

Conserving wheat straw and fungal treated wheat straw through ensiling

Authors: L. Mao¹, J.W. Cone¹, A.S.M. Sonnenberg², W.H. Hendriks¹, J.L.M. Marchal¹

Background

White rot fungi have the potential to degrade lignin of lignified biomass, and make carbohydrates available to rumen microorganisms. However, solid state fermentation should be stopped before fungi start consuming more carbohydrates. Therefore, conserving methods of fungal treated biomass need to be explored.

Figure 1. Chemical composition and in vitro gas production of wheat straw treated with C. subvermispora and L. edodes

Results

Figure 2. pH change of wheat straw during 64 days of conservation.

Objective

Investigating the possibility of conserving fungal treated wheat straw under anaerobic condition. The fungi used in the current experiment were Ceriporiopsis subvermispora (CS) and Lentinula edodes (LE).

Methods

Spawn: 12-13g

Figure 3. pH change of *C. subvermispora* treated wheat straw during 64 days of conservation

Treatment	Without additives	With lactic acid bacteria	With lactic acid bacteria and molasses	
WS	Wheat Straw	WS+ LAB	WS+ LAB+M	
AWS	Autoclaved Wheat Straw	AWS+LAB	AWS+LAB+M	
CS	C. subvermispora+AWS	CS+AWS+LAB	CS+AWS+LAB+M	<u>F</u>
LE	<i>L. edodes</i> +AWS	LE+AWS+LAB	LE+AWS+LAB+M	V

LAB: Lactobacillus plantarum $(1 \times 10^6 \text{ cfu/g wet sample})$ M: Molasses (3% on wet basis)

64 days

Figure 4. pH change of *L. edodes* treated wheat straw during 64 days of conservation

Conclusions

Both C. subvermispora and L. edodes decreased pH during solid state fermentation, which make it possible for fungal treated wheat straw conserve under anaerobic condition without adding additives.

Wageningen University & Research P.O. Box 338, 6700 AH Wageningen Contact: lei.mao@wur.nl

¹Animal Nutrition Group, Wageningen University, Wageningen, The Netherlands ²Plant Breeding, Wageningen University, Wageningen, The Netherlands