an intermediate spatial resolution
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(5×5 km).

Spatial representation of forcing

Another important choice for distributed hydrological modelling is the spatial represen-
tation of the forcing data. In this Chapter, we explore the question: do we apply the forc-
ing in a lumped fashion over the basin, or in a distributed fashion? The choice of forcing
data is in many applications a matter of choice between existing datasets, whose spatial
resolution is already determined. One could select global data sets like WATCH or ERA-
Interim, which are available at 0.5◦ or 0.25◦ resolution worldwide. Otherwise one needs
to invest time and resources in high-resolution forcing data, e.g. obtained directly from
meteorological stations or weather radars. Several studies already compared predictive
accuracy and summary metrics for hydrological models fed with spatially distributed and
uniform forcing data, starting with Wilson et al. (1979), followed by e.g. Beven and Horn-
berger (1982); Obled et al. (1994); Nicótina et al. (2008); Zhao et al. (2013); Lobligeois et al.
(2014). None of the studies based on a large range of catchments (Zhao et al., 2013; Lobli-
geois et al., 2014) reported consistent results. The benefit of distributed data depends on
the spatial variability of rainfall in the region and at the time scale of interest, as pointed
out by Lobligeois et al. (2014). In the Thur, the basin where this study is conducted (see
Section 2.1), topography causes a high spatial variability in rainfall. Therefore, spatially
distributed forcing could potentially be of added value, although this could differ for the
flood (short time scale) and drought (long time scale) event. In this Chapter, we com-
pare uniformly applied (representing global datasets like WATCH and ERA-Interim) ver-
sus spatially distributed (representing gauge networks or radars) forcing datasets.

Calibration period

The choice of the calibration period is critical for studies where models are used to extrap-
olate observations in time, for example to investigate the effects of climate or land use
change. Future high or low flow events may be beyond the range of historically observed
events (Wagener et al., 2010), suggesting that parameter values obtained from calibration
on current day observations may not be the most suitable for a future climate. To mimic
this effect, several studies applied a differential split sample test (Klemeš, 1986b), in which
the calibration and validation period are significantly different in terms of precipitation
and flow regime (see e.g. Coron et al., 2012; Li et al., 2012; Merz et al., 2011). Coron et al.
(2012) showed that the effect of the chosen calibration period on average runoff volume
differed per catchment considered, and Li et al. (2012) concluded that some parameters
are more sensitive to that choice than others. Further, Merz et al. (2011) found that many
parameters which are assumed to be time-invariant are actually not. These considera-
tions make it extremely difficult for a modeller to decide on an appropriate calibration
period. In this Chapter we compare a high flow calibration period to a low flow calibra-
tion period (shown in Figure 5.3), thus applying the differential split sample test . Note,
however, that the length of the calibration period can also impact the modelling results
(see amongst others Vaze et al. (2010) and Chapter 3). This point is further discussed in
Section 5.5.
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Performance metric
The Nash-Sutcliffe Efficiency (NSE, Nash and Sutcliffe, 1970) is the most widely used per-
formance metric in hydrology, even though several caveats have been identified (Schaefli
and Gupta, 2007). Alternatives for the NSE have been proposed, for example the Kling-
Gupta Efficiency (KGE, Gupta et al., 2009), which consists of a correlation term, a bias
term, and a measure of relative variability (see Section 2.3). Since the call for a more
process-based evaluation of hydrological models (McDonnell et al., 2007; Gupta et al., 2008;
Clark et al., 2016a, and Chapter 7), hydrological signatures have become more popular as
performance metric. Hydrological signatures - e.g. the slope of the flow duration curve
- help in providing insights on how adequate process representations are (Sawicz et al.,
2011). In this study we compare the NSE(Q) and NSE(logQ), for floods and drought re-
spectively, with the KGE(Q).

5.3 Methods
This study has been conducted on the Thur basin (1703 km2) and its nine (nested) sub-
basins of various sizes. A description of these basins and the available data is provided
in Section 2.1. Because the sub-basins are nested, the ten basins are not completely in-
dependent. Five basins have upstream nested catchments: Frauenfeld, St.Gallen, Jon-
schwil, Halden, and the Thur (see Figure 2.4). An overview of the set-up of this study is
shown in Figure 5.2. The simulation period is 1 August 2002 – 31 August 2003, charac-
terized by three flood events in the Thur basin (August, September 2002) as well as the
severe 2003 drought (June, July, August 2003) as shown in Figure 5.3 and described in
Section 4.2. The rapid succession of these two contrasting hydrological events makes this
period very suitable for our analysis, because only a limited simulation period is required
to cover both extremes.
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(2 levels)
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(2 levels)

Objective function
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KGE NSE
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Figure 5.2: Flow chart of the methodology. Hydrological models were constructed and calibrated
to represent the different factors. Subsequently, response vectors were determined by obtaining
the error between modelled and observed (events indicated in Figure 5.3) for several flood and
drought characteristics, for the different factor-combinations. Finally, ANOVA was conducted
to test the significance of the factors on the response vector. The threshold for significance in the
ANOVA was set at 0.05.
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Figure 5.3: Hourly discharge in the Thur basin, with the calibration period and validation period
(flood and drought events) indicated. The numbers indicate the three flood events that have been
studied in more detail. Upper panels: The flow duration curve based on 39 years of hourly discharge
data (light grey). The dark grey dots indicate which part of the flow duration curve is covered in
the validation/calibration period.

Model and calibration
The model choice is probably one of the most important decisions a modeller makes. The
goal of this study, however, was to show the impact of modelling decisions during model
configuration, beyond the model choice. To illustrate this, the impact of modelling de-
cisions has been tested for one widely used hydrological model: the Variable Infiltration
Capacity model (see Section 2.2).

Three VIC models (version 4.1.2.i) were configured with different spatial resolutions (1×1
km, 5×5 km, 10×10 km). The model was run at an hourly time step (solving both the wa-
ter balance and the energy balance) for the period 1 May 2002 – 31 August 2003, where
the first three months were used as spin-up period. Figure 4.2 in Chapter 4 shows that
three months are enough to remove the effect of initial conditions (Figure 4.2). Total
runoff was routed through the channel network using the MizuRoute routine (Mizukami
et al., 2016) which is described in Section 2.2. Because drought events usually have a pro-
cess time scale in the order of weeks or months, they do not require to be evaluated at an
hourly resolution. Therefore, the model output has first been aggregated from an hourly
to a daily time step to analyse the drought event. Finally, six models were configured;
three different spatial resolutions, with two different spatial representations of forcing.

The models were run with a complete parameter sample (see Section 2.3). The seven
sampled parameters (Table 2.4) have been applied uniformly over the catchment, where-
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as the other soil- and land use parameters have been applied in a distributed fashion
(separate value for each grid cell) based on data provided by the Swiss Federal Institute
for Forest, Snow and Landscape Research (WSL, swisstopo license JA100118) and the Har-
monized World Soil Database (FAO et al., 2012), as described in Section 2.1). The use of a
complete parameter sample instead of a calibration algorithm allowed us to make a fair
comparison between the different model configurations, avoiding pitfalls like local min-
ima, sensitivity to starting values, or sensitivity to the calibration algorithm.

‘Calibration’ (selection of behavioural parameter sets) is performed by identifying the
best performing 1% (32 runs) of the 3,150 runs, based on the NSE(Q) for the flood events,
and the NSE(logQ) for the drought event. Because the calibration period is one of the
modelling decisions investigated, the best performing 32 runs have been determined
based on both the high flow and low flow calibration period (Figure 5.3). To test the ef-
fect of performance metric selection, the best performing runs based on KGE(Q) have
been determined next to the NSE(Q) and NSE(logQ) for the flood and drought event re-
spectively. An implication of our approach – i.e. to select the best performing 1% of the
runs rather than an objective-function-based threshold level – is that the selected runs
can have a relatively low model performance. We do not expect that this influences our
results to a significant extent, either positively or negatively, because we investigate the
sensitivity of several characteristics for modelling decisions, rather than evaluating the
model performance.

In total, six different model configurations were tested: three spatial resolutions and two
spatial representations of forcing (uniform, distributed), which have been calibrated on
two periods (a high flow calibration period from mid-September to mid-February, and a
low flow calibration period from mid-February to mid-July), with two objective functions
(NSE(Q) versus KGE(Q) for the flood events, and NSE(logQ) versus KGE(Q) for the drought
event).

Flood and drought characteristics
To investigate the effect of subjective modelling decisions on extreme hydrological events,
the error in flood and drought characteristics between observations and simulations were
investigated for different model configurations (Figure 5.2). The flood characteristics have
been validated for three flood events, and the drought characteristics have been vali-
dated for the drought event (Figure 5.3).

The three main characteristics of a flood event are the peak height, the timing, and the
volume (Lobligeois et al., 2014). For each behavioural model run, the peak error, timing
error and relative volume error compared to observations were computed. The peak error
(∆Qp) describes the difference between the maximum observed (Qpobs) and simulated
(Qpsim) discharges:

∆Qp = Qpsim −Q
p
obs, (5.1)

The timing error is defined as the difference, in hours, between the observed and the
modelled peak:

∆tp = t(Qpsim)− t(Qpobs), (5.2)
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where t(Qpsim) is the timing of the modelled peak and t(Qpobs) is the timing of the ob-
served peak. Both the peak error and the timing error are sensitive to small discharge
fluctuations. The Relative Volume Error (RVE) is the relative difference in total flow vol-
ume between observed and modelled discharge:

RVE =

∑
(Qsim −Qobs)∑

Qobs
, (5.3)

where
∑

(Qsim − Qobs) is the summation of the difference in the simulated (Qsim) and
observed (Qobs) discharge over all the time steps in the flood event. To determine the
beginning and the end of the flood event, an adapted version of the method of Lobligeois
et al. (2014) is used, which is based on a threshold levelQ0. The lowest (modelled) dis-
chargeQmin in four days before and four days after the observed discharge peak is de-
termined. Then the threshold level, based on the definedQmin is calculated:

Q0 = maxt−4,t+4(Qpobs · 0.25, Qmin + 0.05 · (Qpobs −Qmin)). (5.4)

The flood event starts as soon as the discharge exceeds threshold level Q0, and ends
when the discharge drops below Q0. With this definition, the flood event cannot start
earlier than four days before the observed peak discharge, and the end of the flood event
cannot be later than four days after the observed peak discharge (eight days in total). The
response times in our system are short (in terms of several hours up to one day for the
largest basin, the Thur) and therefore four days should be sufficient to capture the flood
event.

The error between simulations and observations for three specific drought characteris-
tics has been investigated (Figure 5.2). Drought duration and deficit are the two most
common characteristics for a drought event (Van Loon et al., 2014). However, drought du-
ration was difficult to determine because the drought event was occasionally interrupted
by short discharge peaks. For ecology and navigation, the minimum flow is a relevant
indicator, and therefore the error in minimum flow and the error in timing of the mini-
mum flow have been determined, in addition to the error in drought deficit. All errors in
drought characteristics have been computed using a daily time step. The error in mini-
mum flow ∆Qmin is defined as

∆Qmin = Qmin,sim −Qmin,obs, (5.5)

which is simply the difference between the lowest simulated discharge (Qmin,sim), and
the lowest observed discharge (Qmin,obs) during the drought event. The error in the tim-
ing of the minimum flow ∆tmin is defined in the same way as the timing error for the
peak flow events;

∆tmin = t(Qminsim )− t(Qminobs ). (5.6)

Here, t(Qminsim ) is the timing of the lowest simulated discharge, and t(Qminobs ) is the tim-
ing of the lowest observed discharge. In order to define drought deficit, first a variable
threshold level τ (Hisdal et al., 2004) for drought was defined. In this study, a drought
starts as the discharge drops below the lowest 10% (Q90) of the observations. The thresh-
old level was determined based on 39 years of daily observations, identifying the lowest
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10% of the discharge with a moving window of 31 days (15 days before and 15 days after
the date for which the threshold level is determined). Drought deficit is then defined as
the integral of the deviations (d) between the threshold level and the actual discharge
(Van Loon et al., 2014). The deviation is defined as:

d(t) =

{
τ(t)−Q(t) ifQ(t) < τ(t)

0 ifQ(t) ≥ τ(t).
(5.7)

The total deficitD for a drought is then defined as:

D =

T∑
t=1

d(t) ·∆t. (5.8)

The duration T of a drought is assumed to be the complete drought event. The error in
the drought deficit is the difference between the observed deficitDobs and the simulated
deficitDsim:

∆D = Dsim −Dobs. (5.9)

Analysis of variance
After computing the error in flood and drought characteristics for all the behavioural runs
and for the different model configurations as shown in Figure 5.2, Analysis of Variance
(ANOVA) was conducted (Ott and Longnecker, 2010). ANOVA allows to test the hypoth-
esis that the means of several groups (in this case, for example, the peak error obtained
with three different spatial resolutions) are drawn from the same normal distribution.
The ANOVA test provides the probability (from zero, zero probability, to one, certainty)
of this hypothesis. Analysis of Variance was conducted for four factors (the modelling
decisions), and has been applied to six response vectors (the errors in flood and drought
characteristics), as shown in Figure 5.2. If the probability p<0.05, the factor was assumed
to have significant impact on the response vector.

The aim of the study in this Chapter is to demonstrate that modelling decisions signifi-
cantly impact the simulation of hydrological extremes. This can directly be demonstrated
by evaluating if any of the investigated decisions significantly (p-value lower than 0.05)
impacts the error in any of the flood or drought characteristics. To investigate how per-
sistent the impact of the modelling decision is on the flood and drought characteristics,
the results of the ten investigated basins are compared. To get insight in the underlying
mechanisms causing the impact of subjective modelling decisions, it was also investi-
gated how the decisions impact the parameter distribution, using ANOVA.

5.4 Results

Flood characteristics
In this section we focus on three flood events (Figure 5.3). Figure 5.4 shows how the dif-
ferent model configurations impact the peak error (panel a), timing error (panel d), and
relative volume error (panel g) for the three flood events in the Thur basin. Although the
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magnitude of the error differs per event, the relative difference between the configura-
tions is more or less stable over the events, except for the timing error. Figure 5.4 also
shows to what extent the impact of modelling decisions on the error in characteristics of
the three flood events is significant, using ANOVA (panels c, f and i).

Figure 5.4c shows that the peak error for all basins and for all three flood events is signifi-
cantly affected by the spatial representation of the forcing, the calibration period and the
performance metric. Resolution plays a significant role in some basins for some events.
The impact of the four investigated modelling decisions on the timing error (Figure 5.4f)
is less clear. The spatial representation of the forcing affects many basins for the first and
second event, but for the third event the calibration period impacts more basins signifi-
cantly. The performance metric significantly affects the timing error in at least six basins.
The relative volume error (Figure 5.4i) is mainly impacted by the performance metric, fol-
lowed by the spatial representation of the forcing and the calibration period. Spatial res-
olution has considerable effects on the relative volume error only in the smaller basins.
The simulated flood events are mainly affected by the performance metric, followed by
the calibration period and the spatial representation of the forcing, respectively. The spa-
tial resolution plays a minor role. The flood peak is the characteristic most affected by
subjective modelling decisions. A summary of the results is given in Table 5.1.

Drought characteristics

Figure 5.4 shows how the different model configurations affect the error in minimum
flow (panel b), timing error (panel e) and deficit error (panel h) in the Thur basin. The
results show that the calibration period has a large impact on the error in drought charac-
teristics. Figure 5.4c shows that in all basins the calibration period significantly impacts
the error in the minimum flow. The spatial representation of the forcing is important
for the error in the minimum flow in four basins, and the spatial resolution only in one
basin. Using the performance metric KGE(Q) as opposed to NSE(logQ) significantly af-
fects the error in minimum flow in seven out of ten basins. For the timing error in the
minimum flow we recognize the same pattern as for the timing error in the peak flow
(Figure 5.4f); the impact of the modelling decisions on the timing error does not show a
consistent pattern over the ten basins, although the calibration period has a significant
impact in all basins. The spatial resolution and the performance metric show to be im-
portant in at least six basins. For the deficit error (Figure 5.4i), the choice of the calibra-
tion period seems to be the most important decision, with a significant impact in eight
out of ten basins. The spatial representation of the forcing and the performance metric
significantly affects the deficit error in five basins. Spatial resolution significantly affects
the deficit error in only four basins. These results show that the drought characteristics
are mainly affected by the calibration period, followed by the performance metric, the
spatial resolution and the spatial representation of the forcing. The summary in Table
5.1 reveals that the timing error in the minimum flow experiences most impact from the
investigated subjective modelling decisions.
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Figure 5.4: The impact of the investigated modelling decisions on the error in the three flood char-
acteristics (peak error, timing error, Relative Volume Error) and the three drought characteristics
(error in minimum flow, timing error in minimum flow, and deficit). Panel a, d, g: The distribu-
tion of the behavioural sets (best 1% expressed in NSE(Q)) for the error in flood characteristics for
three flood events in the Thur (1×1 km resolution). Panels b, e, h: The distribution of the behaviou-
ral sets (best 1% expressed in NSE(logQ)) for the error in drought characteristics for the drought
event in the Thur (1×1 km resolution). The dashed line indicates the optimum (no difference be-
tween modelled and observed). The grey boxes show the distribution of the complete parameter
sample. For clarity, the impact of spatial resolution and performance metric are not shown. Panel
c, f, i: ANOVA p-value of the impact of Resolution (R), Forcing (F), Calibration period (C), and per-
formance Metric (M) on the error in flood and drought characteristics, for the 10 basins. The basins
are ordered from small to large.
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Table 5.1: Number of catchments (out of 10 in total) for which the modelling decisions (spatial
resolution R, spatial representation of forcing F, calibration period C, and performance metric M)
significantly impact the error in flood and drought characteristics (p<0.05). For the error in flood
characteristics, the average for the three flood events is given.

Characteristic R F C M Average

Peak error 3 10 10 10 8.3
Timing error 4.3 7.3 7 8 6.7
Relative volume error 1.3 6 8.7 9 6.3

Average for flood characteristics 2.9 7.8 8.6 9

Error in min. flow 1 4 10 6 5.3
Timing error in min. flow 8 2 10 6 6.5
Deficit error 4 5 8 5 5.5

Average for drought characteristics 4.4 3.7 9.3 5.7

Impact on parameter distribution
Table 5.2 provides an overview of the percentage of basins for which the distribution of
the sampled parameters (Table 2.4) was significantly affected by any of the four mod-
elling decisions, using ANOVA. For the flood events, spatial resolution had the lowest im-
pact on the parameter distribution. Most basins and most parameters were affected by
the calibration period, followed by the performance metric. The most affected parame-
ters are the Depth1, the depth of soil layer 1, andC , the velocity parameter of the routing
scheme.

For the drought event, calibration period is by far the most important modelling deci-
sion that determines the parameter distribution. At a distance, this is followed by the
performance metric. Especially the infiltration shape parameter, bi, and the parameter
describing the base flow relation, ds are affected by the modelling decisions.

It is interesting to note that the affected parameters differ for flood and drought events.
For the flood events, mainly the parameters impacting the response time are influenced
by the modelling decisions, whereas for the drought event the infiltration and base flow
parameter are mostly affected by the decisions. For drought, the calibration period is by
far the most important decision, whereas spatial resolution only plays a very minor role.
For floods the calibration period is most important, followed closely by the performance
metric, and the spatial representation of the forcing.

5.5 Discussion
The main point of this Chapter was to demonstrate that subjective modelling decisions,
beyond the model choice, affect the simulation of hydrological extremes. Some of the re-
sults can be hydrologically explained. An example is the limited impact of the spatial rep-
resentation of the forcing on the error in drought characteristics. A hydrological drought
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Table 5.2: Number of catchments (out of 10 in total) for which the parameters were significantly
(p<0.05) affected by spatial resolution R, spatial representation of forcing F, calibration period
C, and performance metric M. For the flood characteristics, NSE(Q) on an hourly time step is used
as objective function. To investigate the effect of the performance metric M, NSE(Q) is compared
with KGE(Q) on an hourly time step. For the drought characteristics, NSE(logQ) on a daily time
step is used as objective function. The effect of the performance metric M is investigated by com-
paring NSE(logQ) with KGE(Q) on a daily time step.

NSE(Q) (h) NSE(logQ) (d)

Parameter R F C M R F C M

bi 2 7 9 4 0 5 8 8
ds 4 8 5 5 3 5 8 8
dm 2 5 7 5 0 3 10 5
expt1 1 2 9 6 2 3 8 4
Depth1 2 7 7 9 1 4 8 6
C 3 5 8 9 0 5 6 5
D 0 2 3 8 0 3 7 4

is mostly caused by lack of precipitation. When little or no precipitation is falling, the spa-
tial resolution of the precipitation data is not relevant since it will remain (nearly) zero
throughout the catchment. Although it is not the purpose of this paper to hydrologically
explain the results, we would like to stress that some modelling decisions are more logi-
cal than others.

We also want to note that the results of this study depend on model decisions that we,
as modellers, made for the experimental set-up. We only investigated the effect of four
modelling decisions, although many more decisions were made while setting up our ex-
periments. Clear examples of these decisions are the uniform application of the sampled
parameters, the length of the calibration period, and the selection of the best 1% of the
model runs as ‘behavioural’. Furthermore, we also made important decisions on the pa-
rameters included in the sensitivity analysis, their boundaries and the sampling strategy
adopted (Section 2.3).

The uniform application of the sampled parameters can decrease the effect of spatial res-
olution. Most likely, the spatial resolution will become a more important modelling de-
cision when the sampled parameters are applied in a distributed fashion. A randomly
distributed sample would, however, be a heavy computational burden. One potential
approach is the use of spatial regularization methods, where transfer functions are for-
mulated to relate the model parameters to physical characteristics (e.g. Samaniego et al.,
2010). With this method, spatially distributed parameters can be sampled by perturbing
the coefficient of the transfer function. However, no pedo-transfer functions have been
identified yet for the VIC model.
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Figure 5.5: ANOVA p-value versus length of the calibration period (left panels) and size of the sam-
ple selected as ‘behavioural’ (right panels) for the four investigated modelling decisions. For clarity,
only the results for the Thur basin are shown, and for the error in flood characteristics only the re-
sults for Flood event 1 (see Figure 5.3).
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The length of the calibration period was fixed to five months. For the Rietholzbach catch-
ment this was shown to be a sufficient period to obtain stable parameters (Chapter 3).
Obviously, a shorter calibration period would lead to different model results. Therefore,
the analysis as shown in Figure 5.2 has been repeated with five different calibration pe-
riods; the initial five months, each time shortened with one month up to a calibration
period of one month only. The different calibration periods have been obtained by de-
creasing the period each time with 15 days at the beginning of the period and 15 days at
the end of the period. Figure 5.5 shows that the investigated modelling decisions still
have significant impact on the error in characteristics of the hydrological extremes for
a shorter calibration period. Most modelling decisions that have shown to significantly
impact the error in the characteristics based on a five-month calibration period, remain
significant for shorter calibration periods and vice versa. Vaze et al. (2010) showed that
model parameters are more resilient for climate change when they have been calibrated
using a period of 20 years or longer and the mean annual rainfall did not change by more
than 15% decrease or 20% increase. This implies that the impact of the choice of calibra-
tion period decreases when the length of the calibration period is increased. However,
our experimental set-up, with a large parameter sample, did not allow a very long cali-
bration period for computational reasons.

The selection of the best 1% of the sample as ‘behavioural’ is not so much a modelling
decision as it is a decision in the research set-up. To investigate the effect of this choice,
the analysis as shown in Figure 5.5 was repeated with 10 different sample sizes; 1% (the
initial size), and 10% up to 100% of the sample, each time increasing with 10%. Figure
5.5 shows that choosing a larger sample affects the results, but in most cases it increases
the significance level of the modelling decisions concerning the error in characteristics of
the extremes. The figure also shows that - as expected - the choices of calibration period
and performance metric approach p=1 (a very high probability that the two samples are
drawn from the same distribution, i.e. no significant difference between the two sam-
ples) when the complete sample (100%) is used as ‘behavioural’. In other words, when
the complete parameter sample is used, it becomes unimportant which period or met-
ric is used for calibration because essentially no calibration is performed. A remarkable
result is that the spatial resolution and the spatial representation of the forcing remain
important for the complete sample. They apparently impact the model output in such a
manner that the complete parameter sample changes significantly.

Given the caveats discussed above, the order of importance of the investigated modelling
decisions on hydrological extremes could change if other modelling decisions or exper-
imental configurations would be adopted. Nevertheless, the conclusion that subjective
modelling decisions significantly impact the simulation of hydrological extremes remains
valid.

5.6 Summary and conclusion
Computational models in Earth and environmental sciences have to deal with uncertainty,
which is partially augmented by subjective modelling decisions (e.g., model choice, per-
formance metric selection). The impact of model choice on model results is generally
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acknowledged, whereas the uncertainty introduced by modelling decisions during the
configuration of the model is often neglected. In this Chapter we showed, with an exam-
ple for hydrological extremes, that modelling decisions beyond the model choice, affect
model results significantly.

We investigated four modelling decisions (spatial resolution of the model, spatial repre-
sentation of the forcing data, calibration period, and performance metric) and examined
the impact of these decisions on the error in three flood characteristics and three drought
characteristics. Errors in flood characteristics were mainly affected by the performance
metric, followed by the calibration period, the spatial representation of the forcing, and
the spatial resolution of the model. The most important modelling decision for the er-
ror in drought characteristics was the calibration period, followed by the performance
metric, the spatial resolution, and the spatial representation of the forcing, respectively.
However, the impact of the investigated modelling decisions on hydrological extremes
differed from basin to basin, even though the compared basins had much in common
in terms of climate and land use. The results undeniably show that modelling decisions
impact the simulation of hydrological extremes. This is undesirable, because it implies
that the predicted severity of a hydrological extreme would depend on the (subjective)
decisions made by the modeller

For every model in Earth and environmental sciences, several decisions have to be made.
We should be aware of the large impact that these decisions have on the final model
results. Preferably, uncertainty introduced by subjective decisions should be excluded,
which is difficult as long as humans are involved in the modelling process. We specu-
late that the impact of subjective modelling decisions decreases with increasing realism
in Earth and environmental models. A first step to advance process understanding is to
get a better comprehension of the uncertainty introduced by adopting different mod-
elling decisions. This paper provides a compelling example on how to conduct such an as-
sessment for a specific hydrological application. Synthetic experiments might also have
a valuable contribution to our understanding of the sensitivity of simulations to mod-
elling decisions, although synthetic experiments in particular are dictated by modelling
decisions. Further, it is critical to constrain the spectrum of options (or hypotheses) for a
particular modelling decision based on the information that can be extracted from dif-
ferent data sources (e.g. Gupta et al., 2008), which provide additional knowledge on the
behaviour of environmental systems. Uncertainty associated to a particular modelling
decision can be characterized through multiple working hypotheses (Clark et al., 2011a),
carefully selected to avoid over-confident portrayals of environmental processes.
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Chapter 6

Uncertainty in the hydrological impact of
climate change

While hydrological projections are of vital importance, particularly for water infrastruc-
ture design and food production, they are also prone to different sources of uncertainty.
Using a multi-model set-up we investigated the uncertainty in hydrological projections
for the period 2070-2100 associated with the parameters of hydrological models, hydro-
logical model structure, and General Circulation Models (GCMs) needed to force the hy-
drological model, for 605 basins throughout the contiguous United States. We investi-
gated the sign of the projected change in mean annual runoff. The hydrological model
parameters influenced the sign of change in 5 to 34% of the basins, depending on the hy-
drological model and GCM forcing. The hydrological model structure led to uncertainty
in the sign of the change in 13 to 26% of the basins, depending on GCM forcing. This un-
certainty could largely be attributed to the conceptualization of snow processes in the
hydrological models. In 14% of the basins, none of the hydrological models was beha-
vioural, which could be related to catchments with high aridity and intermittent flow be-
haviour. In 41 to 69% of the basins, the sign of the change was uncertain due to GCM forc-
ing, which could be attributed to disagreement among the climate models regarding the
projected change in precipitation. The results demonstrate that even the sign of change
in mean annual runoff is highly uncertain in the majority of the investigated basins. If
we want to use hydrological projections for water management purposes, including the
design of water infrastructure, we clearly need to increase our understanding of climate
and hydrological processes and their feedbacks.

This chapter is based on: Melsen, L., N. Addor, N. Mizukami, A. Newman, P. Torfs, M. Clark, R. Uijlenhoet, and
R. Teuling, Deciphering (un)certainties in hydrologic projections, Sci. Rep., submitted.

95



Chapter 6. Sources of uncertainty

6.1 Introduction

A thorough understanding of the terrestrial part of the hydrological cycle is vitally impor-
tant to ensure water resource management meets the many demands for water: From
domestic, agricultural and industrial consumers (including hydro-power) and inland nav-
igation, to design of infrastructure to reduce the risk of flooding and drought. How con-
tinental water resources will be affected by climate change remains, however, uncertain
(Milly et al., 2005; Clark et al., 2016b). Hydrological projections are themselves prone to
uncertainty, as they are the result of a long chain of models, with each step along the
chain introducing uncertainty into the projection (Clark et al., 2016b).

Due to a lack of a closed system (Oreskes et al., 1994), models in the Earth sciences are all
subject to conceptualization; processes are neglected, simplified, or scaled up or down in
the model structure compared to the physical reality. This holds also true for hydrological
models. A result of this conceptuality is that the parameters of hydrological models need
to be constrained, which is critical for long-term projections exhibiting non-stationarity
(Milly et al., 2008; Wagener et al., 2010; Merz et al., 2011). The practice of using a single pa-
rameter set in hydrological models (e.g. Teutschbein et al., 2015) can profoundly affect the
conclusions drawn from the modelling exercise (Andréassian et al., 2009). The concep-
tuality in hydrological models also leads to sensitivity of the results to the choice of the
hydrological model; different conceptualizations lead to different results. Lastly, hydro-
logical models require meteorological input variables, so-called forcing. Long-term hy-
drological projections are therefore prone to the uncertainty in General Circulation Mo-
del (GCM) projections.

A clear demonstration of uncertainty introduced by hydrological model conceptualiza-
tion is the study of Sheffield et al. (2012) on global trends in drought. This study was con-
ducted in response to the results of Dai et al. (2004), who demonstrated that the surface
area experiencing severe agricultural drought has globally more than doubled since the
1970s. This conclusion was based on a water balance model where the evapotranspira-
tion was obtained using the empirical Thornthwaite equation, which only has tempera-
ture as a variable input (Seneviratne, 2012). This equation neglects the fact that the causal
link between drought and temperature can reverse; if no soil moisture is available for
evaporation, the sensible heat flux increases (Sheffield et al., 2012; Seneviratne, 2012). Fur-
thermore, other evaporation drivers such as wind speed and relative humidity are ne-
glected. Sheffield et al. (2012) compared the estimate of areas in agricultural drought ob-
tained using the Thornthwaite equation with the results obtained with the more physi-
cally founded Penman-Monteith equation, which does account for wind speed and rela-
tive humidity. It was demonstrated that, when using the Penman-Monteith formulation,
no strong increase in very dry areas is found. The representation of underlying (physical)
principles of hydrological processes in the hydrological model can thus have a profound
effect on the results and conclusion of a study.

Using a comprehensive multi-parameter multi-model multi-basin approach, we show
the role that parameters, hydrological model structure, and GCM choice plays in the un-

96



6.2. Methods

certainty of hydrological projections. Hereby, we focus on the sign of change in long term
mean annual runoff. We deliberately set the bar low because agreeing on the sign in the
mean is the first step in robust projections; all other relevant variables, such as peak flows
or drought (Roudier et al., 2016), are even harder to project, as they are related to runoff
variability rather than mean runoff. The large sample of basins employed in this study,
605, spread over the contiguous United States (CONUS, Newman et al., 2015) provides the
opportunity to study this uncertainty across a range of climate and catchment conditions,
and to attribute the uncertainty to particular hydrological processes (Gupta et al., 2014).

6.2 Methods
We apply three frequently used hydrological models, which were applied in a lumped
fashion to 605 basins throughout the contiguous United States (Newman et al., 2015): VIC
4.1.2h (Liang et al., 1994), SAC-SMA combined with SNOW-17 (Newman et al., 2015), and
the TUWmodel following the structure of HBV (Parajka et al., 2007). A short model de-
scription is provided in Section 2.2.

For each model, a representative set of parameters that capture the essential hydro-clima-
tological features was identified. By using a selection of representative parameter sets,
essentially a GLUE-based approach (Beven and Binley, 1992), we indirectly account for un-
certainty in the observed forcing and validation data. For each model, a large range of pa-
rameters was sampled using a Sobol’-based Latin Hypercube sample: 17 parameters for
VIC (Demaria et al., 2007; Chaney et al., 2015; Mendoza et al., 2015c), 18 parameters for SAC
(Newman et al., 2015; Lhomme, 1997), and 15 for HBV(Parajka et al., 2007; Uhlenbrook et al.,
1999; Abebe et al., 2010). Physically realistic parameter boundaries were determined, bas-
ed on the literature: see Tables 6.1, 6.2, and 6.3. Each parameter was sampled 100 times,
plus 100 base runs with average parameter values. This implies that for each of the 605
basins, SAC was run 1900 times, VIC 1800 times, and HBV 1600 times. The hydrological
models were forced with daily Daymet observed meteorological variables and the mo-
del output from the different parameter sets was compared with daily USGS observed
discharges over a 23 year period (1985–2008). The period 1980–1985 was used as spin-up
for the model. The parameter sets were considered behavioural as soon as they fulfilled
a criterion that minimizes the Euclidean distance between observations and simulations
for three components: the correlation, the relative variability, and the relative bias (KGE,
Gupta et al., 2009, see Eq.2.11). The parameter sets needed to result in a KGE of at least 0.5
with a daily time step over 23 years in order to be considered behavioural, see Figure 6.1a.
If none of the parameter sets fulfilled the performance criterion, the hydrological model
structure was considered non-behavioural.

The constrained hydrological models were forced with statistically downscaled and bias
corrected GCM output for a historical (1980–2008) and future (2065–2100) period and
run with a daily time step (Figure 6.1b). The first five years were used as spin-up period
and ignored in the analysis. Five different climate models from the Coupled Model Inter-
comparison Project Phase 5 (CMIP5, RCP8.5) were employed: CNRM-CM5, IPSL-CM5A-
MR, CCSM4, MPI-ESM-MR, and INM-CM4. The five selected GCMs represent the differ-
ent families in the climate model genealogy (Knutti et al., 2013). From each family the
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1900 (see Section 6.2). Behavioural runs were identified based on the KGE(Q) on 23 years of daily
discharge data. b) The constrained model, i.e. the behavioural parameter sets, were forced with
GCM data for the historical period 1985-2008 and future period 2070-2100. For each run, the
mean annual runoff was determined for both periods. c) The change is defined as the difference
in mean annual runoff between the historical and future period, and determined per run. d) The
sign of the ensemble mean change is determined, as well as the agreement among the different
parameter sets on the sign of the ensemble mean change. The agreement is defined as the percent-
age of runs that project the same sign of change (positive change = increasing mean annual runoff,
negative change = decreasing mean annual runoff) as the ensemble mean change. Finally, the sign
of the ensemble mean change is compared for different combinations of hydrological models and
GCMs.
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6.2. Methods

member with the smallest bias in temperature and precipitation for the contiguous Uni-
ted States (Sheffield et al., 2013) was selected.

In order to test if the projected change in mean annual runoff was significant, a t-test was
applied, which compared the distribution in mean annual runoff over the behavioural
parameter sets for the historical period with the distribution in mean annual runoff over
the behavioural parameter sets for the future period (Figure 6.1b). The threshold in order
to be qualified as significant was p<0.05. In order to apply the t-test, we set a pragmatic
lower boundary of at least 10 parameter sets that needed to be behavioural. For VIC, SAC,
and HBV, 0.5, 0.8, and 0.7% of the basins, respectively, had less than 10 but at least 1 be-
havioural parameter set. In these basins, the significance of the projected change could
not be tested. The intention was to exclude the basins with a non-significant change from
the analysis, following the approach of Knutti and Sedláček (2013) where agreement and
significance are combined in a robustness metric. However, it turned out that none of the
basins experienced a consistent non-significant change over different hydrological mo-
dels and GCMs. Therefore none of the basins was excluded.

To determine the change in annual runoff for a basin, the simulated mean annual runoff
over the period 1985–2008 was compared with the simulated mean annual runoff over
the period 2070–2100 for each behavioural parameter set. The difference in mean an-
nual runoff between both periods is the projected change (Figure 6.1c). The ensemble
mean change was then determined as the mean change in annual modelled runoff for
all the behavioural parameter sets (Figure 6.1d). In this study we particularly focus on the
sign of the ensemble mean change (i.e., an increase or decrease in mean annual runoff).

We relate the sign of change in mean annual runoff to three sources of uncertainty: hy-
drological model parameters, hydrological model structure, and climate forcing. To iden-
tify the uncertainty induced by the representative parameter sets, the agreement among
the representative set of parameters on the sign of the ensemble mean change was deter-
mined per basin (Figure 6.1d). To investigate the effect of hydrological model structure,
the sign of the ensemble mean change projected for the three different hydrological mo-
dels was compared per basin. To investigate the impact of the type of climate forcing on
hydrological projections, the sign of the ensemble mean change obtained by forcing the
same hydrological model with five different GCM outputs was compared.

Subsequently, the basins have been divided into three categories: basins in which the
three hydrological models agree on the sign of the change, basins where the three hy-
drological models disagree, and basins where the three hydrological models are non-
beha- vioural. For all basins, eight catchment and climate characteristics were identi-
fied. With a t-test, the climate and catchment characteristics for each category were com-
pared to the complete sample of basins, to identify which characteristics were signifi-
cantly (p<0.05) different for the three categories. To investigate the effect of the GCM,
the sign of the ensemble mean change from the same hydrological model forced with
five different GCMs, was compared. In this case, the basins were divided in two cate-
gories: basins where the model forced with different GCMs consistently agrees on the
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sign of the change and basins where the model output disagrees using different GCMs.
Subsequently, these categories have been related to four climate change characteristics
and tested on significance (p<0.05) using a t-test.

The VIC model was chosen as reference hydrological model because this model is widely
applied for climate impact assessments, and the CNRM-CM5 GCM was chosen as refer-
ence GCM because it was shown that this model has the lowest bias in CONUS (Sheffield
et al., 2013). We do, however, also discuss the results from the other hydrological model -
GCM combinations.

6.3 Results
Even when only considering behavioural hydrological model runs, there was disagree-
ment in 11% of the basins on the sign of change when the VIC model was forced with
CNRM-CM5 output. In these basins, some parameter sets lead to an increase in mean
annual runoff, while other parameter sets lead to a decrease in mean annual runoff in
the future. Figure 6.2a shows the spatial distribution of these basins. In the majority of
the basins (59%) there is unanimous agreement on the sign of the change. In 29% of the
basins no representative set of parameters could be identified, i.e., the hydrological mo-
del could not capture the hydrological behaviour of the basin and is therefore qualified
as non-behavioural. In 1% of the basins the change was not significant, or less than 10 pa-
rameters were identified as representative (see Section 6.2). The percentage of basins in
which there is unanimous agreement on the sign of change depends on the employed
hydrological model and the GCM (see Appendix Figure A.1). On average, VIC leads to
agreement in most basins (55% averaged over five GCMs), followed by SAC (46%), and
HBV (43%). HBV has the largest fraction of basins where the model was non-behavioural
(44%), compared to VIC (29%) and SAC (22%).

The sign of the change in mean annual runoff is also affected by the hydrological model
structure. The model structure leads to disagreement in 26% of the basins when the hy-
drological models are forced with CNRM-CM5 output. Figure 6.2b also shows the basins
in which there is agreement among the three employed hydrological models on the sign
of the change in mean annual runoff. In 46% of the basins, three or two (if one model was
non-behavioural) hydrological models agreed on the sign of the change. In 14% of the
basins two hydrological models were non-behavioural, such that a mutual model com-
parison was impossible. In the remaining 14% of the basins, none of the employed hy-
drological models was behavioural. The agreement among the hydrological models var-
ied for different GCMs (see Appendix Figure A.2). With CCSM4, the highest agreement
among hydrological models was established (in 59% of the basins), with INM-CM4 the
lowest agreement (45%).

The structure in the spatial distribution of the agreement among the hydrological mo-
dels, as demonstrated in Figure 6.2b, suggests a link with catchment and climate charac-
teristics. We compared several characteristics for three different agreement categories
(agreement, dark and light blue dots in Figure 6.2b; no agreement, orange and red dots
in Figure 6.2b; three models non-behavioural, black dots in Figure 6.2b). Figure 6.3 shows
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Figure 6.2: Distribution of uncertainty in the sign of change over the contiguous United States.
a) The agreement among the different model runs (representing different behavioural parameter
sets) of the VIC model on the sign of the ensemble mean change in mean annual runoff. The direc-
tion of the triangle-marker shows the sign of the ensemble mean change, the size of the marker
indicates the relative projected change. b) Agreement among the three different hydrological mo-
dels (all forced with CNRM-CM5) on the sign of the ensemble mean change. c) Agreement on the
sign of the ensemble mean change when the same hydrological model (VIC) is forced with data
from five different GCMs. 101
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the spatial distribution and summarizes the characteristics of the basins within each cat-
egory for the models forced with CNRM-CM5. In the next section, we only discuss the
characteristics which were consistently significantly different when the three hydrologi-
cal models were forced with different GCMs.

The basins in which the three hydrological models agree on the sign of the change (Fig-
ure 6.3a) experience a significantly lower projected temperature change compared to
all other basins. Furthermore, these basins have on average a lower aridity, less or no
dry periods, and a lower snow-day ratio. A logical explanation, namely that the basins
in which the models agree experience a significantly larger change in precipitation as
demonstrated in Figure 6.3b, was found not to be consistent among the five GCMs. The
basins in which the hydrological models disagree on the sign of the change (Figure 6.3c)
are characterized by a consistently higher slope and elevation, and related to that, a sig-
nificantly higher snow-day ratio (Figure 6.3d). Disagreement among the hydrological
models can thus be attributed to the conceptualization of snow accumulation and melt
processes. The basins in which none of the hydrological models was able to capture the
hydrological behaviour (Figure 6.3e) have a significantly higher aridity, and intermittent
stream flow behaviour (no-flow periods). This is related to basins with a larger area and
a lower slope (Figure 6.3f). These results imply that all models have difficulty in mim-
icking dry conditions, where the interplay between soil moisture and evapotranspiration
becomes important (Seneviratne et al., 2010). For the basins in Figure 6.3e, a significantly
lower change in precipitation is projected, consistent among the five GCMs.

Uncertainty in the sign of change introduced by the climate forcing shows to have im-
pact in the majority of the basins: In 60% of the basins different GCM forcing leads to a
different sign of change when the VIC model is employed. Figure 6.2c shows that only in
11% of the basins, the sign of the change is consistent when the same hydrological model
(VIC) is forced with different climate model outputs. In the remaining 29% of the basins,
the hydrological model was non-behavioural. When HBV is applied with five GCMs, 16%
of the basins show a consistent sign of change, for SAC only 8% (see Appendix Figure A.3).

Climate change characteristics can explain the (dis)agreement on the sign of the change
when the hydrological model is forced with five different GCMs. The spatial distribution
and the related climate change characteristics of two different categories (agreement,
dark blue dots in Figure 6.2c; disagreement, orange and red dots in Figure 6.2c) are shown
in Figure 6.4 for the VIC model. In the next section, we only discuss the characteristics
which were consistently significantly different among the three different hydrological
models when forced with five GCMs.

The basins with agreement on the sign of the change (Figure 6.4a) are characterized by
a significantly lower standard deviation in the projected change in precipitation (Figure
6.4b), i.e., the GCMs agree more on the projected change in precipitation. The basins in
which the models disagree on the sign of the change (Figure 6.4c) have a significantly
larger change in precipitation, a smaller change in temperature, a smaller standard de-
viation in temperature among the five GCMs, but a larger standard deviation in precipi-

102



6.3. Results

0

20

40

60

80

100

0

20

40

60

80

100

P
er

ce
nt

ag
e 

of
 b

as
in

s 
w

ith
in

 e
ac

h 
st

at
e

0

20

40

60

80

100

Significantly higher
Significantly lower

a. b.

c.

e.

d.

f.

m
ea

n 
ΔP

mean ΔT  no-flow                       

aridity

   
   

   
   

   
   

  
slo

pe

  area
  elevation

snow
-day

ratio

m
ea

n 
ΔP

mean ΔT  no-flow                       

aridity

   
   

   
   

   
   

  
slo

pe

  area
  elevation

snow
-day

ratio

m
ea

n 
ΔP

mean ΔT  no-flow                       

aridity

   
   

   
   

   
   

  
slo

pe
  area

  elevation

snow
-day

ratio

Figure 6.3: Distribution of the (dis)agreement in the sign of the ensemble mean change in mean
annual runoff among the three hydrological models, linked to catchment and climate character-
istics. The characteristics have been standardized from 0 to 1, where 0 represents the lowest value
of the characteristic for the three displayed groups, and 1 the highest value of the characteristics
for the three displayed groups. The hydrological models were forced with CNRM-CM5 data. a)
Spatial distribution of the basins in which the three hydrological models agree on the sign of the
ensemble mean change. b) Standardized catchment and climate characteristics for the basins in
panel a. c) Spatial distribution of the basins in which the three hydrological models disagree on
the sign of the ensemble mean change. d) Standardized catchment and climate characteristics for
the basins in panel c. e) Spatial distribution of the basins in which the hydrological models were
non-behavioural. f) Standardized catchment and climate characteristics for the basins in panel e.
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Figure 6.4: Distribution of the (dis)agreement in the sign of the ensemble mean change in mean
annual runoff when the same hydrological model is forced with data from five different GCMs,
linked to projected climate change characteristics. The climate change characteristics have been
standardized from 0 to 1, where 0 represents the lowest value of the characteristic among the two
displayed groups, and 1 the highest value of the characteristic among the two displayed groups.
The employed hydrological model is VIC. a) Spatial distribution of the basins in which the five out-
puts from the same hydrological model forced with five different GCMs agrees on the sign of the
ensemble mean change. b) Standardized climate characteristics for the basins in panel a. c) Spa-
tial distribution of the basins in which the hydrological model forced with five different GCMs dis-
agrees on the sign of the change. d) Standardized climate characteristics for the basins in panel
c.

tation among the five GCMs (Figure 6.4d). It may seem illogical that both the basins with
agreement (Figure 6.4a) and the basins with disagreement (Figure 6.4c) have a signifi-
cantly higher mean change in projected precipitation (Figure 6.4b,d), but this is because
the basins in each category have been compared to all other basins, including the basins
in which the hydrological model was non-behavioural. The results in Figure 6.4 show
that precipitation is the driving force for hydrological models, and that the disagreement
among GCMs regarding the change in precipitation introduces uncertainty in the hydro-
logical projection, more than temperature does.

6.4 Discussion
Uncertainty in the parameters of the hydrological models affected the sign of change in
5 to 34% of the basins, dependent on the employed hydrological model and climate forc-
ing. A more stringent criterion to identify representative parameter sets could decrease
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this uncertainty, but at the same time increases the number of basins in which the mo-
dels are non-behavioural. Another approach would be to constrain the hydrological mo-
dels on internal consistency, by using observations from different hydrological states and
fluxes (Koster et al., 2010; Rakovec et al., 2016).

Furthermore, this study revealed that hydrological model structure creates uncertainty in
the sign of the change in 13 to 26% of the basins, dependent on the GCM forcing. The rep-
resentation of snow processes in hydrological models is currently inadequate. The exact
mechanisms behind the impact on runoff of a precipitation shift from snow towards rain
are not yet well understood (Berghuijs et al., 2014). In 14% of the basins all three hydro-
logical models were non-behavioural, which was related to arid conditions and intermit-
tent stream flow behaviour. Our lack of understanding in these processes is of concern
particularly as aridity is expected to increase in the future (Berg et al., 2016). Improved
conceptualization of these processes is needed, which will probably entail scrutinizing
soil moisture - evapotranspiration feedbacks in detail (Roderick et al., 2015).

The largest source of uncertainty were the GCMs, influencing the sign of change in 41 to
69% of the basins dependent on the employed hydrological model. The large impact of
GCMs on the uncertainty is confirmed in many other studies, such as Addor et al. (2014).
The uncertainty could be attributed to disagreement among the GCMs regarding the pro-
jected precipitation. In order to improve the agreement on the sign of the change in mean
annual runoff, the disagreement in the projected precipitation among the GCMs needs
to be reduced. This is, however, not a trivial task (Knutti and Sedláček, 2013).

One could expect that uncertainty in the parameters is closely related to uncertainty in
the hydrological model structure. This is, however, not the case. Figure 6.5 provides an
overview of the investigated sources of uncertainty and their combined spatial distribu-
tion. Depending on which combination of hydrological model and GCM is employed, 0
to only 5% of the basins experience both uncertainty from the parameters and from the
hydrological model structure, and not from the climate model. The combination hydro-
logical model - GCM is more frequent (3 - 14%) and the combination parameter sets and
GCM is most frequent (3 - 19%). In 1 to 16% of the basins, all three factors lead to uncer-
tainty. It should be noted that several sources of uncertainty have not been considered
in this study, such as the statistical downscaling technique of the GCM output, and the
emission scenario. It has been shown that these factors also introduce uncertainty in hy-
drological projections (Gutmann et al., 2014; Addor et al., 2014), and therefore the uncer-
tainty in this study is likely even underestimated.

6.5 Conclusion
We demonstrated that robustness in hydrological projections is controlled by the param-
eters of hydrological models, the hydrological model structure, and the GCM forcing. This
being so, hydrological models should always be used with caution in climate change im-
pact studies (e.g. Van Vliet et al., 2012; Roudier et al., 2016). In most basins, even the sign
of the change in mean annual runoff is highly uncertain. We found that this uncertainty
is associated with snow and soil moisture evaporation processes dictated by the hydro-
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Figure 6.5: Distribution of the combined investigated sources of uncertainty. Spatial coverage is
obtained by determining a grid-based maximum likelihood: For each basin, the relevant sources
of uncertainty have been determined where CNRM-CM5 was used as reference model when the
three hydrological models were compared, and VIC was used as reference when the five climate
models were compared. Subsequently, for each grid cell with a size of 1×1◦, the most frequent
sources-of-uncertainty combination from the basins within that grid cell have been determined.

logical model, processes that have been recognized before as being essential for the en-
ergy balance (Lahoz and De Lannoy, 2014), and with (dis)agreement among GCMs regard-
ing the projected change in precipitation. Our study included many of the headwaters
of reservoirs that are currently used to store water for domestic supplies and irrigation,
for example the Delaware River that feeds the Pepacton reservoir, the main drinking wa-
ter reservoir for New York City. The compelling social relevance of these basins provides
a strong motivation to further enhance our understanding of climate and hydrological
processes and their interplay.
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Table 6.1: Selected parameters and their boundaries for the VIC model (see Section 2.2). Parame-
ter 1 to 7 were shown to be the most sensitive parameters based on Demaria et al. (2007); Chaney
et al. (2015) and Chapter 2. Parameter 8 to 14 were selected for their impact on snow and/or evap-
otranspiration processes. Parameter 15 - 17 are usually hard-coded in the VIC model, but were
shown to be highly sensitive in Mendoza et al. (2015c) and are therefore included in the sampling.
LB = lower boundary, UB = upper boundary.

Name Unit LB UB Description

1 bi - 10-5 0.4 Variable infiltration curve parameter
2 ds - 10-4 1.0 Fraction ofdm where non-linear base

flow starts
3 dm mm d-1 0.1 50 Maximum base flow
4 ws - 0.2 1.0 Fraction of maximum soil moisture

where non-linear base flow starts
5 expt1 - 4.0 30 Exponent of the Brooks-Corey rela-

tion layer 1
6 Depth1 m 0.1 3.0 Depth of soil layer 1
7 Depth2 m 0.1 3.0 Depth of soil layer 2
8 Tsmax

◦C 0.0 3.0 Max temperature where snowfall can
occur

9 Tsmin
◦C Tsmax-0.01 Tsmax-3.0 Min temperature where rainfall can

occur
10 SR - 5-5 0.5 Surface roughness of the snow pack
11 RZT1 - 0.5 2 Multiplication factor for rootzone

thickness layer 1
12 RZT2 - 0.5 2 Multiplication factor for rootzone

thickness layer 2
13 RZT3 - 0.5 2 Multiplication factor for rootzone

thickness layer 3
14 Rmin - 0.1 10 Multiplication factor for minimum

stomatal resistance of the vegetation
15 newalb - 0.7 0.99 New snow albedo
16 albaa - 0.88 0.99 Base in snow albedo function for ac-

cumulation
17 albtha - 0.66 0.98 Base in snow albedo function for melt
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Table 6.2: Selected parameters and their boundaries for the SAC model (see Section 2.2). The pa-
rameter boundaries are based on Newman et al. (2015), the Priestley-Taylor parameter (number
18) has been adapted based on Lhomme (1997). LB = lower boundary, UB = upper boundary.

Name Unit LB UB Description

1 MFAX mm ◦C-1 6h-1 0.8 3.0 Max melt factor
2 MFMIN mm ◦C-1 6h-1 0.01 0.79 Min melt factor
3 UADJ km 6h-1 0.01 0.40 Wind adjustment factor for rain on

snow
4 SI mm 1.0 3500 snow water equivalent for 100%

snow area
5 SCF - 0.1 5.0 Undercatch correction factor
6 PXTEMP ◦C -3.0 3.0 Temperature for rain/snow transition
7 UZTWM mm 1.0 800 Upper zone max storage of tension

water
8 UZFWM mm 1.0 800 Upper zone max storage of free water
9 LZTWM mm 1.0 800 Lower zone max storage of tension

water
10 LZFPM mm 1.0 800 Lower zone max storage of free water
11 LZFSM mm 1.0 1000 Lower zone max storage of secondary

free water
12 UZK d-1 0.1 0.7 Upper zone free water lateral deple-

tion rate
13 LZPK d-1 1-5 0.025 Lower zone primary free water deple-

tion rate
14 LZSK d-1 1-3 0.25 Lower zone secondary free water de-

pletion rate
15 ZPERC - 1.0 250 Max percolation rate
16 REXP - 0.0 6.0 Exponent of the percolation equation
17 PFREE - 0.0 1.0 Fraction percolating from the upper

to the lower zone
18 P-T - 1.0 1.74 Priestley-Taylor coefficient
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Table 6.3: Selected parameters and their boundaries for the HBV model (see Section 2.2). The
selected parameters are based on Parajka et al. (2007), the parameter boundaries have been
widened based on Uhlenbrook et al. (1999) and Abebe et al. (2010). The Priestley-Taylor parame-
ter (number 15) is based on Lhomme (1997). LB = lower boundary, UB = upper boundary.

Name Unit LB UB Description

1 SCF - 0.1 5.0 Snow correction factor
2 DDF mm ◦C-1 day-1 0.04 12 Degree day factor
3 Tr ◦C 0.0 3.0 Temperature above which precipita-

tion is rain
4 Ts ◦C Tr-0.01 Tr-3 Temperature below which precipita-

tion is snow
5 Tm ◦C -3.0 3.0 Temperature where melt starts
6 LP - 0.0 1.0 Evaporation reduction threshold
7 FC mm 0.0 2000 Max soil moisture storage
8 BETA - 0.0 20 Non-linear shape coefficient
9 K0 d 0.0 2.0 Storage coefficient of very fast re-

sponse
10 K1 d 2.0 30 Storage coefficient of fast response
11 K2 d 30 250 Storage coefficient of slow response
12 L mm 0.0 100 Reservoir threshold
13 PERC mm d-1 0.0 100 Percolation rate
14 BMAX d 0.0 30 Max base flow of low flows
15 P-T - 1.0 1.74 Priestley-Taylor coefficient
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Chapter 7

Model evaluation: spatio-temporal
scales

A meta-analysis on 192 peer-reviewed articles reporting on applications of the Variable
Infiltration Capacity (VIC) model in a distributed way reveals that the spatial resolution
at which the model is applied has increased over the years, while the calibration and val-
idation time interval has remained unchanged. We argue that the calibration and vali-
dation time interval should keep pace with the increase in spatial resolution in order to
resolve the processes that are relevant at the applied spatial resolution. We identified
six time concepts in hydrological models, which all impact the model results and conclu-
sions. Process-based model evaluation is particularly relevant when models are applied
at hyper-resolution, where stakeholders expect credible results both at a high spatial and
temporal resolution.

This chapter is based on: Melsen, L., A. Teuling, P. Torfs, R. Uijlenhoet, N. Mizukami, and M. Clark (2016), HESS
opinions: The need for process-based evaluation of large-domain hyper-resolution models, Hydrol. Earth Syst.
Sc., 20, 1069-1079, doi: 10.5194/hess-20-1069-2016.
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7.1 Introduction

One of the famous paradoxes of the Greek philosopher Zeno of Elea (∼450 BC) concerns
a shot arrow (Fearn, 2001): If one shoots an arrow, and cuts its motion into such small time steps
that at every step the arrow is standing still, the arrow is motionless, because a concatenation of
non-moving pieces cannot create motion. Only ages later, this reasoning could be refuted by
the invention of integral and differential calculus by Newton and Leibniz (Stillwell, 1989),
accepting infinitely small rates of change. Motion is a change of location over time, thus
motion links time and space.

In hydrology, it is essential to understand and predict the motion of water within the
Earth system, which implies that both space and time have to be considered. In hydro-
logical models space can be accounted for by using distributed (spatially explicit) mo-
dels, where space is ‘cut in small pieces’, to paraphrase Zeno. Different types of distributed
hydrological models exist; Todini (1988) distinguished roughly two different classes. The
first class consists of distributed differential models. These models explicitly simulate
lateral fluxes by means of differential equations. The second class are the distributed in-
tegral models which consist of one-dimensional columns and ignore lateral fluxes be-
tween the columns (lateral fluxes can be accounted for with an extra routing scheme, as
for example applied in Chapter 4, although this does not allow for lateral re-distribution).
These models have a wide application in land-surface modelling (Clark et al., 2015). In this
discussion we focus on the latter.

The constant development in computational power, the increased understanding of phys-
ical processes, and the increased availability of high spatial resolution hydrological in-
formation stimulated the development of increasingly complex and distributed hydro-
logical models (Boyle et al., 2001; Liu and Gupta, 2007). Increasing the spatial resolution
of Global Hydrological Models (GHMs) has been labelled as one of the current ‘Grand
Challenges’ in hydrology by Wood et al. (2011) and Bierkens et al. (2015), who call for global
modelling at the so-called spatial hyper-resolution (∼1 km and smaller). Arguably, there
is a growing societal need for hydrological information at the (sub-)km scale. Whereas
model products at the 1◦ or 0.5◦ resolution may provide relevant information for pol-
icy makers at the (inter)national level, hyper-resolution results will become relevant for
local water managers or even individual farmers (see e.g. Bastiaanssen et al., 2007). The
challenge is not to simply provide information based on a model with default parame-
ters, but to provide credible information which matches the actual situation in the field
at a temporal resolution which is consistent with the spatial resolution of the model. The
temporal and spatial scales are linked through the characteristic speed (including both
velocity and celerity as discussed in McDonnell and Beven, 2014) of the involved hydrologi-
cal processes (Blöschl and Sivapalan, 1995), the so-called process scale. Figure 7.1 shows that
there is a general tendency for the temporal process scale to decrease with the spatial
process scale, although there is quite a broad bandwidth and local changes might occur
stepwise. Policy makers might be able to deal with model products at a monthly reso-
lution, whereas resource managers and farmers expect, at the spatial hyper-resolution,
credible model products with a daily or hourly resolution.
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Figure 7.1: The time and space scales of several hydro-meteorological processes. Adapted from
Brutsaert (2005) and Blöschl and Sivapalan (1995), who based it on Orlanski (1975); Dunne
(1978); Fortak (1982); Anderson and Burt (1990). The blue areas indicate the temporal and spatial
resolution at which the VIC model has been applied, when it was initially developed (A) and nowa-
days (B). The dashed arrow pointing downwards shows the ambitions of spatial hyper-resolution
modelling, whereas the dashed arrow pointing towards (C) shows the temporal and spatial res-
olution of hyper-resolution modelling if it would follow the direction of characteristic velocity of
hydro-meteorological processes.

Although increasing the resolution of hydrological models is claimed to provide the op-
portunity to improve physical process representation in hydrological models (Bierkens
et al., 2015; Bierkens, 2015), as discussed in Chapter 4, almost every hydrological model re-
quires calibration of the model parameters (Beven, 2012). Models can contain conceptual
parameters, which have no directly measurable physical meaning and thus need calibra-
tion. In addition, the measurement scale of parameters which do have a physical mean-
ing often differs from the model scale, making calibration necessary to determine the ef-
fective parameter values to account for sub-grid variability (Kim and Stricker, 1996). Beven
and Cloke (2012) responded to the hyper-resolution challenge by emphasizing that the
focus of hydrological modelling should be on determining and accounting for epistemic
uncertainty and appropriate parameterizations at different spatial resolutions, rather
than on maximizing the spatial resolution. Increasing the spatial resolution of the mo-
del (towards hyper-resolution) is not a solution to sub-grid variability, since many of the
relevant processes take place on even smaller scales (Wood et al., 1992; Kim and Stricker,
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1996; Arora et al., 2001; Montaldo and Albertson, 2003; Beven and Cloke, 2012; Clark et al.,
2015). Hence, despite their increasing spatial resolution, also GHMs require calibration
in order to obtain effective parameters, and validation to determine model credibility.
Even if a correct physical representation of hydrological processes is impossible, the goal
of the model should be to mimic realism and hydrological processes as closely as possi-
ble (Wagener and Gupta, 2005; Kirchner, 2006; McDonnell et al., 2007). This implies that the
models should be subject to a process-based calibration and validation procedure (Gupta
et al., 1998, 2008; Clark et al., 2011b). Since different hydrological processes dominate at
different scales (Figure 7.1), the temporal and spatial scale are linked. Because the spa-
tial resolution of GHMs is currently being increased to meet societal needs (Wood et al.,
2011), the temporal resolution should decrease accordingly to meet these needs. This
should be reflected in the calibration and validation time interval of the model, in order
to guarantee model credibility at the required temporal and spatial resolution.

7.2 Time scales
A short review of scientific literature about scaling issues provides the impression that the
focus has mostly been on the spatial scale and/or resolution rather than on its temporal
counterpart (Klemeš, 1983; Dooge, 1986; Gupta et al., 1986; Dooge, 1988; Feddes, 1995; Kalma
and Sivapalan, 1995; Sposito, 1998; Beven, 1995; Bierkens et al., 2000; Gentine et al., 2012).
Many concepts have been developed to describe representative areas and volumes (Gray
et al., 1993). In soil physics, the Representative Elementary Volume (REV) is an often used
concept which describes the volume for which a measurement can be considered repre-
sentative (Whitaker, 1999). Wood et al. (1988) explored a similar concept with applications
in hydrology, namely the Representative Elementary Area (REA), the critical area at which
the pattern of small-scale heterogeneity becomes unimportant. Reggiani et al. (1998) pro-
posed the Representative Elementary Watershed (REW), allowing closure of the balance
equations averaged over time and space. Similar concepts which statistically integrate
temporal variations have not been reported in the literature. The lack of attention for the
temporal scale is remarkable, because hydrological states and fluxes are mostly studied
as a function of time. As an illustration of the lack of attention for the aspects of temporal
scale, it should be noted that in the recent papers by Wood et al. (2011) and Bierkens et al.
(2015) on spatial hyper-resolution modelling, the temporal resolution of these models is
referred to only once. One of the reasons why the development of a Representative Ele-
mentary Timestep (RET) is more complex, is that several different time concepts play a
role in hydrological modelling.

As a guideline and first step for the discussion on time dimensions in hydrological mo-
dels, we identify six time concepts which in practice are often mixed up and misinter-
preted. A distinction is made between ‘scale’, which is defined as a continuous variable,
‘resolution’, defined as discrete variable being a model property, and ‘time interval’, which
is a discrete variable independent of the used model. The six concepts are:

1. The process time scale

2. The input resolution
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Figure 7.2: Application of the Green-Ampt infiltration scheme for different input resolutions (up-
per row), different numerical resolutions (middle row), and different output resolutions (lower
row). For each set-up, the model was fed with the same extreme precipitation event of 32 mm
of rain in 30 minutes (4 mm in the first 5 minutes, 5 mm in minutes 5-10, 7 mm in minutes 10-
20, 5 mm in minutes 20-25 and 4 mm in minutes 25-30). The model parameters have been kept
constant; saturated hydrologic conductivity Ks=0.044 cm/hr, initial volumetric soil moisture con-
tent θi=0.1, saturated volumetric soil moisture content θs=0.5, matric pressure at wetting front
Ψ=22.4 cm. Each of the three time concepts impacts the conclusions that are drawn from the
model results, which shows that calibration and validation at the appropriate time interval are
essential to resolve the processes taking place.
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3. The numerical resolution (“time step")

4. The output resolution (“temporal resolution")

5. The calibration/validation time interval

6. The interpretation time interval

Firstly, the process time scale is defined, as the characteristic time scale of the hydrologi-
cal process considered. This is the typical time period over which the process takes place.
Infiltration excess overland flow, for instance, has a relatively short time scale, whereas
regional groundwater flow has a longer time scale. The end-user determines which pro-
cess is most relevant in the modelling procedure.

Secondly, the temporal resolution of the input data or input resolution is relevant for the
modelled process. The input resolution of the forcing data can differ from the output res-
olution of the model, and this can impact the results of the model. An example is given
in the upper panels of Figure 7.2, showing an application of the Green-Ampt (Green and
Ampt, 1911) infiltration model.

The numerical resolution (or the “time step") of the model is the time interval over which
the model calculates the states and the fluxes internally. A model can only determinis-
tically resolve a process if the numerical resolution is higher than the characteristic time
scale of the process. The panels in the second row of Figure 7.2 show how the numeri-
cal resolution impacts model output for the process of ponding, which leads to different
conclusions about ponding, based on the model output.

The output resolution (often referred to as simply “temporal resolution”) is the time inter-
val at which the model output yields the states and fluxes. This time interval can be equal
to the numerical resolution of the model, or aggregated from the numerical resolution.
The modelled process can only be identified if the output time interval is shorter than the
characteristic time scale of the process, which is shown in the lower panels of Figure 7.2.

The calibration and validation time interval of the model is defined here as the time interval
at which the model output is being confronted with observations. Calibration and vali-
dation of the model output can be conducted at another time interval than the output
resolution, by aggregating the model output. Calibration and validation should be per-
formed at a time interval smaller than or equal to the time scale of the process that is
relevant for the end-user.

Finally, the interpretation time interval is defined as the time interval at which the model
output is eventually analysed or interpreted. This can be equal to the calibration time
interval, or the model output can be further aggregated resulting in a larger interpreta-
tion time interval (e.g. from daily to monthly). Since the model has not been validated
or calibrated on time intervals smaller than the calibration time interval, the credibility
of the results will be unknown for time interval smaller than the calibration time interval.
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It is critical to note that some of these time concepts are necessarily equal or larger than
related time concepts, sometimes for logical reasons (the output resolution cannot be
higher than the numerical resolution), sometimes for model credibility reasons (the in-
terpretation time interval should not be smaller than the calibration time interval). It
is also important to note that the first time concept, the process scale, explicitly links the
temporal and the spatial scale (Stommel, 1963; Blöschl and Sivapalan, 1995; Brutsaert, 2005).
Conversely, the spatial resolution of a model will set a minimum temporal resolution de-
termining which processes need to be resolved.

7.3 Example for VIC model studies
To illustrate the development of calibration/validation time interval and spatial resolu-
tion in large-domain hydrological modelling, we carried out a meta-analysis on the use
of GHMs. The Variable Infiltration Capacity (VIC) model (Liang et al., 1994) was chosen for
this analysis, because it is widely used and therefore enough studies were available for
a meta-analysis. The VIC model is mentioned explicitly in Bierkens et al. (2015) as a type
of model being run at the spatial hyper-resolution. Sub-grid variability is parameterized
as a distribution of responses without explicit treatment of the pattern. We believe this
model is representative for the much larger class of global hydrological models.

The VIC model was initially constructed to couple climate model output to hydrological
processes: it is capable of solving both the energy and the water balance, see the model
description in Section 2.2. Lohmann et al. (1996) developed a horizontal routing model
to couple the individual grid cells of the VIC model. This facilitated the distributed ap-
plication of VIC for rainfall-runoff processes at large domains. No explicit definition of a
spatial derivative or scale appears in the equations of the VIC model, the spatial resolu-
tion of the model only appears in the routing scheme through the horizontal flow velocity
(see Kampf and Burges (2007) for a description of space-time representation in other dis-
tributed hydrological models).

In our analysis we assembled 242 peer-reviewed studies that used the VIC model. Of
these, 192 studies used the model in a distributed way and performed a calibration or val-
idation on the model output. Figure 7.3 presents a space-time perspective on the applica-
tion of the VIC model during the past two decades. As expected, the spatial resolution at
which the model is applied has increased steadily over the years (Figure 7.3a). While the
model was initially constructed for spatial resolutions in the order of 0.5◦ to 2◦, it is now
mostly applied at 1/8◦ and smaller. The main driver for the increase in spatial resolution is
the availability of high-resolution spatial data-sets, like presented by Maurer et al. (2002).

This increase, however, does not apply to the employed calibration and validation time
interval. Figure 7.3b shows that the time interval at which the model has been calibrated
and validated has remained steady over the years. So, while the spatial resolution of the
model has increased, the model output is still calibrated and validated at the original
coarse time interval. Processes with a short time scale, which become more important
when the spatial resolution increases, will likely be overlooked during the calibration
and validation of the model if the time interval is too coarse. Chapter 4 already showed
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Figure 7.3: The year of publication versus the highest spatial resolution of the VIC model that was
used in the study (a), the smallest time interval on which the calibration and/or validation of the
VIC model was performed (b), and the total number of grid cells in the study (c) based on 192 peer-
reviewed studies. The grey lines in (c) show the slope of computational power increase according
to Moore's law (Moore, 1965). The point size is proportional to the number of studies that were
published in a certain year with a certain spatial resolution or calibration/validation time inter-
val. If the spatial resolution was given in kilometres, it was assumed that 1◦=100 km. For the
total number of grid cells, catchment size was divided by cell size, assuming that 1◦=100 km, un-
less the number of grid cells was explicitly given. To obtain the mean and the standard deviation,
both were calculated per year on the logarithmic scale and with linear regression a line was fitted
through these points. An overview of the publications used to produce this figure can be found in
Appendix Table B.1.
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that calibration on a coarser time interval does not guarantee credible results for shorter
time intervals (see also Kavetski et al., 2011; Littlewood and Croke, 2013). Figure 7.1 indi-
cates the initial development scale of the VIC model (‘A’), the scale where it is heading to
right now (‘B’), and the direction where it should go in order to resolve relevant hydro-
meteorological processes (‘C’). Therefore, the VIC model with a high spatial resolution
should be calibrated and/or validated at a time interval short enough to catch the pro-
cesses relevant at those particular spatial scales.

Two causes for the discrepancy in the joint development of spatial resolution and calibra-
tion time interval come to mind: lack of computational power, or a lack of (using) obser-
vations with a high temporal frequency. Figure 7.3c shows that the total number of grid
cells that was used in the studies has on average increased over time. This is as expected:
computational power has increased significantly over the years. According to Moore's law
(Moore, 1965), computational power roughly doubles every two years. The grey lines in
Figure 7.3c indicate the corresponding slope in computational power on a log-log scale.
The largest numbers of grid cells per year likely indicate the limit of technical capabil-
ity. Overall, the trend in the studies, even in the higher quantiles, is much lower than the
computational limit, suggesting that computational power is not a constraint for most
studies. This implies that, nowadays, the main constraint for calibration and validation
of distributed hydrological models at a certain time interval (Figure 7.3b) is not the com-
putational power, but the lack of (using) observations with a high temporal frequency.
A possible explanation for this may be that many (global) studies rely on data from the
Global Runoff Data Centre (GRDC), which are often available only at the monthly time
interval. Also important is that for large basins, the typical application scale of VIC and
other GHMs, flow is often regulated by dams for hydro-power and flood control. Natu-
ralized flows for these basins are often estimated at the monthly time interval. Our re-
sults reinforce the conclusion of Kirchner (2006) that field observations should account
for the spatial and temporal heterogeneity of hydro-meteorological processes, and the
statement from Kavetski et al. (2011) that in most cases, temporal resolution is fixed by
the data collection procedure.

7.4 Problem statement and outlook
The meta-analysis on VIC studies showed that the spatial resolution at which the model
is applied has increased over the years, while the calibration time interval has remained
steady (Figure 7.3). The examples are shown for the VIC model only, but we have the im-
pression that the obtained trends apply for all GHMs. There is a general tendency to move
towards higher spatial resolution in large-domain hydrological models (induced by e.g.
Wood et al., 2011; Bierkens et al., 2015), whereas the available data for calibration and vali-
dation are model independent.

Although coarse temporal resolution data can be used to constrain model uncertainty,
the ambition to move towards spatial hyper-resolution hydrological models with predic-
tive capabilities should keep pace with the data that are required to run, calibrate and
validate the models. Increasing the spatial resolution of the model implies modelling
different relevant hydro-meteorological processes, which in turn requires calibration and
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validation to be performed on a smaller time interval. It requires a community effort to
increase the availability of high temporal resolution data for calibration and validation
of large-domain hydrological models. Especially for large-domain studies, where data
collection from all the separate basins at different institutes and countries is very time
consuming (explaining the success of the GRDC), the data need to be gathered at and ac-
cessible from one point. It should also be recognized that discharge data only, especially
at a monthly time scale, do not provide sufficient information for a process-based mo-
del evaluation at the spatial hyper-resolution scale. Possible paths forward are the use of
tracer data to identify different flow paths (Tetzlaff et al., 2015), the use of multiple objec-
tives (Gupta et al., 1998), and the use of satellite and remote sensing data (Pan et al., 2008),
all at a representative spatial ánd temporal resolution.

We acknowledge that calibration and validation at the appropriate time interval is only
one of the many challenges of spatial hyper-resolution hydrological modelling. Even with
enough observations available for calibration and validation, disinformative data (Beven
and Westerberg, 2011), correct sub-grid parameterizations (Beven et al., 2015) and model
structural uncertainty (Clark et al., 2015) remain outstanding challenges. However, we
believe that all these challenges can only be tackled if the models are subject to critical
and process-based evaluation and validation (Gupta et al., 2008; Clark et al., 2011b). In the
end, the goal is to model hydrological processes in an appropriate way (Beven, 2006b; Mc-
Donnell et al., 2007).

Along with an increased spatial resolution of the model products, there will be a shift in
users’ expectations of those products. Whereas coarse-scale (0.5◦ to 1◦) products may
provide relevant information for policy makers at the national or state level, products at
the spatial hyper-resolution (0.1 to 1 km) are potentially of interest to a much wider range
of users, including for instance farmers that want to schedule their irrigation. At the sub-
kilometre scale, new processes such as infiltration excess overland flow and ponding can
(and should) be resolved, but at the same time these processes cannot be explicitly re-
solved at a daily or monthly time interval. Thus, the recent call for increasing the spa-
tial resolution of distributed hydrological models (Wood et al., 2011; Bierkens et al., 2015)
should not focus solely on the spatial resolution, but should aim to increase the evalu-
ation time interval simultaneously, at a balanced rate consistent with the characteristic
time and space scales of the relevant hydrological processes (Figure 7.1). We believe that
such a balanced approach will serve scientific and societal needs best.
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Chapter 8

Reflection on hydrological modelling
practice

This thesis provided an evaluation of several aspects of hydrological modelling practice.
The introduction discussed six separate steps in the modelling process (Beven, 2012) from
different perspectives (engineering, verificationism, falsificationism, Bayesianism). Sev-
eral steps have been dealt with in more detail in the subsequent chapters of this thesis.

8.1 Overview of findings and lessons learned
In Chapter 3, three parameter identification methods and their data requirements were
compared for a parsimonious two-parameter hydrological model. The three methods
were: automatic calibration (DREAM), recession analysis, and Boussinesq theory. Auto-
matic calibration and recession analysis had the same data requirements for the catch-
ment in which they were tested, namely 5 months of data. Both methods did, however,
come up with significantly different parameter values. With Boussinesq theory, a physics-
based method which allowed parameter estimation a-priori based on catchment charac-
teristics, the uncertainty in some physical characteristics caused the estimated range of
feasible parameters to be too wide to be of added value.

Chapter 4 dealt with the transferability (and thus sensitivity) of parameters across spa-
tial and temporal resolutions. It was shown that parameters were hardly sensitive to the
spatial resolution (a high transferability), while the parameters were very sensitive to the
temporal resolution (especially from hourly/daily to a monthly time step). The low sen-
sitivity to temporal resolution could be caused by the uniform application of the most
sensitive parameters: it was demonstrated, using several sub-catchments, that the spa-
tial variability was strongly underestimated. There are, however, currently no strategies
to apply the most sensitive parameters in a distributed fashion, because this is an ill-
posed problem. Possible paths forward are for example Multiscale Parameter Region-
alization (MPR, Kumar et al., 2013), but this first requires that a relation between physi-
cal catchment characteristics and model parameters is established, which is not a trivial
task. Hence, increasing the spatial resolution of the model does not automatically imply
that the spatial variability is better represented in the model.
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Chapter 5 showed that decisions during model configuration, basically subjective deci-
sions of the modeller, significantly impact the simulation of hydrological extremes. It is
argued that, although many modellers are aware of the impact of modelling decisions
on the model output, many studies, for example model inter-comparison studies, do not
yet explicitly incorporate this knowledge.

Chapter 6 demonstrated, for a large sample of catchments, that the uncertainty asso-
ciated with the parameters in hydrological models, the hydrological model choice, and
the GCM choice, is so large that even the sign (i.e., increase or decrease) of the projected
change in mean annual discharge is unknown in the majority of the investigated catch-
ments. This uncertainty could be attributed to the conceptualization of snow processes in
the hydrological models and disagreement among climate models regarding the change
in precipitation. Furthermore, it was demonstrated that processes related to aridity and
intermittent flow behaviour are not yet well captured in the investigated hydrological
models.

In Chapter 7 it is argued, based on a literature study of 192 peer-reviewed publications,
that the calibration and validation time interval should keep pace with the spatial res-
olution of the model. Different hydrological processes are relevant at different spatial
scales; the calibration and validation time interval should reflect the temporal scale of
these processes in order to estimate the credibility of the model.

Based on the conclusions of each chapter, three main findings can be identified:

• Not only the hydrological model choice (and thus the underlying theory), but also
the configuration of the model determines the outcome of the model as shown in
Chapter 3 for different calibration methods, in Chapter 5 for different performance
metrics and several other modelling decisions, and in Chapter 7 for different mod-
elling time steps. This finding puts all the results of this thesis into perspective.
Actually, Chapter 2 discusses a concatenation of subjective modelling decisions,
such as modelling choice, sampling methodology, used input data, etc., and the
results in this thesis depend on those modelling decisions.

• Sufficient data are needed to constrain and evaluate a hydrological model. Al-
though it is already quite a cliché to conclude this, Chapter 4 clearly demonstrated
this need. The unique advantage of a distributed model over a lumped model is
the spatial distribution of forcing and parameters, but we need ways to identify
the most sensitive parameters in a distributed fashion without ending up with an
ill-posed problem. The literature survey in Chapter 7 also provides a motivation
to improve data availability to stimulate more thorough model evaluation. Figure
8.1 illustrates that model complexity and data availability are related if we want to
increase our understanding of the hydrological system. As such, it is possible that
the approach adopted in Chapter 3, where we employ a very simple model with a
large amount of data, could add more information to our system understanding
than the more complex model employed in Chapter 7, where we hypothesise that
insufficient data is available to evaluate the model.
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Figure 8.1: The relative complexity of the hydrological models employed in this thesis (upper panel,
see also Figure 1.1) related to the required data availability in order to increase our understanding
of the system (lower panel). The numbers refer to the Chapters in this thesis. The lower panel is
adapted from Grayson and Blöschl (2000).
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• As a results of the above two findings, I conclude that the uncertainty in hydrologi-
cal modelling studies is large. Chapter 6 demonstrated that the uncertainty is even
so great, that in a climate impact study for the contiguous United States, it could
not even be determined whether the mean annual discharge would increase or
decrease as a result of climate change for a large part of the catchments. For me
this is a clear motivation to state that we should focus on a scientific approach - in-
creasing our understanding of the system - rather than an engineering approach
- applying our understanding -, because our current understanding on some top-
ics seems insufficient. The opinion that we should focus on understanding rather
than on predicting is shared by Gupta and Nearing (2014).

From the work presented in this thesis, several challenges become clear, which will be
discussed in the following sections.

8.2 Hydrological modelling: Growing our knowledge, testing
theories

In the introduction, it was argued that hydrologic science is too often mixed up with en-
gineering approaches. Furthermore, it was argued that the difference between science
and engineering in hydrological modelling can be larger or smaller, dependent on the
science philosophy one adopts. In principle, every researcher should have the freedom
to approach scientific questions in his or her own way. I do think, however, that falsifica-
tionism and Bayesianism stimulate the growth of scientific knowledge more than veri-
ficationism does. Verificationism, according to which confirming a model with observa-
tions is sufficient to perceive the model as an establishment of the ‘truth’, does not seem
to stimulate critical reflection on one's own findings, and increases the risk to mix up sci-
ence and engineering approaches. In a falsification framework, we would constantly try
to falsify the underlying theory of our model, and subsequently adapt or reject this the-
ory. In a Bayesian framework, we would continuously update the probability of a theory
to be true. I would therefore argue to have a more critical attitude towards our hydrolog-
ical models and embrace the falsification or Bayesian approach. A requirement for these
scientific approaches is to re-establish the connection between a theory (a hypothesis)
and a hydrological model.

It is challenging to disentangle the different theories in a hydrological model and to test
these theories, individually and combined, either in the laboratory or under natural con-
ditions. But it is necessary, to understand which processes are relevant where and when,
and which assumptions are justified where and when. Weiler and Beven (2015) wrote, in
their discussion if we need a Community Hydrological Model, that ‘there are too many mo-
dels in hydrology’. Generally, I think there cannot be enough models, because every mo-
del implies a different theory which we could test. What, however, is lacking is a general
overview or insight regarding the representation of the underlying processes to investi-
gate how the different hydrological models (and thus theories or combinations of theo-
ries) are related to each other, such as for example demonstrated with the model geneal-
ogy of Knutti et al. (2013) for climate models. This model genealogy was useful in Chapter
6 because it enabled us to estimate the uncertainty associated with the choice of climate
models by using only a sub-sample of all available models. Whereas Knutti et al. (2013)
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based their genealogy on model output, ideally we would like to obtain a model geneal-
ogy based on the underlying theories. Therefore, more attention should be given to the
theories underlying hydrological models.

My plea to use falsificationism or Bayesianism in hydrological modelling to grow scien-
tific knowledge, and the required re-establishment of the link between models and the-
ories, does not exclude nor favour the physics-based or the conceptual modelling ap-
proaches. Both tracks of modelling, sometimes referred to as the ‘Newtonian’ and the
‘Darwinian’ approaches, respectively (Sivapalan et al., 2011; Harman and Troch, 2014), have
clear advantages and drawbacks. The advantage of the physics-based Boussinesq theory
as applied in Chapter 3 is that the parameters could directly be linked to physical catch-
ment characteristics, but one could wonder if representing a catchment as a single hills-
lope is a correct conceptualization of the system. On the other hand, Chapter 4 showed
that in a distributed conceptual model, we have difficulties applying the most sensitive
parameters in a distributed fashion because there is no established link between catch-
ment characteristics and model parameters. The way ahead should therefore be found
in pluriformity (as also advocated by Harte, 2002, and Sivapalan et al. 2011): lumped and
distributed, conceptual and physical, large scale and small scale, case studies and multi-
catchment studies. The only condition we should set for scientific hydrological modelling
studies is that they test a theory (hypothesis-based), which is falsifiable.

Model complexity should relate to the available data, as shown in Figure 8.1. Promising
observation technologies, e.g. groundwater observations as explored with the Gravity
Recovery And Climate Experiment (GRACE) satellite (Famiglietti et al., 2011), rainfall ob-
servations using widespread microwave links (Rios Gaona et al., 2015), fibre-optic cables
for distributed temperature sensing (Bense et al., 2016), the use of cosmic-ray neutron sen-
sors to measure soil moisture (Iwema et al., 2015), or neutron tomography to determine
connectivity in porous media (Schaap et al., 2008) lead to opportunities to define and test
new theories. Furthermore, they provide new opportunities to falsify or test established
theories and models. If we really want to go down the falsificationism or Bayesianism
road, we need thorough testing of our hypotheses, so-called ‘crash-testing’ (Andréassian
et al., 2009). It is not enough to confirm our model with discharge data, we need to test
the internal consistency (e.g. Rakovec et al., 2016), and quantify the model performance
with more than just a single measure providing a global estimate of the average perfor-
mance, for example by using signatures of several states and fluxes (Gupta et al., 2008;
Sawicz et al., 2011). New observation technologies provide an outstanding opportunity to
do such crash-testing. We should, however, not only follow an inductive approach (Gupta
and Nearing, 2014), where new observations lead to the formulation of new insights, but
also appreciate a parallel path, where new insights can lead to new measurements or new
observation techniques. The growth of scientific knowledge is a continuous interplay be-
tween new theories and new observations.

A recent initiative to structure hydrological theories for different parts of the hydrological
cycle is the SUMMA framework (Clark et al., 2015), which allows to combine different the-
ories for different processes. This is an interesting start for structured hypothesis testing
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that should be combined with sophisticated observations in order to constrain the mo-
del sufficiently. Another approach is the ABC framework (Vrugt and Sadegh, 2013) where,
through calibration, the weaknesses in a model can be identified and subsequently im-
proved. However, as demonstrated in several chapters of this thesis (most pronounced
in Chapter 5), the model output not only depends on the underlying theory, but also on
many modelling decisions throughout the modelling process. Therefore, if we want to
test the theory in a modelling framework, every modelling decision should be consid-
ered as part of the tested theory. Working with several hypotheses (Chamberlin, 1890;
Clark et al., 2011a) should therefore not only apply to the underlying theories, but also
to the applied model configuration.

Summarizing, I think the growth of hydrological scientific knowledge using hydrologi-
cal models is best stimulated within a Bayesian or falsification framework. In order to do
this, the link between a theory and a hydrological model should be re-established: the-
ories should be perceived as hypotheses, and must be falsifiable. I argue that we should
conduct thorough hydrological model evaluation, including testing for internal consis-
tency if the model combines several theories. The required observations depend on the
theory being tested. Therefore, advanced hydrological observations beyond discharge
and precipitation are needed to test and eventually confirm or falsify the theory. Fur-
thermore, the decisions during model configuration should be explicitly recognized as
elements of the tested theory. The proposed approach reflects the quote at the begin-
ning of this thesis: ‘Theories crumble, but good observations never fade’.

8.3 On repeatability and reproducibility
Another condition for scientific hydrological modelling, recently advocated by Hutton
et al. (2016), is that modelling studies should be reproducible. Unfortunately, Hutton et al.
(2016) refrain from providing a clear definition on what they see as ‘reproducibility’ in the
context of computational hydrology. In our comment to this opinion paper (Melsen et al.,
2017) we discuss two definitions:

• The complete model study, including the exact numbers, should be reproducible
(bit-reproducibility);

• The conclusions of the model study should be reproducible
(conclusion-reproducibility).

Bit-reproducibility is reproducing the results of the same computer code combined with
the same data. This is not always trivial because specific platforms or software packages
might be needed. However, if one succeeds in running the same code with the same data,
this is not much more than a repetition exercise, because the same computer code com-
bined with the same data should always lead to the same results (as no epistemic un-
certainty is involved), and different persons pushing the "enter" button to run the same
computer code with the same data should also lead to the same results (as no subjectivity
is involved). This view is shared by Easterbrook (2014), who states that repeatability and
reproducibility are often mixed up in scientific computing. More interesting for growing
scientific knowledge is whether the conclusions of a model study are reproducible. In
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computational hydrology, this can be established by testing the same model with differ-
ent data, or testing a different model set-up with the same data. By testing the repro-
ducibility of model conclusions, one actively aims to verify (logical positivist) or falsify (in
the sense of Popper) the underlying theory.

Reproducibility of model conclusions provides founded reasons to improve the transpa-
rency of modelling studies and to increase the availability of model code and data, espe-
cially in the light of a falsification or Bayesian approach. First of all, it increases the trans-
parency of the tested theory or set of theories (which can be quite complex in some hydro-
logical models). This closely relates to the point in the previous section, that we should
give more attention to the theories underlying a model. Secondly, it provides insights in
the subjective modelling decisions that were made during the model configuration and
which can have a profound impact on the modelling results, as demonstrated in Chapter
5. Furthermore, it enhances the opportunity to build on already existing theories. Finally,
most importantly, it allows to test the theories for different situations or catchments, to
investigate the limits of applicability of a theory.

8.4 Hydrology as a connecting science
Hydrology is ‘a distinct geoscience that cuts across the traditional atmospheric, ocean and solid
earth sciences’ (Eagleson, 1991). It is especially this integrated part, and the engineering part
of hydrology, that cause a lack of attention to the science of hydrology according to Yev-
jevich (1968) and Klemeš (1986a), as discussed in Chapter 1. Although I clearly share the
opinion that the engineering approach obstructs progress in hydrologic sciences – which
by no means implies that I do not see the value of engineering, especially as I have lived
a large part of my life below sea level –, I do perceive it as valuable that hydrology is con-
sidered as an integrated science.

Our enhanced process understanding, for example concerning soil-moisture precipita-
tion feedbacks (Guillod et al., 2015), the role of vegetation and vegetation dynamics in the
hydrological cycle (Schymanski et al., 2009; Williams et al., 2012) and on the the interaction
between available soil moisture and transpiration (Baldocchi et al., 2004), taught us that
some hydrological processes cannot be considered in isolation from other sciences. The
development of land-surface models clearly demonstrates the insight that hydrological
behaviour depends on amongst others meteorology, soil science, and ecology, and vice
versa. Enhanced understanding of hydrological processes therefore implies that we have
to extend the field of interest and the field of study (Paola et al., 2006).

Another process only recently picked up in hydrological modelling, is the role of human
beings on the hydrological system (see for example Wada et al., 2014; Van Loon et al., 2016).
Now that the current era is called ‘The Anthropocene’, the geologic time period where the
impact of humans on the Earth is larger than the impact of natural systems, it would be
obsolete not to recognize and study the impact of human beings on the hydrological cy-
cle. A frequently used concept like ‘naturalized stream flows’ not only completely ignores
the processes that are taking place, but also does not allow for thorough model eval-
uation, because no observations are available for artificial data series. We should aim
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to increase our understanding of the impact of human beings on the hydrological cycle,
whether it be indirect (e.g. through climate change or land use change) or direct (e.g.
through groundwater abstraction).

The goal of science is to increase our understanding of the system under study. The strong-
est way of understanding might be expressed by identifying ‘universal laws’ (Carnap, 1966)
- regularities observed at all times and all places. Although hydrology and hydrological
modelling have some universal laws they try to respect, such as the conservation of mass
when establishing a water balance, these universal laws are based on physics rather than
on hydrological understanding. So far, no universal laws for hydrological processes have
been identified - Darcy's law, for example, might work perfectly in a lab-setting but is dif-
ficult in a field-setting with large spatial variation in hydrological conductivity. This can
be explained on the basis of the science classification as defined by Auguste Comte (1798-
1857), who is sometimes perceived as the first modern philosopher of Science (Bourdeau,
2014). Comte classified sciences according to their generality and the complexity of the
investigated system, which resulted in the following order from more general applica-
ble laws to less general applicable laws and from a less complex system to a more com-
plex system under study: mathematics, astronomy, physics, chemistry, biology, sociol-
ogy. According to his theory, within mathematical sciences general laws can be estab-
lished which are always true, independent of knowledge of any other science. Astron-
omy is one step lower in the generality-hierarchy, because astronomy needs mathemati-
cal laws to define astronomical laws, and one step higher in the complexity-hierarchy be-
cause more factors than mathematics alone influence astronomy. Earth and Life sciences
can be classified at the level of biology; within these sciences laws are less general and
the system under study is more complex. Hydrologic sciences has to combine the laws
of all the sciences that are higher in the generality-hierarchy, which includes chemistry,
physics (see the example of the conservation of mass) and mathematics. At the same
time, the system under study is highly complex as it is influenced by many factors, such
as vegetation and humans which have been discussed earlier in this section. The aim to
identify ‘universal laws’ in hydrology is therefore probably not feasible. This does imply,
however, that every hydrological theory can be falsified somewhere, because no law and
thus no theory either holds generally true. Therefore, if we test a theory on 100 basins and
the result is that we can falsify this theory in 10 of them, we should not reject this theory
immediately but try to investigate which factor or process influences the confirmation
or falsification of this specific theory; we have to identify the limits of applicability for
each theory. I believe that such an approach would stimulate the growth of hydrological
knowledge.
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Appendices

A. Complete overview of the results of Chapter 6
B. Publications in the meta-analysis from Figure 7.3
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Figure A.1: The agreement among the different model runs (representing different behavioural
parameter sets) on the sign of the ensemble mean change in mean annual runoff for three hy-
drological models (columns) forced with five different GCMs (rows). The direction of the triangle-
marker shows the sign of the ensemble mean change, the size of the marker indicates the relative
projected change. a) VIC forced with CNRM-CM5. b) SAC forced with CNRM-CM5. c) HBV forced
with CNRM-CM5. d) VIC forced with IPSL-CM5A-MR. e) SAC forced with IPSL-CM5A-MR. f) HBV
forced with IPSL-CM5A-MR. g) VIC forced with CCSM4. h) SAC forced with CCSM4. i) HBV forced
with CCSM4. j) VIC forced with MPI-ESM-MR. k) SAC forced with MPI-ESM-MR. l) HBV forced
with MPI-ESM-MR. m) VIC forced with INM-CM4. n) SAC forced with INM-CM4. o) HBV forced
with INM-CM4.
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Figure A.2: The agreement among the three hydrological models on the sign of the ensemble mean
change in mean annual runoff, forced with five different GCMs. a) The three hydrological models
are forced with CNRM-CM5 data. b) The three hydrological models are forced with IPSL-CM5A-
MR data. c) The three hydrological models are forced with CCSM4 data. d) The three hydrological
models are forced with MPI-ESM-MR data. e) The three hydrological models are forced with INM-
CM4 data.
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a. b. c.
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The model forced with four GCMs agree, one disagrees

The model forced with three GCMs agree, two disagree

Model non−behavioural

Figure A.3: The agreement on the sign of the ensemble mean change in mean annual runoff in the
output from the same hydrological model forced with five different GCMs. a) Agreement when
VIC is forced with data from five different GCMs. b) Agreement when SAC is forced with data
from five different GCMs. c) Agreement when HBV is forced with data from five different GCMs.
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Table B.1: All articles used to create Figure 7.3, with their highest spatial resolution (in degrees)
and the time interval used for calibration and validation.

Authors Journal Year Title Spat. Temp.
Abdullah, F.A., and D.P. Lettenmaier J. Hydrol. 1997 Application of regional parameter ... 1.000 monthly
Acharya, A., et al. J. Hydrol. 2011 Modeled streamflow response ... 0.125 monthly
Adam, J.C. , et al. J. Geophys. Res. 2007 Simulation of reservoir influences ... 1.000 monthly
Agboma, C.O., et al. J. Hydrol. 2009 Intercomparison of the total storage ... 0.300 monthly
Ahmad, S., et al. Adv. Water Resour. 2010 Estimating soil moisture ... 0.125 daily
Andreadis, K.M., and D.P. Lettenmaier Adv. Water Resour. 2006 Assimilating remotely sensed ... 0.125 daily
Arora, V.K., and G.J. Boer J. Climate 2006 The temporal variability of ... 2.000 monthly
Ashfaq, M., et al. J. Geophys. Res. 2010 Influence of climate model ... 0.125 daily
Bao, Z., et al. J. Hydrol. 2012 Comparison of regionalization ... 0.250 monthly
Bao, Z., et al. J. Hydrol. 2012 Attribution for decreasing ... 0.250 monthly
Bao, Z., et al. Hydr. Process. 2012 Sensitivity of hydrological ... 0.250 monthly
Bohn, T.J., et al. Env. Res. Letters 2007 Methane emissions from ... 1.000 daily
Bohn, T.J., et al. J. Hydrometeorol. 2010 Seasonal Hydrologic Forecasting ... 0.125 monthly
Bowling, L.C., and D.P. Lettenmaier J. Hydrometeorol. 2010 Modeling the Effects of ... 0.125 hourly
Chang, J., et al. Quater. Int. 2014 Impact of climate change ... 0.500 daily
Cherkauer, K.A., and D.P. Lettenmaier J. Geophys. Res. 1999 Hydrologic effects of frozen soils ... 0.500 daily
Christensen, N.S., et al. Climatic Change 2004 The effect of climate change on ... 0.125 daily
Christensen, N.S., and D.P. Lettenmaier Hydrol. Earth Syst. Sc. 2007 A multimodel ensemble approach ... 0.125 daily
Costa-Cabral, M., et al. Climatic Change 2013 Snowpack and runoff response ... 0.125 monthly
Crow, W.T., et al. J. Geophys. Res. 2003 Multiobjective calibration of ... 0.125 hourly
Cuo, L.., et al. J. Hydrol. 2013 The impacts of climate change ... 0.250 daily
Demaria, E.M.C. , et al. J. Hydrol. 2013 Climate change impacts on ... 0.250 daily
Demaria, E.M.C., et al. Int. J. River Bas. Manag. 2014 Satellite precipitation in ... 0.125 monthly
Díaza, A., et al. Int. J. River Bas. Manag. 2013 Multi-annual variability of ... 0.125 daily
Drusch, M., et al. Gephys. Res. Lett. 2005 Observation operators for the ... 0.125 daily
Eum, H., et al. Hydr. Process. 2014 Uncertainty in modelling the ... 0.063 daily
Feng, X., et al. J. Hydrometeorol. 2008 The Impact of Snow Model ... 0.125 daily
Ferguson, C.R., et al. Int. J. Remote Sens. 2010 Quantifying uncertainty in ... 0.125 monthly
Ferguson, C.R., et al. J. Hydrometeorol. 2012 A Global Intercomparison of ... 0.250 daily
Gao, H., et al. J. Hydrometeorol. 2004 Using a Microwave Emission ... 0.125 daily
Gao, H., et al. J. Hydrometeorol. 2006 Using TRMM/TMI to Retrieve ... 0.125 daily
Gao, H., et al. J. Hydrometeorol. 2007 Copula-Derived Observation ... 0.125 daily
Gao, H., et al. Int. J. Remote Sens. 2010 Estimating the water budget ... 0.500 monthly
Gao, Y., et al. J. Geophys. Res. 2011 Evaluating climate change ... 0.125 monthly
Garg, V., et al. J. Hydr. Eng. 2013 Hypothetical scenario-based ... 0.250 yearly
Gebregiorgis, A., and F. Hossain J. Hydrometeorol. 2011 How Much Can A Priori Hydrologic ... 0.125 daily
Gebregiorgis, A.S., et al. Water Resour. Res. 2012 Tracing hydrologic model ... 0.125 daily
Gu, H., et al. Stoch. Environ. Res. Risk Ass. 2014 Impact of climate change ... 0.125 daily
Guerrero, M., et al. Int. J. River Bas. Manag. 2013 Parana River morphodynamics ... 0.125 monthly
Guo, J., et al. J. Hydrol. 2004 Impacts of different precipitation ... 0.125 daily
Guo, J., et al. Proc. Env. Sci. 2011 Daily runoff simulation in ... 0.042 daily
Haddeland, I., et al. Gephys. Res. Lett. 2006 Anthropogenic impacts on ... 0.500 monthly
Haddeland, I., et al. J. Hydrometeorol. 2006 Reconciling Simulated Moisture ... 0.125 hourly
Haddeland, I., et al. J. Hydrol. 2006 Effects of irrigation on the ... 0.500 daily
Hamlet, A.F., et al. J. Climate 2005 Effects of Temperature and ... 0.125 monthly
Hamlet, A.F., and D.P. Lettenmaier Water Resour. Res. 2007 Effects of 20th century warming ... 0.125 monthly
Hidalgo, H.G., et al. J. Hydrol. 2013 Hydrological climate change ... 0.500 monthly
Hillarda, Y., et al. Remote Sens. Environ. 2003 Assessing snowmelt dynamics ... 0.125 daily
Huang, M., et al. J. Geophys. Res. 2003 A transferability study of model ... 0.130 daily
Hurkmans, R.T.W.L., et al. Water Resour. Res. 2008 Water balance versus land ... 0.088 daily
Hurkmans, R.T.W.L., et al. Water Resour. Res. 2009 Effects of land use changes ... 0.050 daily
Hurkmans, R., et al. J. Climate 2010 Changes in Streamflow Dynamics ... 0.088 daily
Jayawardena, A.W., et al. J. Hydrolog. Eng. 2002 Meso-Scale Hydrological ... 1.000 daily
Kam, J., et al. J. Climate 2013 The Influence of Atlantic ... 0.125 daily
Lakshmi, V., et al. Gephys. Res. Lett. 2004 Soil moisture as an ... 0.125 monthly
Li, J., et al. J. Hydrometeorol. 2007 Modeling and Analysis ... 0.042 daily
Li, H., et al. J. Hydrometeorol. 2013 A Physically Based Runoff ... 0.063 monthly
Liang, X. and Z. Xie Adv. Water Resour. 2001 A new surface runoff ... 0.125 daily
Liang ,X., and Z. Xie Global Planet. Change 2003 Important factors in land ... 0.125 daily
Liang, X., et al. J. Geophys. Res. 2003 A new parameterization ... 0.125 daily
Liang, X., et al. J. Hydrol. 2004 Assessment of the effects ... 0.031 daily
Liu, Z., et al. Hydr. Process. 2010 Impacts of climate change on ... 0.500 daily
Liu, L., et al. J. of Flood Risk Manag. 2013 Hydrological analysis for water ... 0.010 daily
Liu, H., et al. Hydrol. Earth Syst. Sc. 2013 Soil moisture controls on ... 0.500 monthly
Liu, X., et al. Hydrol. Earth Syst. Sc. 2014 Effects of surface wind speed ... 0.250 monthly
Livneh, B., et al. J. Climate 2013 A Long-Term Hydrologically ... 0.063 monthly
Lohmann, D., et al. Hydrolog. Sci. J. 1998 Regional scale hydrology: ... 0.167 daily
Lu, X., and Q. Zhuang J. Geophys. Res. 2012 Modeling methane emissions ... 0.333 daily
Lucas-Picher, P., et al. Atmosphere-Ocean 2003 Implementation of a ... 0.405 monthly
Luo, Y., et al. J. Hydrometeorol. 2005 The Operational Eta Model ... 0.125 monthly
Luo, L., and E.F. Wood Gephys. Res. Lett. 2007 Monitoring and predicting ... 0.125 monthly
Luo, L., and E.F. Wood J. Hydrometeorol. 2008 Use of Bayesian Merging ... 0.125 monthly
Lutz, E.R., et al. Water Resour. Res. 2012 Paleoreconstruction of cool ... 0.063 monthly
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Mao, D., and K.A. Cherkauer J. Hydrol. 2009 Impacts of land-use change ... 0.125 monthly
Mao, D., et al. Water Resour. Res. 2010 Development of a coupled ... 0.125 daily
Marshall, M., et al. Climate Dynamics 2012 Examining evapotranspiration ... 1.000 monthly
Matheussen, B., et al. Hydr. Process. 2000 Effects of land cover change ... 0.250 monthly
Maurer, E.P., et al. J. Geophys. Res. 2001 Evaluation of the land ... 0.125 monthly
Maurer, E.P., et al. J. Climate 2002 A Long-Term Hydrologically ... 0.125 monthly
McGuire, M., et al. J. Water Resour. Plan. Manage. 2006 Use of Satellite Data for ... 0.125 monthly
Meng, L., and S.M. Quiring Int. J. Climatol. 2010 Observational relationship of ... 0.500 monthly
Miguez-Macho, G., et al. Bull. Am. Meteor. Soc. 2008 Simulated water table ... 0.008 monthly
Miller, W.P., et al. J. Water Res. Pl. Manag. 2012 Water Management Decisions ... 0.125 monthly
Minihane, M.R. Phys. Chem. Earth 2012 Evaluation of streamflow ... 0.250 monthly
Mishra, V., et al. J. Hydrometeorol. 2010 Parameterization of Lakes ... 0.125 daily
Mishra, V., and K.A. Cherkaue Agric. For. Meteorol. 2010 Retrospective droughts in ... 0.125 monthly
Mishra, V., et al. J. Hydrometeorol. 2010 Assessment of Drought due ... 0.125 monthly
Mishra, V., et al. Int. J. Clim. 2010 A regional scale assessment ... 0.125 monthly
Mishra, V., et al. Global Planet. Change 2011 Lake Ice phenology of ... 0.125 daily
Mishra, V., et al. Global Planet. Change 2011 Changing thermal dynamics ... 0.125 daily
Mishra, V., and K.A. Cherkauer J. Geophys. Res. 2011 Influence of cold season ... 0.125 daily
Mo, K.C. J. Hydrometeorol. 2008 Model-Based Drought Indices ... 0.500 monthly
Mo, K.C., et al. J. Hydrometeorol. 2012 Uncertainties in North American ... 0.500 monthly
Munoz-Arriola, F., et al. Water Resour. Res. 2009 Sensitivity of the water resources ... 0.125 monthly
Nijssen, B., et al. Water Resour. Res. 1997 Streamflow simulation for ... 0.500 monthly
Nijssen, B., et al. J. Climate 2001 Global Retrospective Estimation ... 2.000 monthly
Nijssen, B., et al. Climatic Change 2001 Hydrologic sensitivity of global ... 1.000 monthly
Niu, J., et al. J. Hydrol. 2013 Impacts of increased CO2 ... 1.000 monthly
Niu, J., and J. Chen Hydrological Sciences Journal 2014 Terrestrial hydrological responses ... 1.000 daily
Niu, J., and B. Sivakumar Stoch Environ Res Risk Assess 2014 Study of runoff response to ... 1.000 monthly
Niu, J., et al. Hydrol. Earth Syst. Sc. 2014 Teleconnection analysis of ... 1.000 monthly
Null, S.E., and J.H. Viers Water Resour. Res. 2013 In bad waters: Water year ... 0.125 monthly
O'Donnell, G.M., et al. J. Geophys. Res. 2000 Macroscale hydrological modeling ... 0.500 monthly
Oubeidillah, A.A., et al. Hydrol. Earth Syst. Sc. 2014 A large-scale, high-resolution ... 0.042 monthly
Ozdogan, M. Hydrol. Earth Syst. Sc. 2011 Climate change impacts on ... 0.125 monthly
Pan, M., and E.F. Wood J. Hydrometeorol. 2006 Data Assimilation for ... 0.500 daily
Parada, L.M., and X. Liang J. Geophys. Res. 2004 Optimal multiscale Kalman ... 0.125 daily
Parada, L.M., and X. Liang J. Geophys. Res. 2008 Impacts of spatial resolutions ... 0.125 daily
Park, D., and M. Markus J. Hydrol. 2014 Analysis of a changing ... 0.125 daily
Parr, D., and G. Wang Global and Planetary Change 2014 Hydrological changes in the ... 0.030 daily
Qiao, L., et al. Water Resources Management 2014 Climate Change and ... 0.125 daily
Qin, S., et al. Int. J. Remote Sens. 2013 Development of a hierarchical ... 0.030 daily
Raje, D., and R. Krishnan Water Resour. Res. 2012 Bayesian parameter uncertainty ... 1.000 monthly
Raje, D., et al. Hydr. Process. 2014 Macroscale hydrological modelling ... 1.000 monthly
Ray, R.L., et al. Remote sensing of environment 2010 Landslide susceptibility mapping ... 0.010 daily
Rhoads, J., et al. J. Geophys. Res. 2001 Validation of land surfacemodels ... 1.000 daily
Rosenberg, E.A., et al. Water Resour. Res. 2011 Statistical applications of... 0.063 monthly
Rosenberg, E.A. , et al. Hydrol. Earth Syst. Sc. 2013 On the contribution of ... 0.125 daily
Saurral, R.I. J. Hydrometeorol. 2010 The Hydrologic Cycle of the ... 0.125 monthly
Schaller, M.F., and Y. Fan J. Geophys. Res. 2009 River basins as groundwater ... 0.125 monthly
Schumann, G.J.-P., et al. Water Resour. Res. 2013 A first large-scale flood ... 0.250 monthly
Sheffield, J., et al. J. Geophys. Res. 2003 Snow process modeling ... 0.125 daily
Sheffield, J., et al. J. Hydrometeorol. 2012 Representation of Terrestrial ... 0.500 monthly
Shi, X., et al. Env. Res. Letters 2011 The role of surface energy ... 1.000 weekly
Shi, X., et al. J. Climate 2013 Relationships between Recent ... 1.000 monthly
Shrestha, R.R., et al. Hydr. Process. 2012 Modelling spatial and ... 0.063 monthly
Shrestha, K.Y., et al. J. Hydrometeorol. 2014 An Atmospheric-Hydrologic ... 0.250 daily
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Statement of code and data availability
Input and evaluation data

• Meteorological and catchment data for the Rietholzbach and the Thur can be re-
quested from ETH Zürich and WSL in Birmensdorf, respectively.

• Discharge data can be requested through the website of the Swiss Federal Office
of the Environment (FOEN), see: http://www.bafu.admin.ch/wasser/.

• For the 605 basins, all USGS discharge and Daymet forcing data can be downloaded
from:
http://ral.ucar.edu/projects/hap/flowpredict/subpages/modelvar.php

• Catchment characteristics for the 605 basins are currently only available upon re-
quest at NCAR, but will be publicly available soon.

Models
• The VIC model can be downloaded from:

http://vic.readthedocs.io/en/master/

• The SAC model can be downloaded from:
http://www.nws.noaa.gov/iao/iao_hydroSoftDoc.php

• The employed HBV model was an R-package available at:
https://cran.r-project.org/web/packages/TUWmodel/index.html

• Code for Kirchners 'Catchments as simply dynamical systems’ implementation for
the Rietholzbach is available upon request from Lieke Melsen and Adriaan Teul-
ing.

Output data
The output data from all studies are available upon request from Lieke Melsen. This for
example includes 26.500 model runs with a daily time step for the period 1980-2008
and 2065-2100 per basin for the 605 basins in CONUS (3 hydrological models, run with
a large parameter sample, forced with 5 different statistically downscaled and bias cor-
rected GCM outputs).

Code
All code (mainly Matlab) used to perform analyses and construct figures is available upon
request from Lieke Melsen, including the distributed VIC implementation for the Thur
basin.

157





Summary
Six steps can be distinguished in the process of hydrological modelling: the perceptual
model (deciding on the processes), the conceptual model (deciding on the equations),
the procedural model (get the code to run on a computer), calibration (identify the pa-
rameters), evaluation (confronting output with observations), and uncertainty analysis
(estimate uncertainty in the model and its output). An engineer conducts these steps
different than a scientist, because the goal of an engineer is to solve practical problems,
while the goal of a scientist is to increase the understanding of the system. The differ-
ence between scientists and engineers is most pronounced in the perceptual modelling
step. However, in many of the current hydrologic sciences studies, engineering and scien-
tific approaches are mixed. As a scientist, three common philosophies of science can be
adopted: verificationism, falsificationism, and Bayesianism. It was demonstrated that
verificationism most closely resembles engineering in the modelling steps, while falsifi-
cationism and Bayesianism call for a different practice.

In this thesis, several of the modelling steps have been investigated in more detail. In
order to investigate these modelling steps, we applied widely used hydrological models
(Chapter 2). These models vary in complexity, and have been applied to catchments with
varying temporal and spatial scales.

In Chapter 3 three parameter identification methods and their data requirements were
compared for a small (3.3 km2) catchment using a parsimonious two-parameter model.
Two methods based on discharge data were employed, Bayesian based automatic cali-
bration (DREAM) and recession analysis, and one physics-based method was employed,
Boussinesq theory. Automatic calibration and recession analysis both required five mon-
ths of discharge data in order to obtain stable parameter estimations. Boussinesq theory,
which allows a-priori parameter estimation based on catchment characteristics, showed
to lead to highly uncertain parameters due to uncertainty in the catchment characteris-
tics.

Chapter 4 deals with the transferability (and thus sensitivity) of parameters across spatial
and temporal resolutions in the Thur catchment (1703 km2). It was shown that parame-
ters were hardly sensitive to the spatial resolution (a high transferability), while the pa-
rameters were very sensitive to the temporal resolution (especially from hourly/daily to
a monthly time step). This indicates that the spatial variability is substantially underes-
timated. In this study we adopted common practice for hyper-resolution models applied
at a large domain. The results therefore provide a strong motivation to further investi-
gate and improve the representation of spatial and temporal variability in large-domain
hydrological models.

Chapter 5 shows that decisions during model configuration, basically subjective deci-
sions of the modeller, significantly impact the simulation of hydrological extremes in
the Thur basin (1703 km2). We explored four modelling decisions; the spatial resolution
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of the model, the spatial representation of forcing, the calibration period, and the per-
formance metric, and investigated if these decisions influenced the simulated flood and
drought characteristics in the Thur basin. It was shown that for the flood characteristics,
the performance metric was the most influential decision, and for the drought character-
istics, the calibration period was most important. Subjective modelling decisions intro-
duce uncertainty in the modelling process. Working with multiple hypotheses of model
implementations could help in providing insight in this uncertainty.

In Chapter 6 we explore three sources of uncertainty in a hydrological climate change
impact assessment for the period 2070–2100 for 605 basins throughout the contiguous
United States; parameter uncertainty, hydrological model structural uncertainty, and un-
certainty in General Circulation Model (GCM) forcing. It was demonstrated that the un-
certainty introduced by any of the three sources can be thus large that even the sign of
the change is unknown in many basins (i.e., an increase or decrease in average annual
runoff compared to the period 1985–2008). This uncertainty could be attributed to the
snow parameterization in the hydrological models and disagreement among the GCMs
on the change in precipitation. Furthermore, it was demonstrated that processes related
to aridity and intermittent flow behaviour are not yet well captured in the investigated
hydrological models.

In Chapter 7 it was shown, based on a literature study of 192 peer-reviewed publications,
that the spatial resolution at which the Variable Infiltration Capacity (VIC) model is ap-
plied has increased, while the calibration and validation time interval has remained un-
changed. It is argued that the calibration and validation time interval should keep pace
with the spatial resolution of the model in order to resolve the processes relevant at the
applied spatial resolution. Different processes are relevant at different spatial scales; the
calibration and validation time interval should reflect the temporal scale of these pro-
cesses in order to estimate the credibility of the model.

The results from all the studies can be summarized in three points: Not only the model
choice, but also the configuration of the model determines the outcome of the model;
sufficient data are needed to constrain and evaluate a model; and the large uncertainty
in modelling studies provides a strong motivation to increase our understanding - i.e., to
focus on science rather than on engineering. In order to establish this, models should
be related to theories (hypotheses), which should be tried to falsified. The model set-up
should be considered an element of the tested theory. Novel observation technologies
provide the opportunity to test and falsify these theories, and can lead to the formulation
of new theories.
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Samenvatting
Er zijn zes stappen te onderscheiden in het proces van hydrologisch modelleren: het op-
stellen van het perceptuele model (de relevante processen), vervolgens het conceptuele
model (de wiskundige vergelijkingen die het proces beschrijven), het procedurele mo-
del (de code laten werken op een computer), kalibratie (het schatten van de parameter-
waarden), evaluatie (modelresultaten vergelijken met observaties), en onzekerheidsa-
nalyse (inschatting maken van onzekerheid in het model en de modelresultaten). Een
ingenieur zal deze stappen op een andere manier uitvoeren dan een wetenschapper, om-
dat het doel van een ingenieur is om praktische problemen op te lossen, terwijl het doel
van een wetenschapper is om het systeem beter te begrijpen. Het verschil tussen beide
benaderingen komt het sterkst naar voren in het perceptuele model. In veel hydrologi-
sche studies worden ingenieurs- en wetenschappelijke benaderingen echter door elkaar
gebruikt. De drie meest gangbare wetenschapsfilosofieën zijn verificatie, falsificatie, en
Bayes’ theorie. Verificatie ligt het dichtst bij de ingenieursaanpak, terwijl falsificatie en
Bayes’ theorie duidelijk om een andere aanpak vragen.

In dit proefschrift zijn verschillende modelleerstappen in meer detail onderzocht. Om
deze stappen te onderzoeken, hebben we gebruik gemaakt van verschillende veel ge-
bruikte hydrologische modellen (Hoofdstuk 2). Deze modellen variëren sterk in com-
plexiteit en zijn toegepast op verschillende tijd- en ruimteschalen.

In Hoofdstuk 3 vergelijken we drie parameteridentificatiemethoden en de bijbehorende
data-vereisten in een klein stroomgebied (3.3 km2), waarbij we gebruik maken van een
simpel 2-parameter-model. In twee methoden worden afvoerdata gebruikt voor para-
meteridentificatie: een Bayesiaans automatisch kalibratie-algoritme (DREAM) en reces-
sie-analyse. De derde methode is gebaseerd op fysica, de theorie van Boussinesq, waar-
door de parameters van het model bepaald kunnen worden op basis van stroomgebieds-
karakteristieken. Zowel automatische kalibratie als recessie-analyse hadden vijf maan-
den aan uurlijkse data nodig om stabiele parameters te kunnen identificeren. De pa-
rameters verkregen met Boussinesqs theorie bleken uiterst onzeker door onzekerheid in
stroomgebiedskarakteristieken.

Hoofdstuk 4 behandelt de overdraagbaarheid (en daarmee gevoeligheid) van parame-
terwaarden tussen verschillende ruimtelijke en temporele resoluties van het Variable In-
filtration Capacity (VIC) model toegepast op het stroomgebied van de Thur in Zwitser-
land (1703 km2). We hebben aangetoond dat de parameterwaarden nauwelijks gevoe-
lig zijn voor de ruimtelijke resolutie van het model, terwijl ze zeer gevoelig zijn voor de
temporele resolutie (vooral van uur/dag naar maand). Dit laat zien dat de ruimtelijke
variatie niet goed in het model meegenomen wordt. In deze studie is gebruik gemaakt
van standaardmethoden voor hoge-resolutiemodellen die toegepast worden op grote
gebieden. De resultaten zijn daarom aanleiding om de temporele en ruimtelijke vari-
abiliteit in modellen ontwikkeld voor en toegepast op grote domeinen verder te onder-
zoeken en verbeteren.
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In Hoofdstuk 5 is aangetoond dat subjectieve beslissingen van de modelleur tijdens het
opzetten van een hydrologisch model significant invloed hebben op gesimuleerde hy-
drologische extremen in het stroomgebied van de Thur. We hebben vier verschillende
modelbeslissingen onderzocht: de ruimtelijke resolutie van het model, de ruimtelijke
resolutie van de modelforcering, de kalibratieperiode en het evaluatiecriterium. De in-
vloed van deze modelbeslissingen op verschillende karakteristieken van piekafvoeren en
droogte is onderzocht. De simulatie van piekafvoeren bleek het meest gevoelig voor het
evaluatiecriterium, bij droogtesimulatie bleek de kalibratieperiode het meest invloed-
rijk. Subjectieve modelbeslissingen zorgen dus voor onzekerheid in het modelleerpro-
ces. Werken met verschillende modelimplementaties verschaft inzicht in deze onzeker-
heid.

In Hoofdstuk 6 onderzochten we drie bronnen van onzekerheid in een hydrologische ef-
fectbeoordeling van klimaatverandering voor de periode 2070-2100 voor 605 stroomge-
bieden verspreid over de Verenigde Staten. Deze drie bronnen zijn: onzekerheid in pa-
rameters, onzekerheid in de hydrologische modelstructuur en onzekerheid in de neer-
slag die gesimuleerd wordt door algemene circulatiemodellen (GCMs). Aangetoond is
dat elk van de drie bronnen kan leiden tot een dergelijke mate van onzekerheid dat zelfs
de richting van de verandering in afvoer (toename of afname in gemiddelde jaarlijkse
afvoer t.o.v. 1985-2008) onbekend is. Deze onzekerheid kon specifiek toegeschreven wor-
den aan de parametrisatie van sneeuw in hydrologische modellen en inconsistentie tussen
de verschillende GCMs over de verandering in neerslag. Daarnaast is aangetoond dat
processen gerelateerd aan droogte niet goed beschreven zijn in de onderzochte hydrolo-
gische modellen.

Hoofdstuk 7 is gebaseerd op een literatuurstudie van 192 peer-reviewed publicaties waar-
in het VIC model gebruikt wordt. Uit de literatuurstudie bleek dat de ruimtelijke resolu-
tie waarop het model wordt toegepast, is toegenomen in de tijd, terwijl het tijdsinter-
val van de kalibratie en validatie van het model niet veranderd is. Gesteld wordt dat het
kalibratie- en validatietijdsinterval gelijke tred moeten houden met de ruimtelijke reso-
lutie van het model, omdat bij een andere ruimtelijke resolutie ook andere processen rel-
evant worden. Het kalibratie- en validatietijdsinterval moet de tijdschaal van deze pro-
cessen reflecteren.

De resultaten die gepresenteerd zijn in de verschillende hoofdstukken kunnen samen-
gevat worden in drie punten: niet alleen de modelkeuze maar ook de modelconfigu-
ratie bepaalt de resultaten van het model; voldoende data zijn nodig om modellen te
kalibreren en evalueren; en de grote onzekerheid in modelstudies is een sterke moti-
vatie om ons begrip van het hydrologisch systeem te vergroten (meer focus op de weten-
schappelijke benadering). Om dit te bereiken, moeten modellen weer gekoppeld wor-
den aan hun onderliggende theorie. De modelconfiguratie moet beschouwd worden als
onderdeel van de theorie die getest wordt met het model. Nieuwe observatietechnieken
bieden de mogelijkheid om de theorieën te falsificeren en om nieuwe theorieën te for-
muleren.
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