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Abstract 

Improving the efficiency of photosynthesis could contribute to better food security under an 

unprecedented rise in global population and climate-change. The photosynthesis pathway in 

C4 plants, such as maize (Zea mays L.), Miscanthus (Miscanthus x giganteus), and sugarcane 

(Saccharum officinarum L.), results in higher productivity and photosynthetic nitrogen and 

water-use efficiencies than in C3 plants. The mechanism of photosynthesis in C4 crops 

depends on the archetypal Kranz anatomy, which determines the leaf internal environment, for 

it influences gas diffusion and light distribution. The low permeability of bundle sheath cell 

walls to CO2 (gbs) and the high CO2 conductance of mesophyll cells (gm) are crucial for a high 

C4 photosynthetic efficiency. So far, the relationship between leaf anatomical properties and 

CO2 conductances such as gbs and gm in C4 plants received less attention than in C3 plants. In 

addition, these conductances lump a number of anatomical features; mechanistic 

understanding of the role of each microstructure element in the efficiency of photosynthesis is, 

therefore, limited. Furthermore, there are only few studies addressing the potential limitations 

of C4 leaf anatomy on light propagation and efficiency of photosynthesis.  

To investigate the role of leaf anatomy, as altered by leaf nitrogen content and age on the 

efficiency of C4 photosynthesis, maize (Zea mays L.) plants were grown under three 

contrasting nitrogen levels. Combined gas exchange and chlorophyll fluorescence 

measurements were carried out on fully grown leaves at two leaf ages: young and old. The 

measured data were combined with a biochemical model of C4 photosynthesis to estimate gbs. 

The leaf microstructure and ultrastructure were quantified using images obtained from micro-

computed tomography and microscopy. Increased nitrogen supply resulted in higher leaf 

nitrogen content and rate of photosynthesis, whereas leaf aging decreased them. There was a 

strong positive correlation between gbs and leaf nitrogen content (LNC) while old leaves had 

lower gbs than young leaves. gm also increased with LNC and decreased with leaf aging. The 

increase of gbs with LNC was little explained by a change in leaf anatomy. By contrast, the 

combined effects of LNC and leaf age on anatomical features were responsible for differences 

in gbs between young leaves and old leaves. It is recommended that changes in the leaf 

ultrastructure at levels of membranes and plasmodesmata should be investigated to unravel the 

relationship between anatomy and CO2 conductances further. Furthermore, since gbs thus 

estimated, lumps a number of microstructural features, the contribution of each individual leaf 
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microstructural feature could not be determined. Therefore, a microscale modeling approach 

that accounts for each leaf microstructural and ultrastructural features is recommended. 

A two-dimensional microscale model of gas diffusion and photosynthesis in C4 leaves that 

incorporates the physical obstructions of leaf anatomy and ultrastructure on gas transport was 

developed. The leaf anatomical geometry was developed from light microscopy images of the 

same leaf that was also used in gas exchange measurements. Features such as cell walls, 

biological membranes, plasmodesmata and suberin layers around bundle sheath cell walls 

were modeled as resistances. Reaction-diffusion equations for CO2 and bicarbonate in liquid 

phase media were developed and discretized over the two-dimensional leaf geometry. The 

model predicted the responses of photosynthesis to irradiance and intercellular CO2 in 

agreement with that obtained from measurement. The impact of components of the CO2 

diffusion pathway on photosynthesis was evaluated quantitatively. The CO2 permeability of 

the mesophyll-bundle sheath and air space-mesophyll interfaces strongly affected the rate of 

photosynthesis and gbs. Carbonic anhydrase influenced the rate of photosynthesis, especially at 

low intercellular CO2 levels. In addition, the suberin layer at the exposed surface of the bundle 

sheath cells was found beneficial in reducing the retro-diffusion of CO2. 

One or two-dimensional gas transport models, when applied to analyze the gas diffusion in 

leaves understate the three-dimensional nature of gas exchange. Therefore, a 3-D microscale 

model incorporating the actual leaf microstructure was developed. The distribution of light 

through the leaf tissue was modeled using an adapted Monte Carlo photon transport method. 

Diffusion of CO2 and O2 was coupled with C4 photosynthesis kinetics and a model of light 

penetration inside the leaf tissue. The temperature dependency of biochemical and biophysical 

parameters was incorporated. The typical Kranz-anatomy of the leaf tissue caused large 

gradients of light intensity and concentration of gases. Maximum photosynthesis at low 

leakiness was obtained when chlorophyll contents of mesophyll and bundle sheath cells were 

equal. At elevated CO2, photosynthesis in bundle sheath cells of juvenile leaves could 

potentially be supported by direct diffusion. Simulations also suggest that the effect of 

temperature on biophysical processes, in contrast to that on biochemical processes, has little 

influence on the temperature response of C4 photosynthesis and leakiness. In addition, a 

systematic analysis showed that cytosolic CO2 release due to decarboxylation of C4 acids 

would reduce the efficiency of photosynthesis only moderately. The model may serve as a tool 

to further investigate improving C4 photosynthesis in relation to gas exchange and light 

propagation.
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Beknopte samenvatting 

Het verbeteren van de efficiëntie van de fotosynthese kan bijdragen tot een betere 

voedselzekerheid in het kader van een stijging van de wereldbevolking zonder weerga en 

klimaatsverandering. De fotosyntheseroute in C4-planten zoals maïs (Zea mays L.), 

Miscanthus (Miscanthus x giganteus) en suikerriet (Saccharum officinarum L.), resulteert in 

een hogere productiviteit en efficiëntie van fotosynthetisch stikstof- en waterverbruik 

vergeleken met deze in C3-planten. Het mechanisme van de fotosynthese in C4-planten hangt 

af van de archetypische Kranz-anatomie, die de interne omgeving van het blad bepaalt en zo 

de diffusie van gas en de lichtdistributie beïnvloedt. Een lage permeabiliteit van de 

vaatbundelschedecellen voor CO2 (gbs) en een hoge geleidbaarheid van CO2 in de 

mesofylcellen (gm) zijn van cruciaal belang voor de efficiëntie van de C4-fotosynthese. De 

relatie tussen bladanatomische eigenschappen en CO2-geleidbaarheid, zoals gbs en gm, in C4-

planten was tot nu toe minder het onderwerp van onderzoek, in tegenstelling tot de situatie bij 

C3-planten. Bovendien voegen deze geleidbaarheden verschillende anatomische kenmerken 

samen, waardoor het mechanistisch begrip van de rol van elk afzonderlijk 

microstructuurelement met betrekking tot de efficiëntie van fotosynthese beperkt blijft. 

Tenslotte zijn er maar weinig studies over de mogelijke beperkingen door de C4-bladanatomie 

van lichtdoorlating en efficiëntie van fotosynthese. 

Om het effect van bladanatomie, zoals beïnvloed door de hoeveelheid stikstof per 

bladoppervlakte en bladleeftijd, op de efficiëntie van C4-fotosynthese te onderzoeken, werden 

maïs (Zea mays L.) planten bij drie contrasterende stikstofniveaus geteeld. Gecombineerde 

gasuitwisselings- en chlorofylfluorescentiemetingen werden uitgevoerd op volledig 

volgroeide bladeren tijdens twee bladleeftijden: jong en oud. De data van de metingen werden 

gecombineerd met een biochemisch model van de fotosynthese in C4-planten om de gbs te 

schatten. De micro –en ultrastructuur van het blad werden gekwantificeerd op basis van 

afbeeldingen verkregen met X-stralenmicrotomografie en microscopie. Een hogere stikstofgift 

resulteerde in een grotere hoeveelheid stikstof per bladoppervlakte en een hogere 

fotosynthesesnelheid, terwijl de snelheid van bladveroudering afnam. Er was een sterke 

positieve correlatie tussen gbs en de stikstofinhoud van het blad (LNC), terwijl oude bladeren 

een lagere gbs hadden dan jonge bladeren. gm nam ook toe met een toename van de LNC, maar 

nam af tijdens bladveroudering. De toename van gbs met LNC werd weinig verklaard door 
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verandering in bladanatomie. Daarentegen waren de gecombineerde effecten van LNC en 

bladleeftijd op de anatomische eigenschappen verantwoordelijk voor verschillen in gbs tussen 

jonge en oude bladeren. Het wordt aanbevolen de veranderingen in de ultrastructuur van het 

blad op het niveau van de membranen en plasmodesmata te onderzoeken om de relatie tussen 

anatomie en CO2 geleidbaarheid verder te achterhalen. Aangezien gbs, aldus geschat, een 

aantal microstructurele eigenschappen samenvoegt, kon de bijdrage van elke individuele 

microstructurele bladeigenschap niet worden vastgesteld. Daarom wordt een microschaal 

modelleeraanpak aanbevolen die rekening houdt met elke microstructurele en ultrastructurele 

bladeigenschap. 

Een tweedimensionaal microschaal model van gasuitwisseling en fotosynthese in C4-bladeren 

werd ontwikkeld, dat rekening houdt met de fysieke obstakels van de bladanatomie en 

ultrastructuur voor gastransport. De bladanatomische geometrie werd ontwikkeld op basis van 

lichtmicroscopiebeelden van hetzelfde blad dat was gebruikt voor de metingen van de 

gasuitwisseling. De ultrastructurele kenmerken, zoals celwanden, biologische membranen, 

plasmodesmata en suberinelagen rond de bundelschede-celwanden werden gemodelleerd als 

weerstanden. Reactie-diffusievergelijkingen voor CO2 en bicarbonaat in de vloeibare fase-

media werden ontwikkeld en gediscretiseerd over de tweedimensionale bladgeometrie. Het 

model voorspelde de reacties van fotosynthese op instraling en intercellulaire CO2 

overeenkomstig die verkregen via de meting. De effecten van de componenten van de CO2-

diffusieroute op de fotosynthese werden kwantitatief geëvalueerd. De CO2-permeabiliteit van 

de mesofylbundelschede en luchtruimte-mesofyl contactoppervlakken beïnvloedden in sterke 

mate de snelheid van fotosynthese en gbs. Koolzuuranhydrase beïnvloedde de snelheid van de 

fotosynthese, in het bijzonder bij lage intercellulaire CO2-niveaus. Daarnaast werd de 

suberine-laag op het blootgestelde oppervlak van de vaatbundelschedecellen voordelig 

bevonden voor het reduceren van retro-diffusie van CO2. 

Wanneer één of tweedimensionale gastransport modellen worden toegepast om de gasdiffusie 

in bladeren te analyseren, onderschatten zij duidelijk de driedimensionale natuur van 

gastransport. Daarom werd een 3-D-microschaal model gebaseerd op de actuele 

bladmicrostructuur ontwikkeld. De lichtdoordringing in het bladweefsel werd gemodelleerd 

gebruikmakend van een aangepaste Monte Carlo fotontransportmethode. Diffusie van CO2 en 

O2 werd gekoppeld aan de C4-fotosynthesekinetiek en een model van lichtpenetratie in het 
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bladweefsel. De temperatuurafhankelijkheid van biochemische en biofysische parameters 

werd in beschouwing genomen. De typische Kranz-anatomie van het bladweefsel 

veroorzaakte grote gradiënten in lichtintensiteit in het blad. Maximum fotosynthese bij lage 

lekkages werd verkregen wanneer de chlorofylgehalten in het mesofyl en in de 

vaatbundelschedecellencellen gelijk waren. Bij verhoogde CO2 kon de fotosynthese in de 

vaatbundelschedecellen van jonge bladeren potentieel worden ondersteund door directe 

diffusie. Simulaties suggereren ook dat het effect van temperatuur op biochemische processen 

sterker is dan het effect op biofysische processen in het bepalen van de temperatuurrespons 

van de fotosynthese en van vaatbundellekkage. Daarnaast toonde een systematische analyse 

aan dat de cytosolische CO2 afgifte ten gevolge van toenemende PSII-abundantie in de 

vaatbundelschedecellen of decarboxylatie van C4-zuren de efficiëntie van de fotosynthese 

reduceert. De ontwikkelde modellen kunnen dus dienen als een middel om de gasuitwisseling 

en C4-fotosynthese verder te onderzoeken. 
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Nomenclature 

Variables Definitions Units 

A
 

Net photosynthesis rate  mol m
-2 

s
-1

 

B  Net hydration of CO2 to bicarbonate µmol m
-2 

s
-1

 

C  Concentration of chemical species mol mol
-1

 

Ca Concentration of ambient CO2 mol mol
-1

 

cC  Mean CO2 concentration in bundle sheath chloroplast mol mol
-1

 

mC  Mean CO2 concentration in mesophyll cytosol mol mol
-1

 

D
 

Diffusivity of chemical species  m
2
 s

-1
 

DCO2
 Diffusivity of CO2  m

2
 s

-1
 

DHCO3

-
 Diffusivity of HCO3

-
  m

2
 s

-1
 

DO2
 Diffusivity of O2  m

2
 s

-1
 

d
 

Average thickness of leaf tissue  µm 

E Activation energy kJ mol
-1

 

oE  Rate of oxygen evolution in chloroplasts mol m
-2 

s
-1

 

f
 

Volume fraction of leaf microstructure components m
3
 m

-3
 

fchl 

Ratio of concentration of chlorophyll in bundle sheath to that 

of mesophyll cells 

Dimensionless 

ASPf  Fraction of CO2 release in bundle sheath cytosol Dimensionless 

'

mF  Maximum fluorescence yield in light Dimensionless 

sF  Steady state relative fluorescence yield Dimensionless 

totf  Total number of organelles per unit volume Number µm
-3
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bsg  Bundle sheath conductance  mmol m
-2 

s
-1

 

mg  Mesophyll conductance  mol m
-2 

s
-1

 

sg  Stomatal conductance  mol m
-2 

s
-1

 

H  Henry’s constant  Dimensionless 

H Energy of deactivation kJ mol
-1

 

[H ]
 

H
+
 concentration  mol L

-1
 

incI  Incident photon flux density  mol m
-2 

s
-1

 

J Flux of gases or bicarbonate through interfaces mol m
-2 

s
-1

 

j Potential electron transport rate mol m
-2 

s
-1

 

ATPj  Potential total rate of ATP production mol m
-2 

s
-1

 

maxj  Light-saturated rate of potential electron transport  mol m
-2

 s
-1

 

ak  Turnover rate of carbonic anhydrase enzyme  s
-1

 

1k  CO2 hydration velocity constant  s
-1

 

2k
 CO2 dehydration velocity constant s

-1 
 

Kbs Light absorbed per unit photosystem in bundle sheath cells Dimensionless 

2COK
 Michaelis-Menten constant for carbonic anhydrase hydration  µmol m

-3
 

eqK
 Equilibrium constant of carbonic anhydrase µmol m

-3
 

K  
Acid dissociation constant for H2CO3  mol L

-1
 

Km Light absorbed per unit photosystem in mesophyll cells Dimensionless 

,m CK  Michaelis-Menten constant of Rubisco for CO2  bar 

hK  
Michaelis-Menten constant of PEPc for HCO3

-
 M 

-
3HCO

K  Michaelis-Menten constant for carbonic anhydrase M 



 

xvi 

 

dehydration  

,m OK
 Michaelis-Menten constant of Rubisco for O2  mbar 

pK  Michaelis-Menten constant of PEPc for CO2  bar 

L
 

Rate of CO2 leakage from bundle sheath cells  mol m
-2 

s
-1

 

pdL  Length of mesophyll-bundle sheath interface  µm 

nb Base leaf nitrogen content g m
-2

 

P Permeability of biological membranes m s
-1

 

P Atmospheric pressure Atm 

Rbs 

Rate of CO2 release from bundle sheath cells due day 

respiration 

mol m
-2 

s
-1

 

Repi 

Rate of CO2 release from bundle sheath cells due day 

respiration 

mol m
-2 

s
-1

 

Rm Rate of CO2 release from mesophyll cells due day respiration mol m
-2 

s
-1

 

Rv Rate of CO2 release from vasculature due day respiration mol m
-2 

s
-1

 

R Universal gas constant L atm K
-1

 mol
-1

 

Rd Rate of day respiration mol m
-2 

s
-1

 

r  Mean equivalent radius of organelles µm 

pr  Photorespiratory CO2 release from mitochondria  mol m
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a Ambient 
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1 General introduction 

1.1 C4 photosynthesis 

C4 plants are called so because during photosynthesis of CO2 they form four-carbon 

intermediate products. Maize (Zea mays L.), pearl millet (Pennisetum glaucum), sorghum 

(Sorghum bicolor), Miscanthus (Miscanthus x giganteus), sugarcane (Saccharum officinarum 

L.) and switchgrass (Panicum virgatum) are some examples of C4 plants. C4 plants cover less 

than one-fourth of the vegetated land surface globally and account for about 23 % of total 

gross primary production (Still et al., 2003; Meiyappan and Jain, 2012). They are common in 

tropical and subtropical grasslands and savanna regions primarily due to warm conditions and 

availability of high light intensity (Sage et al., 1999; Still et al., 2003). In Europe, the central 

and southern part has a high abundance of C4 plants dominated by monocotyledons (Pyankov 

et al., 2010). 

C4 plants such as maize, sugarcane, millet and sorghum are important food and bioenergy 

sources. Global maize production was about 1 billion tons by the year 2013 which is about 40 

% increase in a decade (FAO, 2013). The leading producers of maize, based on total 

production over the last four years, were USA, Brazil, China and Argentina (Table 1.1). The 

annual production of maize in Belgium has doubled over the last decade to ca. 0.6 million 

tonnes in 2013 (FAO, 2013). In The Netherlands, annual production remained at ca. 0.25 

million tonnes for the past 10 years. C4 plants are potential biofuel sources due to their higher 

biomass production than C3 plants (van der Weijde et al., 2013). This has been exploited in 

Brazil and the USA, which already use bioethanol, made from refining sugar in sugar cane or 

maize, as a transportation fuel (Pohit et al., 2009). C4 grasses such as Miscanthus and 

switchgrass are increasingly becoming biofuel sources in the USA and Europe (Heaton et al., 

2008; van der Weijde et al., 2013). In addition, C4 plants would remain important under 

extreme environmental conditions due to climate change (Byrt et al., 2011). These benefits 

originate from and depend on the mechanism of photosynthesis in these plants which results 

in higher productivity and resource-use efficiency than in C3 plants (Ghannoum et al., 2010; 

van der Weijde et al., 2013). 
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Table 1.1. Maize production (MT) from the year 2004 to 2014 (FAO, 2016). The quantities 

represent total cereal production. Rank is based on based on the total production. 

Rank Countries Year  

2014 2013 2012 2011 2009/10 2007/08 2004/07 Total 

1 USA 361.1 353.7 273.8 313.9 648.7 638.3 849.6 3439.2 

2 Mexico 23.3 22.7 22.1 17.6 648.7 638.3 706.7 2079.4 

3 China 215.6 218.5 205.6 192.8 341.4 318.2 421.3 1913.4 

4 Brazil 79.9 80.3 71.1 55.7 106.1 111.0 119.6 623.6 

5 Italy 9.2 7.9 7.9 9.8 22.4 38.1 317.0 412.3 

6 Indonesia 19.0 18.5 19.4 17.6 73.4 34.1 43.3 225.3 

7 Argentina 33.0 32.1 23.8 23.8 23.5 38.7 46.7 221.6 

8 India 23.7 23.3 22.3 21.8 40.3 38.7 21.4 191.4 

9 Ukraine 28.5 30.9 21.0 22.8 15.4 11.4 8.0 138.1 

10 Canada 11.5 14.2 13.1 10.7 22.4 34.8 28.9 135.6 

11 Romania 12.0 11.3 6.0 11.7 16.4 6.2 45.8 109.3 

12 South Africa 15.0 12.5 11.8 10.4 27.1 19.8 11.2 107.8 

13 Hungary 9.3 6.8 4.8 8.0 14.5 12.9 29.8 86.1 

14 Philippines 7.8 7.4 7.4 7.0 14.3 20.5 17.9 82.3 

15 Nigeria 10.8 8.4 8.7 8.9 15.0 14.6 15.5 81.9 

16 Serbia 8.0 5.9 3.5 6.5 14.7 10.1 24.6 73.2 

17 Russian  11.3 11.6 8.2 7.0 7.0 10.5 10.2 65.9 

18 Ethiopia 7.2 6.5 6.2 6.1 10.3 7.1 4.0 47.4 

19 Tanzania 6.7 5.4 5.1 4.3 8.1 6.2 5.4 41.2 

1.2 Problem statement 

Photosynthesis is an important physiological process in plant growth and productivity. It is 

closely linked to global bioenergy and food supply. Due to the rapid growth in global 

population, thus increased demand for food and energy under increasingly scare arable land, 

compared with slower improvement in crop yield, an agricultural crisis is believed to be 

looming (Long et al., 2006). In this regard, improving crop productivity by boosting 

photosynthesis is believed to contribute to tackle such a crisis (Long et al., 2006; Ort et al., 

2015). This is exemplified by the efforts to increase the productivity of the C3 crop rice, a 
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major food item in most populated regions of Asia, by engineering the more efficient 

photosynthesis mechanism of C4 plants such as maize, sorghum, millet and sugar cane (Ort et 

al., 2015). The high efficiency is due to the CO2 concentration mechanism in these plants 

which allows them to accumulate CO2 near fixation sites to concentrations higher than the 

ambient. In the CO2 fixation process of C4 plant leaves, unlike in the leaves of C3 plants, the 

CO2 is first fixed to C4 acids in mesophyll cells. These acids are transported to bundle sheath 

cells where CO2 is produced back, accumulated and fixed in CO2-leakage-resistant bundle 

sheath cells (Hatch, 1987). This results in improved carbon conversion by minimizing 

photorespiration, a side-reaction which results in loss of fixed carbon; higher photosynthesis 

rate per leaf nitrogen; and, conservation of water since the CO2 accumulation creates a weak 

coupling between transpiration and photosynthesis (Ghannoum et al., 2010). In addition, a 

unique leaf structure that rapidly absorbs CO2 and minimizes loss of the accumulated CO2 is 

essential to the mechanism of C4 photosynthesis (Hatch, 1987). In this case, mesophyll cells 

should be less resistant to CO2 entry (have a high mesophyll conductance), and bundle sheath 

cells should resist CO2 leakage (have a low bundle sheath conductance). These conductances 

were not extensively quantified due to the shortcomings of experimental methods like carbon 

isotope discrimination for C4 plants (Farquhar, 1983). This quantitative information is 

essential to understand anatomical and biochemical limitations of photosynthesis as 

demonstrated by numerous studies on mesophyll conductance in C3 plants (reviewed by 

Flexas et al. 2008). Instead, mathematical models were used to assess their responses to 

environmental changes and developmental stages (He and Edwards, 1996; Yin et al., 2011b). 

For instance, bundle sheath conductance was shown to vary in response to factors such as 

nitrogen supply and leaf age (He and Edwards, 1996; Yin et al., 2011b). However, the role of 

changes in leaf anatomy in such responses was not exhaustively analyzed. Further detailed 

insight could be gained by quantification of leaf structural changes simultaneously.  

Physiology and anatomy are interwoven in vivo; thus it is difficult to experimentally assess 

the importance of one independently of the other. A model of leaf gas exchange that covers 

the entire leaf is today also computationally infeasible. These problems can be circumvented 

by the multiscale modeling paradigm. In an interconnected hierarchy of sub models, 

multiscale models can describe a physiological phenomenon at different spatial or temporal 

scales. This allows the simplicity of continuum-type models defined at the macroscale level to 

be combined at the level of detail of models incorporating microscale features, resulting in a 
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computationally feasible model. The approach facilitates investigations of the mechanisms of 

gas exchange phenomena in relation to the actual leaf microstructure as shown clearly for the 

gas exchange mechanism of C3 plant leaves in recent studies (Ho et al., 2012, 2016). 

However, application of such models to study photosynthesis of C4 plants has received much 

less attention compared to C3 photosynthesis. Previously, gas exchange in C4 leaves has been 

described by simple (lumped) CO2 transport models (Jenkins et al., 1989b; Chen et al., 1994; 

von Caemmerer and Furbank, 2003) resulting in apparent conductances that also incorporate 

the effect of leaf microstructure. Due to lack of explicit description of leaf anatomy, therefore, 

mechanistic understanding of the C4 leaf gas exchange has been limited. This may not be 

desirable to efforts to improve photosynthesis since these would benefit from increased 

quantitative insights into the mechanism of photosynthesis generated from mechanistically-

rich models. 

1.3 Objectives and outline 

The main objective of this dissertation is to contribute to the mechanistic understanding of the 

photosynthesis of C4 plants through increased quantitative insight into gas transport. Thereto, 

the impact of resistances to gas transport provided by leaf microstructure on the efficiency of 

C4 photosynthesis will be investigated experimentally and by using a mathematical modeling 

approach. Microscale models of gas exchange developed for C3 plant leaves (Ho et al., 2012, 

2016) will then be extended to C4 plant leaves with the aim of deriving mechanistic 

understanding on the role of each leaf microstructural component and leaf biochemistry to the 

efficiency of photosynthesis. Maize (Zea mays L.) will be used as a model system. The 

following sub-objectives were set out to achieve the main objective. 

1. To introduce the fundamentals, the practices and challenges of modeling gas transport 

during photosynthesis of C4 plants. 

2. To investigate the impact of leaf anatomy as altered by increased nitrogen supply and 

leaf ageing on the efficiency of the CO2 concentration using experiment and 

mathematical modeling.  

3. To develop a two-dimensional microscale model of CO2 exchange at tissue level and 

assess the roles of leaf microstructure, ultrastructural and biochemistry to the 

efficiency of CO2 concentration mechanism and the rate of C4 photosynthesis. 
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4. To develop a full three-dimensional model of gas transport and light propagation, 

investigate how the rate of C4 photosynthesis can be improved, and examine its 

responses to environmental factors. 

The thesis is outlined in the following way to achieve the sub-objectives sequentially. In 

Chapter 2, fundamentals of photosynthesis and CO2 concentration mechanism will be 

introduced. Specific attention will also be given for the photosynthesis mechanism of maize. 

Factors causing loss of efficiency in C4 photosynthesis will be described. After an 

introduction about the multiscale modeling approach and its application to gas transport 

modeling, the discussion will be focused on models of gas transport in a leaf of C4 plants. The 

state of the art and challenges of modeling gas transport in C4 leaves will be discussed.  

In Chapter 3, experimental investigation of leaf anatomy of maize, differing in age and leaf 

nitrogen content will be explained. Plant growth conditions, measurements of gas exchange 

and chlorophyll fluorescence and leaf anatomical properties will be discussed. The estimation 

of the resistance of bundle sheath cells to CO2 leakage through mathematical modeling will be 

explained, and results will be provided. Then, alterations of leaf anatomy by leaf nitrogen 

content and age will be related to resistances to CO2 leak using statistical methods.  

In Chapter 4, a two-dimensional (2-D) geometry of maize leaf will be developed from maize 

plant used in the imaging experiments in Chapter 3. The model will be validated using gas 

exchange and chlorophyll fluorescence data obtained in Chapter 3. Simulations will be carried 

out to investigate the role of leaf ultrastructural features and biochemistry to the efficiency of 

photosynthesis.  

In Chapter 5, a three-dimensional (3-D) geometry of maize leaf will be developed using 

microscopy images obtained from the experiments in Chapter 3. The gas exchange model 

developed in Chapter 4 will be extended to a 3-D reaction-diffusion model that includes 

diffusion of CO2, O2, temperature responses of parameters and propagation of light to 

investigate improving photosynthesis and its response to perturbation in environmental 

changes. Simulations of the responses of photosynthesis to CO2 and irradiance will be 

compared with those measured in Chapter 3. To improve the rate of photosynthesis, 

chlorophyll distribution between mesophyll and bundle sheath cells will be varied. A new 

light propagation profile will be computed for each distribution of chlorophyll and the 
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irradiance responses of photosynthesis and leakiness will be simulated. To examine the role of 

leaf microstructure in the response of C4 photosynthesis to environmental variables such as 

elevated CO2 and temperature; (i) the extent of contribution of direct CO2 diffusion to bundle 

sheath cells of juvenile leaves will be simulated; and, (ii) temperature response of 

photosynthesis will be simulated to discern the relative contributions of biochemical and 

biophysical factors. In addition, the effect of CO2 release in bundle sheath cytosol in relation 

to centrifugal position of bundle sheath chloroplasts on the efficiency of photosynthesis will 

be systematically evaluated by (i) considering various degrees of CO2 release in the cytosol 

and (ii) by promoting photorespiration through enhanced oxygen evolution due to PSII 

abundance.  

In Chapter 6, general conclusions and future perspectives will be given. 
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2 Essentials of C4 photosynthesis and gas exchange 

modeling 

2.1 Photosynthesis and photorespiration 

Photosynthesis is a process by which energy from a light source, mainly the sun, is converted 

into chemical energy that is used for the functioning of organisms. Generally, carbon dioxide 

and water react in organelles called chloroplasts consuming the energy to produce 

carbohydrate and oxygen. The process steps of photosynthesis are divided broadly into two 

categories: light reactions and carbon reactions (Taiz and Zeiger, 2003).  

Light reactions of photosynthesis occur in thylakoid membranes, which are present in 

chloroplasts. The membranes contain light-harvesting protein complexes among which major 

ones such as photosystem II (PSII), cytochrome b6f, photosystem I (PSI) and ATP synthase 

work in tandem to produce high-energy molecules, adenosine trisphosphate (ATP) and 

nicotinamide adenine dinucleotide phosphate (NADPH). The carbon fixation reactions of 

photosynthesis that convert CO2 into carbohydrates, also known as the Calvin cycle, take 

place in the inner compartment of chloroplasts called the stroma. The cycle begins with the 

enzyme ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) catalyzing the 

reaction between CO2 and RuBP. Some of the resulting three-carbon intermediate products 

are eventually reduced to glyceraldehyde-3-phosphate (GAP) using the ATP and NADPH 

produced during the light reactions. Some of the GAP molecules are further converted into 

carbohydrates such as glucose, fructose, starch, sucrose and cellulose. The electron acceptor 

RuBP is regenerated from the rest of the GAP molecules, thereby completing the cycle. Other 

than CO2, Rubisco also reacts with oxygen in the first step of a process called 

photorespiration. This side reaction produces intermediates that are removed by the 

cooperation of peroxisomes and mitochondria, ultimately releasing CO2 into the cytosol 

(Somerville, 2001). The removal processes waste the energy obtained from the light reactions, 

but some of the carbon lost from the Calvin cycle is recovered. 
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2.2 C4 photosynthesis and carbon concentration mechanism 

C4 plants and algae responded to the decline of CO2 and rise of O2 levels in the atmosphere, 

which elevated photorespiration, by adding a carbon concentration mechanism (CCM) to the 

existing C3 carbon fixation cycle (Sage, 2004; Christin et al., 2008). The CCM elevates the 

concentration of inorganic carbon near Rubisco so that photorespiration is minimized. Due to 

the CCM, C4 plants generally have higher water-use efficiency (ratio of photosynthesis to 

transpiration) and photosynthetic nitrogen-use efficiency (ratio of photosynthesis to leaf 

nitrogen content) than C3 plants of similar rate of photosynthesis (Sage et al., 1987). This is 

because CCM results in high rates of photosynthesis for a given leaf nitrogen content and, at 

low atmospheric CO2, allows C4 plants to close their stomata and reduce transpiration without 

a large drop in rate of photosynthesis (Sage and Pearcy, 2000).  

There are three types of CCMs: C4 photosynthesis, crassulacean acid metabolism (CAM) and 

CO2 pumps. During C4 photosynthesis, CO2 is initially fixed into 4-carbon compounds, which 

are then moved to a separate compartment where decarboxylation of them produces CO2 for 

fixation (Hatch and Slack, 1970). In a similar way, CAM plants assimilate CO2 in mesophyll 

cytosol into a 4-carbon compound, malate, which accumulates in the vacuole of the same cell, 

but only during the night time. At day time, malate is transported to the chloroplasts of the 

cell and subsequently decarboxylated to release CO2, which it is then reduced to sugars. Algae 

and cyanobacteria actively accumulate bicarbonate ions from the surrounding aquatic 

environment and convert them into CO2 using carbonic anhydrase – a CO2 pump embedded in 

the plasma membrane. Each of these CCMs is an ecophysiological adaptation to 

environmental conditions. For instance, C4 plants are abundant in sites that are hot and dry; 

CAM is commonly found in plants in arid environments; and aquatic plants use CO2 pumps.  

C4 plants evolved several times, resulting in three subtypes that are traditionally classified 

using the main decarboxylation enzyme as NADP-malic enzyme (NADP-ME), NAD-malic 

enzyme (NAD-ME) and PEP-carboxykinase (PEP-CK) types (Kanai and Edwards, 1999). 

Examples include maize, sorghum and millet for NADP-ME subtypes; vegetable amaranth 

(Amaranthus tricolor), grain amaranth (Amaranthus edulis) and tef (Eragrostis tef) for NAD-

ME; and Guinea grass (Panicum maximus) and Rhodes grass (Chloris gayana) for PEP-CK 

subtypes. These subtypes have one common feature in carbon assimilation in mesophyll cells: 
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CO2 in the form of bicarbonate which is produced by carbonic anhydrase (CA) is fixed by 

phosphoenolpyruvate (PEP) carboxylase (PEPC) in the mesophyll cytosol to produce 

oxaloacetate. Oxaloacetate (OAA) is converted predominantly into C4 acids such as malate in 

NADP-ME plants, or into aspartate in NAD-ME and PEP-CK types (Kanai and Edwards, 

1999). PEP-CK types also produce malate from OAA. The C4 acids are transported to bundle 

sheath cells through plasmodesmata in all the subtypes. CO2 is then produced in the bundle 

sheath cells through decarboxylation of the C4 acids inside chloroplasts (NADP-ME), 

mitochondria (NAD-ME) or cytosol and chloroplasts (PEP-CK) (Kanai and Edwards, 1999; 

von Caemmerer and Furbank, 2003). Decarboxylation also produces pyruvate (all subtypes) 

and PEP (PEP-CK). To complete the cycle, pyruvate and PEP are directly returned to 

mesophyll cells (PEP-CK and NADP-ME) or pyruvate is converted to alanine (NAD-ME) 

and returned to mesophyll cells to regenerate PEP (Hatch, 1987). Recent researches provided 

evidence that the classification may not be rigid (Furbank, 2011) as some NADP-ME subtype 

plants such as Zea mays (Pick et al., 2011) and Flaveria bidentis have substantial activity of 

PEP-CK that is also involved in the decarboxylation. In addition, the NAD-ME type Cleome 

gynandra has been shown to engage PEP-CK (Sommer et al., 2012). 

Some features of the Kranz-anatomy differ among these subtypes of C4 plants (Kanai and 

Edwards, 1999; Edwards and Voznesenskaya, 2010). In NADP-ME types, bundle sheath 

chloroplasts are located close to the outer surface of bundle sheath cells adjoining mesophyll 

cells, commonly called centrifugal position; bundle sheath chloroplasts have less-developed 

grana than mesophyll chloroplasts; and the bundle sheath cell wall is suberized. In NAD-ME 

types, the bundle sheath chloroplasts are located near the vascular bundles, also called 

centripetal position; they have better developed grana than mesophyll chloroplasts; and the 

outer surface of the bundle sheath cells lacks a suberin layer. Bundle sheath chloroplasts in 

PEP-CK are either centrifugally or centripetally located, and the development of grana is 

similar in mesophyll and bundle sheath chloroplasts. In addition, bundle sheath cells of PEP-

CK are suberized. These differences have implications for the photosynthesis efficiency. For 

instance, the centripetal positioning of chloroplast was related to the efficiency of 

photosynthesis through minimization of CO2 leak from bundle sheath cells (von Caemmerer 

and Furbank, 2003). In addition, the suberine lamella was suggested to be beneficial in 

restricting leakage (Dengler et al., 1994), although the absence of it in NAD-ME subtypes did 

not make the latter have a higher conductance to CO2 leakage (Leegood, 2004). Furthermore, 
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the consequences of the difference in the nature of chloroplasts on the theoretical energy 

demand for fixation and the PSII to PSI activity in relation to the contribution of cyclic versus 

non cyclic electron transport were shown (Edwards and Walker, 1983; Hatch, 1987). 

Mesophyll chloroplasts capture more light energy while bundle sheath chloroplasts mainly fix 

CO2 in cooperation with mesophyll cells because of the insufficient production of ATP and 

NADPH in the bundle sheath cells (due to less access to light and cyclic electron transport). In 

addition, a reduced PSII content in the bundle sheath minimizes oxygen evolution and the 

potential for photorespiration (Hatch, 1987). However, the significance of the chloroplast 

positioning and of the suberin layer for photosynthesis efficiency is not well established yet 

(Zhu et al., 2010). In comparison to the anatomy of C3 plants, there is a lower ratio of 

mesophyll to bundle sheath cells, a closer vein spacing, minimal exposure of bundle sheath 

cells to the intercellular air space and less volume of the intercellular air space in leaf anatomy 

of C4 plants (Dengler et al., 1994; Muhaidat et al., 2007). Despite variations in the Kranz-

anatomy among C4 plants, positioning of chloroplasts in bundle sheath cells, having distinct 

chloroplast between mesophyll and bundle sheath cells, and the deposition of the suberin 

lamellae around the cell are believed to be important features (von Caemmerer et al., 2007). 

The physiology of C4 plants explains their global distribution (Sage and Pearcy, 2000). C4 

plants are successful in warm climates due to their superior quantum yield, but not in cool 

climates due to chilling sensitivity of fixation enzymes. Ample access to sunlight in low 

latitudes favors C4 plants due their high requirement of energy for photosynthesis. The better 

performance of C4 plants compared to ecologically similar C3 plants in low altitude (low 

photorespiration), saline soil (higher water-use efficiency), arid lands (higher water-use 

efficiency) and nitrogen deficient soil (higher nitrogen-use efficiency) are mainly due to the 

superior mechanism of photosynthesis (Sage and Pearcy, 2000) (see section 2.5 for more 

discussion). Among subtypes of the C4 pathway, NADP-ME and PEP-CK exceed NAD-ME 

type grasses in photosynthetic nitrogen-use efficiency partly due to the differences in subtype 

(Pinto et al., 2015) besides a faster Rubisco in NADP-ME grasses (Ghannoum et al., 2005). 

By contrast, these differences were argued to be minimal under large interspecific differences 

(Taub and Lerdau, 2000). NADP-ME plants have higher quantum yield than NAD-ME plants 

due to differences in leakiness and efficiency of light absorption (Sage and Pearcy, 2000). The 

leaf water-use efficiency was shown to be comparable between NADP-ME and NAD-ME 

(Ghannoum et al., 2001).  
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2.3 C4 photosynthesis in maize 

NADP-ME subtypes such as maize and sugar cane are the most economically significant C4 

plants, with maize being the most produced crop (FAO, 2013). The mechanism of C4 

photosynthesis in maize requires a spatial separation of the sites of CO2 capture and CO2 

fixation. This is achieved by a specialized leaf anatomy called the Kranz-anatomy (Kranz is a 

German word meaning wreath).  

 

Figure 2.1. Maize leaf and internal structure. Shown in (a) are mesophyll cells (M), 

chloroplasts of mesophyll cells (Mc), bundle sheath cells (BS), chloroplasts of bundle sheath 

cells (BSc), intercellular air spaces (IAS) and epidermis (E). A picture of a maize leaf is 

shown in (b). M and BS cells are shown connected by plasmodesmata (PD) in (c). 

The appearance, internal anatomy and ultrastructure of a maize leaf are shown in Fig. 2.1. 

Typical of the Kranz-anatomy, mesophyll cells surround bundle sheath cells, which 
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themselves are distributed around the vascular bundles (Fig. 2.1A). Such arrangements allow 

them to assimilate CO2 using O2-insensitive enzymes in mesophyll cells and to restrict direct 

access of bundle sheath cells to O2 thereby reducing the potential for photorespiration. The 

inner layer, bundle sheath cells, accumulates and fixes CO2 (Fig. 2.1A). These specializations 

are a common feature of several variants of the Kranz-anatomy which arose due to multiple 

evolutions from the leaf anatomy of C3 plants (Sage, 2004). Common to most C4 plants, one 

to two layers of mesophyll cells surround bundle sheath cells except in the husk of some 

plants where the number of layers is three (Pengelly et al., 2011). Fig. 2.1A shows that 

chloroplasts are more numerous in bundle sheath cells than in mesophyll cells, which is a 

typical feature of the leaf anatomy of NADP-ME plants (Dengler and Nelson, 1999). Fig. 2.1 

(C) also shows that mesophyll and bundle sheath cells are connected by plasmodesmata 

through which exchange of photosynthetic metabolites occurs. The importance of leaf 

anatomy to photosynthesis in maize is discussed in Section 2.4.  

The mechanism of photosynthesis in maize is schematically depicted in Fig. 2.2. CO2 is 

hydrated by carbonic anhydrase in the mesophyll cytosol to produce bicarbonate ions (Kanai 

and Edwards, 1999). PEPC then catalyzes the reaction of PEP and bicarbonate ions in a 

process known as PEP carboxylation producing an intermediate C4 acid, oxaloacetate. In 

mesophyll chloroplasts, OAA is converted into malate by NADP-malate dehydrogenase 

(NADP-MDH). Malate subsequently diffuses into bundle sheath cells through plasmodesmata 

and is decarboxylated by NADP-ME to produce CO2 in bundle sheath chloroplasts. Recent 

studies suggest that some flexibility exist in maize as OAA is also converted into aspartate by 

aspartate transaminase (Furbank, 2011; Pick et al., 2011); however, the pathway of CO2 

donation from aspartate through combination of aspartate transaminase and PEP-CK is not yet 

clear (Wang et al., 2014a). The decarboxylation produces pyruvate, NADPH and CO2 around 

the vicinity of Rubisco, which is exclusively located in bundle sheath cells. The process steps 

so far collectively constitute the “C4 cycle” while subsequent reactions of fixation of CO2 are 

referred to as the “C3 cycle” (Fig. 2.2). NADPH is donated to the Calvin cycle in bundle 

sheath cells while pyruvate is returned to mesophyll cells. PEP is regenerated from pyruvate 

by pyruvate, phosphate dikinase (PPDK). This regeneration of PEP in mesophyll chloroplasts 

requires energy in the form of ATP, which is supplied from the absorbed light. PEP is 

exported to the mesophyll cytosol and used in PEP carboxylation, thereby completing the 

cycle. The carboxylation and oxygenation of Rubisco as described in Section 2.1 
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(Photosynthesis and photorespiration) also take place. Oxygenation of Rubisco produces 

glycollate from which CO2 is recovered by cooperation of mitochondria and peroxisomes. 

Furthermore, the intermediates of the Calvin cycle such as phosphoglyceric acid (PGA) and 

glycerate 3-phosphate (GAP) are partly transported to mesophyll for reduction since the low 

PSII activity and cyclic electron transport lead to less reducing power available in bundle 

sheath chloroplasts. The transport of metabolites across envelopes and membranes is 

facilitated by translocator proteins embedded in them (Leegood, 2004). 

 

Figure 2.2. Schematic representation of simplified mechanism of C4 photosynthesis in NADP-

ME subtype. Abbreviations are: mesophyll (M), bundle sheath (BS), carbonic anhydrase 

(CA), phosphoenolpyruvate (PEP) carboxylase (PEPC), bicarbonate (HCO3
-
), oxaloacetate 

(OAA), malate (MAL), NADP-malate dehydrogenase (NADP-MDH), NADP-malic enzyme 

(NADP-ME), pyruvate (PYR), pyruvate Pi dikinase (PPDK), phosphoglyceric acid (PGA), 

glyceraldehyde 3-phosphate (GAP), ribulose-1,5-bisphosphate (RuBP) 

carboxylase/oxygenase (Rubisco) and glycollate (GCA); Figure adapted from various sources 

(von Caemmerer and Furbank, 1999; Wang et al., 2014b). 
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2.4 Functional leaf anatomy of maize 

Leaf anatomy plays a critical role in growth and metabolism through its influence in light 

absorption, CO2 acquisition, assimilate transport and temperature regulation. In this section, 

key anatomical traits that control CO2 concentration and light propagation are discussed. The 

influence of growth conditions and development stages are briefly described. 

The flux of gases diffusing into leaves is related to the driving force, concentration gradient, 

using a proportionality constant termed conductance (Nobel, 2005). The inverse of 

conductance is called resistance. Conductance is usually a more preferable term than 

resistance in photosynthesis research (Nobel, 2005). Fig. 2.3 shows various conductances in a 

maize leaf.  

 

Figure 2.3. Pathway of CO2 diffusion in maize leaf and various conductances. Stomatal 

conductance (gs) is responsible for the drawdown of CO2 concentration from ambient (Ca) to 

intercellular air spaces (Ci). Mesophyll conductance (gm) determines the gradient in CO2 from 

Ci to the concentration in mesophyll cytosol (Cm). Bundle sheath conductance (gbs) affects 

CO2 diffusion to mesophyll cells due to high concentration of CO2 in bundle sheath cells (Cc). 
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During photosynthesis, CO2 diffuses from the atmosphere to sites of fixation facing various 

resistances along the way. Gases must diffuse through the stagnant layer of air near the leaf 

surfaces, the resistance of which is called boundary-layer resistance. This resistance is usually 

smaller than the resistance of stomata. In a well-mixed cuvette during gas exchange 

measurement, boundary-layer resistance is usually neglected (Evans et al., 2004; Nobel, 

2005). The main pathway of gas diffusion is through stomata since the cuticle layer prevents 

water loss and CO2 diffusion. Stomatal conductance (gs) determines the gradient in CO2 

concentration from the atmosphere to sub stomatal cavities when the conductance of the 

cuticle is assumed low. gs is estimated from transpiration measurement based on an 

assumption that water and CO2 share the same diffusion pathway (von Caemmerer and 

Farquhar, 1981). It responds to changes in environmental variables such as leaf water 

potential, leaf-to-air vapor pressure difference, temperature and CO2 concentration (Zeppel et 

al., 2012).  

In a maize leaf, the diffusion of CO2 from the substomatal cavities to the mesophyll cytosol is 

constrained by the mesophyll conductance (gm). gm is a composite of the conductance of the 

intercellular air space, the cellular conductance and leaf anatomy (Longstreth et al., 1980). 

The conductance of the intercellular air space depends on mesophyll porosity, leaf thickness, 

stomatal distribution and bundle sheath extensions. This conductance in a maize leaf is high 

since it is an amphistomatous leaf (Driscoll et al., 2006); has a thin leaf (El-Sharkawy, 2009); 

and high porosity (El-Sharkawy, 2009). The cellular conductance is limiting the overall 

transport since diffusion in the liquid phase is several magnitudes slower than in the gaseous 

phase. The cellular conductance lumps the conductances of the cell wall, plasma membrane 

and mesophyll cytosol. The porosity, tortuosity and thickness of the cell wall are some of the 

anatomical factors influencing the conductance (Evans et al., 2009). The permeability may be 

enhanced by membrane embedded components such as aquaporins and carbonic anhydrase 

(Utsunomiya and Muto, 1993; Maurel et al., 2015). The conductance of the cytosol is 

determined by its thickness and composition, which may be different from pure water due to 

fibrous proteins (Nobel, 2005). In addition, gm depends on the exposed surface area of 

mesophyll cells per unit leaf area (Sm). On a leaf area basis, gm is thus the product of the 

cellular conductance and Sm.  
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C4 plants are believed to have a higher gm than C3 plants despite the former having a lower 

exposed surface of mesophyll cells (von Caemmerer and Furbank, 2003). This conductance 

was not extensively quantified for C4 plants due to lack of substantial sensitivity of the 

biochemical fractionation of the carbon isotope discrimination method (von Caemmerer et al., 

2014). gm is reported to vary from 0.5 to 3.5 mol m
-2

 s
-1

 for various C4 plants (Gillon and 

Yakir, 2000; Pengelly et al., 2010; Kromdijk et al., 2010; Yin et al., 2011b; Barbour et al., 

2016). In response to treatments, a few reports show that gm increased with the leaf nitrogen 

content (Yin et al., 2011b), decreased with age (Yin et al., 2011b; Barbour et al., 2016) and 

responded to growth light intensity through changes in Sm (Pengelly et al., 2010). However, 

the mechanisms contributing to the high gm are not understood well (von Caemmerer and 

Furbank, 2003; Weber and von Caemmerer, 2010).  

CO2 accumulated in bundle sheath cells also diffuses back (referred to as retro-diffusion) to 

surrounding mesophyll cells inevitably due to connection of these cells by plasmodesmata 

(Hatch, 1987). The rate of this retro-diffusion depends on the balance of CO2 supply by PEPC 

and CO2 assimilation by Rubisco (mainly) and the resistance of bundle sheath cells (Kromdijk 

et al., 2014). The bundle sheath resistance (inverse of bundle sheath conductance, gbs) is 

composed of the resistances of the gas transport pathway from the bundle sheath to mesophyll 

cells. On a leaf area basis, gbs is the product of cellular conductances and surface area of 

bundle sheath cells per unit leaf area (Sb). The cellular conductance is composed of the 

conductances of chloroplast envelope, cytosol, cell wall, plasmodesmata, plasma membrane 

and suberin lamella. In a maize leaf, CO2 is released by decarboxylation of C4 acids, 

photorespiration and respiration inside chloroplasts and the bundle sheath cytosol (Section 

2.3). Thus, the resistance imposed by the chloroplast envelope is an important constraint. In 

addition, CO2 leakage is constrained by plasmodesmata which account for 3 to 6 % of the 

bundle sheath cell wall surface (Tyree, 1970; Sowiński et al., 2008; Danila et al., 2016). Since 

the bundle sheath is suberized, direct leakage through the cell wall occurs through 

plasmodesmata (Dengler and Nelson, 1999). 

gbs determines the concentration of CO2 in bundle sheath cells and constraints the rate of 

retro-diffusion (Hatch, 1987; Leegood, 2002), thereby greatly controlling the efficiency of 

CCM. However, due to lack of experimental methods to determine it, gbs is also a poorly 

constrained parameter as there are only few estimates of its magnitude (He and Edwards, 
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1996; Kiirats et al., 2002; Yin et al., 2011b; Bellasio and Griffiths, 2014c). gbs is usually 

estimated from biochemical models (Yin et al., 2011b). Estimates of the resistance vary from 

400 – 1600 m
2
 s mol

-1 
(von Caemmerer and Furbank, 2003; Yin et al., 2011b). gbs also 

responds to growth conditions and leaf age (Kiirats et al., 2002; Yin et al., 2011b, 2016). 

Overall, gm and gbs are important determinants of C4 photosynthesis and the efficiency of the 

CCM. However, estimates of them are not widely available for C4 plants. Since these 

conductances are constrained by leaf anatomy, their response to growth conditions could be 

properly examined by considering leaf anatomy simultaneously. In addition, mechanistic 

understanding of them could be obtained by considering individual components of the 

resistance explicitly using appropriate modeling approaches.  

Leaf anatomy of maize impacts the distribution of light and thus photosynthesis (Bellasio and 

Lundgren, 2016). The concentric arrangement of mesophyll and bundle sheath cells implies 

that light reaches mesophyll cells before penetrating into the bundle sheath cells. 

Consequently, more light is absorbed by mesophyll cells than by bundle sheath cells (Evans et 

al., 2007; Bellasio and Lundgren, 2016). Red, green and blue light differ in their distribution, 

with blue light being highly absorbed in the upper leaf while green light penetrates deeper 

(Evans et al., 2007; Bellasio and Griffiths, 2014c). The light propagation in maize is further 

complicated by the different structure and function of mesophyll and bundle sheath 

chloroplasts. Mesophyll chloroplasts are generally smaller than bundle sheath chloroplasts 

and contain more chlorophyll. Bundle sheath chloroplasts on the other hand are larger, contain 

less chlorophyll, are specialized in CO2 fixation and lack significant PSII activity (Dengler 

and Nelson, 1999; Kanai and Edwards, 1999). Some anatomical features like bundle sheath 

extensions which lack chlorophyll are suggested to facilitate propagation of light into bundle 

sheath cells (Bellasio and Lundgren, 2016). The amount of light absorbed and the differences 

in chloroplasts ultimately determine the amount of ATP generated in mesophyll and bundle 

sheath cells. The fraction of ATP produced in mesophyll cells is predicted to be around 40 % 

(von Caemmerer and Furbank, 1999; Yin and Struik, 2012) for maximal rate of 

photosynthesis. Light absorption is enhanced in maize leaves by maintaining a close spacing 

of the veins so that more chloroplasts are obtained per unit leaf area (Ehleringer et al., 1997). 

This short intervenial distance was suggested to result in a higher quantum yield (Ogle, 2003). 

Movement of mesophyll chloroplasts which maximizes light absorption (Terashima et al., 



Essentials of C4 photosynthesis and gas exchange modeling 

18 

 

2011) is rather slow in C4 plants compared to that of C3 plants (Yamada et al., 2009). Bundle 

sheath chloroplasts do not move in response to light intensity (Taniguchi et al., 2003; Yamada 

et al., 2009). 

2.5 Losses of efficiency in C4 photosynthesis 

In C4 crops, the CCM elevates the concentration of inorganic carbon in bundle sheath cells 

much higher than that in mesophyll cells (Furbank and Hatch, 1987). This gradient in 

concentration results in the leakage of CO2 and bicarbonate from bundle sheath cells to 

mesophyll cells. The rate of CO2 leakage relative to the rate of PEP carboxylation, termed 

leakiness (von Caemmerer and Furbank, 1999), is used to assess the efficiency of C4 

photosynthesis. Leakiness is constrained both by the resistance of bundle sheath cells and the 

balance of the C4 and C3 cycle (Kromdijk et al., 2014). For instance, a higher capacity of the 

C4 cycle and a reduced C3 cycle activity leads to increased leakage due to excess CO2. This 

balance is carefully controlled in vivo so that leakiness remains low (10 to 30 %) under 

ambient conditions (Kromdijk et al., 2014). 

C4 photosynthesis is susceptible to low light intensity, low temperature and light quality. 

Several reports show that leakiness of bundle sheath cells increased at low irradiance 

(Henderson et al., 1992; Pengelly et al., 2010; Kromdijk et al., 2010). This phenomenon is of 

critical importance since about half of the maize productivity occurs under low light 

(Kromdijk et al., 2008). Increased photorespiration and day respiration contribute to CO2 

leak, and an imbalance of the rate of CO2 delivery by C4 cycle and fixation rate by C3 cycle at 

low light intensities were hypothesized to be the reasons behind the increase in leakiness 

(Kromdijk et al., 2010, 2014). Low-light grown maize plants reduced their day respiration to 

avoid the progressive increase of leakiness at low light intensities but not high-light grown 

plants (Bellasio and Griffiths, 2014a). The increase in leakiness in the high-light grown plants 

was suggested to be due to a short-term imbalance of C3 and C4 cycles when the light 

intensity was reduced. This trend in leakiness could also be an artifact of models used in the 

estimation of leakiness (Ubierna et al., 2011). In Chapter 5, a new modeling approach is thus 

applied to examine leakiness in response to light intensity. In addition, in some plants, 

leakiness has been shown to increase due to the imbalance in CO2 accumulation and reduction 
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when the spectral quality of light changed due to fluctuation of light intensity, thereby 

decreasing the efficiency of the CCM (Sun et al., 2014). 

When maize plants were grown under increasing nitrogen supply, the resistance of bundle 

sheath cells to CO2 leakage was found to decrease (Yin et al., 2011b). While the high nitrogen 

supply boosted the rate of photosynthesis, the decrease of the resistance to CO2 leakage 

suggested that the CCM became less effective. The effect of increased nitrogen supply was 

thus shown to be counterintuitive. The negative effect of increased nitrogen supply was 

postulated to be due to possible modification of cell wall, membranes or bundle sheath 

structure by nitrogen. The role of leaf anatomy should be investigated further by increasing 

steps of nitrogen application from two extreme levels used in the study (Yin et al., 2011b) and 

by quantification of leaf anatomical properties (Chapter 3).  

Growth at elevated CO2 and temperature results in loss of CCM efficiency: leakiness 

increased when C4 plants were grown at elevated CO2 (Watling, 2000) or temperature (Zheng 

et al., 2013). In the latter two studies, leakiness increased due to the decrease in bundle sheath 

resistance resulting from a reduction in the bundle sheath cell wall thickness. On the other 

hand, growth at elevated CO2 and temperature may benefit biomass accumulation in C4 

plants, which was attributed to increased water-use efficiency (reviwed by, Anand et al., 

2014). In particular, the enhancement of growth at elevated CO2, although assimilation is 

believed to be CO2-saturated, was suggested to be due to reduced stomatal conductance 

leading to decreased transpiration and elevated CO2 resulting in high intercellular CO2 

(Ghannoum et al., 2000). In addition, direct gas diffusion to bundle sheath cell in young 

leaves was suggested as to partly account for this enhancement (Ghannoum et al., 2000). In 

Chapter 5, the potential of leaf anatomy in supporting such diffusion in relation to bundle 

sheath photosynthesis is investigated. 

C4 plants are capable of higher photosynthesis both at saturated and limited-light conditions 

compared with C3 plants. These are, however, only apparent at high temperature, more than 

25 °C (Sage and Pearcy, 2000). Above 30 °C, C3 plants have a low quantum yield because the 

oxygenase activity increases more than the carboxylase activity (Furbank et al., 2004). 

Temperature response is of crucial importance since C4 bioenergy crops are mostly located at 

high latitudes where there is a low temperature that severely limits photosynthesis (Sage et 

al., 2011). Low temperature causes low yields due to the inhibition of enzymes like PEPC and 
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PPDK (Sage and Kubien, 2007). Mathematical models are useful in discerning the 

contributions of biochemical and biophysical processes to the temperature response of 

photosynthesis, which could help in explaining the interspecific differences in the response 

(Juurola et al., 2005). In Chapter 5, this is examined in more detail. 

2.6 Multiscale modeling paradigm 

2.6.1 Introduction 

Multiscale models are composed of a sequence of interconnected sub models, which describe 

a biological system at different scales of time, space and physiological function (Walpole et 

al., 2013; Ho et al., 2013). This implies that a multiscale model must account for more than 

one spatial scale. They are aimed at analyzing the system behavior at one level making best 

use of the information available at different levels (Weinan, 2011). In addition, multiscale 

models must add more information than a model of one level of scale. This is of particular 

importance in biological systems because cells behave differently in isolation and in tissue 

(Walpole et al., 2013). 

A multiscale model is required when a macroscale model is inaccurate and/or a microscale 

model is inefficient (Brandt, 2001). For instance, design of food-processing industries 

becomes more accurate when material properties of food items are known. However, it is 

cumbersome to estimate these properties due to the expanding number of multicomponent 

food items. Modeling these items at the scale of actual sizes also overlooks the important 

intricacies of microstructure (Ho et al., 2013). On the other hand, due to the limitation of 

computational power, it is impossible to model every detail at scale of the food items. The 

multiscale modeling paradigm provides an alternative approach that allows a balance between 

accuracy (due to fine scale) and feasibility (due to less detailed information) of a model 

(Brandt, 2001; Weinan, 2011; Ho et al., 2013). The analysis of one sub-model at a time while 

accounting for the microstructure information reduces the demand for computational 

resources. An interesting feature of such an analysis in applications where the microstructure 

is important is that parameters lumping microstructural information become well known 

physical constants due to explicit description of the microstructure. In addition, combination 

of a continuous (macroscale) and a discrete (microscale) modeling approach renders 

biological information quite well (Walpole et al., 2013). The modeling is executed in two 
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approaches depending upon the scale of interest: upscaling and downscaling (Weinan, 2011; 

Ho et al., 2013). Upscaling is a process of scaling fine scale solutions to coarse solutions until 

the scale of interest is reached while the opposite, downscaling, is used to examine a 

particular area of interest that cannot be adequately described by the macroscale model 

(Weinan, 2011). 

2.6.2 Acquisition of microstructure geometry 

The application of multiscale modeling for studying transport phenomena in various 

applications requires knowledge of the internal structure of an object of interest at different 

scales. A two-dimensional (2-D) geometry of an item of interest could be obtained using CCD 

cameras, optical microscopy, transmission and scanning electron microscopy among others. A 

three-dimensional (3-D) geometry may be developed using imaging techniques such as laser 

scanning microscopy, x-ray tomography and magnetic resonance imaging (Verboven et al., 

2008, 2010, 2013; Dhondt et al., 2010). 

X-ray micro-computed tomography (X-ray micro-CT) has been widely used in our lab for 

obtaining anatomical data for quantification of microstructure and gas transport modeling 

(Mebatsion et al., 2006a; Verboven et al., 2008, 2010, 2015; Cantre et al., 2014; Herremans 

et al., 2015; Ho et al., 2016). In brief, an X-ray source is directed onto a sample positioned at 

a given distance between the source and the detector of the rays resulting in a 2-D projection 

of the 3-D volume of the object. To reconstruct the 3-D volume, either the sample or the 

source and detector are rotated by a certain angle and several projections are made. The 

resulting stack of images is further processed to gain a clearer view on an object of interest. 

Post processing of the anatomical data for development of 3-D geometry, quantification of the 

microstructure and visualization can be done using image processing software tools such as 

CTAn v1.13.5.1 (Bruker micro-CT, Kontich, Belgium), Avizo Fire (VSG, France) and Matlab 

(The Mathworks, Natick, MA), among others.  

2.6.3 Solving multiscale models 

The sub-models in a multiscale model are connected by analytical or numerical solutions 

(Weinan, 2011) with the numerical solution being the most widely used (Ho et al., 2013). The 

choice of a particular numerical method depends on the scale of interest. At the microscale 



Essentials of C4 photosynthesis and gas exchange modeling 

22 

 

and below, a material is a composite of discrete particles. In this case, methods like Lattice 

Boltzmann, molecular dynamics or meshless particle methods are required. These methods 

will not be explained in detail, and readers are referred to the literature (e.g., Shaofan and 

Wing Kam 2004). Such methods are useful in models of gas transport in leaves when the 

interaction of water vapor, CO2 and other trace gases are considered explicitly (Leuning, 

1983). However, at length scales much greater than inter-atomic distances, the material can be 

approximated as continuous. Finite element or finite volume methods may then be used for 

obtaining solutions. This is the case for transport of gases in fruit and leaves (Ho et al., 2009, 

2012, 2016; Fanta et al., 2014).  

The finite element method aims to find an approximate solution to boundary value problems 

described by partial differential equations. In this method, the domain of interest is subdivided 

into subdomains called finite elements. The number of mesh elements is a compromise 

between increasing the accuracy in the approximation and reducing the computational 

resource needed. The variation of a function describing the problem in these elements (where 

there is no node) is then approximated by local functions that could be linear, quadratic or 

higher-order polynomials. The function is expressed within each element using nodal values 

of that element. A set of equations describing the behavior of the elements is then obtained by 

the method of weighted residuals like Galerkin’s method. These element equations, applying 

the initial values, are assembled to a global system of equations resulting in an approximate 

solution to the problem. Similar to the finite element method, the finite volume method 

divides the domain into finite volumes over which the governing equation is integrated to 

yield a set of discretized equations. These equations describe the flux across the boundaries of 

the control volume. These fluxes are evaluated at each nodal point within a control volume 

resulting in a set of algebraic equations. While these differences in the scheme exist, the 

differences in accuracy and computational efficiency depends on the type of computational 

fluid dynamics applications (Idelsohn and Oñate, 1994; Molina-Aiz et al., 2010).  

Finite element/volume procedure and subsequent post processing of results can be carried out 

in commercial software packages such as COMSOL Multiphysics (Comsol AB, Stockholm) 

and ANSYS (ANSYS, Inc., Canonsburg, PA, USA). While COMSOL is a finite-element 

software, ANSYS can handle both finite-element (ANSYS/FLOTRAN) and finite-volume 

analysis (ANSYS/FLUENT). Comparison of earlier versions of these software tools in fluid 
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flow and heat transfer (Salvi et al., 2010; Hysing and Turek, 2015) shows that the accuracy 

provided by each solver is comparable while COMSOL required significantly less time, but 

more memory compared to ANSYS. Another point of difference may be ease of use; 

COMSOL is more intuitive and flexible than ANSYS. 

2.6.4 Applications of multiscale models  

Multiscale modeling has been applied in plant physiology to investigate postharvest problems 

such as anoxia and hypoxia (Ho et al., 2010, 2011) and water loss from fruit (Fanta et al., 

2014; Aregawi et al., 2014b,a). It has also been extended to study gas transport in leaves (Ho 

et al., 2012, 2016; Verboven et al., 2014), roots (Verboven et al., 2012) and seeds (Verboven 

et al., 2013). In the context of photosynthesis, microscale models that explicitly consider leaf 

anatomy were able to successfully predict macroscale variables such as net CO2 assimilation 

and apparent mesophyll conductance in addition to unraveling the gas exchange pathways of 

C3 photosynthesis (Ho et al., 2012, 2016). Application of such models to photosynthesis of C4 

plants is, however, still lacking. 

2.7 Fundamentals of leaf gas exchange modeling 

Mass transfer occurs within a system consisting of two or more chemical species by a random 

motion of molecules or by convection. This movement of molecules is driven by the change 

in the concentration of a species from one point in space to another, thereby reducing the 

concentration gradient. Many biochemical processes such as photosynthesis, transpiration and 

respiration involve mass transfer; CO2, O2, water vapor and metabolites are exchanged. 

2.7.1 Fick’s laws of diffusion 

A gradient in the concentration of a chemical species in a multicomponent system results in 

net movement of molecules. At steady-state, this flow of molecules per unit area of a surface, 

also called flux, is related to the concentration gradient. This relationship is given by Fick’s 

first law of diffusion given as: 
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z z zJ D C    (2.1) 

where Jz is the flux of species z; Dz is the diffusivity of species z in the medium; and zC  is 

the concentration gradient of species z. The negative sign shows that the diffusion is from 

high to lower concentration.  

The change in concentration of z with time due to diffusion is given by Fick’s second law as: 
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(2.2) 

2.7.2 Fundamentals of reaction-diffusion models 

A reaction-diffusion equation describes a system composed of chemical species that spread in 

space by diffusion and interconvert by chemical reactions. For a system involving n chemical 

species, the change in concentration C of a species z in time is given by : 
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(2.3) 

where Sz is a source or a sink term associated with species z. The terms at the right side of Eq. 

2.3 describe the contribution of a transport and a chemical reaction in determining the change 

in C of species z in time. Sz is a non-linear function of concentration.  

Gas exchange during photosynthesis is considered as a reaction-diffusion system governed by 

Eq. 2.3 (Berghuijs et al., 2016). Gases such as CO2 and O2 diffuse into or out of a leaf. 

Photosynthesis, respiration and photorespiration among others are the processes that consume 

or release CO2 and O2. Biochemical models of photosynthesis (see section 2.6.3) provide Sz 

for Eq. 2.3. The spread of species z in gaseous or liquid phase media of leaf tissue by 

diffusion is given by the Fick’s law of diffusion (Eq. 2.1). 

2.7.3 Photosynthetic gas exchange in a maize leaf 

Gas exchange in leaves is a process by which CO2 enters and water vapor and O2 leave the 

leaf. Diffusion of gases inside a leaf and nitrogen-use and water-use efficiency are related. 

The gradient of CO2 inside a leaf, for instance, affects the efficiency of CO2 assimilating 
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enzymes, thus nitrogen-use efficiency of the leaf. In addition, due to the drawdown in CO2, 

leaves open stomata to increase diffusion but lose water vapor, thus influencing the water-use 

efficiency (Evans and von Caemmerer, 1996).  

Photosynthetic gas exchange in leaves is a function of multiple spatial scales across plant 

physiology (Fig. 2.3). Leaf scale measurements provide the least mechanistic understanding 

of photosynthesis. Microscale (10
-6

 – 10
-3

 m) models of photosynthesis gas exchange have 

been developed to generate detailed information about photosynthesis (Ho et al., 2012, 2016). 

In these models, altering a microscale parameter (membrane permeability, diffusivities and so 

on) results in a measurable change in a macroscale (10
-3

 – 10
0
 m) parameter (photosynthesis 

and CO2 conductances). This approach provides a useful tool to generate information that 

cannot be easily generated by experimental measurement techniques. 

 

Figure 2.4. A detailed look at how photosynthesis gas exchange is a function of several spatial 

scales across plant physiology. 
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Transport of gases in a maize leaf occurs throughout the entire leaf (macroscale), via stomata, 

to air spaces and cells (microscale) through cell wall and membranes (mesoscale, 10
-7

 – 10
-6

 

m) and plasmodesmata (nanoscale, 10
-9

 – 10
-7

 m). A model that accounts for the entire tire of 

resolution becomes computationally expensive. Models of gas transport in leaves are thus 

commonly developed accounting for microscale features explicitly while mesoscale and 

nanoscale features are modeled as resistances (Tholen and Zhu, 2011; Ho et al., 2012, 2016). 

This approach resulted in computationally less demanding but practical models of gas 

transport. Microscale models can be simplified by assuming lumped epidermal cells and 

mesophyll cells as one big chloroplast (Ho et al., 2012). Including further details in mesophyll 

cells like a chloroplast layer was shown to improve assessment CO2 transport for C3 

photosynthesis (Ho et al., 2012). Mesophyll chloroplasts of a maize leaf, however, do not fix 

CO2 (Kanai and Edwards, 1999). In addition, modeling exchange of metabolites and leakage 

CO2 that occurs through plasmodesmata could explicitly increase the complexity of a gas 

transport model for a maize leaf since simple diffusion alone may not fully explain the 

exchange (Sowiński et al., 2008). Therefore, for examining C4 photosynthesis in relation to 

gas transport, microscale modeling approach is preferred. 

2.7.4 Biochemical models of C4 photosynthesis 

The mechanism of C4 photosynthesis has been modeled extensively (Berry and Farquhar, 

1978; Peisker, 1979; Collatz et al., 1992; Laisk and Edwards, 2009; Wang et al., 2014b). The 

complex pathway of the C4 mechanism was simplified to understand the physiology in earlier 

biochemical models (Berry and Farquhar, 1978; Peisker, 1979; Collatz et al., 1992; von 

Caemmerer and Furbank, 1999). By contrast, recent models were developed aiming at 

systems-level understanding of photosynthesis (Wang et al., 2014b). Due to their robustness, 

the simplified models have a wider use in practical applications such as environmental and 

physiological studies (Chen et al., 1994; Sellers et al., 1997; Pengelly et al., 2010; Yin et al., 

2011b; Bellasio and Griffiths, 2014a). These models were generalized in the biochemical 

model presented by von Caemmerer and Furbank (1999). The latter model describes C4 

photosynthesis using two controlling enzymes: PEPC and Rubisco. The rate of PEP 

carboxylation is assumed to be limited by the enzyme PEPC or the rate of electron transport 

that determines the rate of regeneration of PEP by PPDK. The initial hydration of CO2 by 

carbonic anhydrase is assumed not to limit PEP carboxylation. Decarboxylation of C4 acids in 
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the bundle sheath cells, at steady state, is assumed to proceed at the rate of PEP carboxylation. 

In bundle sheath cells, fixation of CO2 is assumed to be limited by Rubisco or the rate of 

electron transport.  

The biochemical model (von Caemmerer and Furbank, 1999) indirectly accounts for the 

influence of a C4 leaf anatomy and ultrastructure by lumping them into CO2 conductances, gm 

and gbs. As a result, mechanistic understanding of these conductances is limited (von 

Caemmerer, 2013). In addition, the release of CO2 through photorespiration is assumed to 

take place in the same compartment as CO2 fixation (Farquhar et al., 1980). However, the 

release of photorespiration occurs in the cytosol where mitochondria are located. The 

potential re-fixation and/or escape of this photorespiratory CO2, thus, could not be assessed 

from this lumped modeling approach. Development of models accounting for leaf anatomy of 

C3 plants explicitly has enabled mechanistic understanding of diffusion limitations (Tholen 

and Zhu, 2011; Ho et al., 2012, 2016). In Chapter 4, a modeling tool for investigating CO2 

conductances in relation to C4 photosynthesis while explicitly accounting for microstructure is 

presented. 

The kinetics of C3 photosynthesis are described by the Farquhar, von Caemmerer & Berry 

(also referred to as FvCB) model (Farquhar et al., 1980). The model states that net rate of 

photosynthesis is the minimum of the Rubisco-limited-rate or the RuBP-regeneration-limited 

rate. The model was further extended to include an expression for triose phosphate utilization 

limited rate observed at very high CO2 concentrations (Sharkey et al., 2007). Extensions of 

the RuBP-limited-rate of photosynthesis allowing generalized description of electron transport 

has also been proposed (Yin et al., 2004; Yin and Struik, 2012). The equations from these 

biochemical models provide a source/sink term for the reaction-diffusion equations (see 

Section 2.7.1). 

2.7.5 Light propagation in a leaf 

Gradients of light inside a leaf exist due to the opaque nature of the leaf. This gradient has 

been examined using various techniques since photochemistry depends on photons absorbed 

by pigments (Ichiro et al., 2016). A micro-fiber was inserted in a leaf to measure the space 

irradiance (the energy flux that enters a small sphere divided by the cross sectional area of the 

sphere) (Vogelmann and Bjorn, 1984); images of chlorophyll fluorescence emissions from 
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PSII were also used in C4 and C3 plant leaves to determine where the light was absorbed 

(Evans et al., 2007); ray tracing modeling in which rays are tracked from cell to cell until they 

are absorbed or leave the leaf boundaries (Govaerts et al., 1996; Ustin et al., 2001; Watté et 

al., 2015); and the absorption could be determined from distribution of chlorophyll by 

illuminating transverse leaf sections using vertically incident light. The chlorophyll 

fluorescence method for C4 plants is limited by the unequal abundance of PSII in mesophyll 

and bundle sheath chloroplasts. The space irradiance derived from micro-fibers would not be 

equal to the absorption profile since a leaf is a heterogeneous medium: optical properties vary 

in leaf tissue (Lambers et al., 1998). Ray-tracing has been applied using a virtual C3 leaf 

tissue geometry to estimate the properties of radiation transfer (Govaerts et al., 1996). In the 

latter research, cells in a representative three-dimensional leaf geometry were treated as 

composites of cell wall constituents, chlorophyll and water. Optical properties of these 

substances were used to derive the light absorption profile. Ustin et al. (2001) extended the 

work of Govaerts et al. (1996) to study the relationship between light absorption gradient and 

photosynthesis gradient. These two researches assumed the leaf tissue to be a homogenous 

medium, thereby overlooking the distribution of cellular organelles such as grana and 

mitochondria and represented the leaf structure with simple geometrical shapes. A light 

propagation model for C3 leaves that is based on a realistic leaf microstructure (Verboven et 

al., 2015) was recently developed and validated experimentally (Watté et al., 2015). This 

method was then coupled with a CO2 reaction-diffusion model to investigate the profile of 

carbon fixation inside a C3 leaf in relation to the light gradient (Ho et al., 2016). 

Ray-tracing has limited applications in C4 plants so far (Baranoski et al., 2012; Bellasio and 

Griffiths, 2014b). Baranoski et al. (2012), aiming at estimating optical properties in response 

to abiotic stress factors, represented the leaf tissue of C4 monocots using its basic constituents: 

water, pigments, cellulose, protein and lignin. Each of these constituents was assigned optical 

properties. A ray was traced through a sequential layer of upper epidermis, adaxial side 

mesophyll, air, abaxial side mesophyll and lower epidermis to determine leaf transmittance 

and reflectance profiles. Bellasio and Griffiths (2014b) represented the leaf anatomy of maize 

by square units consisting of mesophyll and bundle sheath cells. Upper and lower epidermis 

were implicitly treated as a single layer of reflecting elements. Leaf transmittance and 

reflectance were computed by combining two light absorption profiles differing in an 

absorption coefficient of bundle sheath cells, assumed equal to or three times that of 
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mesophyll chloroplasts. The light gradient was derived by calibrating the model using the 

measured leaf transmittance and reflectance (Woolley, 1971). 

2.7.6 Leaf microstructure geometry 

CO2 and O2 diffuse in the intercellular air space in three dimensions, that is both vertical and 

lateral because the stomata are discrete and located several mesophyll cells apart (Parkhurst, 

1994; Morison & Lawson, 2007). Analysis of gas transport in both the gaseous and liquid 

phase requires a three-dimensional geometry. Earlier studies of gas exchange of C3 plant 

leaves used various simplifications of the leaf microstructure, which have consequences on 

photosynthesis (Vesala et al., 1996; Pachepsky and Acock, 1996; Aalto and Juurola, 2002). 

The model of Pachepsky and Acock (1996) incorporated structural differences and the 

distribution of chloroplasts in palisade and spongy mesophyll, albeit in 2-D, unlike a 

homogenous media representation of Vesala et al. (1995). Aalto and Juurola (2002) accounted 

for the three-dimensional geometry of a leaf and included epidermis, stoma, mesophyll cells, 

chloroplasts and intercellular air space. However, the use of spheres to depict leaf tissue in 

earlier models (Vesala et al., 1996; Aalto and Juurola, 2002) understated the actual irregular 

shape of the cells and their interconnection (Parkhurst, 1994). These actual intricacies of leaf 

microstructure were accounted for, to some extent, by digitizing the leaf anatomy directly 

from light microscopy images (Ho et al., 2012). This innovative technique allows 

parameterization of the geometry of the leaf anatomy directly from real images. However, it 

results in a 2-D description of the geometry that underestimates the interconnectivity of air 

spaces (Ho et al., 2012). Another geometrical description was the consideration of a single 

mesophyll cell (Tholen and Zhu, 2011). This approach allowed detailed analysis of mesophyll 

conductance but is limited for analysis of photosynthesis at the tissue level. Recently, there 

has been remarkable progress in degree of realism in describing the leaf microstructure (Ho et 

al., 2016). Ho et al. (2016) obtained a three-dimensional geometry of tomato leaves using 

synchrotron tomography equipment that allows excellent contrast at minimum tissue 

preparation (Verboven et al., 2015). The geometry thus obtained, however, needed to be 

modified to include chloroplasts and vacuoles, which could not be resolved from the 

synchrotron images. Unlike simplified description of leaf anatomy described, Ho et al. (2016) 

demonstrated that the actual shapes of cells and organelle positioning matters in determining 

local light absorption and CO2 diffusion, thus photosynthesis. In addition, the three-
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dimensional description clearly demonstrated that CO2 gradients in the air space are much 

more uniform than predicted by a 2-D model (Ho et al., 2012). 

Leaf geometry was not explicitly included in mathematical models of C4 gas exchange 

(Jenkins et al., 1989a; Chen et al., 1994; von Caemmerer and Furbank, 1999). An earlier 

study simplified the leaf anatomy using concentric cylinders to study the flux of metabolites 

(Osmond, 1971). These C4 models lump the effects of leaf microstructural features, such as 

cell walls and plasma membranes, and overlook the spatial nature of the gas exchange 

phenomena. Therefore, the mechanistic understanding of gas transport that can be derived 

from such models is limited. The effect of the unique anatomical arrangement of mesophyll 

and bundle sheath cells on gas transport and light penetration, thus photosynthesis, may be 

more mechanistically examined if explicit description of leaf anatomy and ultrastructure is 

accounted for. 

The complexities of a model and the computational resource requirement are affected by the 

leaf microstructure description. A detailed description of leaf anatomical features (Tholen and 

Zhu, 2011; Ho et al., 2016) increases the complexity of a model and the computer resource 

required to solve it (Berghuijs et al., 2016). This may also negatively impact the wide-spread 

applicability of the model. On the other hand, less detailed models are limited in providing 

mechanistic and detailed insight into photosynthesis, although may equally predict net 

photosynthesis in response to ambient changes in CO2 and light. However, with advancement 

of computing technology, the resource problem may be diminished. 

2.7.7 Model parameterization and validation 

A model requires parameterization, which is a process of deciding on and defining the model 

parameters for complete specification. Reaction-diffusion models of photosynthesis gas 

exchange require parameters related to gas transport and biochemical models. Gas transport 

parameters include gas diffusivities and permeability values, and biochemical model 

parameters are enzyme kinetic properties. The former are usually obtained from literature 

reports (Gutknecht, 1988; Frank et al., 1996; Uehlein et al., 2008; Evans et al., 2009) and the 

latter could also be estimated from fitting of combined gas exchange and chlorophyll 

fluorescence measurement data (Yin et al., 2009, 2011a,b, Bellasio et al., 2016a,b). 
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Combined gas exchange and chlorophyll fluorescence measurements are carried out by 

enclosing a leaf from a living plant in a small controlled chamber. Air containing nitrogen and 

a known amount of CO2 is supplied at one end. The net CO2 uptake by the leaf which is 

assumed equal to the net photosynthesis rate is measured by measuring the concentration of 

CO2 across the leaf chamber. The rate of transpiration is determined from the concentration of 

water vapor at the exit of the chamber since that is added to the incoming dry air due to leaf 

transpiration. The concentration of CO2 is determined commonly using an infrared gas 

analyzer (IRGA). The main principle used in IRGA is that CO2 present between an infrared 

radiation source and detector results in reduction of transmission of infrared wavebands, 

which is a function of concentration of CO2 (LI-COR, 2004). The gas exchange measurement 

is commonly carried out using portable open gas exchange systems (LI-6400, LI-COR, 

Lincoln, Nebraska, USA). Photosynthesis measurements should be corrected for leakage of 

gases (Flexas et al., 2007). An IRGA is usually fitted with a chlorophyll fluorescence head to 

measure chlorophyll fluorescence during photosynthesis, which can be used to determine the 

rate of electron transport (Maxwell and Johnson, 2000).  

Mathematical models of photosynthesis gas exchange are aimed at interpretation of gas 

exchange measurements (von Caemmerer, 2013) which result in the responses of net 

photosynthesis to changes in ambient CO2 and irradiances. Thus, validation of these models is 

usually carried out by comparing model predictions of photosynthesis and those derived from 

gas exchange measurements (Tholen and Zhu, 2011; Ho et al., 2012, 2016). This validation 

is, however, only primary since this multiscale models need to be validated at each tier of the 

scale. However, the validation at microscale is difficult since it requires measurements of 

distribution of gases or their average concentration in various cellular compartments (Fig. 

2.3), which cannot be accurately determined from experiments (Walpole et al., 2013). 

Therefore, the response of macroscale variables like net photosynthesis is used to validate 

model predictions. 

2.7.8 Review of gas exchange models  

Gas exchange during photosynthesis in C3 leaves was described by a set of reaction-diffusion 

models (Vesala et al., 1996; Pachepsky and Acock, 1996; Aalto and Juurola, 2002; Tholen 

and Zhu, 2011; Ho et al., 2012, 2016). Some of these models are briefly discussed here as 
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detailed discussions are available elsewhere (Berghuijs et al., 2016). Vesala et al. (1995) 

developed a reaction-diffusion equation describing diffusion of CO2, photosynthesis, 

photorespiration and day-respiration. The leaf geometry was cylindrical and consisted of 

stoma and mesophyll. The purpose of the study was to investigate stomatal diffusion in 

relation to CO2 assimilation in detail. Investigation of stomatal functioning using reaction-

diffusion models was extended further by Pachepsky and Acock (1996). They developed a 

two-dimensional model of transport of CO2 and water vapor in a leaf. The model showed that 

changes in stomatal density by elevated CO2 affects photosynthesis. Aalto and Juurola (2002) 

developed a three-dimensional model of CO2 diffusion and light propagation in silver birch 

leaves to investigate photosynthesis in response to stomatal opening, gradients in 

photosynthesis capacity and environmental variables such as rising CO2 and temperature. A 

two-dimensional reaction diffusion model was also developed to investigate the responses of 

mesophyll and stomatal conductances to changes in ambient conditions (Ho et al., 2012). 

Tholen and Zhu (2011b) developed a three-dimensional reaction-diffusion model of gas 

exchange using a single spherical mesophyll cell to investigate mesophyll diffusion in more 

detail. The most advanced reaction-diffusion model to date was presented by Ho et al. (2016). 

The leaf anatomy of tomato leaves incorporating realistic shapes of cells was incorporated. 

The light propagation in the leaf was modeled using an advanced ray-tracing method that 

could deal with complexity in structure and composition of biological tissues (Aernouts et al., 

2014; Watté et al., 2015). The model was applied to investigate photosynthesis in relation to 

gradients of photosynthesis capacity, recycling of mitochondrial CO2 and presence or absence 

of CA. The study showed that scaling of photosynthesis capacity with light penetration in a 

leaf would increase photosynthesis; a substantial fraction of CO2 released by respiration was 

re-assimilated; and, CA was beneficial for achieving a high rate of photosynthesis at low 

intercellular CO2 levels. 

Photosynthetic gas transport modeling using the actual microstructure of the leaves of C4 

species is an untouched field of research. Models were limited to flux analysis (Jenkins et al., 

1989a; Chen et al., 1994; von Caemmerer and Furbank, 1999). Chen et al. (1994) examined 

the response of C4 photosynthesis to elevated CO2. Jenkins et al. (1989) estimated the amount 

of CO2 and bicarbonate that would develop at a steady state due to the CCM. In their model, 

volumes of different cell components were assumed. The amount of CO2 in each cell part was 

sensitive to assumptions regarding permeability values (Furbank et al., 1989). A mathematical 
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model of C4 photosynthesis was also applied to study bundle sheath resistance in relation to 

the ratio of biochemical capacity of PEPC and Rubisco (von Caemmerer and Furbank, 2003). 

The study shows that scaling of bundle sheath resistance to CO2 leakage with the ratio of the 

enzyme capacities would avoid loss of efficiency. In addition, the study developed a 

hypothetical model to assess the implications of introducing a C4 mechanism in C3 plants on 

CO2 diffusion. Furthermore, various models of the mechanism of C4 photosynthesis that 

included individual reactions were developed (Laisk and Edwards, 2000; Bellasio and 

Griffiths, 2014b; Wang et al., 2014b,a). Although these models are beyond the scope of this 

research, they are aimed at systems-level understanding of photosynthesis of C4 plants. 

2.8 Conclusion 

Multiscale modeling of physiological phenomena has provided detailed insight into 

postharvest problems related to gas transport in fruit and photosynthesis of C3 plants. Such 

models allowed testing the role of the microstructure of fruit and leaves in these metabolic 

processes. In order to expedite mechanistic understanding of gas transport phenomena in C4 

plant leaves and efficiency losses in C4 photosynthesis, development of multiscale models 

accounting for a realistic tissue microstructure must be done. Although the application may 

not be straightforward due to the complexity of the C4 mechanism, multiscale models of gas 

transport in C3 plants can be extended to that of C4 plants to increase quantitative insights into 

photosynthesis of C4 plants. In addition, parameters of gas transport in C4 leaves and their 

response to environmental variables should be investigated widely.  
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3 Impact of anatomical traits of maize (Zea mays L.) leaf 

as affected by nitrogen supply and leaf age on bundle 

sheath conductance 
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affected by nitrogen supply and leaf age on bundle sheath conductance. Plant Science 252, 
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3.1 Introduction 

In Chapter 2, it was discussed that the association of the mesophyll and bundle sheath cells, 

combined with highly regulated enzyme activities, creates a CO2 concentration mechanism 

(CCM) which enables C4 plants to be more efficient in solar-radiation use, nitrogen-use and 

water-use than C3 plants. The efficiency of the CCM relies on the concerted action of 

anatomical, biochemical and biophysical mechanisms. It was also mentioned that leakiness is 

believed to be one of the efficiency losses in C4 photosynthesis. In particular, the bundle 

sheath resistance has been shown in the literature to be an important constraint to leakiness. In 

Chapter 3, the role of changes in leaf anatomy in response to leaf nitrogen content and age on 

bundle sheath conductance gbs will be quantified. 

It has been well known from C3 photosynthesis studies that leaf anatomy impacts 

photosynthesis as it influences the physical obstruction to CO2 diffusion. Fig. 2.3 shows the 

pathway of CO2 diffusion in maize leaf and various conductances along the way. The leaf 

boundary layer and stomatal conductance (gs) affect diffusion of CO2 towards the stomatal 

cavity. The mesophyll conductance (gm) constrains the diffusion from sub-stomatal cavities 

into CO2-fixation sites in mesophyll. The distribution of stomata and the connectivity of 

intercellular air spaces affect the diffusion of CO2 in the gaseous phase, while the properties 

of the cell wall such as thickness and porosity, the plasma membrane and presence of 

carbonic anhydrase affect the diffusion in the liquid phase (von Caemmerer et al., 2007; 

Tholen and Zhu, 2011; Ho et al., 2016). While these phenomena occur in C4 photosynthesis 

as well, C4 photosynthesis is also affected by CO2 retro-diffusion from bundle sheath cells 

back into mesophyll cells. This retro-diffusion, also called ‘CO2 leakage’, partially increases 

the CO2 levels of the mesophyll cells (see, Fig. 4.3, Subsection 4.3.2) and is constrained by 

resistance of the mesophyll-bundle sheath interface (Furbank et al., 1990). The inverse of this 

resistance is known as the bundle sheath conductance (gbs). The lower gbs, the lower is CO2 

retro-diffusion from bundle sheath cells, and thus the higher is the efficiency of the CCM 

(Hatch, 1987; Leegood, 2002; Ubierna et al., 2013; Kromdijk et al., 2014). Leakiness, a 

physiological variable often used to characterize retro-diffusion of CO2 from bundle sheath 

cells back to mesophyll cells relative to the rate of PEP carboxylation, depends greatly on gbs. 
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C4 photosynthetic efficiency has been proposed to depend on a number of anatomical 

properties of the leaves. For instance, a low permeability of bundle sheath cell walls to CO2, a 

high surface of mesophyll cells to volume ratio and features such as close proximity of 

mesophyll and bundle sheath cells, among others, are essential to the effectiveness of the 

CCM (Hatch, 1987; Dengler et al., 1994; von Caemmerer et al., 2007; El-Sharkawy, 2009). 

Moreover, the shorter vein spacing in C4 plants than in C3 plants has been shown to be 

beneficial for high quantum yields (Ogle, 2003). CO2 retro-diffusion has also been found to 

be influenced by the diffusive properties of the stroma and the chloroplast envelope (von 

Caemmerer and Furbank, 2003). Thus, the significance of leaf anatomy and ultrastructure of 

C4 plants to the efficiency of C4 photosynthesis continues to be extensively studied (El-

Sharkawy and Hesketh, 1965; Hattersley, 1984; Dengler et al., 1994; Sowiński et al., 2007; 

El-Sharkawy, 2009; Pengelly et al., 2011; Griffiths et al., 2013).  

CO2 conductances in C4 plant leaves were recently estimated using combined gas exchange 

and chlorophyll fluorescence measurements (Yin et al., 2011b; Bellasio and Griffiths, 2014c) 

or with carbon isotope discrimination measurements (Kromdijk et al., 2010, 2014; Ubierna et 

al., 2013; Bellasio and Griffiths, 2014c) in analogy to the methods used to estimate gm in C3 

leaves (Harley et al., 1992; Evans and von Caemmerer, 1996; Yin et al., 2009). Gas exchange 

and chlorophyll fluorescence measurements result in CO2 and irradiance responses of net 

photosynthesis and quantum efficiency of PSII electron transport, which are then used to 

parameterize biochemical models of von Caemmerer & Furbank (1999) and estimate gm 

and/or gbs. The procedures to estimate these conductances using various software tools are 

readily accessible (Yin et al., 2011b; Bellasio et al., 2016a). In addition, the benefits of 

chlorophyll fluorescence measurements in C4 plants have been substantiated (Yin et al., 

2011b, 2014, 2016; Bellasio and Griffiths, 2014c). Using these methods, gbs was found to 

vary with nitrogen supply (Yin et al., 2011b), growth light (Pengelly et al., 2010; Kromdijk et 

al., 2010; Bellasio and Griffiths, 2014c), leaf age (He and Edwards, 1996; Kiirats et al., 2002; 

Yin et al., 2011b), and temperature (Yin et al., 2016).  

Very few studies measured leaf anatomical properties and estimated gbs or gm in C4 plants to 

examine their relationship (Pengelly et al., 2010; Kromdijk et al., 2010). These properties 

include the exposed surface area of mesophyll cells per unit of leaf area (Sm), surface area of 

bundle sheath cells per unit of leaf area (Sb), leaf thickness and diameter of mesophyll and 
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bundle sheath cells. When maize and Flaveria bidentis were grown under contrasting light 

environment, differences in Sm, Sb (Pengelly et al. 2010), leaf thickness and cell diameter 

(Kromdijk et al. 2010) contributed to the variations in gbs or gm. A negative correlation of 

bundle sheath resistance with leaf nitrogen content was reported for maize in a recent study 

(Yin et al., 2011b). At that time, it was only presumed to be due to Sb and cell wall thickness 

being altered by nitrogen treatment. In addition, an increase in gbs was suggested when C4 

plants were grown at elevated CO2 (Watling, 2000) or temperature (Zheng et al., 2013) due to 

a decrease in wall thickness of the bundle sheath.  

The relationships between photosynthesis and leaf anatomical properties have commonly 

been investigated using chemically fixed leaf tissue samples (Dengler et al., 1994; Greef, 

1994; Moreno-Sotomayor et al., 2002; Pengelly et al., 2010, 2011). X-ray micro-computed 

tomography (X-ray micro-CT) (principle of operation is stated in Subsection 2.6.2) also gives 

high-quality images that render the air space between cells at sufficient contrast to allow 

quantification of anatomical features with the additional advantage of no requirement of 

intensive sample preparation and thus measurement artefacts are minimized (Verboven et al., 

2012, 2013; Herremans et al., 2015). In addition, X-ray micro-CT allows measurements over 

the intricate three-dimensional leaf geometry of any thickness but has a limitation in resolving 

leaf ultrastructural components (Verboven et al., 2008, 2015). 

In C3 plants, it is well known that the cell wall strongly influences CO2 diffusion and hence 

CO2 fixation rate (Flexas et al., 2008). Whether and how the cell wall of the bundle sheath 

contributes to the variations in gbs for C4 plants with leaf nitrogen content and age have not 

been investigated. The objectives of this research were (i) to study how bundle sheath 

conductance is affected by leaf nitrogen content and leaf age, (ii) to quantify leaf anatomical 

properties as altered by leaf nitrogen and age using combined microscopy and micro-

tomography measurements, (iii) to relate these properties to CO2 conductances of a maize 

(Zea mays L.) leaf. This will be achieved by using gas exchange and chlorophyll fluorescence 

measurements with biochemical models of C4 photosynthesis (von Caemmerer and Furbank, 

1999) to estimate gbs, and X-ray micro-CT, light and electron microscopy images to obtain 

microstructure and ultrastructure details of the leaf anatomy. 
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3.2 Materials and methods 

3.2.1 Plants, treatments and photosynthetic measurements 

A pot experiment was conducted in a controlled glasshouse compartment at Wageningen 

University, from 11 April until 1 July in the year 2013. Maize (Zea mays L.) plants, hybrid 2-

02R10074, were grown in a controlled glasshouse compartment. When the global incident 

radiation dropped below 150 W m
-2

, high pressure sodium lamps (Philips MASTER Green 

Power CG 600W) were automatically switched on. These lamps emit light mainly in the 

yellow or red portion of the visible light spectrum.  When the radiation exceeded 250 W m
-2

, 

the lamps were switched off. The ambient CO2 concentration was about 380 µmol mol
−1

, the 

relative humidity was 60–80 % and glasshouse temperature was 21 ± 3 °C during the day and 

16 °C during the night. The photoperiod was 16 hours per day. To spread out the 

measurement work, a weekly staggered sowing was made. The maize seeds were sown in ten 

liter pots filled with a mixture of sandy soil and perlite (2:3 vol./vol.) (one seed per pot). The 

initial nitrogen (N) content of the medium in each of the pots was 31 mg N. One week after 

emergence, the plants received a nutrient solution containing 1M Ca(NO3)2. 4H2O, 2M 

NH4NO3, 0.5M K2SO4, 1M KH2PO4, 1M MgSO47H2O and other micronutrients once a week 

for four weeks resulting in three nitrogen levels: 0.15, 0.50 and 1.25 g N per pot (for more 

details, see text A.1, Appendix A) (Vos et al., 2005). Total additions of P, K and Mg were 

0.33, 1.25, 0.50 g per pot, respectively. The experiment was designed as a split plot with 4 

blocks, 2 harvests as main plots and the nitrogen treatments as sub plots. With one maize 

plant per pot, the design resulted in 24 of maize plants in total. Each of the N levels was 

applied to 8 maize plants. The frequency of applying nutrients was increased to twice a week 

after the fourth week (since nutrition application started) to minimize the decline of leaf 

nitrogen content with leaf age. 

Combined gas exchange and chlorophyll fluorescence measurements were made in four 

replicates using a LI-6400XT open gas exchange system with an integrated fluorescence 

chamber head, enclosing 2 cm
2
 leaf area. The measurements were done on fully expanded 6

th
 

leaves that are 19 days old and 32 days old after emergence of the leaves. The leaf 

temperature during the measurement was kept at 25 0.2 °C. For the light response of 

photosynthesis, leaves were first dark adapted for 25 min. Subsequently, light intensity (10 % 

blue, 90 % red) applied on the upper leaf surface was increased in steps of 20, 40, 60, 80, 100, 
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200, 500, 1000, 1500 and 2000 µmol m
−2

 s
−1

. Between the steps, there was a 6 min adaptation 

time. To create contrasting levels of photorespiration, the ambient CO2 concentration was 

maintained at 250 µmol mol
-1

 or 1000 µmol mol
-1

 for 21 % and 2 % oxygen level 

respectively. The oxygen concentration was maintained at 2 % using gas cylinders containing 

a mixture of 2 % O2 and 98 % of N2. This mixture was moisturized by bubbling it in water 

before use. The CO2 response measurements were done by increasing the concentration in the 

following steps: 380, 200, 100, 90, 80, 70, 60, 50, 380, 380, 500, 1000 and 1500 µmol mol
−1

, 

while keeping incident irradiance at 1500 µmol m
−2

 s
−1

. After CO2 of 50 µmol mol
−1

, the leaf 

was adapted to CO2 level of 380 µmol mol
−1

 before increasing to higher concentrations. Three 

minutes were allowed between steps to reach steady state photosynthesis. Leaf-to-air vapor 

pressure difference was kept between 0.9–1.8 kPa. Simultaneously with the gas exchange 

measurements, the steady-state fluorescence (Fs) and maximum relative fluorescence (Fm´) 

were also measured. Fs was measured after photosynthesis was allowed to reach steady-state 

after each of the CO2 or light steps. Fm´ was measured after a saturating light-pulse of 

intensity greater than 8500 µmol m
-2

 s
-1

 for a duration of 0.8 s. The quantum efficiency of 

PSII electron transport was calculated as / ( ) /    m m s mF F F F F  (Genty et al., 1989). The 

measurement data were corrected for leakage using thermally killed leaves (Flexas et al., 

2007). To determine the leaf nitrogen content, discs of 17 mm in diameter were taken at the 

place of measurement. These were then dried to constant weight in an oven at 70 °C for 48 hr. 

The leaf nitrogen content was determined by the Micro-Dumas combustion method (Thermo 

Scientific, elemental C/N analyzer, type: Flash 2000) (Steyermark, 1961) using three samples 

of leaf having an average area of 2.15 cm
2
. 

3.2.2 X-ray micro-CT imaging 

Maize plants of the same cultivar were grown in three replicates simultaneously with those 

used in the gas exchange measurement to study the leaf anatomy using microscopy and the 

tomography experiments. The effect of nitrogen on these plants was assessed from readings of 

a portable chlorophyll meter (SPAD-502, Minolta, Japan) (Ciganda et al., 2009). Maize leaf 

tissue samples (5 mm   5 mm), both for young and old leaves, were obtained from the 6
th

 

leaf of each plant. Three samples per plant were taken from six plants (2 ages and 3 N levels). 

Each leaf was mounted on a polystyrene base and wrapped in a parafilm to prevent 

dehydration during scanning. The samples were placed on a high precision stage where the 
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sample rotated by 0.4° up to an angle of 196°. The samples were scanned using a high 

resolution X-ray micro-CT (Skyscan 1172, Bruker micro-CT, Kontich, Belgium) with an 

operating voltage of 60 kV and a current of 167 µA. Projection images were averaged from 

three frames. Each frame was captured with a camera size of 2000   1048 pixels and 885

10
-3

 s exposure time. A single scan lasted for about 30 minutes. The samples were imaged at 

an isotropic voxel size of 2.96 µm. 

Reconstruction of the cross-section from the shadow projections was performed using a 

filtered back projection algorithm (Feldkamp et al., 1984) implemented in NRecon 1.6.6.0 

(Bruker micro-CT, Kontich, Belgium). Beam hardening correction, smoothing and ring 

artifact reduction were set at 35, 2 and 8 % respectively. The linear attenuation coefficient 

range was set at 0 to 0.1068 to improve contrast and to standardize the grayscale range of the 

output images. The output file was an 8-bit bitmap with about 950 cross-section slices for 

each data set. The data sets were cleaned to remove noise and other extraneous materials. The 

cleaning procedure was implemented in the commercial software CTAn v1.13.5.1 (Bruker 

micro-CT, Kontich, Belgium). 

Before morphometric analysis, the images were segmented into the constituent objects by 

using Otsu’s algorithm (Otsu, 1979) in CTAn. A common global threshold value of 63 was 

found suitable for segmentation of the intercellular air spaces from cells of the leaf types. The 

segmented images were subsequently analyzed using a 3-D algorithm to determine the tissue 

volume, porosity, pore (intercellular air space) surface per volume, connectivity density of the 

pores and leaf thickness (Herremans et al., 2015). 

3.2.3 Light and electron microscopy measurements 

Leaf samples from the 6
th

 leaf, both young and old, were fixed in cold 2 % glutaraldehyde, 

buffered at pH 7.3 with 50 mM Na-cacodylate and 150 mM saccharose. Post fixation was 

carried out in 2 % osmium tetroxide in the same buffer. After dehydration in a graded acetone 

series, tissues were embedded in Araldite and sectioned with a Leica EM UC6 ultra-

microtome. Serial semi-thin sections with a thickness of 1 µm were stained with methylene 

blue and thionin and viewed in an Olympus BX-51 microscope at 40x. Double stained 70 nm 

thin sections were examined in a Zeiss EM900 electron microscope. 
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Anatomical parameters such as Sm, Sb and the interveinal distance were measured from the 

light microscopy images while the cell wall thicknesses of mesophyll and bundle sheath were 

obtained from electron microscopy images. Three image samples were randomly selected for 

each N treatment × leaf age combination. The images were first digitized using in-house-

made software (Mebatsion et al., 2006a). The digitized images were then imported into finite-

element software Comsol Multiphysics vs. 3.5 (Comsol AB, Stockholm). To calculate Sm and 

Sb the length of exposed mesophyll surface, perimeter of bundle sheath cells within an 

interveinal distance and a leaf area, taken as a distance between the centers of two consecutive 

bundle sheath cells, were measured (Pengelly et al., 2010). Using a curvature correction factor 

of 1.43 (Thain, 1983; Evans et al., 1994), these dimension measurements were converted into 

area. The thicknesses of mesophyll and bundle sheath cells wall were taken as the average of 

the distance between several parallel points on the digitized images of the cell walls. 

Interveinal distance was measured as the distance between the centers of two successive veins 

per image sample. 

3.2.4 Estimation of bundle sheath conductance and other parameters 

We used the procedure of Yin et al. (2011b) to estimate gbs and other photosynthesis 

parameters. The underlying model equations of the procedure are listed in text A.1 (Appendix 

A) while model input parameters are shown in Table A.1.3. Using the method developed 

previously (Yin et al., 2011b), the rate of day respiration (Rd) was estimated as the intercept of 

the linear relationship between photosynthesis and the term 2 / 3incI Φ , based on data from the 

light-response curves at low ranges of an incident light intensity (Iinc) (20 ≤ Iinc ≤ 200 µmol m
-

2
 s

-1
). The measurements at 2 and 21 % O2 levels were pooled to estimate a common Rd since 

the estimate for each O2 level did not differ significantly (P > 0.05). The slope of the same 

linear regression but using data of 2 % O2 plus measurements from the CO2 response curves 

at high CO2 ranges (  500 µmol mol
-1

) at 2 % O2 could give the lumped calibration factor s´ 

for calculating potential ATP production rate JATP (Eq. A.1.2, Appendix A), based on 

fluorescence measurements (Yin et al., 2011b). Here, s´ was estimated for each leaf type 

simultaneously with gbs as described below.  

Bundle sheath conductance values corresponding to the three N levels × two leaf ages were 

determined using the SAS (SAS Institute Inc., Cary, NC, USA) code obtained from Yin et al. 
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(2011b) (the code is available upon request to the corresponding author of that paper). To 

avoid overfitting, we assumed a linear relationship between gm and leaf nitrogen content 

(LNC) as was also shown to exist for C4 crops (Weng and Hsu, 2001; Yin et al., 2011b). The 

common slope of linearity (Xgm) was estimated (for details, see A.2, Appendix A). In addition, 

we found a good linear relationship between the quantum efficiency of CO2 fixation and that 

of PSII electron transport (Fig. A.5.1, Appendix A) across all light and CO2 levels. This 

suggests that (i) the proportion of ATP or energy used for sinks other than CO2 fixation was 

not altered during the measurements, and, more importantly, (ii) any enzymatic limitation, if 

occurred, had a feedback effect on electron transport. Consequently, most of the measured 

rates of photosynthesis were covered by equations of electron-transport-limited rates of the 

model (Eqs. A.1.1 and A.1.3, Appendix A). Therefore, the resulting estimates for maximum 

catalytic rate of PEPc (Vp,max) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) 

(Vc,max) were not well constrained and had unreasonably high standard errors. This had little 

impact as the main aim here was not to estimate Vp,max or Vc,max but gbs. Thus, we fixed Vp,max 

and Vc,max to arbitrarily high values to estimate gbs, s´ and Xgm only. Furthermore, it was shown 

recently that the use of a rectangular flash in a chlorophyll fluorescence measurement resulted 

in an underestimation of quantum efficiency of PSII electron transport, 2Φ  (Loriaux et al., 

2013). However, the influence of this underestimation is minimized using our calibration 

procedure for calculating JATP. For example, a 20 % higher 2Φ  (Loriaux et al., 2013) would 

lower the estimated s´ by ca. 16 %. As a result, JATP is minimally affected (see Eq. B.1.2, 

Appendix B) as s´ compensated, to some extent, for an underestimation in 2Φ  (Yin et al., 

2014). Thus, the estimated gbs values did not change (Table A.1.4, Appendix A). 

3.2.5 Statistical analysis 

A number of leaf anatomical properties for the six leaf age × N combinations were measured 

to determine explanatory variables for variation in gbs. Using principal component analysis, 

the data of mean values could be summarized into linear combination of a few key variables 

that contribute to the variability in data while elucidating the relationship between leaf 

anatomical parameters and the gbs and gm. ANOVA was carried out using JMP version 12 

(SAS Institute, USA) to compare N and leaf age groups. Mean values of the leaf 
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morphometric parameters were then compared using Student’s t-test. A significance level of 5 

% was used for this analysis. 

3.3 Results 

3.3.1 Effect of nitrogen supply and leaf age on photosynthesis 

The effect of increased N supply and leaf aging on the rate of photosynthesis (A) in response 

to intercellular CO2 concentration (Ci) and Iinc are shown in Fig. 3.1 and Fig. 3.2, respectively.  

 

Figure 3.1. The response of photosynthesis to intercellular CO2 concentration (Ci) for young 

(A1) and old (A2) leaves from maize plants grown under three nitrogen (N) levels: 0.15 g N 

per pot (N1); 0.50 g N per pot (N2) and 1.25 g N per pot (N3). Symbols show measured 

values while curves show model predicted values connected. Each measurement value is an 

average of measurements in four replicates (Materials and methods). The bars show standard 

error of the measurements. The oxygen levels were 21 % (filled circles, solid curves) and 2 % 

(open circles, dashed curves). The irradiance was kept at 1500 µmol m
-2

 s
-1

. 
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Fig. 3.1 and Fig. 3.2 show that A increased with the amount of N added to the pots and 

declined with leaf age. These effects were reflected in the measured responses 2Φ  (Fig. 3.3) 

which were high for N3 leaves at high Iinc values and lower in old leaves than young leaves.  

 

Figure 3.2. The response of photosynthesis to incident irradiance for young (A1) and old (A2) 

leaves from maize plants grown under three nitrogen (N) levels: 0.15 g N per pot (N1), 0.50 g 

N per pot (N2) and 1.25 g N per pot (N3). Symbols show measured values while curves show 

model predicted values connected. Each measurement value is an average of measurements in 

four replicates (Materials and methods). The bars show standard error of the measurements. 

The oxygen levels were 21 % (filled circles, solid curves) and 2 % (open circles, dashed 

curves). The ambient CO2 was kept at 250 µmol mol
-1

 for 21 % and 1000 µmol mol
-1

 for 2 % 

oxygen levels. 
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The oxygen level, 2 % or 21 %, did not affect A and 2Φ  substantially although the differences 

in A and 2Φ  tend to be more in young N3 leaves suggesting an increased photorespiration.  

The contrasting differences in rate of photosynthesis shown in Fig. 3.1 and Fig. 3.2 could be 

explained in part by significant differences in gs (Table 3.1). Fig. 3.1 and Fig 3.2 also show 

that at constant Ci or irradiance level, non-stomatal factors contributed to the differences in 

rate of photosynthesis. In addition, Fig. 3.1 shows that photosynthesis rate reached saturation 

at low Ci which implies that stomatal limitation may have not been severe. This is expected in 

C4 plants since the CCM mechanism allows them to be less reliant on stomatal conductance 

compared to C3 plants. Thus, the discussion in this chapter will be focused more on non-

stomatal factors such as gm and gbs. 

Therefore, higher N application increased A and 2Φ  while leaf aging decreased them, as 

expected. 
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Figure 3.3. The measured response of apparent quantum efficiency of PSII electron transport to intercellular CO2 concentration (top) and incident 

irradiance (bottom) for young (filled symbols) and old (open symbols) leaves at three nitrogen (N) levels: 0.15 g N per pot (N1), 0.50 g N per pot 

(N2) and 1.25 g N per pot (N3). The oxygen levels were 21 % (circles) and 2 % (triangles). The irradiance was kept at 1500 µmol m
-2

 s
-1

. The 

bars show standard error of the measurements (n = 4). 
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3.3.2 The relationship between photosynthetic characteristics and LNC 

Table 3.1 shows that the LNC increased when the amount of N added to the pots increased. 

Leaf aging decreased the LNC, however, less so for N2 and N3 leaves as a result of the more 

frequent N treatments for the old leaves. All young leaves had significantly higher A than all 

old leaves while all N3 leaves had significantly higher A than N2 and N1 leaves (Table 3.1). 

The relationships between A, day respiration rate (Rd), leaf dry mass per leaf area (LMA), 

light conversion efficiency (s´) and LNC are shown in Fig. 3.4. There was a strong positive 

correlation between A and LNC. LMA declined as LNC increased. Rd generally increased 

with LNC but the correlation was weak. There was also a loose correlation between s´ and 

LNC. The correlation of A with LNC was significant. The chlorophyll content of leaves also 

increased with LNC (Table 3.2). 

Table 3.1 shows that all N3 leaves (young and old) have significantly higher gs than those of 

N1 leaves while young N2 and N3 leaves have higher gs than old N2 and N3 leaves.
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Table 3.1. Estimated values of Rd, s , gs and gbs (± standard error) for young (A1) and old (A2) leaves from maize plants grown under three 

nitrogen (N) levels: low (N1), intermediate (N2) and high (N3). Shown also are leaf nitrogen content (LNC), leaf mass per unit leaf area (LMA) 

and stomatal conductance (gs) and net photosynthesis (A) at ambient CO2 of 380 µmol mol
-1

, 21 % O2 and irradiance of 1500 µmol m
-2

 s
-1

. 

Means not connected by the same letter are significantly different (P < 0.05). Comparisons between leaf ages are indicated by upper case letters 

while differences among N levels within an age level are indicated by lower case letters. Shown in brackets for LNC, LMA, gs and A are standard 

errors (n = 4) of measurement while those for Rd, s  and gbs are standard errors of model fitting. 

Leaf age Leaf  

type 

LNC 

g m
-2

 

LMA 

g m
-2

 

A 

µmol m
-2

 s
-1

 

gs 

mol m
-2

 s
-1

 

Rd 

µmol m
-2

 s
-1

 

s  gbs 

mmol m
-2

 s
-1

 

A1 N1 0.64±0.09 a,A 39.01±0.65 a,A
 
 27.05±2.79 a,A 0.17±0.024 a,A 1.70±0.20 0.325±0.004 0.88±0.55 

 N2 0.83±0.08 a,A 33.95±0.59 b,A 31.92±2.34 a,A 0.24±0.021 ab,A 2.20±0.23 0.328±0.003 2.33±0.83 

 N3 1.16±0.12 b,A
 

34.27±0.93 b,A 43.04±1.31 b,A 0.35±0.010 b,A 2.16±0.27 0.323±0.006 3.56±0.90 

A2 N1 0.34±0.03 a,B 40.60±1.55 a,A 16.78±1.40 a,B 0.09±0.004 a,A 1.68±0.17 0.327±0.007 0.36±0.50 

 N2 0.60±0.11 a,A 36.29±1.72 a,A 19.33±0.80 a,B 0.11±0.0080 a,B 1.65±0.21 0.332±0.003 0.51±0.51 

 N3 0.74±0.15 a,A 38.70±2.30 a,A 33.74±0.99 b,B 0.21±0.0087 c,B 2.29±0.19 0.321±0.003 1.34±0.62 
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Figure 3.4. Photosynthesis rate (A), day respiration (Rd), leaf dry mass per leaf area (LMA) 

and light conversion efficiency (s´) in relation to leaf nitrogen content (LNC) for young () 

and old leaves ().  

3.3.3 Bundle sheath conductance in response to LNC and leaf age  

Table 3.1 shows that estimated gbs values were higher for N3 leaves than for N2 and N1 

leaves. Old leaves had lower gbs than young leaves. The model to estimate gbs predicts the rate 

of photosynthesis well (Fig. 3.1 and Fig. 3.2, r
2
 = 0.98); however, some of the best-fit values 

of gbs had high standard errors. Although there is an uncertainty on the actual gbs, the 

estimated values show a general trend of increasing with LNC and declining with leaf age. In 

addition, gbs correlated with LNC (r
2
 = 0.90) (Fig. 3.5). Across N levels and leaf ages, the 

bundle sheath resistance thus varied from ca. 281 to 2756 m
2
 s mol

-1
. Furthermore, the 
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estimated Xgm was 2.83 ± 0.16 mol (g N)
-1

 s
-1

 resulting in gm values of 0.54 mol m
-2

 s
-1

 at the 

lowest LNC and 2.85 mol m
-2

 s
-1

 at our highest LNC. 

 

Figure 3.5. A. The estimated bundle sheath conductance (gbs) in relation to leaf nitrogen 

content (LNC). B. The relationship between photosynthesis (A) and gbs. 

Fig. 3.5B shows that a good linear relationship between A and gbs exists. As a result of 

increased gbs with LNC, the mean CO2 concentration in the bundle sheath (Cc) (Fig. 3.6) was 

higher for young N1 leaves than for young N2 and N3 leaves across all irradiances. This 

pattern was the same for the old leaves (Fig. A.3.1, Appendix A).  
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Figure 3.6. The predicted response of mean concentration of CO2 in bundle sheath cells (Cc) 

(left panel) and leakiness (right panel) to incident irradiance (Iinc) for young leaves grown at 

three nitrogen (N) levels: 0.15 g N per pot (N1), 0.50 g N per pot (N2) and 1.25 g N per pot 

(N3). The ambient CO2 was kept at 250 µmol mol
-1

 and oxygen level was 21 %. 

Across leaf ages, Cc was higher in old leaves than in young leaves consistent with differences 

in gbs (Fig. A.3.1, A.3.2, Appendix A). The efficiency of the CCM as indicated by leakiness, 

however, was not substantially different within N levels (Fig. 3.6). The predicted leakiness 

was also similar across leaf ages (Fig. A.3.3, A.3.4, Appendix A). 

3.3.4 Sensitivity analysis 

The sensitivity of Xgm, s´ and gbs to the fraction of ATP allocated to the C4 cycle (x) (Table 

A.1.3), which is an important determinant of the electron-transport-limited rate of PEP 

carboxylation and photosynthesis (Eq. A.1.1 and Eq. A.1.3, Appendix A), is shown in Table 

A.1.5 (Appendix A). The estimated Xgm and s’ were largely insensitive to various values of x 

except when it was low (0.35). However, the value x = 0.35 may not be biologically realistic 

as many modeling studies show that x is very close to 0.40 (von Caemmerer and Furbank, 

1999; Yin et al., 2011b) under various treatments and ambient conditions. Yin and Struik 

(2012) estimated that when additional ATP utilizing processes were considered, x varied from 

0.399 to 0.385. Optimization analysis showed that the optimum x was ca. 0.4 over a wide 
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range of conditions, except under extremely low-light conditions (von Caemmerer and 

Furbank, 1999). Table A.1.4 also shows that gbs was sensitive to x. However, when x was also 

estimated simultaneously with gbs from our model (not shown), it was 0.43 ± 0.042 which is 

also close to 0.4. We decided to fix x = 0.4 to improve the estimation of gbs by reducing the 

number of parameters to be fitted. Fig. A.5.2 (Appendix A) shows that the relationship 

between gbs and LNC remained strongly linear. Therefore, although the estimated gbs values 

were sensitive to the choice of x, the relationship between gbs and LNC was minimally 

affected. The magnitudes of leakiness and Cc were, however, sensitive to x (Fig. A.5.3 and 

Fig. A.5.4, Appendix A). Therefore, these predictions should be considered as temporary 

values. However, the trends of Cc and leakiness were not altered. Furthermore, Xgm, s´ and gbs 

were expectedly insensitive to Rubisco and PEPc kinetics parameters (Table A.1.5, Appendix 

A) due to the close link between photosynthesis and electron transport (Fig. A.5.5, Appendix 

A). 

3.3.5 The effects of LNC and leaf age on the anatomy of maize leaves  

Table 3.2 shows the measurement results of the leaf morphological properties for young and 

old leaves. The portable chlorophyll meter readings that correlate with chlorophyll content 

(Ciganda et al., 2009), were higher for N3 and N2 than for N1 leaves and lower for old leaves 

than for the young leaves (Table 3.2). This implies that the nitrogen content of maize leaves 

used for imaging increased with higher N application and decreased with leaf age. The images 

of transverse sections of the maize leaf samples, cell walls of the bundle sheath and surface 

rendering of leaves using X-ray micro-CT images are shown in Fig. A.6.1, Fig. A.6.2 and Fig. 

A.6.3, respectively (Appendix A). 

Anatomical parameters such as Sm, Sb, leaf thickness, cell volume and bundle sheath cell wall 

thickness were not significantly altered by LNC. Old N1 leaves had a significantly thicker 

mesophyll cell wall than old N2 leaves. The pore surface to volume ratio of young N1 leaves 

was significantly higher than that of young N2 and N3 leaves while it was significantly larger 

for old N1 leaves than for the old N2 leaves. Old N3 leaves were significantly more porous 

than old N2 leaves. The connectivity density was significantly larger in the old N3 leaves than 

that in the N2 leaves. Both young and old N1 leaves had significantly shorter interveinal 

distance that N2 and N3 leaves. 
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The porosity, pore surface per volume and connectivity density values were not significantly 

different between young and old leaves. Young N1 leaves were significantly thicker than old 

N1 leaves. Old N1 leaves had significantly thicker cell walls of mesophyll and bundle sheath 

than young N1 leaves. Comparing across leaf ages, mean values of Sm of old leaves were 

larger than those of young leaves. However, statistical analysis showed that only old N2 

leaves had a significantly larger Sm than young N2 leaves. By contrast, all young leaves had 

significantly higher Sb than their respective old leaves. The difference in interveinal distance 

between young and old N1 leaves was significant. 
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Table 3.2. Leaf anatomical properties of young leaves (A1) and old leaves (A2) (mean ± standard error, n=3) from maize plants grown under three nitrogen 

(N) levels: low (N1), intermediate (N2) and high (N3). Means not connected by the same letter are significantly different (P < 0.05). Comparisons between 

leaf ages are indicated by upper case letters while differences among N levels within an age level are indicated by lower case letters. Porosity, cell volume, 

pore surface per volume, connectivity density and leaf thickness were measured from X-ray micro-CT images. Cell wall thicknesses were measured from 

transmission electron microscopy images. Sm, Sb and interveinal distances were measured from light microscopy images.
 

Parameter A1 A2 

N1 N2 N3 N1 N2 N3 

Chlorophyll meter  

readings (SPAD units) 

38.1  42.3  48.1  22.1  27.2  39.4  

Porosity (%) 36.7 ± 0.39 a,A 38.3 ± 1.1 a,A 38.6 ± 2.5 a,A 37.05 ± 2.6 ab,A 36.3 ± 0.25 a,A 38.4 ± 0.53 b,A 

Cell volume (mm
3
) 1.79 ± 0.04 a,A 1.66 ± 0.05 a,A 1.68 ± 0.05 a,A 1.46 ± 0.04 a,B 1.58 ± 0.05 a,A 1.61 ± 0.1 a,A 

Pore surface/volume  

(mm
2
 mm

-3
) 

268 ± 0.60 a,A 255 ± 0.59 b,A 253 ± 5.1 b,A 261 ± 3.7 a,A 258 ± 1.2 b,A 263 ± 7.7 ab,A 

Connectivity density  

×1000 (mm
-3

)
(1)

 

81.9 ± 1.2 a,A 78.9 ± 4.7 a,A 77.8 ± 8.1 a,A 78.5 ± 9.1 ab,A 74.0 ± 1.5 a,A 81.6 ± 2.2 b,B 

Leaf thickness  

(µm) 

237 ± 6.87 a,A 217 ± 8.41 a,A 243 ± 7.84 a,A 197 ± 5.22 a,B 209 ± 8.91 a,A 208 ± 5.31 a,A 

Bundle sheath  

cell wall thickness (µm) 

0.188 ± 0.0140 a,A 0.245 ± 0.0458 a,A 0.260 ± 0.0331 a,A 0.457 ± 0.0190 a,B 0.445 ± 0.0500 a,A 0.319 ± 0.0150 a,A 

Mesophyll cell  

wall thickness (µm) 

0.161 ± 0.0277 a,A 0.119 ± 0.0209 a,A 0.138 ± 0.0288 a,A 0.230 ± 0.0277 a,B 0.139 ± 0.0139 b,A 0.149 ± 0.0144 ab,A 

Sm (m
2
 m

-2
) 9.10 ± 0.53 a,A 8.93 ± 0.16 a,A 9.01 ± 0.39 a,A 11.19 ± 1.67 a,A 10.60 ± 0.28 a,B 9.66 ± 1.00 a,A 

Sb area (m
2
 m

-2
) 2.82 ± 0.16 a,A 2.56 ± 0.17 a,A 2.54 ± 0.14 a,A 1.89 ± 0.06 a,B 1.81 ± 0.03 a,B 1.82 ± 0.03 a,B 

Interveinal distance (µm) 119 ± 3.96 a,A 142 ± 5.72 b,A 149 ± 14.18 b,A 130 ± 3.13 a,B 146 ± 2.95 b,A 141 ± 5.38 b,A 

(1)
 Connectivity density is defined as the number of multiple connections between structures per unit volume.  
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3.3.6 Bundle sheath conductance in relation to leaf anatomy 

The correlation between the measured leaf anatomical parameters and gbs is shown by principal 

component analysis (PCA) biplot in Fig. 3.7 in analogy to a study on C3 plants (Galmés et al., 

2013). The scores represent young and old leaves. Since a total of six gbs values were estimated 

for LNC × leaf age combinations, mean values of anatomical parameters were used in the PCA. 

The direction of correlation loadings which are vectors with origin at (0,0) shows positive or 

negative correlation. Thus, the vectors in opposite direction are largely negatively correlated 

while the vectors pointing to the same direction are positively correlated. If the vectors point in 

the direction of a score (young or old leaves), the score is characterized by a positive value of the 

corresponding anatomical property or CO2 conductance. Vectors that are perpendicular to each 

other are uncorrelated. The corresponding correlation coefficients are shown in Table A.1.6 

(Appendix A). 
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Figure 3.7. Principal component analysis (PCA) biplot of young and old leaves showing the 

grouping of leaf types in terms of leaf anatomical properties (mean values). Scores of young (A1) 

and old leaves (A2) grown under three nitrogen (N) levels: low (N1), intermediate (N2) and high 

(N3) are shown. Variables should be interpreted as vectors with origin in (0,0). Correlation 

loading (+) located between the circles (70 % and 100 % of the explained variance limits) are 

considered most important for explaining the variability with respect to the principal component 

shown. Correlation between variables is as follows; variables with correlation loadings that are 

close to each other are correlated, loading that are 90° from each other are uncorrelated and 

loading that are 180° from each other are inversely correlated. Abbreviations: bundle sheath (BS) 

conductance (gbs), mesophyll (M) conductance (gm), exposed mesophyll surface per unit leaf area 

(Sm), bundle sheath surface area per unit leaf area (Sb).  
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The PCA analysis resulted in two principal components (PCs) that explained 82 % of the total 

variance. PC1 was well correlated (r > 0.70) to cell wall thickness of mesophyll and bundle 

sheath cells, Sm, Sb, leaf thickness and tissue volume (Table A.1.6, Appendix A). Thus, PC1 was 

correlated to the major determinants of gbs and gm. The first PC was also effective in separating 

young and old leaves. gm, gbs and porosity were highly correlated similar to the correlation 

between leaf thickness, Sb and cell volume. gbs was correlated with interveinal distance and Sb 

although less strongly than leaf thickness. There was a strong negative correlation between the 

mesophyll cell wall thickness and gm but not gbs. The bundle sheath cell wall thickness was 

inversely related to gbs while Sm was inversely related to gm. Void surface per volume and 

connectivity density were correlated to each other but uncorrelated to other anatomical properties 

and gm in this biplot. Fig. 3.7 also shows that old leaves in general have thicker cell walls of 

mesophyll and bundle sheath cells, lower conductances and are thinner than young leaves. 

3.4 Discussion 

3.4.1 Bundle sheath conductance increased with LNC and declined with leaf 

age 

We have grown maize plants under three nitrogen treatment levels to study how gbs varies with 

LNC. Previously, it was shown that gbs increased with LNC for two extreme N treatment levels 

(Yin et al., 2011b). Our results confirm that gbs varied in with LNC (Table 3.1). The bundle 

sheath resistances were mostly in the range 100 to 1600 m
2
 s mol

-1
, reported for various C4 

species (Jenkins et al., 1989a; von Caemmerer and Furbank, 2003; Kromdijk et al., 2010; Yin et 

al., 2011b). More importantly, gbs significantly correlated with LNC while the impact of the latter 

on gbs was much more than that of leaf age as confirmed by a two-variable regression (Table 

A.7.1, Appendix A). Fig. 3.5B shows that a strong linear relationship exists between A and gbs. 

The effect of decreased CO2 concentration in bundle sheath cells due to high gbs with high LNC 

was reflected in the fraction of assimilation lost due to photorespiration (Eq. A.3.2, Appendix A) 

which was higher for N3 leaves than for N1 and N2 leaves (Fig. A.3.5, Appendix A). In addition, 

leakiness was not affected by the LNC since the energy efficiency of CO2 fixation indicated by 
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the ratio of quantum yield of CO2 fixation to quantum yield of PSII electron transport was not 

significantly different in young and old leaves within N levels (Fig. A.5.6, Appendix A). 

Consistent with this, the predicted leakiness (Fig. 3.6) also shows that the efficiency of the C4 

cycle was not substantially affected while a strong positive correlation between A and LNC was 

found (Fig. 3.4). This occurs when the increased rate of CO2 leakage was matched with increased 

delivery of CO2 by the higher capacity of the C4 cycle in leaves having high LNC. Consequently, 

the bundle sheath resistance of high photosynthesis capacity leaves should decrease (Fig. 3.6B) 

(von Caemmerer and Furbank, 2003). The corollary to these predictions is that the maize plants 

grown in low N supply responded by increasing bundle sheath resistance to maintain similar 

efficiency. This raises the question of how the variation of gbs was achieved. 

3.4.2 The combined effect of LNC and leaf age on anatomy may explain the 

differences in bundle sheath conductance 

Our results for the increase of gbs with LNC (Fig. 3.5) confirm the earlier result of Yin et al. 

(2011b) based on only two nitrogen treatments. This positive correlation could be examined 

using the influence of LNC on anatomical components of gbs, Sb, and cellular conductance, which 

is the CO2 conductance of the mesophyll-bundle sheath interface (von Caemmerer and Furbank, 

1999). The cellular conductance may be expected to be influenced by properties of the bundle 

sheath cell wall, while gbs, which is expressed per unit leaf area, is influenced by Sb (von 

Caemmerer and Furbank, 1999). The measured Sb was in the range of values reported in the 

literature 1.5 to 3.1 m
2
 m

-2
 (Brown and Byrd, 1993; Dengler et al., 1994; Pengelly et al., 2010, 

2011; Barbour et al., 2016). In addition, the measured values of cell wall thickness of bundle 

sheath cells are close to the reported values for C4 plants, including maize, ca. 0.3 to 1.6 µm 

(Hattersley and Browning, 1981; Rezvani Moghaddam and Wiliman, 1998; Watling, 2000; von 

Caemmerer and Furbank, 2003). The decline of gbs with leaf aging was accompanied by a 

significant decline of Sb. Due to this reduction in Sb, old leaves were also significantly thinner 

than young leaves except for old N2 leaves, where the reduction in Sb accompanied by 

significantly larger Sm resulted in similar leaf thickness (Table 3.2). In old N1 leaves, particularly, 

the wall thickness of bundle sheath cells was also thicker. Since LNC also declined with leaf age 

(Table 3.1), significantly so within young and old N1 leaves, these responses of leaf anatomy and 
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the resulting differences in gbs are attributed to the combined effects of LNC and leaf age. 

However, within N levels, it seems that neither Sb nor wall thickness of bundle sheath was 

responsible for the differences in gbs. The anatomy changed in such a way that only the vein 

spacing increased with LNC but interveinal distance correlated to gbs less strongly. The lack of 

association between gbs and cell wall thickness within N levels suggests that other factors may 

play a role. For instance, the density of plasmodesmata which are considered the main pathway to 

CO2 leakage (Hattersley and Browning, 1981; Sowiński et al., 2008) since the suberin layer (for 

instance, Fig. A.6.4, Appendix A) may restrict the leakage of CO2 through the cell walls as 

suggested previously (Dengler and Nelson, 1999; Mertz and Brutnell, 2014). Previous reports 

show that the abundance of plasmodesmata responded to growth conditions such as low 

temperature or low irradiance (Sowiński et al., 2003, 2007). Overall, the impact of LNC on gbs 

was not due to alteration of the anatomical factors while its effect on the anatomy in interaction 

with leaf age explains for differences in gbs between young and old leaves. 

3.4.3 Mesophyll conductance in relation to LNC and leaf age 

In C3 plants, a positive correlation of gm with exposed mesophyll surface has been reported 

(Flexas et al., 2008). For C4 plants, CO2 assimilation occurs in the mesophyll cytosol, thus the 

parameter Sm is believed to be positively related to gm (von Caemmerer and Furbank, 2003). Our 

measured Sm was in the range of values reported for C4 species (El-Sharkawy, 2009; Pengelly et 

al., 2011; Barbour et al., 2016). In relation to gm, however, Sm did not change significantly with 

LNC. Sm had also strong negative correlation with gm (Fig. 3.7) due to a higher Sm in old leaves 

than young leaves. Thus, the role of Sm in gm was counter-intuitive. As shown in Fig. 3.7, gm also 

correlated with porosity, leaf thickness and mesophyll cell wall thickness. The lack of significant 

differences in porosity or degree of connectivity of air spaces in many of the leaves, however, 

rules out the possibility of causal relationship between the parameters and variations in gm. In 

addition, since maize is an amphistomatous leaf, the resistance of the intercellular air space is low 

(Parkhurst and Mott, 1990). Among young and old leaves, the decline of leaf thickness may have 

been due to reduced Sb not due to changes in Sm. A strong negative correlation of mesophyll cell 
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wall thickness with gm in combination with a significantly thicker mesophyll cell wall of old N1 

leaves support the decline of gm across leaf ages.  

3.4.4 Implications of conserved leaf anatomy under contrasting LNC on 

photosynthesis  

An increased gbs with LNC reduced the effectiveness of the CCM as the CO2 concentration in the 

neighborhood of Rubisco decreased. On the other hand, similar to previous reports (Vos et al., 

2005; Tazoe et al., 2006; Feng et al., 2012), higher LNC boosted the rate of photosynthesis. In 

addition, high LNC leaves had low LMA which is associated with elevated concentration 

proteins and photosynthesis (Poorter et al., 2009). It is to be noted that our measured 

photosynthesis was mainly limited by electron transport. This paradox could be explained by the 

increase in quantum efficiency of electron transport outweighing the increase of gbs with LNC. In 

conjunction with leaf anatomical data, this implies that the negative impact of decreased bundle 

sheath resistance was not detrimental to the rate of photosynthesis. Similarly, Yin et al. (2011b) 

have shown that the increase of gbs by LNC has less influence on the rate of photosynthesis 

compared to the effect of LNC on photosynthetic capacity. It could also be that increased CO2 

leak with high LNC may elevate the CO2 concentration in mesophyll (Fig. 4.3, Subsection 4.3.2), 

thus, the rate of PEP carboxylation and also maintains the balance of energy supply and demand, 

boosting photosynthesis (Wang et al., 2014b). 

In response to growth conditions, some C4 plants have shown to respond, for instance, through 

alteration in anatomy (Pengelly et al., 2010; Kromdijk et al., 2010). Similarly, due to leaf aging, 

which was accompanied by a drop in LNC, old maize leaves had lower gbs than young leaves 

through lower Sb. However, the anatomy of a maize leaf was generally conserved despite the 

large differences in LNC (Table 3.2). While accepting that the tissue preparation for the 

microscopy experiment may have affected our results, the apparent lack of effect of LNC may 

also be in line with the hypothesis that the C4 leaf anatomy responds to environmental changes by 

ensuring intimate contacts of mesophyll and bundle sheath cells which is essential for efficient 

metabolite transport and CCM (Greef, 1994; Dengler and Nelson, 1999; Sage and McKown, 
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2005; El-Sharkawy, 2009). These views suggest that the leaf anatomy in C4 plants may be 

constrained by the need for rapid metabolite fluxes. 

3.5 Conclusion 

We investigated the bundle sheath conductance in relation to anatomy of maize leaf as a function 

of nitrogen and leaf age. gbs appeared to be strongly related to LNC but leaf anatomy was not. 

Consequently, changes in the leaf anatomy were not the cause of variation in gbs with LNC 

except in interaction with leaf age. In addition, a high photosynthesis rate occurred 

simultaneously with a high gbs. These results were unexpected and counter-intuitive. However, 

since the chloroplast envelope and plasma membrane also contribute to bundle sheath resistance, 

the possible effect of nitrogen through altered composition, thus permeability, should be 

accounted for. The CO2 diffusion in the liquid phase of mesophyll cells is also constrained by the 

permeability of the plasma membrane which, in maize, contains aquaporins and carbonic 

anhydrases that may enhance its CO2 permeability (Utsunomiya and Muto, 1993; Maurel et al., 

2008). Therefore, future investigations considering these components along with the roles of 

suberin and plasmodesmata are recommended to unravel the effect of LNC on gbs further. 
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4 A two-dimensional microscale model of gas exchange 

during photosynthesis in maize (Zea mays L.) leaves 
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4.1 Introduction 

The role of leaf anatomical properties on CO2 conductances, gm and gbs, in relation to leaf 

nitrogen content and age was examined in the Chapter 3. gbs as derived from a biochemical model 

of C4 photosynthesis correlated well with many of the anatomical properties. In addition, to 

examine the influence of LNC and leaf age on gbs further, additional microstructural features 

should be considered. In Chapter 4, a microscale model of gas exchange will be developed to 

mechanistically analyze gm and gbs and thus increase quantitative insight on the role of leaf 

microstructure to the efficiency of the CO2 concentration mechanism (CCM).  

The mechanisms contributing to the high gm of C4 plants are not understood well (von 

Caemmerer and Furbank, 2003; Weber and von Caemmerer, 2010), but are suggested to be 

related to the fact that CO2 has to cross fewer membranes in mesophyll cells of C4 plants than 

those of C3 plants (von Caemmerer et al., 2007), a thinner mesophyll cell wall in C4 plants 

(Evans and Loreto, 2000; von Caemmerer et al., 2007), abundant aquaporins in the mesophyll 

plasma membrane of C4 plants (Weber and von Caemmerer, 2010) and mesophyll chloroplasts 

allowing more volume for CO2 assimilation by covering less of the exposed mesophyll surface 

(Stata et al., 2014).  

Bundle sheath resistance determines the concentration of CO2 in bundle sheath cells and 

constrains the rate of retro-diffusion (Hatch, 1987; Leegood, 2002), thereby contributing to an 

efficient CCM. The inverse of the resistance, the bundle sheath conductance (
bs

g ), has been 

estimated using mathematical model fitting (see Chapter 3) (von Caemmerer and Furbank, 2003; 

Yin et al., 2011b) or using a plant which lacks the C4 cycle (Kiirats et al., 2002) or isolated 

bundle sheath cells (Furbank et al., 1989; Brown and Byrd, 1993). It is reported to vary with 

growth light (Kromdijk et al., 2010; Bellasio and Griffiths, 2014c), nitrogen supply and leaf age 

(He and Edwards, 1996; Kiirats et al., 2002; Yin et al., 2011b). These results came 

predominantly from resistance-based analytical models (Furbank and Hatch, 1987; Jenkins et al., 

1989b; Collatz et al., 1992; Brown and Byrd, 1993; Kiirats et al., 2002; Yin et al., 2011b). CO2 

diffusion limitations imposed by the intracellular structure in C4 leaves have also been quantified 

using resistance models (Longstreth et al., 1980; von Caemmerer and Furbank, 2003). However, 
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resistance models do not specifically consider distributed sources and sinks of CO2 in leaves, nor 

do these models account directly for the effects of leaf anatomy on CO2 diffusion. Considerable 

progress was recently made by our group in the development of microscale models of CO2 

exchange that incorporate the leaf microstructure of C3 plant leaves (Ho et al., 2012, 2016). Such 

microscale photosynthesis models, if implemented for C4 leaves, may help in explaining the 

influences of leaf microstructure on 
bs

g . 

The objectives of this research were (i), to include the physical barriers of leaf anatomy and 

ultrastructure in the microscale model analysis of gas diffusion and photosynthesis in C4 leaves, 

and (ii), to quantitatively evaluate the role of components along the CO2 diffusion and retro-

diffusion pathway on CCM.  

4.2 Materials and methods 

4.2.1 Biochemical model of C4 photosynthesis 

We based our analysis on a photosynthesis kinetics model for C4 leaves presented by von 

Caemmerer and Furbank (1999). This model states that in mesophyll cells (m), the PEP 

carboxylation rate pV  is enzyme-limited or electron-transport-limited. pV  is given by (von 

Caemmerer and Furbank, 1999):  

2

2

[CO ]
  min ,

[CO ]  2

m

m

p,max ATP
p

p

V x J
V

K

  
 
  





 

(4.1) 

The first term between the brackets is for the enzyme-limited rate while the second term is for the 

electron-transport-limited rate of PEP carboxylation. 2[CO ]m  is the concentration of CO2 in the 

mesophyll cytosol; 
pK  is the Michaelis-Menten constant of PEPc for CO2; and p,maxV  is the 

carboxylation capacity of PEPc. The partitioning factor, x , is the fraction of ATP allocated to 

the C4 cycle. Note that the rate of total electron transport in the model of von Caemmerer and 
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Furbank (1999) was changed here to ATPJ , the rate of ATP production (Yin and Struik, 2012). 

We calculated ATPJ  according to Yin et al. (2011b) (Eq. B.1.1, in Appendix B). 

The gross rate of CO2 fixation in bundle sheath (bs) chloroplasts (
cV ) limited by the rate of 

Rubisco carboxylation ( cw ) or the rate of electron transport (
jw ) is expressed as (Farquhar et al., 

1980; von Caemmerer and Furbank, 1999):  

( )min ,c c jV w w            (4.2) 

,2

2 2

[CO ]

[CO ] (1 [O ] / )

bs

bs bs

c max
c

m,C m,O

V
w

K K




 
 

                    (4.3)             
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 


 
     

                       (4.4)                                                                     

where ,c maxV  is the carboxylation capacity of Rubisco; m,CK  and m,OK  are Michaelis-Menten 

constants of Rubisco for CO2 and O2 respectively; *  is half the inverse of Rubisco specificity; 

and 2[CO ]bs  and 2[O ]bs  are the concentrations of CO2 and O2 in bundle sheath chloroplasts. 

Symbols, definitions, values, units are listed in Table B.1 and Table B.2 (Appendix B).  

4.2.2 Model of CO2 transport inside a leaf of NADP-ME type C4 plant 

Fig. 4.1 shows the schematic representation of CO2 transport in a C4 leaf based on which 

reaction-diffusion equations for CO2 transport in a maize leaf were formulated. Transport of 

various metabolites in the C4 pathway was not explicitly modeled, for practical purposes; 

however, their role in the delivery CO2 to the site of fixation was accounted for. 
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Figure 4.1. Schematic representation of the C4 pathway of CO2 fixation. CO2 is hydrated to 

bicarbonate ions at a rate B which are then fixed to C4 acids at rate Vp. It is assumed that at steady 

state, CO2 is produced from decarboxylation of C4 acids in bundle sheath cells at a rate Vp. In 

bundle sheath chloroplasts, CO2 is fixed at a rate Vc in the photosynthetic carbon reduction (PCR) 

cycle, while mitochondria in the cytosol of bundle sheath cells release CO2 through 

photorespiration at a rate rp and through day respiration at a rate Rs. Rm is the rate of CO2 release 

by mitochondria in the mesophyll cytosol. A difference in CO2 concentration between bundle 

sheath cells (Cc) and mesophyll cells (Cm) creates diffusive leakage (L). Figure was adapted from 

various sources (von Caemmerer and Furbank, 1999; Leegood, 2004). 

CO2 transport in mesophyll cells 

It is usually assumed that CO2 limits the rate of PEP carboxylation (Peisker, 1979; von 

Caemmerer and Furbank, 1999). Consequently, Vp (Eq. B.1.1, Appendix B) is expressed using 

concentrations of CO2 in the standard biochemical model (Kanai and Edwards, 1999) although 

the substrate is bicarbonate. Therefore, we set Vp as a sink term for CO2 and briefly assess the 

consequences of these assumptions (for details see Appendix B.2). CO2 is released by 

mitochondria in the mesophyll cytosol through respiration at a volumetric rate, mR  (hereafter, the 
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superscript * in symbols is used to signify a volumetric rate equivalent of a leaf area-based 

variable). 

The reaction-diffusion equation for CO2 in the mesophyll cytosol is given by: 

 2

* *2
2

[CO ]
[CO ]m

mCO p mCA
D V B R

t


   


 

(4.5) 

where   is the gradient operator. 
2COD  is the diffusion coefficient of CO2 in the liquid phase; 

*
pV  is the volumetric rate of pV  (Table B.1, Appendix B). CAB , the rate of CA catalyzed 

hydration of CO2 in mesophyll cytosol, is given by (Spalding and Portis, 1985; Tholen and Zhu, 

2011):  
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(4.6)                                                                                             

where ak  is the CA turnover rate; aX  is the concentration of CA; 
2COK and -

3HCO
K  are Michaelis-

Menten constants of CA hydration and dehydration, respectively; 
eqK  is the equilibrium constant 

for CA; -

3[HCO ]
m
 is the concentration of bicarbonate in mesophyll cytosol; and +[H ]m

 is the 

concentration of H
+
 ions in mesophyll cytosol (the pH of the cytosol was assumed to be 7.5 

(Evans et al., 2009). 

The reaction-diffusion equation for bicarbonate in the mesophyll cytosol is given by: 
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(4.7)                                 

where 
3HCO

D   is the diffusion coefficient of bicarbonate. 

CO2 transport in bundle sheath cells 

In bundle sheath chloroplasts, it is assumed that CO2 is released from decarboxylation of C4 acids 

at the same rate as the rate of PEP carboxylation (Peisker, 1979; von Caemmerer and Furbank, 

1999). Therefore, the average rate of PEP carboxylation, pV  in the mesophyll cytosol (Eq. B.1.2, 

in Appendix B) was set equal to the mean rate of CO2 release in bundle sheath chloroplasts. It 

was assumed that there is negligible CA activity in bundle sheath cells due to low CA 

concentrations (Ku and Edwards, 1975; Burnell and Hatch, 1988). In addition, without a model 

for actual transport of metabolites, a possible CO2 release in maize bundle sheath cytosol (Pick et 

al., 2011; Bellasio and Griffiths, 2014c) could not be included. Thus, CO2 was assumed to be 

released in bundle sheath chloroplasts only. The reaction-diffusion equation for CO2 in bundle 

sheath cells, therefore, is given by: 

 2

* * * *2
2

[CO ]
[CO ] +bs

bsCO p c s pNCA
D V V B R r

t


    


 

(4.8) 

The second and the third term on the right side of Eq. 4..8 are the volumetric rate of CO2 release 

from decarboxylation of C4 acids (Eq. B.1.3, in Appendix B) and the volumetric rate of CO2 

consumption during carboxylation of Rubisco in the chloroplasts (Table B.1, Appendix B), 

respectively. The fourth term NCAB  is the non-enzymatic CO2 hydration rate in bundle sheath 

cytosol and stroma. The last two terms *

s
R  and 

*

pr  on the right side of Eq. 4.8 are the volumetric 

CO2 release through respiration (Table B.1, Appendix B) and photorespiration in the cytosol, 

respectively. The photorespiration in bundle sheath chloroplast was integrated over its volume 

but used as a source of CO2 in the cytosol (Eq. B.1.4, in Appendix B).  
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NCAB  is given by (Ho et al., 2012): 

- +
2 3

1 2

[HCO ] [H ]
 [CO ] bs bs
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k
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
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(4.9) 

where 
1k  is the CO2 hydration rate constant; 

2k  is the CO2 dehydration rate constant; K  is the 

acid dissociation constant for H2CO3; and -

3[HCO ]bs  is the concentration of bicarbonate in bundle 

sheath cells. +[H ]bs
 is calculated from pH of the bundle sheath cytosol (7.5) or stroma (7.8) (the 

pH values were assumed equal to those reported for cytosol and stroma of C3 plants (Evans et al., 

2009)).  

The reaction-diffusion equation for bicarbonate ions in the bundle sheath cells is given by: 
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(4.10) 

In NADP-ME subtype C4 plants like maize, Photosystem II associated O2 evolution is low (Kanai 

and Edwards, 1999). Consequently, a reaction-diffusion equation for O2 was not included. Thus, 

concentration of oxygen in the leaf tissue was assumed equal to that in the ambient air. 

The mean concentrations of CO2, in the mesophyll cells (
m

C ) and in the bundle sheath 

chloroplasts (
c

C ), were determined by integrating the concentration over the volume (area in 2-

D) of the respective compartments and divide them by the volume of these components (Eq. 

B.1.5 and Eq. B.1.6 respectively, in Appendix B). 
bs

g was calculated by dividing the leakage flux 

(Eq. B.1.7, in Appendix B) by the difference in mean CO2 concentration between bundle sheath 

and mesophyll cells (Eq. B.1.8, in Appendix B).  

The net rate of photosynthesis A  was calculated from: 

c p d
A V r R    (4.11)  
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The mean fixation of CO2, cV  , was calculated by integrating 
cV (Eq. 4.2) over the bundle sheath 

chloroplast (using a similar expression as Eq. B.1.2, in Appendix B). 
d

R  is the total rate of CO2 

release from the leaf through respiration. The mean photorespiration rate, 
pr  on leaf area basis, 

was calculated by integrating photorespiration over the volume of bundle sheath chloroplasts (Eq. 

B.1.9, in Appendix B). 

4.2.3 Boundary conditions  

Equations 4.5 to 4.10 describe the diffusion of CO2 only in the liquid phase media of mesophyll 

and bundle sheath cells. Since diffusion in the gas phase of the intercellular air spaces could not 

be realistically modeled in a 2-D geometry, we assumed a uniform CO2 concentration, equal to 

the measured intercellular CO2 concentration at the outer surface of mesophyll cell wall that were 

exposed to intercellular air spaces. A Neumann (or insulated) boundary condition was applied at 

the boundary where epidermal and mesophyll cells contact since CO2 from the atmosphere 

mainly enters the leaf through the stomata.  

The resistance to CO2 diffusion imposed by a cell wall was defined as the thickness of the wall 

divided by the effective diffusivity of CO2 in the wall (Evans et al., 2009). We assumed a value 

of one for tortuosity and solvent to water partitioning coefficient for CO2 in the wall (Evans et al., 

2009). The contact boundaries among mesophyll cells and bundle sheath cells were modeled as a 

thin boundary layer with thickness of twice the thickness of both the respective cell walls and 

plasma membranes. The resistance of a plasma membrane was calculated as the inverse of its 

CO2 permeability (Evans et al., 1994).  

Diffusion of CO2 through the plasmodesmata at the mesophyll-bundle sheath interface was 

considered by accounting for the fraction of the interface occupied by the plasmodesmata. The 

flux of CO2 per unit area of the interface 
2 ,CO pdJ , is defined as: 

2

2 , 2 2[CO ] [CO ] ) (CO

CO pd bs m

pd

D θ
J

L
  

(4.12) 
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where 
pdL  is the length of the mesophyll-bundle sheath interface and   is the ratio of the bundle 

sheath surface area covered by plasmodesmata to the total area of the mesophyll-bundle sheath 

interface. The parameter   quantifies the fraction of area available for CO2 diffusion. Since 

leakage flux occurs mainly at the mesophyll-bundle sheath interface, an insulated boundary 

condition was assumed at the surface of the bundle sheath cells exposed to the intercellular air 

spaces (Evert et al., 1977; Furbank and Hatch, 1987). We also carried out a separate simulation 

where leakage of CO2 through the exposed surface was allowed to assess the role of suberin in 

restricting apoplastic leakage towards the air space (Text B.3, Appendix B). The diffusion of 

bicarbonate ions through the plasmodesmata was defined using similar expression as Eq. 4.12. 

CO2 diffuses through the envelope of bundle sheath chloroplast at a flux 
2COJ that is given by: 

22
2[CO ] COCOJ P   (4.13)                                                                                                                                                                                                                          

where 
2COP  is the CO2 permeability of the chloroplast envelope and 2[CO ]  is the difference in 

CO2 concentration across a membrane. In addition, the flux of bicarbonate ions through the 

envelopes of bundle sheath chloroplast was defined similarly. The CO2 concentration in the gas 

and liquid phases were assumed to be in equilibrium, thus, Henry’s law was used. 

4.2.4 Gas exchange and chlorophyll fluorescence measurement 

Plants, treatments and photosynthetic measurements were described in the subsection 3.2.1. We 

used the measurement data for the 32-day old leaf having a N content of 1.16 g m
-2

 to compare 

model predictions of the responses of photosynthesis. 

4.2.5 Parameterization of the model 

Parameters of the biochemical model of C4 photosynthesis such as x , 
pK , m,CK  and m,OK  were 

obtained from literature (Cousins et al., 2010; Yin et al., 2011b) (Table B.2, Appendix B). 
p,max

V  

and 
c,max

V  could not be estimated from our gas exchange and chlorophyll fluorescence 

measurement data due to limitation of CO2 fixation mainly by electron transport (for details, see 
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Appendix B.3 in Appendix B). However, a linear relationship between 
p,max

V , 
c,max

V  and leaf 

nitrogen content was reported previously (Sage et al., 1987; Tazoe et al., 2006). The slopes of 

linearity were reported for maize leaves of the same cultivar as ours to be 242.2   95.3 µmol 

CO2 (g N)
-1

 s
-1

 and 96   10.7 µmol CO2 (g N)
 -1

 s
-1

 for 
p,max

V  and 
c,max

V  respectively (Yin et al., 

2011b). Our leaf N content of 1.16 g m
-2 

was higher than the base leaf N content of 0.242 

0.045 g N m
-2

 above which the linear relationship was assumed (Yin et al., 2011b). Therefore, 

p,max
V  and 

c,max
V were calculated using these values and the measured leaf N content (Table B.2, 

Appendix B). Parameters dR  and s  were estimated from our gas exchange measurement using 

the procedures of Yin et al. (2011b) in Microsoft Excel.  

The Michaelis-Menten constant of CA for CO2 was reported for maize (Hatch and Burnell, 1990) 

(Table 2). However, constants such as HCO3
K  ,

eqK  and the concentration of CA have not been 

reported. Here we used the equilibrium constants reported for spinach leaves (Pocker and 

Miksch, 1978) on the ground that comparable activities exist between spinach and maize 

(Poincelot, 1972). The concentration of CA in leaves of various C3 plants was suggested to be 

between 0.14 and 0.69 mol m
-3

 (Tholen and Zhu, 2011). In our model, a default CA concentration 

of 0.69 mol active sites m
-3

 was assumed as mesophyll conductance is generally higher in C4 

plants than in C3 plants (Longstreth et al., 1980; Pengelly et al., 2010; Yin et al., 2011b). 

The presence of CA and aquaporins in plasma membrane have been suggested to enhance the 

diffusion of CO2 in mesophyll cells (Utsunomiya and Muto, 1993; Evans and Loreto, 2000; 

Weber and von Caemmerer, 2010). Accounting for those membrane components, the CO2 

permeability has been reported to be 21 6 10.   m s
-1 

(Missner et al., 2008). Since the plasma 

membrane of a maize leaf contains considerable CA and aquaporins (Utsunomiya and Muto, 

1993; Maurel et al., 2008), we adopted the aforementioned value for permeability of the plasma 

membrane of the mesophyll cells. It has also been proposed that aquaporins may be found to a 

lesser extent in the plasma membrane of the bundle sheath cells (Hatch, 1987; Weber and von 

Caemmerer, 2010). Thus, we assumed a CO2 permeability of 33 5 10.   m s
-1

 for plasma 

membrane of the bundle sheath cells (Gutknecht, 1988; Weber and von Caemmerer, 2010). The 
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outer and inner envelop of a chloroplast may have different permeability, although the 

permeability values were not reported (Weber and von Caemmerer, 2010). Here, we halved the 

permeability bundle sheath plasma membrane to account for the double layer. The diffusion 

coefficient of CO2 in the liquid phase of the cells was assumed to be equal to that in water (Aalto 

and Juurola, 2002). The apparent diffusivity of CO2 in the bundle sheath cell wall was calculated 

assuming an effective porosity of 0.1 (0.05-0.2 (Evans et al., 2009)). Diffusion coefficient of CO2 

in pure water was used for the aqueous media filling the cell wall pores (Table B.2, Appendix B) 

(Evans et al., 2009). We assumed that in the mesophyll cell wall, CO2 has an apparent diffusivity 

equal to that of pure water to account for rapid diffusion towards cytosol expected in C4 leaves 

(von Caemmerer et al., 2007). This resulted in conductance of combined the mesophyll cell wall 

and plasma membrane of 0.25 mol m
-2

 s
-1

 which is within the range of values previously reported 

(Evans et al., 2009). The thickness of the mesophyll cell wall was 0.16 µm, an average value 

reported for C4 plants (Stata et al., 2014), and the thickness of bundle sheath cell wall was 

assumed to be 0.4 µm (von Caemmerer and Furbank, 2003). A plasmodesmata fraction ( ) of 

0.03 m
2
 m

-2
 (Sowiński et al., 2008) was assumed at the mesophyll-bundle sheath interface. 

pdL  

was assumed equal to the sum of the thickness of the mesophyll and the bundle sheath cell wall. 

The role of the suberin layer around the bundle sheath cell wall exposed to air space was 

accounted for by the insulated boundary condition. Thus, its thickness was not explicitly 

included. 

4.2.6 Geometry of maize leaf microstructure  

Samples of maize leaf blades from the plants used in the gas exchange measurements were fixed 

in cold 2 % glutaraldehyde, buffered at pH 7.3 with 50 mM sodium cacodylate and 150 mM 

saccharose. After dehydration in a graded acetone series, tissues were embedded in Araldite and 

sectioned with a Leica EM UC6 ultra-microtome. Serial semi-thin sections which were 1 µm 

thick were stained with methylene blue and thionin, and viewed in an Olympus BX-51 

microscope at 40× magnification. 

The 2-D geometry of maize leaf microstructure was constructed from the light microscopic 

images of the 6
th

 leaf. The image was digitized in the Matlab programming environment version 
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7.0 (The Mathworks, Natick, MA) by in house developed software (Mebatsion et al., 2006b). 

Since CO2 fixation by Rubisco is assumed to be restricted to bundle sheath cells only (Kanai and 

Edwards, 1999) and CO2 assimilation by PEPc occurs in the cytosol, chloroplast layers in 

mesophyll cells were not included in the geometry. Clusters of bundle sheath chloroplasts were 

digitized as layers of chloroplasts (Fig. B.5.1, Appendix B). Plasmodesmata was accounted for in 

the calculation of the apparent diffusivity of CO2 through the mesophyll-bundle sheath interface. 

Preliminary results showed that the vacuole did not affect the rate of photosynthesis. It was, 

therefore, not included in the leaf microstructure geometry. 

4.2.7 Numerical solution 

The CO2 transport model equations were solved by the finite-element method. Eq. 4.5 to Eq. 4.10 

were discretized over the 2-D geometry of leaf microstructure (Fig. B.6.1, Appendix B). The 

resulting equations were solved at a steady-state condition using Matlab (The Mathworks, Inc., 

Natick, USA) integrated with Comsol Multiphysics vs. 3.5 (Comsol AB, Stockholm). 

Simulations of the response of photosynthesis to changes in CO2 and light intensity were carried 

out.  
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4.3 Results  

4.3.1 Comparison of model predictions of photosynthesis with experimental 

data  

Fig. 4.2 shows the model predicted and the measured responses of net photosynthesis to 

irradiance and intercellular CO2 concentration.  

 

Figure 4.2. Simulated response of rate of photosynthesis (A) to changes in irradiance (panel A) 

and intercellular air space CO2 concentrations (panel B). For the irradiance response curve, 

ambient CO2 was 250 µmol mol
-1

 for 21 % O2 and 1000 µmol mol
-1

 for 2 % O2. For the CO2 

response curve, irradiance was 1500 µmol m
-2

 s
-1

 for 21 % and 2 % O2. Symbols indicate 

measurement values and curves show model predicted values. 2 % O2 (open symbols, dashed 

curve) and 21 % O2 (filled symbols, solid curves). The bars indicate the standard error, n = 4. 

In general, the simulations agreed with the experimental data. However, the light response curve 

of photosynthesis at 2 % O2 for high light intensities was overestimated by the model. This 
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discrepancy was due to s’ determined only from low light intensities and was assumed to be 

constant for the high light levels also (for details, see Text B.5 in Appendix B). In Fig. 4.2A, the 

rates of photosynthesis at high light intensities (measured or predicted) were higher at 2 % O2 

than at 21 % O2 since at the ambient CO2 was 1000 µmol mol
-1

 at 2 % O2 and 250 µmol mol
-1

 at 

21 % O2. 

4.3.2 Microscale CO2 concentration profile 

Biochemical CCM results in an elevated CO2 in bundle sheath cells: this is shown in the 

computed microscale CO2 concentration profile in Fig. 4.3 (Ca = 380 µmol mol
-1

, Iinc = 1500 

µmol m
-2

 s
-1

 and 21 % O2). Consequently, the ratio 
c m

C C/  was found to be 17 while the CO2 

leakage flux was about 11 % of the net photosynthesis rate.  
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Figure 4.3.Carbon dioxide concentration profile in the leaf tissue (Ca = 380 µmol mol-1, 

intercellular CO2 = 145.38 µmol mol-1, irradiance= 1500 µmol m-2 s-1, temperature =25 °C). The 

color bar labeled BSC (bundle sheath CO2concentration) corresponds to the CO2 profile in bundle 

sheath cells. Separate color bars are used for the purpose of clarity as the high concentrations in 

bundle sheath cells mask the concentration profile in mesophyll cells if the same color bar would 

be used.BS: bundle sheath;  E: epidermis; IAS: intercellular air space; M: mesophyll; VS: 

vasculature.
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The computed 
bs

g was 33 52 10.  mol m
-2

 s
-1

. Furthermore, we also examined the responses of 

leakiness (Eq. B.1.10, in Appendix B) and 
cC  to changes in intercellular CO2 and irradiance (Fig. 

4.4) to test whether the model could predict the trends reported in the literature (von Caemmerer 

and Furbank, 1999; Kromdijk et al., 2010; Yin et al., 2011b).  

 

Figure 4.4. Simulated response of mean CO2 concentration in bundle sheath chloroplasts (
c

C ) 

(top; A, B) and leakiness (bottom; C, D) to changes in irradiance (left; A, C) and intercellular air 

space CO2 concentrations (right; B, D). For CO2 responses, irradiance was 1500 µmol m
-2

 s
-1

 at 

21 % and 2 % O2. For irradiance responses , Ca was 250 µmol mol
-1

 at 21 % O2 or 1000 µmol 

mol
-1

 at 2 % O2. Open symbols represent 2 % O2 while filled symbols represent 21 % O2. 

Leakiness was calculated using Eq. B.1.10, in Appendix B. 

There was a rise in 
cC  (Fig. 4.4; A, B) with an increase in CO2 availability while it remained 

largely stable at high irradiances (500 µmol m
-2

 s
-1

 and higher). In Fig 4.4 (A, B), 
cC  was higher 

at 21 % O2 than at 2 % O2 due to photorespiration. Fig. 4.4 (C, D) also shows that the leakiness 
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was high at low irradiances or low intercellular CO2. At high irradiance or intercellular CO2, 

however, leakiness decreased and became stable. Moreover, in Fig. 4.4A at 2 % O2 , except at 

very low light intensities, 
cC  dropped below the ambient CO2 concentration of 1000 µmol mol

-1
 

similar to findings of a previous study (Yin et al., 2011b). 

4.3.3 Physical barriers at air space-mesophyll interface 

Fig. 4.5 shows that both the rate of photosynthesis and bundle sheath conductance were highly 

sensitive to the apparent diffusivity of CO2 in the mesophyll cell wall and the CO2 permeability 

of the plasma membrane of mesophyll cells. Assuming an effective diffusivity of CO2 in the 

mesophyll cell wall that was 0.2 times the diffusion coefficient of CO2 in pure water at 25 °C 

(Evans et al., 2009) and the commonly used membrane permeability of 
3

3 5 10
-

.   m s
-1

, only 

about 80 % of the measured photosynthesis rate could be achieved. Fig. 4.5A also shows that 

higher permeability values could not increase the predicted rate photosynthesis. Fig. 4.5B also 

shows that the effective diffusivity of CO2 in the cell wall has a larger effect than the 

permeability. When the permeability was assumed to be less than 
3

3 5 10
-

.  m s
-1

 or the porosity 

was less than 0.2, the bundle sheath conductance (Eq. A.8, in Appendix A) increased by about 10 

fold (Fig. 5; C, D) due to a low 
m

C  elevating 
c m

C C/ . 
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Figure 4.5. Sensitivity of photosynthesis (A) (top; A, B) and bundle sheath conductance (
bs

g ) 

(bottom; C, D) to changes in the CO2 permeability of mesophyll (m) plasma membrane
2 ,CO m

P (A, 

C) and apparent diffusivity of CO2 in mesophyll cell wall (
2 ,CO m

D ) (B, D). The responses were 

evaluated for two effective porosities of the mesophyll cell wall (A, C) and for two 
2 ,CO m

P  values 

(B, D). Conditions for simulation were: Ca = 380 µmol mol
-1

, irradiance = 1500 µmol m
-2

 s
-1 

and 

21 % O2. Relative values were calculated by dividing A and 
bs

g  with their default value ( bsg = 

3.52 10
-3

 mol m
-2

 s
-1

, A = 40 µmol m
-2

 s
-1

). 
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4.3.4 Resistances to CO2 retro-diffusion  

Resistances imposed by microstructural components along the CO2 retro-diffusion pathways 

were calculated for the condition of Ca of 380 µmol mol
-1

, Iinc of 1500 µmol m
-2

 s
-1

 and 21 % O2, 

by dividing the difference in average concentrations across a compartment by the leakage flux 

expressed per leaf area (Table 4.1). The resistances calculated in this way are apparent as they 

depend on conditions of CO2 and irradiance. Table 4.1 shows that the mesophyll-bundle sheath 

interface imposes a considerable resistance to diffusive leakage of CO2 (213 m
2
 s mol

-1
) followed 

by stromal resistance (33 m
2
 s mol

-1
) consistent with a previous report (von Caemmerer and 

Furbank, 2003).  

Table 4.1. Resistances (m
2 

s mol
-1

) to CO2 diffusion in each liquid phase compartment in bundle 

sheath cells, calculated from a microscale model (Ca = 380 µmol mol
-1

, Iinc = 1500 µmol m
-2

 s
-1

 

and 21% O2). The resistances were calculated by dividing the difference in average concentration 

across a compartment by the leakage flux expressed per leaf area (Eq. B.1.7, in Appendix B). 

Values in brackets show the percentage contribution of the individual resistances to the total 

resistance. 

 Microstructure component Resistance (m
2 

s mol
-1

) 

Mesophyll-bundle sheath interface 212.70 (75.0 %) 

Chloroplast envelope 6.98 (2.5 %) 

Cytosol 31.80 (11.2 %) 

Stroma 32.57 (11.5 %) 

Total 284.06 (100 %) 

The CO2 permeability of the bundle sheath chloroplast envelope affected both the rate of 

photosynthesis and 
bs

g  (Fig. 4.6; A, C). At the low end of the permeability, 
bs

g was more sensitive 

than photosynthesis. The permeability of the bundle sheath chloroplast envelope to bicarbonate 

ions had no influence on photosynthesis and bundle sheath conductance (Fig. B.4.2; A, C, 
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Appendix B). CO2 leakage occurs through the plasmodesmata abundant at the mesophyll-bundle 

sheath interface. Fig. 4.6B and Fig. 4.6D respectively show that the rate of photosynthesis and 
bs

g  

were strongly affected when the area of plasmodesmata per unit area of the interface, , was 

changed. For   of 0.8 % (Sowiński et al., 2008), 
bs

g  decreased by 73 % while photosynthesis 

changed by 5 %. 

 

Figure 4.6. Sensitivity of photosynthesis (A) (top; A, B) and bundle sheath conductance (
bs

g ) 

(bottom; C, D) to changes in the CO2 permeability of bundle sheath chloroplast envelope (
2COP ) 

(left; A, C) and the area of plasmodesmata per surface area of bundle sheath cells (θ) (right; B, 

D). Conditions for simulation were: Ca = 380 µmol mol
-1

, irradiance = 1500 µmol m
-2

 s
-1

 and 21 

% O2. Relative values were calculated by dividing A and 
bs

g  with their default value (
bs

g = 3.52 

10-3 mol m
-2

 s
-1

, A = 40 µmol m
-2

 s
-1

). 
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Fig. 4.7 (A, C) shows the effect of changing the cell wall thickness of bundle sheath cells on the 

rate of photosynthesis and bundle sheath conductance. The bundle sheath cell wall constitutes the 

largest fraction of the total length of the mesophyll-bundle sheath interface assumed in our 

model. When the thickness of the cell wall increased (Lpd increased), the rate of photosynthesis 

increased and the bundle sheath conductance decreased.  

 

Figure 4.7. Sensitivity of photosynthesis (top; A, B) and bundle sheath conductance (
bs

g ) 

(bottom; C, D) to the thickness of bundle sheath cell wall (twall) (A, C) and concentration of CA 

in mesophyll cells (B, D). Conditions for simulation were: Ca = 380 µmol mol
-1

, irradiance = 

1500 µmol m
-2

 s
-1 

and 21 % O2. Relative values were calculated by dividing A and 
bs

g  with their 

default value ( bsg = 3.52 10
-3

 mol m
-2

 s
-1

, A = 40 µmol m
-2

 s
-1

).  
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For thickness of the cell wall that is 1.44 µm (Rezvani Moghaddam and Wiliman, 1998), 
bs

g  

decreased by 60 % while photosynthesis changed by less than 5 %. 

The fraction of surface of bundle sheath cells exposed to the intercellular air spaces to the total 

surface of bundle sheath cells measured from the digitized leaf microstructures was 0.34. When 

the suberin at this surface was assumed to allow for leakage of CO2 to the air space, the leakage 

rate increased by a factor of two compared to the rate at which the suberin restricted diffusive 

leakage through the exposed surface (calculated at Ca = 380 µmol mol
-1

 and irradiance = 1500 

µmol m
-2

 s
-1

). Consequently, 
cC  decreased by about 30 % and the predicted net photosynthesis 

rate dropped by 12 %. 

4.3.5 Effects of the ratio of Vp,max to Vc,max 

The relative capacity of the C4 and the C3 cycle, p,max c,maxV / V , varies from two to eight (von 

Caemmerer and Furbank, 1999). Both the rate of photosynthesis and 
bs

g  (calculated at Ca = 380 

µmol mol
-1

, Iinc = 1500 µmol m
-2

 s
-1

) decreased (Fig. B.4.2; B, D, Appendix B) when the 

p,max c,maxV / V  was increased. Increasing p,max c,maxV / V  at a constant p,maxV  was the same as 

reducing the c,maxV  which decreased the rate of photosynthesis and increased leakage as a result 

of increased cC . Consequently, the calculated bundle sheath conductance (Eq. B.1.8, in Appendix 

B) decreased (Fig. B.4.2; D, in Appendix B). Moreover, p,max c,maxV / V  greater than three 

increased the rate of leakage. Similarly, through modeling, it has been shown that p,maxV  to c,maxV  

ratios greater than four would produce the same result (von Caemmerer and Furbank, 1999). 

4.3.6 Effects of CA in mesophyll and bundle sheath  

The predicted photosynthesis was not sensitive to the assumed concentration of CA in mesophyll 

cells (Fig. 4.8B) while the bundle sheath conductance increased by 10 % for very low 

concentration of CA (Fig. 4.8D). We also examined the role of CA on CCM by doing simulations 

with and without CA (Fig. 4.8). The results show that the predicted rate of photosynthesis (Fig. 



Results 

86 

 

4.8A) and cC  (Fig. 4.8C) were highly affected except when the ambient CO2 level was high 

(1000 µmol mol
-1

 or higher). To evaluate the effect of CA present in bundle sheath chloroplasts, 

simulations with assumed CA concentration values were additionally carried out at Ca of 380 

µmol mol
-1

 and irradiance of 1500 µmol m
-2

 s
-1

) (Fig. 4.8; B, D).  

 

Figure 4.8. Effect of carbonic anhydrase on the rate of photosynthesis (top; A) and mean CO2 

concentration in bundle-sheath cells (bottom; C). The effect of concentration of carbonic 

anhydrase (XCA,bs) in bundle-sheath (bs) cells on leakiness (top; B) and mean CO2 concentration 

in bundle-sheath cells (bottom; D). Conditions for simulation in panels B and D were: Ca = 380 

µmol mol
-1

, irradiance = 1500 µmol m
-2

 s
-1 

and 21 % O2. 
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In bundle sheath cells, the presence of low CA activity decreased cC  by 18 % (Fig. 4.8D) and 

increased leakiness by 17 % (Fig. 4.8B) resulting in 30 % higher 
bs

g . However, the net 

photosynthesis rate was not affected by the presence of CA (< 3%). Further increases in CA 

concentration did not dramatically change the leakiness and cC .  

4.4 Discussion 

4.4.1  A reaction-diffusion model is able to predict important CCM 

parameters well 

Microscale models that account for the actual microstructure of plant organs have demonstrated 

their potential to investigate gas transport (Ho et al., 2009, 2011, Verboven et al., 2012, 2013, 

2014), water transport in fruit (Fanta et al., 2014) and photosynthetic gas exchange in C3 plant 

leaves (Ho et al., 2012, 2016). Here, we have developed and applied such a model for the first 

time in the context of photosynthesis of C4 plants to quantify the importance of leaf 

microstructural features on the CO2 transport, thus, CCM. Our model allowed mechanistic 

understanding of retro-diffusion and bundle sheath conductance in contrast to previous C4 models 

that estimate lumped conductances (He and Edwards, 1996; Yin et al., 2011b). The 

microstructure geometry implemented in our model is much more realistic in capturing the 

intricate features of the Kranz-anatomy than concentric cylinder approximation used previously 

(Hatch and Osmond, 1976). Our approach does not require assumptions about volumes of cell 

compartments essential in models using flux analysis (Jenkins et al., 1989b; Wang et al., 2014b) 

and a predefined effective diffusion path length in organelles such as chloroplasts (von 

Caemmerer and Furbank, 2003). 

The model predicted responses of photosynthesis to changes in CO2 and irradiance compared 

well with experimental data. It should be noted that the curves were not smooth because ATPJ  

(Eq. B.1.1, in Appendix B) calculated from chlorophyll fluorescence measurements was used in 

the model instead of the non-rectangular hyperbolic irradiance response of electron transport. In 

addition, the predicted decline of leakiness with increased irradiance (Fig. 4.4C) was consistent 
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with previous observations (Kromdijk et al., 2010; Ubierna et al., 2013). The decrease of 

leakiness with increased CO2 (Fig. 4.4A) has been suggested to be due to the regulation of rates 

of the C4 and C3 cycle being accounted for by the use of experimentally determined ATPJ  as a 

model input (Yin et al., 2011b). The computed bundle sheath conductance is within the range of 

values reported for maize (Yin et al., 2011b; Bellasio and Griffiths, 2014c). Moreover, the 

predicted responses of the concentration of CO2 in bundle sheath cells during steady state 

photosynthesis for various ambient CO2 and irradiance levels agreed with previous reports (von 

Caemmerer and Furbank, 1999; Yin et al., 2011b). Therefore, the model could predict important 

parameters of CCM: bundle sheath conductance, leakiness and mean CO2 concentration in bundle 

sheath cells over ranges of ambient CO2 and irradiance levels. The model was subsequently used 

to evaluate the effect of a model parameter on photosynthesis and bundle sheath conductance. 

The bundle sheath conductance in this study is considered as the diffusion conductance between 

mesophyll cytosol, where CO2 is assimilated, and the bundle sheath chloroplast, where CO2 

released from decarboxylation of C4 acids (Eq. B.1.8, in Appendix B). 

4.4.2 The mesophyll cell wall is the most significant limitation to CO2 

conductance  

Rapid transport of CO2 from the air spaces to mesophyll cytosol is essential for CCM in C4 crops 

(Leegood, 2002; von Caemmerer et al., 2007; Weber and von Caemmerer, 2010). In line with 

this, our results suggest that the diffusive properties of the interface between the air spaces and 

mesophyll cells may considerably constrain the rate of photosynthesis. In particular, the apparent 

diffusivity of CO2 in the mesophyll cell wall was critical. For instance, using the highest value of 

effective porosity reported (0.05 – 0.2 (Evans et al., 2009)), the rate of photosynthesis was 

underestimated. Additionally, if the porosity of the cell wall was assumed to be as low as 0.05 

(Evans et al., 2009), irrespective of the membrane permeability (see Fig. 4.5B), the predicted rate 

of photosynthesis was very low due to elevated diffusive resistance to CO2 by the wall. These 

findings also imply that the presence of only cell wall and plasma membrane along the CO2 

diffusion pathway towards mesophyll cytosol does not necessarily result in high mesophyll 

conductance in C4 plants. Furthermore, a previous study (von Caemmerer et al., 2007) 
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commented that a combined conductance of cell wall and plasma membrane of 0.14 mol m
-2

 s
-1

 

could be enough to get a rapid flux of CO2 towards the mesophyll cytosol in C4 plants (von 

Caemmerer et al., 2007). However, we found that only a conductance of about 1.8 times the 

aforementioned one could explain the rate of photosynthesis that we measured well. Such a high 

conductance was obtained partly by assuming a CO2 permeability of plasma membrane in the 

higher range of values reported previously (Evans et al., 2009). In fact, the plasma membrane of 

maize leaf contains a substantial amount of CA (Utsunomiya and Muto, 1993), which is proposed 

to contribute to CO2 diffusion (Evans et al., 2004; Weber and von Caemmerer, 2010). In 

addition, the permeability value also lumps membrane components such as aquaporins for which 

there is a growing evidence that they may facilitate CO2 transport in air space-mesophyll 

interface (Maurel et al., 2015). By contrast, a CO2 permeability two orders of magnitude lower 

than our model value reported previously (Uehlein et al., 2008), if existent in vivo for mesophyll 

plasma membrane of maize, would not enable operation of CCM. Nevertheless, the diffusivity of 

CO2 in the cell wall and permeability of membranes are less well known (Evans et al., 2009). 

More research on these properties will improve our understanding of CO2 diffusion in leaves as 

has been also highlighted recently (Raven and Beardall, 2016). Overall, not only fewer 

resistances but also enhanced diffusive properties of the air space-mesophyll interface may be 

essential for the high rate of CO2 transport, thus effective CCM. 

4.4.3 CO2 retro-diffusion in maize leaf may mainly be constrained by 

plasmodesmata 

The pathway of CO2 leakage by diffusion in a maize leaf is complicated by several physical 

barriers such as the stroma, chloroplast envelope, cytosol, plasma membrane, cell wall, suberin 

and plasmodesmata. It is believed that the extensive connection of mesophyll and bundle sheath 

cells (Weiner et al., 1988; Botha, 1992) through plasmodesmata provides the main pathway to 

leakage (Hattersley and Browning, 1981; Furbank and Hatch, 1987; Sowiński et al., 2008). Our 

analysis shows that the mesophyll-bundle sheath interface provides a major resistance to the CO2 

retro-diffusion (See Table 4.5.1), indicative of the substantial importance of the abundance of 

plasmodesmata at this interface. In addition, the computed bundle sheath conductance (Fig. 4.7) 
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was highly sensitive to the thickness of bundle sheath cell wall, which influences the diffusion 

length through the plasmodesmata. Furthermore, the area of plasmodesmata available for 

transport may be one to two orders of magnitude less than 3 % of the mesophyll-bundle sheath 

interface assumed in our model (Sowiński et al., 2008). In this case, our simulations suggest that 

lower plasmodesmata fractions could be beneficial for high rate of photosynthesis; however, this 

must be interpreted with caution as the metabolite transport might be constrained. For instance, 

Wang et al. (2014b) showed through modeling that the benefit of a reduced plasmodesmata 

fraction depends on length of the mesophyll-bundle sheath interface. Moreover, the CO2 

conductance of the interface was one to two order of magnitude lower than the values of 

mesophyll conductance in C3 plants (Flexas et al., 2008). This implies that introduction of C4 

pathway of photosynthesis in C3 plants (Sheehy et al., 2007) especially in one cell compartment 

may require high CO2 retro-diffusion resistance for an efficient CCM (von Caemmerer and 

Furbank, 2003).  

The bundle sheath conductance was reported to be scale positively with leaf nitrogen content 

(Yin et al., 2011b). A previous study (Botha, 1992) found a positive correlation between 

abundance of plasmodesmata and the rate of photosynthesis. In addition, maize also adjusts the 

number of plasmodesmata at the mesophyll-bundle sheath interface to maintain a high rate of 

photosynthesis in response to growth temperature and irradiance (Sowiński et al., 2003, 2007). 

Our results also show that an increased plasmodesmata fraction led to a higher bundle sheath 

conductance. Based on these, the reported increase in bundle sheath conductance, thus less 

effective CCM, with leaf nitrogen (Yin et al., 2011b) (see also Chapter 3) might be due to the 

requirement of more plasmodesmata to accommodate a greater metabolite flux. Moreover, Yin et 

al. (2011b) hypothesized that the variation of bundle sheath conductance with leaf nitrogen 

content may be due to the effect of nitrogen on the wall thickness of the bundle sheath cells. Our 

results show that the thickness strongly influences the computed bundle sheath conductance (Fig. 

4.7D) supporting the hypothesis of Yin et al. (2011b). In addition, gbs was found to be negatively 

correlated with cell wall thickness (Chapter 3) although cell wall thickness was not statistically 

different among many of the leaf types discussed in Chapter 3 (Subsection 3.3.3). 
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The suberin layer in NADP-ME type C4 plants is suggested to restrict the apoplastic diffusion 

pathway of CO2 leakage (Dengler and Nelson, 1999; von Caemmerer et al., 2007). It is also 

reported that C4 plants lacking suberin compensated for it by releasing CO2 in their bundle sheath 

cell remotely so that the leakage path is long (von Caemmerer and Furbank, 2003) or by 

minimizing the contact of bundle sheath surface with intercellular air spaces (Dengler et al., 

1994). Consistent with these views, we found that the suberin layer at the exposed surface of 

bundle sheath cells reduced retro-diffusion of CO2 directly to intercellular air space considerably 

since 34 % of the wall area of bundle sheath cells was rendered impermeable by suberin layer. 

When it is assumed that the suberin layer at the mesophyll-bundle sheath interface is fully 

permeable, the porosity of the interface would be 0.1, which is the mean value of cell wall 

porosity reported previously (Evans et al., 2009). In this case, the bundle sheath conductance 

increased drastically through high rate of leakage while photosynthesis changed by about 5 % 

(Fig. 4.6B; D). This implies that if permeability of suberin shown for tracer dyes (Eastman et al., 

1988) is also valid for CO2, effectiveness of CCM would be reduced due to highly increased 

leakage. In general, therefore, a suberin layer may contribute to high rate of photosynthesis by 

allowing the bundle sheath cells to retain the accumulated CO2. 

4.4.4 CA is essential for high rate of photosynthesis at low intercellular CO2  

CA resides alongside PEPc in the mesophyll cytosol, contributing to a strong sink for CO2, 

thereby leading to rapid CO2 diffusion at the interface between air spaces and mesophyll cells of 

C4 plants (Evans and von Caemmerer, 1996; von Caemmerer et al., 2007). The low rates of 

photosynthesis in the absence of CA at low intercellular CO2 concentrations (Fig. 4.8) confirms 

the suggestion in previous reports (Hatch and Burnell, 1990; Studer et al., 2014). However, the 

substantial decline of the predicted rate of photosynthesis at our ambient CO2 was not observed in 

a recent study on the role of CA in maize leaf for comparable ambient CO2 (Studer et al., 2014). 

This could be explained by large differences in our measured photosynthesis, which was about 

twice more, thus requiring higher CO2 availability, than the experimental values at the ambient 

CO2 in the later study. Furthermore, our simulation results indicated that CA activity in bundle 

sheath cells would decrease the CO2 concentration and increase leakiness. These predictions 
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support the view that the presence of CA in the bundle sheath cells would reduce the 

effectiveness of CCM (Burnell and Hatch, 1988; Badger and Price, 1994). 

4.5 Conclusion 

The 2-D model presented here is an important first step towards microscale models explicitly 

incorporating a realistic leaf microstructure of a C4 plant. It could be used to analyze the effect of 

leaf microstructure on the biochemical CCM, thus C4 photosynthesis. However, there are 

limitations worth noting. The 2-D leaf geometry assumes that the leaf is infinitely long on the 

paradermal direction; it could not fully capture the 3-D nature of gas diffusion in leaves. 

Moreover, diffusion of CO2 through the stomata and intercellular air spaces could not be 

realistically modeled using a 2-D geometry as it is impossible to include the distribution of 

stomata and the extent of connectivity of air spaces. Instead, we assumed uniform intercellular 

CO2 concentration treating the air spaces as fully connected. This assumption may be true in thin 

and porous leaves (Parkhurst, 1994). It has also been shown that abaxial and adaxial air spaces 

could be separated in maize leaves (Long et al., 1989). Furthermore, the photon flux in the leaf 

was assumed constant. However, light gradients exist in a maize leaf and mesophyll cells shade 

the deeper bundle sheath cells (Evans et al., 2007), ultimately affecting the ATP partitioning 

between mesophyll and bundle sheath cells and the CO2 fixation (Bellasio and Griffiths, 2014b). 

In addition, the quantum efficiency may not be uniform in a leaf as implied by our use of a 

constant electron transport rate calculated from chlorophyll fluorescence measurements 

(Terashima et al., 2009). These limitations could be dealt with by using a realistic 3-D geometry 

(Verboven et al., 2015), and combining a CO2 transport and light penetration model in future 

research. 
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5.1 Introduction 

In Chapter 4, a two-dimensional microscale model of CO2 transport was developed. The 

significance of leaf anatomical and biochemical factors was investigated in addition to verifying 

the possibility of combining leaf microstructure and gas transport at tissue level for 

photosynthesis of C4 plants. Next, the shortcomings of a two-dimensional model were identified. 

In Chapter 5, these will be addressed by developing a full three-dimensional model of gas 

transport. 

Mechanistic understanding of C4 photosynthesis as provided by models helps to unravel potential 

bottlenecks of photosynthesis efficiency in C4 plants due to the phenomenon of CO2 leakage 

(Kromdijk et al., 2008; Bellasio and Griffiths, 2014c) and to examine the responses of 

photosynthesis and growth to environmental conditions such as low temperature, low light 

intensity, rapid and momentary increases in light intensity by sunflecks, and elevated CO2 (Kim 

et al., 2007; Kromdijk et al., 2010; Sage et al., 2011; Sun et al., 2014). 

The high efficiency of C4 photosynthesis is due to the CO2 concentration mechanism (CCM) 

associated with a specialized leaf anatomy (Hatch, 1987). During CCM, CO2 diffuses from the 

ambient air towards the mesophyll cytosol where it is hydrated by carbonic anhydrase (CA) to 

bicarbonate. Phosphoenolpyruvate (PEP) carboxylase (PEPC) fixes the bicarbonate into C4 acids 

such as aspartate and malate, which are mass-transported to bundle sheath cells through 

plasmodesmata (Leegood, 2004; Sowiński et al., 2008). Decarboxylation of the acids by the 

NADP-malic enzyme (NADP-ME) or PEP carboxykinase (PEPCK) releases CO2, elevating its 

concentration in bundle sheath cells, and produces pyruvate. PEP is regenerated from pyruvate by 

pyruvate, phosphate dikinase (PPDK). Ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase 

(Rubisco) in bundle sheath chloroplasts fixes CO2 and, to some extent, O2. The accumulation of 

CO2 by CCM allows Rubisco to operate near its saturation, reduces photorespiration and thus 

results in an efficient photosynthesis (Kanai and Edwards, 1999).  

In addition to the leaf biochemistry, the leaf anatomy plays a crucial role in the CCM by allowing 

for rapid entry of CO2 into mesophyll cells, in minimizing the leakage of accumulated CO2 from 
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the bundle sheath cells and by determining the distribution of light energy (Hatch, 1987; von 

Caemmerer et al., 2007; Yin et al., 2011b). The amount of light energy absorbed by mesophyll 

and bundle sheath cells determines the balance of CO2 delivery and reduction in these cells (von 

Caemmerer and Furbank, 1999; Wang et al., 2014a; Bellasio and Lundgren, 2016). For instance, 

at low light intensities, a sub-optimal energy distribution is one of the causes that reduce CCM 

efficiency: leakiness, the ratio of the rate of CO2 leakage to PEP carboxylation, increases rapidly 

as light intensity decreases (Bellasio and Griffiths, 2014a). The absorption of light energy is 

constrained by the nature of the chloroplasts, the distribution of chlorophyll between mesophyll 

and bundle sheath cells and the position of these cells in the leaf anatomy, among others (Kanai 

and Edwards, 1999; Evans et al., 2007). The change in amount of PSII and the total concentration 

of chlorophyll of some C4 plants when grown under low light intensity has been hypothesized to 

benefit them to flexibly control energy availability to mesophyll and bundle sheath cells 

(Furbank, 2011). Is there an optimal distribution of chlorophyll between mesophyll and bundle 

sheath cells that results in maximal rate of photosynthesis? 

A number of biochemical and anatomical properties of C4 plant leaves adapt when environmental 

factors such as CO2, temperature and light intensity change (Anand et al., 2014). Elevated CO2 

levels stimulated growth and photosynthesis in some C4 plants (Ghannoum et al., 2000; Anand et 

al., 2014). Potential mechanisms for this enhancement have been proposed by Ghannoum et al. 

(2000). These authors suggested that the contribution of direct diffusion of CO2 to bundle sheath 

cells, particularly in young leaves, to photosynthesis at elevated [CO2] should be investigated. 

This is because juvenile leaves may not have a structurally mature bundle sheath cell wall as it 

was shown that plasmodesmata and suberin layer fully develop later in leaf development (Evert 

et al., 1996; Mertz and Brutnell, 2014). The extent of the contribution of this diffusion pathway 

was not, however, tested directly. In addition, some NADP-ME subtype C4 plants decarboxylate 

C4 acids by PEPCK in the bundle sheath cytosol, which helps them maintain efficiency under 

diverse environmental conditions (Furbank, 2011; Pick et al., 2011; Wang et al., 2014a). 

Through modeling, this cytosolic CO2 release has been shown to increase leakiness (Wang et al., 

2014a). Furthermore, increased PSII content in bundle sheath cells promotes photorespiration, 

which releases CO2 in the cytosol from mitochondria (von Caemmerer and Furbank, 1999). 
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However, the role of cytosolic CO2 release to an increase in leakiness could be overestimated by 

models based on flux-balance analysis (Sweetlove and Ratcliffe, 2011) since the positioning of 

organelles like chloroplasts cannot be accounted for (Wang et al., 2014a). 

In C3 plants, temperature dependency of diffusion and dissolution of gases were predicted to 

contribute to the temperature response of photosynthesis while the estimated maximal activities 

of Rubisco and electron transport were more sensitive to temperature when the 3-D leaf structure 

was accounted for (Juurola et al., 2005). The contribution of temperature dependency of 

biochemical and biophysical processes to the temperature response of C4 photosynthesis and 

leakiness was not investigated. The importance of the physiological phenomena mentioned thus 

far to CCM might properly be assessed by a microscale reaction-diffusion model of gas transport 

and light propagation that incorporates the 3-D leaf microstructural geometry, including organelle 

positioning (Berghuijs et al., 2016). 

Recently, we built a 2-D microscale modeling of gas transport in C4 leaves by assuming a 

uniform light environment (Chapter 4). However, a 3-D leaf anatomy is more accurate in 

capturing the gas exchange and light propagation in leaves (Aalto and Juurola, 2002; Ho et al., 

2016). A 3-D geometry may also be essential for modeling maize leaf anatomy since the 

intercellular air spaces at the abaxial and adaxial leaf side are suggested to be poorly connected 

(Long et al., 1989). In addition, light penetration and ATP production was modeled using a 2-D 

leaf anatomy model (Bellasio and Lundgren, 2016) to investigate the evolution of C4 

photosynthesis in relation to leaf anatomy and energetics. A 3-D model of C4 metabolism in the 

anatomy of rice was developed to assess the prospects for improving photosynthesis by 

introducing a C4 pathway in rice (Wang et al., 2017). However, a model of gas transport and light 

distribution in a realistic 3-D leaf anatomy of maize, as was previously done for C3 leaves (Ho et 

al., 2016), was not developed so far. In addition, to assess the relevance of PSII content in bundle 

sheath cells to photosynthesis in relation to O2 production and photorespiration (von Caemmerer 

and Furbank, 1999; Furbank, 2011), a reaction-diffusion model for O2 transport is required for a 

C4 leaf. The objectives of this study were thus to use the reaction-diffusion model: (i) to test 

whether optimizing chlorophyll distribution between mesophyll and bundle sheath cells improves 

C4 photosynthesis; (ii) to assess the contribution of direct CO2 diffusion on the rate of C4 
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photosynthesis at elevated CO2; (iii) to investigate the role of biophysical and biochemical 

processes on the temperature dependence of C4 photosynthesis; and, (iv) to systematically 

evaluate the influence of cytosolic CO2 release on the efficiency of C4 photosynthesis. 

5.2 Materials and methods 

5.2.1 Gas exchange and chlorophyll fluorescence measurements 

Maize (Zea mays L.) plants were grown in controlled conditions in a greenhouse at the facilities 

of Wageningen University and Research. Plant growth conditions and treatments were described 

in detail previously (section 3.2.1). To compare model predicted responses of photosynthesis and 

estimate photosynthesis parameters, gas exchange and chlorophyll fluorescence measurements of 

19 d old leaves having an average nitrogen content of 0.64 g m
-2

 were used (Table 3.1). 

5.2.2 Geometry of leaf microstructure 

The leaf geometry was developed from maize plants whose growth conditions, treatments, 

fixation and measurement of anatomical properties were reported previously (section 3.2.1). We 

first attempted to obtain 3-D images using X-ray micro computed tomography (Verboven et al., 

2015), but initial tests showed that identification of individual cells was difficult because of 

insufficient contrast due to lack of air spaces in the vascular bundles (Fig. A.6.3, Appendix A). 

Light microscopy images were thus used instead.  

Light microscopy images (857× 643 µm) of 120 leaf slices at 1 µm intervals were taken covering 

a section across several parallel vascular bundles (Fig. A.6.1, Appendix A). Using the 3-D image-

processing software Avizo Fire (VSG, France) the images were first aligned. The images showed 

three consecutive bundle sheath cells, each of which was surrounded by a single layer of 

mesophyll cells forming a repetitive concentric arrangement of mesophyll and bundle sheath cells 

(Fig. A.6.3, Appendix A). Therefore, using the symmetry of the geometry, only one concentric 

arrangement of mesophyll and bundle sheath cells along with the epidermis and air spaces was 

considered by cropping the images to a representative region of interest, resulting in 3-D images 
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having a pixel resolution of 0.67 µm. Segmentation of leaf anatomical features was carried out 

semi-automatically due to a less distinct grayscale intensity distribution among microstructural 

features. Chloroplasts of mesophyll cells were identified clearly due to their random arrangement 

while numerous clustered chloroplasts of bundle sheath cells were segmented as a layer of 

centrifugally arranged chloroplasts. Other microstructural features such as mitochondria, cytosol 

and vacuole could not be identified due to insufficient resolution and contrast. Thus, 

mitochondria were assumed as uniformly distributed in the cytosol, and vacuoles were created 

using a Matlab script (The Mathworks, Inc., Natick, USA) as volumes obtained by shrinking cells 

relative to their geometric center assuming that vacuoles occupy 60 % of the cell volume (Taiz, 

1992). Quantification of volume fractions of the cells, exposed surface of mesophyll cells per unit 

leaf area, surface area of bundle sheath cells per unit leaf area and porosity in comparison to 

literature values for various C4 plants is described in Table C.4, Appendix C. 

5.3 Microscale model  

The microscale model of gas exchange for a C4 plant leaf was developed by extending a 2-D 

model of gas exchange in a C4 leaf (Chapter 4), similar to the 3D-C3 model by Ho et al. (2016). 

The light profile in a maize leaf was computed (Text C.1., Appendix C) using a meshed Monte 

Carlo photon transport method (Watté et al., 2015), which was validated for tomato leaves with 

an experimentally determined absorption profile (Watté et al., 2015; Ho et al., 2016). The rates of 

electron transport and ATP production were computed from the light profile (see further) and 

used as an input to the biochemical model of C4 photosynthesis (Eqs. C.2.1, C.2.2 and C.2.14). 

The temperature dependency of biophysical and biochemical parameters was also included within 

the model using an Arrhenius equation (Eqs. C.2.24 and C.2.25). Diffusion through the stomata 

in relation to the extent of stomatal opening was modeled by adjusting the effective diffusivity of 

CO2 through the stomatal pore to match the measured stomatal conductance (Fig. C.1). Transport 

of metabolites across the mesophyll-bundle sheath interface may not be explained by diffusion 

alone (Sowiński et al., 2008). Also, proteins facilitating metabolite transport across various 

envelopes are not fully identified (Brautigam and Weber, 2011). For practical reasons, transport 

of intermediate metabolites was assumed to be instantaneous and non-limiting and was not 
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explicitly modeled. Symbols, values and units of the physical properties, photosynthetic 

parameters and their temperature dependencies are given in supplementary Tables C.1 to C.3. 

5.3.1 CO2 transport inside a C4 leaf 

The reaction-diffusion equation for CO2 transport in all compartments except the bundle sheath 

cells (the intercellular air space, stomatal air, epidermis, vasculature and mesophyll cells) at a 

steady-state is given by: 

 2

*
2 0[CO ]CO CA NCA

D B B R     (5.1) 

where   is the gradient operator; [CO2] is the concentration of CO2; 
2COD is the diffusivity of 

CO2; CAB  is the rate of CA catalyzed hydration of CO2 to bicarbonate ions in the mesophyll 

cytosol (Eq. 5.2); NCAB  is the non-enzymatic CO2 hydration rate (Eq. 5.4); and, *R is the 

volumetric rate of CO2 release through respiration by mitochondria (Table C.1, Appendix C). The 

symbol * represents a volumetric rate equivalent of leaf area-based variables. CAB  is zero 

everywhere except in the mesophyll cytosol. NCAB  and *R are zero in the gaseous phase.  

CAB  is given by (Spalding and Portis, 1985; Tholen and Zhu, 2011):  
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(5.2) 

where *

CA,max
V  is the volumetric maximum catalytic activity of CA; -

3
[HCO ]  is the concentration 

of bicarbonate; 
2

COK and -

3
HCOK  are Michaelis-Menten constants of CA hydration and 

dehydration, respectively; eqK  is the equilibrium constant for CA; and, +[H ]  is the 

concentration of +H  ions.  
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In bundle sheath cells, the reaction-diffusion equation for CO2 transport is written as: 

  * *

2

* * *
2 0( )min ,[CO ] +c jCO p pNCA

w wD V B R r       (5.3) 

where * *,min( )c jw w  is the gross volumetric fixation rate of CO2; wc
*
 is the volumetric rate of 

Rubisco-limited carboxylation (Eq. C.2.1, Appendix C); wj
*
 is the volumetric rate of electron-

transport-limited carboxylation given by the biochemical model of C4 photosynthesis (von 

Caemmerer and Furbank, 1999) (Eq. C.2.2, Appendix C); *
pV  is the average (indicated by the 

overscore) volumetric rate of CO2 production through decarboxylation of C4 acids in the 

chloroplasts (Eq. C.2.15, Appendix C); and, *
pr  is the volumetric rate of CO2 release through 

photorespiration in bundle sheath cytosol (Eq. C.2.12, Appendix C). The first three terms from 

the left after the diffusion term are applicable in the chloroplasts while the next two apply in the 

cytosol. 

Since bundle sheath cells of maize contain little CA, it is assumed that hydration of CO2 proceeds 

non-enzymatically (Burnell and Hatch, 1988). The net volumetric hydration rate of CO2, BNCA, in 

mesophyll or bundle sheath cell is given by (Ho et al., 2016): 
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(5.4)  

where k1 is CO2 hydration rate constant; k2 is CO2 dehydration rate constant; K is the acid 

dissociation constant for H2CO3; and [H
+
] is calculated from pH of the cytosol, vacuole, 

vasculature or stroma.  

It is to be noted that in our previous 2-D model (Chapter 4), the rate of PEP carboxylation which 

was expressed based on CO2 as proposed in the standard biochemical model of C4 photosynthesis 

(von Caemmerer and Furbank, 1999) was coupled to CO2 diffusion (section B.4, Appendix B). 

Since more information has recently become available on kinetic parameters of PEP 

carboxylation (Boyd et al., 2015), it was rewritten using its substrate bicarbonate and applied in a 

reaction-diffusion equation for bicarbonate (Eq. C.2.14, Appendix C). Diffusion of bicarbonate 
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ions in epidermis, mesophyll cells, vasculature or bundle sheath is given by the following general 

equation: 

  *

3

-
3

[HCO ] 0pHCO NCA CA
VD B B      (5.5) 

where 
3HCO

D   is the diffusivity of bicarbonate in respective cell compartments. Vp
*
 is the rate of 

PEP carboxylation in the mesophyll cytosol (Eq. C.2.14, Appendix C). 

5.3.2 O2 transport inside a C4 leaf 

The steady state reaction-diffusion equation for O2 transport is given by: 

 
22

* * *

,

*
2 0[O ]

p O poO r r RD E      (5.6) 

where [O2] is the concentration of O2; 
2OD is the diffusivity of O2;

*
o

E  is the volumetric rate of 

oxygen evolution in chloroplasts of mesophyll or bundle sheath cells and zero elsewhere. 
2

*
,p O

r  is 

the volumetric rate of oxygen consumption by photorespiration in the bundle sheath chloroplast 

(Eq. C.2.13, Appendix C). *

pr  accounts for the consumption of 0.5 mol of O2 by glycolate oxidase 

in peroxisomes during photorespiration (Somerville, 2001). *

pr  is applicable in the bundle sheath 

cytosol. The rate of oxygen evolution 
*
o

E  associated with the linear electron transport in 

chloroplasts was set to be equal to the quarter of the rate of linear electron flux (Eq. C.2.6, 

Appendix C) since evolution of one molecule O2 is accompanied with the flow of four electrons.  

The flux of CO2, 
-

3HCO  and O2 at the boundary of cuticle, mesophyll or bundle sheath cells is 

given by: 

[C ] y yyJ P   (5.7) 

where y stands for CO2, O2 and -

3HCO ; Py is the permeability of cuticle, plasma membrane, 

chloroplasts envelope or the mesophyll-bundle sheath interface to y. For the mesophyll-bundle 



Microscale model 

102 

 

sheath interface, /y y pdP D θ L  where Dy is the diffusivity of y through the plasmodesmata 

(assumed equal to that in the liquid phase); θ  is the ratio of the bundle sheath surface area 

covered by plasmodesmata to the total area of the mesophyll-bundle sheath interface; and 
pdL  is 

the thickness of the mesophyll-bundle sheath interface. [C ]y  is the difference in concentration 

(C) of y across a boundary.  

The resistance to gas diffusion imposed by leaf ultrastructure was considered. The resistance of 

the cell wall was defined as the thickness of the wall divided by the effective diffusivity of the 

gases in the wall (Evans et al., 2009). The cell wall thickness of the mesophyll and bundle sheath 

cells was measured from electron microscopy images of the same leaf (Fig. A.6.2, Appendix A). 

We assumed a value of one for tortuosity and solvent to water partitioning coefficient for gases in 

the wall (Evans et al., 2009). The diffusivity of CO2 in the mesophyll cell wall, which was shown 

to be a major limitation to rapid diffusion expected in C4 leaves (section 4.4.2), was assumed 

equal to that in water. The resulting CO2 conductance of the mesophyll-air space interface was 

within the range of values reported previously (Evans et al., 2009) (Table C.2, Appendix C). In 

addition, the contact boundaries among mesophyll cells and bundle sheath cells were modeled as 

a thin boundary layer with thickness of twice the thickness of both the respective cell walls and 

plasma membranes. The resistance of a plasma membrane was calculated as the inverse of its 

permeability to the gases or bicarbonate (Evans et al., 1994). The suberine layer restricts 

diffusion of the gases through the apoplastic pathway. Thus, an insulated boundary condition was 

assumed at the surface of the bundle sheath cells exposed to the intercellular air space (Evert et 

al., 1977; Furbank and Hatch, 1987). Furthermore, Henry’s law was applied to describe the 

vapor-liquid equilibrium at the cell-air interface (Ho et al., 2016).  

5.3.3 Light propagation 

The propagation of light in maize leaf tissue was modeled using a meshed Monte Carlo method 

with free phase function choice (Watté et al., 2015). Optical properties of mesophyll and bundle 

sheath cells were computed from the distribution of organelles in these cells (Table C.5, 

Appendix C) (Aernouts et al., 2014). A light source that is distributed the light uniformly over the 
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top surface of the leaf was used. The distribution of light was modeled for blue light (470 nm) 

and red light (665 nm) separately, and the resulting profiles were combined (10 % blue and 90 % 

red) to derive an overall light absorption profile. The light profile was obtained using measured 

transmittance and reflectance (Woolley, 1971) by adjusting the absorption coefficient of 

chloroplasts and the scattering coefficient of cytoplasm to fit the measured overall light 

absorption (see Appendix C Text C.1 for more details). The resulting light profile was then used 

to compute the potential rate of electron transport and ATP production in a leaf. The maximum 

rate of electron transport was estimated by fitting the modeled rate of ATP production to that 

obtained from chlorophyll fluorescence measurements (Eqs. C.2.3 to C.2.11, Appendix C). 

5.4 Optimization of chlorophyll distribution 

To optimize photosynthesis, four light propagation models, as described above, were generated 

using ratios of absorption coefficients of chloroplasts in the bundle sheath to that in mesophyll 

cells of 0.30, 0.50 (default value used for simulation), 1.00 and 1.50. It is assumed that light 

absorbed per unit photosystem is strongly affected by chlorophyll content, which is modeled 

using an absorption coefficient of mesophyll and bundle sheath chloroplasts (Table C.7, 

Appendix C). The maximum rate of electron transport was estimated for each scenario as 

discussed above. The light responses of photosynthesis and leakiness were computed from the 

microscale model (Eqs. C.2.20 and C.2.23, Appendix C). The conditions were an ambient CO2 

concentration of 250 µmol mol
-1

, 21 % O2 and a fraction of PSII in bundle sheath cells of 0.10. 

5.5 Photosynthesis at an elevated CO2 

To test to what extent direct diffusion alone supports photosynthesis at elevated CO2 levels, three 

scenarios were considered. The detailed pathways of CO2 delivery to bundle sheath chloroplast is 

shown in Fig. C.7 (Appendix C). CO2 fixed in bundle sheath cells is assumed to be supplied by 

(i) decarboxylation of C4 acids (referred to as “C4 pump”), (ii) direct diffusion through mesophyll 

surface (Sm) only (referred to as “Flux-Sm”), and (ii) direct diffusion through mesophyll cells and 

the entire surface of bundle sheath cells (Sb) (referred to as “Flux-Sm-Sbs”). To discern the relative 
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contribution of direct diffusion pathways, CO2 supply through the decarboxylation of C4 acids 

was neglected. Consequently, for the cases, “Flux-Sm” and “Flux-Sm-Sbs”, the rate of PEP 

carboxylation was zero (Eq. C.2.14, Appendix C). The external CO2 levels were: 380 µmol mol
-1

, 

500 µmol mol
-1

 and 1500 µmol mol
-1

 at irradiance of 1500 µmol m
-2

 s
-1

 and 21 % O2.  

5.6 Temperature dependency  

To test the contribution of biophysical and biochemical processes to the temperature response of 

photosynthesis and leakiness, a sensitivity analysis was carried out. The role of biophysical 

processes was assessed through diffusion coefficients of CO2, 
-

3HCO , O2 and Henry’s constants 

of the gases. Maximal catalytic activities of enzymes and their kinetic constants were used to 

examine the relative importance of biochemical processes. The diffusion coefficients and the 

parameters of enzyme kinetics are listed in supplementary Tables C.2 and C.3 (Appendix C). 

Temperature values of 18 °C, 25 °C, 30 °C, 35 °C and 39 °C were chosen. The sensitivity 

analysis was carried out by considering three scenarios. In the first scenario (referred to as 

“Base”), the diffusion coefficients, the Henry’s constants and the parameters of enzyme kinetics 

were assumed to depend on temperature. In the second scenario (referred to as “Biochemical”), 

only the parameters of enzyme kinetics were varied while the diffusion coefficients and Henry’s 

constants were kept constant at those of 25 °C for 18 °C, 30 °C, 35 °C and 39 °C. In the third 

scenario (referred to as “Biophysical”), only the maximal enzyme activities and kinetic constants 

were kept constant at those of 25 °C across the temperature ranges. For all the scenarios, the 

stomatal conductance was assumed constant for various temperature values. Since the quantum 

efficiency of PSII electron transport at limiting light was quite constant at those temperature 

values (Yin et al., 2016), together with that of PSI electron transport, it was assumed constant. 

5.7 Numerical solution  

A 3-D leaf tissue was 124×124×200 µm in dimension and had 9.42810
6
 cube elements with a 

length of 0.67 µm. The lateral sides of this geometry were assumed to have no net flux while 

external concentrations of CO2 and O2 were assumed at the other sides. The reaction-diffusion 
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equations were discretized over the finite volumes grid and the resulting linear systems of 

algebraic equations of the unknown concentrations at the volume nodes were solved by the 

preconditioned conjugate gradient procedure in Matlab (The Mathworks) using the finite volume 

method (Versteeg and Malalasekera, 1995; Ho et al., 2016). We used a 16-GB RAM node of the 

high-performance computer in the VSC – Flemish Supercomputer Center (Belgium).  

5.8 Results 

5.8.1 Leaf microstructure impacts the light and CO2 profile 

The developed 3-D geometry (Fig. 5.1A) consisted of the epidermis, stomata, the intercellular air 

space, mesophyll cells, bundle sheath cells and vasculature, as main components of maize leaf 

tissue. Leaf anatomical properties measured from this geometry were comparable to the literature 

values for C4 plants (Table C.4, Appendix C). Fig. 5.1B shows the modeled light absorption 

profile in the leaf tissue when illuminated from the adaxial leaf side. About 96 % of light 

absorbed by the leaf tissue (88 % of incident light) was absorbed by chloroplasts. Mesophyll 

chloroplasts absorbed 52 % while the bundle sheath chloroplasts absorbed 32 % of the total 

absorbed light (Figs. 5.1B and 5.2A). Due to shading, the abaxial leaf side received much less 

light (Fig. 5.2A). In addition, the fraction of absorbed photons along leaf depth in Fig. 5.2A 

shows that halfway the tissue depth the photon absorption was boosted by the numerous 

chloroplasts of the bundle sheath cells. 

The computed light profile was an input in the estimation of the maximum rate of electron 

transport (Table C.2, Fig. C.2, Appendix C), which was then used to calculate the potential rates 

of electron transport and ATP production in the chloroplasts. The computed ATP production 

rates (Eq. C.2.5 to C.2.7, Appendix C) were then used for simulation of the responses of 

photosynthesis (A) to irradiance and CO2. Fig. 5.2 (B, C) shows that the predicted responses are 

generally in agreement with trends observed in the experimental data. The underestimated values, 

particularly for the irradiance response, are due to the scatter in measured ATP production rate 

that resulted in an uncertainty in the estimated maximum electron transport rate (Fig. C.2, 

Appendix C).  
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Figure 5.1. Three-dimensional simulation model of light and CO2 transport in maize leaves. 

Geometry of maize leaf microstructure (A) including epidermis (EP), vacuole (VC), chloroplasts 

(CH), vascular bundle (VB) and cytosol (CY); light absorbance of leaf tissue with the color bar 

showing the logarithm of the fraction of absorbed irradiance (B); computed CO2 concentration 

(µmol mol
-1

) profile in liquid phase (C) and in intercellular air space (D) at irradiance of 1500 

µmol m
-2

 s
-1

, ambient CO2 of 380 µmol mol
-1

 and 21 % oxygen. Leaf tissue dimensions are 

124×124×200 µm. 
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The fitting of the CO2 response could improve when the exact PSII content in bundle sheath cells, 

which was assumed 0.10 (Table C.2, Appendix C), is known for the leaf type used in the 

experiment (Fig. C.5, Appendix C). In addition, the underestimation of A in response to 

irradiance at 2000 µmol m
-2

 s
-1

 (Fig. 5.2C), despite a high ATP production rate (Fig. C.2, 

Appendix C), was because of Rubisco limitation (not shown): the response was measured at sub-

ambient [CO2] of 250 µmol mol
-1

 (section 3.2.2). 

The CO2 concentration profile in the liquid phase media (Fig. 5.1C) and in the intercellular air 

space (Fig. 5.1D) were then computed at an ambient CO2 concentration (Ca) of 380 µmol mol
-1

, 

21 % O2 and an irradiance of 1500 µmol m
-2

 s
-1

. Due to the CCM, the mean CO2 concentration in 

the bundle sheath chloroplast was ca. 13 times higher than that in the mesophyll cells. Fig. 5.1D 

also shows that the concentration profile in the intercellular air space was largely homogenous 

except in the isolated air spaces, which accounted for less than 1 % of the intercellular air space 

volume. These air spaces could be connected to air spaces outside the region interest. However, 

the slightly higher CO2 concentration in the abaxial-side intercellular air space (Fig. 5.1D) was 

due to the gradient of light, which resulted in a lower CO2 assimilation rate than that of the 

adaxial side, and the low connectivity of the adaxial and abaxial-side intercellular air space (Fig. 

C.3, Appendix C). The light gradient also resulted in higher CO2 concentration in the abaxial-side 

mesophyll than in the adaxial-side (Fig. 5.1C).  

The profile of O2 partial pressure (Fig. 5.3A) shows that the mean partial pressure in bundle 

sheath chloroplasts was elevated to 26 kPa (Ca of 380 µmol mol
-1

, 21 % O2, irradiance of 1500 

µmol m
-2

 s
-1

 and at a bundle sheath PSII fraction of 0.10). Fig. 5.3B shows the ratio of 

bicarbonate to CO2 concentration in the liquid phase. At equilibrium and a pH of 7.8, this ratio is 

ca. 48 as calculated from the Henderson–Hasselbalch equation. In bundle sheath chloroplasts, the 

ratio is close to this value (Fig. 5.3). 

At pH 7.5 in mesophyll chloroplasts, the equilibrium ratio is ca. 24 in close agreement with that 

shown in Fig. 5.3B. In addition, extreme values of this ratio close to mesophyll-epidermis 

interface are due low CO2 created by contact of these cells.  



Results 

108 

 

 
 

Figure 5.2. Simulations of energy distribution and the responses of photosynthesis. Simulated 

fraction of absorbed photons by leaf tissue and bundle sheath (BS) cells across leaf depth (top to 

bottom) (A); response of photosynthesis (A) to intercellular CO2 computed at irradiance of 1500 

µmol m
-2

 s
-1 

and 21 % oxygen (B); and the response of A to irradiance computed at ambient 

[CO2] of 250 µmol mol
-1

 and 21 % oxygen (C). In B and C, symbols indicate measurement data 

and solid lines show model predictions, while bars show standard error (n = 4). 
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Figure 5.3. Three-dimensional profiles of O2 and bicarbonate. Simulated profile of O2 partial pressure (kPa) in chloroplasts (A) and the 

ratio of concentration of bicarbonate to the mean [CO2] in each leaf component (B) (Eq. C.2.21, Appendix C). Conditions were: 

irradiance of 1500 µmol m
-2

 s
-1

, ambient [CO2] of 380 µmol mol
-1

 and oxygen pressure of 21 kPa. Leaf tissue dimensions are 

124×124×200 µm. 
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5.8.2 Optimization of chlorophyll distribution maximizes photosynthesis rate 

Fig. 5.4 shows the effect of various Kbs:Km ratios from which the ratio of chlorophyll (Chl) 

concentration in bundle sheath to that in mesophyll cells (fchl) can be calculated using 

( )chl m bs abs,bs abs,bsf K / K I / I   as 3, 2, 1.5 and 1. 2 for Kbs:Km ratios of 0.3, 0.5, 1.0 and 1.5 

respectively. Fig. 5.4 shows that a tradeoff between photosynthesis and leakiness exists for 

various distributions of chlorophyll concentration. Assuming bundle sheath chloroplasts contain 

30 % of the total chlorophyll resulted in absorption by bundle sheath cells of ca. 48 % of the total 

light absorbed (Fig. 5.4A). Consequently, the fraction of ATP production in mesophyll cells ( x ) 

was the highest at low light intensities when electron transport is light-limited (Fig. 5.4B). This is 

reflected in the response of leakiness at low light intensities, which was also the highest (Fig. 

5.4B). As a result of this, the predicted photosynthesis was low. At high light intensities, where 

the maximum electron transport rate is limiting, x  leveled at close to 0.40 for various 

distributions of chlorophyll concentration. Fig. 5.4A also shows that when Chl bs/m is 1, the 

fraction of light absorbed by bundle sheath cells was higher by only 19 %. In this case, x  

remained interestingly close to 0.40 at all irradiances. The predicted ϕ values at low light 

intensities were very close to the lowest at low light intensities in Fig. 5.4C. However, at light 

intensities  500 µmol m
-2

 s
-1

, ϕ was close to the highest in Fig. 5.4C. More importantly, the 

predicted rate of photosynthesis was the highest (Fig. 5.4D). When the chlorophyll concentration 

in bundle sheath cells was three times higher than the default, the light absorption was 34 % 

higher (Fig. 5.4A). At low light intensities, x  dropped to 0.30 (Fig. 5.4B) leading to lowest ϕ 

(Fig. 5.4C). However, the predicted photosynthesis was also the lowest due to the low capacity of 

the C4 cycle in mesophyll cells, as indicated by x  (Fig. 5.4D). Overall, an equal photon 

absorption per unit photosystem of mesophyll and bundle sheath chloroplasts maximized 

photosynthesis and minimized the loss of CCM efficiency at low light intensities. 
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Figure 5.4. Improving of photosynthesis by optimizing the distribution of chlorophyll. Photon 

absorbed per unit photosystem in bundle sheath (Kbs) and mesophyll (Km) (Eq. C.2.9, Appendix 

C), which determined the absorbed light in bundle sheath cells (Iabs,bs) relative to total absorption 

by leaf tissue (Iabs,leaf), were varied in steps (A). The resulting ATP production in mesophyll cells 

relative to the total ATP production ( x ) was calculated for various values of Kbs : Km ratio (B). 

The predicted response of leakiness is shown in C while photosynthesis rate (A) is shown in D. 

For C and D, ambient [CO2] was 250 µmol mol
-1

 and [O2] was 21 %. Legend: Kbs:Km ratio. 
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5.8.3 Direct diffusion contributes to photosynthesis of young leaves at elevated 

[CO2] 

Fig. 5.5A shows the contributions of direct diffusion pathways to the rates of photosynthesis at 

elevated [CO2].  

 

Figure 5.5. The role of direct diffusion on photosynthesis (A) and mean CO2 in bundle sheath cells 

(
cC ) at elevated [CO2]. Photosynthesis (A) and 

cC  (B) at various external CO2 concentration. 

CO2 diffuses to bundle sheath cells through plasmodesmata at the mesophyll-bundle sheath 

interface only (Flux-Sm) or through the entire surface of bundle sheath cells having no suberin 

layer (Flux-Sm-Sbs). “C4 pump” denotes the scenario where bundle sheath photosynthesis is 

supplied by decarboxylation of C4 acids and direct diffusion through plasmodesmata. Irradiance 

was kept at 1500 µmol m
-2 

s
-1

 and [O2] was 21 %. 

Simulations show that the rate of photosynthesis was not entirely CO2-saturated at ambient [CO2]. 

Consequently, A changed by up to 9 % as CO2 increased (Fig. 5.5A). At an external [CO2] of 380 

µmol mol
-1

, decarboxylation of C4 acids is the main source of CO2 to bundle sheath cells. When 
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it was assumed that there is no CO2 supply to bundle sheath cells through decarboxylation of C4 

acids (“Flux-Sm” scenario) and the external [CO2] was elevated further, the rate of photosynthesis 

was ca. 6 % and 13 % of the net photosynthesis rate for the “C4 pump” case at 500 µmol mol
-1

 

and 1500 µmol mol
-1

 respectively. The role of the CCM is demonstrated by the respective 

increase in photorespiration which was about three and four fold since the mean concentration of 

CO2 in bundle sheath cells (
cC ) was 5 % (500 µmol mol

-1
 ) and 6 % (1500 µmol mol

-1
) of that 

for the “C4 pump” scenario (Fig. 5.5B). If there was no suberin layer around the bundle sheath 

cell wall, CO2 and O2 diffused through the entire surface of the bundle sheath cells. In this case, 

the rate of photosynthesis was 13 % and 23 % of the “C4 pump” scenario at 500 µmol mol
-1

 and 

1500 µmol mol
-1

, respectively (Fig. 5.5A). The absence of the suberin layer is detrimental to 

CCM as it reduced 
cC  by 32 % although the concentration of O2 in the bundle sheath cells 

decreased by 8 % compared to “Flux-Sm” scenario at 1500 µmol mol
-1

. These results show that 

whenever external [CO2] exceeds 
cC during growth in closed systems such as growth chambers 

and greenhouses, direct diffusion pathways in young leaves will enhance the photosynthesis rate. 

5.8.4 CO2 release in bundle sheath cytosol may increase leakiness moderately 

To determine the influence of CO2 production outside bundle sheath chloroplasts by PEPCK in 

the cytosol on A and ϕ, we assumed various fractions of CO2 release in the cytosol (for details, 

see Appendix C, Text C.3). The fraction of PSII in bundle sheath cells was constant at 0.10 

(Chapman and Hatch, 1979). Fig. 5.6 shows that releasing up to 25 % of the CO2 in bundle 

sheath cells has a minimal impact on A and ϕ (Fig. 5.6A). At higher fractions, A responded 

dramatically decreasing by 10 % and ϕ increased by 13 % when all the CO2 was released in the 

cytosol (Fig. 5.6A). Simulations showed that this was because 
cC  decreased by ca. 7 % and 

photorespiration increased by ca. 29 %.  

To assess the effect of increased PSII abundance on photosynthesis, the fraction of PSII in bundle 

sheath cells was increased (Fig. 5.6B). The rate of linear electron transport in bundle sheath cells 

was calculated for each fraction of PSII in bundle sheath cells (Eqs. C.2.6 and C.2.11, Appendix 

C). In response to increased PSII content in bundle sheath cells, A and ϕ responded less gradually 
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(Fig. 5.6B). Tripling the PSII fraction increased 
cC  by ca. 5 %, photorespiration by ca. 12 % and 

ϕ by ca. 3.6 %. 

 

Figure 5.6. Effect of cytosolic CO2 release on photosynthesis and the efficiency of the CO2 

concentration mechanism. Responses of photosynthesis rate (A, solid lines) and leakiness (ϕ, 

dashed lines) for increased fraction of CO2 released in the bundle sheath cytosol (A) and PSII 

content in the bundle sheath cells (B). The simulation was done at ambient [CO2] of 380 µmol 

mol
-1

, 21 % oxygen, irradiance of 1500 µmol m
-2

 s
-1

 and at a temperature of 25 °C. A and ϕ were 

divided by their respective values at 0 % fraction of CO2 release in the bundle sheath cytosol or 

PSII content of 0.10 (A = 23.5 µmol m
-2

 s
-1

 and ϕ = 0.28). Dashed line represents leakiness and 

solid lines indicate photosynthesis. 

5.8.5 Biophysical processes have little influence on temperature dependency 

of C4 photosynthesis and leakiness 

Fig. 5.7 shows the relative contribution of temperature dependence of the diffusion and 

dissolution of gases and biochemical processes to the temperature responses of CO2 assimilation 

and leakiness (ϕ) (calculated at Ca of 380 µmol mol
-1

, 21 % O2, irradiance of 1500 µmol m
-2

 s
-1

). 

The effect of diffusion in the gaseous phases was lumped with that of the liquid phase since 

temperature dependency of diffusion coefficients of gaseous CO2 and O2 were weak (Fig. C.4, 

Appendix C). A did not respond to temperature when temperature dependency of biochemical 
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processes was ignored (Fig. 5.7A). Temperature responses of A for the cases “Base” and 

“Biochemical” overlapped showing the strong contribution of biochemical processes (Fig. 5.7A). 

Simulation also showed that the mean CO2 and O2 concentration in the bundle sheath chloroplast 

showed similar trends as the response of A while photorespiration increased with temperature 

continuously (except in the “Biophysical” case where they were constant). Fig. 5.7 (B) also 

shows that biophysical processes minimally contribute to the temperature response of ϕ (Eq. 

C.2.23) except for a slight change (< 5 %) at 30 °C. The predicted ϕ was the lowest at 18 °C due 

to a simultaneous decline of photosynthetic sink and PEP carboxylation (Fig. 5.7B, Fig. C.6, 

Appendix C). Overall, simulation results suggest that biochemical processes contribute strongly 

to the temperature response of C4 photosynthesis and the efficiency of CCM. 

 

Figure 5.7. Contributions of biophysical and biochemical parameters to temperature responses of 

photosynthesis and some variables of the CO2 concentration mechanism. Temperature response 

of photosynthesis (A) (panel A) and leakiness (ϕ) (Panel B). Base represents the case where 

biochemical and biophysical processes vary with temperature. Biophysical represents the case 

where only biophysical processes were assumed to vary with temperature. Biochemical 

represents the case where only biochemical processes were assumed to vary with temperature. A 

and ϕ were divided by their default value at 25 °C (A = 23.5 µmol m
-2

 s
-1

 and ϕ = 0.28).    
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5.9 Discussion 

The leaf anatomy of C4 crops may influence C4 photosynthesis by constraining the distribution of 

light and diffusion of gases. Mechanistic understanding of anatomical and biochemical control of 

photosynthesis improves through the use of reaction-diffusion models of gas transport that 

account for a realistic leaf anatomy and distribution of light energy (Berghuijs et al., 2016). 

Previous C4-models (Collatz et al., 1992; von Caemmerer and Furbank, 1999) incorporated the 

role of leaf anatomical features into apparent CO2 conductances or simplified the diffusion of 

gases in the gaseous phase due to a 2-D leaf anatomy (Chapter 4). Recently, a three-dimensional 

model of gas and metabolite transport in C4 photosynthesis in rice leaf anatomy was developed 

(Wang et al., 2017). Here we presented a model considering the full 3-D geometry of a C4 leaf. 

Diffusion of CO2 and O2 in the leaf tissue was modeled while accounting for the light 

environment provided by the spatial arrangement of mesophyll and bundle sheath cells. The 

influence of the differences in PSI and PSII content, degrees of grana formation and chlorophyll 

content of chloroplasts in these cells on light absorption were also accounted for using 

information from literature. The 3-D model presented here exceled our 2-D model of gas 

transport in maize leaf (Chapter 4) in several aspects. It described the distribution of light energy 

between mesophyll and bundle sheath cells (Fig. 5.1B): this has implications in the assessment of 

the efficiency of CCM at various light intensities (Fig. 5.4B). The 3-D model also revealed that 

the CO2 concentration in the intercellular air space (Fig. 5.1D) is not totally uniform as was 

assumed previously in the 2-D model. In addition, the influence of PSII abundance in bundle 

sheath cells on photosynthesis in relation to oxygen production, ATP production and 

photorespiration could now be directly examined (Fig. 5.6B). Modeling oxygen diffusion was 

also important due to the marked differences in responses of photosynthesis with and without 

oxygen production (Fig. C.5, Appendix C) even at low PSII fraction of 0.10. 

The light profile shows that large gradients exist in the leaf tissue as expected from the Kranz-

anatomy when illuminated unilaterally. Even in bundle sheath chloroplasts, the gradient in light 

absorption (Figs. 5.1B and 5.2A) was substantial in that centrifugally arranged bundle sheath 

chloroplasts facing the upper epidermis (where the light source was applied) had higher 

absorption than those facing the lower epidermis. Consequently, there was a considerable 



A three-dimensional model of gas transport and light propagation improves mechanistic 

understanding of C4 photosynthesis 

117 

 

gradient in concentration of CO2 in liquid phase (Fig. 5.1C) which determines the transition 

between electron and enzyme limited CO2 assimilation rates at various depths in the leaf tissue. 

The light gradient may have consequences in energetics of maize photosynthesis as it implies that 

the capacity of the C4 cycle and the efficiency of CCM vary in the leaf tissue. Erect leaves of 

maize, however, could help in illuminating the abaxial side, probably justify the lack of bundle 

sheath chloroplast movement and slow movement of mesophyll chloroplasts in response to light 

intensity (Taniguchi et al., 2003; Ryu et al., 2014). The irradiance response of x  depends 

strongly on the relative absorption coefficient of bundle sheath and mesophyll chloroplasts (Fig. 

5.4B). At optimal photosynthesis rate, x  was constant at 0.40 across all irradiances in agreement 

with previous reports (von Caemmerer and Furbank, 1999; Yin and Struik, 2012). 

Photosynthesis was maximized when about 50 % of the light was absorbed in bundle sheath cells. 

Similarly, about 30 to 40 % absorbed light by bundle sheath cells resulted in optimum 

photosynthesis (Wang et al., 2014a). If leakiness should also be minimized at the same time, our 

results indicate that bundle sheath cells should absorb about 60 % of the light. The chlorophyll 

concentration in bundle sheath cells could not be increased more without affecting photosynthesis 

or the efficiency of CCM (Fig. 5.4). Increasing the chlorophyll concentration in bundle sheath 

cells compensated for the shading effect of mesophyll cells as it boosted ATP production in 

bundle sheath cells. Consequently, it also minimized leakiness by reducing the CO2 delivery into 

bundle sheath cells (Fig. 5.4C) relative to fixation rate. However, this resulted in low 
cC , which 

ultimately reduced photosynthesis. In converse, decreasing the chlorophyll content in bundle 

sheath cells resulted in high 
cC  but Rubisco was light-limited. Therefore, optimal photosynthesis 

occurred when the photon absorption per unit photosystem in mesophyll and bundle sheath cells 

was equal. For this to happen, the total amount of photosystem per mole of chlorophyll in bundle 

sheath cells should be 1.5 times higher than that of mesophyll cells (ratio of absorbed light in the 

bundle sheath to that in mesophyll is 1.5). This could be possible despite the spatial constraint in 

the bundle sheath cells (Sage and McKown, 2005) since bundle sheath chloroplasts are usually 

more dense than mesophyll cells (Dengler et al., 1994; Dengler and Nelson, 1999). Our results 

support the view that bundle sheath cell size, which determines the content of light harvesting 
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machinery and thus leaf energetics, may influence the evolution of C4 photosynthesis (Bellasio 

and Lundgren, 2016). 

The stimulation of growth of C4 plants was proposed mainly due to increased photosynthesis rate 

by enhanced intercellular CO2 (Ghannoum et al., 2000). To test the extent of contribution of 

direct diffusion of CO2 to bundle sheath cells, we solved the microscale gas transport model 

equation using various pathways (Fig. C.7, Appendix C). To simulate the less-developed bundle 

sheath cell wall in young leaves, suberin lamella was assumed to be not present. Fig. 5.5 shows 

that diffusion through exposed mesophyll surface and mesophyll-bundle sheath interface could 

contribute to photosynthesis substantially at about 3.8 times the ambient [CO2] (380 µmol mol
-1

), 

although it was argued that the high resistance to diffusion of this pathway may not allow it 

(Ghannoum et al., 2000). When the entire surface of bundle sheath cells was assumed to be 

accessible to CO2, this contribution became more important. This supports the suggestion that in 

young leaves, direct diffusion of CO2 may be a potential mechanism contributing to stimulation 

of photosynthesis at elevated CO2 levels (Ghannoum et al., 2000). Coincidentally, maize plant 

grown at elevated CO2 levels was reported to reduce the activity of C4 enzymes, which reduces 

CO2 delivery to bundle sheath cells, with little change in the rate of photosynthesis (Maroco et 

al., 1999). Nevertheless, the atmospheric CO2 levels may not reach 1000 µmol mol
-1 

in the near 

future; however, external [CO2] in growth chambers and greenhouses could easily be elevated 

beyond this value. 

Cytosolic PEPCK activity and photorespiration due to oxygen evolution in bundle sheath cells 

were suggested to promote leakage (von Caemmerer and Furbank, 1999; Wang et al., 2014a). 

Our results also show that the efficiency of CCM would be reduced in those cases. The extent of 

reduction might have been lessened due to the centrifugal position of chloroplasts in bundle 

sheath cells (Fig. 5.1A) which benefits re-assimilation since most of the cytosolic CO2 has to 

cross the chloroplast membrane twice before leaking out. This is also supported by abundant 

mitochondria that are closely associated with chloroplasts in bundle sheath cells (Hylton et al., 

1988). Simulation shows that even when all the CO2 is released outside chloroplasts, leakiness 

increased only by 15 % (Fig. 5.6A). Flux-balance modeling of C4 metabolism which does not 

model bundle sheath chloroplast position predicted that cytosolic CO2 release impacts leakiness 
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much more than the aforementioned value (Wang et al., 2014a). This implies that prediction of 

leakiness would be overestimated when organelle positioning is not accounted for.  

The temperature dependency of biophysical processes related to CO2 transport contributed 

minimally to the temperature response of photosynthesis and the efficiency (ϕ) of CCM at 

ambient [CO2] of 380 µmol mol
-1

 and irradiance of 1500 µmol m
-2

 s
-1

. Neglecting the 

temperature dependency of dissolution and diffusion of gases did not alter the peaked response of 

photosynthesis rate implying that the temperature response of the biochemical processes 

dominates (Fig. 5.7A). In addition, PEP carboxylation and photosynthesis were limited by 

electron transport across many of the temperature values (Fig. C.6, Appendix C). It should also 

be noted that the influences of temperature on diffusion of several metabolites that are involved 

in the delivery of CO2 were not accounted for here. However, these processes are usually 

suggested to be fast (Sowiński et al., 2008), and thus their transport may not be limiting. 

Furthermore, temperature dependency of biochemical processes contributed considerably to the 

temperature response of the efficiency (ϕ) of CCM (Fig. 5.7). The predicted ϕ resembles the 

response reported previously for NADP-ME subtype C4 plants (Henderson et al., 1992; von 

Caemmerer et al., 2014; Yin et al., 2016). The high dependence on biochemical processes 

supports the suggestion that ϕ is dominantly controlled by the balance of C4 and C3 cycles than 

by bundle sheath conductance (Kromdijk et al., 2010). This is corroborated by similar responses 

of ϕ to leaf temperature reported previously (Henderson et al., 1992) and close values of ϕ for a 

range of C4 grasses (Cousins, Badger & von Caemmerer 2008).  

5.10  Conclusion 

A 3-D reaction-diffusion model of gas exchange in C4 leaves that includes a realistic 3-D leaf 

anatomy and light transport was developed here. The model improved up on our previous 2-D 

model (Chapter 4). Photosynthesis was optimized for distribution of chlorophyll between bundle 

sheath and mesophyll cells. Environmental responses of C4 plants in relation to photosynthesis 

were investigated. The results show that direct CO2 diffusion could support photosynthesis in 

young leaves at elevated [CO2]. In addition, cytosolic CO2 release would result in loss of CCM 
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efficiency but to a lesser extent than anticipated before. Simulations also suggest that biochemical 

processes control temperature response of photosynthesis and leakiness while biophysical 

processes contributed little. The model could serve as a tool to investigate C4 photosynthesis in 

relation to gas transport and light propagation further. It is worth nothing that metabolite transport 

should be included to investigate the role of leaf microstructure and anatomy on C4 metabolism 

through metabolite exchange between bundle sheath and mesophyll cells under various light 

environments. In addition, the role of bundle sheath extensions in light propagation and 

photosynthesis should be modeled using leaf geometrical anatomy including them.
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6 General conclusion and future perspectives 

C4 photosynthesis is a key process driving productivity in food and bioenergy crops such as 

maize, sugar cane and sorghum. It is the most efficient form of photosynthesis resulting in 

superior resource use efficiency. The superior resource-use efficiency of C4 plants is due to 

suppression of photorespiration by the CO2 concentration mechanism (CCM). The leaf anatomy 

impacts CCM by determining the distribution of gases and light energy. The main aim of this 

dissertation was to develop microscale models that allow mechanistic understanding of the role of 

leaf anatomical factors, which constrain gas diffusion and light distribution, and biochemical 

processes that consume or produce gases in photosynthesis of C4 plants. Maize was used as a 

model system. In this general discussion, I will summarize and discuss the findings of this 

dissertation. Then, future perspectives and recommendations for further research will be given.  

6.1 Modeling gas transport during photosynthesis of C4 plants: 

practices and challenges 

Gas exchange models based on a core understanding of a mechanism of photosynthesis have 

been used to increase quantitative insight in support of research towards improving crop 

productivity through alteration of leaf anatomical traits in C3 plants (Tholen and Zhu, 2011; Ho et 

al., 2012, 2016). However, literature survey showed that application of such models for 

photosynthesis of C4 plants has been limited. Since CCM is a concerted action of leaf anatomy, 

ultrastructure and biochemistry, to examine the individual contributions of these factors to the 

efficiency of photosynthesis, microscale models of gas transport that incorporate explicit 

anatomical features are essential. Such models are useful to analyze the bundle sheath 

conductance; an important limitation to C4 photosynthesis. Usually, bundle sheath conductance is 

determined from gas exchange and chlorophyll fluorescence measurements in combination with a 

biochemical model of C4 photosynthesis. The conductance thus estimated combines the effects of 

leaf biochemistry and leaf anatomy. Consequently, the potential limitation of each 

microstructural and ultrastructural features cannot be individually examined. Therefore, 
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development of microscale models for photosynthesis of C4 plant was found timely and 

beneficial. 

Improving upon earlier microscale models of gas transport in a C3 leaf, it was recently shown that 

actual intricacies of leaf anatomy are beneficial in elucidating microscale gas profiles (Ho et al., 

2016). To extend such approaches to C4 plants and examine anatomical constraints of gas 

transport during C4 photosynthesis, a realistic geometry of leaf anatomy is essential. The leaf 

microstructure geometry could be obtained from microscopy and X-ray micro-CT images among 

others (Verboven et al., 2010). X-ray micro-CT images give an excellent contrast between the air 

and cellular phase with minimal change to leaf structure. However, resolving cell boundaries of 

cells and cellular organelles requires extensive image processing and is not easy. Although this 

could be avoided by using microscopy experiments, extensive sample preparation alters leaf 

anatomy. The leaf tissue could also be approximated using simple geometrical shapes, however, a 

novel approach is to parametrize the geometry by direct reconstruction from real images thereby 

avoiding assumptions regarding volumes of compartments. Overall, geometrical simplifications 

should be avoided and the leaf geometry should be obtained using imaging techniques. 

Reaction-diffusion equations of gas transport in leaf tissue are then developed by combining 

diffusion of gases and kinetics of photosynthesis. The distribution of light energy in leaf tissue is 

conveniently modeled using ray tracing. In this regard, advanced methods that could effectively 

deal with structural complexities of biological tissues should be used to model light absorption 

and scattering accurately. Parameters of photosynthesis kinetics are estimated from 

measurements of combined gas exchange and chlorophyll fluorescence. The resulting set of 

reaction-diffusion equations are discretized over the geometry and solved numerically. This 

approach of solving the model equations requires high capacity computers and licensed software 

tools which has implications on practicality of the model tools. The computational burden could 

be minimized by considering 2D. Primary validation of the model is carried out by comparing 

model predicted responses of photosynthesis to CO2 and irradiance to those of measurements. 

Various model output could also be compared to literature reports to verify model outputs. 

Thorough validation requires measurements of CO2 and assimilation profiles in leaf tissue, which 

are not widely available. In conclusion, I have identified practices and challenges of gas transport 
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modeling in C4 plants which influenced subsequent planning and execution of model 

development. 

6.2 Bundle sheath conductance in relation to leaf anatomy 

Bundle sheath conductance depends on a number of anatomical properties such as cell wall 

thickness of bundle sheath cell, surface area of bundle sheath cells per unit leaf area and the 

presence or absence of suberin layer (von Caemmerer and Furbank, 2003). Few studies quantified 

bundle sheath conductance compared to mesophyll conductance in C3 plants. In addition, the role 

of these anatomical properties to bundle sheath conductance in response to physiological 

variables such as leaf nitrogen content and age were not examined extensively. 

In Chapter 3 we increased quantitative information on CO2 conductances in a maize leaf. The 

results confirmed positive relationship between gbs and LNC. The cause of such a relationship 

was not clear although the decline of leaf nitrogen content with ageing have altered leaf anatomy 

consistent with the trends in gbs across leaf ages. The results imply that increased nitrogen supply 

to boost growth may decrease the efficiency of CCM. However, this was not detrimental for rate 

of photosynthesis. The results would improve if advanced leaf anatomy imaging techniques that 

minimize intensive sample preparation and higher resolution like molecular imaging (Palmer et 

al., 2015) are used. Future studies should also investigate changes in composition of pectin 

polysaccharides in bundle sheath cell wall since that influence diffusion through the wall as 

suggested recently for Miscanthus (Ma et al., 2017). In addition, the possible influence nitrogen 

on membrane composition and plasmodesmata abundance should be considered before changes 

in leaf anatomy are ruled out as non-explanatory for trend of gbs with LNC. Recently a method 

has been developed for quantifying abundance of plasmodesmata in intact leaves of C4 plants 

(Danila et al., 2016). 

Predictions of leakiness and the ratio of quantum efficiency of CO2 to that of PSII electron 

transport have shown that the balance of C3 and C4 cycles may have not been altered by LNC and 

leaf age. Simultaneous carbon isotope discrimination measurement will provide a more direct 

evidence. In addition, enzyme assay to determine maximal activities of enzymes would allow to 
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better constrain model parameters required for estimating gbs. Future investigations should also 

examine directly whether possible underestimation of rate of electron transport by the use of 

rectangular flash in chlorophyll fluorescence as opposed to multiphase flash have contributed to 

poor estimates of bundle sheath conductance. 

6.3 The roles of leaf microstructure, ultrastructural and 

biochemistry to the efficiency of CCM 

Leaf anatomy and biochemistry are interwoven in vivo. To discern the relative contribution of 

each to photosynthesis, microscale models are good alternatives. In Chapter 3, it was shown that 

leaf anatomical properties correlated with bundle sheath conductance. Consequently, the effect of 

permeability of biological membranes, diffusive properties of cell wall and liquid phase media, 

abundance of plasmodesmata, maximum capacity of enzymes and carbonic anhydrase on CCM 

needs to be investigated. Such analysis could be carried out more rapidly using microscale 

models than approaches that involve antisense suppression or overexpression of genes or 

proteins. 

In Chapter 3 and elsewhere in literature reports, bundle sheath conductance was estimated from 

resistance models that treat diffusion and photosynthesis as sequentially rather than 

simultaneously occurring processes (von Caemmerer and Furbank, 2003; Yin et al., 2011b). In 

addition, the resulting CO2 conductances provide the magnitude of the resistances only but not 

the importance of factors contributing to them. A two-dimensional microscale model of gas 

exchange accounting for a realistic leaf microstructure was developed for the first time for 

photosynthesis of C4 plants in Chapter 4. Due to the agreements of model predictions of 

photosynthesis rate with that of the experiment and the responses of leakiness and mean 

concentration of CO2 in bundle sheath cells to literature values, the model was deemed sufficient 

to carry out successive analysis. The analysis revealed that the resistance of the mesophyll-bundle 

sheath interface is a major contributor to bundle sheath resistance. This supported our earlier 

recommendation that more investigation on bundle sheath cell wall and plasmodesmata would 

help explain the variation of gbs with LNC. In addition, we learned that the mesophyll cell wall 
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was the most significant limitation to mesophyll conductance. Furthermore, the suberin layer at 

the exposed surface of bundle sheath cell wall was found beneficial in reducing leakage. Thus, 

future investigations should consider CO2 permeability of mesophyll-air space interface and 

mesophyll-bundle sheath interface to improve our understanding of the limitation of gm and gbs on 

photosynthesis of C4 plants. The permeability of biological membranes to bicarbonate may not be 

worth considering since it influenced the rate of photosynthesis or bundle sheath conductance 

only minimally. 

In addition to leaf anatomical properties, biochemical factors such as concentration of carbonic 

anhydrase and maximal activities of PEPC and Rubisco in relation to the rate of C4 

photosynthesis were investigated. The local carbonic anhydrase was found essential in mesophyll 

cells but would decrease the efficiency of the CO2 concentration mechanism if abundant in 

bundle sheath cells. In particular, at low CO2, carbonic anhydrase in mesophyll was found 

essential to high rate of photosynthesis. Since the enzyme contributes to high mesophyll 

conductance, this result implies that during stress, where intercellular CO2 drops low, increasing 

mesophyll conductance can boot C4 photosynthesis. Furthermore, increasing the ratio of maximal 

activities of PEPC relative to Rubisco decreases photosynthesis when this ratio is greater than 3. 

This shows the metabolic robustness of the C4 pathway. Similar leakiness values predicted in 

Chapter 2 may have also been due to this ratio not being highly altered by LNC. In conclusion, 

microscale modeling indeed allowed analysis the limitations provided by leaf ultrastructural 

properties unlike the lumped conductance model in Chapter 2. Thus, the two-dimensional model 

was found to be an important tool for mechanistically analyzing CO2 transport in liquid phase 

media during C4 photosynthesis. 

6.4 A three-dimensional model of gas transport for photosynthesis 

of C4 plants 

Diffusion in leaves is three-dimensional in nature due to non-uniform distribution of stomata on 

epidermis. The two-dimensional model described in Chapter 4 has limitations in describing the 

three-dimensional nature of diffusion. It ignores the connectivity of air spaces and its role in 
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affecting the diffusion of gases in gaseous phase. Paradermal diffusion, however, in heterobaric 

leaves such as maize where bundle sheath cell extensions break the flow, does not contribute to 

photosynthesis. Furthermore, a three-dimensional leaf geometry is important in modeling the 

light gradient in the leaf. Because of the importance of the three-dimensional leaf anatomy in 

diffusion and light propagation, we extended in Chapter 5 the two-dimensional model of Chapter 

4 to develop a three-dimensional model for photosynthesis of C4 plants.  

Light microscopy images of leaf anatomy obtained in Chapter 3 were considered. The images 

were found suitable in resolving the leaf anatomical details unlike images of X-ray micro-CT. 

Consequently, the 3-D geometrical model was constructed from several series of two-

dimensional images. The propagation of light energy inside a leaf was modeled using ray-tracing 

adapted to deal with structural complexities of leaf tissues so as to obtain a realistic light 

absorbance profile. Due to the high resistance of bundle sheath cells, the concentration of O2 in 

these cells could not be neglected. Consequently, reaction-diffusion models for transport of CO2 

and O2 were developed. As expected, the 3D model required a high-performance computer with a 

16-GB RAM. The model also required a long list of parameters but provided more insights in to 

photosynthesis. Due to uncertainties in the maximum electron transport rate and some of the gas 

diffusion parameters there were underestimations. Chlorophyll fluorescence derive electron 

transport rate may also be uncertain as it is less certain for C4 plants due to differences in the 

nature of chloroplasts between mesophyll and bundle sheath cells, which biases the interpretation 

of chlorophyll fluorescence signals. To improve the accuracy of the fitting, validation of the light 

absorbance may be beneficial. The light profile shows that large gradients of light intensity exist. 

This means that chloroplasts at some positions are light saturated while some chloroplasts are 

light-limited. This may be one of the reasons why the convexity of the light response curve for 

the whole leaf tissue is less than one (at the level of the chloroplast, the convexity is very close to 

one). Next, the gas concentration profile in the leaf tissue was computed. As expected from 

CCM, the mean concentration of CO2 in bundle sheath cells was higher than that of the ambient 

air. The concentration profile of CO2 in the air spaces was largely uniform while in the liquid 

phase large gradients existed. The mean concentration of oxygen in bundle sheath cell was much 

higher than in the ambient air and consequently, the response of photosynthesis was impacted 

when this gradient was neglected. 
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The three-dimensional model was applied to investigate several physiological questions. It was 

discussed above that the Kranz-anatomy results in disproportionate distribution of light energy 

among mesophyll cells and bundle sheath cells. Consequently, the relative rates of CO2 delivery 

and reduction are influenced. One way to improve light access to bundle sheath cells is to 

improve the absorption by increasing chlorophyll content. At the same time, the light absorption 

and ATP production by mesophyll cells should not be compromised to maintain adequate CO2 

supply to bundle sheath cells. In this regard, it is essential to know whether and how optimizing 

chlorophyll distribution between mesophyll cells and bundle sheath cells improves 

photosynthesis. To test this, several light absorbance profile were generated for each assumed 

chlorophyll content. Simulations show that photosynthesis rate does not increase by simply 

increasing the chlorophyll content of bundle sheath cells although the light absorption increases. 

A high photosynthesis rate at low leakiness requires that the chlorophyll content of bundle sheath 

cells should be such that the light absorbed per unit photosystem is equal in mesophyll cells and 

bundle sheath cells. This required a higher photosystem per mole of chlorophyll in bundle sheath 

cells than in mesophyll cells. This result has implications for the evolution of C4 plants. A large 

bundle sheath cell in C3 plants was recently shown to be favorable for evolution of C4 

photosynthesis which requires more energy in bundle sheath cells (Bellasio and Lundgren, 2016). 

Overall, the leaf anatomy influences C4 photosynthesis by constraining CO2 and light availability. 

It was shown that the rate of photosynthesis responded to elevated CO2 although it is believed 

that photosynthesis is CO2-saturated (Ghannoum et al., 2000). This was suggested to be due to 

direct diffusion of CO2 especially in young leaves that may not have well-developed bundle 

sheath cell walls. Leaf anatomical measurements in Chapter 3 showed that the total surface area 

of mesophyll cells and bundle sheath cells was considerable. The model was thus applied to test 

the potential of leaf anatomy and ultrastructure in allowing direct diffusion of CO2 to support 

appreciable photosynthesis. Simulations showed that in matured leaves the contribution of direct 

diffusion was modest while it was considerable in juvenile leaves. Although direct diffusion may 

not be responsible for high responsiveness of C4 photosynthesis to elevated CO2, its contributions 

could not be neglected. 
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The role of leaf three-dimensional leaf anatomy in analyzing temperature response of C3 

photosynthesis showed that maximum enzyme activities at chloroplast level are more temperature 

sensitive than those estimated without the consideration of the anatomy (Juurola et al., 2005). To 

discern the contribution of biochemical and biophysical factors to temperature dependency of 

photosynthesis of C4 plants, a sensitivity analysis was carried out. Unlike C3 plants, temperature 

responses of photosynthesis and leakiness are predominantly controlled by biochemical factors. 

This explains the smaller variation of the responses of leakiness measured for various C4 plants as 

such differences in leaf structure may not be important. 

The microscale model was used to examine to what extent cytosolic CO2 increase due to 

decarboxylation of C4 acids in bundle sheath cytosol or photorespiration increases leakiness. 

When position of organelles like chloroplasts is accounted for by the microscale model, the 

predicted increase in leakiness was found to be only moderate compared to flux-balance models. 

In conclusion, the three-dimensional model provided evidence that leaf anatomy may constrain 

C4 photosynthesis by mediating distribution of light and gas transport. Several hypotheses were 

tested showing the applicability of the model in addressing physiological questions related to gas 

transport, light propagation and C4 photosynthesis. 

6.5 Future perspectives and recommendations 

In Chapter 3, CO2 conductances were investigated in relation to leaf anatomy. While we 

addressed how and why bundle sheath conductance responds to leaf nitrogen content and leaf 

aging, some research questions need to be investigated further. These are: 

 Whether and how does the abundance and ultrastructure of plasmodesmata respond to leaf 

nitrogen content and leaf aging? 

 Do permeability values of the chloroplast envelope and the plasma membrane respond to 

leaf nitrogen content and age?  

We recommend a replicate study of the impact of leaf nitrogen content and age on bundle sheath 

conductance but using advanced methods of leaf anatomy acquisition such as synchrotron micro-
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tomography, phase contrast tomography and nano-tomography to minimize leaf anatomy 

artifacts. Such a study requires careful planning. Measurements of the light and CO2 response of 

photosynthesis at two oxygen levels (a total of 42 measurements) takes about 10 h for one plant. 

At the end of this, the leaf anatomy of the measurement leaf should be imaged subsequently. The 

leaf nitrogen content must also be measured. However, this results in non-ideal successive use of 

the same sample for different experiments. Leaf samples nearby the measurement could 

alternatively be used to avoid this as anatomical properties of the mid-portion of leaves tend to 

change less dramatically. 

We have developed tools to further investigate C4 photosynthesis in relation to leaf anatomy in 

Chapters 4 and 5. The models were applied to examine several research questions relating to leaf 

anatomy and biochemistry. However, the models could be extended further to investigate the 

following research questions: 

 What is the role of leaf anatomical factors on transport of several intermediate 

metabolites, thus the rate of photosynthesis? 

 How does ultrastructural details of plasmodesmata impact the metabolite transport and the 

efficiency of the CO2 concentration mechanism? 

 What are the effects of bundle sheath extensions, which may improve light propagation in 

leaf tissue, on the efficiency of photosynthesis? 

To address the above questions, a metabolite transport model should be included in the existing 

leaf anatomical model. A new geometrical model that includes bundle sheath extension is also 

required. Addition of a metabolite transport model makes the 3-D model even more complex and 

takes more computational resources to solve it. However, the insights generated from this kind of 

model will be valuable and accurate since they are derived from a whole system perspective 

instead of the CO2 transport aspect alone. This is important since C4 photosynthesis is also an 

interplay of several metabolite exchanges. In addition, it is recommended that the light 

propagation in the leaf used in the gas exchange measurement should be experimentally validated 

for more accuracy. The light propagation model could be improved by considering a diffuse light 

source at the leaf surfaces and also light directed on both surfaces since maize leaf has an up-right 
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leaf. For even more accuracy, the chlorophyll distribution between mesophyll and bundle sheath 

cells should be determined to constrain the absorption coefficients better.  

In general, simplified microscale models of gas exchange provide mechanistic understanding of 

the gas transport in relation to leaf anatomy of C4 plants. This would not be possible using 

lumped conductance based models. In particular, since C4 plants involve two cell types in CO2 

transport, resistance models would be difficult. More advanced models would excel the 

microscale models in generating systems level understanding, but are going to be complex and 

computationally demanding. 
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Appendix A 

A.1. Composition of nutrient solution and model equations 

The nutrient solution composition is as shown in Table A.1.1 (below). There were a total of 6 

applications of the nutrient solutions prepared for the three nitrogen levels (N1, N2 and N3). 

Table A.1.2 shows the application spread over the weeks.  

Table A.1.1 Composition of nutrient solution used for growing maize plants 

Nutrients Conc. 

 (M) 

Amount  

(g mol
-1

) 

mg/ml solution 

N  P K Mg Ca 

Ca(NO3)2.4H2O 1 236.15 28    40 

NH4NO3 2 80.04 56     

K2SO4 0.5 174.26   39   

KH2PO4 1 136.09  31 39   

MgSO4.7H2O 1 246.47    24  

KNO3 2 101.11 28  78   

Table A.1.2 Application of nutrient solution spread over weeks. Nitrogen (N), phosphorous (P), 

potassium (K), magnesium (Mg) and calcium (Ca). 

Nutrients Week 1 to 4 

(Mg per pot) 

Week 5 and 6 

(Mg per pot) 

N1 25 50 

N2 63 125 

N3 156 313 

P 55 110 

K 208 417 

Mg 83 165 

Ca 38 75 
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Bundle sheath conductance (gbs) was estimated from equations of the biochemical model of C4 

photosynthesis (von Caemmerer and Furbank, 1999). Based on this model, in mesophyll cells, 

phosphoenolpyruvate (PEP) carboxylation rate 
pV  is enzyme-limited or electron-transport-

limited. Values and units of symbols are listed in Table A.1.3.  

pV  is given as (von Caemmerer and Furbank, 1999):  

  min ,
 2

m

m

p,max ATP
p

p

C V x J
V

C K

  
 
  




 

(A.1.1) 

The first term between the brackets is for the enzyme-limited rate while the second one is for the 

electron-transport-limited rate. mC  is the concentration of CO2 in the mesophyll cytosol, 
pK  is 

the Michaelis-Menten constant of PEP carboxylase (PEPC) for CO2, and p,maxV  is the maximum 

catalytic rate of PEPc. The parameter x  is the fraction of ATP allocated to the C4 cycle. The rate 

of total electron transport in the model of von Caemmerer and Furbank (1999) was changed here 

to ATPJ , the rate of ATP production (Yin and Struik, 2012). ATPJ  is given by Yin et al. (2011b) 

as: 

( / )
  

(1 )

inc m

ATP

s I F F
J

x

 



 

                                                                                         

(A.1.2) 

/ ( ) /
m m s m

F F F F F       

where s´ is the lumped calibration factor, Iinc is incident irradiance; 
s

F  is the steady-state relative 

fluorescence yield; and 
m

F   is the maximum relative fluorescence yield in a leaf.  

The net rate of CO2 fixation in bundle sheath chloroplasts (A), limited by the rate of Rubisco 

carboxylation ( cw ) or the rate of electron transport (
jw ) (Farquhar et al., 1980; von Caemmerer 

and Furbank, 1999) is expressed as:  
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(A.1.5)                                                                     

where ,c maxV  is the maximum carboxylation rate of Rubisco; 
m,CK  and 

m,OK  are Michaelis-

Menten constants of Rubisco for CO2 and O2, respectively; *  = 0.5/Sc/o, Sc/o is Rubisco 

specificity; cC  and cO  are the concentrations of CO2 and O2 in the bundle sheath chloroplast; 

dR  is the rate of CO2 release through respiration.  

The concentration of oxygen in the bundle sheath was calculated as (von Caemmerer and 

Furbank, 1999): 

/ (0.047 )
c bs iαA g OO   (A.1.6) 

where α  is the fraction of O2 evolution in bundle sheath cells; Oi is the concentration of oxygen 

in the intercellular air space (assumed 210 mbar); bsg is bundle sheath conductance; and 0.047 

takes in a lumped coefficient accounting for solubility and diffusivity of O2 and CO2 at 25 °C. 

A could also be written as (von Caemmerer and Furbank, 1999): 

p mA V L R    (A.1.7) 

where the rate of CO2 release through respiration in mesophyll (Rm) is taken as half Rd, and L is 

the rate of CO2 leakage. L is given by: 

( )bs c mL g C C   (A.1.8) 
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where Cc is the mean CO2 concentration in bundle sheath chloroplasts and Cm is the mean CO2 

concentration in mesophyll cytosol. 

mC  was calculated as: 

/m i mC C A g   (A.1.9) 

where gm is mesophyll conductance and Ci is the measured concentration of CO2 in the 

intercellular air space. 

cC was calculated as: 

/c m bsC C L g   (A.1.10) 

The procedure of Yin et al. (2011b) expresses net CO2 assimilation as limited by four 

combinations of enzyme and electron transport limitations. The combinations are as follows: (1) 

when Vp and A are enzyme-limited, (2) when Vp and A are electron-transport-limited, (3) when Vp 

is enzyme-limited and A is electron-transport-limited, and (4) when A is enzyme-limited and Vp is 

electron-transport-limited. Combining Eq. A.1.3, Eq. A.1.7 to Eq. A.1.9 and the enzyme-limited-

rate of Vp (Eq. A.1.1) results in cubic equations for net CO2 assimilation for Cases 1 and 3. In 

addition, combining Eq. A.1.3, Eq. A.1.7 to Eq. A.1.9 and the electron-transport-limited Vp (Eq. 

A.1.1) results in quadratic equations that allow determining net CO2 assimilation for the Cases 2 

and 4. The quadratic and cubic equations with their solutions are given in Yin et al. (2011b). bsg

is determined by minimizing the difference between the measured net photosynthesis (main text) 

and net CO2 assimilation expressed by this four-limitation model. The minimization was carried 

out in SAS (SAS Institute Inc., Cary, NC, USA).  
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Table A.1.3. Parameters of the model 

Symbol Definition Values References 

pK  Michaelis-Menten constant 

of PEPc for CO2 

40 µbar (Pfeffer and Peisker, 1998) 

,m CK  Michaelis-Menten constant 

of Rubisco for CO2 

485 µbar (Cousins et al., 2010) 

,m OK  Michaelis-Menten constant 

of Rubisco for O2  

146 mbar (Cousins et al., 2010) 

/c oS  

 

Relative CO2/O2 specificity 

factor for Rubisco  

2826 

dimensionless 

(Cousins et al., 2010) 

α Fraction of Photosystem II 

activity in bundle sheath 

0.1 (von Caemmerer and Furbank, 1999) 

Rm Rate of respiratory CO2 

release from mitochondria 

in mesophyll 

0.5 Rd (von Caemmerer and Furbank, 1999) 

Rd is given in Table 1 (main text) 

s´ Lumped calibration factor Table 1 Estimated 

x Partitioning factor of ATPJ  

to the C4 cycle 

0.4 (von Caemmerer and Furbank, 1999) 
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Table A.1.4. Estimates of day respiration (Rd), light conversion efficiency (s´) and bundle sheath conductance (
bs

g ) when the quantum 

efficiency of PSII electron transport was increased by 20 % (Loriaux et al., 2013). The estimates of Rd did not change since Loriaux et 

al. (2013) show that the quantum efficiency of PSII electron transport changed by 6 % at low irradiance levels, for which we estimated 

Rd. 

Leaf 

age 

Leaf type Rd 

µmol m
-2

 s
-1

 

s  

Original 

s  

Sensitivity 

 

gbs 

Original  

mmol m
-2

 s
-1

 

gbs 

Sensitivity 

mmol m
-2

 s
-1 

A1 N1 1.70±0.20 0.325±0.004 0.271±0.003 0.88±0.55 0.88±0.55 

 N2 2.20±0.23 0.328±0.003 0.274±0.003 2.33±0.83 2.33±0.83 

 N3 2.16±0.27 0.323±0.006 0.270±0.002 3.56±0.90 3.56±0.90 

A2 N1 1.68±0.17 0.327±0.007 0.272±0.005 0.36±0.50 0.36±0.50 

 N2 1.65±0.21 0.332±0.003 0.277±0.005 0.51±0.51 0.51±0.51 

 N3 2.29±0.19 0.321±0.003 0.267±0.003 1.34±0.62 1.34±0.62 
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Table A.1.5. Sensitivity of parameters, slope of linearity between mesophyll conductance and leaf nitrogen content (Xgm), lumped 

calibration factor ( s ) and bundle sheath conductance (
bs

g ) for assumed values of fraction of ATP allocated to the C4 cycle (x). The 

leaf nitrogen (N) contents are represented by low (N1), intermediate (N2) and high (N3) for young (A1) and old (A2) leaves. 

 

 

x Xgm 

s’/s’x=0.4 gbs/gbs,x=0.4 

N1A1 N1A2 N2A1 N2A2 N3A1 N3A2 N1A1 N1A2 N2A1 N2A2 N3A1 N3A2 

0.35 1.00 1.16 1.14 1.14 1.14 1.14 1.15 1.47 0.93 0.77 0.73 0.77 0.77 

0.40 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.45 1.01 0.98 0.99 0.99 0.99 0.99 0.99 2.19 2.82 2.29 3.07 2.40 2.40 

0.50 1.02 0.98 0.99 0.98 0.99 0.98 0.98 3.59 4.99 3.81 5.61 4.25 3.95 
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Table A.1.6. Linear correlation coefficients between leaf anatomical parameters and CO2 conductances. M stands for mesophyll cell 

and BS for bundle sheath cells. A correlation value of 0.70 or greater is deemed important. 

Parameters gbs gm Porosity 
Void surface 

per volume 

Connectivity 

density 

M cell wall 

thickness 
Sm Leaf thickness Sb 

Interveinal 

distance 

BS cell 

wall 

thickness 

Cell volume 

gbs 1.00 0.95 0.81 -0.65 0.04 -0.58 -0.70 0.66 0.51 0.55 -0.56 0.45 

gm 0.95 1.00 0.72 -0.56 0.02 -0.73 -0.80 0.75 0.48 0.58 -0.61 0.54 

Porosity 0.81 0.72 1.00 -0.44 0.34 -0.38 -0.52 0.25 0.19 0.49 -0.42 0.05 

Void surface 

per volume -0.65 -0.56 -0.44 1.00 0.67 0.44 0.11 -0.08 0.05 -0.87 -0.16 0.11 

Connectivity 

density 0.04 0.02 0.34 0.67 1.00 0.14 -0.37 0.21 0.39 -0.60 -0.63 0.30 

M cell wall 

thickness -0.58 -0.73 -0.38 0.44 0.14 1.00 0.81 -0.46 -0.34 -0.56 0.51 -0.46 

Sm -0.70 -0.80 -0.52 0.11 -0.37 0.81 1.00 -0.78 -0.73 -0.15 0.91 -0.79 

Leaf thickness 0.66 0.75 0.25 -0.08 0.21 -0.46 -0.78 1.00 0.83 -0.02 -0.80 0.92 

Sb 0.51 0.48 0.19 0.05 0.39 -0.34 -0.73 0.83 1.00 -0.33 -0.88 0.93 

Interveinal 

distance 0.55 0.58 0.49 -0.87 -0.60 -0.56 -0.15 -0.02 -0.33 1.00 0.23 -0.27 

BS cell wall 

thickness -0.56 -0.61 -0.42 -0.16 -0.63 0.51 0.91 -0.80 -0.88 0.23 1.00 -0.87 

Cell volume 0.45 0.54 0.05 0.11 0.30 -0.46 -0.79 0.92 0.93 -0.27 -0.87 1.00 
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A.2. Determination of mesophyll conductance 

A linear relationship between gm and leaf nitrogen content (LNC) in C4 plants was reported 

(Weng and Hsu, 2001; Yin et al., 2011b). To fix gm while estimating gbs, we assumed such a 

relationship given by gm = Xgm (LNC – nb). Xgm is the slope of linearity, and nb is the base 

nitrogen content above which such a relationship holds, assumed to be 0.15 g N m
-2

 (Yin et al., 

2011b).  

A.3. Calculation of model variables 

After model parameters were estimated, the equations of von Caemmerer & Furbank (1999) 

model can be used to solve for Vp (Eq.A.1.1), L (A.1.8), Cc (Eq.A.1.10) and Oc (similar to 

Eq.A.1.10). Then, leakiness, ϕ, was calculated from: 

 =
p

L

V
  

(A.3.1)                      

The fraction of CO2 assimilated that is lost due to photorespiration, f, was calculated as (von 

Caemmerer and Furbank, 1999): 

/

c

c o c

O
f

S C



 

(A.3.2) 

The responses of Cc (Eq.A.1.10) to irradiance and CO2 are shown in Fig. A.3.1 and A.3.2. The 

response of leakiness (Eq. A.3.1) to irradiance and CO2 are shown in Fig. A.3.3 and Fig. A.3.4. 
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Figure A.3.1. The predicted response of mean concentration of CO2 in bundle sheath cells to 

incident irradiance for young (A1) and old (A2) leaves at three nitrogen (N) levels: low (N1), 

intermediate (N2) and high (N3). The ambient CO2 was kept at 250 µmol mol
-1

 for 21 % oxygen 

level (filled circles) and at 1000 µmol mol
-1

 for 2 % oxygen level (open circles). 
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Figure A.3.2. The predicted response of mean concentration of CO2 in bundle sheath cells to 

intercellular CO2 concentration for young (A1) and old (A2) leaves from maize plants grown 

under three nitrogen (N) levels: low (N1), intermediate (N2) and high (N3). The oxygen levels 

were 21 % (filled circles) and 2 % (open circles). The irradiance was kept at 1500 µmol m
-2

 s
-1

. 
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Figure A.3.3. The predicted response of leakiness to intercellular CO2 concentration for young 

(A1) and old (A2) leaves from maize plants grown under three nitrogen (N) levels: low (N1), 

intermediate (N2) and high (N3). The oxygen levels were 21 % (filled circles) and 2 % (open 

circles). The irradiance was kept at 1500 µmol m
-2

 s
-1

. 
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Figure A.3.4. The predicted response of leakiness to incident irradiance for young (A1) and old 

(A2) leaves at three nitrogen (N) levels: low (N1), intermediate (N2) and high (N3). The oxygen 

levels were 21 % (filled circles) and 2 % (open circles). The irradiance was maintained at 1500 

µmol m
-2

 s
-1

. 
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Figure A.3.5. Response of fraction of CO2 assimilation lost due to photorespiration to 

intercellular CO2 concentration (top) and incident irradiance (bottom) for young leaves (filled 

circles) and old leaves (open circles) at three nitrogen (N) levels: low (N1), intermediate (N2) and 

high (N3). The irradiance was kept at 1500 µmol m
-2

 s
-1

 for CO2 responses while for irradiance 

responses, the ambient CO2 was kept at 250 µmol mol
-1

. The oxygen level was 21 %. 

A.4. Notes about s´ 

The lumped calibration factor s´ could be estimated as the slope of the linear relationship between 

photosynthesis (A) and the term 2 / 3incI Φ  (Yin et al. 2011) for the low incident light intensity 

ranges at 2 % O2. Measurements of CO2 response of A (ambient CO2   500 µmol mol
-1

) for 2 % 

O2 could also be added to determine s´ as long as these points have the same slope as those of the 

low irradiance values. Fig. A.4.1 shows this estimation procedure and the values of s´. For old N1 

and N2 leaves, Fig. A.4.1 shows some deviations from the linear relationship. 



Appendix A 

145 

 

 

Figure A.4.1. Determination of lumped calibration factor s´ using measurements of 

photosynthesis (A) and the calculated 2 / 3incI Φ  for low irradiance (20 ≤ Iinc ≤ 200 µmol m
-2

 s
-1

) at 

2% O2. Measurements of A at 2 % O2 and ambient CO2 of 500 to 1500 µmol mol
-1

 were also 

added. Measurements were made using young (A1) and old (A2) leaves from maize plants grown 

under three nitrogen (N) levels: low (N1), intermediate (N2) and high (N3). 

A.5. Limitation of photosynthesis by light  

Fig. A.5.1 shows that there is linear relationship between quantum efficiency of CO2 fixation and 

quantum efficiency of PSII electron transport across all CO2 and irradiance levels. This strongly 

suggests that assimilation is mainly limited by electron transport. Fig. A.5.2 shows the ratio of 

these two quantities in response to irradiance. 
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Figure A.5.1. Quantum efficiency of CO2 fixation versus quantum efficiency of PSII electron 

transport across all CO2 levels (open circles) and light levels (filled circles) for young (A1) and 

old (A2) leaves from maize plants grown under three nitrogen (N) levels: low (N1), intermediate 

(N2) and high (N3). 
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Figure A.5.2. Relationship between bundle sheath conductance (gbs) and leaf nitrogen content (LNC) for various fractions of ATP 

partitioned to C4 cycle (x): x = 0.35 (panel A), x = 0.45 (panel B) and x = 0.50 (panel C). Bars represent standard error (n=4). 
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Figure A.5.3. Sensitivity of estimated leakiness in response to irradiance for fraction of ATP 

allocated to the C4 cycle (x): x = 0.4 (filled circles) and x = 0.45 (open circles). Leaf types were: 

young (A1) and old (A2) leaves from maize plant grown under low (N1), intermediate (N2) and 

high (N3) nitrogen supply. The oxygen concentration was 21 %. 
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Figure A.5.4. Sensitivity of estimated mean concentration of CO2 in bundle sheath cells (Cc) in 

response to irradiance for fraction of ATP allocated to the C4 cycle (x): x = 0.4 (filled circles) and 

x = 0.45 (open circles). Leaf types were: young (A1) and old (A2) leaves from maize plant grown 

under low (N1), intermediate (N2) and high (N3) nitrogen supply. The oxygen concentration was 

21 %. 
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Figure A.5.5. Sensitivity of the estimated values of 
bs

g (square), s (triangle) and Xgm (circle) to input parameters such as Kp (a), Km,C, 

(b) Km,O, (c) Sc/o, (d) and α (e). The changes in the estimated parameters were expressed by dividing the new parameter by the default 

value given in Table S1. The parameters 
bs

g  and s were an average of the estimates for all leaf types corresponding to each change in 

the input parameters. 
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Figure A.5.6. Ratio of quantum yield of CO2 fixation (ΦCO2) and quantum yield of PSII electron 

transport (ΦPSII) in response to irradiance for young leaves (open symbols) and old leaves (filled 

symbols) grown at low nitrogen (N1), intermediate nitrogen (N2) and high nitrogen (N3). Error 

bars were not included to make the plots clearer. ΦCO2 was calculated based on incident 

irradiance level rather than on light absorbed by PSII, thus, the mean value may seem less than 

0.12 reported previously (Edwards and Baker, 1993).  
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A.6. Light microscopy and X-ray micro-CT images of leaf 

microstructure 

 

Figure A.6.1. Cross sections of young (A1) and old (A2) leaves from maize plants grown under 

three nitrogen (N) levels: low (N1), intermediate (N2) and high (N3). Scale bar denotes 50 µm. 
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Figure A.6.2. Cross sections of young (A1) and old (A2) leaves from maize plants showing the 

cell walls of bundle sheath cells. The plants were grown under three nitrogen (N) levels: low 

(N1), intermediate (N2) and high (N3). Mesophyll cells (M), bundle sheath cells (BS) and bundle 

sheath cell wall (CW) are also indicated. Note that the scale bars are slightly different for the left 

panels and the right panels. 
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Figure A.6.3. Surface rendering of young maize leaf tissues (right) at three nitrogen (N) levels: 

low (N1), intermediate (N2) and high (N3). The skeleton of the intercellular air space network is 

superimposed in the surface rendering. The skeleton of the intercellular air spaces viewed in 

paradermal direction (left) shows the thickness of the air spaces. The large diameter air spaces 

(left) are usually associated with the presence of stomata. The color bar shows the diameter of the 

air spaces (µm). Scale bar is 100 µm. Sample size 200×200×200 pixel at resolution 2.96 

µm/pixel. 
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Figure A.6.4. Cross section of the bundle sheath-mesophyll interface showing the mesophyll cell 

(M), plasmodesmata (PD), suberin layer (SL), bundle sheath cell wall (CW) and bundle sheath 

cell (BS). Scale bar is 0.1 µm. 

A.7. Two-variable regression 

To discern the relative importance of leaf age and leaf nitrogen content (LNC) to variation in gbs, 

a two-variable regression was carried out in Microsoft Excel (2010). Table A.7.1 shows that leaf 

nitrogen content impacted gbs more than leaf age. Table A.7.1 shows that the mode explains 85 % 

of the observed variation. 
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Table A.7.1 ANOVA table outputs of a two-variable linear regression of leaf nitrogen content 

and leaf age on bundle sheath conductance. A total of six gbs values were estimated for three 

nitrogen and two leaf age levels. 

Regression Statistics 

       

Multiple R 0.952604 

       
R

2
 0.907454 

       
Adjusted R

2
 0.845756  

 
Standard Error 0.484574 

       

Observations 6 

       

         

ANOVA 

        

  

Degree of 

freedom 

Sum of 

square  

Mean 

square F 

Significa

nce F 

   

Regression 2 6.907282 3.45364 14.7 0.028154 

   
Residual 3 0.704436 0.23481 

     

Total 5 7.611718       

   

         

  

Coefficien

ts 

Standard 

Error t Stat 

P-

valu

e 

Lower 

95% 

Upper 

95% 

Lower 

95.0% 

Upper 

95.0% 

Intercept -0.8194 1.59655 -0.5132 0.64 -5.90033 4.2615 -5.90033 4.26152 

Leaf age -0.02055 0.03946 -0.5207 0.63 -0.14613 0.1050 -0.14613 0.10503 

Leaf N 3.95157 1.03108 3.83243 0.03 0.670198 7.2329 0.67019 7.23295 
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Appendix B 

B.1. Calculation of microscale model variables 

The rate of ATP production,  ATPJ was calculated from chlorophyll fluorescence measurements 

(Yin et al., 2011b) as: 

( / )
  

(1 )

 




inc m
ATP

s I F F
J

x
 

                                                                        

(B.1.1) 

/ ( ) /    m m s mF F F F F ,  

where sF  is the steady-state relative fluorescence yield and mF   is the maximum relative 

fluorescence yield in the leaf.  

The average rate of PEP carboxylation in mesophyll cytosol was calculated as: 

,

,

mc cyto

mc cyto

p

V

p

V

V dv

V
dv






 

(B.1. 2) 

where the differential elemental dv is integrated over the volume (V) of bundle sheath chloroplast 

and mesophyll cytosol to determine the total volume (area in 2D) of these compartments. We 

defined the volume V as: 
G G

V dv dxdydz   . The product of differential elements, dx, dy and 

dz of the region G are summed to find the total volume V of the region. Since our geometry is two 

dimensional, dz is 1. 

The volumetric rate of CO2 release from decarboxylation of C4 acids, *

pV  was given by: 
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*

,

p
p

bs ch

V
V

d f



 

(B.1. 3) 

where 
,bs ch

f  is the volume fraction of bundle sheath chloroplasts of the leaf and d is the average 

thickness of the leaf tissue. 

Release of photorespired CO2 occurs in the mitochondria which are located in the cytosol 

although photorespiration starts in bundle sheath chloroplasts. These cell compartments may have 

different volumes. Thus, the total volumetric rate of photorespiration in bundle sheath 

chloroplasts is multiplied by the ratio of volume of bundle sheath chloroplasts, ,bs chV , to the 

volume of bundle sheath cytosol (bs,cy), 
,bs cy

V , to calculate volumetric rate of CO2 release in 

bundle sheath cytosol, *
pr .  

bs

bs

2

2

[O ]

[CO ]
bs,ch

bs,cy

*
c

V*
p

V

*
V dv

r
dv









 

(B.1. 4)                                                                                      

The mean concentration of CO2 in mesophyll cells, 
mC (µmol mol

-1
) and in bundle sheath 

chloroplast, 
cC  (µmol mol

-1
), needs to be determined to calculate the bundle sheath conductance. 

The equivalent gas phase concentration was calculated using Henry’s law (constants R, T, P, and 

H are given in Table B. 2). 

cC  was calculated as: 

2[CO ]
1

bs

bs ,ch

bs ,ch

V

c

V

dv
RT

C
P H dv






 

(B.1. 5)      

mC was calculated as:  
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2[CO ]
1

m

mc,cyto

mc,cyto

V

m

V

dv
RT

C
P H dv





 

(B.1. 6)     

The rate of leakage, L is the rate of leakage (von Caemmerer and Furbank, 1999) was given by: 

p mL V A R    (B.1. 7) 

The bundle sheath conductance, 
bsg , was calculated as: 

 
bs

c m

L
g

C C



 

(B.1. 8) 

The mean photorespiration rate in bundle sheath chloroplasts, pr on leaf area basis, was calculated 

as: 

2

2

[O ]

[CO ]
bs,ch

bs,ch

c

V

p

V

*
V dv

r
dv











 

(B.1. 9) 

The leakiness,  , was calculated from: 

p

L

V
  

(B.1. 10)                                   
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Table B.1. List of symbols, their definitions and units  

Variable Definition Units 

A
 

Net photosynthesis rate  mol m
-2 

s
-1

 

A  Mean net photosynthesis rate  mol m
-2 

s
-1

 

CAB  Net hydration of CO2 in presence of carbonic anhydrase µmol m
-3 

s
-1

 

NCAB  
Non enzymatic net hydration of CO2  µmol m

-3 
s

-1
 

aC  Ambient air CO2 concentration  mol mol
-1

 

mC
 

Mean concentration of CO2 in mesophyll cytosol mol mol
-1 

 

cC
 

Mean concentration of CO2 in bundle sheath chloroplasts mol mol
-1

 

iC
 

Mean intercellular CO2 concentration  mol mol
-1

 

2COD
 

CO2 diffusivity in the liquid phase media  m
2
 s

-1
 

3HCO
D   Diffusivity of 

-

3HCO  m
2
 s

-1 
 

d
 

Average thickness of tissue  µm 

,mc cyf
 

Volume fraction of mesophyll cytosol of the leaf m
3
 m

-3
 

,bs chf
 

Volume fraction of bundle sheath chloroplasts of the leaf m
3
 m

-3
 

,bs cyf  Volume fraction of bundle sheath cytosol of the leaf m
3
 m

-3
 

.respf  Total volume fraction of mesophyll cytosol and bundle sheath 

cytosol .respf = ,mc cyf  + 
,bs cyf   

m
3
 m

-3
 

bsg
 

Bundle sheath conductance  mol m
-2 

s
-1
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H Henry’s constant for CO2 (25°C) Dimensionless 

[H ]
 

H
+
 concentration  mol L

-1
 

incI  Photon flux density incident to leaves  mol m
-2 

s
-1

 

ATPJ  ATP production rate  mol m
-2 

s
-1

 

ak  Turnover rate of carbonic anhydrase enzyme  s
-1

 

1k  CO2 hydration velocity constant  s
-1

 

2k
 

CO2 dehydration velocity constant s
-1 

 

2COK
 

Michaelis-Menten constant for carbonic anhydrase hydration  µmol m
-3

 

eqK
 

Equilibrium constant of carbonic anhydrase µmol m
-3

 

K  Acid dissociation constant for H2CO3  mol L
-1

 

,m CK  Michaelis-Menten constant of Rubisco for CO2  bar 

-
3HCO

K  Michaelis-Menten constant for carbonic anhydrase dehydration  M 

,m OK
 

Michaelis-Menten constant of Rubisco for O2  Mbar 

pK  Michaelis-Menten constant of PEPc for CO2  bar 

L
 

Rate of CO2 leakage from bundle sheath cells  mol m
-2 

s
-1

 

pdL  Length of mesophyll-bundle sheath interface  µm 

mP
 

CO2 permeability of plasma membrane  m s
-1

 

dR
 

Total respiratory CO2 release from leaf dR = mR + sR  mol m
-2 

s
-1

 

mR
 

Rate of respiratory CO2 release from mitochondria in mesophyll mol m
-2 

s
-1
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cytosol  , .m cy respm d
f fR R   

*

m
R

 
Volumetric rate of respiration in mesophyll cytosol  ./m respR f d  mol m

-3 
s

-1
 

pr  Mean rate of photorespiratory CO2 release from mitochondria in 

bundle sheath cytosol 

mol m
-2 

s
-1

 

*

pr  Volumetric rate of photorespiratory CO2 release from 

mitochondria in bundle sheath cytosol  

mol m
-3 

s
-1

 

sR  Rate of respiratory CO2 release from mitochondria in bundle 

sheath cytosol,  , .s d bs cy respR R f f   

mol m
-2 

s
-1

 

*

s
R

 
Volumetric respiration rate in bundle sheath cytosol, 

 ,/s bs cyR d f  

mol m
-3 

s
-1

 

s
 

Lumped calibration factor Dimensionless 

/C OS
 

Relative CO2/O2 specificity factor for Rubisco  µbar bar
-1

 

cV  Gross rate of CO2 fixation mol m
-2 

s
-1

 

cV  Average rate of gross CO2 fixation mol m
-2 

s
-1

 

c, maxV
 

Maximum rate of Rubisco activity-limited carboxylation  mol m
-2 

s
-1 

 

pV  Rate of PEP carboxylation based on CO2 mol m
-2 

s
-1

 

pV  Average rate of PEP carboxylation  mol m
-2 

s
-1

 

*

pV  Volumetric rate of pV  calculated from ,/ ( * )p m cyV d f  mol m
-3 

s
-1

 

*

pV  Volumetric rate of CO2 release from decarboxylation of C4 acids mol m
-3 

s
-1
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p, maxV   Maximum rate of PEP carboxylation based on CO2 mol m
-2 

s
-1

 

cw  Rubisco-limited rate of carboxylation  mol m
-2 

s
-1

 

jw  Electron-transport-limited rate of carboxylation mol m
-2 

s
-1

 

x  Partitioning factor of ATPJ  to the C4 cycle Dimensionless 

aX  Concentration of carbonic anhydrase in cytosol  mol m
-3

 

2COJ  CO2 flux through chloroplast envelope  mol m
-2

 s
-1

 

2 ,CO pdJ  CO2 leak flux through mesophyll-bundle sheath interface mol m
-2

 s
-1

 

  Leakiness p
L V  Dimensionless 

  Ratio of the total area of plasmodesmata to the total area of the 

mesophyll-bundle sheath interface. 

m
2
 m

-2
 

γ
*   0.5/ /C OS   µbar µbar

-1
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Table B.2. Values of parameters used in the microscale model  

Variable 

 

Symbol Units Value Notes and 

references 

Diffusivity of CO2 

liquid phase (25 °C) 

2COD  m
2
 s

-1
 91.7 10  (Lide, 1999) 

Diffusivity of CO2 

Mesophyll (m) cell 

wall  

2 ,CO mD

 

m
2
 s

-1
 91.7 10  Assumed 

Diffusivity of CO2 

Bundle sheath (bs) cell 

wall  

2 ,CO bs
D

 

m
2
 s

-1
 91.7 10 0.1   

 

Effective porosity 

was assumed 0.1 

Diffusivity of 
-

3HCO  
3HCO

D 

  

m
2
 s

-1
 91.17 10  (Geers and Gros, 

2000) 

Average thickness of 

tissue  

d 
 

µm 165  Measured from 

image of leaf 

microstructure 

Henry’s constant for 

CO2 (25 °C) 

 
 

Dimensionless 0.83 (Lide, 1999) 

Length of mesophyll-

bundle sheath interface 

pdL  µm 0.56 Sum of thickness 

of cell walls 

(main text) 

Turnover rate of 
ak  s

-1
 53 10   (Pocker and 

H
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carbonic anhydrase  Miksch, 1978) 

CO2 hydration velocity 

constant  

1k
 

 s
-1

 0.039  (Jolly, 1985) 

CO2 dehydration 

velocity constant 

2k
 

s
-1 

 23 (Jolly, 1985)  

Michaelis-Menten 

constant for carbonic 

anhydrase hydration  

2COK
 

mol m
-3

 2.8 (Hatch and 

Burnell, 1990)  

Equilibrium constant of 

carbonic anhydrase 

eqK
 

mol m
-3

 75.6 10  (Pocker and 

Miksch, 1978)  

Acid dissociation 

constant for H2CO3  

K  mol L
-1

 42.5 10  (Jolly, 1985)  

Michaelis-Menten 

constant of Rubisco for 

CO2  

,m CK  bar 

 

485
(a)

 (Cousins et al., 

2010) 

Michaelis-Menten 

constant for carbonic 

anhydrase hydration  

-
3HCO

K

 

mol m
-3

 34 (Pocker and 

Miksch, 1978) 

Michaelis-Menten 

constant of Rubisco for 

O2  

,m OK  mbar 146
(a)

 (Cousins et al., 

2010)  

Michaelis-Menten 
pK
 

bar 40
(a)

 (Pfeffer and 
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constant of PEPC for 

CO2  

 Peisker, 1998) 

CO2 permeability of 

bundle sheath 

chloroplast envelopes  

 

 

2COP  m s
-1

 31.75 10  

 

Half of the value 

reported for 

plasma membrane  

(Gutknecht, 1988) 

CO2 permeability of 

bundle sheath cells 

plasma membrane 

 

 

2 ,CO bsP  m s
-1

 33.5 10  

 

Assumed equal to 

the reported 

membrane CO2 

permeability 

(Gutknecht, 1988) 

CO2 permeability of 

mesophyll plasma 

membrane  

2 ,CO mP  m s
-1

 21.6 10  (Missner et al., 

2008) 

Mitochondrial 

respiration 

Rd mol m
-2 

s
-1

 2.16  0.27 Estimated  

Lumped calibration 

factor 

s   0.329  0.05 Estimated  

 

Rubisco specificity 
/C OS  

 
bar bar

-1
 2862 (Cousins et al., 

2010) 

Carboxylation capacity 
c,maxV

 
mol m

-2 
s

-1 
 Vp,max/2.33  (Yin et al., 
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of Rubisco 2011b)  

Carboxylation capacity 

of Rubisco PEP  

p,maxV   mol m
-2 

s
-1

 222.3 (Yin et al., 

2011b)  

 

Partitioning factor of 

ATPJ  to the C4 cycle 

x Dimensionless 0.4 (von Caemmerer 

and Furbank, 

1999) 

Concentration of 

carbonic anhydrase  

aX  mol m
-3

 0.69  (Tholen and Zhu, 

2011) 

Half the Inverse of 

Rubisco specificity  

γ
* 

  µbar µbar
-1

 Calculated   

(a)
 These parameters were converted into µmol m

-3
 liquid by multiplying with PH/RT, 

where P = 101325 Pa, H = 0.83, R = 8.314 m
3
 Pa K

-1
 mol

-1
 and T = 298 K. 

B.2. A reaction-diffusion model based on a modified biochemical 

model 

We based the reaction-diffusion model presented in the main text on the biochemical model of 

von Caemmerer and Furbank (von Caemmerer and Furbank, 1999). This biochemical model 

assumes CO2 availability limits the rate of phosphoenolpyruvate (PEP) carboxylation. 

Consequently, the enzyme limited rate of PEP carboxylation, Vp (Eq. 4.3.1.1, main text) was 

expressed using CO2. Therefore, to link the rate of PEP carboxylation with limitations of CO2 

availability, Vp was assumed to be a sink term in the reaction-diffusion equation for CO2 (Eq. 

4.3.2.5, main text).  
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The substrate for PEP carboxylation is a bicarbonate ion (Hatch and Burnell, 1990). This requires 

an expression for Vp which shows the role of concentrations of bicarbonate ions. However, the 

most commonly used biochemical model of C4 photosynthesis (von Caemmerer and Furbank, 

1999) and other biochemical models express Vp based on concentration of CO2 (Peisker, 1979; 

Collatz et al., 1992). It is not a common practice to express Vp based on bicarbonate ions in a 

similar expression for enzyme limited rate of Vp as in the model of von Caemmerer and Furbank 

(von Caemmerer and Furbank, 1999). Under these limitations, we could only show the 

consequences of using Vp as a sink term for CO2 on our simulation results and conclusions. In 

this case, we used the same expression for the enzyme-limited rate of pV  as that of von 

Caemmerer and Furbank (von Caemmerer and Furbank, 1999), except that we rewrote it using 

the concentrations of bicarbonate ions.  

The rate of PEP carboxylation rate, pV , therefore, could be rewritten as:  

 

-

, 3

-

3

[HCO ]
  min ,

[HCO ] 2

p max ATP
p

h

V x J
V

K

  
  

  
 

(B.2.1) 

where -
3[HCO ]  is the concentration of bicarbonate ions in the mesophyll cytosol, hK  is the 

Michaelis-Menten constant of PEPc for bicarbonate ions, and p,maxV  is the maximum catalytic 

rate of PEPc with bicarbonate ions as a substrate (assumed equal to the maximum catalytic rate of 

PEPc for CO2). hK  was reported to be 20 µM (Bauwe, 1986). The first expression between the 

brackets is for the enzyme-limited rate while the second one is for the electron-transport limited 

rate of PEP carboxylation. The partitioning factor, x, is the fraction of ATP allocated to C4 cycle. 

ATPJ  is the rate of ATP production (Eq. B.1.1, Appendix B).  

When pV  was used as a sink term for bicarbonate ions the reaction-diffusion equation for CO2 is 

given by: 

 2

*2
2

[CO ]
[CO ]m

mCO mCA
D B R

t


  


 

(B.2.2)    
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where   the gradient operator; 
2COD  is the diffusion coefficient of CO2 in the liquid phase;

-
3[HCO ]  is the concentration of CO2 in mesophyll cells; *

pV  is the volumetric rate of pV  (Table 

B.1.1); and CAB , the rate of CA catalyzed hydration of CO2 in mesophyll cytosol (Spalding and 

Portis, 1985; Tholen and Zhu, 2011), is given by Eq. 4.6 (main text). 

The reaction-diffusion equation for bicarbonate is given by: 

 
3

-
-3
3

*[HCO ]
[HCO ]m

m CAHCO pB
t

D V




    

(B.2.3)                                    

where 
3HCO

D   is the diffusion coefficient of bicarbonate. 

The reaction-diffusion equations for CO2 and bicarbonate in bundle sheath cells remains the same 

as in Eq. 4.3.2.8 to Eq. 4.3.2.10 (main text). 

We solved the reaction-diffusion equations after including the equations, B.2.2 and B.2.3 (the 

model hereafter called Model-two). The responses of photosynthesis to changes in intercellular 

CO2 and irradiance were compared with those predicted from the model presented in the main 

text (hereafter called Model-one). Fig. B.2.4 shows that the response of photosynthesis to light 

(A) and CO2 (B) were not affected. There was less than 3 % change in the rates of photosynthesis. 

This is because, in our model, pV  ( Eq. B.2.1) was electron transport limited even at low CO2 

levels (see Fig. B.2.1). In addition, Fig. B.2.2 (C, D) shows that there was a one to one 

relationship between mean concentration of CO2 in mesophyll and bundle sheath cells calculated 

from Model-one and Model-two. Interestingly, at the condition used for the sensitivity analysis 

(ambient CO2 of 380 µmol mol
-1

 and irradiance of 1500 µmol m
-2

 s
-1

), both photosynthesis and 

the mean concentrations changed by less than 1 %.  
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Figure B.2.1. Response of the rate of PEP carboxylation (A) and photosynthesis (B) to irradiance. 

Enzyme-limited rates are labeled as enzyme limited while electron-transport-limited rates are 

labeled as e
-
 transport limited. The equations for each limitation are shown in Eq. 1 and Eq. 2-4 in 

the main text. Conditions for the simulation were: Ca = 1000 µmol mol
-1

 and 2 % O2. 
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Figure B.2.2. Responses of photosynthesis to irradiance (panel A) and intercellular CO2 (panel B) 

when the rate of PEP carboxylation was used as a sink term in the reaction-diffusion equation for 

CO2 (Model-one) or that for bicarbonate ions (Model-two). Panel C and D show the plot of mean 

concentration of CO2 in mesophyll cell ( mC ) and in bundle sheath cells ( cC ) calculated from 

Model-one and Model-two. Conditions for the simulation were: Ca = 380 µmol mol
-1

, irradiance 

= 1500 µmol m
-2

 s
-1 

and 21 % O2 except for the irradiance response curve where Ca = 250 µmol 

mol
-1

. 

In conclusion, we did not find substantial effect on our results (less than 5 % change) due to the 

modification of Vp. Therefore, a change in the position of Vp as a sink term would not change the 

conclusions. It should be noted that we could not propose the modified biochemical model (Eq. 

B.2.1) along with the reaction-diffusion model in the main text as this would lead to complexity.  
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B.3. Assessing the role of suberin 

Bundle sheath cells of maize leaves are suberized (Dengler et al., 1994; Mertz and Brutnell, 

2014). The suberin layer is proposed to restrict CO2 leakage through the apoplastic pathway 

directly towards the intercellular air spaces (Dengler et al., 1994). To assess this role of suberin at 

the exposed surface of the bundle sheath cells, we carried out a separate simulation where the 

suberin layer was assumed fully permeable to CO2. The insulated boundary condition was 

changed. Subsequently, the CO2 concentration at the boundary in contact with the air space was 

assumed equal to the measured intercellular CO2 concentration. The resistance of the interface at 

the exposed bundle sheath interface was the sum of the resistance of bundle sheath cell wall and 

plasma membrane. The default model parameters were as described in the main text and in Table 

B.2. The rate of leakage (Eq. B.1.7, Appendix B) was compared to that calculated when the 

exposed surface was assumed insulated. 

B.4. Model parameters Vp, max and Vc, max 

Parameters of the biochemical models such as Vp,max and Vc,max could be estimated from a 

combined measurements of gas exchange and chlorophyll fluorescence using the procedures of 

Yin et al.(2011b). Based on this procedure, however, we found out that Vp,max and Vc,max were 

inestimable from the measurement data explained in materials and methods. This was due to 

good linear relationships between quantum yield of CO2 fixation, (A + Rd)/Iinc, and quantum yield 

of PSII electron transport across all CO2 and all irradiance levels (Iinc). The relationships are 

shown in Fig. B.4.1. This implies that the rate of photosynthesis was limited by electron transport 

across irradiance and CO2 levels. In this case, therefore, Vp,max and Vc,max could not be estimated. 
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Figure B.4.1 Quantum efficiency of CO2 fixation versus quantum efficiency of PSII electron 

transport across all CO2 levels (A) and all irradiance levels (B). 
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Figure B.4.2. Sensitivity of rate of photosynthesis (top; A, B) and bundle sheath conductance 

(bottom; C, D) to bicarbonate permeability of chloroplast envelope (A, C) and the ratio 

p,max c,maxV / V  (B, D). Conditions for the simulation were: Ca = 380 µmol mol
-1

, irradiance = 1500 

µmol m
-2

 s
-1 

and 21 % O2. Relative values were calculated by dividing A and bsg  with their 

default value ( bsg = 3.52 10
-3

 mol m
-2

 s
-1

, A = 40 µmol m
-2

 s
-1

).  

B.5. Limitation of photosynthesis by rate of electron transport 

The biochemical model of C4 photosynthesis (Eqs. 4.1, 4.2 to 4.4, main text) express 

photosynthesis as limited by enzyme or the rate of electron transport. It is believed that enzyme-

limited rate of PEP carboxylation largely limits photosynthesis at low CO2 concentrations, while 

the maximum rate is limited by regeneration of phosphoenolpyruvate (PEP) or ribulose-1,5-
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bisphosphase (von Caemmerer and Furbank, 1999). We compared the enzyme and electron-

transport limited rates of CO2 assimilation in mesophyll cells and CO2 reduction in bundle sheath 

cells. We choose the irradiance response curve of photosynthesis at 2 % O2 and ambient CO2 of 

1000 µmol mol
-1

 since our model predictions (Fig. 2A, main text) show overestimations for this 

condition. Fig. B.2.1 shows the electron transport limited both PEP carboxylation and 

photosynthesis across irradiance and intercellular CO2 levels.  

It was assumed that CO2 is produced from decarboxylation of C4 acids in bundle sheath 

chloroplast at the same rate as the rate of PEP carboxylation in mesophyll cells (Materials and 

methods, main text). Fig. B.2.1 shows that PEP carboxylation was limited by the rate of electron 

transport. Therefore, the rate of photosynthesis in bundle sheath cells is influenced by the 

electron-transport-limited rate of PEP carboxylation. 

 Eq. 4.4 (main text) shows that the electron-transport-limited rate of photosynthesis is dependent 

on JATP, which was determined from chlorophyll fluorescence measurements using lumped 

calibration factor s (Eq. B.1.1, in Appendix B). The parameter s  was estimated by fitting 

photosynthesis and /3incΦI  using data points at low irradiance ranges (20  Iinc   200 µmol m
-2

 

s
-1

) and 2 % O2 pooled with those at high intercellular CO2 (500 µmol mol
-1

 and higher) (Yin et 

al., 2011b). This procedure assumes that s is constant across all light and CO2 levels. Fig. B.5.1 

shows the result of the estimation.  
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Figure B.5.1. Estimation of parameter s .  The rate of photosynthesis measured at low light 

intensity (20   Iinc   200 µmol m
-2

 s
-1

) pooled with those measured at high intercellular CO2 are 

shown in circles. The rate of photosynthesis at high light intensity (500   Iinc   2000 µmol m
-2

 

s
-1

) are shown in filled rectangles. The solid line shows the linear fit. The oxygen level was 2 %.  

The estimated s  was used to calculate the JATP for high irradiance levels also (500 µmol m
-2

 s
-1

 

and higher). However, Fig. B.5.1 shows that the measured rate of photosynthesis at the those 

irradiances (filled rectangles) were largely below the linear line. This was suggested to be due to 

the effect of pseudo cyclic electron transport at the high irradiance levels (Yin et al., 2009). Thus, 

JATP was higher for the high irradiance levels due to the constant s assumption. Since in our 

model, photosynthesis was mainly electron-transport-limited, the parameter s through JATP 

influenced the predictions. Therefore, the overestimations at high light levels for 2 % O2 were 

due to higher JATP brought about by the assumption of a constant s .  
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B.6. Leaf microstructural geometry  

 

Figure B.6.1. Geometry of a maize leaf microstructure showing the epidermis (1), air spaces (2), 

mesophyll cells (3), bundle sheath chloroplasts (4), bundle sheath cytosol (5) and vasculature (6).  
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Appendix C 

C.1. Modeling light distribution in maize leaf 

The propagation of light in maize leaf tissue was modeled using a meshed Monte Carlo method 

(Watté et al., 2015) which is an adaption of the classical Monte Carlo method of photon transport 

to suit structural intricacies of biological tissues. The three-dimensional geometry of a maize leaf 

(Fig. 5.1A, main text) which was voxel based was meshed using a tetrahedral mesh for use in the 

light propagation model. The scattering properties of cell types in the tissue were determined 

from size distribution of organelles in the cells and total number of organelles per unit volume 

(Table C.2) using a tool developed previously (Aernouts et al., 2014; Ho et al., 2016). A light 

source uniformly spread over the top side of the mesh was assumed for our simulation. Since the 

gas exchange measurement used 10 % blue (470 nm) and 90 % red (665 nm) light, two 

independent simulations of light propagation were done and the resulting two absorption profiles 

were combined (Table C.2). The distribution of chlorophyll obtained from literature is variable. 

For instance, maize mesophyll contains 65 % (Ghannoum et al., 2005) or 50 % to 70 % of total 

chlorophyll (Furbank et al., 1985; Leegood, 1985). An early report shows that the distribution of 

chlorophyll is 63 % in mesophyll and 38 % in bundle sheath (Ku et al., 1974). Due to this 

uncertainty, we tentatively assumed that the absorption coefficient of bundle sheath chloroplasts 

is half that of mesophyll chloroplasts. Consequently, a sensitivity analysis was carried out by 

varying the chlorophyll distribution between mesophyll and bundle sheath cells (see Table C.7 

and Materials and methods, main text). Optical properties that resulted in a match of total 

reflectance and transmittance computed from the model with those previously measured for a 

maize leaf (Woolley, 1971) are shown in Table C.6 for the default chlorophyll distribution of 

0.50. 
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C.2. Calculation of microscale model variables 

The gross volumetric rate of CO2 fixation in bundle sheath chloroplasts is given by the minimum 

of Rubisco-limited carboxylation rate, w
c

*
, and electron-transport-limited carboxylation rate, w

j

*
, 

according to the biochemical model of C4 photosynthesis (von Caemmerer and Furbank, 1999):  

,2*

2 2

*[CO ]

[CO ] (1 [O ]/ )

c max

c

m,C m,O

V
w

K K




 
 

(C.2.1) 

,

*

*
2*

2 2

[CO ]

3[CO ]  7 [O ]

ATP bs

j

j
w

γ





 

(C.2.2) 

where Km,C and Km,O are Michaelis-Menten constants of Rubisco for CO2 and O2, respectively; γ
*
 

= 0.5/Sc/o where Sc/o is Rubisco specificity to carboxylation and oxygenation; 
,

*
c max

V  is the 

maximum capacity of Rubisco carboxylation; and, *
,ATP bsj  is the potential rate of ATP production 

in bundle sheath cells. 

The total ATP production rate, j
ATP

 is calculated as the sum of rate of ATP production due to 

linear electron transport (LET) j
LET

 in mesophyll (subscript m) chloroplasts, bundle sheath 

(subscript bs) chloroplasts and that due to the rate of cyclic electron transport (CET) in bundle 

sheath chloroplasts ( CETj ). The volumetric rate, *

ATPj  is given as: 

* * * *

, , ,

3 3 2

4 4 4
ATP LET m LET bs CET bsj j j j    

(C.2.3) 

where coefficients 3/4 and 2/4 are ATP produced per electron by LET and CET, respectively. 

Based on the generally accepted stoichiometry, 1 electron gives rise to 3 H
+
 for LET and 2 H

+
 for 

CET, and 4 H
+
 are required to synthesize 1 ATP (Yin and Struik, 2012). 
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The potential volumetric rate of electron transport in mesophyll chloroplast or bundle sheath 

chloroplast, *j  is given by the hyperbolic minimum of light-limited (LL) rate *

LLj  and light-

saturated rate, *

maxj  (Buckley and Farquhar, 2004) as: 

 
 

, , , , , ,

, ,

2
* * * * * *

* * *
4

min ,
2

LL i max i LL i max i LL i max i

LL i max ii

j j j j Θ j j
j h j j

Θ

     
   

         (C.2.4) 

where Θ  is a measure of co-limitation of electron transport by light and capacity (Buckley & 

Farquhar, 2004), and i refers to the above three electron transport types (Eq. C.2.3).  

The parameter maxj  was estimated by minimizing the difference between the total ATP 

production rate determined from chlorophyll fluorescence measurement (Eq. C.2.16) and that 

modeled from the potential electron transport rate at the whole leaf level (Eq. C.2.17). To 

facilitate the estimation, it was assumed that jmax,LET is the same for mesophyll and bundle sheath 

chloroplasts since jmax is a physiological parameter. It is also assumed that jmax,LET in mesophyll 

cells and jmax,CET in bundle sheath cells were equal. 

For LET, one needs to take into account the commonly observed difference in electron transport 

efficiency between PSI and PSII (Yin and Struik, 2012), so the term *

LL
j  in Eq. C.2.4 is written 

for the three electron-transport types as: 

, , ,

* 2

2 1

*

1 /LL LET m abs m

LL

LL LL

Φ
j I

Φ Φ



 

(C.2.5) 

, , ,

* 2

2 1

*

1 /LL LET bs abs bs

LL

LL LL

Φ
j vI

Φ Φ



 

(C.2.6) 

, , ,

*

1

*(1 )
LL CET bs abs bsLLj Φ v I   (C.2.7) 

where 
,

*

abs m
I and *

,abs bsI  are the volumetric rates of photon absorption by mesophyll and bundle 

sheath cells, respectively, calculated by the product of actinic irradiance and the fraction of that 
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irradiance absorbed by the chloroplasts in these cells. 1LL and 2LL are the electron transport 

efficiency under limiting light for PSI and PSII, respectively. v is the fraction of light for LET in 

bundle sheath chloroplasts, which would be solved as function of other parameters (see next).  

Expressing v as a function of other parameters 

Let T be the total amount of PSII in bundle sheath and mesophyll cells; then αT will be the 

amount of PSII in bundle sheath cells (where  is the parameter as used in the standard model of 

C4 photosynthesis von Caemmerer & Furbank (1999) for the fraction of PSII in bundle sheath 

cells), and (1-α)T will be the amount of PSII in mesophyll cells (Table C.2.1). 

Table C.2.1. Amounts of PSII and PSI for LET in bundle sheath cells and mesophyll cells, and of 

PSI for CET in bundle sheath cells. 

Electron transport types Bundle sheath chloroplast Mesophyll chloroplast 

PSII PSI PSII PSI 

LET αT 𝜙2𝐿𝐿

𝜙1𝐿𝐿
αT (1-α)T 𝜙2𝐿𝐿

𝜙1𝐿𝐿
 (1-α)T 

CET  Cx   

To account for the difference in the electron transport efficiency between PSI and PSII, the 

amount of PSI in bundle sheath cells has to be 
𝜙2𝐿𝐿

𝜙1𝐿𝐿
αT to enable an equal electron transport flux 

passing through PSI and PSII for LET; similarly the amount of PSI in mesophyll cells has to be 

𝜙2𝐿𝐿

𝜙1𝐿𝐿
 (1-α)T (Table C.2.1). It is to be noted that LET dominates in mesophyll cells for maize, thus 

CET was assumed negligible (Kanai and Edwards, 1999). 

Let the amount of PSI in bundle sheath for CET be Cx. Then Cx could be solved based on ATP 

requirement for C4 physiology. ATP produced from total LET and CET should be 
3

4
[KbsαT+ 

Km(1-α)T]ϕ2LL and 
2

4
kbsCxϕ1LL, respectively (where Kbs and Km are mol photon absorbed per unit 

photosystem  in BS and M chloroplasts, respectively). It is recognized that ATP generated from 
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LET is used for the C3 cycle and ATP from CET is used for the C4 cycle (Takabayashi et al., 

2005) and that per mol CO2 fixation requires 3 mol of ATP for the C3 cycle and 2 mol ATP C4 

cycle, respectively (von Caemmerer & Furbank 1999). Therefore the following equation can be 

written as: 

 
2

1

3
[ (1 ) ]

34
2 2

4

bs m LL

bs x LL

K αT K α T Φ

K C Φ

 

  

(C.2.8) 

This results in 2

1

[ ]bs m LL
x

bs LL

K α+K (1-α ) Φ
C T

K Φ
 . 

The total amount of light absorbed by bundle sheath cells (Iabs,bs) can be written, based on Table 

C.2.1, as:  

22 2

,

1 1 1

[ ]bs m LLLL LL
xabs bs bs bs

LL LL bs LL

K α+K (1-α ) ΦΦ Φ
αT αT C αT αT TI K K

Φ Φ K Φ

  
       

   
 

(C.2.9) 

The amount of light absorbed by bundle sheath cells (Iabs,bs,LET) that is used for LET can be 

written, based on Table C.2.1, as:  

2

, ,

1

LL

abs bs LET bs

LL

Φ
αT αTI K

Φ

 
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 
 

(C.2.10) 

The parameter v, by definition, is the ratio of Iabs,bs,LET to Iabs,bs, which can be solved from the 

above two equations as:  

2

1

2

1

1

(1 )
11
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LL
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Φ

Φ
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αK K αΦ
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(C.2.11) 
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The volumetric rate of photorespiration ( *
pr ) in bundle sheath chloroplast is multiplied by the 

ratio of volume of bundle sheath chloroplast, 
,bs chV , to the volume of the cytosol of bundle sheath 

(subscript bs, cy), 
,bs cy

V , to calculate the volumetric rate of CO2 release in bundle sheath cytosol. 

*
pr  is given by:  

2

2

[O ]

[CO ]

( )

bs,ch

bs,cy

*
c

V*
p

V

*
V dv

r
dv












 

(C.2.12) 

where min( )* *

c j

*
c w ,wV   (von Caemmerer and Furbank, 1999) and volume is calculated by

( )
G G

dv dxdydz    for region G (cytosol or chloroplast). 

Consumption of 1 mol of O2 by photorespiration results in the release of 0.5 mol of CO2. Thus, 

the volumetric rate of oxygen consumption by photorespiration (
2

*
p,O

r ) in a bundle sheath 

chloroplast is given by: 

2

2

2

[O ]
2

[CO ]

( )

bs,ch

bs,ch

*
c

V*
p,O

V

*
V dv

r
dv












 

(C.2.13) 

The rate of PEP carboxylation (Vp) is given as a minimum of enzyme-limited rate (first term in 

bracket, Eq. C.2.14) and electron-transport-limited rate of PEP carboxylation (second term in the 

bracket, Eq. C.2.14) (von Caemmerer and Furbank, 1999). Note that the enzyme-limited rate in 

the biochemical model (von Caemmerer and Furbank, 1999) is expressed using concentration of 

CO2 under the assumption that CA activity does not limit photosynthesis. However, at low 

intercellular CO2 this assumption may not be valid (Studer et al., 2014; Boyd et al., 2015). 
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Therefore, as proposed in a recent study (Boyd et al., 2015), we adopted the enzyme-limited rate 

and rewrite *
pV  as: 

-
3

-
3

[HCO ]
  min ,

[HCO ]  2

p ,max

*

ATP,m*

p

*

h

V j
V

K

  
 
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



 

(C.2.14) 

where Kh is the Michaelis-Menten constant of PEPC for bicarbonate and 
p ,max

*V is the maximum 

catalytic rate of PEPC. The potential rate of electron transport in mesophyll cells, *

ATP,mj  was 

determined from Eq. C.2.4. 

The average rate of CO2 production from decarboxylation of C4 acids, assumed to proceed at the 

same rate as PEP carboxylation (Eq. C.2.14) in mesophyll cytosol (subscript m,cy) (von 

Caemmerer and Furbank, 1999), was calculated as: 

,

,

*

*

( )

m cy

bs ch

p

V

p

V

V dv

V
dv







 

(C.2.15) 

where Vbs,ch is the volume of bundle sheath chloroplast (subscript bs,ch) and Vm,cy is the volume 

of mesophyll cytosol. 

The rate of total ATP production computed from chlorophyll fluorescence (CF) measurements 

jATP,CF was given by (Yin et al., 2011b) as: 

,

( / )
  

(1 )

inc m
ATP CF

s I F F
j

x

 



 

                                                                       

(C.2.16) 

/ ( ) /    m m s mF F F F F ,  
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where s’ is the lumped light conversion efficiency; sF  is the steady-state relative fluorescence 

yield; mF   is the maximum relative fluorescence yield in the leaf; and, x is the fraction of ATP 

allocated to the C4 cycle (Table C.2.2). For this calculation, a constant x of 0.40 for all irradiances 

and mesophyll cells was assumed as is commonly done (Yin et al., 2011b; Yin and Struik, 2012). 

The potential ATP production rate ( ATPJ ) at the whole leaf level is given by: 

*

leaf

ATP

V

ATP

leaf

j dV

J
A




 

                                

(C.2.17) 

where Aleaf is the area of a cross section of the computational domain; *

ATPj  is the local volumetric 

rate of ATP production determined from Eq. C.2.3; and, Vleaf is the total leaf volume. 

The potential ATP production rate ( ,ATP mJ ) in mesophyll cells is given by: 

*

,
m

ATP

V

ATP m

leaf

j dV

J
A




 

                                

(C.2.18) 

*

ATPj  is given by Eq. C.2.3; and, Vm is the total volume of mesophyll chloroplasts. 

The apparent fraction of ATP partitioned to the C4 cycle computed from the light propagation 

model x  is given by: 

,ATP m

ATP

J
x

J
  

                                

(C.2.19) 
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The rate of net photosynthesis was calculated by integrating the flux of CO2 over the outer 

epidermis surfaces. The computed photosynthesis, A  is given as: 

Ae

p

Flux dA

A
A




 

(C.2.20) 

where Flux is a normal diffusive flux defined as, ( )n D C   , n is the normal vector of unit 

length; Ae is the epidermis surface; and, Ap is a projected area of the leaf.  

The volume averaged concentration of gases y (CO2 or O2) in components of leaf tissue i 

(mesophyll cytosol, mesophyll chloroplasts or bundle sheath chloroplast) was calculated from the 

model as: 

,

,

,

,

[C ]

i leaf

y i

V

y i

i leaf

dV

C
V




 

                              

(C.2.21) 

where Vi, is the volume of component i in the 3-D leaf tissue geometry. 

Rate of CO2 leakage, L is given by: 

p mL V A R    (C.2.22) 

where 
pV  is the mean rate of PEP carboxylation calculated from Eq. C.2.14 and Rm is the rate of 

CO2 release in mesophyll cytosol through respiration.  

Leakiness   is calculated as: 

p

L

V
  

  (C.2.23)                                                                      
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Temperature dependency of biophysical parameters such as diffusion coefficients of gases (in air 

or liquid), solubility of gases, viscosity of cell medium and biochemical parameters such as 

Vc,max, γ*, Km,O, Km,C, Kh and Rd (Table C.2.3) is defined by the Arrhenius equation normalized to 

25 °C as (Juurola et al., 2005; Boyd et al., 2015; Yin et al., 2016): 

Parameter(Tk) = Parameter(298 K)

1 1

298.15 k

E

TR
e

 
 

   
(C.2.24) 

where E is the activation energy for the parameter and R is the universal gas constant. 

Temperature dependency of Vp,max, VCA,max or light-saturated electron transport rate (jmax), which 

has a temperature optimum, is given by (Massad et al., 2007; Boyd et al., 2015): 

Parameter(Tk) = Parameter(298 K) 

298.15

298( 298.15) 1

298.15

1

S H

R
k

T S Hk
k

T Rk

E T e

RT

ee

 
 
 

 
 
 

 
  
 
 
 

   

(C.2.25) 

where S is the entropy term and H is the energy of deactivation. 

Temperature dependence of CA activity as modeled by Eq. 5.2 (main text) was not reported for 

maize. Instead, the first order rate constant of CA activity reported for a NADP-ME type C4 plant 

(Boyd et al., 2015) was tentatively assumed. In addition, temperature responses of non-enzymatic 

hydration of CO2 (Eq. 5.4, main text) reported in Boyd et al. (2015) was also adopted here. 

C.3. Modeling CO2 release in bundle sheath cytosol 

CO2 is released in the bundle sheath cytosol due to PEPCK activity and photorespiration. NADP-

ME type C4 plants such as maize decarboxylate aspartate in bundle sheath cells resulting CO2 

release in the cytosol (Pick et al., 2011). In addition to this, increased oxygen evolution due to 

PSII abundance may increase the potential for photorespiration (von Caemmerer and Furbank, 

1999). The CO2 thus produced feeds the Calvin cycle or diffuses back to mesophyll cells 

(Furbank, 2011). To systematically evaluate the effect of CO2 release outside the chloroplast on 
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the efficiency of CCM, we carried out simulations of photosynthesis and leakiness in response to 

fractions of CO2 release by PEPCK and by increasing the abundance of PSII.  

When both PEPCK and NADP-ME operate in decarboxylation, we assumed that , at steady state, 

the total CO2 assimilation by PEP carboxylation in mesophyll cells equals the total CO2 released 

in bundle sheath cells by decarboxylation of aspartate (ASP) and malate (MAL). Assuming a 

fraction of the total CO2 is released in the bundle sheath cytosol through aspartate 

decarboxylation (
ASPf ), the volumetric rate of CO2 release by PEPCK ( *

,p ASPV ) in the bundle 

sheath cytosol and that by NADP-ME ( *

,p MALV ) are given by: 

,

* *

,

, m cy

ASP
p ASP p

bs cy V

f
V V dv

V
    

(C.3.1) 

,

* *

,

,

(1 )

m cy

ASP
p MAL p

bs ch V

f
V V dv

V


    

(C.3.2) 

where *

pV  is the volumetric rate of PEP carboxylation (Eq. C.2.14); Vm,cy is the volume of 

mesophyll cytosol; Vb,cy is the volume of the bundle sheath cytosol; and, Vb,ch is the volume of 

bundle sheath chloroplast.  

When the fraction of PSII content in bundle sheath cells (α) was increased, the ATP production 

rate due to linear electron transport increased (Eq. C.2.6). This results in higher rate of oxygen 

evolution (Eq. 5.6, main text). The rate of electron transport (Eq. C.2.4) and ATP production (Eq. 

C.2.3) are thus updated for each value of α. The possible change in the light absorbance profile 

due to increased α was not accounted for here. The change in the rate of ATP production was 

because v increased (Eq. C.2.11). 
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Figure C.1. Stomatal conductance in response to irradiance and degree of stomatal opening. 

Response of stomatal conductance to irradiance (A) measured at 21 % O2 and ambient CO2 of 

250 µmol mol
-1

, leaf temperature of 25 °C and leaf-to-air vapor pressure difference within 1.0-1.6 

kPa. Stomatal conductance was modeled by adjusting the diffusion coefficient of gases in the 

stomata to simulate various degrees of stomatal opening (B). Error bars represent standard error 

(n = 4). 
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Figure C.2. Responses of the total ATP production rate (jATP) to irradiance. The computed total 

ATP production rate (solid line) and that obtained from chlorophyll fluorescence (CF) 

measurements (circles). ATP production calculated from Eq. S3 using maximum rate of electron 

transport in Table C.2. The ambient CO2 was 250 µmol mol
-1

 and ambient oxygen was 21 % 

while temperature was 25 °C. Bars represent standard error (n = 4). 
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Figure C.3. Fraction of intercellular air space in leaf tissue across leaf depth. Using paradermal 

leaf sections, the total area of the air space is divided by the total area of the section to calculate 

the fraction area occupied by air spaces. Nearby 100 µm depth is where bundle sheath cells tissue 

are located. The fraction drops low near this region indicating poor connection of the adaxial side 

(25 to 100 µm depth) and abaxial side (100 – 180 µm depth) intercellular air space.  
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Figure C.4. Temperature response of biochemical and biophysical parameters. Temperature 

response of biochemical parameters (A) such as the maximum rate of electron transport ( maxj ), 

maximum capacity of Rubisco-limited carboxylation (Vc,max) and maximum rate of PEP 

carboxylation (Vp,max). Temperature response of diffusion coefficients of CO2 (
2COD ), O2 (

2OD ) 

and HCO
-

3 (
3HCO

D  ) liquid (subscript l) phase (B) and gas (subscript g) (C). Temperature response 

of Henry constant of CO2 (D). Temperature dependencies are given in Table C.2. 
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Figure C.5. Comparison of the response of photosynthesis (A) with and without oxygen 

evolution. Response of A to intercellular CO2 (A) and irradiance (B). Symbols indicate 

experimental data and solid lines show model predictions with oxygen evolution (O2, α = 0.10) 

and dashed lines show predictions with no oxygen evolution (No O2). Conditions for simulations 

in panel A were irradiance of 1500 µmol m
-2

 s
-1 

and 21 % oxygen while those in panel B were 

ambient CO2 of 250 µmol mol
-1

 and 21 % oxygen. Bars show standard error (n = 4). 
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Figure C.6. Limitations of rate of photosynthesis and PEP carboxylation in response to 

temperature. Temperature response of Rubisco-limited gross photosynthesis (wc, filled symbols) 

(A) and that of electron-transport-limited gross photosynthesis (wj, open symbols). PEP 

carboxylation limited by enzyme (Vp,c, filled symbols) or by electron transport (Vp,j, open 

symbols). Simulation conditions were; ambient CO2 was 380 µmol mol
-1

, irradiance was 1500 

µmol m
-2

 s
-1

 and ambient O2 of 21 %. 
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Figure C.7. Pathways of CO2 donation to bundle sheath cells. In the pathway “C4 pump”, CO2 is produced in bundle sheath 

chloroplasts by decarboxylation of C4 acids. Exchange of CO2 and bicarbonate occurs through plasmodesmata at the mesophyll-bundle 

sheath interface only. During direct diffusion, it was assumed that CO2 diffuses to bundle sheath photosynthesis directly and indirectly 

through dehydration of bicarbonate. Transport of CO2 and bicarbonate occurs through the plasmodesmata. The pathway referred as 

“No suberin” additionally involves exchange of CO2 and O2 through the entire surface of bundle sheath cells. Plasmodesmata and 

water filled pores of bundle sheath cell wall provide the resistance to diffusion at the mesophyll-bundle sheath and mesophyll-air space 

interface. M stands for mesophyll and BS for bundle sheath cells. The truncated circle inside BS is the chloroplast layer.
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Table C.1. List of symbols, their definitions and units  

Variable Definition Units 

A
 

Net photosynthesis rate  mol m
-2 

s
-1

 

CAB  Net hydration of CO2 in presence of carbonic anhydrase µmol m
-3 

s
-1

 

NCAB
 

Non enzymatic net hydration of CO2  µmol m
-3 

s
-1

 

aC  Ambient air CO2 concentration  mol mol
-1

 

cC  
Mean concentration of CO2 in bundle sheath chloroplasts mol mol

-1
 

mC  Mean concentration of CO2 in mesophyll cytosol mol mol
-1 

 

2COD
 

CO2 diffusivity in cell or gas  m
2
 s

-1
 

3HCO
D   Diffusivity of 

-

3
HCO  m

2
 s

-1 
 

2OD
 

O2 diffusivity in cell or gas m
2
 s

-1
 

D
 

Average thickness of leaf tissue  µm 

*
oE  Volumetric rate of oxygen evolution mol m

-3 
s

-1
 

epif
 

Volume fraction of epidermis of the leaf m
3
 m

-3
 

,bs chf
 

Volume fraction of bundle sheath chloroplasts of the leaf m
3
 m

-3
 

,bs cyf  Volume fraction of bundle sheath cytosol of the leaf m
3
 m

-3
 

,mc cyf
 

Volume fraction of mesophyll cytosol of the leaf m
3
 m

-3
 

vsf
 

Volume fraction of vascular bundles of the leaf m
3
 m

-3
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.respf  
Total volume fraction of respiratory tissue in the leaf: 

.respf = ,mc cyf  + 
,bs cyf  + epif + vsf  

m
3
 m

-3
 

2COH  Henry’s constant for CO2  Dimensionless 

2OH  Henry’s constant for O2  Dimensionless 

[H ]
 

H
+
 concentration  mol L

-1
 

,abs bsi  Volumetric rate of photon absorption in bundle sheath mol m
-3

 s
-1

 

,abs mi  Volumetric rate of photon absorption in mesophyll mol m
-3

 s
-1

 

ATPj  Total rate of ATP production mol m
-2 

s
-1

 

,ATP CFj  Total rate of ATP production calculated from chlorophyll 

fluorescence measurement 

mol m
-2 

s
-1

 

*

ATPj  Volumetric rate of total rate of ATP production mol m
-3 

s
-1

 

ATPJ  Computed potential rate of ATP production in the leaf mol m
-2

 s
-1

 

*j  Volumetric rate of potential electron transport mol m
-3

 s
-1

 

*

,CET bsj  Volumetric rate of potential cyclic electron transport (CET) in 

bundle sheath cells 

mol m
-3 

s
-1

 

*

,LET bsj  Volumetric rate of potential linear electron transport (LET) in 

bundle sheath cells 

mol m
-3 

s
-1

 

*

,LET mj  Volumetric rate of potential linear electron transport (LET) in 

mesophyll cells 

mol m
-3 

s
-1

 

*

LLj  Volumetric rate of potential light-limited (LL) electron transport mol m
-3

 s
-1
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*

, ,LL CET bsj  Volumetric rate of potential light-limited (LL) cyclic electron 

transport in bundle sheath cells 

mol m
-3

 s
-1

 

*

, ,LL LET bsj  Volumetric rate of potential light-limited (LL) linear electron 

transport in bundle sheath cells 

mol m
-3

 s
-1

 

*

, ,LL LET mj  Volumetric rate of potential light-limited (LL) linear electron 

transport in mesophyll cells 

mol m
-3

 s
-1

 

*

maxj  Volumetric rate of light-saturated electron transport  mol m
-3

 s
-1

 

max,CETj  Light-saturated rate of cyclic electron transport  mol m
-2

 s
-1

 

max,LETj  Light-saturated rate of linear electron transport  mol m
-2

 s
-1

 

Kbs Light absorbed per unit photosystem in bundle sheath cells mol mol
-1

 

Km Light absorbed per unit photosystem in mesophyll cells mol mol
-1

 

dR  Total respiratory CO2 release from leaf dR = mR + sR +Rv +Repi mol m
-2 

s
-1

 

epiR  Volumetric rate of respiratory CO2 release from mitochondria in 

epidermis cells  ./ respepi d
d fR R   

mol m
-3 

s
-1

 

*

m
R  

 

Volumetric rate of respiratory CO2 release from mitochondria in 

mesophyll cytosol  *
. ,/ resp m cym d

d f fR R    

mol m
-3 

s
-1

 

pr  Mean rate of photorespiratory CO2 release from mitochondria in 

bundle sheath cytosol 

mol m
-2 

s
-1

 

*

pr  Volumetric rate of photorespiratory CO2 release from mitochondria 

in bundle sheath cytosol  

mol m
-3 

s
-1
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2

*

,p Or  Volumetric rate of O2 consumption due to photorespiratory in 

bundle sheath chloroplasts 

mol m
-3 

s
-1

 

s  Lumped calibration factor Dimensionless 

/C OS  Relative CO2/O2 specificity factor for Rubisco  µbar bar
-1

 

c, maxV  Maximum rate of Rubisco activity-limited carboxylation  mol m
-2 

s
-1 

 

c , max

*V  Volumetric rate of maximum rate of Rubisco activity-limited 

carboxylation  

mol m
-3 

s
-1 

 

pV  Rate of PEP carboxylation based on bicarbonate ions mol m
-2 

s
-1

 

*

pV  Volumetric rate of pV  calculated from ,/ ( )p m cyV d f  mol m
-3 

s
-1

 

*

pV  Volumetric rate of CO2 release in bundle sheath cells mol m
-3 

s
-1

 

p , max

*V  Volumetric rate of maximum rate of enzyme activity-limited PEP 

carboxylation  

mol m
-3 

s
-1 

 

x  Fraction of ATP partitioned to the C4 cycle Dimensionless 

x  Computed fraction of ATP partitioned to the C4 cycle Dimensionless 

Α Fraction of PSII in bundle sheath cells Dimensionless 

  Leakiness p
L V  Dimensionless 

1LLΦ  Quantum efficiency of PSI electron transport at limiting light Dimensionless 

2LLΦ  Quantum efficiency of PSII electron transport at limiting light Dimensionless 

θ  Ratio of the total area of plasmodesmata to the total area of the 

mesophyll-bundle sheath interface. 

m
2
 m

-2
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Θ  Convexity coefficient Dimensionless 

γ
* 
  0.5/ /C OS   Dimensionless 

ζ  Effective porosity Dimensionless 

η  Viscosity of cell medium relative to water Dimensionless 
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Table C.2. Values of parameters used in the microscale model  

Variable Units Value Notes and references 

2CO
D  

 liquid phase 

 gas 

 cell wall 

m
2
 s

-1
  91.89 10 / η  

4 1.75
0.135 10 ( / 273.15)T

  

91.89 10 /ζ η   

Frank, Kuipers & van Swaaij 1996; Lide 1999; Juurola et al. 

2005. η is the relative viscosity of cell medium (see further) 

ζ : effective porosity is 0.1 for bundle sheath cells (Evans et 

al., 2009) and 1.0 for mesophyll cells resulting in a 

conductance of 0.28 mol m
-2

 s
-1

 which is within 4 510 - 

0.64 mol m
-2

 s
-1

 reported previously (Evans et al., 2009). 

2O
D  

in gas phase 

in liquid phase 

m
2
 s

-1
  

9 1.724
1.139 10 T


   

9
1.97 10 /ζ η

   

 

T(K) (Denny, 1993) 

 

3HCO
D   

m
2
 s

-1
 91.17 10 / η  At 25 °C (Geers and Gros, 2000).  

d  µm 165  Measured Table 3.2 

2COH   - 0.83 At 25 °C (Lide, 1999).  

2OH  - 23.2 10  At 25 °C (Lide, 1999).  
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pdL  µm 0.35 Sum of thickness of cell walls (Table 3.2). 

*

CA,max
V  mol m

-3
 s

-1
 52.1 10  Pocker & Miksch 1978; Wang et al. 2014 

maxj  mol m
-2 

s
-1

 122.61  8.21 Estimated, see also Table C.3. 

1k  s
-1

 0.039 Jolly 1985, see also Table C.3. 

2k  s
-1 

 23 Jolly 1985, see also Table C.3. 

2CO
K  mol m

-3
 2.8 Hatch & Burnell 1990  

eq
K  

mol m
-3

 75.6 10  Pocker & Miksch 1978  

K  mol L
-1

 42.5 10  Jolly 1985  

,m C
K  

bar 485
(a)

 Cousins et al. 2010, see also Table C.3. 

-
3HCO

K  mol m
-3

 34 Pocker & Miksch 1978 

,m O
K  

mbar 146
(a)

 Cousins et al. 2010, see also Table C.3. 

h
K  M 20 Bauwe 1986 

2COP of bundle sheath 

chloroplast envelopes  

m s
-1

 31.75 10  CO2 permeability 
33.5 10 (Gutknecht, 1988) was halved to 

account for the double layer. 
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2COP  of bundle sheath 

cells plasma 

membrane 

m s
-1

 33.5 10  Gutknecht 1988 

2COP of mesophyll 

plasma membrane  

m s
-1

 21.6 10  Missner et al. 2008 

2OP of: 

plasma membrane 

chloroplast envelope 

m s
-1

  

23.6 10  

21.8 10  

Oxygen permeability of plasma membranes was calculated 

by dividing the diffusivity of O2 by thickness of the 

membrane. The O2 permeability of double-layered 

chloroplasts was assumed half that of the plasma membranes. 

pH 

cytosol 

stroma 

vasculature 

vacuole 

-  

7.5 

7.8 

7.0 

4.0 

Evans et al. 2009 

Rd mol m
-2 

s
-1

 1.70  0.27 Estimated (Table 3.1) 
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s  - 0.325  0.05 Estimated (Table 3.1) 

/C OS  - 2862 Cousins et al. 2010 

c , max
V  mol m

-2 
s

-1 
 Vp,max/2.33  Yin et al. 2011  

p , max
V  mol m

-2 
s

-1
 96.4 Calculated from slopes of linearity between the parameter 

and leaf nitrogen content (Yin et al., 2011b)  

x  - 0.40 von Caemmerer & Furbank 1999 

α - 0.10 Chapman & Hatch 1979 

θ  - 0.03 Sowiński, Szczepanik & Minchin 2008 

η  - 2.0 Ho et al. 2016  

Θ  - 0.97 Assumed, at chloroplast level. 

1LLΦ  - 0.97 Yin & Struik 2012 

2LLΦ  - 0.83 Yin & Struik 2012 

(a)
 These parameters were converted into µmol m

-3
 liquid by multiplying with PH/RT, where P = 101325 Pa, H = 0.83, R = 8.314 m

3
 Pa K

-1
 mol

-1
 and T = 298 K.
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Table C.3. Temperature dependency of biophysical and biochemical parameters. 

Parameter Activation energy  

(kJ mol
-1

) 

Entropy term  

(kJ mol
-1

) 

Deactivation energy  

(kJ mol
-1

) 

References 

DCO2
 in liquid -16.9 - - Frank et al. 1996 

DO2
in liquid 9.5 - - Han & Bartels 1996; Yin et al. 2016 

3HCO
D   

16.9 - - Frank et al. 1996 

HCO
2
 

HO
2
 

-20.3 

-17.0 

- 

- 

- 

- 

Frank et al. 1996 

η  16.4 - - Frank et al. 1996 

max
j  

77.9 0.627 191.9 Massad et al. 2007 

VCA,max 40.9 0.210 64.5 Boyd et al. 2015 

Vp,max 37.0 0.663 214.5 Yin et al. 2016 

Vc,max 53.4 - - Yin et al. 2016 

Km,C 35.6 - - Yin et al. 2016 

Km,O 15.1 - - Yin et al. 2016 

*γ  27.4 - - Yin et al. 2016 

Kh 27.2 - - Boyd et al. 2015 

k1 95.0 - - Boyd et al. 2015 

Rd 41.9 - - Yin et al. 2016 
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Table C.4. Anatomical properties of maize leaf measured from segmented images.  

Cell types Anatomical property 

 (Vol. or area ratio) 

Literature 

values 

Mesophyll cells 

Chloroplasts 

Vacuole 

Cytosol 

31.6 % tissue 

5.87 % tissue 

61.6 % cell 

29.8 % cell 

Sm * = 7.2 m
2
 m

-2 

 

47
 
(Dengler et al., 1994) 

 

50-80 % vol. (Taiz, 1992) 

 

6-10
 

m
2
 m

-2 
(Dengler et al., 1994; von 

Caemmerer and Furbank, 2003; El-

Sharkawy, 2009) 

Bundle sheath cells 

Chloroplasts 

Cytoplasm 

16.7 % tissue 

9.08 % tissue 

45.9 % cell 

Sb ** = 1.9 m
2
 m

-2
 

12 (Dengler et al., 1994) 

 

 

0.6-3.1(von Caemmerer and Furbank, 2003) 

Intercellular air 

spaces 

21.0 % of tissue 

 

20-25 (Dengler et al., 1994) 

 

* Sm per volume of mesophyll cells was reported to be 0.12 m
2
 m

-3
 for C4 plants (Dengler et al., 

1994) corresponding well to our value of 0.14 m
2
 m

-3
. 

** Sb per volume of bundle sheath cells was reported to be 0.050 m
2
 m

-3
 for C4 plants (Dengler et 

al., 1994) corresponding well to our value of 0.045 m
2
 m

-3
. 
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Table C.5. Size, shapes and the total number of organelles per volume in mesophyll and bundle sheath cells. 

Organelle type Description Mean equivalent radius  

r  (µm) 

Standard 

deviation 

(µm) 

ftot (number µm
-3

) 

Mitochondria Cylindrical-shaped with 0.42 0.06 µm diameter 

for those in mesophyll cells and 0.52  0.09 µm 

diameter for those in bundle sheath cells 

(Yoshimura et al., 2004). Length is 4±0.035 µm 

(Dieteren et al., 2011). Number per cell is 2.2 1.5 

for mesophyll and 8.0 4.8 for bundle sheath cells 

(Yoshimura et al., 2004). 

0.04 for mesophyll cells and 

0.07 for bundle sheath cells 

- 0.020 for mesophyll cells and 

0.0096 for those in bundle sheath 

cells 

Peroxisomes Spherical shape with 0.81  0.23 µm diameter for 

mesophyll cells and 1.03  0.17 µm diameter for 

those in bundle sheath cells. Number per cell is 0.3 

 0.5 for mesophyll and 1.3  1.8 for bundle 

sheath cells (Yoshimura et al., 2004). 

- - 0.00273 for mesophyll cells and 

0.00157 for bundle sheath cells 

Nuclei Spherical shape with volume of about 72.4±7.5 µm
3 

(Dittmer et al., 2007), assumed to be the same both 

for mesophyll and bundle sheath cells. 

2.57 0.0899 0.000201 

Golgi stacks 0.5 to 2.0 µm diameter disks of height of 0.3 µm 

(Dupree & Sherrier, 1998), number=25 (Dupree & 

Sherrier, 1998). The calculated total number of 

Golgi stacks per unit volume is about (1.5-5)×10
-3

 

µm
-3

. 

0.42 0.0917 0.002518 
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Ribosome-like 

complexes 

25-30 nm diameter spheres (Verschoor et al., 1998). 

Assuming 1250 ribosome-like complexes and 

volume about 2.8 µm
3
 (Henderson et al., 2007). 

0.0137 0.000625 445.44 

Grana Cylindrical disks of mesophyll chloroplasts are 

assumed 14-17 stacks of diameter ca. 1 µm, stack 

height about 0.25 to 1 µm (Austin and Staehelin, 

2011). Number could vary from 40 to 60 grana 

stacks (Staehelin, 2003). Grana in bundle sheath 

cells are low, volume fraction varies from 1.6 – 7.4 

% compared to 68.2 % of mesophyll cells 

(Yoshimura et al., 2004; Vicankova and Kutik, 

2005) thus they were neglected. 

0.472 0.0558 0.68 

The equivalent radius of an organelle having volume organelle
V  is given by 

1/3

3

4

organelle
V

r


 
   
 

  

The lowest and highest value obtained from literature were used to determine the standard deviation.  

ftot is the product of the number of organelles per unit volume and volume. 
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Table C.6. Computed optical properties of the different compartments of the leaf model. The 

absorption profile is the result of averaging the absorption profile at 470 nm (10 %) and at 665 

nm (90 %). µa is an absorption coefficient; µs is a scattering coefficient; and,  is an anisotropy 

factor. The ratio Kbs:Km = 0.50. 

470 nm 
a  ( 1cm ) 

s  ( 1cm )   ( ) 

Air 0 2000 1 

Epidermis 10 730 0.9678 

Mesophyll cytosol 10 850 0.9800 

Mesophyll vacuole 10 730 0.9556 

Mesophyll chloroplast 3800 12700 0.9698 

Bundle sheath cytosol 10 730 0.9678 

Bundle sheath chloroplast 1900 12700 0.9678 

Vascular bundles 10 1000 0.9800 

665 nm    

Air 0 2000 1 

Epidermis 10 330 0.9400 

Mesophyll cytosol 10 450 0.9600 

Mesophyll vacuole 10 330 0.9200 

Mesophyll chloroplast 3400 10700 0.9698 

Bundle sheath cytosol 10 330 0.9500 

Bundle sheath chloroplast 1700 10700 0.9678 

Vascular bundles 10 500 0.9600 
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Table C.7. Computed optical properties of mesophyll and bundle sheath chloroplasts of the leaf model for various ratios of Kbs to Km. 

µa is an absorption coefficient; µs is a scattering coefficient; and,  is an anisotropy factor. 

 Kbs:Km = 0.30 Kbs:Km = 1.00 Kbs:Km = 1.50 

470 nm a   

( 1cm ) 

s   

( 1cm ) 

  

 ( ) 

a  

 ( 1cm ) 

s  

 ( 1cm ) 

  

 ( ) 

a   

( 1cm ) 

s   

( 1cm ) 

   

( ) 

Mesophyll chloroplast 3200 12700 0.9698 3200 12700 0.9698 3200 12700 0.9698 

Bundle sheath chloroplast 960 12700 0.9678 3200 12700 0.9678 4800 12700 0.9698 

665 nm          

Mesophyll chloroplast 2900 10700 0.9698 2900 10700 0.9698 2900 10700 0.9698 

Bundle sheath chloroplast 870 10700 0.9678 2900 10700 0.9678 4350 10700 0.9698 
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