
 

Effect of in situ water harvesting techniques on soil and nutriënt losses in 
semi-arid Northern Ethiopia 

Grum, B., Assefae, D., Hessel, R., Woldearegay, K., Kessler, C. A., Ritsema, 
C. J., & Geissen, V. 

 

This article is made publically available in the institutional repository of Wageningen 
University and Research, under article 25fa of the Dutch Copyright Act, also known 

as the Amendment Taverne. 

Article 25fa states that the author of a short scientific work funded either wholly or 
partially by Dutch public funds is entitled to make that work publicly available for no 
consideration following a reasonable period of time after the work was first 
published, provided that clear reference is made to the source of the first publication 
of the work. 

For questions regarding the public availability of this article, please contact 
openscience.library@wur.nl. 

Please cite this publication as follows: 

Grum, B., Assefae, D., Hessel, R., Woldearegay, K., Kessler, C. A., Ritsema, C. J., & 
Geissen, V. (2017). Effect of in situ water harvesting techniques on soil and nutriënt 
losses in semi-arid Northern Ethiopia. Land Degradation and Development, 28(3), 
1016-1027. https://doi.org/10.1002/ldr.2603 

mailto:openscience.library@wur.nl


EFFECT OF IN SITU WATER HARVESTING TECHNIQUES ON SOIL AND
NUTRIENT LOSSES IN SEMI-ARID NORTHERN ETHIOPIA

Berhane Grum1,5*, Dereje Assefa2, Rudi Hessel3, Kifle Woldearegay4, Aad Kessler5, Coen Ritsema5, Violette Geissen5

1Department of Civil Engineering, Mekelle University, P.O. Box 3185, Mekelle, Ethiopia
2Department of Dryland Crop and Horticulture Science, Mekelle University, P.O. Box 231, Mekelle, Ethiopia

3Soil, Water and Land Use Team, Alterra, P.O. Box 47 6700 AA, Wageningen, The Netherlands
4Department of Earth Sciences, Mekelle University, P.O. Box 231, Mekelle, Ethiopia

5Soil Physics and Land Management Group, Wageningen University, P.O. Box 47 6700 AA, Wageningen, The Netherlands

Received 14 May 2016; Revised 12 August 2016; Accepted 13 August 2016

ABSTRACT

Land degradation, mainly due to soil erosion and nutrient losses, is a global problem for sustainable agriculture. Farmlands in the Ethiopian
highlands are susceptible to water erosion because of steep slopes and extensive cultivation. A field experiment was conducted in the Gule
sub-watershed in northern Ethiopia to assess the efficacy of in situ water harvesting techniques in reducing soil and nutrient losses. The
research was carried out on a sandy clay loam soil under semi-arid conditions. Soil erosion and nutrient losses were monitored during the
rainy season (June to September) in 2013 and 2014. Five treatments with tied ridges, wheat-straw mulch and effective microorganisms, alone
or in combination, and an untreated control were tested. Combined tied ridges and straw mulch, with and without effective microorganisms,
significantly reduced average soil loss over the two rainy seasons by 82 and 90% respectively compared with the control. Tied ridges alone
reduced average soil loss by 60%. Straw mulch with and without effective microorganisms decreased average soil loss by 81 and 85%
respectively. Combined tied ridges and straw mulch significantly decreased average total nitrogen and total phosphorus losses by 82 and
83% respectively. Average nutrient losses were also significantly decreased by tied ridges (59% for nitrogen, 52% for phosphorus) and straw
mulch (63% for nitrogen, 68% for phosphorus). Our results indicated that in situ water harvesting techniques can effectively reduce soil and
nutrient losses from farmland and were more efficient when the techniques were combined. Copyright © 2016 John Wiley & Sons, Ltd.
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INTRODUCTION

Land degradation is considered as the main global problem
preventing future sustainable agricultural production
(Zougmoré et al., 2009). Accordingly, soil erosion is a seri-
ous problem due to its severe impacts on agricultural pro-
ductivity, ecosystem services and environmental balances
(Panagos et al., 2015). Soil loss from farmland is aggravated
by inappropriate soil management and tillage practices and
the absence of erosion control measures (Cerdà et al.,
2009; Rodrigo Comino et al., 2015; Prosdocimi et al.,
2016a).
Farmlands in the Ethiopian highlands are often located on

steep slopes and are extensively cultivated; therefore, they
are highly susceptible to water erosion in the rainy seasons
(Damene et al., 2013; Taddese, 2001; Teshome et al.,
2013). Moreover, a farmer's decision to invest on sustain-
able land management practices is highly constrained by
existing land quality, land fragmentation and land tenure
systems (Teshome et al., 2016). Soil loss in the Ethiopian
highlands is reported to be around 1·9 billionMgy�1 and
80% of the loss comes from cultivated areas (FAO, 1986).

Land degradation, mainly by water erosion, is a primary
cause of low and declining soil productivity in Ethiopia
(Araya et al., 2011). Water erosion causes the removal of
soil from farmland, which results in the loss of valuable
plant nutrients with the eroded soil (Kraaijvanger &
Veldkamp, 2015; Taddese, 2001).
Land degradation in the Tigray region of northern

Ethiopia became so critical that it hampered agricultural pro-
ductivity, so the government and others endeavoured to re-
habilitate the land by using soil and water conservation
measures (Nyssen et al., 2015; Vancampenhout et al.,
2006; Walraevens et al., 2015), mainly stone bunds and area
exclosures (Descheemaeker et al., 2006; Desta et al., 2005;
Nyssen et al., 2007). According to Desta et al. (2005), stone
bunds reduced annual soil losses from sheet and rill erosion
by 68%. Runoff, however, spilt over these structures be-
cause in situ water harvesting techniques (WHTs) were
rarely used in the agricultural fields (Gebreegziabher et al.,
2009). A new paradigm of soil conservation and land reha-
bilitation by in situ soil and water management is therefore
needed (Nyssen et al., 2009).
In situ WHTs enhance the collection of rainwater on the

surface where it falls and store it in the soil layer (Helmreich
& Horn, 2009). The most widely used in situ WHTs are tied
ridges, mulching, conservation tillage and various furrow
systems (Biazin et al., 2012).
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Some studies in Tigray and other parts of Ethiopia
have focused on the role of conservation agriculture
(e.g. contour furrows, conservation tillage, terwah and
derdero) in reducing soil loss from farmland (Araya
et al., 2011; Gebreegziabher et al., 2009; McHugh
et al., 2007). The effect of different soil management
practices on soil erosion has also been studied in other
parts of the world (Adekalu et al., 2007; Fernández &
Vega, 2016; Mekonnen et al., 2015; Mwango et al.,
2015; Prosdocimi et al., 2016b). In situ WHTs have been
applied in a variety of climates and landscapes, mainly to
improve on-site soil–water regimes and to reduce soil and
nutrient losses in runoff (Adimassu et al., 2014; Al-Seekh
& Mohammad, 2009; Okeyo et al., 2014).
The effects of combining different measures of soil man-

agement, such as crop-residue mulching with organic
amendments (Baptista et al., 2015), runoff barriers with nu-
trient management (Zougmoré et al., 2009) and tillage with
mulching (Donjadee & Tingsanchali, 2016; Jin et al., 2008),
on soil and/or associated nutrient losses have been studied.
Other researchers also investigated the effect of combined
use of rice-straw compost with phosphogypsum (Mahmoud
& Abd El-Kader, 2015) and crushed maize-straw residue
with urea (Tejada & Benítez, 2014) on improving soil chem-
ical and biological properties. Little information, however, is
available on the effect of combining in situ WHTs such as
tied ridges and straw mulch on the reduction of soil and

nutrient losses from farmland. Combining different in situ
WHTs helps to reduce runoff, soil and associated nutrient
losses (Baptista et al., 2015). Integrating WHTs with nutri-
ent management can also help to ensure higher and more
sustainable agricultural productivity (Miriti et al., 2007).
For example, the application of biofertilizers such as effec-
tive microorganisms (EMs) to the soil enhances the physical
properties of the soil such as infiltration rate and water-
holding capacity (Ismail, 2013).
Therefore, the aims of this study were (i) to assess the

effect of in situ WHTs on soil and nutrient losses and maize
yield and (ii) to evaluate the efficacy of combining in situ
WHTs (straw mulch, tied ridges and EMs) for controlling
soil erosion.

MATERIALS AND METHODS

Description of the Study Area

The study was conducted at a farmer-training centre in the
Gule sub-watershed of the upper Geba catchment in north-
ern Ethiopia (13°52′49″N, 39°28′59″E; Figure 1). The
sub-watershed has a rugged topography with mountains
and flat valley floors and with altitudes ranging between
2008 and 2408ma.s.l. It has a semi-arid climate, with two
major seasons: a rainy and a dry season. The rainy season
is often from June to September, and the dry season is from
October to May (Nyssen et al., 2010). Rainfall

Figure 1. Location of the study area. (a) Topography of Ethiopia. (b) Land use of the Gule sub-watershed and location of the experimental site. [Colour figure
can be viewed at wileyonlinelibrary.com]
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measurements of three successive years (2013–2015) using
a meteorological station that was installed for the purpose
of this study showed an average annual rainfall of 465mm.
The temperature is relatively constant throughout the year.
Average daily temperature ranges between 15 and 25 °C,
with a mean of 20 °C. The study area was selected based
on a set of criteria established during a stakeholders' work-
shop for selecting WHTs (Grum et al., 2016). The experi-
mental site was on the flat valley floor of the sub-
watershed at a mean altitude of 2050ma.s.l. The site had a
total area of 1750m2, and slopes ranged between 1·8 and
3·4%. The experiment was conducted on a Eutric Cambisol
soil type (IUSS Working Group WRB, 2015) with a sandy
clay loam texture.

Experimental Design

The experiment was carried out for two successive rainy
seasons (June to September) in 2013 and 2014. The experi-
ment had a completely randomized block design consisting
of five treatments and a control. The treatments were se-
lected by stakeholders in a participatory WHT selection
workshop (Grum et al., 2016). Each treatment had three rep-
licates with plot size of 3 × 15m, for a total of 18 plots
(Figure 2). The treatments and the application of measures
are described in Table I.
The experimental field was ploughed twice by oxen-

driven maresha a month and a week before sowing. The ex-
perimental plots were then established by hand. Each plot
was isolated by earth bunds 50 cm wide and 40 cm high to

prevent the flow of water from neighbouring plots and to
provide access to the plots during inspection.
A basal fertilizer was applied to the entire field (all plots)

at rates of 64 kg ha�1 nitrogen (N) and 46 kg ha�1 phospho-
rus (P) in the form of inorganic fertilizers (urea and
diammonium phosphate). These rates of fertilization are
blanket recommendations and commonly applied rates in
the region (Araya & Stroosnijder, 2010). Wheat-straw
mulch was applied for T2–T5 at a rate of 15Mgha�1. Wheat
straw (Triticum aestivum L.), typically used for feedstocks,
consists of cellulose (35%), hemicellulose (25%) and lignin
(19%; Windeatt et al., 2014). Wheat straw contains 0·6% N
(Nicholson et al., 1997; Smil, 1999) and 0·1% P (Smil,
1999). The nutrient inputs from the straw mulch for T2–T5
were thus 90 kgNha�1 and 15 kgPha�1.
The crop used in the experiment was maize (Zea mays L.).

Maize seeds were planted in each plot in rows with 30 cm
between plants and 60 cm between rows in plots without tied
ridges and 70 cm between rows in plots with ridges. Tied
ridges for T1, T3 and T5 were established after maize had
fully germinated and emerged. The ridges were 20 cm high,
3m long and 1·9m apart and were tied in the middle. Each
plot with tied ridges therefore had seven tied ridges in the
rows (Figure 2). All plots were manually hoed, and weeds
were removed 1 and 2months after planting. Dry wheat-
straw mulch was spread onto the soil surface in T2–T5 at a
rate of 15Mgha�1 after the maize had fully germinated
and emerged. A diluted solution (1:500) of activated EMs
(EMRO, Okinawa, Japan) was also sprayed onto the soil

Figure 2. Layout of the experimental runoff plots. (a) Experiment plots with tied ridges (T1, T3 and T5). (b) Experiment plots without tied ridges (T0, T2 and
T4). (c) Photograph of the field layout with treatments. (d) Soil-moisture measurement by using Trime-PICO64 soil-moisture sensor. [Colour figure can be

viewed at wileyonlinelibrary.com]
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surface in T4 and T5. The EMs consisted of a selected group
of microorganisms, predominantly lactic acid bacteria, yeast
and phototrophic bacteria. The activated EMs were prepared
1week before sowing at a ratio of 2:96:2 of molasses, rain-
water and inactivated EMs respectively. The EMs were ap-
plied twice, at sowing and mid of the growing season
(early August), at a rate of 4Lha�1.
Eroded soil exported with the runoff after each rain was

collected in 300–400L of subsurface barrels buried at the
end of each plot. The exported soil with runoff was
channelled from the plots by a corrugated iron gutter placed
directly above the barrels and was then directed into the bar-
rels by a metal inlet pipe (Figure 2).

Data Collection and Measurements

Composite soil samples were collected to a depth of 20 cm
before the beginning of the rainy season in 2013 and 2014
for characterizing the physical and chemical properties
(Table II). Soil samples were also collected by using ergo-
nomic hand auger (Eijkelkamp, Giesbeek, the Netherlands)
from three sampling points in each plot at the end of the ex-
perimental period to depths of 20 and 40 cm for the analysis
of pH, soil organic carbon content and nutrient (N and P)
contents.
Soil texture was determined by the hydrometer method,

bulk density by the core method (Blake & Hartge, 1986)
and pH by potentiometry. Soil organic carbon content was
analysed by the Walkley Black method (Nelson &
Sommers, 1982), total N (TN) content by the Kjeldahl
method (Jackson, 1958), total P (TP) and available P content
by the Olsen method (Olsen & Sommers, 1982).
Rainfall was measured by using tipping-bucket data-

logging RG3-M HOBO (precision: 0·2mm/tip) rain gauge

(Onset, Bourne, MA, USA) installed at the site. Soil-
moisture content (SMC) was monitored daily by using a
Trime-PICO64 (time-domain reflectometer or TDR method)
soil-moisture sensor (Eijkelkamp, Giesbeek, the
Netherlands) to a depth of 15 cm at six sampling points in
each plot in 2013 and 2014.
Runoff volume per plot was measured after each rainfall

event. An aliquot of 1L was collected from each barrel after
thoroughly stirring the collected runoff. The aliquot was
used to analyse sediment concentration, soil and nutrient
losses in the eroded soil in 2013 and 2014. Each water sam-
ple was first filtered through a Whatman Grade 42 filter pa-
per by gravity, and the sediment residue on the filter paper
was then dried at room temperature. The dried residue was
weighed to determine the sediment concentration in the run-
off and the total amount of eroded soil per plot. The loss of
nutrients (N and P) was determined from only five of the
runoff events distributed over each experimental year due
to the expense of the analyses.

Data Analysis

Statistical analysis was performed by using SPSS 22
(IBM Corporation, New York, USA). Normally distrib-
uted data were analysed by using a least squares one-
way analysis of variance. The data that were not nor-
mally distributed were analysed by using non-parametric
tests for statistical differences. Significant difference be-
tween treatments for a measured variable was tested by
using the pairwise Mann–Whitney U-test. All statistical
tests were considered significant at a probability value
of 0·05 (p< 0·05).
The fraction of exported nutrients in eroded soils per run-

off event for each treatment was calculated by:

Fraction of nutrient loss %ð Þ
¼ Nutrient loss in eroded soil

Nutrient input
�100 (1)

Soil/nutrient loss reduction per runoff event of a treatment
relative to the control was calculated by:

R %ð Þ ¼ Oc � Ot

Oc
�100 (2)

Where: R is the reduction in soil/nutrient loss by a treatment
relative to the control (%), Oc is the measured soil (kg ha�1)

Table I. Description of the treatments in the field experiment

Treatment Description

T0 (control) Basal fertilizationa

T1 Basal fertilization + tied ridges
T2 Basal fertilization + straw mulch (15Mg ha�1)
T3 Basal fertilization + straw mulch (15Mg ha�1) and tied ridges
T4 Basal fertilization + straw mulch (15Mg ha�1) and 4 L ha�1 of EMs
T5 Basal fertilization + straw mulch (15Mg ha�1), tied ridges and 4 L ha�1 of EMs

aBasal fertilization: 100 kg ha�1 urea (46% N) and 100 kg ha�1 diammonium phosphate (18% N, 46% P) applied to the entire field experiment. EMs, effective
microorganisms.

Table II. Selected initial soil properties at the experimental site

Properties Mean ± SD

Soil texture —
0·063–2mm, sand (%) 64·6 ± 4·7
0·002–0·063mm, silt (%) 12·6 ± 3·5
<0·002mm, clay (%) 22·8 ± 1·9
Bulk density (g cm�3) 1·6 ± 0·0
pH (H2O) 6·8 ± 0·2
Soil organic carbon (g kg�1) 4·7 ± 1·9
Total nitrogen (mg kg�1) 4·4 ± 2·0
Available phosphorus (mg kg�1) 8·2 ± 2·1
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Table III. Average runoff and soil, total N and total P losses per event over two seasons (2013 and 2014)

Treatment Runoff (mm) Soil loss (kg ha�1) Seasonal soil loss (Mg ha�1)a Total N loss (g ha�1) Total P loss (g ha�1)
Median (min, max)

(n= 84)
Median (min, max)

(n= 84)
Median (min, max)

(n= 3)
Median (min, max)

(n= 30)
Median (min, max)

(n= 30)

T0 4·7 (0·3, 11·2)d 90·6 (2·3, 865·1)c 4·3 (3·6, 4·7)d 364·1 (36·2, 1731·3)c 259·2 (14·2, 746·9)c

T1 2·0 (0·2, 9·2)c 36·4 (2·0, 529·8)b 2·1 (1·7, 2·2)c 134·3 (8·4, 996·2)b 96·7 (3·1, 393·1)b

T2 0·9 (0·2, 8·9)b 16·8 (0·7, 373·6)a 1·0 (0·5, 1·3)ab 154·7 (5·3, 977·9)b 95·1 (1·8, 313·0)b

T3 0·6 (0·1, 8·8)a 8·3 (0·5, 306·4)a 0·8 (0·7, 0·9)a 42·6 (1·3, 1019·5)a 20·0 (1·0, 301·2)a

T4 1·0 (0·2, 8·8)b 10·9 (0·8, 437·5)a 1·3 (1·2, 1·4)b 208·9 (1·9, 1230·8)b 104·6 (0·9, 399·6)b

T5 0·9 (0·1, 8·6)b 11·7 (0·4, 388·1)a 0·8 (0·8, 1·4)ab 98·8 (0·8, 613·2)ab 62·8 (0·3, 451·4)ab

Different letters show significant (Mann–Whitney U-test, p< 0·05) difference between treatments, a< b< c< d.
aSeasonal soil loss was computed from runoff events in 2014. T0, control; T1, tied ridges; T2, straw mulch; T3, tied ridges + straw mulch; T4, straw mulch
+ EMs; T5, tied ridges + straw mulch + EMs.

Figure 3. Soil, total N and total P losses per event for different treatments (n = 3). Different letters show significant (Mann–WhitneyU-test, p< 0·05) difference
between treatments, a< b< c< d. Error bars are standard deviations. T0, control; T1, tied ridges; T2, straw mulch; T3, tied ridges + straw mulch; T4, straw

mulch + EMs; T5, tied ridges + straw mulch + EMs. [Colour figure can be viewed at wileyonlinelibrary.com]
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or nutrient (g ha�1) loss in the control, and Ot is the mea-
sured soil (kg ha�1) or nutrient (g ha�1) loss in a treatment.
Principal component analysis (PCA) was carried out to

identify the factors affecting the soil and nutrient losses by
using averaged data per treatment and the control for 2013
and 2014 (n=36). The PCA tested seven variables: runoff,
soil loss, TN loss, TP loss, SMC, bulk density and plot
slope. Correlations between variables were analysed by
using Spearman's rank correlation at a significance level of
0·01 (p< 0·01). Regression analyses were performed be-
tween soil loss and runoff and between nutrient loss and soil
loss. The regression analyses were carried out separately for
the control (T0) and the in situ WHTs (T1–T5).

RESULTS

Effect of the Treatments on Soil and Associated Nutrient
Losses

The effects of treatments on runoff, soil and nutrients losses
are summarized in Table III.
Runoff was significantly lower in T1–T5 than in T0. Me-

dian runoff was lowest and highest in T3 (0·6mm) and T0
(4·7mm) respectively.
Soil loss per event was significantly lower in all WHTs

than the control. Median soil loss was highest in T0 at
90·6 kg ha�1 and lowest in T3 at 8·3 kg ha�1. Median soil
loss was significantly higher (36·4 kg ha�1) in T1 than in
T2–T5. Median soil loss per event for the various treatments
was in the order of T0>T1>T2=T3=T4=T5. Seasonal

soil loss was also significantly higher in the control than
the WHTs and was significantly lower in T2–T5 than in
T0 and T1.
The WHTs had significant effects on TN and TP losses in

the sediments. The TN and TP losses were the highest in the
control, with medians of 364·1 and 259·2 g ha�1 respec-
tively. Nutrient losses were significantly lower in all WHTs
than in the control. Nutrient losses were lowest in T3 but did
not differ significantly from the losses in T5. Nutrient losses
in the sediments were generally higher for N than for P. Nu-
trient losses were generally higher in the treatments with
EMs (T4 and T5) than in the corresponding treatments with-
out EMs (T2 and T3). The event-based statistical analysis
(Figure 3) showed no significant differences in nutrient
losses between the treatments with and without EMs.
T3 (90%) and T1 (60%) decreased soil losses the most

and least respectively (Table IV). The efficiencies of reduc-
tions in nutrient losses for the treatments ranged between 56
and 84% for TN and between 52 and 86% for TP. T3 de-
creased the loss of both TN and TP the most by 84 and
86% respectively, and T1 and T4 decreased the loss of both
TP and TN the least by 52 and 56% respectively.
The fractions of nutrients exported with eroded soil com-

pared with inputs (basal fertilization and straw mulch) dur-
ing the growing season in 2014 were low in T2–T5
(Table V). The fractions, however, were significantly higher
in T1 (tied ridges) and T0. In T0, 14·3 and 9·3% of the N and
P inputs respectively were exported with the eroded soil.
The fractions of N and P exported with the eroded soil for

Table IV. Efficiencies of reduction in runoff, and soil, total N and total P losses compared with control over two seasons (2013 and 2014)

Treatment Runoff reduction (%) Soil loss reduction (%) Total N loss reduction (%) Total P loss reduction (%)
Median (min, max) (n= 84) Median (min, max) (n= 84) Median (min, max) (n= 30) Median (min, max) (n= 30)

T0 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)
T1 49 (�29, 93) 60 (�32, 94) 59 (�30, 95) 52 (�14, 96)
T2 80 (�17, 96) 85 (�53, 98) 70 (�55, 98) 73 (�45, 98)
T3 85 (0, 99) 90 (�24, 99) 84 (�49, 100) 86 (�11, 100)
T4 77 (�19, 96) 81 (�50, 99) 56 (�21, 99) 63 (�45, 99)
T5 79 (�32, 98) 82 (�32, 99) 80 (2, 98) 80 (3, 98)

T0, control; T1, tied ridges; T2, straw mulch; T3, tied ridges + straw mulch; T4, straw mulch + EMs; T5, tied ridges + straw mulch + EMs.

Table V. Nutrient inputs (N and P) and fractions of exported nutrients in eroded soils [median (min, max)] relative to the inputs in 2014
(n= 3)

Treatment Nutrient inputs Fractions of N and P losses

Total N (kg ha�1) Total P (kg ha�1) Total N (%) Total P (%)

T0 64 46 14·3 (13·7, 16·1)d 9·3 (7·5, 9·9)d

T1 64 46 5·8 (4·0, 8·1)c 3·6 (2·9, 4·5)c

T2 154 61 1·4 (0·7, 1·7)a 1·5 (0·7,1·6)a

T3 154 61 1·1 (1·1, 1·4)a 1·3 (1·2, 1·3)a

T4 154 61 1·9 (1·8, 2·1)b 1·9 (1·7, 2·2)b

T5 154 61 1·2 (0·9, 1·6)a 1·1 (1·0, 1·7)a

Different letters show significance (Mann–Whitney U-test, p< 0·05) difference between treatments, a< b< c< d. T0, control; T1, tied ridges; T2, straw
mulch; T3, tied ridges + straw mulch; T4, straw mulch + EMs; T5, tied ridges + straw mulch + EMs.
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T1 were 5·8 and 3·6% respectively. The fractions of
exported nutrients were significantly lower in T1–T5 than
in T0. The fractions of exported nutrients were significantly
higher in T4 than in the other treatments even though T2–T5
received the same inputs.

Effect of the Treatments on Sediment and Nutrient
Concentrations

Sediment concentrations were significantly (p< 0·05)
lower in T2–T5 than in T0 (Table VI). Sediment concen-
tration in T1 did not differ significantly from those in the
other treatments (T2–T5) or T0. The concentrations varied
little among T1–T5 but were highest and lowest in T0 and
T4 at 2·39 and 1·20 gL�1 respectively. Sediment concen-
trations in the runoff for all treatments were higher at the
beginning of the rainy season and decreased towards the
end (Figure 4).
Nutrient concentrations in the sediments were generally

less variable among the treatments than the sediment con-
centrations (Table VI). P concentrations were significantly
lower than in the control only in T1 and T5. The treatments
did not significantly affect the N concentrations in the

sediments. N concentrations were generally higher than P
concentrations in the sediments.

Effects of the Treatments on Maize Grain Yield and Biomass

The treatments had significant (p< 0·05) effects on maize
grain yield and biomass but not on plant height (Table VII).
Grain yield was significantly higher in T2 and T4 than in
T0. The yields were highest and lowest in T4 and T0 at
3·13 and 2·55Mgha�1 respectively. T2 and T4 increased
maize grain yield by 20 and 23% respectively, compared
with the control. Grain yield was not significantly higher in
T1, T3 and T5 than in T0. Biomass was also significantly
higher in T2 and T4 than in T0. Biomass in T2 and T4 was
13·64 and 13·13Mgha�1 respectively. Biomass was lowest
in the control at 10·70Mgha�1 but was not significantly
higher in T1, T3 or T5. Plant height did not differ signifi-
cantly among the treatments. The plants were smallest and
tallest in T3 and T5 at 154·4 and 166·5 cm respectively. In
the treatments with tied ridges, there were signs of aeration
stresses in the early stages of plant growth in late July 2013
and early August 2014. In these periods, the intensity of rain-
fall was relatively higher than the other periods.

Table VI. Average sediment, total N and total P concentrations over two seasons (2013 and 2014)

Treatment Sediment concentration (g L�1) Total N concentration (g kg�1) Total P concentration (g kg�1)
Median (min, max) (n= 84) Median (min, max) (n= 30) Median (min, max) (n= 30)

T0 2·39 (0·10, 30·40)b 1·53 (1·03, 3·27)a 1·01 (0·76, 1·22)b

T1 1·74 (0·16, 22·07)ab 1·56 (0·36, 2·79)a 0·91 (0·25, 1·18)a

T2 1·45 (0·10, 25·36)a 1·63 (0·21, 3·79)a 0·95 (0·06, 1·37)ab

T3 1·34 (0·10, 39·86)a 1·67 (0·73, 3·51)a 0·94 (0·64, 1·42)ab

T4 1·20 (0·17, 23·63)a 1·65 (0·41, 3·15)a 0·95 (0·05, 1·24)ab

T5 1·26 (0·16, 27·72)a 1·52 (0·89, 3·26)a 0·86 (0·19, 1·18)a

Different letters show significant (Mann–Whitney U-test, p< 0·05) differences between treatments, a< b. T0, control; T1, tied ridges; T2, straw mulch; T3,
tied ridges + straw mulch; T4, straw mulch + EMs; T5, tied ridges + straw mulch + EMs.

Figure 4. Sediment concentrations in runoff for different treatments and rainfall events in 2014. T0, control; T1, tied ridges; T2, straw mulch; T3, tied ridges
+ straw mulch; T4, straw mulch + EMs; T5, tied ridges + straw mulch + EMs. [Colour figure can be viewed at wileyonlinelibrary.com]
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Relationships Among Runoff, Soil Loss, Nutrient Loss, SMC,
Slope and Bulk Density

The PCA identified two components that together explained
69·5% of the variance of the data (Figure 5). The variance
was mainly described by PC1, which accounted for 52·2%
of the total variation and was strongly associated with run-
off, soil loss and N and P losses, with factor loadings of
0·94, 0·93, 0·88 and 0·97 respectively. The high and positive
factor loadings of the variables in PC1 were also
complemented by strong and significant correlations

(p<0·01) between these variables (Table VIII). PC2 ex-
plained 17·3% of the total variance and was correlated
strongly with SMC and moderately with slope, with factor
loadings of 0·90 and �0·47 respectively.
The correlation analysis between runoff and soil loss per

event identified a significant (p<0·01) logarithmic relation-
ship between the two variables (Table VIII). Fifty-two per
cent of the variation in soil loss in T0 was explained by
the runoff. The explanatory capability improved slightly
for the in situ WHTs (T1–T5), where runoff accounted for
63% of the variability in soil loss.
Nutrient losses were positively and significantly

(p<0·01) correlated with soil losses in both the control
and the in situ WHTs. Soil loss accounted for 71 and 96%
of the variation in the losses of N and P for T0 respectively,
and 74 and 84% for T1–T5 respectively.

DISCUSSION

Soil and Nutrient Losses

The application of the in situ WHTs significantly decreased
the loss of soil compared with T0. Straw mulch (with or
without tied ridges) was efficient in reducing soil loss from
cultivated land. The positive effect of crop residue
mulching on soil loss in cultivated lands has also been
documented in other ecosystems in the world (Adekalu
et al., 2007; Fernández & Vega, 2016; Gholami et al.,
2013; Mwango et al., 2015; Prosdocimi et al., 2016b;
Sadeghi et al., 2015a). The good performance of the straw
mulch for decreasing soil loss was associated with its good
performance in decreasing runoff and sediment concentra-
tion compared with the control. This result was also con-
firmed by other researchers (Gholami et al., 2013;
Sadeghi et al., 2015a; Sadeghi et al., 2015b; Prosdocimi
et al., 2016b).
Our study did not analyse the costs and social acceptance

of straw mulch in the study area. Some researchers have
tested the effect of different mulching rates on soil erosion
in agricultural fields (Donjadee & Tingsanchali, 2016; Jor-
dán et al., 2010; Lal, 1998). Further research, however, is
necessary to determine an optimum rate of mulch applica-
tion in terms of cost effectiveness and soil erosion control
(Cerdà et al., 2016; Jordán et al., 2010).
The efficiency of the decrease in soil loss for the tied

ridges alone (T1) was mainly associated with runoff reduc-
tion, because the sediment concentration for the tied ridges

Table VII. Maize grain yield, biomass and plant height (Mean
± SD) over 2 years in 2013 and 2014 (n= 6)

Treatment Grain yield
(Mg ha�1)

Biomass
(Mg ha�1)

Plant height
(cm)

T0 2·55 ± 0·31a 10·70 ± 1·50a 159·2 ± 8·1a

T1 2·79 ± 0·41abc 11·44 ± 1·45ab 156·1 ± 13·0a

T2 3·06 ± 0·40bc 13·64 ± 1·30c 158·3 ± 11·7a

T3 2·61 ± 0·35ab 12·58 ± 1·76abc 154·4 ± 7·2a

T4 3·13 ± 0·49c 13·13 ± 1·79bc 155·2 ± 9·9a

T5 2·65 ± 0·46ab 12·42 ± 2·08abc 166·5 ± 13·2a

Different letters show significance (p< 0·05) difference between treat-
ments, a< b< c.
T0, control; T1, tied ridges; T2, straw mulch; T3, tied ridges + straw mulch;
T4, straw mulch + EMs; T5, tied ridges + straw mulch + EMs.

Figure 5. Principal component analysis of runoff (Rn), soil-moisture con-
tent (SMC), soil loss, total N (TN) loss, total P (TP) loss, slope (Sl) and bulk
density (Bd), based on average seasonal data (n = 36) in 2013 and 2014.

[Colour figure can be viewed at wileyonlinelibrary.com]

Table VIII. Regression equations for estimating soil (kg ha�1), total N (g ha�1) and total P (g ha�1) losses in the control (T0) and in situ
WHTs (T1–T5)

Control (T0) In situ WHTs (T1–T5)

Log soil loss = 1.25 × log runoff + 1.17 (r2 = 0·52, n= 84, p< 0·01) Log soil loss = 1.33 × log runoff + 1.18 (r2 = 0·63, n= 420, p< 0·01)
Nitrogen loss = 1.70 × soil loss + 30.72 (r2 = 0·71, n= 30, p< 0·01) Nitrogen loss = 1.90 × soil loss� 12.11 (r2 = 0·74, n= 150, p< 0·01)
Phosphorus loss = 0.89 × soil loss + 25.57 (r2 = 0·96, n= 30,
p< 0·01)

Phosphorus loss = 0.82 × soil loss + 6.34 (r2 = 0·84, n= 150,
p< 0·01)

T0, control; T1, tied ridges; T2, straw mulch; T3, tied ridges + straw mulch; T4, straw mulch + EMs; T5, tied ridges + straw mulch + EMs.
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was not significantly lower than for the control and the other
treatments (T2–T5).
T3 and T5 registered the lowest seasonal soil loss

(0·8Mgha�1) in 2014. T0 had the highest seasonal soil loss
(4·3Mgha�1). The seasonal soil losses for T1, T2 and T4
were 2·1, 1·0 and 1·3Mgha�1 respectively. This result is
similar to a study in northern Ethiopia by McHugh et al.
(2007), who reported soil loss from cultivated land on flat
(<3%) plains of <2Mgha�1. The rate of seasonal soil loss
in the control, however, was lower in our study than in other
plot-level studies in northern Ethiopia (Araya et al., 2011;
Girmay et al., 2009; Nyssen et al., 2008). The lower rate
of soil loss in our study was probably associated with the
sandy clay loam soil texture and differences in crop cover
and to a lower slope gradient and slightly lower seasonal
rainfall.
The lower sediment concentrations in T2–T5 were associ-

ated with the application of straw mulch in these treatments,
emphasizing the role of mulch in decreasing the effects of
raindrop splashes on soil surfaces (Cerdà et al., 2016; Okeyo
et al., 2014) and hence slowing the detachment of soil parti-
cles. Sediment concentrations tended to decrease towards
the end of the rainy season irrespective of treatment. Our re-
sults corroborated those of other studies in northern Ethiopia
and other regions (Araya et al., 2011; Gebreegziabher et al.,
2009; Sirjani & Mahmoodabadi, 2014). The decrease in sed-
iment concentrations in runoff late in the rainy season is due
to the increase in crop cover, which dissipates the energy of
raindrops and decreases the velocity of water on the soil sur-
face (Gebreegziabher et al., 2009).
The higher efficiency of decreasing nutrient losses by the

in situ WHTs (T1–T5) compared with T0 was mainly asso-
ciated with the reduction of runoff and soil losses. The treat-
ments had no significant effect on TN concentrations in the
sediments. The differences in the nutrient losses in the in situ
WHTs were mainly associated with the amounts of runoff
and soil losses in the treatments, consistent with other find-
ings (Ali et al., 2007; Baptista et al., 2015; Zougmoré
et al., 2009), where nutrient losses were primarily a function
of the amounts of runoff and soil loss. Although nutrient
losses were generally higher in the treatments with EMs than
the corresponding treatments without EMs, the effect of
EMs was however inconclusive because the differences
were not significant either for medians (Table III) or per
event (Figure 3).
The fractions of exported nutrients in the eroded soils

compared with the nutrient inputs were significantly higher
in T0 and T1 than in T2–T5 (Table V), likely due to the
lower nutrient inputs in T0 and T1. The straw mulch appli-
cation might have increased the nutrient contents in T2–
T5. The slightly higher and significant fraction of nutrient
exports in T4 than T2 may be an indication of the release
(mineralization) of nutrients from straw mulch due to the mi-
crobial activity of the EMs. N and P may not be immediately
released by the decomposition of the organic matter in
wheat-straw mulch due to its high C :N ratio (Bertoldi
et al., 1983), but the application of straw mulch can maintain

carbon and N stocks in the soil (Abbasi et al., 2015; Smil,
1999). The availability of soil nutrients, contributed by the
straw mulch, would help in the long term to maintain soil
quality by minimizing the fraction of nutrient exports in
eroded soils.
Several researches demonstrated the dependency of soil

erosion rates at various plot-scale experiments (e.g. Le
Bissonnais et al., 1998; Moreno-de las Heras et al., 2010;
Parsons et al., 2006; Sadeghi et al., 2015b). A field experi-
ment by Parsons et al. (2006) revealed the decrease of soil
erosion rate with increasing plot length. Moreno-de las
Heras et al. (2010) confirmed the decrease of soil erosion
rate with plot length in less degraded lands. On the contrary,
the rate of soil loss substantially increased with increasing
plot length for highly degraded lands. These findings con-
firm the variation of soil erosion rates with the scale of plot
experiments. Therefore, the soil erosion rates from this study
might slightly differ from field conditions because of the
size of the plots and the setup of the experiment.

Maize Grain Yield and Biomass

Maize grain yield and biomass were significantly higher in
the treatments with straw mulch (with and without EMs)
compared with the control. The effect of the mulch on yield
may have been due to an increase in soil moisture and de-
crease in evaporation in the plots by the mulch during dry
periods. The release of N from mulch decomposition may
also have contributed to the higher grain yield and plant bio-
mass in the treatments with mulch. The use of EMs with the
mulch, however, did not significantly increase yield. The
lack of effect of the EMs on yield may have been due to
the slow release of nutrients from the mulch because of its
high C :N ratio (Bertoldi et al., 1983). Some studies, how-
ever, reported an increase in grain yield by using good or-
ganic amendments (e.g. compost and farmyard manure)
with EMs (Hu & Qi, 2013; Hussain et al., 1999; Javaid &
Bajwa, 2011). Hussain et al. (1999) reported an increase in
wheat and rice grain yields by using farmyard manure with
EMs. In another study, the long-term application of EMs
with compost increased wheat grain yield (Hu & Qi,
2013). Further research is required to ascertain the benefits
of EM application with different organic materials for in-
creasing the release of nutrients to the soil and thus for in-
creasing maize yield.
Tied ridges alone or combined with straw did not signifi-

cantly increase grain yield or plant biomass compared with
the control, perhaps because excess water in the root zone
with the tied ridges from successive and intensive rains
caused aeration stress. Similar symptoms of aeration stress
were reported in another study in northern Ethiopia in barley
fields during seasons with high rainfall (Araya &
Stroosnijder, 2010). Maize is vulnerable to aeration stress
during the early stages of growth (Mason et al., 1987). Nu-
trient deficiency due to restricted nutrient uptake is the pri-
mary reason of inhibited plant growth in waterlogged soils
(Steffens et al., 2005). Anaerobic soil conditions caused by
waterlogging also enhance the release of N2 to the
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atmosphere (Eickenscheidt et al., 2014). Grain yield might
thus be improved if tied ridges are avoided during the early
stages of plant growth. The time of application of tied ridges
merits further study for the improvement of grain yield in
northern Ethiopia.

Factors Influencing Soil and Nutrient Losses

The PCA indicated that runoff, soil loss and nutrient (N and
P) losses were closely associated with each other, demon-
strated by high factor loadings in the PCs (Figure 5) and
the strong correlations (Table VIII). Event-based logarith-
mic soil loss was positively correlated with logarithmic run-
off. Soil loss is primarily governed by runoff (Ali et al.,
2007), which allows the estimation of soil loss per event
by using measured runoff. A similar logarithmic relationship
was established by Girmay et al. (2009), in which runoff
volume alone accounted for 76% of the variability in annual
soil loss.
The positive and direct correlation between the nutrient

and soil losses suggested that nutrient losses from farmland
could be easily estimated by using data for soil loss. Similar
associations were reported between soil and nutrient losses
from micro-dam catchments in northern Ethiopia
(Haregeweyn et al., 2008). This underlines that any measure
taken to decrease soil loss will also proportionally decrease
N and P losses (Jie et al., 2013).

CONCLUSIONS

In situ WHTs are useful for reducing soil erosion and nu-
trient losses from farmland. The combined use of tied
ridges and straw mulch was the best in situ WHT for re-
ducing soil loss from farmland with coarse-textured soils
and gentle slopes. All in situ WHTs significantly reduced
soil loss and associated nutrient losses. Straw mulch (with
or without EMs) significantly increased maize grain yield
and biomass, substantiating the role of straw mulch in im-
proving in situ water harvesting for combating soil-
moisture deficiency during dry periods. The use of straw
mulch as an in situ WHT would further help in the long
term to mitigate nutrient losses from the soil due to the re-
lease of nutrients from the straw. Further research, how-
ever, is required to identify the stage of plant growth
when tied ridges should be installed for improving maize
yield in northern Ethiopia.
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