Effect of oxygen level and dietary composition on growth performance and intestinal morphology in Nile Tilapia (*Oreochromis niloticus*)

Kim N.T. Tran^{1,2}, Ngu Dinh², Thinh Nguyen², Arjen Roem¹, Johan Schrama¹, Johan Verreth¹

¹Aquaculture and Fisheries Group, Wageningen UR, the Netherlands

²Nong Lam University, Ho Chi Minh City, Vietnam

<u>kim.tran@wur.nl</u> <u>tntkim@hcmuaf.edu.vn</u>

23 October 2015

Outline

- 1. Introduction
 - * Gut health overview

- * Hypothesis and objectives
- 2. Materials and Methods

3. Results and Discussions

4. Conclusions

Introduction: gut health overview

Introduction: Hypothesis and Objectives

For quality of life

Introduction: Aim of the study

Rich plant diet in combination with low oxygen level will disturb growth performance and gut morphology of Nile Tilapia

Materials and Methods

Diata

DO	Normoxia	Hypoxia
ppm	6.9 ± 0.2	3.5 ± 0.4
% saturation	80	40

2 diets x 2 oxygen levels
 x 3 triplicate tanks

- 30 Nile Tilapia (23 g)
- Fed 3% body weight for 8 weeks

	Diets		
	"Control" (C)	"Test" (T)	
Ingredient(%)			
Fish meal	20	-	
Soybean meal	21.3	54.5	
Rice bran	18	10	
DDGS*	20	10.7	
Cassava	13	13	
Analysed nutrient content on D	M basis (g kg ⁻¹)		
Dry matter (DM; gkg ⁻¹ diet)	924	930	
Crude protein	302	314	
Crude fat	81	86	
Total carbohydrates ¹	517	518	
Ash	100	82	
Phosphorus	11	10	
Chromic oxide	16	15	

^{*}DDGS: distillers dried grains with soluble

^{**}DCP: di-calcium phosphate

Materials and Methods: measurement of gut morphology

Measurable and countable method are extended from semi-quantitative method developed at Wageningen University (Urán *et al.* 2008)

1. Number of goblet cell (GC) in μm^2 of villi

2. Number of eosinophilic granulocytes (EG) in µm² of villi

3. Thickness of lamina propria in µm

Submucosa

4. Thickness of submucosa in µm

Results: Growth performance

Feed intake = 2.4 %bw.d⁻¹

Oxy**
Int. NS

Feed conversion ratio

Time effects (Week x Diet x Oxy)	Foregut	Midgut	Hindgut
Submucosa	-	-	-
Lamina propria	*	-	-
Goblet cells	*	-	-
Eosinophilic granulocytes	-	-	*

Later Library

Hypoxia + Test diet → the largest thickness of SM

Main effects	Oxy	Diet	Oxy x Diet
Foregut	**	***	*
Midgut	*	***	-
Hindgut	**	***	-

Hypoxia + Test diet → the largest thickness of LP

Main effects	Oxy	Diet	Oxy x Diet
Foregut	***	**	-
Midgut	**	***	-
Hindgut	-	***	-

Main effects	Oxy	Diet	Oxy x Diet
Foregut	-	-	-
Midgut	-	*	-
Hindgut	-	**	-

Main effects	Oxy	Diet	Oxy x Diet
Foregut	-	-	-
Midgut	_	*	_
Hindgut	-	-	**

Conclusions

Growth performance in term of final body weight, specific growth rate, feed conversion ratio were significant worse for fish fed with the rich-plant diet and this was further worsened under hypoxia

The rich-plant diet in combination with hypoxia induced morphological signs of intestinal disorders:

- Increasing the thickness of SM and LP at foregut
- Increasing the number of GC and EG at mid and hindgut

Under hypoxia condition and feeding rich-plant diet, tilapia did not show recovery signs in term of LP and GC. However, EG may indicate that tilapia can adapt to rich-plant diet feeding to reduce allergy response

Thank you

