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ABSTRACT

Hardpan is a major cause of land degradation that affects agricultural productivity in developing countries. However, relatively, little is
known about the interaction of land degradation and hardpans. The objective of this study was, therefore, to investigate soil degradation
and the formation of hardpans in crop/livestock-mixed rainfed agriculture systems and to assess how changes in soil properties are related
to the conversion of land from forest to agriculture. Two watersheds (Anjeni and Debre Mewi) were selected in the humid Ethiopian high-
lands. For both watersheds, 0–45 cm soil penetration resistance (SPR, n = 180) and soil physical properties (particle size, soil organic matter,
pH, base ions, cation exchange capacity, silica content, bulk density and moisture content) were determined at 15 cm depth increments for
three land uses: cultivated, pasture and forest. SPR of agricultural fields was significantly greater than that of forest lands. Dense layers with a
critical SPR threshold of ≥2000 kPa were observed in the cultivated and pasture lands starting at a depth of 15–30 cm but did not occur in the
undisturbed forest land. Compared with the original forest soils, agricultural fields were lower in organic matter, cation exchange capacity,
and exchangeable base cations; more acidic; had a higher bulk density and more fine particles (clay and silt); and contained less soluble silica.
Overall, our findings suggest that soil physical and chemical properties in agricultural lands are deteriorated, causing disintegration of soil
aggregates, resulting in greater sediment concentration in infiltration water that clogged up macro-pores, thereby disconnecting deep flow
paths found in original forest soils. Copyright © 2016 John Wiley & Sons, Ltd.
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INTRODUCTION

Land degradation occurs worldwide and is a serious threat to
food security in developing countries where people live on
the edge of poverty (FAO, 2011; Temesgen et al., 2012a).
Land degradation can take on many forms, ranging from
desertification to salinized lands in semi-arid lands to low
producing compacted soils with low permeability and poor
root development in more humid climates (Hawando,
1997; Johnson et al., 1997; Hanson et al., 2004b; Ahmad
et al., 2007; Elhaja et al., 2014).
Here, the primary concern is degraded soils in humid

climates that form slowly permeable soil layers commonly
known as hardpans. According to Soil Science Society of
America, hardpans are defined as soil layers with physical
characteristics that restrict downward soil water movement
and reduce moisture storage capacity. They usually occur
between 7·5 and 90 cm deep (Litchfield & Mabbutt, 1962;
Hoogmoed & Derpsch, 1985; Radcliffe et al., 1989;
Mulholland & Fullen, 1991; Kılıç et al., 2004). Hardpans
also limit root’s capacity to penetrate the soil profile and to

uptake nutrients from the lower strata that are critically
needed for improved crop production (Busscher & Bauer,
2003; Raper et al., 2005). For example, a study in Pakistan
showed that hardpans caused a reduction of cotton yield
by up to 15% (Raza et al., 2007), by reducing nutrient and
water uptake and availability. In many coastal plain soils
of the southeastern USA, hardpans cause a reduction of corn
grain yield by up to 2·4 Mg ha�1 (Busscher et al., 2001). In
addition, during wet periods, since infiltration is limited,
hardpans make the upper soil layers wetter. This in turn
results in yield reduction due to root infections (Allmaras
et al., 1998) and an increase in runoff and erosion because
the soil can store only limited amounts of water before
runoff starts. As a consequence, the occurrence of hardpans
in the soil profile increases erosion (Tebebu et al., 2015) and
sediment concentration in rivers such as in the Blue Nile
(Steenhuis & Tilahun, 2014; Steenhuis et al., 2014).
The factors that affect hardpan formation vary widely

across locations, soil types and agro climatic conditions.
Litchfield and Mabbutt (1962), Gerard (1965) and among
others reported that natural soil formation can over time
result in horizons of high density by translocation of clay
and loam particles from the layers above. Such processes
can be enhanced by several anthropogenic factors such as
wheel pressure from farm machinery (Radcliffe et al., 1988;
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Busscher & Bauer, 2003; Raper et al., 2005), livestock
trampling during free grazing (Mulholland & Fullen, 1991),
and plowing of farmlands at the same depth for many years
(Leye, 2007; Temesgen et al., 2009), particularly when the
soil is wet (Ahmad et al., 2007). Soil compaction is facili-
tated by high moisture content (Hamza & Anderson, 2005).
Studies on the formation and amelioration of hardpans

have been largely limited to studies on the compaction of
heavy machinery during tillage operation. However, heavy
machinery cannot explain the extensive hardpan formation
in the Blue Nile basin of the humid Ethiopian highlands
where, for the smallholder rainfed farming, most of all
tillage operations are performed either by hand or by the
traditional oxen pulled Maresha plow. The few studies on
hardpan formation in Ethiopia were limited to the semi-arid
areas (Mwendera & Saleem, 1997; Leye, 2007; Biazin et al.,
2011; Temesgen et al., 2012b) with one exception of the
Temesgen et al. (2012b) study in the humid Choke
Mountain area.
This one study in the Choke Mountain shows only the

occurrence of hardpans but does not provide sufficient infor-
mation to understand the drivers for hardpan formation. From
earlier studies, it is known that land degradation is associated
with the conversion of land from forest ecosystem to agricul-
tural use. For instance, Tebebu et al. (2010) showed that the
incision and development of gullies at the lower parts of the
landscapes are related to the clearance of forests at the
hillsides. This is because the removal of vegetation disrupts
the local hydrology and increases surface and subsurface
runoff from the hillside to the valley bottoms. Similarly,
Tebebu et al. (2015) reflected that intensive cultivation after
the clearance of forests shorten the duration to peak flow in
rivers after a storm event because of the major modification
in the length of the flow path of the subsurface flow as a result
of impermeable layers. Thus, it is reasonable to examine the
formation of hardpans associated with land use changes.
Consequently, the objectives of this study are to investigate
the differences in soil physical and chemical properties under
original forest and converted lands and to better understand
hardpan formation associated with land use changes.

MATERIALS AND METHODS

Description of Study Areas

This study was carried out in two watersheds in the humid
highlands of Ethiopia, namely, the Anjeni and Debre Mewi
watersheds (Figure 1). Like elsewhere in the humid Ethio-
pian highlands, small holder farmers in these watersheds
rely on rainwater to grow crops. Tillage operations are con-
ducted using a traditional oxen pulled, single-tooth cultiva-
tor, Maresha, at shallow depth of 10–15 cm. Farming
systems in both watersheds are a mixture of crop and live-
stock production. The main land uses are cultivated land
(more than 90%), communal grazing land and some natural
forest land left mainly around the Orthodox Christian church
yard. The forest land at the church compounds has never

been tilled or grazed and is therefore assumed to represent
the original soil profile.
The Anjeni watershed (10°400N, 37°310E) is located

320 km northwest of Addis Ababa south of the Choke
Mountains. The watershed is one of the experimental
stations established under the Soil Conservation Research
Program with the collaboration of the Ethiopian Ministry
of Agriculture and the Swiss Agency for Development and
Cooperation in the 1980s (Hurni et al., 2005). The water-
shed, covers 113 ha, is oriented north to south and flanked
on three sides (northeast, north and northwest) by plateau
ridges with elevation ranges from 2407 to 2507 m
(Table I). On average, the watershed receives 1700 mm rain
annually with 16°C mean daily temperature (Setegn et al.,
2010; Bayabil et al., 2015). Soils have developed from
basalt and volcanic ash, with dominant soil types being
Alisols, Cambisols and Nitosols (Hurni et al., 2005;
Tilahun, 2012; Tilahun et al., 2013). Graded soil bunds have
been employed since the mid 1980s to reduce erosion. Most
of the grazing (pasture) land in the Anjeni watershed is
located on the degraded hill slopes at the northwest side of
the watershed while the croplands are in the downslope,
midslope and non-degraded upper slope areas of the three
sides. The forest land is located in the upper slope at the
northwest side.
The second watershed, Debre Mewi (37°240E, 11°200N),

is located 200 km north of Anjeni, approximately 30 km
south of Lake Tana, Bahir Dar. The total land area of the
watershed is 523 ha; for this study, sampling was performed
in a 95-ha sub-watershed where elevations ranged from
2187 to 2345 m. Mean annual rainfall in the watershed is
1250 mm, and the mean daily temperature is 20°C
(Table I). Soils have developed from highly weathered and
fractured basalt, with Nitosols and Vertisols being the dom-
inant soil types (Abiy, 2009; Tebebu et al., 2010). Since
early 2012, intensive soil and water conservation practices
have been implemented that consist of soil bunds and
Fanya-Juu with deep furrows (Dagnew et al., 2015).
Fanya-Juu (‘throw uphill’ in Swahili language) bunds are
constructed by digging a trench and throwing the removed
soil uphill to form a bund. Pasture lands are found in the
low lying periodically saturated areas, while cropland is
found on the middle and upper slopes where it is intermixed
with brush on the shallower soils.

Field Measurements and Soil Sampling During the
Cropping Season of 2014

In each watershed, three land uses were selected: cultivated
(crop), pasture and adjacent natural forest lands for
performing the soil penetration tests and to collect soil
samples. In the humid and sub humid highlands of
Ethiopia, most forest lands have been converted to
cultivated and pasture lands, and very few patches of forest
are left. These patches are found in churchyards. Sampling
in these protected churchyards can offer an exclusive look
into what the original soils in the area must have looked like
and thus can give insight into the effects of forest clearing
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and land use change on soil degradation in the form of
hardpans and the related effects on limited crop water avail-
ability, disruption of local hydrology and gully formation.
Since soil penetration resistance (SPR) varies with

moisture content (Hamza & Anderson, 2005), sampling
was performed in the wet and dry seasons. The wet season
set of measurements was performed at the beginning of the
growing season in July 2014, following a rain event that

brought the soil to field capacity. At this set of measure-
ments, all sampling locations were located with GPS units
(horizontal accuracy ~2·5 m) to revisit exact locations
during the dry season set of measurements. For each season,
using a handheld cone penetrometer (DICKEY-john TM
Soil Compaction Tester, Ben Meadows Company,
Janesville, WI, USA) at 117 and 63 locations, SPR measure-
ments were taken in Anjeni and Debre Mewi watersheds,

Figure 1. Location of study watersheds in the Blue Nile Basin: (a) map of Ethiopia, (b) Anjeni and (c) Debre Mewi. [Colour figure can be viewed at
wileyonlinelibrary.com]
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respectively. The sampling density was determined system-
atically based on the watersheds homogeneity and the size
of each land use in the watershed.
In the Anjeni watershed, cultivated land is distributed on

the three sides, and thus, for each side, three representative
locations were systematically selected at the upper, middle
and low slopes. Pasture land is located only in the northwest
side, and three sampling locations were selected at the three
slopes. Because of the size of the forest land, only three
locations were selected. For each sampling location, SPR
measurements were taken from 0 to 15 cm, 15 to 30 cm
and 30 to 45 cm consecutive depths. The sampling design
yielded a subtotal of 51, 27 and 9 sampling points at culti-
vated, pasture and forest lands, respectively. Because of its
smaller size and a relative homogeneity in watershed charac-
teristics, lesser number of sampling locations were selected
in Debre Mewi. For each of the cultivated and pasture lands,
three representative sampling locations were chosen at the
upper, middle and lower slopes. In forest land, three loca-
tions were selected. Similar to Anjeni, measurements and
samples for each location were taken from three consecutive
depths at 15 cm increments and the design yielded a subtotal
of 27, 27 and 9 sampling points for cultivated, pasture and
forest lands, respectively. At the same time during the wet
season set of SPR measurements, 500 g disturbed soil sam-
ples were collected at all three SPR profiles for analysis of
texture, soil organic carbon (SOC) content, pH, exchange-
able cations (Ca2+, Mg2+, K+, and Na+), cation exchange
capacity (CEC) and silicon. In addition, one soil core
(5 cm high, 5 cm diameter) was taken at 5, 20 and 35 cm
depth at all SPR profiles for analysis of dry bulk density.
Volumetric soil moisture readings at all sampling locations
were collected with time domain reflectometry probes
(FieldScout TDR 100 Soil moisture meter, Spectrum
Technologies, Inc., Aurora, IL, USA) using 20 cm long
rod at 0–20, 20–40 and 40–60 cm depth.
The dry season set of SPR measurements with volumetric

soil water contents were taken after crop harvest in
December 2014 by revisiting the same locations as the wet
season set of measurements. Soil sampling was not repeated
in the drier season.

Laboratory Analyses

Soil laboratory analyses were performed at Adet Agricul-
tural Research Center and Bahir Dar University (Ethiopia)
and Cornell University (USA). Disturbed soil samples were
air dried and passed through a 2-mm sieve before analyses.
The particle size distribution was determined following
Bouyoucos hydrometer procedure (Sahilemedhin & Taye,
2000). SOC was determined following the Walkley and

Black procedure wet digestion method (Sahilemedhin &
Taye, 2000). Soil organic matter, SOM, was estimated by
multiplying SOC by a factor of 1·724. The pH was measured
with the pH-water method using a 1:2·5 soil/water
suspension following the procedure described by
Sahilemedhin and Taye (2000). Exchangeable base cations
(Ca2+, Mg2+, K+ and Na+) contents and CEC were
determined using inductively coupled plasma spectrometry.
Similarly, silica content was determined after measuring
Silicon using inductively coupled plasma emission
spectrometry (ICP_ES) by Thermo, model iCAP 6100. Bulk
density was determined after oven drying undisturbed soil
cores at 105°C for 24 h.

Statistical Analyses

Descriptive statistics (minimum, maximum, mean, standard
deviation and coefficient of variation) of SPR were
determined separately for each land use at each depth for
the two watersheds. Statistical data analysis was performed
using R (R Development Core Team 2014) and ‘lme4’ pack-
age (Bates et al., 2014). A linear mixed effect model was
fitted to test the effect of land use change and soil depth
on soil degradation. In the fitted model, land use type and
soil depth were used as fixed effects and sampling locations
was used as random factors. Post hoc mean comparison tests
for the significant effects of fixed factors were performed
using ‘lsmeans’ package. All significant tests were per-
formed at a significance level of (p < 0·05) unless specified.
In addition, the relationship between SPR and studied soil
parameters were determined using nonlinear and linear
regression models, and variables with better correlations
were identified.

RESULTS

Assessment of SPR across the three land uses are presented
first followed by the differences in soil properties among all
the three land uses and the relationships between SPR and
measured soil physical properties. The discussion mainly
focuses on measurements taken in July, because they were
taken during the growing season and the difference in mois-
ture contents between the land uses were small. Results from
the drier period, measured after crop harvest (in December),
are presented in the supplementary material and only
discussed briefly in the text.

Soil penetration resistance, bulk density and soil water
content

Descriptive statistics of SPR measurements and selected soil
physical characteristics for the three land uses at three soil

Table I. Summary of characteristics of study sites

Watershed Area (ha) Mean annual
precipitation (mm)

Dominant soil type Dominant conservation practice

Anjeni 113 1700 Alisols, Cambisols and Nitosols Graded soil bunds
Debre Mewi 95 1250 Nitosols and Vertisols Soil bunds and Fanya-Juu with deep furrows
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depths are presented in Figures 2, 3 and 4 and Tables S1, S2
and S3.
For the three land uses, SPR varied between 34 kPa for

forest soils and 4137 kPa for cultivated lands. Debre Mewi
had relatively greater mean SPR values than that of the
respective land uses of Anjeni watershed. In Anjeni,
observed mean SPR values were 141 kPa (forest land),
1776 kPa (cultivated land) and 1948 kPa (pasture land),
while in Debre Mewi observed means were 326 kPa (forest
land), 1861 kPa (cultivated land) and 2074 kPa (pasture
land) (Figure 2a,b).
As expected, SPR was significantly greater in cultivated

and pasture lands than that of the nearby forest churchyard
lands in both watersheds (Figure 2a,b). SPR increased with
depth in both watersheds for all three land uses (Figure 3a,
b). Surface soils of pasture lands had greater SPR than the
cultivated lands; however, differences were significant only
for Anjeni. Below 15 cm SPR readings from both pasture
and cultivated soils were significantly greater than that of
forest soils; however, there was no significant difference
between pasture and cultivated lands.
An SPR value of 2000 kPa indicates the presence of hard-

pan, where roots cannot penetrate, and soil water movement
is restricted (Taylor & Gardner, 1963; Hamza & Anderson,
2005). Overall, over 58% of the total observations and
70% of the subsoil (below 15 cm) observations in cultivated
and pasture lands in the Debre Mewi watershed had SPR
values of 2000 kPa or greater, whereas in the Anjeni
watershed, only 37% of the total observations and 47% of
the subsoil observations in the agricultural (cultivated and
pasture) lands were above the critical threshold value. In
contrast to the agricultural lands, the forest soils that were
never tilled had all SPR measurements distinctly below the
critical threshold value of 2000 kPa. The increase of SPR
with depth for the forest lands is a natural phenomenon
(Litchfield & Mabbutt, 1962) where clay particles migrate
downward through macropores to a deeper depth than for
the agricultural soils because only part of the soil profile
takes part in the transport allowing the particles to travel to
greater depth before settling out.

Mean bulk density of cultivated and pasture lands were sig-
nificantly greater than that of forest lands (Figure 3c,d). Mean
volumetric soil water content during the measurement period
(wet season) ranged from 44% to 48% in the Anjeni and 45%
to 56% in the Debre Mewi watersheds (Figure 3e,f).
Although there were no significant differences for the forest
soils, the mean soil water content values were greatest at the
40–60 cm depth, which could likely be due to bypass flow
through the first 45 cm of soil.
Mean SPR measured in December, after crop harvest,

showed an increase for all land uses (Figure 2c,d) in both
watersheds. This increase was associated with the decrease
in soil water content. On average, SPR increased by 82%
in forest land, 47% in cultivated land and 36% in pasture
land, while soil water content decreased by 25% in forest,
40% in cultivated and 70% in pasture lands.

Soil Properties

To understand the underlying reasons for the increase in
SPR (Figure 3 and S1 and Table S3) after conversion of
forest to agricultural land, we examined a number of soil
physical and chemical properties including texture, SOM,
divalent exchangeable base cations, CEC, pH and silica
content. Mean percentage of fine particles (clay plus silt)
was significantly greater in agricultural fields of both water-
sheds at all sampling depths than that of forest lands
adjacent to the agricultural fields (Figure 4a,b). Sand and
fine fractions were not significantly different between
cultivated and pasture lands. In Anjeni watershed, the mean
percentage of fine particles was especially remarkable at the
surface soil in the forest (40%) and almost 80% in the agri-
cultural lands after conversion and implementation of soil
and water conservation practices.
The mean SOM content for the forest soil (varying

between 6% and 11% depending on the depth) was two to
three times greater than for cultivated land in both watersheds
(Figure 4c,d). Pasture lands had greater SOM than that of the
cultivated lands at all sampling depths of both watersheds,
and the difference was significant in Anjeni (Figure 4c).
The pH for the cultivated and pasture lands showed

Figure 2. Mean soil penetration resistances for the three land uses in Anjeni and Debre Mewi watersheds measured in July during crop growing period and in
December after crop harvest. Error bars represent a standard error around the mean values. For each watershed, letters followed by different letter are signif-

icantly different (p < 0·05). [Colour figure can be viewed at wileyonlinelibrary.com]
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significantly lower pH (between 5 and 6) than that of forest
soils (near neutral) at all sampling depths in both watersheds
(Figure 4e,f). Similarly, CEC was significantly lower in
agricultural fields as compared with that of forest lands at
all sampling depths of both watersheds (Figure 4g,h). The
CEC of pasture and cultivated lands was less than
30 cmolc kg

�1 in Anjeni and was relatively greater (around
35 cmolc kg

�1) in pasture lands in Debre Mewi of.
Divalent exchangeable base cations (Ca2+ and Mg2+)

showed a significant difference between agricultural fields
and forest lands. However, the amount of monovalent
cations (Na+ and K+) in both watersheds was negligible.
Exchangeable Ca2+ was significantly greater in forest lands
than that of agricultural fields at all sampling depths in both
watersheds (Table S3); however, there was no consistent
trend in terms of Mg2+ content among land uses in the two
watersheds. In Anjeni watershed, mean Mg2+ was
significantly greater in cultivated lands than pasture lands
at both sampling depths. It was relatively similar in pasture
and forest lands. In Debre Mewi watershed, pasture land
had significantly lower Mg2+ than that of cultivated and
forest lands, but the latter two land uses had a relatively
similar Mg2+.

Soluble silica content analysis was performed for the sur-
face soil samples. Results (Figure 5a,b) show that, in both
watersheds, forest land had significantly greater silica
content: 120 cmolc kg

�1 in Anjeni and 200 cmolc kg
�1 in

Debre Mewi than that of cultivated; 43 cmolc kg
�1 in Anjeni

and 131 cmolc kg�1 in Debre Mewi and pasture land;
65 cmolc kg

�1 in Anjeni and 115 cmolc kg
�1 in Debre Mewi.

Silica content in pasture land was significantly greater
compared with cultivated land in Anjeni (Figure 5a) while it
was relatively greater in cultivated land as compared with
pasture land (Figure 5b).

DISCUSSION

Assessment of Soil Penetration Resistance

Mean SPR values in the agricultural fields (Figure 3a,b) are
within the normal range reported in other studies in
Ethiopia. For instance, Temesgen et al. (2012a) found a range
of 500–3500 kPa in the cultivated lands of Enerta watershed,
located at Choke Mountain in the humid highlands, and
Biazin et al. (2011) found a range of 200–1780 kPa in the
grazing and cultivated fields of Central Rift Valley in the

Figure 3. Soil properties for forest, cultivated and pasture lands measured in July during crop growing period: soil penetration resistances, bulk density and
volumetric soil water content for Anjeni (a, c and e, respectively) and Debre Mewi (b, d and f) watersheds. Soil penetration resistance and bulk density were
measured at 15 cm increments while soil water content was measured at 20 cm increments. For each watershed, values with different letters at a given depth on
a given land use are statistically significant at p < 0·05. For each watershed, bold letters with different letters are significantly different at p < 0.05 for each

depth. Regular letters in (a) refer to significant differences at a particular depth. [Colour figure can be viewed at wileyonlinelibrary.com]
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semi-arid region. Comparison of our measurements to the
previous studies indicates that SPR in the humid region is rel-
atively greater than that of the semi-arid region. The signifi-
cant rise in penetration resistance (2000 kPa or above),
starting at a depth of 15–30 cm suggests the occurrence of

restrictive soil layers (i.e. hardpans) in the subsoil of agricul-
tural fields. This finding is in agreement with the elevated
penetration resistance of soil below 10 cm reaching its maxi-
mum at a depth of 18–25 cm in the studies of Leye (2007),
Temesgen et al. (2012a), Temesgen et al. (2012b) and Biazin

Figure 4. Mean values of selected soil parameters are as follows: fine particles (clay plus silt content), pH, soil organic matter content (SOM), cation exchange
capacity (CEC) for Anjeni (a, c, e, and g, respectively) and Debre Mewi (b, d, f and h, respectively) watersheds. For each watershed, bold letters with different
letters are significantly different at p < 0·05 for each depth for the forest, pasture and cultivated land. Regular letters in (h) refer to a particular depth. [Colour

figure can be viewed at wileyonlinelibrary.com]

Figure 5. Mean silica content at forest, cultivated and pasture lands of the Anjeni and Debre Mewi watersheds. Values with different letters at a given land use
are significantly different at p < 0·05. [Colour figure can be viewed at wileyonlinelibrary.com]
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et al. (2011). The smaller SPR in forest land indicates the ab-
sence of a hardpan in the original soils. The increase of SPR
with depth in forest land indicates the existence of natural
processes where clay minerals are slowly migrating down-
ward to deeper depths.
The greater SPR in pasture land than that of crop land at

the top surface in both watersheds (Figure 3a,b) is either as-
sociated with cattle trafficking during wet condition in the
pasture or with loosing up the soil in the top 10–15 cm by
theMaresha plow on cultivated land. Mwendera and Saleem
(1997) found greater soil compaction in the farm plots of
Debre Zeit with an increased number of cattle passes.
An increment of SPR in the drier season in December

measurement as compared with that of the wet season in
July (Figure 2c,d) indicates the dependency of SPR on soil
water content. Results from Vaz et al. (2011) and de Moraes
et al. (2013) corroborate our findings by demonstrating that
a decrease in soil water content increases SPR.

Relationships of SPR and Soil Properties
The relationships between SPR and some of the measured soil
parameters were well explained by a power type equation as
shown in Figure 6 and by a linear relationship in Tables S4
and S5. The relationship between SPR and fine particles was
positive and significant (R2 = 0·37 in Anjeni, Figure 6a; and
R2 = 0·68 in Debre Mewi, Figure 6b). This relationship is
in agreement with the findings of Zisa et al. (1980) who
reported that soils with a large amount of fine particles have
smaller pore diameter and higher resistance to penetration
than soils with large amount of coarse particles.
The SPR was significantly (negatively) correlated with

SOM (R2 = 0·66 in Anjeni, Figure 6c; and R2 = 0·76 in
Debre Mewi, Figure 6d). Likewise, the relationship between
fine particles and SOM was significant and negative
(R2 = 0·68 in Anjeni, Figure 6e; and R2 = 0·68 in Debre
Mewi, Figure 6f). The negative relationship of SPR with
SOM indicates that a reduction of organic matter in the soil

Figure 6. The relationship between soil penetration resistance with soil organic matter and fine particles (clay plus silt content) and fine particles with soil or-
ganic matter in Anjeni (a, c and e, respectively) and Debre Mewi (b, d and f, respectively) watersheds. *Significant at p < 0·05 level; ** significant at p < 0·01

level; and *** significant at p < 0·001 level. [Colour figure can be viewed at wileyonlinelibrary.com]
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decreases the binding potential of soil aggregates that pro-
motes the development of good soil structure. Similarly,
Wortmann and Jasa (2003) and Hoorman et al. (2011) stated
that soils with lower organic matter content are more suscep-
tible to soil compaction than those with higher organic
matter content. Combining results from all land uses showed
that the values at the lower tails (i.e. low SPR and low fine
particles, low SPR and high SOM, and low fine particles
and high SOM) are soils from forest lands.
As expected, bulk density was positively correlated with

SPR. The correlation coefficients were significant
(R2 = 0·40 in Anjeni and R2 = 0·63 in Debre Mewi,
Tables S4 and S5). The relationship between pH and basic
cations was positive. In particular, the correlation between
pH and Ca2+ was significant (R2 = 0·54 in Anjeni and
R2 = 0·76 in Debre Mewi). The relationship of pH with basic
cations (Ca2+) mainly shows that acidic pH in agricultural
fields allows the basic cations, particularly Ca2+, to leach
because of the replacement of cations on exchange sites by
acidic cations, H+ and Al species (Haynes & Swift, 1986).
In addition, reduction of CEC in agricultural fields aggra-
vates the reduction of pH.

Effect of Land Use on Soil Properties and Hardpans
Formation

In this study, comparison of soil physical and chemical prop-
erties between never-tilled forest lands and agricultural fields
(Figures 3, 4 and 5 and Table S3) suggest that soils in the
agricultural fields were originally characterized by high
organic matter content, high CEC, high exchangeable base
cations, a neutral pH, high soluble silica and low bulk density.
But due to a prolonged use of land for agriculture, such soil
properties are deteriorated over time. They have become
lower in SOM content, exchangeable basic cations (particu-
larly Ca2+), CEC, higher in finer particles (clay and silt
content), bulk density and insoluble silica and acidic in pH.
The elevated levels of SOM, soluble silica, pH and divalent

ions in forest soils (Figures 3 and 4a,b) bind soil particles
together as aggregates and provide a good soil structure.
Decrease in organic matter content and other binding agents
in the cultivated and pasture fields breaks up aggregates
(Tisdall & Oades, 1982; Zhou et al., 2013), and this is the
reason that cultivated and pasture soils have a finer texture
than forest soils (Figure 3a,b). Fine particles are likely to be
easily dislodged by splashing raindrops than coarse aggre-
gates (McIntyre, 1958), have a lower settling velocity once
entrained in the water and staymuch longer in suspension than
large aggregates (Hjulstrom, 1939). This degradation process
is reflected in increasing sediment concentration in the rivers
of the Ethiopian highlands during the last 40 years (Steenhuis
et al., 2009; Steenhuis & Tilahun, 2014).
In addition, reduced soluble silica in the agricultural fields

indicates its availability in the insoluble form. This situation
favors binding of clay particles. The process is aggravated
by the climatic condition of the region (humid climate). Wet
climatic conditions increase clay deposition and silica cemen-
tation at the lower profiles (Litchfield & Mabbutt, 1962).

Based on our results previously, the enhanced anthropo-
genic formation of hardpans can be explained as follows:
most of the rainwater infiltrates in unsaturated soils because
saturated hydraulic conductivities are extremely high in for-
est soils and soils derived from volcanic material (Mendoza
& Steenhuis, 2002; Hanson et al., 2004; Bayabil et al.,
2010). Initially, under forest conditions where the organic
matter concentrations are high and base cations are not
leached, sediment concentrations in the water are extremely
low and consist mainly of colloidal matter that infiltrates be-
low 45 cm where the penetration resistance (Figure 3a,b),
bulk density (Figure 3c,d) and the percentage of fine particles
(Figure 4a,b) are greater than at the surface. Once the forests
are cut down and the soil is plowed, the organic matter and
other binding agents decrease, and the aggregates become
unstable, raindrops pick up the fine sediment that moves
down in the profile and settles into the pores.When the down-
ward moving water stops, these sediment plugs pore in the
top part (60 cm) of the profile as shown in Figure 7.
In agreement with our findings, other studies have shown

that most agricultural activities in the rainfed agricultural
system of Ethiopian highlands reduce soil quality. For
instance, Emiru and Gebrekidan (2013) and Habtamu et al.
(2014) noted that complete removal of crop residues after
crop harvest for the purpose of animal fodder and fuel wood
consumption increases loss of SOM. Likewise, Temesgen
et al. (2009) showed repeated tillage for the purpose of soil
turnover causes excessive soil pulverization, resulting in
poor soil structure. In addition, Mwendera and Saleem
(1997) and Tebebu et al. (2010) reported that clearing of

Figure 7. A degraded soil profile: the original flow paths are only present in
the lower part of the profile (below 60 cm): (a) top soils with large pores filled
with surface soil and (b) original macroporous network is still visible.

[Colour figure can be viewed at wileyonlinelibrary.com]
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vegetation and overgrazing is accelerating soil erosion and
runoff. Soil erosion and runoff facilitate strong leaching of
exchangeable cations particularly Ca2+ and Mg2+ (Hodnett
& Tomasella, 2002; Emiru & Gebrekidan, 2013), which also
results in an increase in soil acidity. Besides, continuous
weathering processes ( Hodnett & Tomasella, 2002; Amare
et al., 2013) and continuous use of ammonium source
fertilizers (Emiru & Gebrekidan, 2013) increase soil acidity.

CONCLUSIONS

Agricultural fields in Anjeni and Debre Mewi watersheds
have hardpans that impede root growth and restrict soil
water movement. Our results show that hardpan formation
is linked with the conversion of a forest ecosystem to agri-
cultural use. In the past, when population pressure was
low, shifting cultivation with long fallow periods was
practiced. Organic matter levels remained high and hardpans
did not form. However, recently, due to increasing popula-
tion (96·5 million with 2·9% annual growth), land has
become intensively cultivated, resulting in a loss of organic
matter, leaching of base cations, disintegration of aggregates
and increased sediment concentrations in overland flow. The
sediment laden water that infiltrates is accelerating hardpan
formation by plugging up the large pores. The overall
findings of this study imply that hardpans in degraded soils
are common in the humid Ethiopian highlands. Management
interventions to decrease runoff and soil loss from the
uplands should include increasing long-term infiltration
rates through the hardpans.
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Table S1. Statistical summary of soil penetration resistance
(SPR, kPa) and volumetric soil water content (SWC, %) in
Anjeni and Debre Mewi watersheds measured under the
three land uses during crop growing period. Measurements
are at three depths: at 15 cm increments for SPR and 20 in-
crements for SWC.
Table S2. Statistical summary of soil penetration resistance
(SPR, kPa) and volumetric soil water content (%) in Anjeni
and Debre Mewi watersheds measured under the three land
uses after crop harvest. Measurements are at three depths:
at 15 cm increments for SPR and 20 increments for SWC.
Table S3. Mean exchangeable base cations (Ca2+, Mg2+,
K+ and Na+) as a function of land use. For each water-
shed at each soil parameter, land uses followed by the
same letters are not significantly different at (p < 0·05).
Table S4. Correlation between SPR and soil properties in
the Anjeni watershed (Pearson correlation).
Table S5. Correlation between SPR and soil properties in
the Debre Mewi watershed (Pearson correlation).
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