Sustainable supply potential of herbaceous energy crops as a result of pastureland Productivity developments in Europe

Jan Peter Lesschen, Ingeborg Kluts, Birka Wicke

Introduction

- Expected increase in demand for biomass for energy, material and food production requires increase in agricultural productivity
- No studies assessed yet the potential of pastureland for increased biomass production
- Objective: Assess the sustainable supply potential of herbaceous energy crops resulting from the intensification of European pastureland
- Part of Climate KIC project: Fuel Supply Chain Development and Flight Operations (RENEWABLE JET)

Utrecht University

Potential for pasture intensification

- Grassland is the main land use in EU
 - 60 million ha permanent pasture
 - 11 million ha temporary pasture
- In large parts of EU pasture land is used extensively
- However, nature value of grassland can be high

Utrecht University

Distribution of grasslands

Options to increase sustainable biomass potential in grassland

Increase permanent grassland productivity

- Improved fertilizer and manure management
- (Improved) irrigation
- Optimized grazing management
- Increase temporary grasslands productivity
 - Use grass legume mixtures
 - Use for freed land for energy crops

Utrecht University

Grass legume mixtures

- Grass legume mixtures have higher yields compared to monocultures
- Legume proportion decreases over time, therefore more relevant for temporary grassland
- Introducing legumes can reduce nitrogen fertilization
- Data derived from large scale experiment at 33 sites (Kirwan et al., 2014)
- Current use of mixtures is not well known, set at 50%

EUBCE, 6-6-2016

Utrecht University

Modelling option grass legume mixtures

MITERRA-Europe

- Environmental impact assessment model for agriculture
- NUTS2 level for EU
- All agricultural GHG emissions
- Simulation for 2030 based on CAPRI crop area projections
- Data for N reduction fertilizer from Suter et al. (2015), based on 16 experimental sites, on average 35% increase in N yield

Results – Herbaceous energy crop areas

Results

- Herbaceous energy crop area of 0.85 million ha
- Herbaceous energy crop production of 11 Mton DM, which is ~200 PJ
- 1.6% less N₂O emissions (3.5 Mton CO₂-eq)
- Additional 1.3 Mton CO₂ sequestration per year

Utrecht University

Alternative options

Use grass from temporary pastures

- 3.7 Mton DM additional grass
- 2.8 Mton CO₂-eq less N₂O emission
- 1 Mton CO₂ SOC sequestration

Increase yield on permanent pastures

- Assumed 5% increase in yield
- 9 Mton DM grass production
- 1.3 Mton CO₂-eq more N₂O emission
- 4 Mton CO₂ SOC sequestration

Comparison with other biomass potentials

- Recent biomass potentials from Biomass Policies
- Total 8066 PJ for 2030

Temporary pastures can add about 2.5%

Utrecht University

Alternative options

- Use surplus grass for biogas
- Use specific grass species for biorefinery
 - Festuca arundinacea
 - Yield 16-20 ton DM/ha in NL
 - In rotation with arable crops
 - Improves soil quality
 - Biorefinery into animal feed and biogas by HarvestaGG

Utrecht University

Discussion / Conclusion

- Biomass production from pasture land can add a sustainable contribution to biomass demand
- Highest potential for temporary grasslands
 - More options for management
 - No risk on biodiversity loss or carbon loss
 - About 1 million ha available for energy crops
- Data availability on grassland yield and management is poor → uncertain results
- Possible potential for increased grass production on permanent pastures

Thank you

janpeter.lesschen@wur.nl

Climate-KIC