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1. Introduction 

1.1 Research questions and the ordination methods in CANOCO 

Knowing about biological communities and their relation to the environment is both 
fascinating and important for human beings. Ordination can help biologists infer relations from 
large data sets on plant and animal communities and their environment. The data may arise from 
the field or the laboratory, and can be observational or experimental. Ordination analysis with 
CANOCO can provide insights into the structure of biological communities and into the impact 
of natural and human-induced environmental disturbances on biological assemblages. CANOCO 
has been used in the past to help answer research questions such as: 

• How does the vegetation develop on abandoned cultivation sites within a tropical rain forest? 

• How does agricultural management practice affect meadow vegetation? 

• What are the effects on forest undergrowth if liming is used to mitigate the effects of acid 
rain? 

• Do diatoms respond so strongly to lake pH that they can be used to monitor trends in acidity? 

• How long does it take before an invertebrate community recovers from an application of the 
insecticide chlorpyrifos? How does the time to recover depend on the concentration? 

CANOCO contains four main classes of ordination methods 

1. Methods to describe the structure in a single data set. For instance, the structure of 
a biological community or the correlation structure of a set of environmental variables 
(ordination, indirect gradient analysis). 

2. Methods to explain one data set by another data set. For instance, to explain or to predict 
species abundances from environmental data (canonical ordination, direct gradient analysis). 

3. Methods to explain one data set by another data set, after accounting for variation explained 
by a third data set (covariable data). For instance, to explain species abundances from 
environmental data, adjusted for observer and seasonal effects (partial canonical ordination). 

4. Methods to describe the structure in a single data set after accounting for variation explained 
by a second data set (covariable data). For instance, the community structure adjusted for 
observer and seasonal effects (partial ordination). 

Within each of these four classes, you can choose between three response models: a linear 
model, an unimodal model, and an unimodal model with detrending. The basic ordination 
methods, Principal Component Analysis, Correspondence Analysis, and Detrended 
Correspondence Analysis are thus extended to canonical, partial, and partial canonical forms. 
These methods are also effective outside biology. 
The principle output of an analysis consists of: 

• an ordination diagram with a numerical summary of the variance explained, 

• the variance explained by the environmental variables, if present, 

• the statistical significance of the environmental variables, and 

• the statistical significance of the first ordination axis of an analysis with explanatory 
variables. 
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The ordination diagram graphically represents the community structure and, in canonical 
analyses, the community response to the environmental variables. The significance is 
determined by permutation tests. Experimental design and sample design determine the 
appropriate permutation type. Also, the effects of environmental variables after accounting for 
specified covariables can be tested (a partial test). Significance tests guard against over-
interpretation of canonical ordination diagrams. 

1.2 Canoco for Windows 

The first version of CANOCO was developed in 1985 on a VAX computer as an extension 
of the computerprogram DECORANA (Hill 1979) to include canonical correspondence analysis 
and its detrended form (Ter Braak 1986). The second version, released in 1987, also included 
principal components analysis and its canonical form which originates from Rao (1964) and is 
now known as redundancy analysis (Van den Wollenberg 1977) or reduced-rank regression 
(Davies & Tso 1982). Onno van Tongeren gave, for the time, a user-friendly interface to 
CANOCO, and helped to migrate the program to MS-DOS. Petr Smilauer developed CanoDraw 
for drawing ordination diagrams. In the third version, released in 1990, ordination diagnostics 
and forward selection were added and the facilities for permutation tests were greatly extended. 

The versions of CANOCO starting from 4.0 have a Windows user interface under Microsoft 
Windows™ 98, ME, Windows NT, 2000, or XP. A console version of CANOCO 4.x continues 
to be available, also for other operating systems. The facilities for permutation tests are further 
extended in versions 4.x to include tests for split-plot designs and related multi-level designs, 
and the scaling of the species scores was also improved. The documentation has been extended 
and hopefully improved. CANOCO 4.5 is now bundled with CanoDraw for Windows, which 
replaces the two programs used in version 4.0 (CanoDraw 3.1 and CanoPost). Data can be 
imported from spreadsheets with the Windows utility, WCanoImp, and several data tables can 
be combined with the CanoMerge program. Program PrCoord provides an easy access to the 
distance-based RDA method for CANOCO users. The whole package is called Canoco for 
Windows. 

1.3 Organization of the chapters 

The Getting Started chapter describes the installation of the software under Windows 
operating systems. Furthermore, it provides tutorial sessions on how to carry out ordination 
analyses, how to make ordination diagrams, and how to import data from spreadsheets under 
Windows. The next chapter gives the background theory, with topics such as interpreting 
ordination diagrams, permutation tests, the stability of ordination axes, and the analysis of 
compositional data. The emphasis here is on aspects that are new or that deserve more attention 
than given in the Data Analysis textbook (Jongman et al. 1987), the Unimodal Models booklet 
(Ter Braak 1987) or its extended version (Ter Braak 1996), which is included with the Canoco 
for Windows package. 

CANOCO requires input data in a special format. Chapter 4 describes how to convert data 
in spreadsheets to one of the CANOCO formats by using the program WCanoImp and how to 
use the CanoMerge program. It also gives examples of valid CANOCO formats, in case you 
need to prepare the data files yourself. 

Chapter 5, on project setup and analysis in Canoco for Windows, describes the Windows 
user interface with which you can define, run and modify ordination analyses. In order to run an 
ordination analysis you must create a CANOCO project with information on your data sets and 

Page 12 Introduction 



the chosen method of ordination. Projects are created and modified with the Project Setup 
Wizard, which guides you through the available options. How to interpret the results of the 
analysis is described in Chapter 6. This Results chapter is also relevant if you run the console 
version of CANOCO. The console version is described in Chapter 7. This chapter is also of 
interest if you wish to understand CANOCO project files, because these have the same format as 
the answer file in the console version. 

Chapter 8 shows how the results of the ordination examples in the Unimodal Models 
booklet can be obtained with CANOCO and Canoco for Windows. The Examples chapter also 
illustrates with real data how the permutation test facilities can be used to test ecological 
hypotheses. 

Chapter 9 describes how to use the PrCoord program to analyze your data by Principal 
Coordinates Analysis (PCO) and how to perform distance-based redundancy analysis (db-RDA). 

Program CanoDraw for Windows is described in the following Chapters 10 to 15. 

1.4 Practical information 

Canoco for Windows requires Microsoft Windows 98 or NT 4.0 or later versions with at 
least 32 MB of internal memory and 64 MB of free disk space for virtual memory. The 
maximum data size that can be analyzed is: 25 000 samples (n), 5000 species (m), 2000 
covariables (p), 1000 environmental variables (q). The maximum number of nonzero values in 
the species data is 750 000, the maximum value for p*n is 1 000 000, and the maximum value 
for (q-8)*n is 500 000. CanoDraw for Windows is able to visualize analysis results for all 
datasets that can be analyzed with Canoco for Windows program. 

Canoco for Windows consists of the following components: 

• canoco.exe console version of the CANOCO 4.0 program 

• canowin.exe Windows version of the CANOCO program, supported by 

• cwinterf.dll support dynamic link library (DLL) 

• can45_64.dll CANOCO engine dynamic link library (DLL) 

• canodat.dll data parsing dynamic link library (DLL) 

• canoimp.exe console version of the Canolmp program 

• wcanoimp.exe Windows version of the Canolmp program (WCanoImp), using 

• canimdll.dll support dynamic link library (DLL) for WCanoImp program 

• canodrw4.exe CanoDraw for Windows 4.0 program 

• canodatc.dll support dynamic link library (DLL) for reading data files 

• loess.dll dynamic link library (DLL) supporting Loess models 

• canomerg.exe CanoMerge program (uses the canodatc.dll library) 

• prcoord.exe PrCoord program (uses the canodatc.dll library) 

• help files (.HLP and .CNT) for Canoco for Windows, CanoDraw for Windows, 
WCanoImp, CanoMerge, and PrCoord programs. 

The console version of CANOCO 4.x is also available as an executable for MS-DOS, the 
Apple Macintosh and OS/2. On these systems, CanoDraw 4.0 and the Windows versions of 
Canoco and other programs can be run only if execution of Windows programs is supported by 
an emulator. With the CANOCO source code package and a FORTRAN 77 or 90 compiler, the 
console version of CANOCO 4.5 can be installed on other systems as well. All these items 
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require a license for the Canoco for Windows package. Please ask the CANOCO distributors for 
further details. 

Technical support is provided by your CANOCO distributor. 

Canoco for Windows is distributed by: 

Microcomputer Power 

Attention: Richard E. Furnas 

111 Clover Lane Dept. Wl 

Ithaca NY 14850-4930, USA. 

Fax (607)-272-0782, phone (607)-272-2188, 

E-mail : FurnasR@microcomputerpower. com 

Web-address: h t t p : / /www.microcomputerpower. com/ 

and 

SCIENTIA Software 
Attention: Janos Podani 

Box 658 

H-1365 Budapest, Hungary. 

Fax +36-1-3812-188, phone +36-1-3812-293 

E-mail: podani@ludens.elte.hu 

Web-address: h t t p : / / r a m e t . e l t e . h u / ~ s c i e n t i a 

1.5 Further reading 

The basic theory behind CANOCO can be found in the Ordination chapter of Jongman et al. 
(1987). A summary is provided by Ter Braak & Prentice (1988, reprinted in Unimodal Models, 
pp 93-138). The extended Unimodal Models booklet, which is distributed with Canoco for 
Windows, describes the state of art on interpreting ordination diagrams on pages 139-188 and 
provides the mathematical theory behind permutation tests (pp 217-223) and reduced-rank 
regression (pp 225-258). A recent and comprehensive account of the theory and its ecological 
applications is given by Legendre & Legendre (1998). The annotated bibliography by Birks et 
al. (1996) is a rich source for finding interesting applications of canonical ordination techniques. 
It lists over 300 publications. A basic reference for experimental design and the analysis of 
variance is Underwood (1996). The ordination web pages of Mike Palmer contain large amount 
of useful information about ordination methods, as well as links to other information sources: 
h t t p : / / w w w . o k s t a t e . e d u / a r t s c i / b o t a n y / o r d i n a t e / 

A discussion forum for ordination topics in community ecology is provided by ORDNEWS, 
a listserv moderated by Steve Bousquin. To subscribe, send an e-mail to: 
l i s t s e r v @ c o l o s t a t e . e d u , do not include a subject in the message and as the only text, 
" s ub s c r i b e ordnews your-name". Replace "your-name" with your actual name. 

The place to look for new information about Canoco for Windows and CanoDraw for 
Windows are the following WWW pages: 
<http://www.canoco.com> 
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2. Getting started 

2.1 Installation 

Canoco for Windows is distributed on one installation compact disc (CD). Before using the 
software on your computer, you must install it with the supplied installation program. To 
remove cleanly the software from your system, you must use the un-install procedure. These 
procedures are described in more detail in this section. 
To install Canoco on your computer, use the following steps: 

• If you install on the Windows NT, Windows 2000, or Windows XP platforms, you must log 
into your computer using an administrative account (typically with the Administrator user 
name). 

• When you insert the installation CD into your CD drive, the installation program can startup 
automatically (depending on the settings used on your computer). 

• Alternatively, you can start the installation program in the following way: from the Start 
menu select the submenu Settings and the command Control Panel (see Figure 2-1). The 
Control Panel window appears and you must run the Add/Remove Programs command in it 
(by double-clicking its icon or by selecting the Open command from its popup menu). In the 
Add/Remove Programs window, select the Add New Programs tab (also called 
Install/l ninstall in the older versions of operating systems). Note that if you are upgrading 

from the version 4.0 of Canoco for Windows package, it is shown in the list at the bottom of 
this windows. You do not need to uninstall it before installing the new version. Then click on 
the CD or Floppy button (Install... button in older versions). Click the Next button when 
asked to do so. After searching the floppy and CD drives, Windows should find the 
installation program (named setup.exe), as shown in Figure 2-2. Click the Finish button to 
start the Canoco for Windows installer. 
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Figure 2-1 Where to start the installation of Canoco for Windows. 
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Figure 2-2 Starting the installer program. 

In a short time, you will see the Welcome dialog box where you have the possibility to cancel 
the installation or to proceed by selecting the Next button. Note that this installation program 
can install Canoco for Windows, CanoDraw for Windows, as well as the other programs of 
the package. The content of the install.txt file (which is later stored in the Canoco directory) 
is displayed on the next page (Installation Instructions). Important comments about the 
installation requirements, as well as the solution for eventual installation problems are given 
in this file. 

After you leave this window (using the Next button), an Registration Information page 
appears (Figure 2-3). Here you must specify a valid user name and name of your company (if 
you are not affiliated to any institution, specify here Private), as well as your official serial 
number. This number is usually displayed on the original envelope for the installation CD or 
on your copy of Canoco manual. If you have a downloaded time-limited trial version, specify 
CAN0000 there. To continue (after filling-in all the three fields), click the Next button. 

Figure 2-3 User Information dialog box. 

In the next page, you have to select the installation directory where the software (both 
Canoco for Windows and the accompanying programs) will be installed. If you are upgrading 
from Canoco for Windows version 4.0, the directory where the original version resides is 
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displayed. You are advised to keep this choice, in such case. If you do a new installation, the 
default directory is c:\canoco but you can change it either by typing the path or by using the 
directory-selection dialog box invoked by the Browse button. To continue with the 
installation, click the Next button. 

• Canoco installation program then asks you whether you want to create backup copies of the 
replaced files. This page appears only if you are upgrading from older version of Canoco for 
Windows. You should select the Yes option if you think about restoring the older Canoco 
version in the future. 

• In the next step, you must choose the package components to be installed. Only the optional 
components are displayed: the Canoco program with several additional programs are always 
installed. The first component (named Canoco Samples) contains the sample Canoco 
projects and data files, most of them are referred to in this manual (Chapter 8); CanoDraw 
Program contains the program CanoDraw for Windows, which is needed to create ordination 
diagrams from Canoco results. To select or un-select any of the facultative components, make 
sure that the checkboxes on the left side of their names are checked / un-checked as 
appropriate (Figure 2-4). 

{I Select Components XJ 

Figure 2-4 Select Components page 

The installation program then asks you to select the Programs menu group, in which the icons 
used for starting the individual programs are to be placed. The default name offered for the 
group is Canoco for Windows, but you can use the selection box to place the icons into any 
of the existing program groups or to specify a completely new name. The name of the 
program group you select here appears as a submenu of the Programs menu in the Start 
menu. 

Then, a window with the license agreement for Canoco for Windows software appears. Study 
its text carefully, as your agreement with it is legally binding. Click on the Yes button if you 
agree, otherwise click the No button and the installation is cancelled. 

A similar license agreement is then displayed for the programs CanoDraw for Windows, 
CanoMerge and PrCoord (all bound with a single agreement). After this page, the Start 
Installation page appears and when you press the Next button, files are copied from the 
installation file into the selected install directory on your hard disk. 
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At the end of the installation, the contents of the README.TXT file are displayed, where 
the important, last-minute information is stored together with the contact addresses of the 
Canoco for Windows retailers. 

The installation program also places two shortcuts in your desktop area, one for starting the 
Canoco for Windows 4.5 program and the other for starting the CanoDraw for Windows 
program. 

To uninstall the Canoco for Windows package, use the following instructions: 

Select the Control Panel item from the Start / Settings menu 

In the Control Panel window start the Add/Remove Programs command. In its window, 
select the Change or Remove Programs (Install/Uninstall, in older versions) tab and look 
for the Canoco for Windows 4.5 item in the list of installed applications. Select that item and 
click the Change/Remove... button. After confirming your choice, the Canoco for Windows 
package is un-installed from your computer, together with related submenus and icons. If the 
installation directory was modified during the use of the package (typically by creating new 
files within it), the directory is retained, together with these additional files. The 
deinstallation program asks you whether you wish a roll-back, which means restoring the 
original files which were replaced during Canoco forWindows 4.5 installation. If you perform 
the roll-back, you must always start from the latest upgrade applied to your Canoco 
installation directory. 

2.2 The first run: DCA 

This is the first tutorial session with the Canoco for Windows 4.5 program. Throughout this 
and other tutorials, we will assume that you have installed the whole Canoco for Windows 
package (including the example data sets) into the c:\canoco directory and placed the program 
icons into the program group named Canoco for Windows. Also, to simplify the description, 
the reader is assumed to use the US version of Windows 2000. In this tutorial, we analyze the 
structure in the Dune Meadow vegetation data (see Appendix A) by Detrended Correspondence 
Analysis (DCA). 

To start the program, select the item Canoco for Windows 4.5 from the Start / Programs / 
Canoco for Windows submenu. The start-up screen appears while Canoco for Windows loads. 
Then you see the Tip of the Day window overlapping the Canoco for Windows workspace. You 
can browse through the tips about the use of the program (by means of the Next Tip button), but 
for now close the tips window using the Close button. 

Study carefully the workspace of the Canoco for Windows program (Figure 2-5): below the 
title bar is the main menu and below it the toolbar row with buttons representing shortcuts to 
frequently used menu commands (alternatively, you can use keyboard shortcuts for many of the 
menu items). 
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Figure 2-5 The CANOCO workspace. 

If you position the mouse pointer over one of the toolbar buttons (for example the one on 
the far left), you can see the tooltip text "New project" and a more detailed description of the 
command in the status line at the bottom of the Canoco for Windows workspace (stating Creates 
new Canoco project file (.CON), for our example). Note that the command corresponding to this 
button is located in the File submenu and if you open that submenu, you can also see that you 
can invoke this command using the keyboard shortcut Ctrl-N (you must hold the key Ctrl down 
and press the key N at the same time). As you can see, some commands are not available at the 
moment (because no Canoco project is open yet) and their menu choices are grayed-out as well 
as the corresponding toolbar buttons. The white space in the Canoco workspace is not for 
typing; it will later on contain windows with information on your ordination analyses. 

Now you will create your first Canoco for Windows project by selecting the File/New 
project command (or pressing the Ctrl-N key combination or by pressing Alt-F followed by N, 
or by clicking the leftmost toolbar button). A new project is created and represented in the 
Canoco for Windows workspace by two related windows (to be described in more detail later). 
Because the project must be first defined before it can be used, the Project Setup Wizard appears 
immediately (Figure 2-6). 
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Figure 2-6 The first page of the Project Setup Wizard. 

The Project Setup Wizard is used to specify all the options and features of the analyses 
available under Canoco for Windows. The Project Setup Wizard is quite similar to other 
"wizards" you might have seen in the Windows operating system when installing new hardware, 
creating a new graph in your spreadsheet program, etc. The Wizard presents you with a series of 
pages on various aspects of the ordination method you want to apply to your data. You can 
progress through the sequence of pages from the beginning to the end using the Next button and 
then finalize the setup (accepting the choices made so far) by clicking the Finish button at the 
last page. Which page appears at a particular moment depends partly on your choices in the 
preceding wizard pages. This is quite similar to the way the console version of Canoco 4.5 
works (and the way the old Canoco versions worked), but two important, time-saving 
improvements are present: 

• you can move backwards to earlier pages to correct mistakes 

• you can easily "clone" a particular analysis and quickly change just a few settings in the new 
copy 

Returning to our tutorial example, we will start with a simple ordination method, the 
classical Detrended Correspondence Analysis (DCA), using the dune meadow data available 
in the Samples\ subdirectory of the Canoco for Windows directory (i.e. in the 
c:\canoco\samples\ directory). In the first Project Setup Wizard page, we will keep the choice 
"Only species data available" and click the Next button. 

As we progress to the next page (Data Files), we see two fields that need to be filled 
(Species data file name and Canoco solution file name). To fill the first one, we click the 
Browse button on its right side. This displays the standard file selection dialog box, with the 
c:\canoco directory used as the home directory. From there, we navigate to the Samples 
subdirectory (by double-clicking the appropriate folder icon) and there select the dunespe.dta 
file (by selecting it and clicking the Open button or by double-clicking it directly). After that, 
we automatically return to the Data Files wizard page, with the path to the species data file 
already filled-in. The Canoco solution file will contain the analysis results and is also used by 
the program CanoDraw to display the ordination diagrams. You might like to separate the 
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project files (to be defined later) and the solution files from the source data and the Canoco for 
Windows package files by placing them into a separate directory. 

To achieve this, click the Browse button next to the Canoco solution file name field. In the 
opened file-selection dialog box navigate into the c:\canoco directory (if you are not already 
there), click the right mouse button to invoke the pop-up menu (to perform the correct action, 
the mouse pointer must not be positioned over any existing file or directory name or icon, when 
the right mouse button is pressed). In the menu, we select the New / Folder command (Figure 
2-7) and rename the newly created directory to Analyses. Then navigate into this folder and in 
the File name field of the file-selection dialog box type the file name dune-dca.sol, and then 
click the Open button. You are automatically returned to the Data Files wizard page and you 
can progress from there using the Next button. Canoco for Windows reads the species data file 
and shows the next wizard page. 
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Figure 2-7 Creating new directory in the File Open dialog box. 

This wizard page (Type of Analysis) is essential for selecting the type of the ordination 
method to be applied to your data. Given our choices in the previous pages, only indirect 
gradient analysis methods are available. The DCA method is already selected as the default 
choice and we will keep this selection. But we can stop for a moment on this page to see how to 
use the Canoco for Windows online documentation. Canoco for Windows features a context-
sensitive help available at two levels of detail: 

• If you click on the question mark in the upper right corner of the wizard page, the mouse 
cursor shape changes. Now its image includes not only the arrow, but also the question mark. 
When in this help-mode, clicking a particular item in the wizard page shows its meaning and 
its expected way of use. You can move the pointer, for example, to the label Unimodal at the 
left side of the wizard page and after clicking on it, you will see a pop-up window with 
a short description of methods based on the unimodal response model. The pop-up window 
disappears as soon as you click somewhere outside of it. 

• If you click the Help button at the bottom right corner of the wizard page the Windows Help 
application starts. The displayed help topic refers to the particular wizard page and features 
a hyper-graphic reproduction of that page. You can get the item-specific information by 
pointing to that item and clicking it with the left mouse button. You can also browse through 
the help pages describing the individual Project Setup Wizard pages, using the « and » 
buttons in the Help window. The individual help topics can be also printed. 

Close the Help window and progress to the next Project Setup Wizard page using the Next 
button. Because we selected a unimodal method with detrending, the next page offers us the 
choice of the detrending method. We will keep the default choice (by segments) and progress to 
the next page. There we are asked about the transformation to be applied to the species data. As 
the species values are already on a log-like scale, no further transformation is needed. 
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The next wizard page allows you to indicate that you want to delete or weight species or 
samples or to make them supplementary (i.e., passive, in older terminology). All the available 
choices are deselected, implying that you do not want to make any changes to our data. The 
choices relating to environmental variables, covariables, and supplementary environmental 
variables are disabled, as these entities are not present in your project. If you check the delete 
box for Species and click the Next button, a list appears containing the species that occur in the 
data file. As you do not want to delete any species, click the Next button again. The Finish 
wizard page appears now, because you have specified all available options. Here you are 
reminded that you can move back to change any options. Otherwise you can confirm your 
choices by clicking the Finish button. Do that now. 

Because you just defined a new project with no name assigned to it, the file-selection dialog 
box appears and you must specify a name for the Canoco project file. The file name is 
automatically given the extension CON, if you do not add the extension yourself. The dialog 
box opens in the c:\canoco directory and you must navigate from there to the Analyses 
subdirectory made earlier in this session. Then write dune-dca in the File name field and click 
the Save button. 

You are now back in the Canoco for Windows workspace and you can study in more detail 
the two views available for each Canoco project. You may wish to maximize the Canoco for 
Windows workspace window and then select the Tile command from the Window submenu. 
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Figure 2-8 The Project View window. 

The Project View has the title Project: dune-dca (Figure 2-8) and summarizes the settings 
used in the project, including the number of samples and variables (species) in the data files. 
This view also has a set of buttons on the right side enabling you to execute the most important 
commands on the corresponding project. The button Options, for example, invokes the Project 
Setup Wizard for modifying the project, the Analyze button runs the ordination method on the 
data sets using the current settings. 
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Log: dune-dca 

[Sun Sep 28 13:53:20 1997] log file created 
REIE3 

[Sun Sep 28 14:55:51 1997] Settings changed 
•[Sun Sep 28 14:58:11 1997] COM file [C:\canoco\Analyses\dune-dca.con] 3ave 

Figure 2-9 The Log View window. 

The Log view has the title Log: dune-dca (Figure 2-9) and records the changes in the 
project during the particular session (the lines starting with date and time in square brackets), as 
well as the output from the project analysis by the Canoco program (the other lines). The log is 
editable, so you can remove text from it or add your own comments. You can also copy the text 
from the log to the Windows Clipboard and paste it into your preferred word processor, you can 
save the contents of the log window to a text file, or you can print it. 

You can switch between the two related views for a particular project by any of the 
following methods: 

• use the following toolbar button:lB—' 
• use the F3 keyboard shortcut defined for this purpose 

• select the appropriate view from the list of open windows at the bottom of the Window 
submenu 

• or, if visible, click on the view you wish to activate. 
To carry out the actual ordination analysis of the dune meadow data, make sure that the Project 
View is active and not the Log View, and then click the Analyze... button on the right side of 
the Project View. Alternatively, 

• click the ! H button on the toolbar, or 

• select from the Project submenu the Analyze command, or 

• use the Ctrl-A keyboard shortcut 
The progress box appears, informing you about the progress of the analysis. After the 

analysis is completed, switch to the Log View by clicking on the log-window or by clicking the 
switch button on toolbar and maximize the window. The output of the analysis is stored in this 
window and concludes with the message "[DATE TIME] CANOCO call succeeded". The 
summary of the analysis (eigenvalues, lengths of gradient etc.) is shown. You can scroll to the 
beginning of the log. The log corresponds to the output file of the console version of Canoco 4.5 
and is described in section 6.2. 

Here the first tutorial session ends and you can close the Canoco for Windows application 
by the Ctrl-X keyboard shortcut. Canoco first asks whether to save the changed log as a file. 
You can ignore this log and click the No button (clicking Cancel would cancel the Close 
command). 
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2.3 Importing data from a spreadsheet 

The Canoco for Windows 4.5 package comes with a simple, but versatile utility for 
importing data files from your spreadsheet documents. The utility comes in two forms: 

• the console program canoimp.exe which parses a TAB-separated file and converts it to the 
requested Canoco-compatible format. This program has a larger capacity, but is less user 
friendly than the other form 

• the Windows - based utility wcanoimp.exe which reads the data table from the Windows 
Clipboard and saves it in a Canoco-compatible format with the requested properties. 

In this tutorial, only the second (Windows - based) utility is demonstrated; a more detailed 
description of both programs appears in Chapter 4: Data input. The samples subdirectory in the 
Canoco for Windows installation directory (i.e. the directory c:\canoco\samples for our 
examples) contains a file named dune_env.xls, in the format of Microsoft Excel version 3.0. 

To transform this spreadsheet into Canoco data file, open it in your favourite spreadsheet 
program (Excel or other program) and then select the whole data table, including names of the 
variables (in the first row) and names of the samples (in the first column), as shown in Figure 
2-10. Then copy the selected block of data to the Windows Clipboard. To do so, select the Copy 
command, typically placed in the Edit submenu of your spreadsheet program. The keyboard 
shortcut Ctrl-Ins works for most programs, as well. After you have done that, start the 
WCanoImp program. You can select the WCanoImp item in the Start / Programs / Canoco 
for Windows menu. 

Figure 2-10 Selecting the data table in the spreadsheet application. 

The WCanoImp window appears, showing you (in its top half) the instructions for its usage. 
Note that you have already performed almost all of the required steps. Before you click the Save 
button, you must review the option settings in the bottom half of the WCanoImp window. The 
first option (Each column is a Sample) should be checked only if the original data table needs 
to be transposed to conform to the Canoco data formats, where samples are arranged row-wise. 
The next two options for generating labels are not appropriate for our situation, as we have both 
variable and sample labels available in the copied block. The last option (Save in Condensed 
format) is often used with tables containing species data, which are usually very sparse, but this 
choice brings no advantage for our data (explanatory variables). 
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After pressing the Save button, the file-selection dialog box appears and we must specify 
a name for the file to be created as well as its directory. Navigate to the c:\canoco\Analyses 
directory and write dune_env.dta as the name of the file. The next dialog box allows you to 
specify the title line stored in the Canoco data file (see the description of file formats in Chapter 
4). You can write there anything you like, restricting yourself to a maximum of 80 characters. 

After selecting the OK button, WCanoImp produces the file and tells us about it with the 
Created requested data file message box. Close the WCanoImp program using the Exit button. 

2.4 The second run: CCA 

In this tutorial, we analyze the relationship between the species and the environmental 
variables in the Dune Meadow data by Canonical Correspondence Analysis (CCA) and 
determine the statistical significance of this relation by a Monte Carlo permutation test. We do 
this by modifying the Canoco project we created in section 2.2. 

Begin by starting the Canoco for Windows program, using the method outlined in section 
2.2. If the Tip of the Day window appears, you can close it using the Close button. If you open 
the File submenu of the Canoco for Windows menu, you can see a list of the most recently used 
Canoco projects at its bottom (just above the Exit command). If you have worked through the 
tutorial from section 2.2 recently, the item C:\canoco\analyses\dune-dca.con will be present 
there. By selecting that item, the corresponding project file is opened. We want to keep the 
previous DCA project and therefore create a "clone" of the original Canoco project. This can be 
done with the File / Save As... menu command or with the toolbar button with the red question 
mark. Canoco displays the file-selection dialog box, offering the original file name as the default 
value in the File name field. Change the name from dune-dca to dune-cca. After closing the 
dialog box, the current project settings are saved into the new project file dune-cca. Then 
Canoco asks us whether to clear the log window. Select the Yes button here. We now modify the 
project settings by invoking the Project Setup Wizard (e.g. by clicking the Options... button in 
the Project View). 

Because we want to include environmental data in the analysis, select the Species and 
environmental data available option in the first wizard page. The selection at the bottom is 
automatically adjusted to the extract patterns from the explained variation only option. This 
is appropriate for obtaining a direct gradient analysis, such as CCA. Click the Next button at the 
bottom of the wizard page. 

Because of the changes in the previous page, you need to supply the name of the file with 
environmental variables in the second edit field in the Data Files wizard page. Click the Browse 
button on the right side and select the duneenv.dta file in the c:\canpco\Samples directory (not 
the file you created in section 2.3!). Also change the name of the solution file from dune-dca.sol 
to dune-cca.sol, at the bottom of this wizard page, but you may also wish to change the name 
later when you are warned against overwriting by Canoco for Windows. 

Clicking the Next button brings you to the Type of Analysis wizard page, where (due to the 
change in the first wizard page) the CCA method is already selected. From there you progress to 
the wizard page titled Scaling: Unimodal Methods. Here you can select the method for the 
scaling of the ordination scores. Given this project was based on the DCA analysis, the value for 
the Scaling type may not be appropriate. Select biplot scaling instead of Hill's scaling and 
press the Next button. 

Change nothing on the Transformation of Species Data wizard page. In the Data Editing 
Choices wizard page check the Delete option for environmental variables to be able to see 
which environmental variables are included in the analysis. In the next wizard page, all ten 
environmental variables of the Dune Meadow data are listed. As we do not want to delete any, 
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click the Next button again. The next wizard page is about Forward Selection of 
Environmental Variables.- We will not use this method in our tutorial (the default choice), so 
click the Next button again. In the following wizard page (Global Permutation Test), change 
the choice from Do not perform the test to Both above tests. This specifies that Canoco will 
perform two Monte Carlo permutation tests, one based on the first canonical ordination axis and 
one based on all canonical axes (i.e. on all variability explained by the environmental variables). 
You are asked to specify the type of the permutation test in the next wizard page. Keep the 
choice of Unrestricted permutations. After clicking the Next button, the Finish Options page 
is displayed. Click the Finish button there. 

Now run the modified analysis project, using (for example) the Analyze... button in the 
Project View. The progress dialog indicates how Canoco proceeds with the analysis, including 
the Monte Carlo permutations. After completion of the analysis, switch to the log-window to see 
the result of the permutation test. Both reported P-values are less than 0.05 so that we conclude 
that the relation between the species and the ten environmental variables is statistically 
significant at the 5% significance level. Higher up in the window you find the summary of the 
ordination analysis and the means and correlations of the environmental variables. 

As the last task in this tutorial, we take a quick tour of the CanoDraw program. The use of 
this program is described in more detail in the chapters 10 to 14 of this manual. Click the 
CanoDraw... button in the Project View to start the program. Canoco for Windows asks 
CanoDraw to automatically open the active Canoco project file, and CanoDraw asks you about 
the name, under which the new CanoDraw project should be saved (using the Save As dialog 
box). This is typically the same name as it was used for the Canoco project, except that the file 
extension is changed from .con to .cdw. Then select the Project / Nominal variables / 
Environmental variables command from the program submenu. Select all the variables, except 
the first three ones, in the left-hand list and click the Select » button to move them into the 
right-hand list. Close this dialog using the OK button. 

Then in the CanoDraw program select, in the Create submenu, the Biplots and Joint Plots 
and, from this submenu, the Species and env. variables option. This creates a biplot with 
species and environmental variables (with nominal environmental variables represented by 
symbols). The graph can be further adjusted by repositioning the labels, changing symbol types 
or text of the labels, but we will only store the graph for an eventual later exploration or 
modification. Select the File / Save command and optionally change the graph name in the File 
name: field of the Save As dialog box. 

You will end our short trip to CanoDraw program here, by selecting the File / Exit menu 
command from the CanoDraw menu (selecting Yes when asked about saving the changes in the 
dune-cca.cdw project). 

2.5 The third run: RDA 

In the next tutorial, you will analyze the dune meadow data using a constrained linear 
ordination method (redundancy analysis, RDA). The beta diversity of the species data is not as 
high as to make the application of a linear method to this dataset nonsensical. You will also see 
in this tutorial how the Canoco for Windows program enables us to rank the importance of the 
individual explanatory variables, using Automatic Forward selection of environmental 
variables. 

You will start from the existing project file, namely the dune-cca.con project. If you closed 
the Canoco for Windows application after the last tutorial, you must reopen it now and open the 
dune-cca project as well. You can take a shortcut for both steps: assuming the Canoco for 
Windows program is not running, go into the Start menu, open the Documents submenu and 
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there you will find the dune-cca label (preceded by a small icon which Canoco for Windows 
uses to identify the Project Views). Alternatively, you can use the Windows Explorer application 
to navigate to the c:\canoco\analyses directory and double click the dune-cca icon there. Yet 
another method to open an existing Canoco project file is to drag the file icon from the Windows 
Explorer area and drop it onto Canoco for Windows workspace. 

In the Canoco for Windows workspace, select the Project View and save the project under 
a new name (using the File/Save As... menu command): dune-rda.con. Confirm the clearing of 
the log window, when Canoco asks about it. Now you must change the actual project settings. 
Click on the Options... button in the Project View to open the Project Setup Wizard. 

Do not change anything in its first page (Available Data) and progress to the second one 
(using the Next button). In the second page, only the name of the solution file has to be changed 
(to something like c:\canoco\anaIyses\dune-rda.sol). On the following page (Type of 
Analysis), change the selection from CCA to RDA. Keep the choices on the next two pages 
(Scaling: Linear Methods; Transformation of Species Data). Then the wizard page with title 
Centering and Standardization appears and there you change the option on its right side from 
Center by species to Center and standardize, to get an analysis based on the matrix of 
correlation coefficients (rather than on the matrix of covariances). In the next wizard page (Data 
Editing Choices), you will delete one sample, make one species supplementary (passive in the 
terminology of the CANOCO 3.x), and define a single interaction term between two explanatory 
variables, all just for demonstration purposes. You need to tell to Canoco for Windows now that 
you want to do those operations by checking the corresponding boxes (see Figure 2-11). 
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Figure 2-11 Data Editing Choices in the Project Setup Wizard. 

If you then press the Next button, a wizard page titled Delete Samples appears. On its left 
side is a list of names of samples which occur in the species data file (dunespe.dta). This list is 
labeled Source pool. You can move one or many samples from this pool into the pool of 
samples to be omitted from the analysis by selecting them and then clicking the » button. This 
command moves the selected sample labels to the list on the right side of the wizard page. Note 
that we can select a single sample by clicking on it using the left mouse button or we can select 
a group of contiguous sample labels by selecting the first item in the group and then selecting 
the last one while holding the Shift key down. A non-contiguous set of labels can be selected by 
combining the clicking on the labels (using the left mouse button) whilst holding the Ctrl key 
down. Also note that because the dunespe.dta data set does not have the samples numbered 
contiguously, empty lines appear in the list (namely between the samples named Samplel7 and 
SupplSAM and the samples Duplicl7 and SamplelS. As an exercise, you will delete the last 
sample on the list, with the label Sample20 (you need to progress to the bottom of the list using 
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the scroll-bar on its right side). Click on the Sample20 label to select it and then click the » 
button. The label moves to the right-hand listbox. If you change our mind and want to move the 
sample back (i.e. not to delete it in our analysis), you have to select it in the right listbox and 
click on the « button. 

In the next wizard page (Supplementary Species) make the first species (Ach mil) 
supplementary using a similar technique. Species (or samples, if selected in similar way) which 
are supplementary do not actively influence the solution produced by the ordination method, but 
they are passively projected into the resulting ordination space, based on their occurrences in the 
data. 

The next wizard page (Interactions of Env. variables) allows us to specify an interaction 
between two environmental (explanatory) variables. The interactions are defined in the Canoco 
program as simple products of the interacting terms. As you can see, the first environmental 
variable (Al - thickness of the upper soil horizon) is preselected in the top left list and the 
second environmental variable (Moisture) in the top right list. Change the selection, 
nevertheless, to the variable Moisture in the First variable list and to the variable Manure in 
the Second variable list. Then click the Add button. The interaction term appears in the bottom 
list (titled Powers and product variables) - see Figure 2-12. The newly created term appears in 
both source listboxes, as well, so that more complicated interactions can be defined. 

Interactions of Environmental Variables JLJXJ 

Fi/st variable Second variable 

Add | 

fjemove 

Cancel Help 

Figure 2-12 Interactions of Environmental variables in the 
Project Setup Wizard. 

Clicking the Next button brings us to the page titled Forward Selection of Env. variables. 
Select here the Automatic selection option instead of the default one (which says Do not use 
forward selection). Canoco for Windows informs us that we can select at most eleven 
environmental variables (including the just defined interaction term). Also, the tests of the 
significance of the effect of the environmental variables in the individual steps of the forward 
selection is preselected (in the use Monte Carlo Permutation Tests option). Each permutation 
test will be based on 499 random permutations. The next wizard page allows us to specify 
possible restrictions on the permutation, based on the specific properties of our sampling design. 
As our dune data set does not have any such specific properties, we keep the Unrestricted 
permutations option, allowing for completely random permutation of the samples. Clicking the 
Next button brings us to the Finish option page. 
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Now save the changed project settings to the project file (using the keyboard short-cut Ctrl-
V, for example) and run the analysis (by pressing the Ctrl-A key combination). You must 
exercise some patience, as Canoco for Windows does a permutation test on each of the eleven 
explanatory variables, during the forward selection. You can inspect the log file for a detailed 
description of the stepwise selection done by Canoco, but Canoco for Windows also provides 
a short summary of the automatic forward selection. To see it, press the FS summary button in 
the Project View. A dialog box similar to that in Figure 2-13 appears. 
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Figure 2-13 Forward Selection summary. 

In the table in the upper part of the dialog box, the marginal effects of the explanatory 
variables are displayed, ordered from the variable with the highest explanatory power (at the top 
of the list) to the variable with the minimum ability to explain patterns in the species data (at the 
bottom of the list). In the summary presented in the upper part of this dialog box, each variable 
is judged separately, without considering the effect of the other explanatory variables. 

On the other hand, the sequence of the variables in the bottom part of the dialog box is 
obtained by the stepwise selection procedure. In this procedure, the explanatory variable best 
fitting the species data is selected first and then, the next best fitting variable is added. Before 
each addition, the significance of the explanatory effect of the candidate variable is evaluated 
using the Monte Carlo permutation test. The table in the bottom part of the dialog box records 
not only the amount of the variability in species data, explained by the particular environmental 
variable when included into the set of selected explanatory variables, but also the results of the 
corresponding Monte Carlo permutation test (the column showing the value of the F statistics 
and the estimate of the probability of the Type I error). The last two columns are displayed only 
if Monte Carlo permutation testing during forward selection was selected in the analysis setup. 

Both tables can be copied to the Windows Clipboard by clicking the Copy button at the 
bottom. From there, they can be pasted into a document or a spreadsheet. The values are TAB-
separated. To paste the tables into a spreadsheet, start your spreadsheet application (or switch to 
it, if it is already running), click on an empty sheet and select Paste from the Edit menu. 

Note that the Automatic Forward selection procedure is not available in the console version 
ofCANOCO 4.5. 
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3. Background theory 

3.1 General objective 

CANOCO, an acronym for CANOnical Community Ordination, is designed for data 
analysis in community ecology. Researchers in other disciplines should consult Table 3.1 for the 
terminology used in this manual. Canonical ordination is a class of techniques for relating the 
species composition of communities to their environment. Data analysis by canonical ordination 
can either be exploratory or confirmatory. When used in an exploratory way, it leads to an 
ordination diagram of samples, species, and environmental variables, which optimally displays 
how community composition varies with the environment. When used in a confirmatory way, it 
leads to statistical tests of the effects of particular environmental variables on community 
composition taking into account the effect of other variables. The theory of this is given in the 
book by Jongman et al. (1987) and the collection of papers in the book "Unimodal models to 
relate species to environment", in particular Ter Braak and Prentice (1987). 

3.2 Terminology 

The terminology (Table 3.1) used in CANOCO stems from typical applications in 
community ecology. CANOCO operates on species, environmental variables, and covariables 
(Table 3.1). Ordination is applied to the species data, which are typically data on abundances or 
incidences (i.e. presence-absence) of a set of species in a set of samples. The variation in the 
species data is to be explained via the ordination axes by environmental variables and 
covariables. Environmental variables are the explanatory variables of prime interest. Covariables 
are concomitant variables whose effect must be partialled out when estimating the effects of the 
environmental variables. When one wants a constrained ordination, the number of 
environmental variables and covariables must be smaller than the number of samples; otherwise 
constrained ordination and unconstrained ordination coincide. There is no such limit on the 
number of species; the lower limit is 1 in the case of PCA/RDA and 2 in the case of 
CA/DCA/CCA. 

Of course, there is nothing special about the terms used. They have a formal meaning only 
(Table 3.1). For example, if one wants an ordination of environmental variables, then this is 
easily done by entering the name of the data file containing these variables at the point where 
one usually specifies a file with species data. 

Background theory Page 33 



Table 3.1 Terminology used in CANOCO, with commonly used synonyms. 

Term 

Abundance/response 

Biplot 

Canonical axis 

Canonical eigenvalue 

Canonical ordination 

Community 

Covariable 

Direct gradient analysis 

Eigenvalue 

Environmental variable 

Gradient 

Indirect gradient analysis 

Joint plot 

Linear method 

Explanation 

value of a response variable, usually positive 
orO 

an ordination diagram of two kinds of entities 
which can be interpreted by the biplot rule. 
Interpretation proceeds by projecting points 
on directions defined by arrows in the biplot 
(e.g. Fig 3. on page 77 of Unimodal Models). 
See section 3.5 

an ordination axis that is constrained to be 
a linear combination of environmental 
variables 

eigenvalue of a canonical axis 

an ordination in which the axes are 
constrained to be linear combinations of 
environmental variables 

a set of individuals pertaining to several 
species occurring together in a given area at 
a given time; assemblage 

concomitant variable, background variable, 
explanatory variables corresponding to 
incidental or nuisance parameters, block 
factor in experimental design 
external analysis, canonical ordination, 
ordination constrained by external variables, 
constrained multivariate regression, reduced-
rank regression, direct comparison 

importance measure of an ordination axis 

explanatory variable (of prime interest), 
independent variable in a regression 
equation, external variable, stimulus variable, 
treatment variable 

latent environmental variable, see ordination 
axis 

internal analysis, "factor analysis", 
unconstrained ordination, indirect 
comparison, metric scaling or 
multidimensional scaling, possibly followed 
post-hoc by a regression analysis on external 
variables 

an ordination diagram of two kinds of entities 
which can be interpreted by the centroid 
principle. See section 3.5 

method based on a linear model, e.g. linear 
regression, multiple regression, principal 
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Term Explanation 

Ordination 

Ordination axis 

Ordination diagram 

Sample 

Sample score 

Species 

Species score 

Supplementary sample 

Supplementary variable 

Triplot 

Weighted averaging method 

components analysis, redundancy analysis 

see Indirect gradient analysis 

eigenvector, latent variable, theoretical 
explanatory variable 

scatter plot of the eigenvector scores; used 
both for biplots and joint plots 

sampling unit, individual, object, site 

position of a sample along an ordination axis; 
eigenvector value of a sample 
response variable, dependent variable in 
a regression equation, internal variable 

value of a species on an ordination axis; 
eigenvector coefficient; loading in PCA, 
center of species curve in CA and DCA 

sample added post-hoc to the ordination by 
projection. Called passive sample in 
CANOCO 3.0 

variable (species or environmental variable) 
added post-hoc to the ordination by 
projection. Called passive variable in 
CANOCO 3.0 

an ordination diagram with three kinds of 
entities of which all pairs form biplots. 
Examples are the RDA and CCA triplots that 
consist of samples, species and 
environmental variables (often also called 
biplots) 

method based on a unimodal response model 
of which the optimum (mode, ideal point) is 
estimated by weighted averaging, e.g. 
correspondence analysis 

3.3 Models, methods, and algorithms 

In this section we outline the methods available in CANOCO, the models on which they are 
based, and algorithms which are used. For more information consult Chapter 5 in Jongman et al. 
(1987) and Unimodal Models. 

Canonical ordination is a combination of ordination and multiple regression. Ordination 
techniques such as principal components and correspondence analysis (= reciprocal averaging) 
are commonly used to reduce the variation in community composition to the scatter of samples 
and species in an ordination diagram. Subsequently the diagram is interpreted with the help of 
external data, for example by calculating correlation coefficients between environmental 
variables and ordination axes, or by multiple regression of the ordination axes on environmental 
variables. 
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A difficulty here is that the ordination axes are just particular orthogonal directions in the 
ordination diagram. Other directions may well be better related to the environmental variables. 
Canonical ordination is a solution to this difficulty. The regression model is inserted in the 
ordination model. As a result the ordination axes appear in order of variance explained by linear 
combinations of environmental variables. 

The ordination technique of correspondence analysis was introduced in ecology by way of 
the reciprocal averaging algorithm (Hill, 1973a), also called the two-way weighted averaging 
algorithm. It is an iterative ordination algorithm: from initial arbitrary sample scores, species 
scores are obtained, from which new samples scores are derived, from which new species scores 
are derived, and so on. 

0.0 
X (First PCA axis) 

Figure 3-1 Linear response model in PCA and RDA. 
Straight lines for the abundance of six plant species along the first axis of 
principal components analysis (X), applied to the dune meadow data. 

Principal components analysis can be obtained by a similar algorithm by taking weighted 
sums, instead of weighted averages (Jongman et al. 1987: section 5.3). Canonical ordination 
techniques can be obtained by carrying out multiple regressions within the iterative algorithm: 
each time new sample scores are derived, they are regressed on the environmental variables 
(instead of just once after an ordination). CANOCO uses this kind of iterative ordination 
algorithm. Details of the algorithm are given in the appendix of Ter Braak & Prentice (1988, 
pages 93 - 138 in Unimodal Models). The resulting species scores are parameters of response 
curves of species with respect to the ordination axis. In linear methods to which principal 
components analysis belongs, the response "curves" are straight lines (Figure 3-1) and the 
species scores are slope parameters. In weighted averaging methods to which correspondence 
analysis belongs, the response curves are unimodal (Figure 3-2) and the species scores can be 
considered as the centers of the curves. For symmetric response curves that are sampled over 
their full range, the center is equal to the optimum of the curve. 
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X (First DCA axis) 

Figure 3-2 Unimodal response model in (D)CA and CCA. 
Response curves for the count (u) of 12 species of wolf spiders in a dune area, along the 
first axis of detrended correspondence analysis (X) applied to data of Van der Aart 
& Smeenk-Enserink (1975). 

In their theory of gradient analysis, Ter Braak & Prentice (1988) introduce six types of 
data-analysis problems on the basis of the linear and unimodal response models in Figure 3-1 
and Figure 3-2: 

1. Regression: When there is just a single, known explanatory variable, the slope of each line 
in Figure 3-1 would have been estimated by simple linear regression and the center of each 
curve in Figure 3-2 by weighted averaging "regression". 

2. Calibration: If there are some samples for which the value of the explanatory variable is 
missing, the values can be estimated from the species composition of those samples by 
seeking for each such sample the value of the environmental variable that is most likely to 
give the observed species composition as judged by the response curves in the Figures. This 
gives linear calibration in Figure 3-1 and weighted averaging calibration in Figure 3-2. 

3. Ordination: When all values of the explanatory variable are missing, one could still attempt 
to construct a theoretical variable that best fits the species data according to a linear model 
or a unimodal model. The theoretical variable is the first ordination axis found by the 
iterative ordination algorithm. The algorithm is essentially a converging sequence of 
regressions and calibrations. The sample scores are the values that the theoretical variable 
takes in the samples. The theoretical variable/ordination axis has no environmental basis. In 
CANOCO, the linear method of ordination is principal component analysis (PCA), whereas 
the unimodal methods of ordination are correspondence analysis (CA) and detrended 
correspondence analysis (DCA). 

4. Canonical ordination: With the additional constraint that the ordination axis must be 
a linear combination of environmental variables we obtain canonical ordination. Canonical 
ordination is thus a particular form of constrained ordination. It has an environmental basis. 
In CANOCO, the linear method of canonical ordination is redundancy analysis (RDA), 
whereas the unimodal methods of ordination are canonical correspondence analysis (CCA) 
and detrended canonical correspondence analysis (DCCA). 

5. Partial ordination: One can also apply ordination to the variation in the community data 
that remains after known environmental variables have been fitted by regression. Ordination 
of the residual variation is called partial ordination: the effect of particular variables is 
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partialled out (eliminated) from the ordination. The variables of which the effects are 
partialled out are called covariables. 

6. Partial canonical ordination: When the axes of a partial ordination are constrained to be 
linear combinations of particular environmental variables, we obtain a partial canonical 
ordination. 

CANOCO provides the solutions to the data analytical problems numbered 3-6. The 
solutions are obtained by the iterative ordination algorithm that is detailed in the Appendix of 
Ter Braak & Prentice (1988). For the unimodal methods this is a weighted averaging algorithm. 
Under particular conditions the weighted averaging methods are a close approximation to 
maximum likelihood methods based on unimodal, Gaussian models (Ter Braak 1986). These are 
more formal statistical methods which require heavy computation and which are therefore less 
attractive for routine use. One cannot obtain them with CANOCO. But CANOCO is useful to 
obtain starting values for these maximum likelihood methods. 

Although CANOCO can solve some regression and calibration problems, it is not handy to 
use CANOCO for this. CanoDraw for Windows has some regression facilities, including the 
(Gaussian) logit regression and Poisson loglinear regression. These can be used to regress 
individual species to ordination axes, such as in Figs 5.8 and 5.10 in Jongman et al (1987) and 
Fig. 4 in Ter Braak & Prentice (1988). For calibration based on weighted averaging methods, 
see Ter Braak & Juggins (1993), the program Calibrate (Juggins & Ter Braak, 1993), or the 
program WACALIB (Line et al. 1994) 

It may come as a surprise that canonical correlation analysis (Gittins, 1985) is missing in the 
above list of methods, as this is the standard linear multivariate technique for relating two sets of 
variables (in our case, the set of species and the set of environmental variables). In its place 
comes the lesser known technique of redundancy analysis, alias least-squares reduced-rank 
regression. The most important difference between these techniques is that redundancy analysis 
can analyze any number of species, whereas in canonical correlation analysis the number of 
species must be less than n-q with n the number of samples and q the number of environmental 
variables. The latter restriction makes canonical correlation analysis unattractive for most studies 
in community ecology. More details about the difference are given in Ter Braak & Looman 
(1994, Unimodal Models pp. 238 - 258). Another major difference is that the two groups of 
variables play the same role, as in correlation analysis. In RDA and reduced-rank regression on 
the contrary, distinction is made between response (species) variables and explanatory 
(environmental) variables, as in regression analysis. 

CANOCO is particularly efficient for ordination of sparse data sets (data containing many 
zero values compared to the number of nonzero values). It is quite common in community data 
that the average number of species present in a sample is in the order of 10-30, whereas the total 
number of species in the data set is in the order of 100-1000. By not storing zero values, a large 
saving of memory space and of computer time is achieved. The iterative ordination algorithm 
used by CANOCO is specially designed to make storage of zero values unnecessary. It uses 
methods of calculation that are efficient for sparse data. This design makes CANOCO efficient 
also for the ordination of nominal response data (section 3.10). 

An ordination yields sets of scores for species, samples and, if present, environmental 
variables along ordination axes. Section 6.3 details how the ordination scores of species, 
samples and environmental variables are related. The relationships are given per ordination axis, 
either in the form of a simple linear regression or in the form a weighted average. It is important 
to note that the same relationships carry through for all ordination axes simultaneously. 
Multivariate equations are not needed: because the ordination axes (eigenvectors) are 
orthogonal, multivariate equations can be simplified to equations per ordination axis, as 
explained above equation (3.3) on page 40. In particular, the sample scores (or, in canonical 
methods, the sample scores that are linear combinations of environmental variables) of one axis 
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are orthogonal to those of another; they are also uncorrelated, as can be verified in the 
correlation matrix in the log-window (section 6.2.4). Also, the species scores of one axis are 
orthogonal (but not necessarily uncorrelated) to those of another axis, except in DCA with 
detrending-by-segments. 

3.4 The two faces of (canonical) correspondence analysis 

In the previous section, correspondence analysis (CA) and canonical correspondence 
analysis (CCA) were presented as methods for analyzing unimodal data. However, CA and CCA 
are chameleons: in the one context they show up as unimodal methods, whereas in another they 
show up as linear methods. These two faces are discussed in Ter Braak & Verdonschot (1995: 
pp 263-265 and p. 278; pages 153-187 in Unimodal Models). They conclude that the common 
element in all theoretical derivations is that CA and CCA model relative abundance instead of 
the absolute abundance. See also section 3.9.4. 

The Results chapter (in particular, section 6.3) presents both faces of CA and CCA. In the 
unimodal context, species scores are weighted averages of sample scores, and vice versa (see 
equations (6.11) and (6.20) on pages 158 and 161), whereas in the linear context, the species 
scores are derived from a weighted linear regression of transformed species data on to the 
sample scores, and vice versa (see equations (6.17) and (6.25) on pages 159 and 163). Both 
types of formulae are given in Table 6.33 and Table 6.36 for CA and CCA, respectively. The 
ordination diagnostics have been developed in either context (section 6.3.11). The linear context 
is most useful when the gradients are short (<3 SD), and the unimodal context when the 
gradients are long (>4 SD). For intermediate gradient lengths either context may be useful. See 
also section 3.9.4. 

3.5 Interpreting ordination diagrams 

An ordination diagram with both samples and species can display either the relationships 
among samples or the relationship among species in an optimal way, but not both. The 
difference between the two types of diagrams is simple: the ordination axes of one type are 
a linear rescaling of those of the other. A compromise scaling is also possible (Table 6.2 and 
Table 6.3). In a diagram that optimally displays inter-sample relationships, the variance of the 
sample scores on each ordination axis reflects the importance of the axis as measured by the 
eigenvalue, whereas the variances of the species scores along the axes are equal (or, in the so-
called Hill's scaling, about equal). As a consequence, the sample scores on the first axis will 
show a larger spread than on the second axis. This type of diagram also allows you to interpret 
distances between centroids of groups of samples (as specified by nominal environmental 
variables, see section 6.3.10). In contrast, in a diagram that optimally displays the inter-species 
relationships, the variance of the species scores on each ordination axis reflects the importance 
of the axis, whereas the variances of the sample scores along the axes are equal (or, in Hill's 
scaling, about equal). As a consequence, the species scores on the first axis will show a larger 
spread than on the second axis. See also Table 6.26 and Table 6.34. 

How to interpret plots of species, samples, and environmental variables can be understood 
from the interrelationships between their scores along each ordination axis (section 6.3). There 
are two important types of interrelations, centroid relations and regression relations, leading to 
the centroid principle and the biplot rule, respectively. 

1. Centroid relation. In a default CA or CCA, a species score is a weighted average of the 
sample scores. Therefore, the species' point in the CA or CCA ordination diagram is at the 
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centroid of the sample points where it occurs. The samples that contain the species are thus 
scattered around that species' point in the diagram. This way of interpreting species-sample 
diagrams is called the centroid principle. Such ordination diagrams are called joint plots. 

2. Regression relation. In PCA and RDA, the species score is obtained by regression of the 
species data on to the samples scores. The species score is thus a slope parameter. The position 
of the species point, with respect to the origin (0,0) of the diagram, thus tells us the rate of 
change of the fitted species abundance along each of the axes. By connecting the point (0,0) with 
the species point we obtain an arrow: the arrow points in the direction in which the species' 
abundance value increases at the largest rate across the ordination diagram. The rate of change in 
the orthogonal direction is 0. Such plots are called biplots and are interpreted by the biplot rule. 
The biplot rule works as follows (for an illustration see page 145 of Unimodal Models or page 
128 in Jongman et al. 1987). By connecting the origin point (0,0) with the species point, an 
arrow is obtained that points in the direction of increasing fitted values. The arrow can be 
extended on either side to form a line. By projecting the sample points on the line and ranking 
the projection points, a ranking can be obtained of the fitted values for that particular species. 
We can also start with a particular sample, draw a line through the origin and the sample, and 
project the species points on the line. The projection points give the rank of the fitted values for 
that particular sample. 

Because of the ubiquity of biplots in CANOCO, we give a more formal and general 
description here. Let the data table have values {a;k} [i = 1, ... , I; k = 1,... , K], Suppose the 
rows have known scores {rjs} [ i = 1, ..., I] on each axis s [s = 1, 2]. We now derive for the Mi 
column its scores (cki , Ck2) by a weighted linear regression of the kX\i column of the data table on 
to the row scores (rn, i^) using weights {WJ} for the rows, i.e. we find the scores (Cki , c^) by 
minimizing the least-squares criterion 

(3.1) Si Wj {aik - (cki rn + Ck2 r i2)}
2 

The fitted values of the model are 

(3.2) a ik = Cki r n + Ck2 r i2 

If the row scores are orthogonal (e.g. have zero mean and zero correlation), the optimal score Cks 

(s = 1,2) is given by the simple formula 

(3.3) Cks = Si Wiaik ris / 2j w; ris
2 

The direction of maximum change makes an angle of 0 with the first axis, where 9 = arctan(ck2 / 
Cki). This direction can be indicated in the ordination diagram by an arrow running from the 
origin (0,0) to the point with coordinates (Cki, c^)- See pages 134-135 in Jongman et al. (1987). 
Because (3.2) is symmetric in "c" and "r", the biplot rule can be applied both row-wise and 

column-wise. The biplot exactly represents the fitted values a ik, and approximately represents 
the original data table {a;k}. The representation is optimal, given the positions of the row points, 
as judged by the least-squares criterion (3.1). 

In the exposition above we can also interchange rows and columns, resulting in a biplot 
which is optimal conditionally on the positions of the column points. In many instances in 
CANOCO, the column points are not only the result of a regression on the row points but, also, 
vice versa, the row points are the result of a regression on the column points. Such biplots 
minimize (3.1) unconditionally and are thus optimal unconditionally. 

Equations of the form (3.3) can be found on page 158, equation (6.9), and on page 161, 
equation (6.19), but could also be given in other places. Examples are: 
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• The environmental biplot scores (Table 6.29 and section 6.3.9) are the result of a weighted 
regression of a table of correlation coefficients on the species scores in linear methods 
(weights {Wk}). The equivalent of (3.3) for this case reduces to (6.32) as shown in section 
17.1. The species scores and environmental biplot scores thus together form a biplot that 
displays the fitted correlation coefficients. In unimodal methods, the table of correlations is 
replaced by a table of weighted averages of the species with respect to environmental 
variables (Table 6.38 and section 17.1). 

• The environmental centroids (Table 6.30 and section 6.3.10) are the result of a weighted 
regression of the table of class means on the species scores in linear methods. The 
equivalent of (3.3) for this case reduces to (6.34) as shown in section 17.2. The species 
scores and centroids thus together form a biplot that displays the fitted means. In unimodal 
models, the table of means is replaced by a table of relative class totals (Table 6.39 and 
section 17.2). 

• The regression coefficients of Table 6.31 and section 6.3.6 can be obtained by a weighted 
regression of the table of regression coefficients {djk} in (6.49) on to the species scores. The 
equivalent of (3.3) for this case reduces to (6.28) [resulting from the regression of the 
sample scores on the standardized environmental variables]. The proof of this result is 
analogous to that for the environmental biplot scores in section 17.1. The species scores and 
regression coefficients of section 6.3.6 thus together form a biplot that approximates the 
regression coefficients {djk} (see Table 6.31). This biplot is called a "regression biplot". 

In summary, the biplot rule and the centroid principle are the key to the interpretation of 
ordination diagrams. In linear methods, the data table {a^} in the above description of the biplot 
rule can be absolute abundances of species in samples, correlation coefficients between species 
and quantitative environmental variables, and mean abundances of species in classes of samples, 
leading to biplots of species and samples, species and environmental variables, and species and 
classes of nominal environmental variables, respectively. In unimodal methods, the same series 
of biplots represent relative abundances of species in samples, weighted averages of species with 
respect to quantitative environmental variables, relative total abundances of species in classes of 
samples, respectively. The samples and environmental variables together form a biplot of the 
environmental data in the default diagrams (i.e. with focus on species, scaling 2) but not in other 
scalings. All these biplots follow from the interrelations among scores as presented in section 
6.3. The rows and columns of the tables can be the same, leading to biplots of correlations 
among species or among environmental variables. These biplots apply in the default scaling 2, 
but not in other scalings. A full list is given in Chapters 9 and 10 of Unimodal Models (in 
particular, for linear methods, Fig. 1 on page 140 and, Table 1 on page 143 and, for unimodal 
methods, Figure 1 on page 158 and Table 2 on page 164). The so-called regression biplots are 
explained in Unimodal Models in Chapter 15 and are further discussed in Chapter 5 (page 63), 
Chapter 9 (page 148 and the dashed arrows in Fig 2 on page 141) and Chapter 14 (page 235). 
For an ecological application see Baar & Ter Braak (1996). 

In the terminology of Gower & Hand (1996), the biplots as described here are all linear 
predictive biplots. Gower & Hand (1996) also discuss interpolative biplots. The interpretation of 
the plot of the sample scores and the environmental scores below equation (6.33) on page 169 
and below (6.35) on page 172 is related to interpolative biplots (Ter Braak 1997). 

As discussed in the previous section, CA and CCA can be placed both in a unimodal context 
and in a linear context. In particular, the weighted average of species with respect to samples can 
also be interpreted, in a linear context, as the slope parameter of species data on sample scores. 
This implies that the species-sample plot of CA and CCA (if in biplot scaling) can not only be 
interpreted by the centroid principle but also by the biplot rule. The biplot rule is more 
quantitative and is more attractive when the gradient lengths are short (<3 SD), whereas 
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the centroid principle is more qualitative and more attractive if gradient lengths are long (> 4 
SD). These points are further discussed on pages 171-275 of Unimodal Models and also in 
section 3.9. 

Finally we mention the distance rule to interpret ordination diagrams. The distance rule is an 
extension of the centroid principle. The distance rule says that a sample that is close to the 
species point is more likely to contain the species than a sample that is far from the species 
point. The rank order of abundance values of a species can be inferred from the distances of the 
samples to the species point. The distance rule can be applied to DCA diagrams with long 
gradients (>3-4 SD). 

3.6 Supplementary species, samples, and environmental variables 

Supplementary species, samples, and environmental variables differ from active ones in that 
they do not influence the definition of the ordination axes. Nevertheless, a supplementary item 
can be added to an existing ordination by projection, i.e. by regressing its data on to the existing 
ordination axes. Supplementary items are also called passive. 

In particular, supplementary species and samples are added afterwards so that their relation 
to the other samples or species can still be judged from the ordination diagram. In CANOCO, 
the data on supplementary species and samples must be supplied in the species data file. You 
can specify which species or samples must be made supplementary in the project for that 
particular analysis. The scores for supplementary species are calculated from the eigenvector 
sample scores using equations (6.9) and (6.11). For supplementary samples, equations (6.20) and 
(6.21) are used. 

In contrast to supplementary species and samples, supplementary environmental variables 
must be specified in a separate file. Supplementary environmental variables are useful to provide 
an alternative interpretation of the ordination diagram, the other interpretation being given by the 
environmental variables of the analysis. CANOCO supplies the same type of results for 
supplementary environmental variables as for normal environmental variables (rows 7 - 14 of 
Table 6.22 on page 133). The default way of displaying a supplementary environmental variable 
is by its environmental biplot score or its centroid. See sections 6.3.9 and 6.3.10. In an indirect 
gradient analysis, there is, at least in theory, no distinction between a variable in the 
environmental file and a variable in the supplementary environmental file. 

Because a species is a response variable and an environmental variable is an explanatory 
variable, there is a theoretical distinction between a supplementary species and a supplementary 
environmental variable. See Baar & Ter Braak (1996) for an example. The distinction disappears 
in scaling 2. 

3.7 Permutation tests 

3.7.1 Introduction 

The statistical significance of the relationship between the species and the whole set of 
environmental variables, given the covariables, can be evaluated using Monte Carlo permutation 
tests. A Monte Carlo permutation test is a test of statistical significance obtained by repeatedly 
shuffling (permuting) the samples. This section summarizes the basic ideas behind Monte Carlo 
permutation tests, discusses how to obtain valid tests in structured study designs, and discusses 
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what is actually shuffled in partial tests. The section closes with a subsection on design-based 
and model-based permutation methods in the analysis of variance with fixed and random factors. 

Note that CANOCO cannot determine the significance of ordination axes of indirect 
analyses (PCA, CA, DCA). The theory that has been developed for such tests is less convincing 
than the theory presented here for direct gradient analyses. 

3.7.2 The basic idea 

To understand how a Monte Carlo tests differs from more traditional statistical tests, we 
first summarize the basics of the statistical hypothesis test. We take as the null hypothesis of the 
test that the species data are unrelated to the environmental data and as the alternative hypothesis 
that the species respond to the environment. The basic idea of a statistical test is then as follows. 

1. Choose a test statistic that expresses how strongly the species data respond to the 
environmental data. Familiar examples are the correlation coefficient, the oratio, and F-
ratio. 

2. Calculate the test statistic for the data. We denote the value obtained by FQ. 

3. Determine a reference distribution for the test statistic under the null hypothesis. The 
reference distribution shows which values can be expected under the null hypothesis that the 
species are not related to the environmental data. 

4. Calculate the significance level (P-value), i.e. the probability that F0 or larger values occur 
in the reference distribution. 

The crux of all standard statistical tests is that the reference distribution can be derived 
mathematically from the assumptions of the test. For example, the reference distribution of the 
F-ratio calculated in a regression analysis or an analysis of variance (ANOVA) is the F-
distribution (with particular numbers of degrees of freedom) and holds true if the data are 
independent and follow a normal distribution with homogeneous variance. The procedure to 
carry out an F-test thus simplifies to calculating the F-ratio from the data (step 2) and reading 
off the significance level from a table of the F-distribution in a statistical textbook or from 
a computer program that can calculate percentage points of the F-distribution (step 4). In 
contrast, the reference distribution in a permutation test is determined from the data themselves 
without the assumption of normality and without mathematical derivations. Its basis lies in the 
observation that under the null hypothesis the samples in the species data can be randomly 
linked with the samples in the environmental data. In other words, under the null hypothesis, 
each permutation of the samples in the species data is equally likely. Each permutation leads to 
a new data set from which we can calculate the test statistic. The reference distribution therefore 
is the distribution of the test statistic in the permuted data sets. In a Monte Carlo permutation 
test, we do not generate all possible permutations, but just a random sample thereof. This saves 
time if there are very many possible permutations (with small sample sizes though, we may wish 
to enumerate all permutations and supply these to CANOCO, see example BACH SPE, in 
section 8.3.7). In summary, the steps in a Monte Carlo test are: 

1. Choose a test statistic that expresses how strongly the species data respond to the 
environmental data. In CANOCO, you can choose from two test statistics that both have the 
form of an F-ratio. 

2. Calculate the test statistic for the data. We denote the obtained value by Fo. 

3. Generate K new data sets that are equally likely under the null hypothesis. In CANOCO, 
new data sets are generated by randomly permuting the samples in the species data (the 
response data) while keeping the environmental data (and covariable data, if present) fixed. 

4. Calculate the test statistic for each new data set, leading to values F\, F2, ••-, FK-
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5. Calculate the Monte Carlo significance level, i.e. place FQ among F\, F2, ..., Fk and 
determine the proportion of values greater than or equal to F0. Said otherwise, the Monte 
Carlo significance level is the rank of Fo among all values FQ, F\, F2,..., FK divided by K+l. 
Division is by K + 1 instead of K because the value Fo is included in the null distribution 
(Hope 1968). 

An example is given in Table 6.12 on page 128. Because determined from K random data 
sets, the significance level resulting from a Monte Carlo test is not a constant for a given data 
set. If AT is chosen large, e.g. K = 10000, the remaining random variation will be negligible. 
However, such large numbers of permutations are not strictly necessary. Even if just 19 
permutations are carried out each time the test is carried out, Fo will be greatest with probability 
1/20 if the null hypothesis holds true. Therefore the Monte Carlo test is exact in the sense that, at 
the 5% significance level, the null hypothesis is falsely rejected precisely in one of the twenty 
cases in which it is applied. The reason for using more than 19 permutations is that the power of 
the test to detect deviations from the null hypothesis increases with the number of permutations. 
This increase comes at the cost of computer time. Because the law of diminishing returns 
applies, a good compromise is to carry out at least 199 permutations for a test at the 5% 
significance level (Unimodal Models: p 198). This is the default number in CANOCO 4.5; but 
the number of permutations should be increased if the extra time required is bearable. 

3.7.3 Permutation type: how are samples shuffled? 

The validity of the Monte Carlo test hinges on the generation of new data sets that are 
equally likely under the null hypothesis (step 3 of the Monte Carlo test in the previous section). 
If we know that the samples are independent or exchangeable under the null hypothesis, then the 
new data sets can be obtained by permuting the samples completely at random. However, 
completely random permutations yield invalid tests if the samples show additional structure in 
the way they are collected. For example, the data may come from a survey that uses a stratified 
sampling design. We may also want to account for the fact that the samples form a time series or 
have a particular spatial layout. In a designed experiment, the samples may have been grouped 
in blocks. The experiment may have more than one source of error (error stratum), as in a split-
plot design, or the survey may have used a nested sampling design, which also leads to more 
than one error stratum. CANOCO 4.5 can account for these types of structure if, 

• in a time series, the samples are taken at equal time intervals. 

• in a spatial layout, the samples are at equal distances along a line transect or are arranged in 
a rectangular grid. 

• in a study with more than one error stratum, the design is balanced, and the appropriate error 
term of the test can be obtained by shuffling groups of samples. The groups are called 
"whole-plots". A typical example is the testing of a whole-plot factor in a split-plot design. 

A study design may also consist of several blocks, each consisting of one of the above 
structures. We now discuss each structuring element in turn. 

Blocks 

Blocks are groups of related samples. Samples within blocks are permuted, whereas 
samples from different blocks are never exchanged. In CANOCO, blocks are defined by 
covariables. The variation between blocks is excluded from the statistical test. In ANOVA 
terminology, a block is a random factor that has no interaction with the factors that vary within 
blocks. 
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Time series and line transects 

Under the null hypothesis that two stationary time series (sampled at equal time intervals) 
are unrelated, the starting point of the one series can be randomly linked to a time point of the 
other series. So, the null hypothesis is rejected if the observed correlation between the series is 
extreme in the reference distribution of correlations (or any other test statistic) generated by such 
random links. In the practical implementation of this idea, we face the problem that, after 
random linking, the start of the second series has no first series' points linked to it. Similarly, the 
end of the first series has no linked points either. Rather than using the linked points only, we 
use the trick of bending the time series into a circle, so that start and end meet (Besag & 
Clifford, 1989; section 5). This mathematical trick of using cyclic shifts works fine, provided 
there is no trend or cyclic structure, as is the case with stationary time series; the cyclic shift 
only corrupts the autocorrelation structure of each series at the beginning and the end of each 
series. For line transects, the dependence structure is not unidirectional as in time series. 
Usually, a point is related to its neighbors in both directions. Therefore, each observation series 
along the transect can also be mirrored (the series of points 1, 2, 3, 4 and 4, 3, 2, 1 are 
statistically equivalent). However, the distinction between line transects and time series is not 
essential here. The test statistic used in CANOCO is correlation-based and the autocorrelation at 
lag h is equal to that at lag -h. Under the null-hypothesis, a trend-free time series can therefore 
be mirrored also. The general idea is that, with a correlation-based test statistic as is used in 
CANOCO, the test of association must use permutations which preserve marginal correlations, 
but change cross-correlations (B. Ripley, pers. comm.). 

In CANOCO, the one series consists of the samples in the species data, whereas the other 
series consists of the samples in the environmental data. For the above permutation test to work, 
the series need to be trend-free under the null hypothesis. A series can be made trend-free by 
linear detrending. This is done in CANOCO by using covariables. For time series, time can be 
used as covariable, for line transects use position. Note, however, that a series should not be 
detrended a priori, if the aim of the test is to determine the significance of the trend. If the trend 
is cyclic or of some other nature, there are more advanced methods of detrending (Legendre & 
Legendre 1998: section 12.2). 

Rectangular grids 

The idea of random shifts (Besag & Clifford, 1989; section 5) can also be applied to data on 
a rectangular grid (with equal horizontal and vertical spacing). When wrapped around a torus (so 
that opposite sides meet), the samples can be randomly shifted (toroidal shifts). If there is no 
trend, the grid can be rotated 180 degrees without changing the autocovariance function (i.e. the 
autocovariance function c(h) equals c(-h), where h is the shift h=(hi,h2)). Therefore, both sides 
of the grid can also be mirrored before the shift (so obtaining grid D from grid A, shown below). 
If the autocovariance function is symmetric (c(hi,h2)=

:c(-hi,h2)), we may mirror either one of the 
sides. Then, the following four grids have the same correlation structure and random shifts can 
be made, starting from each of the four equivalent grids: 
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A B C D 

1 2 3 4 17 18 19 20 4 3 2 1 20 19 18 17 
5 6 7 8 13 14 15 16 8 7 6 5 16 15 14 13 
9 10 11 12 9 10 11 12 12 11 10 9 12 11 10 9 

13 14 15 16 5 6 7 8 16 15 14 13 8 7 6 5 
17 18 19 20 1 2 3 4 20 19 18 17 4 3 2 1 

Isotropic spatial processes have a symmetric covariance function. By default, CANOCO 
assumes that the autocovariance function is asymmetric and generates random shifts starting 
from grid A and D only. This default can be changed, in the CANOCO.INI file (option 23). If 
this option is set to one, shifts starting from all four grids are used. If you disable shifts from the 
mirror image, CANOCO generates random shifts starting from grid A only. 

For the above permutation test to work, the series need to be trend-free under the null 
hypothesis. The data can be made trend-free by linear or polynomial detrending (Legendre 
& Legendre 1998: section 13.2.1). This is done in CANOCO by using the spatial coordinates of 
a sample as covariables, one covariable for the horizontal position and one for the vertical 
position. Note, however, that the data should not be detrended a priori, if the aim of the test is to 
determine the significance of the spatial trend. 

Whole-plots in a split-plot design 

The term 'whole-plot' derives from an experimental design called the split-plot design. 
A split-plot design is a hierarchical design with two levels of units: whole-plots containing split-
plots. Split-plots are the lowest level sampling units, i.e. the samples in the data file. Examples 
of two-level designs are samples-wifhin-estuaries, plots-within-stands, plots-along-transects, 
relevés-wifhin-time-series (in a study of permanent plots). In CANOCO, either the whole-plots 
or the split-plots can be permuted, or both. Whole-plots should be of equal size, because whole-
plots with different numbers of samples cannot be permuted. Many experimental and sampling 
designs with more than one error stratum can be analyzed in the split-plot framework. The 
different permutation types available in the split-plot framework all define fewer distinct 
permutations than when samples are permuted completely at random. 

The effect of environmental variables that vary between whole-plots (e.g. the whole-plot 
factors of a split-plot design) can be tested by permuting whole-plots completely at random 
while keeping the split-plots of each whole-plot together. This test is valid if whole-plots are 
exchangeable under the null hypothesis, as they are in an experiment with a balanced split-plot 
design. If the whole-plots form a time series, a line transect, or a spatial grid, the whole-plot 
permutations can be restricted to cyclic or toroidal shifts so as to account for autocorrelation 
among whole-plots. If your environmental variables vary little or not at all between whole-plots, 
the test will never show significant effects. 

The effect of environmental variables that vary within whole-plots (e.g. the split-plot factors 
of a split-plot design) can be tested by permuting split-plots completely at random within whole-
plots without permuting whole-plots. Whole-plots restrict the permutations in the same way as 
blocks, but without the necessity of block-defining covariables. This test is valid if split-plots are 
exchangeable under the null hypothesis, as they are in an experiment with a balanced split-plot 
design. If the split-plots form a time series, a line transect, or a spatial grid, the split-plot 
permutations can be restricted to cyclic or toroidal shifts so as to account for autocorrelation 
among split-plots. If the split-plots form parallel time series and time is an autocorrelated error 
component affecting all series, the same shift should be applied to all time series. In the standard 
split-plot design, split-plots of different whole-plots are unrelated and the permutations of split-
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plots in different whole-plots should be independent. If your environmental variables vary little 
or not at all within whole-plots, the test will never show significant effects. 

3.7.4 What is shuffled? 

If there are no covariables in the analysis (or if all covariables are used to define blocks), it 
does not matter whether the samples in the species data or the samples in the environmental data 
are being permuted, and there is a wide choice of possible test statistics (of which CANOCO 
offers only two). The null hypothesis of the test is the overall null model: species are unrelated 
to the environmental data (within blocks, if defined). This is a simple hypothesis test, which can 
be compared with the overall F-test in a regression analysis. However, the research question is 
often more intricate, namely whether one variable has an effect on the species after taking into 
account the effect of another variable. Examples are: 

• Does the management regime in the Dune meadow data have an effect after accounting for 
the fact that the meadows differ in moisture status and in thickness of the Al horizon? 

• Does nutrient pollution affect the species composition after taking into account the natural 
variation in salinity of the water? 

In regression analysis, such questions are addressed by a 7-test or, if the effect of more than one 
variable is of interest, a partial F-test. Such tests are called partial tests or conditional tests. It 
would be desirable to have a corresponding permutation test, which does not require the 
assumption of normality. The theory for such permutation tests is given in Ter Braak (1992) 
[Unimodal models: pp 217-223]. A multivariate form of the test is used for the multivariate 
methods used in CANOCO. In CANOCO, the variables of interest must be specified as the 
environmental variables, whereas the variables that are accounted for, are covariables. 

To explain what is being permuted in a partial test, we introduce a multivariate regression 
model for the n x m matrix Y of species data, namely, 

(3.4) Y = X B + Z C + £ 

where X and Z are fixed, known n x p and n x q matrices with covariable data and 
environmental data, respectively, B and C are p x m and q x m matrices of unknown and fixed 
regression coefficients and E contains random errors with zero mean and constant, but unknown 
variance. Apart from the covariable data, X is also assumed to contain a column with ones to 
take account of the intercepts of the regressions for each species. The value of p is thus "1 + the 
number of covariables" . Notice that the usage of the letters X , B, and C in this section differs 
from that in the remainder of this manual. Our interest focuses on the effects of the 
environmental variables in Z on the species data in the presence of the covariables in X, i.e. we 
want to test the null hypothesis that all elements of C are 0, when the elements of B are 
unknown. Model (3.4) is the basis of a RDA of Y on environmental variables Z with covariables 
X. 

To test Ho: C = 0 (i.e. the effect of Z) in this model it has been proposed to 

1. Permute the rows of the species data Y (Manly, 1991, 1997). 

2. Permute the rows of the environmental data Z (CANOCO 2.x, Collins, 1987). 

3. Permute the residuals Er of the regression of Y on X (CANOCO 3.x & 4.x, Freedman 
& Lane, 1983). 

4. Permute the residuals Ef of the regression of Y on X and Z (CANOCO 3.x & 4.x, Ter Braak, 
1992). 
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Proposal 1 is attractive in that it is simple and stays close to the data and the study design. 
However, even if the data stem from a randomized experimental design, Y-values obtained at 
different values of X are not exchangeable under the null hypothesis, if X has an effect (B not 
equal to 0). The resulting test has the wrong type I error and also a low power if the nuisance 
parameters are important (Stapel & Ter Braak, 1994; Kennedy & Cade, 1996). 

Proposal 2 stems from the idea that the values of Z are arbitrary under the null hypothesis 
and can thus be permuted. However, when permuting the rows of Z, the correlations between X 
and Z change, so that variables that were originally highly correlated become, on average, 
uncorrelated in the permutation test. In a fixed regression-design context, the resulting type I 
error is inflated if X and Z are correlated (Kennedy & Cade, 1996). With proposal 2 there is no 
logical basis for the testing of interaction effects. The problems in both these proposals can be 
alleviated by taking the F-ratio as the test-statistic instead of the regression mean square (Manly, 
1991; CANOCO 2.x) as shown by Manly (1997), Kennedy & Cade (1996), and Anderson 
&Legendre(1999). 

Proposals 3 and 4 explicitly use the regression model because residuals cannot be calculated 
without a model. Proposals 3 and 4 are therefore sometimes called model-based permutation 
methods. Note that the residuals are the best estimates of the random errors E. Independent and 
identically distributed random errors are exchangeable, but the residuals of a regression analysis 
are, strictly speaking, not exchangeable, except in some simple ANOVA models; in particular, 
the variance of the residuals may vary across units. Nevertheless, these methods produce type I 
errors that are close to the desired nominal value if a t- or F-ratio is used as test statistic and if 
the number of data points or, rather, the number of degrees of freedom, is large enough (say, n -
p - q > 10). In technical terms, if an asymptotic pivotal test statistic is used and the number of 
degrees of freedom is large enough (> 10, say) the methods have good level-accuracy (i.e. the 
reported P-value is accurate). Proposal 3 does slightly better than proposal 4 in this respect 
(Cade & Richards, 1996; Anderson & Legendre 1999; Anderson & Robinson, 2001). Proposals 
3 and 4 are available in CANOCO 4.x under the names of "permutation under the reduced 
model" and "permutation under the full model", respectively. In CANOCO 3.x the reduced 
model method was termed the "null model method". Following Cade & Richards (1996), the 
name has been changed to avoid confusion of the null model of the test (C=0) with the overall 
null model (B=C=0). 

Because CANOCO implements proposals 3 and 4, all sentences in the previous sections 
implying that the samples of the species data are permuted should be qualified to mean that the 
samples of the residualized species data are permuted. The residualization is with respect to X in 
the reduced-model method (proposal 3) and with respect to X and Z in the full-model method 
(proposal 4). 

3.7.5 Model-based permutations 

In this section, details are given of the permutation test using residuals from the reduced 
model (proposal 3 of the previous section). The method using residuals from the full method is 
described in Unimodal Models (pages 217-223). For linear methods (RDA), the steps of 
a Monte Carlo test outlined in section 3.7.2 work out as follows. 

The permutation test of the effect of Z, adjusted for the possible effects of X, in RDA 

Step 1. Choose a test statistic. 
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As one test statistic, we choose the F-ratio of the partial F-test to test the null hypothesis C = 0. 
This F-ratio is calculated by the following procedure: 

Regress the species data Y on the covariable data X, then add the environmental variables Z to 
the regression, giving residual sums of squares RSSx and RSSx+z, respectively. Calculate the F-
ratio for testing the null hypothesis C = 0 from RSSx and RSSx+z by the formula 

(3.5) F = {( RSSX - RSSx+z) / q } / (RSSx+z / (n-p-q) ) } 

The F-ratio in (3.5) differs from the usual partial F-statistic in (univariate) regression analysis 
only in that the residual sums of squares, from which it is calculated, are totaled across all 
species. It could be called the pseudo-F. In CANOCO, RSSx - RSSx+z is equal to the sum of all 
canonical eigenvalues (after controlling for the effects of the covariables). Recall also that p is 1 
+ the number of covariables. 

Step 2. Calculate the test statistic for the data, yielding F0. 

Step 3. Generate K new data sets that are equally likely under the null hypothesis. 

Each new data set is generated by the following two substeps, the first of which gives the 
same results for each new data set and therefore needs to be carried out only once. The two 
substeps are: 

A A 

1. Regress Y on X, yielding fitted values Y and residuals E, with E = Y - Y . 
A 

2. Permute the rows of E to yield E* and calculate the new data set Y* = Y + E*. 

The first substep yields residuals that are not correlated with the covariables from the data. 
Under the null hypothesis, these residuals can be permuted (even though they are not strictly 
exchangeable). 
Step 4. Calculate the test statistic for each new data set Y*. 

This step is carried out as step 1, with Y* replacing Y, leading to the F-ratios F\, F2,..., FK. 

Step 5. Calculate the Monte Carlo significance level. 

Place Fo among F\, F2, ..., Fa and determine the proportion of values greater than or equal 
toF0 . 

As remarked in Ter Braak (1992), the F-ratio (3.5) in step 4 can also be obtained by 
regressing the permuted residuals E* directly on X and then adding Z to the regression. 
Kennedy & Cade (1996) claimed that this procedure could be further simplified to a regression 
on residualized X, but this claim was shown to be false by Anderson & Legendre (1999). 
CANOCO implements the correct Freedman & Lane (1983) procedure. 

The permutation test in CCA 

The above permutation test finds its rationale in linear theory. We now address the question 
whether and how the test can be applied to unimodal methods, in particular CCA. As noted in 
section 3.4, CCA has two faces, a unimodal one and a linear one. Its unimodal face is only 
visible with strong gradients (> 3 SD) whereas the linear face is particular useful for short 
gradients (< 3 SD). The null hypothesis of no additional environmental effects on the species 
implies that there are no meaningful environmental gradients after accounting for the 
covariables: their true gradient lengths are all 0. The statistical test aims at detecting small, 
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systematic deviations from the null hypothesis. These deviations express themselves in small 
true gradient lengths (even if the observed gradient lengths are large). The linear face is 
therefore most pertinent for developing statistical tests, and is used in CANOCO for 
permutations tests in CCA. 

In terms of a linear model, CCA is based on a weighted multivariate regression of 
transformed species data Y' on the covariable data X and environmental data Z (Sabatier et al. 
1989; Box 3 of Unimodal models: p 162). Denote the original species data by Y = { yik } and the 
transformed data by Y' = { y'jk } [i = 1,... , n; k = 1,.. . , m]. Then, the data transformation can be 
written as 

(3.6) y'ik = (yik y++) / (yi+y+k) 

where the subscript + replacing an index indicates the sum over the subscript. The row and 
column weights of the multivariate regression are denoted by {WJ} [i = 1, . . . , n] and {wk} [k = 1, 
... , m ] with Wi and wk proportional to y;+ and y+k, respectively (see the text surrounding 
equations (6.4) and (6.5) on page 156 for details when there are also user-defined weights). The 
theory of the previous two sections can be applied by transforming the weighted regression to an 
unweighted regression by pre-multiplying both sides of the regression by the square root of the 
row weights (e.g. Seber, 1977) and post-multiplying the left hand-side by the square root of the 
column weights. The post-multiplication by the column weights results in regression coefficients 
that need to be backtransformed (i.e. divided by the column weights) to obtain the same 
coefficients as in the weighted regression (cf. Unimodal models: p 182), but this is unimportant 
here, as the regression coefficients are not needed themselves. 

It is of some interest to understand what happens without the mathematical trick of 
transformation to an unweighted problem. We only discuss the role of the row weights, because 
the rows are permuted, with all column values kept in the same order. Assume, as usual, that the 
weights of a weighted regression are inversely proportional to the variance of the data y'ik. Then, 
the residuals of a row tend to be larger, when the row weights are smaller. Such residuals cannot 
be permuted. Therefore, it makes sense to standardize the residuals before permutation by 
multiplication by the square root of the row weight, i.e. 

(3.7) e'ik=Wi1/2elk 

with e;k the residual of species k in sample i obtained from the weighted regression. The 
standardized rows are now permuted. After permutation the standardized residuals are denoted 
by e'ik • Before the standardized residuals can be added to the fitted values of a particular row, 
they need to be scaled to the variance of that row by division by the square root of the row 
weights, i.e. 

(3.8) eik* = wf1/2e'ik* 

A 

The new data set Y* is obtained by adding the values {ejk } to the fitted values Y. The new data 
Y* is then analyzed by weighted regression, i.e. by CCA. 

Note that the sums of squares that define the F-ratio in CCA are weighted sums of squares. 
As shown in the section on Ordination diagnostics, in particular in subsection 6.3.11.2 (page 
174), these weighted sums of squares can be interpreted as chi-square statistics. An early 
application of chi-square statistics in permutation tests appeared in Manly (1983). From this 
point of view, CANOCO extends Manly's (1983) permutation test to quantitative explanatory 
variables and partial tests. 
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The assumption that the weights that are used in CCA are inversely proportional to the 
variance of y'ik is not essential for the rationale of the test. In any weighted regression, rows with 
large weights tends to fit more closely to the data than rows with small weights. Consequently, 
the residuals of rows with large weights tend to be smaller than the residuals of rows with small 
weights. This practical observation sufficiently motivates the weighting scheme in (3.7) and 
(3.8). Nevertheless it is of interest to note that the assumption holds true if, for example, the raw 
data {yik} are Poissonian counts in a contingency table in which the rows and columns are 
independent. Under the Poisson model, the variance is equal to the mean, i.e. 

(3.9) var(yik) = (iik 

so that the variance of the transformed data is 

(3.10) var(y'ik) = var(yik / uik ) = uik~
2 var (yik) = 1 / u.ik 

so that the weight is 

(3.11) wik = nik = yi+y+k / y++ 

under the independence model. 

Test statistics 

As described above, the permutation test uses the F-ratio (3.5) as test statistic. This test 
statistic is available in CANOCO under the name "Test of significance of all canonical axes" or 
"Test based on the trace statistic". An alternative test statistic available in CANOCO is the first 
canonical eigenvalue X\, expressed as the F-ratio 

(3.12) F x = A.,/(RSSx+i/(n-p-q)) 

where RSSx+i is the residual sum of squares of the model with all covariables and the first 
ordination axis of the environmental data. In other words, RSSx+i is the sum of squares of the 
residuals of the regression in which a rank 1 restriction is imposed on the matrix of regression 
coefficients C in (3.4) (see, for example, Ter Braak & Looman, 1994). Recall also that p is 1 + 
the number of covariables. The test statistic Fj. is calculated for the original data Y in step 2 and 
for each new data set Y* in step 4. This test statistic has maximum power against the alternative 
hypothesis that there is a single dominating gradient that determines the relation between species 
and environment. 

3.7.6 Multifactorial analysis of variance 

In this section we show how to test individual factors and interactions in experiments with 
an orthogonal design. A guideline is given for constructing valid permutation tests in complex 
analyses with fixed and random factors by using the split-plot framework of CANOCO. 

Consider a randomized factorial experiment with two fixed crossed factors A and B with 
levels a and b, with r replicate samples per combination of levels of A and B. The usual main 
effects model for this experiment can be written as 
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(3.13) yijk = )i + a ; + ßj + eijk 

where yjjk is the response at replicate k of the ith level of factor A and they'th level of factor B. 
Suppose we wish to test the main effect of A. If factor A does not have an effect on the response, 
samples within each level of B are exchangeable and can thus be permuted (Edgington, 1995). 
In CANOCO, this can be achieved (using permutations under the reduced model) by treating 
each level of B as a block, so that permutations are restricted within levels of B. The same test 
results can be obtained by defining each level of B as a whole-plot and by requesting that whole-
plots are not permuted, whereas split-plots are randomly permuted. If r is small (e.g. r = 1), then 
this exact test will have low power, merely by the limited number of permutations that are 
possible. This method of permutation is sometimes called "design-based", but note that the 
permutations for the test differ from the randomization scheme of the experimental design. In 
the experimental design, the levels of B have no special status: the units are randomized over 
A.B treatment combinations. 

In the model-based permutation approach, the possible effect of the factor B is eliminated 
by residualizing y with respect to the factor B, i.e. the mean of each B-level is subtracted from 
the observations. The permuted residuals are then analyzed by ANOVA in the same way as the 
original data, yielding for each permutation a permutation F-ratio. Each permutation is 
completely random, corresponding to the randomization in the experimental design. However, 
there is no exact permutational argument for this test, because residuals of different levels of B 
do not have identical distributions. The test is asymptotically exact (i.e. for large r) and almost 
exact, if the number of degrees of freedom for the residual exceeds 10, say, as follows from the 
arguments in Hall & Titterington (1989) and as verified by simulations by various authors (e.g. 
Fisher & Hall, 1990; Manly, 1997; Anderson & Legendre, 1999). In CANOCO, the test is 
obtained by entering dummy variables indicating the levels of B as covariables, and dummy 
variables indicating the levels of A as environmental data and by asking for unrestricted 
permutation under the reduced model. A real data example is experiment E40 in section 8.3.3. 

Now suppose the model includes an interaction effect allowing the effect of A to depend on 
the level of B, written as follows: 

(3.14) yijk = u + cti + ßj + aßij + eijk 

There is no permutation test of the interaction effect in the design-based approach (Edgington, 
1995), except in special cases (Welch, 1990; section 8.3.13). In the model-based approach, the 
test of interaction presents no problem: in CANOCO, specify indicators for the levels of A and 
B as covariables and indicators for A.B combinations as environmental data, and ask for 
unrestricted permutations. If the interaction effect is significant, it does not make sense usually 
to test for the main effect of A. If the interaction effect is not significant, one may proceed as in 
model (3.13) to test the main effects. The corresponding approach in classical ANOVA consists 
of pooling the A.B interaction term with the error term. A permutation test equivalent to 
"not pooling" can be obtained by entering the main effect of B and the interaction contrasts as 
covariables. For completeness, we add that this last permutation test also allows the testing of 
the main effect of A if the interaction effect is judged significant. 

Now suppose that factor A is a fixed factor and factor B is a random factor. For example, in 
section 8.3.6 the effect of sod-cutting is investigated in each of a number of different forests. 
Then, sod-cutting is a fixed factor and forest is a random factor. If the effect of sod-cutting is the 
same in all forests, i.e. if there is no interaction effect, then the experiment can be analyzed as 
a randomized block design with forest as block. The possible methods to test the effect of sod-
cutting do not differ from the methods used for model (3.13) with B a fixed factor. In this 
example, the design-based approach is perhaps most appealing, as plots from different forests 
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cannot be randomized. If we expect that the effect of sod-cutting may vary between forests, then 
the model becomes 

(3.15) y ijk = u + ai + bj + aby + eijk 

with Roman letters indicating random terms. Table 3.2 shows the classical ANOVA table for 
this model. The denominator for the classical F-test shows that the random factor B and the 
random interaction must be tested against the lowest stratum error variance, but that the fixed 
factor A must be tested against the A.B interaction (Table 3.2). This interaction has less degrees 
of freedom than the residual error. A permutation test that permutes the individual replicates 
would be too liberal as a test for the main effect of A. A valid permutation test can be obtained 
by averaging over the replicates per A.B combination, leading to the model 

(3.16) yy. = n + a ; + bj + e'ij 

where e'y = aby + ey. and where a dot replacing an index means averaging over the index. In this 
model, the A.B interaction and the lowest level error are indistinguishable. Model (3.16) is the 
same as the model of a randomized block design (the dot as index of yy just being notation). 
There are thus two ways to test the main effect of factor A: 

1. The design-based test of permuting the levels of A within each level of B. 

2. The model-based test of permuting the residuals (estimates of e'y), under either the reduced 
model or the full model, by using factor B as covariable. 

The split-plot design framework of CANOCO 4.5 makes it possible to carry out this 
permutation test without the need to reduce the data to averages per A.B combination yourself. 
For this test, 

• Define the A.B combinations as whole-plots and r individual replicates per combination as 
split-plots. The number of whole-plots is thus ab. 

• Define the levels of factor B as covariables and, for the design-based method, also as blocks. 

• Exchange whole-plots freely and do not permute split-plots. 

The design-based method yields an exact test (it is not a partial test because the nuisance 
factor B is conditioned upon). The model-based method has good level-accuracy, provided the 
test-statistic is of the correct form (asymptotic pivotal). In the notation of Table 3.2, the correct 
test statistic is the F-ratio MS(A)/MS(AB). Unfortunately, CANOCO 4.5 continues to use the 
pseudo-F of (3.5) which amounts to MS(A)/MS(AB+Error). The resulting test is too liberal 
(Anderson & Ter Braak, 2002). A way around this is to use the exact, design-based version of 
the test, if that makes sense, by specifying all covariables as blocks. Alternatively, calculate 
totals (or means) per whole-plot yourself, as in (3.16), and enter these as "species data" in 
Canoco. See also section 8.3.6.2. 

Note that the permutation test on whole-plots uses the correct number of degrees of 
freedom. In CCA it would be more logical to takes sums over yyk rather than means, and that is 
the equivalent of what happens by using the split-plot framework of CANOCO in a CCA. 
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Table 3.2 Expected mean squares. 

Factor A (with a levels) is fixed, and factor B (with b levels) is random. The factors A and 
B are crossed. At each combination of levels of A and B there are r replicates. 

Source 

B stratum 

B 

AB stratum 

A 

AB 

degrees of freedom 

b-1 

a-1 

(a-l)(b-l) 

expected mean square 

a + ar ab 

CJ2+ r er2 ab + br CTa
2 

a 2 + r dab2 

F-denominator 

MS(error) 

MS(AB) 

MS(error) 

Units stratum 
Error ab(r-l) 

This example serves to demonstrate that the conventional analysis-of-variance table with 
associated expected mean squares is as useful to derive a valid permutation test for a particular 
factor or interaction as it is to derive the correct F-ratio in the usual normal theory-based tests 
(Anderson & Ter Braak 2002). In particular, if the denominator of the F-ratio is not the residual 
mean square at the lowest stratum, then the samples themselves are not the appropriate 
permutable units and, with a model-based permutation, the test statistic must use the correct F-
ratio. The source term of denominator of the F-ratio indicates which are the appropriate 
permutable units. With this guideline, many experimental and sampling designs with more than 
one error stratum can be analyzed in the split-plot framework of CANOCO. 

Note that in repeated measurement designs (such as Before-After-Control-Impact (BACI) 
designs) the quantities of interest are often an interaction with time and are thus on the lowest 
stratum. The usage of the whole-plot set-up for testing such interaction effects is needed for 
another reason, namely autocorrelation in time. To avoid that terms from higher strata enter the 
denominator of the CANOCO F-statistics, one must define each site that is being measured over 
time, as covariable, as is done in the BACI examples in section 8.3.7 - 8.3.10. In another 
example, the Principal Response Curves (PRC) method (section 8.3.11 and 8.3.12), the 
significance of the model "treatment + treatment.time" is tested. The permutation test works in 
PRC because it is design-based; it is not model-based because the contribution of the 
covariables, which code for the main effect of "time", is constant in the test. 

Further research is needed to fully explore the possibilities and pitfalls of the split-plot 
framework of CANOCO. 

3.8 RDA and CCA as regression procedures: reduced-rank 
regression 

Chapter 14 and 15 of Unimodal Models present the theory of redundancy analysis (RDA) in 
terms of reduced-rank regression, resulting in so-called regression biplots. These chapters are 
rather mathematical. This section explains the basic theory in more simple terms without the use 
of matrix algebra. 
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We first show that one-dimensional PCA and RDA (with a single ordination axis) are in-
between simple regression and multiple regression. In simple linear regression, the abundance of 
each species separately is regressed on a single explanatory variable x, a known variable, e.g. 
pH. The model can be written as 

(3.17) yjk = ak + bk Xj + error 

where yik is the abundance of species k in sample i, x; is the known value of the explanatory 
variable in sample i, and ak and bk are unknown regression coefficients that are to be estimated. 
This model specifies a straight-line relationship between the species' abundance and x, with ak 
and bk the intercept and slope parameter of the straight line, respectively. Now suppose, as in 
Jongman et al. (1987: pp 116-118), that the values {xj} are unknown. With data from m species, 
we can then try to find a theoretical explanatory variable that gives the best fitting straight lines. 
PCA does this: it finds the optimal values {x;}, i.e. the sample scores {XJ} for which model 
(3.17) fits best. These values do not need to have a relation to any measured environmental 
variable. The idea of RDA is to constrain the values by requiring that x is a linear combination 
of measured environmental variables (a weighted aggregate). With two environmental variables, 
the constraint is 

(3.18) xj = CiZji + c2zi2 

RDA gives the best weighted aggregate, i.e. the optimal weights ci and c2. The weights are 
called canonical coefficients. On inserting (3.18) into (3.17) we obtain the model 

(3.19) yik = ak + bkc i z; i + bkc2Zi2 + error 

RDA estimates the unknowns in this model, i.e. the species parameters ak and bk (k = 1, ..., m) 
and the weight parameters ci and c2, from the species data {yik} and environmental data {zy}. By 
defining 

(3.20) dik = bkci and d2k = bkc2 

the RDA-model (3.19) can be written as a multiple regression model, namely 

(3.21) yik = ak + dikZii + d2kzi2 + error 

RDA is thus a multiple regression for all species simultaneously (i.e. a multivariate regression) 
with linear constraints on the regression coefficients. Because of the constraints, RDA uses less 
parameters than multivariate multiple regression. In summary, RDA is thus both a constrained 
form of PCA and a constrained form of multivariate multiple regression. 

Apart from notational difficulties, it is straightforward to extend the above formulae from 
one dimension to more dimensions. In two dimensions, the model for the species data becomes 

(3.22) yik = ak + bki xn + bk2 xi2 + error 

where bkS is the species score of the ML species and Xjs is the sample score of the rth sample on 
the sth ordination axis (s = 1,2). In RDA, the sample scores are constrained by 
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( 3 . 2 3 ) X i s = CisZii + C2s2i2 

with Cjs the canonical coefficient of they'th environmental variable on the 5th ordination axis. By 
inserting (3.23) into (3.22) we obtain a multiple regression model with constraints on the 
regression coefficients. If the regression coefficients are denoted by {djk} as in equation (3.21), 
the constraints are 

(3.24) djk = bkiCji + bk2cj2 

This equation forms the basis of the so-called regression biplot: the species scores {bks} plotted 
together with the canonical coefficients {CJS} represent the regression coefficients {djk} by 
means of the biplot rule. Similarly, we see from (3.22) that the sample scores {x;s} together with 
the species scores {bks} form a biplot of the fitted species values. 

With m and q the number of species and environmental variables, respectively, an r-
dimensional RDA-model uses m + r(q+m) - r2 parameters1 (Robinson, 1973), whereas 
multivariate multiple regression uses m + mq parameters. For example, if m=100, q=10 and r=2, 
RDA uses 316 parameters, whereas multivariate multiple regression uses 1100 parameters. If 
r=q, there are no constraints left and the numbers of parameters coincide. In multivariate 
multiple regression, the q x m matrix D of regression coefficients {djk} has rank min(m,q). With 
the linear constraints (3.20) the rank of the matrix D is reduced to 1. In an r-dimensional RDA, 
the rank of D is r, hence the name reduced rank regression. 

The above theory for RDA can be extended to CCA by using weighted regression on 
transformed data as specified around equation (3.6) on page 50. 

3.9 Compositional data 

3.9.1 Introduction 

Compositional data sensu stricto, also called percentage data, are obtained when, for 
example, for each sampling unit a fixed number of individuals is counted and each individual is 
identified to belong to one of m species. This sampling method is common in palynology and 
diatom research. Information from such a sample resides in the fraction of individuals belonging 
to each of the species. Compositional data also frequently arise in chemistry and geology where 
a sample is analyzed into its constituents. In this section we present two alternative methods of 
analysis of such data. The first method is log-ratio analysis and is based on a series of papers by 
Aitchison (1982-90). Log-ratio analysis amounts to applying linear methods to log-percentage 
data which are centered both by samples and by species (see also Aitchison, 1986). Because the 
logarithm of the percentages is analyzed, the method is attractive only when the data contain few 
zero values. The interpretation of the resulting biplots is discussed in Aitchison (1990) and 
summarized in Unimodal models (pp 144-145). The second method derives from a generalized 
linear model and amounts to applying unimodal methods to the untransformed percentage data. 
It is appropriate when the data contain many zeroes. 

1 The number of parameters given in Ter Braak & Prentice (1988) [Unimodal Models: pp 102] 
for r = 2 is not quite correct, as was pointed out by J. Van der Meer. 
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3.9.2 Compositional data not containing zeroes: log-ratio analysis 

Let, for this section only, p;k be the fraction of species k in sample i (Zk Pik = 1; Pik > 0). 
Because the fractions are positive, it is not acceptable to model them by a linear model such as 

(3.25) Tiik=ak + bkXi + Eik 

because there is nothing to prevent the right-hand side from resulting in a negative value. 
Equation (3.25) is the familiar straight line regression model with ak the intercept, bk the slope 
parameter or regression coefficient, Xj the value of an explanatory variable x and S;k an error 
term with mean zero and variance ak. The problem that the equation can result in negative 
values could be solved by modeling the fractions by exp(r|ik), but then the model values still do 
not need to sum to 1. This problem is solved by dividing the exp(r|ik) by their sum, yielding 

(3.26) pik = exp(r|ik) / Sj exp(riij) 

The fractions {pik} are said to follow a logistic normal distribution if the error eik in (3.25) 
follows a normal distribution with mean 0 and covariance matrix E (Aitchison, 1982: p. 162). 
Now we have posed a model for fractions, we derive a method of analysis. Retracing the steps of 
the preceding argument, we take logarithms of the fractions and obtain from (3.25) and (3.26) 

(3.27) log pik = y; + ak + bkx; + eik 

where y; = -log(Ej exp(r|ij)) is an incidental parameter. Fortunately, the incidental parameters 
{yi} can be removed by centering the log-fractions by samples. When the data are also centered 
by species we obtain quantities yik 

(3.28) yik = qik - qi. - q.k + q.. 

where q,k = log(pik) and a dot replacing an index denotes that the average is taken over the index. 
On inserting (3.27) into (3.28) we obtain a linear model for the quantities {y^}, 

(3.29) yik = bkx* + 8*k 

where bk = bk - b , Xj = Xj - x. and e;k = 8jk- £;. - e.k + e.. is still an error term with mean 0. Note 
that there is nothing in the above derivation which prevents us from using more than one 
explanatory variable in (3.25). Percentage data without zero values can thus by analyzed with 
the linear methods available in CANOCO by using the log-transformation and centering both by 
samples and by species. For this, the data do not need to be transformed a priori to percentages 
or fractions. The log-transformation and the double centering automatically take account of this. 
When using principal components analysis (PCA) in this way, one obtains what Aitchison 
(1984b: p. 622) calls loglinear-contrast principal components. The interpretation of the resulting 
biplots is discussed in Aitchison (1990) and summarized in Unimodal models (pp 144-145). Use 
of redundancy analysis (RDA) opens up the possibility of applying regression analysis to 
percentage data (cf. section 3.8). The Monte Carlo permutation test is then useful to test the 
effect of particular environmental variables. Data transformation (3.28) is equivalent with the 
centered logratio transformation of a composition of Aitchison (1986). 

As an example we use the boxite and coxite data sets presented by Aitchison (1984a: 
pp. 535-536) which each consist of the percentages of five chemical constituents in 25 samples 
of rock taken at different depths. We test the hypothesis whether the chemical composition of 
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the rock samples depends on depth. For the boxite and coxite data we obtain P-values of 0.59 
and 0.21, respectively. Using a different test statistic, Aitchison (1984: p. 553) obtained P-values 
of ca. 0.35 and 0.001, respectively. There is a discrepancy for the coxite data which is caused by 
the large residual correlations among the constituents in these data. The type I error of both tests 
is the same, but the type II error of the test in CANOCO is larger than for Aitchison's test 
statistic. Aitchison's test which is based on the standard multivariate linear hypothesis is more 
powerful when there are large residual correlations. Although Aitchison's test detects that the 
composition of coxite is significantly related to depth, depth explains only 6% of the variance 
(because X\ = 0.06). The other variable given by Aitchison, porosity of the rock, is much more 
strongly related to composition: it explains 39% of the variability and is significant (P = 0.01 in 
99 Monte Carlo permutations). The coxite data are the example data of section 8.4.2. 

3.9.3 Compositional data containing zeroes: CA, DCA and CCA 

Zero values present a problem in the preceding approach because the logarithm of 0 is -oo. 
When the data contain few zeroes the problem may be circumvented by replacing zeroes by an 
arbitrary small value or be adding a small value to all numbers2, but this is unattractive when 
there are many zeroes because the result may depend considerably on the choice of the value 
replacing zero. 

An alternative approach can be based on a generalized linear model (McCullagh & Neider, 
1989) for percentage data. Instead of defining a model for observed fractions as is done in (3.27) 
we define a model for expected fractions. Let y;k from now on be the fraction of species k in 
sample i and Eyik the expected fraction. By analogy with (3.25) and (3.26), we define the 
multinomial logit model (e.g. McCullagh & Neider, 1989: p. 159; Anderson, 1984: p. 5), also 
called the generalised logit model, 

(3.30) Eyik = expOiik) / Ej exp(r|ij) 

where nik is a linear predictor, e.g. 

(3.31) r|ik = ak + bkXi 

In comparison with (3.25), the error term has been dropped in (3.31). As McCullagh & Neider 
(1989: p. 212) note, the regression coefficients in (3.31) can be estimated from data {yik} and 
known {XJ} by using standard computer packages by transforming (3.30) to a loglinear model 
(see equation (3.36)). 

When both the {bk} and the {x;} are unknown, Eqs. (3.30) and (3.31) define an ordination 
model for percentage data. There are then two routes which show that approximate estimates of 
the unknown parameters can be obtained by applying correspondence analysis to the fractions 
{yik}. 

The first route begins by rewriting (3.30) and (3.31) and using a first order Taylor 
approximation (Ihm & van Groenewoud, 1984: p. 49) 

In CANOCO, the value 0.1 cannot be added directly. Instead of log(y+0.1) use the 
transformation log(10y+l). See sections 5.6.2 and 8.4.2. 
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(3.32) Eyik = y* ak exp(bk x,) * y; ak (1 + bk x;) 

where y* = l/[Ejexp(r|ij)] and ak = exp(ak). When for yiO,k the simple estimate yi+y+k/y++ is 
inserted we obtain (with y;k replacing Eyjk) 

(3.33) yik = ( y,+y+k/y++ ) (1+ bk x, ) 

This is the reconstitution formula of correspondence analysis (Greenacre, 1984: p. 93; Ter 
Braak, 1985: p. 861). This similarity was noted also by Goodman (1981); the equality in (3.32) 
defines Goodman's RC-model that can be written as 

(3.34) log Eyik = rj + ck + bk Xj 

with r;= log(Yi) and ck= log(ak). 

1.01 

Figure 3-3 Comparison of Gaussian and multinomial logit models. 

The top figures display the Gaussian model Eyik = exp(r|ik) for the abundance of 
two or three species along a gradient X (m=2, left; m=3, right) and the bottom figures 
display the corresponding model for percentage data, i.e. the multinomial logit model. 
After Ihm & Van Groenewoud (1984). 

The second route begins by noting that (3.30) does not change when (3.31) is replaced by 
(see Figure 3-3) 

(3.35) Tlik = ak - ^(x; - uk) 

with ak = ak + Vi uk and uk = bk; the missing term in (3.31), V2 xi cancels out because it occurs in 
both the numerator and denominator of (3.30). The top panels of Figure 3-3 show equi-tolerance 
Gaussian curves. The lower panels are derived from the top panels by division by the sample 
total and show the multinomial logit model of equation (3.30) with (3.31) or, equivalently, with 
(3.35) for two (left column) and three (right column) species. Further, (3.30) and (3.35) can be 
written as the general loglinear model (McCullagh & Neider, 1989: p. 159, p. 212) 
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(3.36) log Eyik = y; + a£ - ^(XJ - uk)
2 

where y\ = -log [Zjexp(r|ij)] is an incidental parameter (c.f. (3.27)). (We can take the logarithm of 
Eyik because Ey is a positive value even if some of the {y;k} are 0). Except for the incidental 
parameter, model (3.36) was taken as the starting point by Ter Braak (1985) in showing that 
correspondence analysis gives under particular conditions an approximate solution to the fitting 
of a unimodal model by maximum likelihood. It turns out that the derivation carries through also 
with the incidental parameter included (Unimodal models: pp 84-85). Moreover, the derivation 
of canonical correspondence analysis given in Ter Braak (1986) carries through equally for 
percentage data using model (3.30) with (3.35) and the constraint that Xj is a linear combination 
of environmental variables. Note that (3.30) and (3.35) together define Ihm and Van 
Groenewoud's model B. 

In section 3.5 and the later sections 5.5 and 6.3.4 it is noted that there is some arbitrariness 
of how to scale the sample scores {x;} with respect to the species scores {uk}. The scaling is 
governed by the value of a in the section 6.3.4. For incidence and abundance data there exists 
a best fitting value of a (which is unfortunately unknown in general). But for percentage data a 
is completely arbitrary: the model (3.30) with (3.35) does not change if we take, instead of Uk, x; 
and ak, the terms ßuk, Xi/ ß and ak + V^ß-l)^, respectively. Moreover, the optima {uk} may be 
shifted arbitrarily with respect to the sample scores {x;}; with a shift from Uk to Uk + d for 
a constant d, just change the value of ak to ak + duk-

The model can be extended to two-dimensions by taking 

(3.37) r)ik = ak - ^[(xn - uki)
2 + (xi2 - u^f] 

Again correspondence analysis can be used to obtain approximate estimates, except that 
detrending may be required to remove the arch effect when it occurs (see Unimodal Models, 
p. 51-52). 

3.9.4 The two faces of compositional data revisited 

It is rather paradoxical that the unimodal model (3.36) can be transformed to the linear 
model (3.34) with bk=Uk. The intrinsic unimodality of (3.34) is proved by Anderson (1984). 
This apparent paradox was already noted to occur in correspondence analysis in the discussion 
of Ter Braak (1985). In compositional data without zeroes there even exists an explicit 
linearizing transformation (Kooijman, 1977). The linearizing transformation is given in equation 
(3.28), in words: "take logarithms and double center". The linearization can be seen as follows. 
Assume that the response curve of each species with respect to variable x is an equi-width 
Gaussian curve of the form 

(3.38) fk(x) = aicexp{- V2(x - Uk)2} 

where a* is the maximum expected response attained at x = Uk, the optimum. Let q# = log(ft(x,)) 
[i = \...n; k= \...m] and derive y^ from the {qik} by the data transformation (3.28). After this data 
transformation, the squared terms in xt and Uk drop out so that the response model after 
transformation is linear, without an intercept. For data with error, a linear model with an additive 
error term is obtained, as in (3.29). Note that (3.28) is identical to the centered logratio 
transformation of a composition, thus showing an important link between data analysis of 
compositional data and unimodal data. It emerges that models for compositional data have both 
a linear and a unimodal face. 
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If the data contain zeroes, there does not exist any explicit linearizing data transformation, 
because we can not take logarithms. The previous section shows two solutions to this problem: 
turning to a generalized linear model in which the expected proportions can be transformed to 
linearity or applying a transformation that is close to the exact transformation. The latter is done 
in (canonical) correspondence analysis. For comparison with the transformation (3.6) that is 
implicit in correspondence analysis, the exact transformation can be written as log(y'jk) with 

(3.39) y'ik = (yik g++) / (g i+g+k) 

where gi+ and g+k denote the geometric averages of the abundance data yik across rows and 
columns, respectively, and g++ the overall geometric average. Correspondence analysis inherits 
its two faces (section 3.4) from models for compositional data. 

3.10 Nominal response data 

Outside ecology, correspondence analysis is most frequently applied to nominal data (Gifi, 
1990, Greenacre, 1984). Nominal data arise when each response variable consists of a series of 
mutually exclusive categories or classes. For example, vegetation type and soil type are nominal 
variables. Correspondence analysis can be applied to nominal variables to investigate their 
interrelations. It is termed multiple correspondence analysis (Greenacre, 1984) or homogeneity 
analysis (Gifi, 1990) if there are more than two such variables. When interest focuses on how 
the nominal response variables depend on external explanatory variables, one can use canonical 
correspondence analysis. Applied to such data, it is equivalent to redundancy analysis of 
qualitative variables (Israels, 1984). Torgerson (1958: p. 338) already described the types of data 
which can be analyzed by what is now called correspondence analysis. In biology, nominal data 
are encountered frequently in numerical taxonomy and genetics. 

To analyze nominal response variables with CANOCO, each nominal variable must be 
represented by a series of dummy variables each representing a category: y;k = 1 or 0 depending 
on whether sampling unit i belongs or does not belong to category k. Each category is thus a 
species in the terminology of CANOCO and each individual a sample. For the analysis by 
CANOCO the categories of different nominal variables must be assigned different numbers. One 
can number them consecutively from 1 to m with m the total number of categories. 
Alternatively, if the maximum number of categories per variable is less than 10, one can reserve 
the number 11-19 to the categories of nominal variable 1, the numbers 21-29 to the categories of 
nominal variable 2, etc. Nominal response data are best supplied to CANOCO in Cornell 
condensed format (sections 4.4.2). If one has 3 nominal variables one needs to specify 3 
couplets per sampling unit (= individual). With nominal data, the species scores are category 
quantifications in the sense of Gifi (1990). For each nominal variable, the weighted mean of its 
category scores is equal to 0. 

The theory of section 3.9.3 can be applied to nominal data. With such data, (3.30) models 
the probability that sample i belongs to category k. In applying multiple correspondence analysis 
conditional independence is assumed, i.e. the joint probability that a sample belongs to the 
categories ki, k2, k3, ... of nominal variables 1, 2, 3, ... is simply the product of each of the 
category probabilities given by (3.30). The logarithm of the joint probability can therefore be 
expressed as 2/ §u + r|ik© where / indexes the nominal variables. By modeling r|ik(/) by (3.37) and 
using the approach of Ter Braak (1985, 1988) we obtain an alternative derivation of multiple 
correspondence analysis. This approach shows that the category quantification can equally well 
be considered optima of response curves (Figure 3-3) with respect to the ordination axes. See 
Unimodal models pages 84-89. 
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In some applications a sampling unit may belong partly to one category and partly to 
another one. For such data, fuzzy coding has been proposed: for example, the sample is 
assigned the value 0.5 for both categories (see Greenacre, 1984: p. 159, codage flou in French). 
Obviously fuzzy coding is allowed in CANOCO. Percentage data are of this form (section 
3.9.3). 

If one has aggregated data on nominal response variables, the data become the number of 
individuals belonging to each category. This type of data presents no problem for CANOCO. It 
is similar to abundance data which list, for example, the number of organisms belonging to each 
of m species. 

If the Guttman effect (= the arch effect) crops up, detrending-by-polynomials is appropriate 
to remove it. The simple explanation of the Guttman effect given by Jongman et al. (1987: 
section 5.2.3) applies equally well to nominal data. 

3.11 Canonical Variâtes Analysis (CVA) and discriminant analysis 

A canonical variâtes analysis (CVA), alias Fisher's linear discriminant analysis, can be 
obtained with CANOCO, because CCA is a generalization of CVA (Chessel et al. 1987, 
Lebreton et al. 1988; Unimodal Models: pp 175-177). Fisher's Iris data are analyzed as an 
example in section 8.4.3. 

Suppose you want a CVA to see which linear combinations of environmental variables 
discriminate best between clusters of samples, e.g. obtained by a cluster analysis on species data. 
For this, specify the clusters as dummy variables in a file, for example CLUSTERS.DAT. This 
is perhaps most easily done in condensed format. 

To obtain a CVA, use the following options in CANOCO: 

1. CCA 

2. CLUSTERS.DAT as species data 

3. the environmental variables as environmental data 

4. Hill's scaling with focus on inter-species distances (scaling -2 ) 

In the solution file, the species scores are the cluster means in the CVA ordination diagram. 
Distances between cluster means (species points) represent Mahalanobis distances, as they 
should in CVA. These two properties are the result of Hill's scaling focusing on inter-species 
distances. The sample scores that are linear combinations of environmental variables are the 
individual points in the diagram. 

The biplot scores for the environmental variables form with the species scores a biplot of 
the cluster means of each of the environmental variables and with the individual points a biplot 
of the environmental data (both are least-squares approximations). 

The sample scores that are linear combinations of environmental variables are scaled so that 
the within-cluster variance equals 1 (in this variance the divisor is n and not n-g with g the 
number of clusters). See equation (6.15) on page 159. 

A permutation test can be used to see whether the difference between clusters are 
statistically significant. This test has the advantage over the usual tests in CVA in that it does not 
require the assumption that the environmental variables are normally distributed. 

By specifying covariables a partial CVA is obtained. Partial CVA is also known as one-way 
Multivariate ANalysis of COvariance (MANOCO). This tests for discrimination between 
clusters in addition to the discrimination obtainable with the covariables. 

We close this subsection with some technical remarks. The eigenvalues reported by 
CANOCO are those of the eigenvalue equation: 
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(3.40) (B-AT)c = 0 

where X is the eigenvalue, c the vector of canonical coefficients (weights), B the matrix of 
between-cluster sums of squares and products, and T the matrix of total sums of squares and 
products. Most computer programs calculate the eigenvalue of 

(3.41) ( B - 9 W ) c = 0 

where W is the matrix of within-cluster sums of squares and products. Because T = B + W it 
can be shown that 

(3.42) 9 = XI ( 1 - X) 

0 is closely related to an F-ratio. CVA can be defined as the technique that chooses the linear 
combination of environmental variables that gives the highest F-ratio in a one-way analysis of 
variance (with clusters as 'treatments'). It can be shown that the maximized F-ratio is equal to 

(3.43) F=[(n-g)/(g-l)]0 

with n the number of samples and g the number of clusters. Note however that this F-ratio does 
not follow an F-distribution. Use the permutation test instead. 

The percentage variance accounted for in CVA is, for a two-dimensional ordination 
diagram, usually taken to be 

(3.44) V = (9i + 62) / (sum of all 9's) 

The percentage variance accounted for by the species-environment biplot as given by CANOCO 
is, however 

(3.45) C = (?n + ?,2)/(sumofalU's) 

V and C are both percentages of weighted variances, but the weights differ. With V, the inverse 
of the within-cluster matrix W is used for weights, whereas with C the inverse of the total matrix 
T is used. 

From the CANOCO output, V can be calculated when there are less than six clusters by 
calculating all 0's from the canonical eigenvalues X given by CANOCO. With six or more 
clusters, a lower and upper bound for V can be derived as follows (for two dimensions): 

(3.46) lower bound for V = (0i + 62)/(a+b) 

(3.47) upper bound for V = (0i + 92)/(a+d) 

where a = 0i + 02 + 03 + 64, b = (trace - a)/(l - X4), d = trace - a, with trace the sum of all X's, 
reported by CANOCO and 0 is calculated from X by formula (3.42). With six clusters the actual 
V is precisely equal to the lower bound given by (3.46). 
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3.12 Principal coordinates analysis 

Principal coordinates analysis, alias classical or metric scaling (Gower, 1966; Torgerson, 
1958: p. 254-259; Jongman et al., 1987: section 5.6) is a simple method for multidimensional 
scaling. It takes as input a table of dissimilarities or similarities between samples and derives 
from it a sample ordination. In the ordination diagram the sample points are arranged such a way 
that sample points which are close together correspond to samples that are similar, and samples 
which are far apart correspond to samples that are dissimilar. 

The easiest way to obtain a principal coordinate analysis (PCO) with the Canoco for 
Window package is by using the program PrCoord. See Chapter 9 of this manual for details. 
Chapter 9 also describes how to obtain the constrained form of PCO, called distance-based RDA 
by Legendre & Anderson (1999). 

To stress the relation between PCO and PCA, the remainder of this section shows how to 
obtain a PCO by using CANOCO only. A PCO can be obtained with CANOCO by taking as 
"species data" a square table of similarities or a square table with elements -8y where 8jj is the 
dissimilarity between sample i and sample j (i = l,...,n; j = l,...,n). In the "species data" there are 
thus as many species as there are samples, the j-th species corresponding to the j-th sample. To 
obtain a PCO, use the following options in CANOCO: 

• principal components analysis (PCA) 

• centered by samples 

• centered by species 

• symmetric scaling of ordination scores, do not post-transform species scores 

If one has a data file with the values of 8y, one can use the piecewise linear transformation 
of the console version of CANOCO to obtain the values of -8y by specifying 0 0 followed on the 
next lines: by 100 -100 and -1 0 (assuming that all 8y are smaller than 100). 

If the input dissimilarities {Sy} are in fact computed as squared Pythagorean distances from 
species data, the resulting sample scores are identical to a PCA applied to the species data using 
centering by species and the scaling that focuses on the inter-sample distances. Principal 
coordinate analysis is based on this similarity to PCA, but is more general, because one can use 
other measures of (dis)similarity than Pythagorean distance. 

Unfortunately CANOCO cannot be used to obtain directly the solution of a constrained 
PCO. When choosing the RDA-option in the above setting, CANOCO solves the wrong 
eigenvalue equation. The correct eigenvalue equation is given in Ter Braak (1992). Partial PCO 
is not directly available either in CANOCO. See Chapter 9 for work-arounds using the program 
PrCoord. 

The PrCoord program can be also used alternatively to produce an unconstrained PCO 
solution. 

3.13 The stability of ordination axes 

Tausch et al. (1995) observed that changing the order of species or samples in the input data 
file of the program DECORANA (Hill 1979) can sometimes cause relatively large changes in 
the sample scores on the ordination axes. Oksanen and Minchin (1997) showed that CANOCO 
3.12 suffered from the same type of instability. They investigated the role of the convergence 
criteria in the power algorithm used to extract the ordination axes (see Step A8 of the iteration 
algorithm on page 137 of Unimodal Models). By comparison with another algorithm to extract 
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Ordination axes, they showed that the use of more stringent convergence criteria gives results 
that are acceptably stable. In line with their proposals, CANOCO 4.5 uses a maximum number 
of iterations of 999 and a tolerance of 10"6, which is in-between their strict and superstrict 
tolerance criteria. CANOCO issues a warning in the log window if these criteria could not be 
met. See the example in section 8.2.2.2. For some data sets instability is inevitable: if two 
eigenvalues are exactly equal, there is more than one solution to the eigenvalue equations, and 
these solutions form a plane. It is then the plane that is stable. Thus, if two eigenvalues are close 
in value, the extracted ordination axes are numerically unstable and there is little to be gained by 
more stringent convergence criteria. Such ordination axes should always be plotted together. 

In DCA with detrending by segments, Oksanen and Minchin (1997) detected a bug in the 
subroutine SMOOTH that contributed to the instability. This bug has been fixed. Both line 7 and 
line 17 needed to be changed to 

I F (AZ3 .LE . 0 . 0 ) ISTOP = 0 

to make the subroutine order invariant. In addition a small change has been made in the 
subroutine SEGMNT. The line 
IF (SQCORR .GT. 0.9999) SQCORR = 0.9999 

has been changed to 
IF (SQCORR .GT. 0.9999) GOTO 50 

A problem in DCA is that convergence problems may go undetected. The eigenvalue problem 
solved for the first axis, for example, differs from the eigenvalue problem solved for the second 
axis (cf. ter Braak & de Jong 1998). The second eigenvalue in the eigenvalue problem for axis 1 
may be close to the first eigenvalue, whereas the second DCA axis is much lower. Unstable axes 
in DCA may therefore go unnoticed. In other words, the reason why there is slow convergence 
in DCA is not obvious from the CANOCO output. The likely reason is close eigenvalues at 
a particular stage of the algorithm. The Shuffle software available from Jari Oksanen at WWW 
page < h t t p : / / c c . o u l u . f i / ~ j a r i o k s a / > may help detecting such unstable eigenvalues. 
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4. Data input 

The data files in Canoco for Windows must be in one of three strict formats. The three 
formats (full format, condensed format, and free format) are described in this chapter. The 
CANOCO formats can be used for any of the input data files (species, environmental, 
covariable, or supplementary environmental data files). A CANOCO solution file can also be 
used as input for a new analysis, but not as new Species Data (example section 8.2.2). 

Data in spreadsheets or databases must first be converted to a CANOCO format. The utility 
programs Canolmp and WCanoImp can help you to import data from a spreadsheet, program 
CanoMerge can be used to merging data tables. The utility WinTran (Juggins, 1998) is very 
useful for converting ecological and palaeoecological data between Access, Excel, Lotus, 
Paradox, dBase, and CANOCO formats. 

4.1 Importing from spreadsheets: Canolmp, WCanoImp 

The Canolmp utility converts input data in TAB-separated format to CANOCO format. The 
utility exists in two forms, a Windows-based form and a console form. 

HOW TO USE THIS PROGRAM 

1) In your spreadsheet 

" Copy your data table to the Clipboard 

* any labels must be in Row 1 / Column 1 

Z) Confirm the options below and Save 

OPTION 

f - Each column is a Sample 

Generate lab»; 

r Samples (SarnpOOOl Samp0002etc) 

r Species / Env. Vanables (VarOOO-1 Var0002 etc.) 

f~ Save in Condensed Format 

Save Exit Help 

Figure 4-1 WCanoImp program window. 

WCanoImp is the Windows-based form and its icon is available in the Canoco for Windows 
submenu of the Start / Programs menu. When launched, WCanoImp displays a window 
(Figure 4-1) which tells how to use the program. WCanoImp reads the input data from the 
Windows Clipboard when you click the Save button. So you need to place the data there first by 
a Copy command (Ctrl-C) in your spreadsheet (all Windows-based spreadsheet applications use 
the TAB-separated format for this). After you have done this and clicked the Save button, 
WCanoImp displays a file-selection dialog box to get the name of the output data file where the 
dataset has to be saved in the Canoco-compatible format, and also asks for a title. The 
WCanoImp window contains a range of options which are self-explanatory. 
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The CANOIMP.EXE program is the console form. The names of the input and the output 
files are specified on the command line, together with one or more optional command line 
parameters. The syntax of the CANOIMP.EXE command line is: 

CANOIMP [options] <inp-file-name> <outp-file-name> 

where the options are described in the Table 4.1, inp-file-name is the path to the input data file 
(which must be in TAB-separated format), and outp-file-name is the path of the data file to be 
created (in Canoco format). Table 4.1 also summarizes the correspondence of the command-line 
options of the CANOIMP.EXE program with the options of WCanoImp. 

Table 4.1 Command-line options ofCANOIMP.EXE compared with WCanoImp. 

command-
line option 

-C 

-P 

-Q 
-R 

-S 

-T 

its meaning 

the output file in Condensed format 

transpose the input data matrix 

work quietly, no messages 

no sample names; the first fields in 
each row correspond to the values 
of the first variable 

no variables names; the values in 
the first row correspond to the 
values of the first sample 

ignore the missing trailing TABs; 
program Excel does not output the 
correct number of TAB characters 
when the line ends with blank fields 

corresponding option in 
WCanoImp 

Save in Condensed format 

Each column is a Sample 

not available 

Generate labels for: Samples 
(SampOOOl Samp0002 etc.) 

Generate labels for: Species / 
Env.Variables (VarOOOl Var0002 
etc.) 

done automatically 

As the Canolmp program uses already existing data files, most often created by your 
spreadsheet or database application, it is usually able to process larger data sets than the 
alternative form - the WCanoImp program. On the other hand, the program has no user-friendly 
interface and also some extra work is needed before the program can be used to transform your 
data sets, because the file with the TAB-separated format must be exported from your 
spreadsheet application. 

4.1.1 Processing capacity 

Both the console and Windows-based forms of Canolmp can process input data lines up to 
80 000 characters in length. Note that the single data-line contains the textual representation of 
a single data row (being a single sample in the default case). Both forms have no fixed limit for 
the number of rows in the input data file. Both forms are limited by the availability of free 
memory, as they need to allocate arrays for the names of samples and the names of variables. 
Additionally, the Windows-based form of the program is restricted by the limitation imposed on 
the size of the data that can be passed through the Windows Clipboard. This size was not 
published by the Microsoft Corp., but it can be expected to depend on the amount of the virtual 
memory available on your system. 
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4.1.2 Properties of the output files 

This section describes the output files of Canolmp and WCanoImp. Both programs produce 
identical output files (when given identical input files and options) except that the Windows-
based form asks for the title line of the output file and uses it as the first line of the data file. 
Canolmp, on the other hand, always uses titles such as: 
CANOCO full format export from mydata.txt by Canolmp 
CANOCO condensed format export from mydata.txt by Canolmp 
where mydata.txt is a shortened version of the input file path (first 32 characters only). 

Canolmp restricts the characters that might appear in the labels of samples and variables: 
only the lowercase and uppercase ASCII letters, digits, colon (': '), dash ('-'), plus ('+'), asterisk 
('*'), underscore ('_'), left and right parentheses ('()'), left and right square brackets ('[]'), and 
the space character (' ') are supported. Any other characters are changed to the dot character 
('.'). Also, labels have no more than 8 characters. 

If variable names are not in the spreadsheet section being exported, Canolmp generates 
labels of the form Var// / / , where / / / / is the sequential number running from 0001 to the 
number of variables in the data set. Similarly, if the sample names are missing, the generated 
labels use either the form Samp//// , if the number of samples is lower than 10 000, or the form 
Sam//// / , if the number of samples is greater than 9999. 

Canolmp determines the range of values contained in the data table and adjusts the 
formatting of the output accordingly. Consequently, each variable gets the same output field 
specification (in the terms of its total width and number of decimal digits) to simplify the format 
line specification in the output file. 

For technical details see the Appendix C. 

4.2 Merging data tables with CanoMerge program 

If you use the WCanoImp program to import data containing many samples and many 
variables (species) from Microsoft Excel®, the primary limitation is in the maximum number of 
256 columns per single Excel sheet. If both the number of samples and the number of variables 
is larger than 255, the data table must be split over two or more Excel sheets. To create a single 
data file in Canoco format from such multiple sheets, the data must be exported using the 
WCanoImp program (as described in the previous section) and merged using the CanoMerge 
program. 

To start the CanoMerge program, select the corresponding item in the Start / Programs / 
Canoco for Windows submenu. 
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• CanoMerge 

JD.\Code\ConoMerg\speaes2 die 

*1 

Merge 

E«t 

Help 

Exclude variables with l e « thon | j | j positrve values 

r Do not check the nn 

ï~~ Write merged table in TAß-5eparated values format 

Figure 4-2 CanoMerge program window 

The largest part of the program window is taken by the list where you must place the names 
of all input data files which you want to be merged together. To create the list, click the Add 
files button. This action opens an Open dialog box where you can navigate to a particular file 
folder and select one or more input files. If the input files are spread across several folders, you 
must use the Add files button several times. Use the Clear the list button to remove all input 
file references from the list. Use the Merge button to perform the actual merging. The merging 
is concluded with a dialog box providing information about the number of tables which were 
merged and the resulting number of variables. 

All the files selected for merging must have the same number of rows (samples), because 
they are merged column-wise. This strategy is based on the fact that there is hardly any 
limitation on the number of rows (samples) in an Excel spreadsheet. A particular row in the 
individual input files must correspond to the same sample entity. CanoMerge checks this 
correspondence using the sample names, unless you select the option Do not check the names 
of samples beyond the first fde. If you merge data files which were not produced by the 
WCanoImp program, you must make sure not only that there is the same total number of 
samples, but also that the samples identification numbers are contiguous, running from 1 to N, 
where N is the total number of samples. This condition is always met in WCanoImp produced 
files. The individual input data tables, as well as the resulting merged table, cannot have more 
than 25000 samples and 5000 variables. 

The data columns from the individual source files are added to the merged table in the 
order, in which the input files appear in the list. You can change this ordering by selecting 
a single line of the list and dragging it to a new position. Note that each file name can be 
dragged to almost any position, except the end of the list. 

CanoMerge allows you to filter the set of input species (variables), merging only the species 
with number of occurrences (non-zero values) larger or equal to a pre-specified limit. The 
default value 0 (which is passed by all the columns) can be increased in the CanoMerge window. 

^CanoMerge can also be used for reducing the number of species in a single data file. To 
do so, simply specify this input data file as the only one in the list and increase the value in 
the Exclude variables with less than option, as required. 

When the option at the bottom of CanoMerge program window is checked (Write merged 
table in TAB-separated values format), CanoMerge produces the resulting file in a text 
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(ASCII) format where the individual columns are separated by TAB characters. This can be 
useful both for exporting your datasets into formats accepted by other statistical packages and 
for transforming Canoco-formated sets into file format readily accepted by the spreadsheet 
software. 

^CanoMergc can be used for transforming Canoco-formatted datasets int» TAB-
separaliil le\l I'orniai. am'i-pliihlc by Excel™ program. 

4.3 Linking samples in different data files 

Important: Species data, environmental data, and covariable data are commonly stored in 
different files. CANOCO determines which samples in different files correspond to the same 
physical sampling unit on the basis of the sample identification number (not the sample name). 
See the example in section 8.2.1. The sample names in the species data file serve to label the 
samples in the project setup and in the output. The sample names in the environmental data and 
covariable data are used merely to check whether the sample numbers in different files have the 
same name. If differences in names are detected, Canoco for Windows issues an error message 
and asks whether differences in names are permitted. If you answer yes, the program disregards 
the differences, except for a reminder warning in the log-window. If you answer that no 
differences in names are allowed, you probably need to cancel the project-setup and repair the 
error first. 

4.4 Native CANOCO formats 

If you use a utility program such as WCanoImp to produce input data files for Canoco for 
Windows, you may wish to skip this section. This section is useful when you need to prepare 
files with the correct data format yourself and in troubleshooting. 

4.4.1 Full format 

In full format, each sample is represented by an identification number followed by the 
values of all variables for that particular sample, in a fixed order and a fixed format. Each 
sample starts on a new line; its data may occupy one or more lines. Table 4.2 shows a small 
example with three samples and eleven variables, in which each sample takes two lines. 

The first four lines of a full format file must look like this: 

Line 1 is a title. The first part of the title is reproduced in the output to remind the user which 
data were used in the analysis. 

Line 2 contains a FORTRAN format which specifies how the data are stored for a sample. The 
FORTRAN format in Table 4.2 is: 
(16 , ( T 1 0 , 6 F 7 . 0 ) ) 

• "16" means that the sample identification number is in the first 6 positions of the first line 
for a sample (right-justified, i.e. with the last digit in position 6). 

• "T10" means that the next value is to be read from position 10 onwards. 

• "6F7.0" reads six values, each of seven positions. Note that each value contains a decimal 
point, but this is not a necessity. Whole numbers are also allowed. Note also that some 
values are negative. 
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• The brackets around "T10,6F7.0" indicate that the subsequent values are read from the next 
line, again starting at position 10. 

Line 3 contains the number of variables in the data file (the position of the number is arbitrary). 
In Table 4.2 the number of variables is 11. Because the FORTRAN format on line 2 specifies 
that 6 (or less) values are being read per line, each sample takes two lines in the data: one line 
with 6 values and one line with 5 values 

Line 4 is the beginning of the data. The data end with a notional sample with identification 
number 0, which occupies as many lines as a normal sample. The data values of the notional 
sample are arbitrary. For clarity the values are 0.0 in Table 4.2. 

After the notional sample 0, the code names of the eleven variables follow, 10 per line, and 
then the code names of the three samples. There are at most 10 code names per line. Each code 
name takes 8 positions. The names of the variables in Table 4.2 are thus ColumnOl, 
Column02, . . , Co lumn l l and the names of the samples are Row 0 001 , 
Row 0002 , Row 0003.If the last line would have been 

Row 0003Row 0002Row 0001 

then the samples with identification numbers 1 and 3 would receive the code names Row 0003 
and Row 0001 , respectively. The linkage of numbers to names is thus by the order in the 
sequence of names, each 8 positions representing one variable or sample. 

Table 4.2 Full format data file with 3 samples and 11 variables (species or environmental 
variables). 

Samples and 11 Variables 

-12.0 

40.0 

17.0 

0.0 

Column01Column02Column03Column04Column05Column06Column07Column08Column0 9Columnl0 

Columnll 
Row OOOlRow 0002ROW 0003 

The FORTRAN format in Table 4.2 says that six values are read from the second line (and 
further lines, if present) of a sample, whereas in Table 4.2 the second line of a sample contains 
five values only. This is not a problem, because we specified on line 2 that only 11 values 
should be read for each sample. In the example, the data values of a sample would easily fit on a 
single line, but in practice you will often need more than one data line per sample, because the 
maximum allowed length of each line of the data file is 127 positions. 

Any data table (with any number of samples and variables) in which the values in the 
columns take a fixed number of positions can be specified by a FORTRAN format similar to 
that used Table 4.2. Simply adapt the number of values per line and the number of positions per 
value to your own needs. The format can also be specified as 
(16, 3X, 6F7.0 / (9X, 6F7.0) ) , in which 

• "3X" means skip the next three positions, 

• "/" means go to the next line. 
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Example 
(16,(T10 
11 

1 ; 

2 

3 

0 

data in CANOCO full format: 
, 6F" .0)) 

42.0 
-0 
52 

0 
70 

0 
0 
0 

1 
0 
5 
0 
9 
0 
0 

21.0 
3 

27 
8 

18 
2 
0 
0 

0 
0 
0 
0 
0 
0 
0 

12.0 
-9 
15 

8 
17 
11 

0 
0 

0 
0 
0 
0 
0 
0 
0 

3 

67.0 
5 

80 
-7 
21 
11 

0 
0 

0 
0 
0 
0 
0 
0 
0 

Sample 

32.0 
8 
9 
6 

2 
0 
0 

0 
0 
0 
0 
0 
0 
0 



This way of writing the format has the advantage that it allows you to separately specify the 
format for the first line and the format for the further lines for the data of a sample. For example, 
if the data on the second line for a sample do not start in position 10, you must change the "9X" 
to the appropriate number. 

As a second example, Table 4.3 shows the environmental data of the extended Dune 
Meadow data (Table 16.2 on page 477) in full format. Five "environmental" variables were 
recorded at each site, two of which are nominal. The first column of numbers in Table 4.3 lists 
the sample identification numbers. The next three columns list the data on the three quantitative 
variables Al , Moisture, and Manure. The data on the nominal variable agricultural use are given 
in the next three columns. Each of its three classes (Hayfield, Haypasture, and Pasture) has 
a column of 0/1 values in Table 4.3. For example, sample number 1 is a haypasture because the 
corresponding column has the value 1. The data on the nominal variable management regime, 
with the four classes standard farming (SF), bio-dynamical farming (BF), hobby farming (HF), 
and nature management (NM) are given in the last four columns. So, for CANOCO there are, in 
total, 10 variables, the names of which you can recognize at the bottom of Table 4.3. Variable 1 
is Al , variable 2 is MOISTURE, ..., and variable 10 is NM (for Nature Management). The 
values of the 10 variables of sample 3 are given on line 6. In sample 3 the Al horizon was 4.3 
mm, its moisture content was scored the value 2, its manure score was 4. Sample 3 is 
a haypasture as the haypasture-column has a 1. Sample 3 is a standard farm: its SF-value is 1 
whereas the other management classes have the value 0 in sample 3. The FORTRAN format in 
Table 4.3 is: 

( I 5 , F 5 . 0 , 1 X , 2 F 3 . 0 , 3 X , 3 F 2 . 0 , 3 X , 4 F 2 . 0 ) 

• "15" means that the sample number is in the first 5 positions of the first line for a sample 
(with the last digit in position 5). 

• "F5.0" reads a value from the next five positions (Al). 

• "IX" means that position 11 is skipped. 

• "2F3.0" reads two values of three positions each (Moisture and Manure). 

• "3X, 3F2.0" skips the next three positions and reads three values of two positions each 
(Hayfield, Haypasture, and Pasture). 

• "3X,4F2.0" skips the next three positions and reads four values of two positions each (SF, 
BF, HF, NM). 

In Table 4.3 the sample identification numbers are increasing, but not consecutive: the 
sample numbers 18-27 are missing. The sample with identification number 1 has name 
"Sample 1". The sample with identification number 30 must have its name on positions 73-80 of 
the third line of sample names. Its name is thus "Sample20" . Note that the samples with name 
"SupplSAM" has sample identification number 20, but does not occur in these data. The sample 
does occur in the corresponding species data file. The data values for Al contain a decimal 
point, but the other values do not. 

The requirements of the full format data file are: 

• Each sample starts on a new line and is represented by an identification number followed 
by the values of all variables for that particular sample, in a fixed order and a fixed format. 
Each sample has the same format. 

• The sample identification numbers are increasing but do not need to be consecutive. 

• The number of variables is specified on line 3. It is also allowed to specify the number of 
variables in the positions 69-70 of line 2 (or, if it is a number of one digit, in column 70). In 
this case line 3 is the beginning of the data. 

• The maximum allowed length of each line of the data file is 127 positions. 
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• The layout of the data values of each sample is specified by a FORTRAN format on line 2. 
It must be within the first 80 positions. 

• The identification number of a sample must be read with an I-format. In the example of 
Table 4.2 this is "16" (line 2). It should be the first item read. 

• The data values must be read with one or more F-formats, even the values are whole 
numbers. In the example of Table 4.2 this is "6F7.0" (line 2). 

• The T-format item must not be used to jump back in a line to read the data values in 
another order than in the data file. 

• All numbers and values must be separated by at least one space. No other characters are 
allowed between values. Special characters like tabs should be absent. In the data section, 
the only allowed characters are digits (0-9), the period (.), the minus sign (-) and the space. 

• Missing values are not allowed. For missing values one may wish to insert a best possible 
guess, perhaps the mean value of the corresponding variable. 

• The data values end with a notional sample with identification number 0 followed by the 
same number of data values in the same layout as for a normal sample. 

• The names of the variables start on a new line after the notional sample 0. The names are 
listed in lines of 80 positions, with 10 names per line, each name taking 8 positions. 
Trailing blanks are allowed unless they extend the line beyond the maximum line length of 
127 positions. 

• The names of the samples start on a new line after those of the species. The names are 
listed in lines of 80 positions, with 10 names per line, each name taking 8 positions. 
Trailing blanks are allowed, unless they extend the line beyond the maximum line length of 
127 positions. 

Table 4.3 The environmental data of the Dune meadow data in full format. The file is 
named 'DUNEENV.DTA'. 

ENVIRONMENTAL DATA IN FULL FORMAT - DONE MEADOW DATA 
( I 5 , F 5 . 0 , 1 X , 2 F 3 . 0 , 3 X , 3 F 2 . 0 , 3 X , 4 F 2 . 0 ) 
10 

1 : 2 . 8 1 4 0 1 0 1 0 0 0 
2 3 . 5 1 2 0 1 0 0 1 0 0 
3 4 . 3 2 4 0 1 0 1 0 0 0 
4 4 . 2 2 4 0 1 0 1 0 0 0 
5 6 . 3 1 2 1 0 0 0 0 1 0 
6 4 . 3 1 2 0 1 0 0 0 1 0 
7 2 . 8 1 3 0 0 1 0 0 1 0 
8 4 . 2 5 3 0 0 1 0 0 1 0 
9 3 . 7 4 1 1 0 0 0 0 1 0 

10 3 . 3 2 1 1 0 0 0 1 0 0 
11 3 . 5 1 1 0 0 1 0 1 0 0 
12 5 . 8 4 2 0 1 0 1 0 0 0 
13 6 . 0 5 3 0 1 0 1 0 0 0 
14 9 . 3 5 0 0 0 1 0 0 0 1 
15 1 1 . 5 5 0 0 1 0 0 0 0 1 
16 5 . 7 5 3 0 0 1 1 0 0 0 
17 4 . 0 2 0 1 0 0 0 0 0 1 
28 4 . 6 1 0 1 0 0 0 0 0 1 
29 3 . 7 5 0 1 0 0 0 0 0 1 
30 3 . 5 5 0 1 0 0 0 0 0 1 

0 0 . 0 0 0 0 0 0 0 0 0 0 
Al MolstureManure HayfieldHaypastuPasture SF BF HF NM 
Sample ISample 2Sample 3Sample 4Sample 5Sample 6Sample 7Sample 8Sample 9SamplelO 
Sample11Sample12Sample13Sample14 Sample15Samplel6Sample17 SupplSAM 
Duplicl7 Sample18Sample19Sample2 0 
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4.4.2 Condensed format 

A data file in condensed format differs from a full format data file (section 4.4.1) in that the 
data values that are zero are not stored. In a condensed data file, samples and species are both 
indicated by an identification number. To identify which variable a particular non-zero value 
belongs to, the value is preceded by the identification number of the variable. Table 4.4 shows 
the example data of Table 4.2 in condensed format. Each data line begins with a sample 
identification number and continues with a number of "couplets", each consisting of a species 
identification number and a data value. For example, line 7 of Table 4.4 begins with the number 
2, which means that this line gives the data of the sample with identification number 2 (shortly 
sample 2). This number is followed by the couplet "1 52.0", which says that variable with 
identification number 1 has value 52.0 in sample 2. The next couplet "2 27.0 " says that species 
2 has value 27.0, etc. There are five couplets on this line. The next two lines also begin with a 2 
indicating that these lines also contain data values for sample 2. The last line that begins with a 2 
(line 9) has only one couplet "11 6.0" as an example that the number of couplets may vary 
among lines. The data of the samples 1 and 2 are on three lines each. The data of sample 3 just 
take two lines: there is no couplet for variable 5, because its value is 0 in sample 3. The 
identification numbers of the variables are in increasing order within samples in this example, 
but this is not necessary. After sample 3 there is a line for the notional sample 0, which indicates 
the end of the data. This line does not need to have any couplets. Thereafter are the code names 
for the eleven variables (10 per line), followed by the code names for the samples. 

The first four lines of a condensed format file must look like this: 

Line 1 is a title. The first part of the title is reproduced in the output to remind the user which 
data were used in the analysis. 

Line 2 contains a FORTRAN format which specifies how the data are stored on each data line. 
The FORTRAN format in Table 4.4 is: 

( 1 6 , 5 ( I 7 , F 6 . 0 ) ) 

• "16" means that the sample identification number is in the first 6 positions of each line 
(right-justified, i.e. with the last digit in position 6). 

• "5(I7,F6.0)" means that there are a maximum of five couplets on a line, each with 
7 positions for the species identification number (17) and 6 positions for its data value 
(F6.0). Note that each data value contains a decimal point, but this is not a necessity. Whole 
numbers are also allowed. Note also that some values are negative. 

Line 3 contains the maximum number of couplets on a line (the position of the number is 
arbitrary). In Table 4.4 the maximum number of couplets per line is 5. 

Line 4 is the beginning of the data. The data ends with a notional sample with identification 
number 0, which occupies a single line. No couplets are required for the notional sample. 

After the notional sample 0, the code names of the eleven variables follow, 10 per line, and 
then the code names of the three samples. As in full format, there are at most 10 code names per 
line. Each code name takes 8 positions. The names of the variables in Table 4.4 are thus 
ColumnOl, Column02, . . , Co lumn l l and the names of the samples are 
Row 0001, Row 0002, Row 0003. 
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Table 4.4 Condensed format data with 3 samples and 11 variables. Same data as Table 4.2. 
Example data in CANOCO condensed format: 3 Samples and 11 Variables 
(I6,5(I7,F6.0) ) 

1 
1 
1 
2 
2 
2 
3 
3 
0 

1 
6 

11 
1 
6 

11 
1 
7 

42 
- 1 2 

8 
52 
40 

6 
70 

0 
0 
0 
0 
0 
0 
0 
9 

2 
7 

2 
7 

2 
8 

2 1 . 0 
- . 1 

2 7 . 0 
. 5 

1 8 . 0 
2 . 0 

3 
8 

3 
8 

3 
9 

1 2 . 0 
3 . 0 

1 5 . 0 
8 . 0 

1 7 . 0 
1 1 . 0 

4 
9 

4 
9 

4 
10 

6 7 . 0 
- 9 . 0 

8 0 . 0 
8 . 0 

2 1 . 0 
1 1 . 0 

5 
10 

5 
10 

6 
11 

3 2 . 0 
5 . 0 

9 . 0 
- 7 . 0 

1 7 . 0 
2 . 0 

Column01Column02Column03Column04Column05Column06Column07Column08Column0 9Columnl0 
Columnll 
Row OOOlRow 0002ROW 0003 

Table 4.5 The species data of the Dune Meadow data in condensed format. The file is 
named'DUNE SPE.DTA'. 

SPECIES 
(15,9(1 

1 
2 
2 
3 
3 
4 
4 
4 
5 
5 
6 
6 
7 
7 

10 
10 
11 
11 
12 
13 
13 
14 
15 
16 
17 
20 
21 
28 
28 
29 
29 
30 

0 
Ach mil 
Ely rep 
Pot pal 
Hip rha 
Sample 
Samplel 
Duplicl 

DUNE MEADOW DATA (M. BATTERINK AND G. WIJFFELS, 1983) 
5,F2.0) ) 

9 
1 1 
1 3 

27 5 
2 4 

29 2 
2 8 

32 4 
20 5 

1 2 

27 
1 

23 
2 

33 2 
1 2 

24 2 
2 

23 
1 

27 
13 2 
32 
2 
2 

27 
2 
2 
2 
1 2 
6 5 
1 2 
6 

31 
3 

31 1 
2 5 

11 
4 

32 
4 

32 
4 

24 
5 

20 
5 

29 
5 

26 2 
4 

27 
4 

24 
5 

28 
16 

4 
4 

32 
10 
10 

4 
3 

19 
3 

16 
32 

5 

10 4 

17 7 
6 3 

6 2 

6 2 

27 
6 

23 
16 3 
33 3 

7 2 
27 2 
10 4 
29 
11 
27 

6 
29 

2 
6 
3 
2 
2 

17 7 

15 4 
8 1 

16 2 
14 3 
10 8 

5 4 
23 3 

5 4 
17 2 

12 2 

14 4 

19 4 
7 4 

11 4 

7 3 

29 2 
7 2 

26 2 
17 6 

15 2 
29 2 
14 4 

14 4 
29 2 

7 4 
32 3 
18 3 

16 2 
15 3 

21 2 
16 2 
14 3 
13 2 

13 2 
18 3 

13 5 

16 2 

20 2 32 3 
11 4 16 5 

16 2 17 6 

9 2 11 4 

11 4 
27 2 
18 5 

16 3 
32 2 
16 3 

15 4 
31 1 
16 3 

19 4 

20 4 
16 2 

22 2 
21 2 
20 2 
16 2 

16 2 
19 3 

16 6 

22 4 

16 3 
29 2 
19 3 

17 6 
33 2 
17 4 

16 2 
32 2 
17 6 

24 2 

23 2 
19 2 

27 6 
22 2 
22 2 
18 2 

18 2 

25 3 

24 3 

25 5 

17 5 19 4 

19 5 20 6 

16 2 17 5 

17 2 

20 4 

18 5 

19 4 

17 2 
33 2 
18 3 

27 3 

24 4 
20 9 

30 4 
27 1 
29 4 
19 1 

19 1 
27 2 

25 3 

18 5 

23 6 

19 4 

20 4 

19 4 

19 4 

28 2 

27 3 
22 2 

33 1 
29 4 
30 3 

28 1 

27 2 

20 7 

27 2 

19 4 

19 2 

26 5 

20 5 

22 2 

20 5 

20 4 

29 4 

29 4 
24 2 

33 1 

29 6 

29 3 

Agr sto Air pra Alo gen Ant odo Bel per 
Emp nig Hyp rad Jun art Jun buf Leo aut 
Ran fla Rum ace Sag pro Sal rep Tri pra 
Poa ann Ran acr 

ISample 2Sample 3Sample 4Sample 5Sample 
1Sample12Sample13Sample14Sample15Samplel 
7 

29 4 30 3 

Bro hor Che alb 
Lol per Pia Ian 
Tri rep Vic lat 

6Sample 7Sample t 
6Samplel7 

Samplelf 

Cir arv Ele pal 
Poa pra Poa tri 
Bra rut Cal eus 

Sample 9Samplel0 
SupplSAM 

Samplel9Sample20 

Page 76 Data Input 



The condensed format is a compact way of representing species data matrices with many 
species but where the number of species per sample is relatively small. Table 4.5 shows the 
species matrix of the extended Dune Meadow data (Table 16.1) in condensed format with 9 
couplets per line. Notice that the samples are rows in Table 4.5, whereas they are columns in 
Table 16.1. The code names of the samples reflect the original numbering. The first sample 
contains six species (with code names Ach mil, Ely rep, Lol per, Poa pra, Poa tri, and Poa ann) 
with abundance values 1, 4, 7, 4, 2, and 3, respectively. The other species are absent and thus 
have abundance value 0. 

The condensed format is also a handy way to represent nominal data. In condensed format, 
each nominal variable takes one couplet, irrespective of the number of classes. This is illustrated 
in Table 4.6, which is the extended Dune meadow environmental data in the condensed format. 
The data on the nominal variables Use and Management regime (in the last two columns in 
Table 16.2) are represented in the last two couplets of each data line in Table 4.6. For example, 
sample 1 has the value 1 for variables 5 and 7 which represent the class Haypasture of the 
variable Use and the class Standard Farm (SF) of the variable Management regime. 

Table 4.6 The environmental data of the Dune meadow data in condensed format. 
The variables are numbered as follows: 1 = Thickness of Al horizon; 2 = moisture; 3 = 

quantity of manure; 4 = hayfield; 5 = haypasture; 6 = pasture; 7 = Standard Farm; 
8 = Biodynamic Farm; 9 = Hobby Farm; 10 = Nature Management. The sample 
numbers and names are as in Table 4.5, except that samples 20 and 21 are missing. 
For explanation see text. 

DUNE MEADOW DATA ENVIRONMENTAL 
(13, 
5 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
28 
29 
30 

0 
Al 

, 12,F5. 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

2.8 
3.5 
4.3 
4.2 
6.3 
4.3 
2.8 
4.2 
3.7 
3.3 
3.5 
5.8 
6.0 
9.3 

11.5 
5.7 
4.0 
4.6 
3.7 
3.5 

Moi 

DATA IN 
0,3(13,F2. 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

1 
1 
2 
2 
1 
1 
1 
5 
4 
2 
1 
4 
5 
5 
5 
5 
2 
1 
5 
5 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

4 
2 
4 
4 
2 
2 
3 
3 
1 
1 
1 
2 
3 
0 
0 
3 
0 
0 
0 
0 

CONDENSED FORMAT 

0), 

5 
5 
5 
5 
4 
5 
6 
6 
4 
4 
6 
5 
5 
6 
5 
6 
4 
4 
4 
4 

stureManure 

•14. 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

Ha' 

, F2 

7 
8 
7 
7 
9 
9 
9 
9 
9 
8 
8 
7 
7 

10 
10 

7 
10 
10 
10 
10 

.0) 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

/f ieldHaypas" .sture SF BF HF NM 
Sample ISample 2Sample 3Saraple 4Sample 5Sample 6Sample 7Sample 8Sample 9Samplel0 
Sample11Sample12Sample13Sample14 Sample15Samplel6Sample17 SupplSAM 
Dupllcl7 Samplel8Samplel9Sample20 

The condensed format has no means to deal with missing data, because a variable that is not 
listed for a sample automatically receives the value zero. For the results of the ordination, it does 
not matter whether the data file is presented in full format or in condensed format. 

The requirements of the condensed format data file are: 
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Each line starts with a sample identification number followed by a number of couplets, 
each consisting of a variable identification number and a data value. Each line has the same 
format. 

The maximum number of couplets on a line is specified on line 3. It is also allowed to 
specify the number of couplets in the positions 69-70 of line 2 (or, if it is a number of one 
digit, in column 70). In this case line 3 is the beginning of the data. 

The maximum allowed length of each line of the data file is 127 positions. 

The layout of the data values of each sample is specified by a FORTRAN format on line 2. 
It must be within the first 80 positions. 

The identification numbers of samples and variables must be read with an I-format. In the 
example of Table 4.4 (line 2) this is "16" for the sample number and "17" for each variable 
number. The FORTRAN-format in a condensed format file thus contains at least two I's. 

The data values must be read with one or more F-formats, even the values are whole 
numbers. In the example of Table 4.4 this is "F6.0" (line 2). 

The number of couplets specified on the format line must be (greater than or) equal to the 
maximum number of couplets specified on line 3. In Table 4.4 this requirement is met by 
the 5 in front of "(I7,F6.0)". In Table 4.6 the FORTRAN-format also specifies 5 couplets, 
which is the number on line 3. 

The next-line format item "/" should not be used. The T-format item is not needed. 

All numbers and values must be separated by at least one space. No other characters are 
allowed between values. Special characters like tabs should be absent. In the data section, 
the only allowed characters are digits (0-9), the period (.), the minus sign (-) and the space. 

The sample identification numbers are non-decreasing. They do not need to be consecutive. 

The order of variable identification numbers within a sample is arbitrary. 

If, for a particular sample, there is no couplet that assigns a value to a particular variable, 
the variable is assigned the value 0. 

Missing values are not allowed. For missing values one may wish to insert a best possible 
guess, perhaps the mean value of the corresponding variable. 

The data values end with a notional sample with identification number 0 without couplets. 

The names of the variables start on a new line after the notional sample 0. The names are 
listed in lines of 80 positions, with 10 names per line, each name taking 8 positions. 
Trailing blanks are allowed unless they extend the line beyond the maximum line length of 
127 positions. 

• The names of the samples start on a new line after those of the species. The names are 
listed in lines of 80 positions, with 10 names per line, each name taking 8 positions. 
Trailing blanks are allowed unless they extend the line beyond the maximum line length of 
127 positions. 

If, for a particular variable, a variable occurs in more than one couplets, the last assigned 
value is used, except when the file is used as a species data file in CANOCO. When used as 
a species data file, the sum of the assigned values is used. 

4.4.3 Free format 

Free format is an easy form of full format. In free format, the data values of all variables are 
given, sample after sample, in a fixed order, but without the need to adhere to fixed column 
positions for the variables or to add sample identification numbers. Each sample starts on a new 
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line and the first value on that line is that of the first variable. Table 4.7 shows an example with 
three samples and eleven variables with the same data as Table 4.2. 

Table 4.7 Free format data file with 3 samples and 11 variables (species or environmental 
variables). 

Example data in CANOCO free format: 3 Samples and 11 Variables 
free 

11 3 
42.0 21.0 12.0 67.0 32.0 -12.0 

-0.1 3.0 -9.0 5.0 8.0 
52.0 27.0 15.0 80.0 9.0 40.0 

0.5 8.0 8.0 -7.0 6.0 
70.0 18.0 17.0 21.0 .0 17.0 

0.9 2.0 11.0 11.0 2.0 
Column01Column02Column03Column04Column05Column0 6Column07Column08Column0 9Columnl0 
Columnll 
Row OOOlRow 0002ROW 0003 

The first four lines of a free format file must look like this: 
Line 1 is a title. The first part of the title is reproduced in the output to remind the user which 
data were used in the analysis. 

Line 2 contains the keyword "free" or "FREE" starting in position 1 (or alternatively in position 
2, 3, ...or 7). 

Line 3 contains the number of variables and the number of samples in the data file (the position 
of the numbers is arbitrary) . In Table 4.7 the number of variables is 11 and the number of 
samples is 3. 

Line 4 is the beginning of the data. Each sample starts on a new line. The data of a sample may 
cover as many lines as needed. In Table 4.7 each sample takes two lines, but, in general, the 
number of lines per sample may vary. The data do not end with a notional sample 0. 

After the data, the code names of the eleven variables follow, 10 per line, and then the code 
names of the three samples. There are at most 10 code names per line. Each code name takes 8 
positions. The names of the variables in Table 4.7 are the same as those in Table 4.2. The code 
names are optional. 

Table 4.8 shows the same data in another layout. 

If you want to use free format but your file contains a sample identification number, you 
must count the identification number as an extra variable, add an extra name to the names of the 
variables and delete that variable in the project set-up for the analysis. 

The most important additional requirements of the free format data file are: 

• The maximum allowed length of each line of the data file is 127 positions. 

• All numbers and values must be separated by at least one space. No other characters are 
allowed between values. Special characters like tabs should be absent. In the data section, 
the only allowed characters are digits (0-9), the period (.), the minus sign (-) and the space. 

• Missing values are not allowed. For missing values one may wish to insert a best possible 
guess, perhaps the mean value of the corresponding variable. 

• There should be no blank lines between the last data value and the beginning of the optional 
code names for variables. 
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Table 4.8 Another data file in free format (same data as Table 4.7). 
Example data in CANOCO free format: 3 Samples and 11 Variables 

FREE 
11 3 

42.0 21.0 12.0 67.0 32.0 -12.0 -0.1 3.0 -9.0 5.0 8.0 
52.0 27.0 15.0 80.0 9.0 40.0 0.5 
8.0 8.0 -7.0 6.0 
70.0 18.0 17.0 21.0 .0 17.0 0.9 2.0 11.0 11.0 2.0 

Column01Column02Column03Column04Column05Column06Column07Column08Column0 9Columnl0 
Columnll 
Row OOOlRow 0002ROW 0003 
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5. Project setup and analysis in Canoco for Windows 

5.1 Introduction 

This chapter describes Canoco for Windows and is best read after the Getting Started 
chapter. 

The first step in an ordination analysis is to specify which data you want to analyze and 
which ordination method you want to apply. These details together form a "project". The project 
is the central unit of action in Canoco for Windows. The second step is to carry out the 
ordination analysis, i.e. to analyze the data by the computational method specified in the project. 
The third step is to create ordination diagrams. These three steps (specification, analysis, and 
plotting) are separated in Canoco for Windows. CanoDraw for Windows, which is used to 
accomplish the third step maintains its own project files. CanoDraw project files are based on 
individual Canoco project files, when they are created. 

For the first step (to specify a project) Canoco for Windows has a Project Setup Wizard, 
which starts automatically when you create a new project via the File submenu or by clicking 
the New project button on the toolbar. The Project Setup Wizard guides you through all 
available choices for the ordination analysis. When you finish the wizard sequence, the project is 
completed and can saved to a file (the Canoco project file with extension CON) so that it can be 
re-opened and modified on a later occasion. This ends the first step. 

The second step is to analyze the data by the ordination method specified in the project and 
the third step is to plot the data using the program CanoDraw 4.0. These two steps are performed 
by clicking buttons on the Project View, which is a window with a summary of the project and 
with buttons for common actions, or alternatively, via the Project menu of Canoco for 
Windows. The actions that are carried out on a project are logged in the log-window of the 
project, together with some summary results of the analyses. The ordination scores of an 
ordination analysis are stored in a "solution file", the name of which you must specify in the 
Project Setup Wizard. The ordination diagrams can be stored, modified, printed, or exported to 
a graph file using one of the popular formats (BMP, WMF, AI, PNG) - see section 12.1. 

You can also open a project that you saved in an earlier run of Canoco for Windows. This is 
done via the menu item File | Open. This brings you in the project view, from which you can 
choose 

• to modify the specifications of the project by clicking the Options... button, 

• to carry out the ordination analysis by clicking the Analyze... button 

• to plot ordination diagrams of the analysis by clicking the CanoDraw... button 

In summary, a project consists of all what is needed to carry out and modify an ordination 
analysis in Canoco for Windows. A project can be defined from scratch or modified from an 
existing project. In both cases the Project Setup Wizard helps you to define or modify the 
ordination method. 

Most of this chapter is also available online. Help is accessible via the Help submenu on 
main menu, but also via Help buttons on the project view and on each page of the wizard 
sequence. The latter is often more useful as the Help is directly on the choices you must make to 
define a good ordination method for your data. Short context sensitive help is also available via 
the question mark button on each page. 
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5.1.1 How to use Canoco for Windows 

The first step after launching Canoco for Windows is to create a new project. This is done 
by clicking the New project button on the toolbar or by selecting the menu item File | New 
project (or using the Ctrl-N keyboard short-cut) in the Canoco for Windows workspace (section 
5.1.2). This starts the Project Setup Wizard which asks you to specify the data for analysis and 
the ordination method to apply. When completed, all details that you specified (the project 
settings) are saved in a file (the CANOCO project file) before the second step, the actual 
ordination analysis, can be carried out. A CANOCO project file is a text-only file with an 
extension CON. After the CANOCO project file has been saved you are back in the CANOCO 
workspace, which now contains two windows (section 5.1.3): 

• the Project View with a summary of the project settings and buttons for common actions and 

• the Log View which logs the creation dates of the project (and later on the results of the 
analyses) 

The Log View may hardly be visible because the project view is the active window after 
leaving the project setup wizard. You may wish to resize and rearrange each window. The actual 
ordination is carried out after clicking the Analyze... button on the Project View or selecting the 
menu item Project | Analyze (Ctrl-A). A box labeled "RUNNING CANOCO" reports on the 
progress of the analysis. When the box disappears, the analysis is completed and you may 
consult the output of the analysis in the log-window. The ordination scores are stored in the 
solution file that you specified in the Project Setup. To make ordination diagrams, click the 
CanoDraw... button on project-view or the menu item Project | Run CanoDraw (Ctrl-C). You 
can return to Canoco for Windows by clicking Exit to DOS in CanoDraw. If you wish to change 
an ordination option, start the project setup wizard again by clicking the Options... button on the 
project-view or use the menu item Project | Setup wizard (Ctrl-S). After completing the wizard 
sequence, you may wish to save the changed project under a new name so as to retain the 
original project. For this, use the Save as toolbar button or the menu item File | Save as... You 
are asked to specify a name for the new Canoco project file. A saved project can be opened on 
a later occasion by clicking the Open button on the toolbar or the menu item File | Open 
(Ctrl-O). To close a project, click the menu item File | Close or the close button on the project 
view. 
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5.1.2 The Canoco for Windows workspace on startup 

f=S Canoco for Windows .JJ=IJ*J 

• •v i* 
Help 

Figure 5-1 Canoco for Windows empty workspace. 

Figure 5-1 shows the Canoco for Windows workspace after you close the Tip of Day 
window. Below the title bar is the main menu and the toolbar row with buttons representing 
shortcuts to frequently used menu commands. The white space is not for typing; it holds 
windows with information on projects that are created or opened. The toolbar can be positioned 
on any side of the Canoco for Windows workspace or it can be completely undocked and 
floating outside the Canoco for Windows main window. If you position the mouse pointer over 
one of the toolbar buttons (for example the one on the far left), you can see the tooltip text "New 
project" and a more detailed description of the command in the status line at the bottom of the 
Canoco for Windows workspace. 

You can now create a new project or open an existing project either via the File menu or by 
clicking one of the first two toolbar buttons. 
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5.1.3 The Canoco for Windows workspace with project and log views 

M Canoco loi Windows 

£te £cÄ Search £iojed Window Help 

|j£|öyj±L 
/ - Pioiecl: testidac con 

Input Data 

Sampk /ariables 

Deleted env variables 
Deleted covanables 

Commands 

Options... 

r 

£anoDraw | 

Save log . I 

l 
_»j 

j n j j c j 

s is after fitting covanak 
residual variances 
itting covariables 

[Mon Mar 02 18:17:21 1998] CAHOCO call succeeded 

Figure 5-2 Canoco for Windows workspace with Project and Log views. 

After you completed the Project Setup for a new project, opened an existing project or 
carried out an analysis, the Canoco for Windows workspace contains two windows per project 
(see Figure 5-2): 

• the Project View with a summary of the project settings and buttons for common actions and 

• the Log View which logs the creation dates of the project and, if available, results of the 
analyses 

The Figure 5-2 shows the workspace after the action of the Analyze... button has been 
completed. The Log View shows the text "CANOCO call succeeded" preceded by the summary 
of a partial ordination analysis. The windows can be rearranged and resized. A window can be 
activated by clicking in it, by the commands in the Window submenu in the main menu or by 

switching between the Project View and the Log View with the toolbar button LS3 or using the 
F3 keyboard shortcut. 
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Figure 5-3 Project View window. 

5.2 Project View 

The Project View window (Figure 5-3) summarizes the project in the terms of the input data 
and the type of analysis. To the right is a column of buttons to tools that can be applied to a 
project. When you have just finished the Project Setup Wizard sequence (invoked by the 
Options... button) and saved the specifications to a project-file ("CON-file"), a natural sequence 
of actions is to click the Analyze... button first to calculate the ordination specified in the 
project, then to click in the Log View window to look for the ordination summary (or you can 
use F3 to switch to the Log View), to activate the Project View again (by the F3 key, by clicking 
the view or via the Window submenu) and, finally, to click CanoDraw button to plot the 
ordination diagrams. You may also wish to modify the option settings of the project by clicking 
Options, or to save the contents of the project log-window by clicking Save log, or to display the 
results of an automatic forward selection, if calculated, by clicking FS summary. 

5.3 Selecting data sets and analysis type 

The Project Setup Wizard starts with the three pages of this section. They specify the most 
important aspects of the ordination analysis, namely which data the analysis is to be applied to 
and which ordination method is used. 
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Available Data 

DATA AVAILABLE FOR ANALYSIS 

C Only species data available 

f~ Species and environment data available 

(~ Species and covaiiable data available 

I - Supplementary environment data available 

ENVIRONMENTAL DATA. WHEN AVAILABLE. SHOULD BE USED TO: 

(• extract patterns from the explained variation only (direct gradient analysis) 

<~ interpret patterns extracted from all variation [indirect gradient analysis) 

Next> Help 

Figure 5-4 Available Data wizard page. 

5.3.1 Available Data 

Figure 5-4 shows the first page of the Project Setup wizard. You can specify 1 - 4 data sets 
for analysis. In Canoco terminology, the term species is used throughout for variables to be 
explained (response variables). The term environmental variables is used throughout for 
explanatory variables (predictors). A single available data set thus consists of'species data', even 
if the data may actually be environmental measurements. The variables in this data set are to be 
explained by the ordination axes. Other data, in Canoco terminology 'environmental data', can be 
used to help interpret the ordination axes or to define them (indirect vs direct gradients). The 
ordination can be adjusted for effects of 'covariable data' (concomitant or nuisance variables). 
'Supplementary environmental data' are a means of obtaining an alternative interpretation of 
already extracted ordination axes. In the current (1997) version of Canoco for Windows, 
CanoDraw cannot display supplementary environmental variables in the ordination diagram. 

Direct gradient analysis gives an ordination with an optimal environmental basis. It does 
show only those patterns in the species data that can be explained by the available environmental 
data. The ordination axes are aggregates of the environmental variables that best explain the 
species data (constrained or canonical ordination). This is a form of regression analysis: species 
are explained by the environment via a small number of ordination axes. 

Indirect gradient analysis gives an ordination that is calculated from the species data only. 
It shows the major patterns in the species data, irrespective of any environmental data. 
Environmental data, if available, are subsequently used to interpret the ordination. The 
ordination axes are theoretical gradients that best explain the species data. The axes are not 
constrained to be aggregates of the available variables (unconstrained ordination). 

To proceed to the next page of the wizard, click the Next> button or press the Enter key. If 
you press the Cancel button all the current changes in the project are canceled and you return 
into the Project View of the project you started from. 
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Data Files 

Species data file name: 

Browse 

M : \canoco nt4\samptes\duneenv dta 

Covariabtes data He name 

M. \canoco. nt4\samples\duneenv. dta 

Supplementary environment data file name: 

Browse 

Biowse 

Canoco solution file name: 

M:\canoco.nt4\dune cca sol Browse 

<Back Next > | icel Help 

Figure 5-5 Data Files wizard page. 

5.3.2 Data Files 

Figure 5-5 shows the second page of the Project Setup wizard. Specify here the names of 
the data files. Either fill-in the names or click on Browse to select your file. Data files must 
conform to one of three strict data formats. Data in a spreadsheet can be converted to a correct 
format using the utility program WCanoImp. It is permitted to use a single file for 
environmental, covariable and supplementary environmental data. Later you must indicate 
which category each variable belongs to. The species data must be in a separate file. Here you 
must also give a name for a (new) file, the solution file, where the output is to be stored, e.g. 
ordination scores required for preparing ordination diagrams. 

®°How to obtain a PC A on a correlation matrix. Ask for Only species data available, enter 
the data file with the variables as Species Data, center and standardize the data by species, | 
choose scaling with focus on species correlations. 
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<Back Next> | Cancel Help 

Figure 5-6 Type of Analysis wizard page. 

5.3.3 Type of Analysis 

Figure 5-6 show the third page of the Project Setup wizard. Specify here the ordination 
model. The appropriate model depends on whether you believe the species are responding 
roughly linearly to gradients (linear response) or have the best performance around some 
environmental optima (unimodal response). If you are not sure about this, analyze the species 
data first by a DCA and look at the length of gradient in the log-window. If the maximum 
gradient length exceeds 4 SD, your data show a strong unimodal response. Linear and unimodal 
methods stress patterns in absolute and relative abundance, respectively. Species data with many 
zeroes are often best analyzed with an unimodal method. With strong unimodal responses, 
correspondence analysis (and CCA with many environmental variables) tends to show an arch 
effect in the ordination diagram. This can be counteracted by choosing the detrended forms. 
Hybrid methods extract indirect gradients after direct ones. They are rarely used. If you wish to 
reconsider your initial choice for direct or indirect gradient analysis, go back to the first page. 

The abbreviations of ordination methods, used in this page are: 
PCA Principal Components Analysis 
CA Correspondence Analysis 
DCA Detrended Correspondence Analysis 
RDA Redundancy Analysis (alias Reduced Rank Regression) 
CCA Canonical Correspondence Analysis 
DCCA Detrended Canonical Correspondence Analysis 

^For a Canonical Variâtes Analysis (CVA), choose CCA and select in section 5.5.2 Hill's 
scaling with a focus on inter-species distances. See also section 8.4.3. 
^For a multiple regression or ANOVA, choose RDA here. See also section 8.4.4. 

Page 88 Project Setup. 



5.4 Number of canonical axes and detrending method 

The following two wizard pages do not appear in all analyses. 

5.4.1 Canonical Axes 

Canonical Axes 

Figure 5-7 Canonical Axes wizard page. 

The page shown in the Figure 5-7 appears only if you chose a hybrid method in the previous 
wizard page (see section 5.3.3). Canoco extracts four ordination axes at a time. In this page, you 
must select how many of these axes should represent direct gradients (i.e. canonical axes). 
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5.4.2 Detrending Method 

Figure 5-8 Detrending Method wizard page. 

The page in Figure 5-8 only appears if you choose DCA or DCCA in section 0. With DCA, 
choose detrending-by-segments for DECORANA's default detrended correspondence analysis 
(Hill et Gauch, 1980) and for obtaining estimates of gradient lengths in standard deviation units 
of species turnover (SD). A length greater than 4 SD indicates a strong unimodal response. A 
less drastic method of detrending is by polynomials. In this method, non-linear dependence of 
axis scores on lower-order axes is fitted with a polynomial of degree 2, 3 or 4, and then the 
original scores are replaced by the residuals from this polynomial regression model. This is the 
recommended detrending method in DCCA. 

5.5 Scaling of ordination scores 

The options in this section determine how the sample scores are scaled. The sample scores 
can be linearly rescaled so that their mean square is equal to (or, in Hill's scaling, related to): 

1. the eigenvalue (X) of the ordination axis, or 
2. the value 1.0, or 
3. the square-root of the eigenvalue 

The scaling of the species scores (and of all the other scores) follows from that of the sample 
scores by use of the transition equations - see section 6.3.2. In that section, we give an advice 
which scaling is best in which case, by focusing on the consequences of the scaling for the 
interpretation of ordination diagrams. 
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5.5.1 Scaling: Linear Methods 

, Scaling: Linear Methods 
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Figure 5-9 Scaling: Linear Methods wizard page. 

In this page (Figure 5-9), displayed only for linear ordination methods, you should specify 
whether you predominantly want to interpret relationships among samples or among species 
from the ordination diagram. There is also an option to use for a compromise scaling. The only 
effect of your choice in this page is that the ranges of the samples and species scores on one 
ordination axis with respect to another are either shrunken or blown up. Your choice is 
unimportant if the eigenvalues of the axes of interest are similar. 

Nominal environmental data define groups of samples. The sample scaling then allows you 
to interpret the distances between the groups. With quantitative environmental data, the species 
scaling results in an ordination diagram that reflects the environmental data and the correlations 
among the environmental variables. However, environmental effect sizes are best inferred from 
diagrams in sample scaling. With both nominal and quantitative environmental data, either 
scaling may be appropriate. Irrespective of your choice of scaling here, the ordination diagram 
displays the major patterns in the species data table, the table of correlations between species 
and quantitative environmental variables and, for nominal environmental data, the tables of class 
means per species (all interpreted by the biplot rule). 

Untransformed, a species' score is proportional to the standard deviation of the species. 
Thus, species with a large variance (often the dominant species) lie far from the center of the 
ordination diagram and so unduly dominate the diagram. To counteract this effect and to make 
the species scores more comparable, you can opt here to divide them (after extraction of the 
axes) by their standard deviation. Then, the ordination diagram displays standardized species 
data, and correlations instead of covariances. In conjunction with species scaling, a correlation 
biplot is obtained; the length of a species' arrow is then a measure of fit (R) with the ordination 
diagram. 

More information on the scaling of ordination scores is provided in the sections 3.5 and 
6.3.2. 

Project Setup... Page 91 



5.5.2 Scaling: Unimodal Methods 

Figure 5-10 Scaling: Unimodal Methods wizard page. 

In this page (Figure 5-10), displayed only for unimodal ordination methods, you should 
specify whether you predominantly want to interpret relationships among samples or among 
species from the ordination diagram (or whether you prefer a symmetric scaling). Your choice is 
unimportant if the eigenvalues of the axes of interest are similar. 

Nominal environmental data define groups of samples. The sample scaling then allows you 
to interpret the distances between the groups. With quantitative environmental data, the species 
scaling results in an ordination diagram that reflects the environmental data and the correlations 
among the environmental variables. However, environmental effect sizes are best inferred from 
diagrams in sample scaling. With both nominal and quantitative environmental data, either 
scaling may be appropriate. Irrespective of your choice of scaling here, the ordination diagram 
displays the major patterns in the species data table, the table of optima (weighted averages) of 
the species with respect to quantitative environmental variables and the relative abundances of 
species across environmental classes. 

In sample scaling, the (species-derived) sample scores are weighted averages of species 
scores, i.e. species that occur in a sample lie around that sample's point in the ordination 
diagram. In species scaling, the species scores are weighted averages of sample scores, i.e. each 
species' point is at the center of its niche in the ordination diagram; samples in which a species 
occurs are scattered around it. These interpretations of weighted averages form the centroid 
principle. 

If you select scaling with a focus on species distances, the resulting ordination diagram 
displays most accurately the dissimilarities between the occurrence patterns of different species. 
The measure of dissimilarity is, with the biplot scaling, the yj distance and, with the Hill's 
scaling, the generalized Mahalanobis distance. Check this option if you wish to carry out 
a canonical variâtes analysis (linear discriminant analysis) using CCA. 

Scaling type (biplot vs. Hill) addresses the issue how to infer the species data from the 
species-sample plot, other than by the centroid principle. The biplot scaling gives a more 
quantitative interpretation by the biplot rule and is most suited for short gradients. Hill's scaling 
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equalizes the average niche breadth for all axes and thus allows, for long gradients (strong 
unimodal response), the distance rule. This rule extends the centroid principle by taking a 
species' point as the optimum of its unimodal response. 

In Hill's scaling the mean square of the sample scores is equal to X/(\-X) when the focus is 
on the inter-sample distances, 1/(1 -X.) when the focus in on the inter-species distances and 
X]a/(i-X) when the scaling is symmetric. 

More information on the scaling of ordination scores is provided in the sections 3.5 and 
6.3.2. 

5.6 Transformation of the species data 

5.6.1 Centering and Standardization 

I Centering and Standardisation 

SAMPLES 

(* None 

C Center by sample 

C Standardize by norm 

C Centgr and standardize 

I 

SPECIES 

c c 

C Standardize by error variance 

Next > Cancel Help 

Figure 5-11 Centering and Standardization wizard page. 

This page (Figure 5-11) is displayed only for linear ordination methods. Specify here 
whether you wanj to center and/or standardize the species data table by samples and/or by 
species (rows and columns of the species data file, respectively). Ordinary PCA/RDA (based on 
a covariance matrix) is obtained by centering by species only. Each species is then implicitly 
weighted by its variance. Standardized PCA/RDA (based on a correlation matrix) is obtained by 
centering and standardization by species. This choice is particularly suited if the 'species' are 
measured in different units, e.g. when the data are actually environmental variables such as pH, 
organic matter (g) or water depth (m). Aitchison's (1990) log-ratio analysis of compositional 
data is obtained by centering log-transformed 'species' data by samples as well as by species. 
With environmental data it is possible to weight species inversely to the error variance that 
remains after fitting the species to the environmental and covariable data. 
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Centering by sample or by species is achieved by subtracting sample (row) or species 
(column) means from the value in the species data. The resulting data matrix then has zero row 
or column means. 

When standardizing by samples or by species, the species data values are divided by the 
corresponding sample or species norm (root mean square of values). 

5.6.2 Transformation of Species Data 

I - Downwekjhting of lare 

< Back Next> Cancel 

Figure 5-12 Transformation of Species Data wizard page. 

Species abundance values often display a highly skewed distribution. You can prevent a few 
high values from unduly influencing the ordination by transforming the data. Taking logarithms 
turns linear models into ecologically more plausible multiplicative models. If the data contain 
zero values, a small value (B) must be added, because log(O) is undefined. For technical reasons, 
B must then be equal to or greater than 1 in Canoco, but this limitation can be circumvented by 
specifying a value for A>1. For example, if you would like to add 0.1 to the original data, 
specify A=10 and B=l. 

In unimodal methods, rare species may have an unduly large influence on the analysis. 
Their influence can be reduced by checking the Downweighting of rare species box. 
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5.7 Data editing options 

5.7.1 Data Editing Choices 

Data Editing Choices 

CHECK APPROPRIA1 

SOME... 

Samples 

Species 
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Suppl. env. vars 
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r F F 
r r r 

DEFINE INTERACTIONS 

F F 

F r 

r r 

< Back | Cancel Help 

Figure 5-13 Data Editing Choices wizard page. 

Checking a box in this page (Figure 5-13) allows you to specify later which samples or 
species you wish to delete, weight, or make supplementary (i.e. "passive" in older CANOCO 
terminology). For example, you may wish to downweight an unreliable sample or to upweight 
a target species. Exotic species may be made supplementary in a study of native species. 
Supplementary (passive) samples or species do not influence the ordination axes, but are added 
afterwards so that their relation to the other samples or species can still be judged from the 
ordination diagram. 

You may also opt to delete some explanatory variables. If you are using a single file for all 
explanatory variables in a partial direct gradient analysis, the corresponding delete boxes are 
checked by default. You must then indicate later which variables are covariables and which are 
environmental variables. 

The effect of one explanatory variable may depend on another. You can explicitly model 
such interaction effects. Check the interaction box also to define polynomials. 

If you are modifying a project from a previous analysis, unchecking a box undoes the 
existing specification. For example, if you open a project where some samples were deleted, the 
checkbox in the DELETE column at the first (Samples) row is checked. If you un-check it and 
store the modified project, no samples will be deleted in the new analysis. 

^To see which species, samples, environmental variables and/or covariables are available 
for the analysis, check the appropriate Delete box. Canoco for Windows then lists the 
available species, samples, environmental variables and/or covariables. You need not to 
actually delete any items nor you need to uncheck the Delete box. 
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5.7.2 Delete Items 

Figure 5-14 Delete Items wizard page. 

The Delete Items page (Figure 5-14) allows you to specify the items to be deleted prior to 
the analysis (samples, species, environmental variables, covariables, or supplementary 
environmental variables). Highlight items to be deleted and click on the » button. You can also 
undo deletions by highlighting items in the list on the right and clicking on the « button. To 
highlight (select) an item in any of the lists, click the item with the left mouse button. To add 
new individual items to an existing selection, click each of them with the left mouse button, 
while holding down the Ctrl key. To select a contiguous range of items, select the first item and 
then click the last one, while holding down the Shift key. 
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5.7.3 Set Weights for Samples / Species 

>el Weight for Species J±*J! 
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Figure 5-15 Set Weights wizard page. 

This page (Figure 5-15) appears when you asked to weight some species or samples. Items 
(samples or species) with a non-default weight are listed on the page. If the list is empty (e.g. on 
its first appearance), all items have an implicit weight 1. You can modify the list with the Add 
and Clear buttons. You can remove items from the list by highlighting them and clicking on the 
Clear button. Alternatively, you can populate the list using the Paste button. This action imports 
the weights of samples or species from the Windows Clipboard. You can copy the weights onto 
the Clipboard from Microsoft Excel spreadsheet either in the form of one column (the number of 
rows must match number of items in your data) or as two columns, the first one giving the 
identification numbers of individual samples (species) and the other one specifying the actual 
weight value. In the later case, only the weights of samples (species) explicitly listed in the first 
column are modified. The other retain the values they had before this action. 

If you click the Add button, another dialog box is displayed and you are asked to specify 
a weight value and items with that weight there (Figure 5-16). 
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Figure 5-16 Add Items dialog. 

First specify a weight, then highlight the items (samples or species) to which this weight 
must be assigned and, once selected, click OK. Weights greater than 1.0 upweight items and 
weights less than 1.0 downweight them. If a sample receives a weight of 2.0, the same 
ordination could also have been obtained from an unweighted analysis by including that 
particular sample twice in the data file(s). Weights should exceed the value 0.01 and cannot be 
larger than 100.0. 

5.7.4 Supplementary Samples / Species 

Supplementary Samples 

Select samples to be made supplementary 
Select items in the left tistbox and move to the right with the >> button 

SOURCE POOL 

7] Sample 7 
8) Sample 8 
9] Sample 9 
10]Sample10 

[11] Sample11 d 

< Back Next > 

SUPPLEMENTARY 

[ 1] Sample 1 
[ 4] Sample 4 

Cancel Help 

Figure 5-17 Supplementary Samples / Species wizard page. 

This page (Figure 5-17) appears when you asked to make some species or samples 
supplementary. Supplementary (passive) samples or species do not influence the ordination 
axes, but are added afterwards so that their relation to the other samples or species can still be 
judged from the ordination diagram. Highlight items to be made supplementary and click on the 
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» button. You can also re-activate supplementary items by highlighting items in the list on the 
right and clicking on the « button. To highlight (select) an item in any of the lists, click the 
item with the left mouse button. To add new individual items to an existing selection, click each 
of them with the left mouse button, while holding down the Ctrl key. To select a contiguous 
range of items, select the first item and then click the last one, while holding down the Shift key. 

5.7.5 Interactions of Variables 

Interactions o l Environmental Variables H B 
Fitst variable Second variable 

Figure 5-18 Interactions of Variables wizard page. 

This wizard page (Figure 5-18) allows you to specify which products and powers of 
variables you wish to add to the set of explanatory variables (environmental variables, 
covariables or supplementary environmental variables). As in multiple regression analysis, 
products and powers are a means of studying interaction and polynomial effects. 

For statistical testing of the pure interaction effect between P and N, say, the variables P and 
N must be in the covariables data and the product variable P*N must form the environmental 
data. The product variable P*N can be defined on this page, even if you already deleted P and N 
from the environmental data. If P and N are factors, the dummy variables coding their levels 
must be in the covariable data and all the products of these dummies in the environmental data. 
See Example E40 in section 8.3.3. 

The product P*N*K can be formed by first defining P*N and the defining the product of the 
results with K. If P*N is subsequently removed from the list, the variable P*N*K is removed 
automatically as well. Analogously, NA3 (N*N*N) requires the existence of NA2 (N*N). 
To create a new product variable, highlight one item in the First variable list and one item in 
the Second variable list and click the Add button. The created product variable is placed in the 
bottom list, as well as at the end of both lists at the top, so it can be used to create more 
complicated terms. If you want to remove an already defined product variable, highlight it in the 
lower list (named Powers and product variables) and click the Remove button. Note that all 
the higher-order interaction terms, that were created using the removed term are automatically 
removed as well. 
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5.8 Forward selection 

5.8.1 Forward Selection of Environmental variables 

Forward Selection of Environmental Variables 

o not use forward selection 

BestK= variables 

W use Monte £arlo Permutation Tests 

~ Permutations under full model 

Number of permutations: |199 

<Back Next> Cancel Hefe 

Figure 5-19 Forward Selection wizard page. 

This wizard page (see Figure 5-19) allows you to specify forward selection options to be 
used when analyzing the current project. Forward selection is useful for ranking environmental 
variables in their importance for determining the species data or for reducing a large set of 
environmental variables. Variables can be selected automatically or manually. In automatic 
selection, the K best variables are selected sequentially on the basis of maximum extra fit. You 
can limit the number of selected variables (K). 

Optionally, the statistical significance of each selected variable can be judged by a Monte-
Carlo permutation test. You can alter the number of permutations to be carried out for each test 
by specifying value less than 10000. By default, residuals from the reduced model ('null model') 
are permuted. Alternatively, residuals from the full model are permuted. The reduced-model 
method better maintains the type I error in small data set. Without covariables, the method yields 
the exact Monte-Carlo significance level. The full-model method gives slightly lower type II 
error. 

If you select the Manual selection option, you may choose in each step of the selection 
process which environmental variable is tested or included in the model. If you plan to test for 
variable significance, check also the Monte Carlo permutation test checkbox. 

Page 100 Project Setup. 



5.8.2 Forward Selection report 

Forward selection results 

Marginal Effects 

Conditional i 
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Figure 5-20 Forward Selection report dialog. 

This dialog box (Figure 5-20) summarizes the results of the automatic forward selection 
procedure and can be displayed after the analysis was run by clicking the FS Summary button 
in the project view. 

The table at the top of the dialog box, headed Marginal effects, lists the individual 
environmental variables in order of the variance they explain singly i.e. when that particular 
variable is used as the only environmental variable (lambda-1 column). The variance is in 
addition to the variance explained by covariables, if present, but ignores the other environmental 
variables. 

The table at the bottom, headed Conditional effects, shows the environmental variables in 
order of their inclusion in the model, together with the additional variance each variable explains 
at the time it was included (lambda-A) and, if Monte Carlo tests were asked for, the 
significance of the variable at that time (P-value) together with its test statistics (F-value). 
A variable contributes significantly (at the 5% significance level) to the model of already 
included variables if the P-value is less than or equal to 0.05. 

Both tables can be copied to the Clipboard by clicking the Copy button. Click OK if you 
are ready to proceed. 
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5.8.3 Manual Forward Selection 
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Figure 5-21 Forward Selection Step dialog. 

Manual forward selection is a step-wise process of building a model for the species data. 
Starting from an empty model, you can select environmental variables, one after the other, for 
inclusion in the model. This dialog box (Figure 5-21), which appears at each selection step 
during the analysis, allows you to select an environmental variable for inclusion, to test the 
statistical significance of a variable, if it would be included in the current model, and to stop the 
selection process. The top panel lists environmental variables that are available for selection in 
order of the extra variance each of them would explain when included in the current model. The 
bottom panel shows the environmental variables already selected. In the first step, the bottom 
panel is empty and the explained variance is 0.000. Also displayed is the maximum amount of 
variance that can be explained by including all variables in the model. 

If you specified Monte Carlo permutation tests in the project setup, you can use the Test 
variable button and the highlighted variable in the upper list is tested. At the end of the test, the 
results of the Monte Carlo permutation test are displayed in a dialog box (Figure 5-22). 

j Report on Permutation Test 

Permutation test on variable: Moisture 

Permutation number: 139 

F value for data: 3.278 

P-value estimate: 0.0050 

OK 

Help 

Figure 5-22 Permutation Test results dialog. 
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This dialog box identifies the variable on test, the number of Monte Carlo permutations carried 
out in determining the P-value, the value of the test statistic for the data (F-value), and the 
resulting significance level (P-value). Click OK if you are ready to proceed to the next step in 
manual forward selection. 

5.9 Global significance tests 

5.9.1 Global Permutation Test 

Global Permutation Test 

sis with Monte-Ca 

Number of permutations 

t perform the test 

<~ Significance of canonical axes togethi 

C Both above te 

Permutation under. 

(• Reduced model 

f~ Full model 

Back Next> | Cancel Help 

Figure 5-23 Global Permutation Test wizard page. 

In this wizard page (Figure 5-23), you should specify whether you want to determine the 
statistical significance of the relation between the species and the whole set of environmental 
variables, given the covariables (if these are present in the project). Two test statistics are 
available: one based on the first canonical eigenvalue and one based on the sum of all canonical 
eigenvalues. The resulting tests determine the significance of the first ordination axis and that of 
all canonical axes together, respectively. Test based on the first canonical axis has maximum 
power against the alternative hypothesis that there is a single dominating gradient that 
determines the relation between the species and environment. This test also requires more 
computer time than the test based on the all canonical axes. In this alternative test, the test 
statistic used is an F-ratio of the sum of all canonical eigenvalues (which takes the role of the 
regression sum of squares) and the residual sum of squares. This statistic yields an omnibus test, 
i.e. a test which is sensitive to all kinds of deviations from the nul! hypothesis. 

The test is carried out by a Monte Carlo permutation test. You can alter the number of 
permutations to be carried out, specifying value up to 10000. For a test at the 5% significance 
level, a minimum of 19 permutations is required. The power of the test increases with the 
number of permutations, but only slightly so beyond 199 permutations. 

By default, residuals from the reduced model ('null model') are permuted. Alternatively, 
residuals from the full model are permuted. The reduced model method better maintains the 
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Type I error in small data sets. Without covariables, the method yields the exact Monte Carlo 
significance level. The full-model method gives lower type II error, but only so slightly that it is 
best to stick to the default (Anderson & Legendre, 1999). 

5.10 Specifying the randomization model 

The following wizard pages appear if you asked for a Monte Carlo permutation test in either 
the Forward selection page (section 5.8.1) or in the Global permutation test page (section 5.9.1). 

5.10.1 Permutation Type 

Permutation Type 

PetmuJ 

<" Unrestricted perrr trimca py covanaDici 

Random Numb« Generatot 

23239 945 Randomize.. 

; Back Next > Hep 

Figure 5-24 Permutation Type wizard page. 

Experimental design and sampling design determine the appropriate permutation type. 
Unrestricted permutation is appropriate for completely randomized and randomized block 
designs and for simple random sampling and stratified random sampling. It is also the default for 
studies without any additional structure. In designs with blocks or strata, exchange of samples 
between the blocks or the strata must be excluded. This is achieved by checking Blocks here and 
defining them by covariables later. If samples are taken in a number of different locations, 
defining location as blocks provides a test for common within-location variation. 

Restricted permutation types are appropriate for line transects, time series and rectangular 
grids, if recorded at equal intervals, and for balanced split-plot designs and related designs such 
as Before-After-Control-Impact (BACI) designs, repeated measurement designs, and many 
ANOVA designs with random (nested or crossed) factors. If there are more line transects (or 
time series or grids), each one should form a block. This allows you to test for within-transect 
variation. In contrast, if you want to test for berween-transect variation, each transect must not 
form a block, but a whole-plot in a split-plot design (to be specified later). Whole-plots must be 
of equal size. If the whole-plots themselves are arranged in blocks, you must check the Blocks 
option here. 
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For blocks of equal size, the required permutations can sometimes be obtained without 
block-defining covariables. Try the options of the split-plot design for this. 

If your data require yet another permutation type, you can specify here a file with your own 
permutations (permutation file). With n active samples in the analysis, the permutation file (with 
ASCII format) should contain a sufficient number of permutations of the numbers 1, 2, ..., n, 
with one permutation after the other. See Table 7.3 and the example BACH SPE in section 8.3.7. 

The generation of Monte Carlo permutations requires initial seeds. You may alter the seeds 
manually or by clicking on the Randomize button: the performed randomization is based on the 
computer system time. If more than one test is applied to the same data, it is prudent to specify 
different seeds for each test. 

Finally, you can set here an option that has not yet been thoroughly studied. If set, leverage 
corrected residuals are permuted rather than ordinary residuals. For technical reasons, the 
method can only be used with the default seeds. 

5.10.2 Definition of Blocks 

! Definition of Blocks 

Select the covariables which define the blocks from the left list-box 

and click the >> button To move selected covariables back, use ttv 

Figure 5-25 Definition of Blocks wizard page. 

Specify in this wizard page (Figure 5-25) which of your covariables indicate the blocks (one 
dummy variable for each block). Samples with the same value for the selected covariables will 
end up in the same block. Blocks are usually indicated by a set of dummy (0/1) variables, but it 
is possible to use multiple-valued variables. Highlight these dummy covariables and click on the 
» button. You can also undo selections by highlighting variables in the list on the right and 
clicking on the « button. 
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5.10.3 Permutation Restrictions 

Permutation Restrictions 

Select type ol restriction on the permutations 

C Jrne series or line transects 
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<Back Cancel 
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Help 

Figure 5-26 Permutation Restrictions wizard page. 

In this wizard page (Figure 5-26), you should specify whether your data are from a line 
transect / time series, from a rectangular grid, or from a split-plot design. If you have multiple 
transects (or series or grid) of equal dimension, you may also select here the split-plot design 
option, which encompasses the other options. With the split-plot design you can test for split-
plot factors (e.g. within-transect variation) as well as for whole-plot factors (e.g. between-
transect variation). With the split-plot design, you can also analyze Before-After-Control-Impact 
(BACI) designs, repeated measurement designs, and many ANOVA designs with random 
(nested or crossed) factors. 

If your samples are sampled in a regular time sequence or on a line transect with equal 
intersample distances, select the Time series or line transects option. With blocks in the 
analysis, each block must contain a single time series or line transect. Series or transects may 
differ in size between blocks. Between-series or between-transect variation is excluded from the 
test. The permutations for series / transects or grids are cyclic or toroidal shifts. It is rarely 
needed, but you may disable shifts from the mirror image of the series / transect or grid. 

If your samples are arranged on a rectangular grid in space, select the Rectangular spatial 
grid option. With blocks in the analysis, each block must contain single grid. Between-grid 
variation is excluded from the test. The permutations generated for grids are independent 
toroidal shifts. 
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5.10.4 Grid Dimensions 

G lid Dimensions 
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Figure 5-27 Grid Dimensions wizard page. 

Specify in this wizard page the dimensions of the grid(s) you have. The units of the grid can 
be samples or whole-plots (sets of samples). Rows and columns are not arbitrary entities here: 
a row consists of samples that are consecutive in the data file. For example, if you specify that 
your grid has 3 rows and 10 columns, then Canoco for Windows assumes that the first 10 units 
(samples or whole-plots) in the data file form the first row, the next 10 the second row, etc. In 
contrast, if you specify that your grid has 10 rows and 3 columns, then Canoco for Windows 
assumes that the first 3 units (samples or whole-plots) in the data file form the first row, the next 
3 the second row, etc. 
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5.10.5 Split-Plot Design 
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Figure 5-28 Split-Plot Design I wizard page. 

This is the first wizard page (Figure 5-28) of the two pages used for specifying a split-plot 
design. Split-plot design is a hierarchical design with two levels of units: whole-plots containing 
split-plots. Split-plots are the lowest level sampling units, i.e. the samples in your data file. 
Examples are samples-within estuaries, plots-within-stands, plots-along-transects, releves-
within-time-series (in a permanent plots study). Specify here the number of samples per whole-
plot and how the samples comprising a whole-plot are arranged in the data file. If the samples of 
a whole-plot are consecutive in the data file, you can apply the default rule (take 1 sample, skip 
next 0 samples), because no samples need to be skipped. For example, if in a permanent plot 
study, the vegetation of 50 locations is monitored at 20 points in time, locations are whole-plots 
and relevés (samples) split-plots. In the data file, the samples may be arranged by locations or by 
times. Arrangement by locations means that all data of a single location is consecutive in the 
data file, so that the default rule applies (the rule 'take 20 samples, skip 0' would work, as well). 
Arrangement by times means that all data of a single time point are consecutive in the data file. 
With a standard order of locations within times, the data of each location are found by the rule 
'take 1 sample, skip next 19 samples'. 

Here is an example which would require you to specify a take number other than the 
default. Let the whole-plots A, B, and C consist of 6 samples each and let the samples happen to 
be arranged as AABBCC AABBCC AABBCC in the data file. Then the rule 'take 2, skip 4' 
correctly specifies the whole blocks. Such data arrangements occur naturally in ANOVA designs 
with random crossed factors. 
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5.10.6 Split-Plot Design II 

Figure 5-29 Split-Plot Design II wizard page. 

This is the second Setup Wizard page (Figure 5-29) used for specifying a split-plot design. 
The split-plot framework allows many permutation types, all of which define fewer distinct 
permutations than the unrestricted permutation type. This framework is applicable when the 
samples of your data file can be grouped into whole-plots. The samples (split-plots) of a whole-
plot are related because they share an error term or a random factor. Whole-plots should be of 
equal size, because whole-plots with different numbers of samples can not be exchanged. 

The effect of environmental variables that vary between whole-plots (e.g. the whole-plot 
factors of a split-plot design) can be tested by permuting whole-plots while keeping the split-
plots of each whole-plot together. This test is obtained by specifying that whole-plots are freely 
exchangeable whereas split-plots within whole-plots are not to be permuted. If the whole-plots 
form a time series, a line transect, or a spatial grid, the whole-plot permutations can be restricted 
to cyclic or toroidal shifts so as to account for autocorrelation among whole-plots. If your 
environmental variables vary little or not at all between whole-plots, the test will never show 
significant effects. 

The effect of environmental variables that vary within whole-plots (e.g. the split-plot factors 
of a split-plot design) can be tested by permuting split-plots within whole-plots without 
permuting whole-plots. Whole-plots restrict the permutations in the same way as blocks, but 
without the necessity of block-defining covariables. If the split-plots form a time series, a line 
transect, or a spatial grid, the split-plot permutations can be restricted to cyclic or toroidal shifts 
so as to account for autocorrelation among split-plots. If the split-plots form parallel time series 
and time is an autocorrelated error component affecting all series, the same shift should be 
applied to all time series. This is specified by checking dependent split-plot permutations across 
whole-plots. In the standard split-plot design, split-plots of different whole-plots are unrelated 
and the permutations of split-plots in different whole-plots should be independent. If your 
environmental variables vary little or not at all within whole-plots, the test will never show 
significant effects. 
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It is rarely needed, but for whole-plots and for split-plots you may disable shifts from the 
mirror image of the series / transect or grid. 

Many designs can be analyzed in the split-plot framework. The manual gives examples of 
specifying tests in repeated measurement designs, ANOVA with random nested and crossed 
factors and the BACI design. The specification for the Before-After-Control-Impact (BACI) 
design is summarized below. 

In a BACI design, the data are parallel time series, one per site; sites are the whole-plots and 
the samples of the time series are the split-plots. Sites and times must be dummy covariables and 
the impact itself must be coded by one or more environmental variables (e.g. by the product 
variables Impact-site*After-times). 

With a single Control and a single Impact site, the data consist of two time series with, 
preferably, many Before-impact and many After-impact times. A test of the impact can be 
obtained by permuting the samples in the time series in the same way, i.e. by checking the box 
Dependent [split-plot permutations] across whole-plots. If there is no autocorrelation in the time 
series of Control-Impact differences, the permutation must be restricted to the cyclic shifts of 
time series. For the whole-plots, check freely exchangeable (or, to the same effect, no 
permutation). See section 8.3.7 for an example (BACI1SPE). 

With replicated Control and Impact sites with just a single Before-impact and a single 
After-impact sample, the test must be based on permuting the whole-plots (sites) without 
permuting the split-plots (samples). This test is not powerful with only a moderate number of 
Control and Impact sites. If more Before-impact and After-impact samples are available, 
additional power is obtained by also permuting the split-plots by identical cyclic shifts. See 
section 8.3.9 for an example (BACI3SIT). 

The options in the Whole-plot level group define how the whole-plots are permuted in this 
analysis. All samples belonging to the same whole-plot are kept together in the permutation. The 
permutations allow you to test the effect of the environmental variables that vary between 
whole-plots: 

• select the No permutations option if you want to test the effect of environmental variables 
that vary within whole-plots (e.g. the split-plot factors of a split-plot design). Unpermuted 
whole-plots restrict the permutations in the same way as blocks, but without the necessity of 
block-defining covariables. 

• select the Time series or line transect option if the whole-plots are sampled in a regular time 
sequence or on a line transect with equal interpoint distances. 

• select the Spatial grid option if the whole-plots are arranged on a rectangular grid in space. 

• select the Freely exchangeable option if, under the null hypothesis, the whole-plots are 
exchangeable, e.g. if you are testing whole-plot factors in a split-plot design. 

The options in the Split-plot level group define how the split-plots are permuted within 
each of the whole-plots. The permutations allow you to test the effect of environmental variables 
that vary within whole-plots: 

• select the No permutations option if you want to test the effect of environmental variables 
that vary between whole-plots (e.g the whole-plot factors of a split-plot design). 

• select the Time series or line transect option if the samples of each whole-plot are sampled in 
a regular time sequence or on a line transect with equal intersample distances. 

• select the Spatial grid option if the samples (split-plots) of each whole-plot are arranged on 
a rectangular grid in space. 

• select the Freely exchangeable option if, under the null hypothesis, the split-plots are 
exchangeable within the whole-plots. 
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For the permutation of split-plots you must also decide whether the samples in different 
whole-plots are unrelated or dependent across the whole-plots. If you selected independence, 
then the permutation of samples within one whole-plot is independent of the permutation of the 
samples within the other whole-plots. If you, on the other hand, select the Dependent across 
whole plots option, the permutation scheme at each permutation iteration is identical across all 
available whole-plots. For example, if a number of locations is sampled at the same points in 
time, the samples of different locations (whole-plots) are related by time. The samples within 
different whole-plots must be in the same meaningful order in the data file (e.g. in order of 
time). 

5.11 Saving the project 

After you defined or modified options in the CANOCO project with the Project Setup 
Wizard, you can save them in a Canoco project file (with the .CON file extension). You can save 
an already named project by using the Save button on the toolbar, by selecting the Save 
command from the File submenu, or by using the Ctrl-V keyboard shortcut. To save an existing 
CANOCO project under a different name, you can invoke the File Save As dialog box by 
clicking the Save As button on the toolbar or by selecting the Save as.. . command from the File 
submenu. For new projects, the Save As dialog box appears automatically. 

5.12 Running the analysis and saving the log 

After you specified the analysis settings or after opening a fully-defined CANOCO project 
file in the Canoco for Windows workspace, you can analyze the project by: 

• clicking the Analyze button in the Project View window. 

• clicking the Analyze button in the Canoco for Windows toolbar. 

• selecting the Analyze command from the Project submenu or. 

• using the Ctrl-A keyboard shortcut. 

Note that any of these methods functions only if the Project View (not the Log view) is 
active! While the analysis is running, a progress panel is displayed and you cannot work with 
the Canoco for Windows during that time. You may disable the progress panel in the Options 
dialog box (see section 5.14). 

The analysis results are stored in the Log View window of your project. Under 
Windows 9x, the capacity of the log is limited; so if the size of the analysis log exceeds the Log 
window capacity, part of the output is removed. You get the opportunity to save the whole 
analysis log in a text file first. If there is a log from a previous analysis, you get the opportunity 
to save this log to a file, before it is deleted from the Log View to make place for the log from 
the new analysis. Fortunately, it does not happen often that the log exceeds the Log View 
capacity, except when you have very many environmental variables which result in a large 
correlation matrix. These capacity problems are not present in Windows NT, Windows 2000, or 
Windows XP. 
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Figure 5-30 Canoco for Windows workspace after analysis. 

You can save the log results using either the Save Log... button in the project view or by the 
Save log... command in the File submenu. You can print the analysis log using either the Print 
button in the program toolbar or using the Print... command in the File submenu (or using the 
Ctrl-P keyboard short-cut). Before printing the log, you can preview the output using the Print 
Preview facility available either via the Print Preview button in the program toolbar or with the 
Print Preview... command in the File submenu. 

<*" The log produced by the CANOCO has usually quite long lines. To fit these lines on the 
printed pages, it is advantageous to set the print orientation to the Landscape mode in the 
dialog box invoked by the Page Setup... command in the File submenu. 

5.13 Creating ordination diagrams 

After you finished the analysis of a CANOCO project, you can visually inspect the analysis 
results using the ordination diagrams created by the program CanoDraw. You can start the 
program using the CanoDraw... button in the Project View window. This button is enabled if 
the analysis results are available and the file with analysis results is younger than the file with 
Canoco project. 

After you clicked the CanoDraw... button or used an alternative invocation method (either 
the Run CanoDraw command in the Project submenu or the Ctrl-C keyboard short-cut), 
CanoDraw is started and the current project settings are read together with the analysis solution 
file and with the input data files. CanoDraw then must save all this information into its own 
project file. Once the CanoDraw project was created, CanoDraw does not refer to the files used 
or created by the Canoco for Windows program. If you change Canoco project and do a new 
analysis, you must recreate the CanoDraw project with the new settings and results. 

Note that Canoco for Windows merely starts the CanoDraw program, so that you can I 
continue work with Canoco for Windows, while CanoDraw is running. 
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5.14 Specifying program options 

Canoco Options 

Available options 

I P_o not display progress box during ana^sis 

f * Overwrite old analysis output 

OK Cancel Help 

Figure 5-31 Canoco Options dialog. 

You can use the Options... command in the Project submenu to specify options for the Canoco 
for Windows program (see Figure 5-31). 
The first option, if checked, disables the creation of the progress window which is normally 
displayed while a CANOCO project is being analyzed. This possibility might come handy if you 
want to run a long analysis and work with other software during that period. Normally, when 
Canoco for Windows does long permutation tests, it brings to foreground and updates the 
progress window from time to time to confirm to the user that the Canoco application is still 
working. This might be a real nuisance, however, if you want to run the analysis on the 
background. 

If the second option is specified, the old analysis output is deleted each time a new analysis log 
is being appended. This might be useful if you try to find proper ordination model and/or 
analysis options iteratively, and you are interested only in the final model. 
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6. Results of the analysis 

6.1 Introduction 

This chapter describes the numerical results of an ordination analysis by Canoco that are 
obtained after clicking the Analyze... button in Canoco for Windows. The results consist of three 
parts, listed in the log-window, the solution file and the species-environment table. The log-
window provides summary statistics of the analysis, including the results of significance tests. 
Look also in the log-window for any possible warning and error messages. The solution file 
contains the ordination scores, and various other statistics that are linked to individual species, 
samples and, if available, environmental variables. This is the file that contains the information 
for drawing ordination diagrams and is thus used by CanoDraw. The species-environment table 
contains a table of correlation coefficients (or covariances) between species and environmental 
variables in linear ordination methods or a table of weighted averages in unimodal ordination 
methods. The subsequent sections describe each part of the output in turn. 

This chapter is also relevant to you if you run the console version of Canoco (chapter 7). 
The results described in section 6.2 (Log window) can be found in the CANOCO output file. 

6.2 Log-window 

It is recommended to check in the log-window that the analysis has been carried out as 
planned. The first part gives essential information on the number of active samples, species, 
environmental variables, and covariables. Later parts give diagnostics on outliers in the 
environmental and covariable data and summary statistics of the ordination. The results are 
discussed in the order in which they are listed in the log-window. The example analyses are 
a canonical correspondence analysis (CCA) and a redundancy analysis (RDA) applied to the 
extended Dune Meadow data in Table 4.5 and Table 4.3 with the species numbered 3 1 - 3 3 
made supplementary (see also Appendix A). 

6.2.1 Log of reading of the project CON-file and the data files 

Table 6.1 shows the first part of the log-window of a canonical correspondence analysis 
(CCA) applied to the Dune Meadow data in Table 4.5 and Table 4.3. Some of the output is 
a little bit cryptic because some options are indicated by number rather than by a description. 
For example, in this output, CCA is indicated by analysis type 5 and this is the chosen number 
(Answer = 5) and, below the listing of names of the data files, no forward selection has been 
chosen as indicated by a 0 and the chosen scaling of ordination scores is 2. Canoco for Windows 
always gives full diagnostics as indicated by a 1 or 3. The precise meaning of the codes can be 
found in chapter 7 on the console version of CANOCO. In most cases, the number reflects the 
order of options in the wizard pages. Table 6.2 and Table 6.3 explain the numerical codes of the 
scaling of ordination scores in terms of the choice you made in the wizard in unimodal and 
linear methods, respectively. 
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Table 6.1 First part of the log-window of a canonical correspondence analysis on the Dune 
Meadow data. 

[Mon Jul 28 14:50:14 1997] Log file created 

[Mon Jul 28 14:52:35 1997] CON file [C:\cfw\samples\ccamanl.con] saved 
[Mon Jul 28 14:52:38 1997] Running CANOCO: 
Program CANOCO Version 4.0 September 1997 - written by Cajo J.F. ter Braak 
Copyright (c) 1988-1997 Centre for Biometry Wageningen, CPRO-DLO 
Box 100, 6700 AC Wageningen, the Netherlands. 
CANOCO performs (partial) (detrended) (canonical) correspondence analysis, 
principal components analysis and redundancy analysis. 
CANOCO is an extension of Cornell Ecology program DECORANA (Hill,1979) 

For explanation of the input/output see the manual, 'Unimodal models' and 
ter Braak, C.J.F. (1995) Ordination. Chapter 5 in: 
Data Analysis in Community and Landscape Ecology 
(Jongman, R.H.G., Ter Braak, C.J.F, and Van Tongeren, O.F.R., Eds), 
Cambridge University Press, Cambridge, UK, 91-173 pp. 

Type of analysis 
Model 

linear 
unimodal 

Gradient analysis 
indirect direct 

1=PCA 2= RDA 
4= CA 5= CCA 

,, 7=DCA 8=DCCA 
10=non-standard analysis 

Type analysis number 
Answer = 5 

hybrid 
3 
6 
9 

*** Data files *** 
Species data 
Covariable data 
Environmental data 
Initialization file 

C:\cfw\samples\dunespe.dta 

C:\cfw\samples\duneenv.dta 

Forward selection of envi. variables = 0 
Scaling of ordination scores = 2 
Diagnostics = 3 

File 
Title 
Format 

C:\cfw\samples\dunespe.dta 
SPECIES - DUNE MEADOW DATA 
(15,9(I5,F2.0)) 

(M. BATTERINK AND G. WIJFFELS, 1983) 

No. of couplets of species number and abundance per line 

No samples omitted 
Number of samples 22 
Number of species 33 
Number of occurrences 22 6 

File : C:\cfw\samples\duneenv.dta 
Title : ENVIRONMENTAL DATA IN FULL FORMAT - DUNE MEADOW DATA 
Format : (15, F5.0, IX,2F3.0,3X,3F2.0,3X,4F2.0) 
No. of environmental variables : 10 

No interaction terms defined 

No transformation of species data 
Weight .00 is given to species 31 
Weight .00 is given to species 32 
Weight .00 is given to species 33 
No sample-weights specified 
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No downweighting of rare species 

No. of active samples: 20 
No. of passive samples: 2 
No. of active species: 30 

Total inertia in species data= 
Sum of all eigenvalues of CA = 2.11526 

****** Collinearity detected when fitting variable 6 ****** 
Collinearlty detected when fitting variable 10 ****** < * * * * 

Table 6.2 Codes for the options for the scaling of ordination scores in unimodal methods 
(CA, CCA and DCCA). 

Focus scaling on Scaling type 

Inter-sample distances 

Inter-species distances 

Symmetric 

biplot scaling 

1 

2 

3 

Hill's scaling 

-1 

-2 

-3 

Table 6.3 Codes for the options for the scaling of ordination scores in linear methods (PCA 
and RDA). 

Focus scaling on Species scores 

Divide by standard deviation Do not post-transform 
(Correlation biplot) (Covariance biplot) 

Inter-sample distances 1 -1 
Inter-species correlations 2 -2 
Symmetric 3 -3 

Among the list of names of data files is also the initialization file, if any. This file is useful 
in the console version of CANOCO (see section 7.3) but has little effect in Canoco for Windows 
as most options are fully specified by the Project Setup Wizard. 

Table 6.1 also gives details on the data files, starting with the file specified as species data 
file and followed by the file specified as environmental data. Among other things, it is reported 
how many samples and species there are and how many values are non-zero (number of 
occurrences). After the report on the covariable (if any) and environmental file and any data 
transformations, there is a list of species and samples (if any) that are given a non-default 
weight. The species (or samples) that were deleted or were made supplementary are listed here 
with a weight of .00 as they have no influence on the analysis. In the example, the species 
numbered 31, 32, and 33 (Hip rha, Poa ann, and Ran acr ) were made supplementary and thus 
receive zero weight. Then, the number of active samples and species is listed that jointly 
determine the ordination. Unless the user specifies otherwise, a sample is active when it occurs 
(1) with non-zero values for the active species in the species data and (2) in the environmental 
and covariable data files specified for the analysis. A sample is made supplementary (passive) 
when it is made so by the user, or when the sample is not encountered either in the file with 
environmental data or in the file with the covariables. In the example, the samples with numbers 
17 and 20 do not occur in the environmental data and are therefore made supplementary by 
CANOCO. Active species are species that have non-zero values for active samples in the species 
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data and which are not deleted or made passive. The number of active species can be lower than 
the highest species number encountered in the species data, because some species may be absent 
in the data. 

The total inertia in a unimodal method is the total variance in the species data as measured 
by the chi-square statistic of the sample-species table divided by the table's total (Greenacre 
1984). The inertia is equal to the sum of all eigenvalues of CA. The value is repeated in the 
ordination summary of section 6.2.5. In linear methods (PCA and RDA), the total sum of 
squares (TSS) and the total standard deviation in the species data (TAU) are given here. The 
TSS and TAU are calculated after any data transformation and data standardization, using the 
notation of Table 6.24 on page 135, 

(6.1) TSS = ZiZkyik
2 and TAU= {Z,Skyik

2 /(nm)}'/2 

User-specified weights for samples and/or species (if any) are used in the calculations. In a 
linear method, all species values are subsequently divided by the TAU. This has the advantage 
that the eigenvalues issued by PCA and RDA are fractions of the total sum of squares. 

6.2.2 Collinear environmental variables and collinear covariables 

At the bottom of Table 6.1 there are the messages 

****** Collinearity detected when fitting variable 6 ****** 
****** Collinearity detected when fitting variable 10 ****** 

These messages indicates that the environmental variables numbered 6 and 10 are collinear 
with the environmental variables with lower numbers and, if present, the covariables. The code 
names of these variables are Pasture and NM, as can be deduced from Table 6.6 or any listing of 
environmental variables in the solution file and, with some more difficulty, from the data file in 
Table 4.3. 

A variable is collinear if it can be written as a linear combination of the other variables. 
Collinear environmental variables occur always, when 

• the environmental data contain nominal variables, or 

• the number of active samples is less than the number of independent explanatory variables 
(covariables + environmental variables). 

In other cases you may need to check your data or the options you chose. The environmental 
variables are perhaps more correlated than expected, possibly because fewer samples are active 
than you expected, or perhaps there are coding errors. 

When the environmental data contain nominal variables, the variable indicating the last 
class or category is always collinear with the preceding classes. The variables Pasture and NM 
are, indeed, the last categories of the nominal variables Use and Management regime, 
respectively, in Table 4.3. As you can verify in Table 4.3, the value for NM is 1 minus the sum 
of the values of the other management categories; therefore NM is a collinear variable. Despite 
the collinearity message, the order of the class variables does not affect the ordination results, 
except for the regression coefficients, the corresponding t-values, and the t-value biplot scores in 
the solution file. The regression coefficients of collinear variables are set to 0, as are the 
corresponding t-values and t-value biplot scores. 

Another message that may appear reads like: 
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***** Variable 10 has negligible variance ****** 

***** (possibly after adjustment for covariables) ****** 

This message occurs when an environmental variable does not show variation in the data or, if 
there are covariables in the analysis, when the environmental variable is collinear with the 
covariables, for example, when a variable occurs in both the covariable and environmental data. 
Such environmental variables are automatically deleted from the analysis and do not appear in 
the solution file. 

Collinear covariables are indicated by a message that reads like: 

Covariable NM is linearly dependent, hence ignored 

6.2.3 Outliers in the explanatory variables: check on influence 

Direct gradient analysis (canonical ordination) is an extension of multiple regression. As in 
regression, samples that have extreme values in the explanatory variables, have more influence on 
the results than central samples. This influence can be measured by the leverage (Montgomery 
& Peck, 1982). The leverage is equal to the squared Mahalanobis distance of the sample plus 1/n 
and thus measures how extreme the position of the sample is in the space of the environmental 
variables. CANOCO checks for each sample the leverage: 

1. for each separate environmental variable. 

2. in the space of the covariables, i.e. for all covariables jointly 

3. in the joint space of the covariables and environmental variables, i.e. for all the covariables 
and environmental variables jointly. 

Check 1, the check for separate environmental variables, detects univariate outliers. A sample 
is reported if it has more than five times the average leverage. Such samples have a value that is 
more than 3 standard deviations from the mean. This check is skipped for indicator variables (0/1-
variables). In Table 6.4, an excerpt from the example CCA, the sample with identification number 
15, is reported to have 8.2 times the average leverage for variable 1. This indicates that the value of 
the Al horizon in this sample is an outlier. This value is 11.5 (Table 4.3). There is an easy formula 
to transform univariate leverages to standard deviation units: if the leverage is k times the average, 
the value is sqrt(2*k-l) standard deviations from the mean. 

The other two checks detect multivariate outliers. If a sample has more than three times the 
average leverage, then CANOCO reports the sample number and how many times the average its 
leverage is. In the example of Table 6.4 there are no multivariate outliers. They would have been 
reported below the headings Covariable influence (check 2) and +Environmental space influence 
(check 3). 

It is important to remark that the leverage includes the (implicit) weights of samples. In linear 
methods all implicit weights are 1. In unimodal methods the implicit weight of a sample is the 
sample total (the row total across species). A sample may therefore be reported as an outlier simply 
because it has a large implicit weight. Even if there are no covariables in the analysis, a sample can 
reported as an outlier in the covariable space, if it has an extreme sample total. The logic of this is 
that such a sample has much influence on the analysis. To exclude the sample weights from the 
influence check, carry out an RDA without any additional weighting of samples. 

What to do if samples with high influence are detected? The first thing is to check that the 
cause is not a recording or typing error. If not, try to understand why the sample is an outlier and 
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whether it really belongs to the population you want to describe. If it does, it may be instructive to 
check whether removal of the sample would modify your essential conclusions. But, always be 
hesitant to remove the sample in the analysis you report. More discussion on this topic can be found 
in any modern book on regression and on outliers. 

Table 6.4 Regression diagnostics. 

****** Check on influence in covariable/environment data ****** 
The following sample(s) have extreme values 
Sample Environmental Covariable + Environment space 

variable Influence influence influence 

15 1 8.2x 
****** End of check ****** 

6.2.4 Correlation matrix, means, standard deviations, inflation factors 

With environmental data in the analysis, the log-window also contains a matrix of 
correlation coefficients such as shown in Table 6.5 and a list of means, standard deviations, and 
inflation factors as shown in Table 6.6. This output is TAB-delimited for transfer to word 
processors and spreadsheets. The variables in these tables are ordination axes, indicated with the 
labels "SPEC AX 1" ... "SPEC AX4" and "ENVI AX 1" ... "ENVIAX4", and environmental 
variables, indicated with their code names. Each of the four ordination axes calculated by 
CANOCO is represented by two variables. The reason is that there are two set of samples scores 
in an analysis with environmental data: one set is derived from the species data and has the 
prefix "SPEC" and the other set is derived from the environmental data and has the prefix 
"ENV". From Table 6.5 we see the ordination axes that are derived from the species 
(SPEC AX's) show modest correlations among themselves in the range -0.05 — 0.13, whereas 
the ordination axes that are derived from the environmental data (ENVI AX's) are mutually 
uncorrelated. If we would have applied an indirect gradient analysis instead, the SPEC AX's 
would have been uncorrelated. The correlations between the SPEC AX's and ENVI AX's of the 
same axis number are called the species-environment correlations. These correlations can also be 
found in the summary of the ordination (section 6.2.5). The correlations between the SPEC AX's 
and the environmental variables in the top part of Table 6.5 are called inter-set correlations, 
whereas those between the ENVI AX's and the environmental variables are called the intra-set 
correlations. The bottom part of Table 6.5 shows the correlations among all environmental 
variables. For example, the correlation between Al and Manure is -0.23. 

In linear methods (PCA and RDA), the correlations are the product-moment correlation 
coefficients. With user-defined weights for samples, these weights are used in calculating the 
means, standard deviations, and correlation coefficients in the obvious way (Kendall & Stuart, 
1973: p 301). In unimodal methods (CA, CCA, DCA, and DCCA), the sample total (yi+) acts as 
a sample weight, even if default weights are used, giving weighted means, weighted standard 
deviations, and weighted correlation coefficients, as indicated in Table 6.5 and Table 6.6. With 
non-default weights { w; } and { Wk }, the applied weights are calculated as w; = w* SkWk* yik. 

If covariables are present, the correlations are adjusted for the covariables, i.e. they are 
partial correlations (Kendall & Stuart, 1973, Chapter 27). Partial correlations are calculated by 
regressing each of the environmental variables on to the covariables and by calculating the 
correlations among the residuals of these regressions. 

In Table 6.6 we see that the standard deviation of each of the ENVI AX's is 1. This reflects 
the choice in the scaling of ordination scores. In a direct gradient analysis with scaling 2 (Table 
6.2) the variance of the ENVI AX scores is set equal to 1. 
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Table 6.5 Correlations among environmental variables and ordination axes. 

**** Weighted correlation matrix (weight = sample total) **** 

SPEC AX1 

SPEC AX2 

SPEC AX3 

SPEC AX4 

ENVI AX1 

ENVI AX2 

ENVI AX3 

ENVI AX4 

Al 

Moisture 

Manure 

Hayfield 

Haypastu 

Pasture 

SF 

BF 

HF 

NM 

1.0000 

-.0387 

.0773 

-.0506 

.9580 

.0000 

.0000 

.0000 

.5392 

.8833 

-.2962 

-.0724 

-.1647 

.2677 

.1421 

-.3491 

-.3459 

.5464 

1.0000 

-.0400 

.1273 

.0000 

.9018 

.0000 

.0000 

-.1562 

-.1535 

-.6895 

.5453 

-.4992 

-.0281 

-.6273 

.1578 

-.1047 

.6656 

1.0000 

-.1110 

.0000 

.0000 

.8554 

.0000 

.5042 

-.1199 

-.1687 

-.2158 

-.1129 

.3660 

-.3601 

-.0255 

.3758 

.0007 

1.0000 

.0000 

.0000 

.0000 

.8888 

-.0972 

.1507 

-.1603 

.2508 

-.0768 

-.1875 

-.0768 

-.5195 

.4643 

.0379 

1.0000 

.0000 

.0000 

.0000 

.5629 

.9221 

-.3092 

-.0756 

-.1719 

.2795 

.1484 

-.3645 

-.3611 

.5704 

1.0000 

.0000 

.0000 

-.1732 

-.1702 

-.7646 

.6046 

-.5535 

-.0312 

-.6956 

.1750 

-.1161 

.7381 

1.0000 

.0000 

.5894 

-.1402 

-.1972 

-.2523 

-.1320 

.4279 

-.4210 

-.0298 

.4394 

.0008 

1.0000 

-.1094 

.1696 

-.1803 

.2821 

-.0864 

-.2110 

-.0864 

-.5845 

.5224 

.0426 

SPEC AX1 SPEC AX2 SPEC AX3 SPEC AX4 ENVI AX1 ENVI AX2 ENVI AX3 ENVI AX4 

Al 

Moisture 

Manure 

Hayfield 

Haypastu 

Pasture 

SF 

BF 

HF 

NM 

HF 

NM 

1.0000 

.4154 

-.2283 

-.1845 

.1588 

.0210 

.0768 

-.3069 

-.1444 

.3551 

Al 

1.0000 

-.3572 

1.0000 

-.2204 

.0251 

-.1671 

.1634 

.1595 

-.3759 

-.1780 

.3641 

Moisture 

1.0000 

1.0000 

-.6118 

.4800 

.1231 

.6838 

-.1809 

.1361 

-.7422 

Manure 

1.0000 

-.6023 

-.4096 

-.4661 

.0277 

.0857 

.3933 

Hayfield 

1.0000 

-.4816 

.5600 

-.0512 

-.2581 

-.2831 

Haypastu 

1.0000 

-.1283 

.0282 

.2008 

-.1083 

Pasture 

1.0000 

-.2956 

-.4375 

-.3463 

SF 

1.0000 

-.3049 

-.2413 

BF 

Table 6.6 also shows a column head "inflation factor". It is the Variance Inflation Factor 
(VIF) of a variable in a multiple regression equation (Montgomery & Peck 1982: section 8.4.2). 
The name derives from the fact that the variances of estimated regression coefficients {CJ} are 
proportional to their VIF's, namely 

(6.2) var(cj) = VIF (residual variance)/(n-q-l) 

where n is the number of samples and q the number of environmental variables in the equation. 
The VIF is related to the (partial) multiple correlation Rj between environmental variable j and 
the other environmental variables in the analysis: 
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(6.3) VIF =1/(1 -Rj ) 

If the VIF of a variable is large, say VIF > 20, then the variable is almost perfectly correlated 
with the other variables and therefore has no unique contribution to the regression equation. As 
a consequence, its regression coefficient (or its canonical coefficient in canonical ordination) is 
unstable and does not merit interpretation (Ter Braak 1986). 

High VIF's indicate multicollinearity among the environmental variables. If an 
environmental variable is completely multicollinear, its VIF is set to 0, and its regression 
coefficient and associated t-value are set to 0. Normal VIF's are always greater than 1.0. For 
mutually uncorrelated environmental variables all VIF's are equal to 1.0, but this happens only 
in designed experiments. If all VIF's are given as 1.0000, then CANOCO probably did not 
calculate them at all. 

Table 6.6 Means, standard deviations and inflation factors of environmental variables. 
N name (weighted) mean stand, dev. inflation factor 

1 

2 

3 

4 

5 

6 

7 

8 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

SPEC 

SPEC 

SPEC 

SPEC 

ENVI 

ENVI 

ENVI 

ENVI 

Al 

Mois' 

Manu: 

Hayf: 

Hayp; 

Pasti 

SF 

BF 

HF 

NM 

AX1 

AX2 

AX3 

AX4 

AX1 

AX2 

AX3 

AX4 

ture 

re 

ield 

astu 

jre 

.0000 

.0000 

.0000 

.0000 

.0000 

.0000 

.0000 

.0000 

4.6850 

2.8015 

1.9022 

.3387 

.4146 

.2467 

.2978 

.1708 

.3109 

.2204 

1.0439 

1.1088 

1.1691 

1.1251 

1.0000 

1.0000 

1.0000 

1.0000 

1.8613 

1.7312 

1.3629 

.4733 

.4927 

.4311 

.4573 

.3763 

.4629 

.4145 

1.7814 

1.8500 

8.3034 

7057 

2125 

0000 

2126 

4671 

5651 

0000 

6.2.5 Summary of the ordination 

6.2.5.1 Analyses without covariables. 

Table 6.7 shows the summary of the ordination from the example CCA of the extended 
Dune Meadow data. Results are given for the first four ordination axes. By default, this output is 
TAB-delimited for optimal display in word processors and spreadsheets. 
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Table 6.7 Summary of a CCA of the Dune Meadow data. 
**** Summary **** 

Axes 1 2 3 4 Total inertia 

Eigenvalues : .461 .298 .160 .134 2.115 
Species-environment correlations : .958 .902 .855 .889 
Cumulative percentage variance 

of species data : 21.8 35.9 43.5 49.8 
of species-environment relation: 37.8 62.3 75.4 86.3 

Sum of all eigenvalues 2.115 
Sum of all canonical eigenvalues 1.220 

The eigenvalues measure the importance of each of the axes (values between 0 and 1). The 
first eigenvalue is 0.461, the second 0.298, and so on. 

The total inertia is the total variance in the species data as measured by the chi-square of the 
sample-by-species table divided by the table's total (see equation (6.38); Greenacre, 1984). The 
total inertia of the species data is 2.115 in Table 6.7. Note that, for abundance data or presence-
absence data, chi-square does not have its usual statistical meaning; in particular, it does not follow 
the chi-square distribution. In PCA/RDA, the total variance is always set to 1, as shown in Table 
6.8, because the species data are scaled in this way (see page 124). 

The species-environment correlation measures the strength of the relation between species 
and environment for a particular axis. It is akin to the canonical correlation in canonical correlation 
analysis. It is the correlation between the sample scores for an axis derived from the species data 
and the sample scores that are linear combinations of the environmental variables. Note that a high 
correlation does not mean that an appreciable amount of the species data is explained by the 
environmental variables (see e.g. McCune 1997). The amount explained is given by the eigenvalue 
in constrained analyses (RDA/CCA) and by r2 x eigenvalue in unconstrained analyses (PCA/CA) 
with r the species-environment correlation. The amounts of explained variance are given in the next 
row. 

The percentage of variance of the species data explained by the axes is given cumulatively. 
Except in DCA (segments), these percentages can easily be derived from the eigenvalues and the 
sum of all unconstrained eigenvalues, e.g., for axis 2, 100 * (À4+À.2) / (sum of all eigenvalues). For 
abundance data or presence-absence data, these percentages are usually quite low, in particular 
when analyzed with CA/CCA, but this is nothing to worry about. Species data are often very noisy. 
An ordination diagram that explains only a low percentage may be quite informative (cf. Gauch, 
1982). 

With environmental variables in the analysis, CANOCO uses these to explain the species data. 
This yields fitted values for the species. In PCA/RDA, the fitted values can be obtained by 
a multiple regression for each species on the environmental variables. In CA/CCA, this is 
a weighted regression (see Unimodal Models p. 162). The total variance of the fitted values is 
precisely the sum of all canonical eigenvalues. Each axis explains a part of this variance. This 
information is given cumulatively in the line 'percentage variance of species-environment 
relation'. In RDA/CCA, the percentages can easily be calculated from the eigenvalues and the sum 
of all canonical eigenvalues, e.g., for axis 2, 100 * (X1+A.2)/ (sum of all canonical eigenvalues). In 
PCA/CA, the formula is a bit more difficult (as the eigenvalues in the nominator must be multiplied 
by the square of the species-environment correlation). The fitted values with two axes can be 
displayed in a two-dimensional biplot of the species scores and the environment-derived sample 
scores. 
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There exists another interpretation of the percentage variance of the species-environment 
relation. Linear relationships can be well summarized by correlation coefficients. In linear methods 
(PCA/RDA), the relationships between the species data and the environmental data can thus be 
summarized in a table of species by environmental variables with, as entries, the correlation 
between each particular species and each particular environmental variable (Unimodal Models 
p. 140: Fig. 1). Each axis explains a part of the variance in this table and this information is reported 
cumulatively as the percentage variance of the species-environment relation. The correlations in the 
table, as approximated by two axes, can be displayed in a two-dimensional biplot of species scores 
(adjusted for species variance) and the biplot scores of environmental variables. Each adjusted 
species score is divided by the standard deviation of the species. The biplot displays covariances, 
instead of correlations, if the species scores are not adjusted for species variance (i.e. if the species 
scores are not post-transformed; with scaling of ordination scores < 0, see Table 6.3). With 
covariables in the analysis, partial covariances are displayed. In unimodal methods 
(CA/CCA/DCA), the relationships between the species data and the environmental data can be 
summarized by weighted averages of species with respect to environmental variables (Unimodal 
Models p. 158: Fig. 1). The entries of the table are thus weighted averages (instead of correlations, 
as in linear methods), but for the rest the interpretation is the same. The species-environment table 
itself is also produced by CANOCO (section 6.4; Table 6.60). 

Correlation coefficients and weighted averages are good summaries of the species-
environment relationship if the environmental variables are quantitative. When the environmental 
variables are nominal, class means and totals are appropriate summaries in linear methods and 
unimodal methods, respectively. Ter Braak (1994) and Ter Braak & Verdonschot (1995) showed 
that the percentages of explained variance of the species-environment relation also apply to tables 
of means and of totals, and also to tables of mixtures of correlations and class means and of 
weighted averages and class totals. The total weighted variance in the table is precisely the sum of 
all canonical eigenvalues. For the mathematical proof of this, see Unimodal Models (p 151) and, to 
extend the results to unimodal methods, see section 17.2. 

Summarizing, we see in Table 6.7 that a CCA-triplot of samples, species and environmental 
variables based on the first two axes explains 35.9% of the variance (inertia) in the species data, 
62.3% of the variance in the fitted species data, and the same percentage (62.3%) of the variance in 
the weighted averages and the class totals of the species with respect to the environmental 
variables. 

From Table 6.8, a RDA-triplot of samples, species and environmental variables based on the 
first two axes explains 43.4 % of the variance in the species data, 69.2% of the variance in the fitted 
species data, and the same percentage (69.2%) of the variance in the correlations and the class 
means of species with respect to the environmental variables. 

Table 6.8 Summary of a RDA of the Dune Meadow data. 
**** Summary **** 

Axes 1 2 3 4 Total variance 

Eigenvalues : .264 .170 .067 .041 1.000 
Species-environment correlations : .955 .899 .924 .797 
Cumulative percentage variance 

of species data : 26.4 43.4 50.2 54.3 
of species-environment relation: 42.1 69.2 79.9 86.5 

Sum of all eigenvalues 1.000 
Sum of all canonical eigenvalues .628 
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Table 6.9 shows the summary of a DCA using detrending-by-segments. The summary has 
an additional line for the lengths of gradient. These are reported only if detrending-by-segments 
is requested. The length of gradient is a measure of how unimodal the species responses are 
along an ordination axis. It is the range of the sample scores divided by the average within-
species standard deviation along the axis. The gradient length is expressed in standard deviation 
units of species turnover (SD). If a gradient length is over 4 SD, there are species in the data that 
show a clear unimodal response along the gradient. The first axis of the Dune Meadow data has 
a length of 3.402 SD. The Dune Meadow thus show a modest amount of unimodality. Note that 
the gradient lengths are not necessarily decreasing in value. For further information see Hill 
& Gauch (1980) and Jongman et al. (1987: 106). 

Table 6.9 Summary of a DCA with detrending-by-segments (with interpretation by the 
environmental variables). 

**** Summary **** 

Axes 1 2 3 4 Total inertia 

Eigenvalues : .536 .256 .083 .035 2.115 
Lengths of gradient : 3.402 3.120 1.517 1.438 
Species-environment correlations : .869 .855 .898 .703 
Cumulative percentage variance 

of species data : 25.3 37.5 41.4 43.1 
of species-environment relation: 29.4 45.2 .0 .0 

Sum of all eigenvalues 2.115 
Sum of all canonical eigenvalues 1.220 

Sometimes, the summary of the ordination contains zeroes at places beyond the first axis, 
indicating that the values were not calculated for these later axes. Table 6.9 is a case in point: the 
values for the axes 3 and 4 for the cumulative percentage variance of the species-environment 
relation are zero. With detrending-by-segments, the environmental biplot scores (that are used to 
make inferences about the table of the weighted averages) depend on the dimension of the 
biplot3. By default, the dimension is set to two, which is fine for the usual ordination diagram of 
the second axis against the first axis. The remaining values are not calculated. The values for the 
first two axes would change if the dimension was set to four. The default value of two can be 
changed in the CANOCO initialization file (CANOCO.INI). 

Two other cases of zeroes in the summary are: 

• The first few axes are constrained, whereas the later axes are unconstrained. This happens in 
hybrid analysis and when the number of environmental variables is small (1—4). The 
percentages of variance for the species-environment relation will not be calculated for the 
unconstrained axes. 

• With only a few species, all variation may be contained in less than four axes, resulting in 
zero eigenvalues. 

Finally, it should be noted that the eigenvalues are not necessarily decreasing in value if the 
first few axes are constrained, whereas later axes are unconstrained. 

The environmental biplot scores are calculated by a separate multivariate regression (Unimodal 
Models p. 72) of the table of weighted averages on the species scores. The biplot scores depend 
on the dimension of the biplot because the species scores of different axes are not orthogonal in 
detrending-by-segments. 
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6.2.5.2 Analyses with covariables: partial ordination 

Table 6.10 shows a summary of a partial ordination, i.e. an ordination with covariables. The 
example is a CCA of the Dune Meadow data with the Al horizon, Moisture and Manure used as 
covariables. We see from the table that the sum of all eigenvalues is no longer equal to the total 
inertia, because the covariables have already explained some of the inertia in species data, namely 
2.115 - 1.346 = 0.769. In a CCA with the Al horizon, Moisture, and Manure as the only 
environmental variables, the sum of all canonical eigenvalues is indeed 0.769. The additional 
inertia explained by the other environmental variables is 0.450. Note that the sum of 0.769 + 0.450 
= 1.219, which is, apart from rounding errors, equal to the sum of all the canonical eigenvalues in 
our first CCA on all environmental variables. It is thus possible to decompose the total inertia as is 
usually done in the analysis of variance and regression analysis. The covariables explain 100 * 
0.769/2.115 = 36% of the inertia and our current environmental variables (eliminating covariables) 
100 * 0.450/2.115 = 21%. The remaining 43% of the total inertia is unexplained. The theory of 
decomposing variance is given in full by Whittaker (1984). Ecological applications of the 
decomposition are given by Borcard et al. (1992) and 0kland & Eilertsen (1994). An example is 
given in section 8.3.1.2. 

The inertia in the species data after fitting the covariables is 1.346. Of this residual inertia, the 
first axis explains 0.166, i.e. 100 * 0.166/1.346 = 12.3%. This is 100 * 0.166/0.450 = 36.9% of 
what, in total, can be explained by the current environmental variables. One finds these percentages 
in the summary table (Table 6.10). A computational formula for the sum of all canonical 
eigenvalues is given in section 17.3. 

Table 6.10 Summary of a partial CCA of the Dune Meadow data. 
Covariables are Al horizon, Moisture, and Manure. Environmental variables are Use and 

Management regime. 
**** Summary **** 

Axes 1 2 3 4 Total inertia 

Eigenvalues : .166 .096 .093 .070 2.115 
Species-environment correlations : .940 .793 .803 .771 
Cumulative percentage variance 

of species data : 12.3 19.5 26.4 31.5 
of species-environment relation: 36.9 58.3 78.8 94.3 

Sum of all eigenvalues 1.346 
Sum of all canonical eigenvalues .450 

The sum of all eigenvalues is after fitting covariables 
Percentages are taken with respect to residual variances 

i.e. variances after fitting covariables 

6.2.6 Global permutation test 

Table 6.11 summarizes the results of the global permutation tests to judge the significance 
of the relation between species and environment in the Dune Meadow data using CCA. The test 
of significance based on first canonical eigenvalue is reported first. The first canonical 
eigenvalue (cf. Table 6.7) is 0.461 and the F-ratio (calculated using equation (3.12)) is 3.067. 
The resulting P-value is 0.010, indicating that the first canonical axis is statistically significant at 
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the 1% level. Thereafter, the test based on the sum of all canonical eigenvalues (the trace) is 
reported. The trace is 1.220 (cf. Table 6.7) , leading to an F-ratio of 1.873 (calculated by 
equation (3.5)). The resulting P-value is 0.0050, demonstrating that the relation between the 
species and the environmental variables is highly significant (P < 0.01). 

With the console version of CANOCO it is possible to obtain the results of individual 
permutations (Table 6.12). The results are displayed on the screen and have a didactic purpose 
only. With Table 6.12, we can explain the permutation test in some more detail. See also section 
3.7.2 on page 43. The 20 active samples in the species data are randomly shuffled 199 times 
(unrestricted permutation), while keeping samples in the environmental data in place. Two test 
statistics, labeled F-ratio and F-ratio of axis 1, were calculated for the original unpermuted data 
and for each of the 199 permutations. The first F-ratio is based on the sum of all canonical 
eigenvalues and the second F-ratio (F-ratio of axis 1) is the F-ratio based on the first canonical 
eigenvalue. See section 3.7.5 for the precise definitions. Table 6.12 shows the resulting values 
for the original data (after "Data"), and for the first 5 and last 5 permutations. The reported P-
value is the rank of the statistic for the data divided by the number of calculated values (the 
number of permutations plus one for the non-permuted data). The F-ratio for the data, 1.873, 
was the largest value, so that the P-value is 1/200 = 0.005. The F-ratio of axis 1 for the data, 
3.067, was the second largest value, so that the P-value is 2/200 = 0.01, as reported at the bottom 
of Table 6.12. If only one of the F-ratios is calculated, the other is set to 0.00 and the 
corresponding P-value is set to 1.000. The results are summarized in the log-window as shown 
in Table 6.11. 

"Permutation under the reduced model" (Table 6.12 and Table 6.11) means that the 
residuals from the reduced model have been shuffled. Without covariable data in the analysis, as 
in the example, the reduced model is the overall null model, i.e. the model without any 
explanatory variables, so that the residuals are the same as the raw data. With covariables, the 
reduced model contains the covariables, but not the environmental variables. The alternative is 
"Permutation under the full model". The full model contains both the covariables (if any) and 
the environmental variables. 
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Table 6.11 Summary of the global permutation test of the relation between species and 
environment in the Dune Meadow data using CCA. 

**** Summary of Monte Carlo test **** 

Test of significance of first canonical axis: eigenvalue = .461 
F-ratio = 3.067 
P-value = .0100 

Test of significance of all canonical axes : Trace = 1.220 
F-ratio = 1.873 
P-value = .0050 

( 199 permutations under reduced model) 

Table 6.12 Monte Carlo permutations to test the significance of the relation between 
species and environment in the Dune Meadow data using CCA. 

*** Unrestricted permutation *** 

Seeds: 23239 945 

Number of permutations= 199 

*** Permutation under reduced model *** 

No F-ratio F-ratio of axis 1 

Data 
1 
2 
3 
4 
5 

1.873 
.923 

1.134 
.917 

1.406 
.765 

Permutations 6 

195 
196 
197 
198 
199 

P-value 

1.226 
.934 
.921 
.922 
.761 

.0050 

3.067 
1.853 
2.317 
1.981 
2.636 
1.364 

— 194 not shown 

2.653 
1.477 
1.654 
1.373 
1.530 

.0100 (number < 

If you specified blocks to exclude exchanges of samples between blocks, the log-window 
lists the samples in each block by their identification number. An example is shown in Table 
6.13. In this table, the last category of Management type is not listed among the block-defining 
covariables, because it is redundant for specifying the block structure. If you specified 
a split-plot design in blocks, the log-window lists, per block, the samples in each whole-plot and 
how whole-plots and split-plots are being permuted in the test (Table 6.14). 

Page 128 Results of the analysis 



Table 6.13 Blocks defined by Management type in the Dune meadow data. 

*** Specification of blocks *** 

*** The permutations are conditioned on 3 covariable(s), namely: **J 

covariable SF 
covariable BF 
covariable HF 

*** Sample arrangement in the permutation test *** 

Samples in block 1 : 
1 3 4 12 13 16 

The 6 plots are permuted completely at random 

Samples in block 2 : 
2 10 11 

The 3 plots are permuted completely at random 

Samples in block 3 : 
5 6 7 8 9 

The 5 plots are permuted completely at random 

Samples in block 4 : 
14 15 17 28 29 30 

The 6 plots are permuted completely at random 

Table 6.14 The second block of a split-plot design containing 6 whole-plots with 4 
split-plots each. 

Samples in block 2 : 
Whole plot 1 : 

25 26 27 28 
Whole plot 2 : 

29 30 31 32 
Whole plot 3 : 

33 34 35 36 
Whole plot 4 : 

37 38 39 40 
Whole plot 5 : 

41 42 43 44 
Whole plot 6 : 

45 46 47 48 

These 6 whole plots are permuted completely at random 
The 4 split plots are not permuted 

6.2.7 Forward selection of environmental variables 

In Canoco for Windows, the results of an automatic forward selection are summarized in two 
tables of marginal and conditional effects, accessible from the Project View as described in section 
5.8.2. Examples are given in sections 8.2.9 and 8.3.4. In this section we describe the full results of 
forward selection as given in the log-window. We do this by presenting an example of a manual 
forward selection using a CCA of the extended Dune Meadow data with the Monte Carlo 
permutation box checked. The essential results are also displayed on screen during the manual 
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selection process in Canoco for Windows. In the console version of CANOCO, the full results are 
displayed both on screen and in the output file. 

After the check of influence (section 6.2.3), the first step of the selection process is reported 
(Table 6.15). 

Table 6.15 Step 1 in manual forward selection of the Dune Meadow data: the marginal 
effects of the environmental variables. 

**** Start of forward selection of variables **** 

"*** Unrestricted permutation *** 

Seeds: 23239 945 

N Name Extra fit 

6 
5 
8 
9 
4 
7 
1 
3 

10 
2 

Pasture 
Haypastu 
BF 
HF 
Hayfield 
SF 
Al 
Manure 
NM 
Moisture 

Environmental varie 
Variance explained 

it i 

.10 

.13 

.14 

.15 

.15 

.20 

.22 

.24 

.32 

.41 
üble 
by the 

" 

2 added to model 
variables selected: 

all variables : 
.41 

1.22 

In each step, the environmental variables are shown in order of the 'Extra fit'. With no 
variable yet selected, the extra fit is equal to the eigenvalue of a CCA if the corresponding 
variable was the only environmental variable. The same list could thus be obtained manually in 
ten runs of CANOCO, each run with another environmental variable. The effects shown in the 
first step are called marginal effects. In the first step the variable with the highest extra fit, in our 
case, Moisture (variable 2) was included (added) in the model. The inertia explained by this 
variable is 0.41. If all variables would be included, the explained inertia would be 1.22. This 
value is the sum of all canonical eigenvalues (Table 6.7). 

Table 6.16 Step 2 in a manual forward selection of the Dune Meadow data with Moisture 
already selected. 

N Name Extra fit 

8 
6 
9 
1 
5 
4 
7 
3 

10 

BF 
Pasture 
HF 
Al 
Haypastu 
Hayfield 
SF 
Manure 
NM 

Environmental vari, 
Variance explained 

ti ii 

.08 

.08 

.11 

.12 

.13 

.15 

.18 

.23 

.26 
able 
by the 

" 

3 added to model 
variables selected: 

all variables : 
.64 

1.22 
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With moisture already selected (Table 6.16), the extra fit is the increase in explained inertia 
when the analysis with moisture alone is compared with the analysis with both moisture and the 
corresponding variable. The value of 0.23 for Manure could thus be obtained manually by 
running a CCA with Moisture and Manure. The explained variance (the sum of all canonical 
eigenvalues) of this CCA is 0.64, which is 0.23 more than with Moisture alone. 

For illustration Manure was included to the model, instead of the variable with the highest 
extra fit (NM). The inertia explained by the selected variables, Moisture and Manure, is indeed 
0.64. After inclusion of Manure, NM is no longer the best variable to add, as we see in Table 
6.17. 

Table 6.17 Step 3 of a manual selection of the Dune Meadow data after Moisture and 
Manure have been selected. 

N Name Extra fit 

5 Haypastu 
7 SF 
8 BF 
6 Pasture 
4 Hayfield 

10 NM 
9 HF 
1 Al 

.05 

.06 

.09 

.09 

.10 

.11 

.11 

.13 

This can be explained by noting that the Nature Management meadows do not receive 
manure, so that the variable NM can largely replace the variable Manure in the model (Jongman 
et al 1987: 54-55). The best variable to add is now Al . In the example run, the additional effect 
of the variable Al on the species is tested at this point for its statistically significance. The test is 
reported in the log-window as shown in Table 6.18. 

Table 6.18 A significance test in forward selection. 

Environmental variable 1 tested 
Number of permutations= 199 

*** Permutation under reduced model *** 

P-value .100 (variable 1; F-ratio= 1.55; number of permutations= 199) 

Because the additional effect of the best variable (Al) is not significant at the conventional 
5%-level, it was decided to stop adding more variables. CANOCO continues by performing 
a CCA on the selected variables (variables 2 and 3). Before doing this, CANOCO reports that 
the other environmental variables are omitted. Variables that are multicollinear with the selected 
variables will not be omitted, because they do not harm the subsequent analysis. This feature of 
CANOCO guarantees that if 2 dummy variables of a nominal variable with 3 classes are 
selected, the third one is automatically included in the subsequent analysis. 

There may be covariables in the analysis at the start of the forward selection. The extra fit is 
calculated in precisely the same way as described above. 

Warning: Significance tests in forward selection are often too liberal. If none of a large 
number of variables has a real effect, the reported P-value of the best variable in the forward 
selection may be well below the conventional 5% level, just because of the selection! Bonferoni-
type adjustments may help to solve this problem (Miller 1990, Legendre & Legendre 1998). 
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6.3 Solution file 

6.3.1 Introduction 

The solution file contains a series of tables with scores on the four ordination axes for 
species, samples, environmental variables, and supplementary environmental variables, along 
with summary information per item. The solution file is used by CanoDraw to produce 
ordination diagrams. To inspect a solution file and to make simple scatter plots yourself, import 
the solution file into a spreadsheet program as a tab-delimited (Windows) ASCII text file. The 
layout of the tables is identical: a heading for the analysis (e.g. Table 6.19) and, as shown in 
Table 6.20, followed by a heading for the type of item (e.g. Spec: Species scores), labels for the 
columns, a summary statistic per column (e.g. EIG) and then per row item, an identification 
number, a code name, and four values (one for each of the first four ordination axes), and, 
sometimes, two additional columns with statistics per row item. Strict zero columns in the 
solution file indicate that the corresponding entries are not calculated. 

The heading for the analysis differs slightly between methods as shown in Table 6.19 -
Table 6.21. In brief, 

1. the first line of the heading is the title of analyzed species data file. 

2. the second line says which ordination method was applied, how many ordination axes are 
canonical (i.e. constrained by environmental variables), how many independent covariables 
there are, and a code for the scaling that is applied to the ordination scores. The codes are 
explained in Table 6.2 and Table 6.3 on page 117. 

3. the third line gives the types of centering and standardization that are applied to the species 
data in linear methods. In unimodal methods with detrending the detrending options are 
reported. 

The example in Table 6.19 is a redundancy analysis (RDA) on the Dune Meadow data with 
4 canonical axes, no covariables, and scaling type 2 (i.e. focus on inter-species correlations in 
which the species scores are divided by their standard deviation). The species data are neither 
centered nor standardized by samples. The species data are centered by species but not 
standardized by species. 

Table 6.20 is a heading in a canonical correspondence analysis (CCA). The codes for 
scaling type are explained in Table 6.2. The third line is blank. 

Table 6.21 is a heading in an analysis that used detrending-by-segments. The detrending 
options in Table 6.21 are the default values of detrending-by-segments: 4 iterations are used for 
nonlinear rescaling of the axes scores, 26 segments are used in the detrending process, and axes 
are always non-linearly rescaled, whatever their gradient length. These options are further 
explained in section 7.6 and in Hill (1979). Detrending by polynomials is abbreviated to 
"DETR-POLY3", the " 3 " indicating that third-order polynomials were used in the detrending. 
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Table 6.19 Heading of each table in linear methods. 

SPECIES - DUNE MEADOW DATA (M. BATTERINK AND G. WIJFFELS, 1983) 
RDA Canonical axes: 4 Covariables: 0 Scaling: 2 

Cent./stand, by samples: 0 0 by species: 1 0 
No transformation 

Table 6.20 Heading of each table in unimodal methods, followed by a table of species 
scores. 

SPECIES - DUNE MEADOW DATA (M. BATTERINK AND G. WIJFFELS, 1983) 
CCA Canonical axes: 4 Covariables: 0 Scaling: 2 

No transformation 
Spec: Species scores (Biplot scaling) 

NAME AX1 AX2 AX 3 AX 4 WEIGHT N2 

EIG .4612 .2981 .1601 .1337 

1 
2 
3 
4 

Ach 
Agr 
A i r 
A l o 

m i l 
s t o 
p r a 
g en 

- . 8 4 0 2 
. 7704 
. 7 3 9 5 
. 3 5 4 1 

. 3 8 1 6 
- . 5 0 0 0 
1 . 7874 
- . 9 7 0 0 

. 0 2 7 6 
- . 1 1 4 3 

- 1 . 0 7 6 9 
- . 3 4 7 0 

- . 3 3 4 1 
- . 0 8 0 1 

. 5 318 

. 1 3 8 9 

1 6 . 0 0 
4 8 . 0 0 

5 . 0 0 
3 6 . 0 0 

6 . 1 0 
9 . 14 
1 .92 
6 . 6 1 

Table 6.21 Heading of each table with detrending-by-segments. 

SPECIES - DUNE MEADOW DATA (M. BATTERINK AND G. WIJFFELS, 1983) 
DCA Canonical axes: 0 Covariables: 0 Scaling: -1 

DETR-SEGME Rescaling: 4 Segments: 26 Threshold: .00 
No transformation 

Table 6.22 lists all possible tables in order of their appearance in a solution file. The code of 
each table uniquely identifies the table. The description of each item may vary slightly 
depending on the analysis type. The symbols are those used in equations in this manual. The 
symbol Uk is reserved for species scores in unimodal methods where it has the same dimension 
as the sample scores. The symbol bk is used for species scores in linear methods, but may 
occasionally be used in unimodal methods when these are recast in a linear context. The last two 
columns indicate the content of the two columns that appear after the four columns of scores for 
ordination axes. The solution file may contain less tables than listed here. For example, without 
environmental variables in the analysis the tables numbered 7-14 are missing. From the tables 
with ordination diagnostics (numbered 3 - 6), the tables with species tolerances and sample 
heterogeneities are calculated for unimodal methods only, whereas the tables with species fits 
and residual lengths are not calculated in analyses that use detrending-by-segments. The residual 
lengths are not available in analyses with covariables. 

Table 6.22 The order of tables in the solution file with their codes and symbols. 

N 

1 

2 

3 

4 

5 

6 

7 

Code 

Spec: 

Samp: 

Tol: 

Het: 

CFit: 

SqRL: 

Regr: 

Item 

Species scores 

Sample scores that are derived from the species 

Species tolerances 

Sample heterogeneities 

Cumulative fit per species 

Residual lengths per sample 

Regression/Canonical coefficients 

Symbol 

bk or uk 

X;* 

tk 

hk 

var(fk) 

length; 

CJ 

Extra 

weight wk 

weight w; 

RMSTOL 

RMSTOL 

var(y) 

SQLENG 

columns 

l o r N 2 

l o r N 2 

N2 

N2 

%EXPL 

%FIT 
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N 

8 

9 

10 

11 

12 

13 

14 

Code 

tVal: 

StBi: 

EtBi: 

CorE: 

BipE: 

CenE: 

SamE: 

Item 

t-values of regression coefficients 

Species coordinates for t-value biplot 

Environmental coordinates for t-value biplot 

Inter-set correlations of environmental variables 

Biplot scores of environmental variables 

Centroids of environmental classes 

Sample scores that are derived from the 
environment 

Symbol 

CJ* 
cf 
X'i 

Extra columns 

weight Wj %FIT 

The results for supplementary species and samples are listed among those for the active 
ones. The results for supplementary environmental variables, if specified, are given after all the 
tables of the active variables. The tables given for supplementary environmental variables are 
like those numbered 7 - 14 in Table 6.22, but have a negative value for the number of canonical 
axes (Table 6.23). In an indirect analysis, there is no theoretical distinction between normal 
environmental variables and supplementary ones; in the output there is no distinction either 
because the number of canonical axes is 0. 

Table 6.23 Heading of a table for supplementary environmental variables. 

SPECIES - DUNE MEADOW DATA (M. BATTERINK AND G. WIJFFELS, 1983) 
RDA Canonical axes: -4 Covariables: 0 Scaling: 2 

Cent./stand. By samples: 0 0 by species: 1 0 
No transformation 

The tables in the solution file are by default tab-delimited, i.e. the values are separated by 
tabs, and can therefore easily be copied via the Clipboard into spreadsheets or tables of word 
processors. In addition there are one or more spaces around most values. The tabs can be 
replaced by spaces or other delimiters (e.g. comma's) by modifying the CANOCO initialization 
file. 

6.3.2 Relationships between ordination scores 

This section lists the relationships between species, sample, and environmental scores per 
ordination axis, in the case without user-defined weights for samples and species. In later 
sections, more detail is given and formulae are generalized to include user-defined weights. We 
use the notation of Table 6.22 and Table 6.24. Biplots display approximate values of data tables 
(see also section 3.5). The approximation is given in algebraic form, based on scores of the first 
two ordination axes. For this, the scores are also subscripted with an index for the axis. For 
example, the species score is indicated by bk in Table 6.22, so that bk2 indicates the Ä* species' 
score on the second axis. 
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Table 6.24 Notation for input data and eigenvalues. 

yik = value of species kin sample i (i = 1,..., n; k= 1,..., m). 
In CA, DCA ,CCA, and DCCA, yik >0. In PCA and RDA the data {yik}, which may also 
be negative, is divided by the total standard deviation in the species data (TAU, page 
118) after optional centering and/or standardization by species and/or by samples. 

Pik = yik y++ / (yi+ y+k), a transformation used in CA and CCA, with yi+ = Sk yik, the sample 
total, y+k = S, y;k , the species total, and y++ = S; y;+ = Sk y+k, the overall total. 

= value of environmental variable j in sample i after centering and standardization (i = 
1,..., n; j = 1,..., q). 
With covariables in the analysis, the environmental data are regressed on the 
covariables; the values {zy} then denote the residuals of this regression. 
= indicator variable for environmental class j (zy = 1 if sample i belong to they' class, zy 
= 0 otherwise). 

= eigenvalue of the ordination axis. 

6.3.2.1 Principal Components Analysis (PCA) 

In PCA a reciprocal regression relation holds true between the species scores and the 
species-derived sample scores (Table 6.25): the species score bk is the slope coefficient of the 
simple regression of the data of the /cth species on the sample scores {XJ*} and, the other way 
round, the sample score xj* is the slope coefficient of the simple regression of the data of the z* 
sample on the species scores {bk}. These regression relations are the key to the interpretation of 
the PCA-biplot: the species and sample scores together form a biplot that displays approximate 
species value y;k as indicated as two-dimensional approximation in Table 6.25 (see also section 
3.5). 
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Table 6.25 Transition formulae and scaling in PCA. 

PCA with focus on inter-sample distances (scaling -1) 

bk = l i yik x; / Ej x;* 2 = A,-1 S; yik Xj* / n with Sk bk2 / m = 1 

Xi* = Skyikbk/Skbk2 = £kyikbk/m with SiXj*2/n = À, 

=> biplot: yik « bki xn* + bk2 xi2* 

PCA with focus on inter-species correlations (scaling -2) 

bk = Sj yik Xi* / S; Xj* 2 = S; yik Xi* / n with Sk bk2 / m = X 

Xi* = Skyikbk/Skbk2 = l"1 Skyikbk/m with S ;X i* 2 / n= l 

=> biplot: yik « bki xu* + bk2 xi2* 

If the species scores have been divided afterwards by the standard deviation (sdk) of each 
species (scaling +1 and +2), the symbol bk in the above formulae must be replaced by sdk bk 
where the latter bk is the adjusted score given by CANOCO. 

For the adjusted species scores: 

bk = S; {yik/sdk} Xj* / S; Xi*2 

=> biplot: yik/sdk ~ bki xn* + bk2Xi2* 

The adjusted species score bk is the correlation of the kth species with {x;*} if the focus is on 
inter-species correlations (scaling +2) 

Sj Xj / n = 0 (zero mean sample score) if the species data are centered by species (y+k = 0) 

The scaling of scores is also given in Table 6.25. With the focus on inter-sample distances 
(scaling -1), the mean square of the sample scores along an ordination axis is equal to the 
eigenvalue of the axis, the mean square of the (unadjusted) species scores is equal to 1, and the 
sample scores are a weighted sum of the species scores (divided by m). With the focus on inter
species correlations but without post-transformation of species scores (scaling -2), the mean 
square of the species scores along an ordination axis is equal to the eigenvalue of the axis, the 
mean square of the sample scores is equal to 1 and the species scores are a weighted sum of the 
sample scores (divided by n). The consequences of these two scaling types for the interpretation 
of distances between sample points and correlations between species arrows in the ordination 
diagram can be seen from the eigenvalue equations of PCA (Table 6.26). In scaling ±1, the score 
for a particular sample is the slope coefficient of the simple regression of the inter-sample inner 
products on all sample scores. Sample points thus approximate inter-sample inner products. 
Because of the relation between distances and inner products, distances between sample points 
in the ordination diagram approximate in scaling +1 the inter-sample Pythagorean distances. In 
scaling -2, the score for a particular species is the slope coefficient of the simple regression of 
the inter-species covariances on all species scores. Therefore the species points together form 
a biplot that displays approximate inter-species covariances. In scaling +2, the score for 
a particular species is the slope coefficient of the weighted regression of the inter-species 
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correlations on all species scores, the weights in this regression being the species variances. 
Therefore the species points together form a biplot that displays approximate inter-species 
correlations. 

If the species scores are post-transformed (by division by the standard deviation; scaling +1 
or +2), the adjusted species score reported by CANOCO is the slope coefficient of the simple 
regression of the standardized data {yik/sdk} of the kth species on the sample scores {XJ*}. When, 
at the same time, the focus is on inter-species correlations (scaling +2), the adjusted species 
score has a special meaning: it is the correlation of the k-th species with the ordination axis (i.e. 
with the species-derived sample scores). There is no simple expression for the mean square of 
the adjusted species scores. The sample scores are unaffected by the post-transformation of 
species scores. 

If environmental variables are present in the analysis by PCA (in any scaling), regression 
coefficients c = (ci, ..., cq)

T and environment-derived sample scores are calculated after the 
ordination has been obtained: 
c = (ZTZ)-! ZT x* 

X j = Lj Cj Zy 

The regression coefficients {CJ} are partial regression coefficients from the multiple regression 
of {XJ*} on the q environmental variables z\, ..., zq. In contrast, the environmental biplot scores 
{CJ*} are regression coefficients from the simple regression of x*j on the ƒ environmental 
variables Zj (Table 6.29). 
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Table 6.26 Eigenvalue equations and scaling in PCA. 

In PCA, the eigenvalue equation for the sample scores is 

Xx[* = Zj Cjj Xj*/n, where cy = 2k yik Vjk/m, the inner product between samples i and j 

With focus on inter-sample distances (scaling ±1), 2; x;*2 / n = X so that 

X;* = À,"1 Ej cy Xj*/n = Sj cy Xj* / Sj Xj*2 

=> biplot: Cy « Xji* Xji* + X;2* Xj2* 

=> approximation of inter-sample Pythagorean distances: 

dij *{(xii*-Xji*)2 + (xa*-x j 2*)2}1 /2 

with dij2 = Ek (yik - yjk)2/m = cu + cy- - 2cy 

In PCA, the eigenvalue equation for the species scores is 

A,bk = 2/ cyb;/m, where cu = Si yik yn /n, the covariance between species k and / 

With focus on inter-species correlations (scaling -2), 2k bk2 / m = X so that 

bk = X'1 2/ cy b; /m = 2/ cu b/ / 2/ b/2 

=> biplot of inter-species covariances: cw« bki b/i + bia b/2 

If, with focus on inter-species correlations, the species scores have been divided afterwards 
by the standard deviation (sdk) of each species (scaling +2), 

bk = 2; w/ rw b/ / 2/ w/b/2 with w; = sd;2 

where r^ = cu /(sdksd/), the correlation between species k and / 

=> biplot of inter-species correlations: r y» bki b/i + bk2 b/2 

2; X; / n = 0 (zero mean sample score) if the species data are centered by species (y+k = 0) 
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6.3.2.2 Redundancy Analysis (RDA) 

Table 6.27 specifies the relations between scores in RDA. The species scores have a simple 
relation with the environment-derived sample scores: the species score bk is the slope coefficient 
of the simple regression of the data of the kl species on the environment-derived sample scores 
{x'i}. The species-derived sample score Xj* is the slope coefficient of the simple regression of 
the data of the f sample on the species scores {bk}. The canonical coefficients {c,} are the 
partial regression coefficients from the multiple regression of {x*;} on the q environmental 
variables z\, ..., zq, and, finally, the environment-derived sample scores are a linear combination 
of the q environmental variables zi, ..., zq. The simple regressions each lead to a biplot 
approximation as indicated in Table 6.27. In addition, the last row of Table 6.27 says that the 
environment-derived sample scores have a PCA-like relation with the species scores: the 
environment-derived sample score x'i is the slope coefficient of the simple regression of the 

fitted values { y ik } of the rth sample on the species scores {bk}. The biplot of species and 

environment-derived sample scores thus displays approximate fitted species values { y ik } • 

The scaling of scores is also given in Table 6.27. With the focus on inter-sample distances 
(scaling -1), the mean square of the environment-derived sample scores along an ordination axis 
is equal to the eigenvalue of the axis, the mean square of the (unadjusted) species scores is equal 
to 1, and the species-derived sample scores are a weighted sum of the species scores (divided by 
m). With the focus on inter-species correlations but without post-transformation of species 
scores (scaling -2), the mean square of the species scores along an ordination axis is equal to the 
eigenvalue of the axis, the mean square of the environment-derived sample scores is equal to 1 
and the species scores are a weighted sum of the environment-derived sample scores (divided by 
n). The consequences of these two scaling types for the interpretation of distances between 
points and correlations between species arrows in the ordination diagram can be seen from the 
eigenvalue equations of RDA (Table 6.28). In scaling +1, the score for a particular sample is the 
slope coefficient of the simple regression of the fitted inter-sample inner products on all sample 
scores. Sample points thus approximate fitted inter-sample inner products. Because of the 
relation between distances and inner products, distances between sample points in the ordination 
diagram approximate in scaling ±1 the fitted inter-sample Pythagorean distances. In scaling -2, 
the score for a particular species is the slope coefficient of the simple regression of the fitted 
inter-species covariances on all species scores. Therefore the species points together form 
a biplot that displays approximate fitted inter-species covariances. In scaling +2, the score for 
a particular species is the slope coefficient of the weighted regression of the fitted inter-species 
correlations on all species scores, the weights in this regression being the species variances. 
Therefore the species points together form a biplot that displays approximate fitted inter-species 
correlations. 

If the species scores are post-transformed (by division by the standard deviation; scaling +1 
or +2), the adjusted species score reported by CANOCO is the slope coefficient of the simple 
regression of the standardized data {y;k/sdk} of the ftth species on the sample scores {x'i}. When, 
at the same time, the focus is on inter-species correlations (scaling +2), the adjusted species 
score has a special meaning: it is the correlation of the &-th species with the ordination axis (i.e. 
with the environment-derived sample scores). 
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Table 6.27 Transition formulae and scaling in RDA. 

RDA with focus on inter-sample distances (scaling -1) 

bk = Si yik Xj' / S; x'i = X~] Sj yik x'i / n with Sk bk2 / m = 1 

Xi = Sk yik bk / Sk bk = Sk yikbk / m 
c = (zTzyl ZT x* 
x'i = Sj Cj Zij with S; x'i2 / n = X 

biplot: yik ~ y ik * bki x'n + bk2 x'j2 

biplot: y i k« bkixii*+ b ^ xi2* 

RDA with focus on inter-species correlations (scaling -2) 

bk = Sj yik x'i / S; x'i2 = Si yik x'i / n with Sk bk2 / m = X 

Xj = Sk yik bk / Sk bk = X' SkYikbk / m 
c = (ZTZ)"' ZT x* 

x'i = Sj Cj Zjj with Sj x'i2 / n = 1 

=> biplot: yik * y i * bki x'n + bk2 x'i2 

=> biplot: yik » bki xn* + bn xi2* 

If the species scores have been divided afterwards by the standard deviation (sdk) of each 
species (scaling +1 and +2), the symbol bk in the above formulae must be replaced by sdk bk 
where the latter bk is the adjusted score given by CANOCO. 
For the adjusted species scores: 
bk = S; {yik/sdk}x'i/Six'i2 

=> biplot: yik / sdk ~ y * / sdk * bki x'n + bk2 x'i2 

The adjusted species score bk is the correlation of the k species with { x'i} if the focus is on 
inter-species correlations (scaling +2) 

Relation of x'i to the species scores (simple regression of fitted abundance values on {bk}): 

x'i = Sk y ikbk /Skbk2 

with y ik the fitted value for the &* species in the /* sample based on multiple regression on 
the q environmental variables, i.e. 

y k = Z(ZTZ)-1ZTyk 

=> biplot: y ik « bki x'n + bia *'a 

Si x'i / n = Sj xj / n = 0 (zero mean sample score) 
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Table 6.28 Eigenvalue equations and scaling in RDA. 

In RDA, the eigenvalue equation for the sample scores is 

Xx'i = Ij Cij x'j /n , where cy- = Zk y ik y jk/m, the fitted inner product between samples i and j 

With focus on inter-sample distances (scaling ±1), Zj x'; 2 / n = X so that 

x'j = X'1 Zj cy x'j /n = Zj Cy x'j / Zj x'j 2 

=> biplot: Cij * x'ii x'ji + x'i2 x'j2 

=> approximation of fitted inter-sample Pythagorean distances: 

dij «{(X'ii - X'j! )2 + (X'Q -X ' j 2 ) 2 } , / 2 

with dij2 = Zk ( y ik - y jk)2 /m = cü + cy - 2c;j 

In RDA, the eigenvalue equation for the species scores is 

Xbk = Z; Ck/b/ /m , where cy = Zj y ik y u /n, the fitted covariance between species k and / 

With focus on inter-species correlations (scaling -2), Zk bk2 / m = X so that 

bk = X' Z; Ck/ b; /m = Z/ Ck/ b/ / Z/ b/ 

=> biplot of fitted inter-species covariances: cw« bki bn + bk2bß : 

If, with focus on inter-species correlations, the species scores have been divided afterwards 
by the standard deviation (sdk) of each species (scaling +2), 

bk = Z/ w/ ru b; / Z; w/b/2 with w/ = sd/2 

where rk/ = Ck/ /(sdksd;), the fitted correlation between species k and / 

=> biplot of fitted inter-species correlations: rk/« bki bn + bk2b/2 

Zj x'j / n = 0 (zero mean sample score) if the species data are centered by species (y+k = 0) 

The environmental biplot scores { Cj* } are related to both the sample scores and the species 
scores (Table 6.29). The score Cj* is the slope coefficient from the simple regression of {x'j} on 
the y* environmental variable Zj (Table 6.29). When the environmental biplot scores are plotted 
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as arrows, the arrow for each environmental variable points in the direction that any particular 
sample point would move if that variable would increase in value (ignoring the other variables). 
To define the relation with the species scores, let, as in Table 6.29, rjk be the covariance between 
the k species and the j ' environmental variable. Then, q* is the slope coefficient of the simple 
regression of the covariances {rjk} of all species with the y* environmental variable on the 
species scores (Table 6.29). In a biplot with the species scores, the environmental biplot score 
for a particular variable thus approximates the covariances of the species with this 
environmental variable. If the species scores are adjusted (scaling +1 or +2), it is the correlations 
that are approximated instead of the covariances. 

Table 6.29 The environmental biplot scores {Cj*} in PCA and RDA. 

Relation to the sample scores (simple regression of sample scores on z,): 

L/j Lu\ Zji Xj / Zu\ ZS\\ z-i[ ^ j j X j / 2^\ Zjj L^\ Zjj X j / II 

=> predict change in x;* and/or x'j due to change in zy from Cj 

Relation to the unadjusted species scores (simple regression of covariances on the species 
scores): 

q* = Sk rjk bk / Sk bk
2 

where rjk is the covariance between the k' species and the j * environmental variable 

rjk = EiZijyik/n 

=> biplot: rjk » bkl CjT + bk2 cj2* 

For the adjusted species scores (scaling +1 and +2): 

=> biplot: rjk « bki Cji* + bk2 cj2* 

where rjk is the correlation between the kth species and the j t h environmental variable 

With focus on inter-species correlations (scaling ±2), q* is equal to the correlation between 
the y'th environmental variable and the ordination axis that has unit mean square (i.e. the 
species-derived sample scores in PCA and the environment-derived sample scores of RDA), 
hence 

In RDA: q* = Sj zy x'; / Si x';2 => biplot: zy « qi* x'n + Cj2* x'n 

In PCA: q* = I ; zy x,* / Si Xj*2 => biplot: zy » qi* xu* + q2* Xi2* 

When the focus is on inter-species correlations (scaling ±2), q is a correlation (last block in 
Table 6.29). It is thus also the slope parameter of the regression of the data of the y'th 

environmental variable on the sample scores that have unit mean square. These are the 
environment-derived sample scores in RDA and the species-derived scores in PCA. When the 
focus is on inter-species correlations, the biplot of the environmental biplot scores with the 
sample scores approximates the environmental data. 

As the name suggests, the centroid score q+ of t h e / environmental class is the mean of the 
sample scores of samples that belong to the ƒ environmental class (Table 6.30). The centroid 
scores are also related to the species scores. A class of samples acts as a super sample in the 
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sense that all relations of the sample scores with the species scores carry over to the class 
centroids by changing the abundance of a species in the sample to the mean abundance of the 
species in the class of samples. So, if mjk is the mean abundance of the kth species in the fh 

environmental class, then q is the slope coefficient of the simple regression of the means {mjk} 
of all species for the fh class on the species scores (Table 6.30). In a biplot with the species 
scores, the centroid scores thus approximate the class means of the species. 

The relationships of Cj and Cj+ to the sample scores {x'i} indicated in Table 6.29 and Table 
6.30 do not hold true for supplementary variables in RDA (see Table 6.53 on page 173). 

Table 6.30 The centroid scores {Cj+} of environmental classes in PCA and RDA. 

Relation to the sample scores (centroid of sample scores): 

Cj — h\ Zij X; / 2.; Zij — ^ i ?jj X i / L{ Zjj 

=> centroid principle to predict zy from Xj* and/or x'i and Cj+ 

Relation to the unadjusted species scores (simple regression of class means on the species 
scores): 

Cj = Ik mjk bk / Sk bk 

where mjk is the mean abundance of the k species in the j environmental class 

mjk^iZijyik/EiZjj 

=> biplot: mjk » bkiCji+ + bk2 cj2
+ 

=> biplot: mjk/sdk ~ bkiCji+ + bk2 Cj2+for adjusted species scores (scaling+1 or+2) 

The canonical coefficients {CJ} are the partial regression coefficients from the multiple 
regression of {x;*} and also of {x'i} on the q environmental variables z\, ..., zq (Table 6.31). 
When the canonical coefficients are plotted as arrows, the arrow for each environmental variable 
points in the direction that any particular sample point would move if that variable would 
increase in value conditional on the values of the other variables in the model. The canonical 
coefficients are also related to the species scores. To define this relation, let, as in Table 6.31, djk 
be the partial regression coefficient of the kth species with respect to the y* environmental 
variable. Then, Cj is the slope coefficient of the simple regression of the partial regression 
coefficients {djk} for t he / variable on the species scores {bk}. When plotted with the species 
scores, the canonical coefficients thus approximate the partial regression coefficients. 
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Table 6.31 Canonical coefficients {Cj} in RDA. 

Relation to the sample scores (multiple regression of sample scores on zj , . . . , zq): 

c = (ZTZ)-1 ZT x* = (ZTZ)"' ZT x' 

=> predict change in x'j (or x;*) due to change in z;, from c,, conditional on the values of the 
other environmental variables 

Relation to the unadjusted species scores (simple regression of partial regression coefficients 
djk on the species scores): 

Cj = Ek djk bk / 2k bk 

where djk is the partial regression coefficient of the kth species with respect to the j t h 

environmental variable 

dk = (ZTZ)-1ZTyk 

=> biplot: djk « bkl Cji + bk2 cj2 

In scaling +1 and +2, the division of the species scores by the standard deviation gives 
a biplot of standardized regression coefficients djk / sdk 

=> biplot: djk / sdk « bki Cji + bk2 cj2 

6.3.2.3 Correspondence Analysis (CA) and DCA with detrending by polynomials 

In CA, reciprocal averaging relations hold true between the species scores and the species-
derived sample scores (Table 6.32 and Table 6.33). With the focus on inter-sample distances 
(scaling ±1), the sample score x;* is the weighted average of the species scores {uk} and that the 
species score Uk is proportional to the weighted average of the sample scores. The weights in 
these weighted averages are the data yjk. When changing the focus to inter-species distances 
(scaling +2), the constant of proportionality (AT1, which is a value greater than 1) moves from the 
equation for the species scores to that for the sample scores. With the focus on inter-species 
distances (scaling ±2), the species score Uk is the weighted average of the sample scores and the 
sample score Xj* is proportional to the weighted average of the species scores {uk}. These 
weighted averaging relations are the key to the interpretation of the joint plot in CA by the 
centroid principle (section 3.5). 

In biplot scaling, a PCA-like reciprocal regression relation holds true in CA (Table 6.33). 
This relation is particularly useful when the eigenvalues are low (short gradients). The reciprocal 
regression relation does not use the original data {yik}, but the transformed data {pik}. The 
transformation has an explicit meaning in contingency tables: pik is the observed count divided 
by the expected count under row/column independence. See also section 3.9.4 on page 60. In the 
reciprocal regression relations, the species score uk is the slope coefficient of the simple 
regression of the transformed data {pik} of the kth species on the sample scores {x;*} and, the 
other way round, the sample score Xj* is the slope coefficient of the simple regression of the 
transformed data {pik} of the /* sample on the species scores {uk}. These regression relations are 
the key to the interpretation of the CA-biplot: the species and sample scores together form 
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a biplot that displays approximate transformed species value pik as indicated in Table 6.33. From 
the biplot it is easy to infer relative abundances, in particular, the share of species k in the total 
abundance of sample i (yik/yi+) and the share that sample i has in the total abundance of species k 
(yik/y+k}- See page 171 of Unimodal Models. 

The scaling of scores is also given in Table 6.32 and Table 6.33. In biplot scaling with 
a focus on inter-sample distances (scaling +1), the weighted mean square of the species-derived 
sample scores along an ordination axis is equal to the eigenvalue of the axis and the weighted 
mean square of the species scores is equal to 1. In biplot scaling with a focus on inter-species 
distances (scaling +2), the weighted mean square of the species scores along an ordination axis 
is equal to the eigenvalue of the axis and the weighted mean square of the species-derived 
sample scores is equal to 1. Hill's scaling is derived from the biplot scaling by division of all 
scores by V(l-A-), resulting in the weighted mean squares of species scores and of sample scores 
given in Table 6.32. 

The consequences of the two types of biplot scaling for the interpretation of distances 
between sample points and between species points in the ordination diagram can be seen from 
the eigenvalue equations of CA (Table 6.34). In scaling +1, the score for a particular sample is 
the slope coefficient of the weighted regression of the inter-sample inner products on all sample 
scores. These inner products are based on the transformed data {pik} and weighted by the species 
totals. Sample points thus approximate these inter-sample inner products. Because of the relation 
between distances and inner products, distances between sample points in the ordination 
diagram approximate in scaling +1 weighed inter-sample Pythagorean distances based on the 
transformed data {pik}, which are chi-square distances in terms of the untransformed data {yik}. 
In scaling +2, the score for a particular species is the slope coefficient of the weighted regression 
of the inter-species covariances on all species scores. The covariances are based on the 
transformed data {pik} and weighted by the sample totals. Therefore the species points thus 
approximate these inter-species covariances. Because of the relation between distances and inner 
products, distances between species points approximate in scaling +2 weighted inter-species 
Pythagorean distances based on the transformed data {pik}, which are chi-square distances in 
terms of the untransformed data {yik}. In summary, with the focus on inter-sample distances, the 
ordination diagram displays chi-square distances between samples whereas with the focus on 
inter-species distances, it displays chi-square distances between species. 

In Hill's scaling with focus on samples, the sample scores are in Standard Deviation units of 
species turnover (SD-units). The distances among samples are thus turnover distances 
(Unimodal Models: p 164). In Hill's scaling with the focus on species, distances among species 
are (generalized) Mahalanobis distances in reduced space (see section 3.11 and the CVA 
example in section 8.4.3). 

If environmental variables are present in the analysis by CA (in any scaling), regression 
coefficients c = (ci, ..., cq)

T and environment-derived sample scores are calculated after the 
ordination has been obtained: 

c = (ZTWZ)"' ZT Wx* with W = diag(y1+,..., yn+) 

X i — 2-j Cj Zjj 

The relations in Table 6.32 and Table 6.33 hold true also in DCA with detrending by 
polynomials (DCA-POL). 
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Table 6.32 Transition formulae and Hill's scaling in CA and DCA-POL. 

CA in Hill's scaling with focus on inter-sample distances (scaling -1) 

uk = X"1 Si yik Xj* / S; yik with Sk y+k uk
2 / Sk y+k =1/(1- X) 

Xi*=Sky ikuk/Sky ik with Sj^+x;*2 /Siy i += A./(l- X) 

=> centroid principle to predict y;k in a sample from Xi* and uk 

CA in Hill's scaling with focus on inter-species distances (scaling -2) 

uk = Si yik Xj* / S; yik with Sk y+k uk
2 / Sk y+k = À./(l- A.) 

Xi* = X'1 Sk yikuk / Sk yik with Si yi+ x;*
2 / Sj yi+ = 1 /( 1 - X) 

=> centroid principle to predict occurrences yjk of a species from Xi* and uk 

Si yi+ Xj / Si yi+ = 0 and Sk y+k uk/ Sk y+k = 0 (zero mean sample and species score) 
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Table 6.33 Transition formulae and the biplot scaling in CA and DCA-POL. 

CA in biplot scaling with focus on inter-sample distances (scaling 1) 

uk = Si yi+ pik Xj* / Ei y;+ x ;*
2 = X'] Sj yik x;* / Z; yik with 2k y+k uk

2 / Ek y+k = 1 

Xi*=Sky+kpikuk/Eky+kuk
2 = Skyikuk/Sky ik with Zj yi+Xj*2 / E; yi+= A. 

with pik = yik / (yi+y+k/y++) 

=> centroid principle to predict yik in a sample from x;* and uk 

=> biplot: pik » 1 + Uki Xu* + Uk2 xi2* 

For given species k, y+k/y++ is constant so that 

=> biplot: y;k/yi+ « pik ~ 1 + uki xn + Uk2 x;2 (project samples on species arrow) 

For given sample i, yi+/y++ is constant so that 

=> biplot: yik/y+k « Pik ~ 1 + ukJ xn + u^ x;2 (project species on sample arrow) 

CA in biplot scaling with focus on inter-species distances (scaling 2) 

uk = 2iyi+pikXi*/Siyi+Xj*2 = SiyikXi*/Eiyik with 2k y+k uk
2 / Ek y+k =A. 

xj* = Zk y+k pik uk / Sk y+k uk
 2 = V1 Zk yikUk / 2k yik with S; yi+ x;*

2 / E; yi+ = 1 

=> centroid principle to predict occurrences yik of a species from Xj* and Uk 

=> biplots as above for scaling 1 

Si yi+ XJ / Si y;+ = 0 and Ek y+k uk/ Ek y+k = 0 (zero mean sample and species score), 
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Table 6.34 Eigenvalue equations and the biplot scaling in CA. 

In CA, the eigenvalue equation for the sample scores is 

Xxi* = Zj yj+ Cij Xj*/ y++ 

where Cjj = Zk y+k Pik Pjk/y++ , the inner product between samples i and j 

With focus on inter-sample distances (scaling +1), Z; Vj+ x;*2 / y++ = X so that 

X;* = A/1 Sj yj+ Cjj Xj* / y++ = Zj yj+ Cy Xj* / Zj yj+ Xj*2 

=> biplot of inter-sample inner products: cy « xn* Xji* + Xj2* Xj2* 

=> approximation of inter-sample chi-square distances: dy « {(xn* - Xji*' 

with dij2 = Zk y+k (pik - Pjk)2/ y++ = Zk (y++/y+k)( yik/yi+ - yjk/yj+ f = c« + Cjj 

In CA, the eigenvalue equation for the species scores is 

A,uk = S/y+/ck/U//y++ 

where ck; = Zj yi+pik pu 1 y++, the covariance between species k and / 

2 + (xi2 

-2cy 

With focus on inter-species distances (scaling +2), Sk y+k uk
2 / y++ = X so that 

uk = X'] E/ y+/ cy u/ / y++ = S; y+/ ck/ u/ / Z/ y+/ u/2 

=> biplot of inter-species covariances: c^ » uki u/i + u^ u/2 

^> approximation of inter-species chi-square distances: dk/ « {(uki - u/i) -

with du = Zi yi+ (pik - pi/)2/ y++ = Z; (y++/yi+)( y;k/y+k - y;// y+/)2 = c^ + c« -

KUk2" 

2Cy 

* . X J 2 * ) 2 } 1 / 2 

U/2)2}''2 

6.3.2.4 Detrended Correspondence Analysis with detrending by segments (DCA) 

In default DCA (with detrending by segments and nonlinear rescaling of axes) the 
relationships between scores are less simple. What remains simple is the centroid relation: 

x; = Zky;kuk/ Zkyjk => centroid principle to predict yik in a sample from x;* and uk 

The sample scores are in Standard Deviation units of species turnover (SD-units). The distances 
among samples are thus turnover distances (Unimodal Models: p 164). 
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6.3.2.5 Canonical correspondence analysis and DCCA with detrending by polynomials 

Table 6.35 and Table 6.36 specify the relations between scores in CCA and DCCA with 
detrending by polynomials. The species scores have a simple relation with the environment-
derived sample scores. With the focus on inter-sample distances (scaling ±1), the species score 
Uk is proportional to the weighted average of the environment-derived sample scores {x'j}, 
whereas the species-derived sample score Xj* is the weighted average of the species scores {uk}. 
When changing the focus to inter-species distances (scaling ±2), the constant of proportionality 
(X"1) moves, as in CA, from the equation for the species scores to that for the species-derived 
sample scores. In all types of scaling, the canonical coefficients {CJ} are the partial regression 
coefficients from a weighted multiple regression of {x*j} on the q environmental variables z\,..., 
zq, and, finally, the environment-derived sample scores are a linear combination of the q 
environmental variables z\,..., zq. As in RDA, the canonical coefficient can also be derived from 
the environment-derived scores {x'j} by a multiple regression on the environmental variables. 
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Table 6.35 Transition formulae and Hill's scaling in CCA and DCCA-POL. 

CCA in Hill's scaling with focus on inter-sample distances (scaling -1) 

uk = A/1 Sj yik x'i / Sj yik with Sk y+k uk
2 / Sk y+k = 1/(1- X) 

Xi* = Sky ikuk/Sky ik 

c = (ZTWZ)"' ZT Wx* 

Xi'= Sj Cj Zjj with Siyi+Xi'2/Siyi+= X/(l- X) 

=> centroid principle to predict y;k in a sample from x^ (or x'i) and uk 

CCA in Hill's scaling with focus on inter-species distances (scaling -2) 

Uk= Sj yik x'i / Sj yik with Sk y+k uk
2 / Sk y+k =1/(1-X) 

x^^'SicyucUfc/Sfcyik 

c = ( Z ^ Z ) " 1 ZT Wx* 

x'i = Sj Cj Zjj with Siyi+x'j2 / S;yi+= 1/(1- X) 

=> centroid principle to predict occurrences yik of a species from x'i (or x;*) and uk 

Relations of x'i to the species scores (cc weighted average of {uk}): 

x'i= Sk y ikuk/ Sky;k with focus on inter-sample distances (scaling ±1) 

=> centroid principle to predict fitted abundance y ;k in a sample from x'i and uk 

x'i = A,"1 Sk y ikuk/ Skyik with focus on inter-species distances (scaling ±2) 

=> centroid principle to predict fitted occurrences y j k of a species from x'; and uk 

Si yi+ x';/ S; yi+ = S; yi+ x; / Sj yi+ = 0 and Sk y+k uk/ Sk y+k = 0 (zero mean scores) 
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Table 6.36 Transition formulae and the biplot scaling in CCA and DCCA-POL. 

CCA in biplot scaling with focus on inter-sample distances (scaling 1) 

, 2 . Uk = Siy1+pikx'i/Ziyi+x'i =X~ I j yik x'j / Si yik 

Xj* = £k y+k pik uk / Ek y+k uk
 2 = Sk yikuk / Ek yik 

c = (ZTWZ) 

x'i = Ij Cj Zij 

with Ek y+k uk / Ek y+k = 1 

c = (ZTWZ)"' ZT Wx 

with S; yi+ Xj' / S; yi+ = X. 

with pik = yik / (yi+y+k/y++) 

=> centroid principle to predict y;k in a sample from xs* (or x'i) and uk 

=> biplot: pik » p ik ~ 1 + Uki x'ii + Uk2 x'i2 

=> biplot: pik * l + u k i x i l * + Uk2xi2* 

CCA in biplot scaling with focus on inter-species distances (scaling 2) 

Uk - Si y;+ Pik x'i / Si y;+ x'i = S; yik x'i / S; yik 

Xi* = Sk y+k Pik Uk / Sk y+k uk
 2 = X1 Sk yikuk / Sk yik 

c = (ZTWZ)"' ZT Wx* 

X i — 2-j Cj Zij 

with Sk y+k uk
2 / Sk y+k =X 

with Siyi+x'i / Si yi+ = 1 , 2 

=> centroid principle to predict occurrences yjk of a species from x'; (or Xi*) and Uk 

=> biplots as above for scaling 1 

Relation of x'i to the species scores (simple regression of fitted values { p jk} on {uk}): 

x'i = Sk y+k p ik uk / Sk y+k uk
 2 

with p ik and y ik the fitted values from the weighted regression on the environmental 
variables, namely 

p k = 1 + Z(ZTWZ)'1 ZT Wpk and y ik = (yi+y+k/y++) p ik 

=> biplot: p ik * 1+ Uki x'u + uk2 x'i2 

For given species k, y+k/y++ is constant so that 

=> biplot: y jk/yi+ « p ;k » 1 + uki X'Ü + u^ x'i2 (project samples on species arrow) 

For given sample i, yi+/y++ is constant so that 

=> biplot: yik/y+k oc p i k « 1+uk i X'Ü + uk2 x'j2 (project species on sample arrow) 
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In biplot scaling, RDA-like regression relations hold true in CCA between species and 
species-derived sample scores (Table 6.36). These relations are particularly useful when the 
eigenvalues are low (short gradients). As in CA, the regression relations do not use the original 
data {yik}, but the transformed data {pik} with pik the observed count divided by the expected 
count under row/column independence. See also section 3.9.4 on page 60. In the regression 
relations, the species score Uk is the slope coefficient of the simple regression of the transformed 
data {pik} of the kth species on the sample scores {x'j}, and the sample score x;* is the slope 
coefficient of the simple regression of the transformed data {pik} of the /' sample on the species 
scores {Uk}. In addition, the last cells of Table 6.35 and Table 6.36 show that the environment-
derived sample scores have CA-like relations with the species scores. The environment-derived 
sample score x'; is (proportional to) the weighted average of the species scores {uk} with the 
fitted abundance data y ik as weights (last cell of Table 6.35). The environment-derived sample 

score x'j is also the slope coefficient of the simple regression of the fitted values { p ik} of the rth 
sample on the species scores {uk}. The biplot of species and environment-derived sample scores 

thus displays the approximate fitted species values { p ik}- These regression relations are the key 
to the interpretation of the CCA-biplot: the species and sample scores together form a biplot that 

displays approximate fitted value { p ik} as indicated in Table 6.36. Because the fitted row and 
column totals are equal to the observed totals, it is easy to infer fitted relative abundances, in 

particular, the fitted share of species k in the total abundance of sample i ( y ik /yi+) and the fitted 

share that sample i has in the total abundance of species k ( y ik /yk+}- See page 171 of Unimodal 
Models. 

The scaling of scores is also given in Table 6.35 and Table 6.36. In words, we have the 
following. In biplot scaling with a focus on inter-sample distances (scaling +1), the weighted 
mean square of the environment-derived sample scores along an ordination axis is equal to the 
eigenvalue of the axis and the weighted mean square of the species scores is equal to 1. In biplot 
scaling with a focus on inter-species distances (scaling +2), the weighted mean square of the 
species scores along an ordination axis is equal to the eigenvalue of the axis and the weighted 
mean square of the environment-derived sample scores is equal to 1. Hill's scaling is derived 
from the biplot scaling by division of all scores by V(l-À), resulting in the weighted mean 
squares of species scores and of sample scores given in Table 6.35. 

The consequences of the two types of biplot scaling for the interpretation of distances 
between sample points and between species points in the ordination diagram can be seen from 
the eigenvalue equations of CCA (Table 6.37). In summary, with the focus on inter-sample 
distances, the ordination diagram displays fitted chi-square distances between samples whereas 
with the focus on inter-species distances, it displays fitted chi-square distances between species. 

In Hill's scaling with focus on samples, the sample scores are in Standard Deviation units of 
species turnover (SD-units). The distances among samples are thus fitted turnover distances 
(Unimodal Models: p 164). In Hill's scaling with focus on species, distances among species are 
(generalized) Mahalanobis distances in environmental space (see the CVA example in section 
8.4.3). 
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Table 6.37 Eigenvalue equations and the biplot scaling in CCA. 

In CCA, the eigenvalue equation for the sample scores is 

Xx'i = Ij Vj+ Cy x'j /y++ 

where cy = Ek y+k P ik p jk /y++, the fitted inner product between samples i and j 

With focus on inter-sample distances (scaling +1), Eiyi+ x ';2 / y++ = X so that 

x'i = r ' Ej yj+ cy x'j / y++ = Ej yJ+ cy x'j / Ej yj+ x ' j2 

=> biplot of inter-sample inner products: cy » x'n x'ji + x';2 x'j2 

=> approximation of fitted inter-sample chi-square distances: 

dij «{(x'i, - x ' j l )
2 + (x'i2 - x ' j 2 ) 2} 1 / 2 

with dij2 = Ek y+k ( p ik - p j k)2 / y++ = Ek (y++/y+k)( y ik/y;+ - y jk/yj+ f = cü + Cy - 2cy 

In CCA, the eigenvalue equation for the species scores is 

A,Uk = E/ y+; cu u; /y++ where cy = E; yi+ p ik p « /y++, the fitted covariance between species k 
and/ 

With focus on inter-species distances (scaling +2), Ek yk+ Uk2 / y++ = X so that 

uk = A/1 E/ y+; ck; u; /y++ = E; y+; ck/ U/ / E/ y+/ u;
2 

=> biplot of fitted inter-species covariances: Ck/« Uki u;i + Uk2Un 

=> approximation of fitted inter-species chi-square distances: 

dkl » {(Uki - U/i)2 + (Uk2 - ua)2>1/2 

with dk/2 = E; yi+ ( p ik - p u)
2/ y++ = E; (y++/yi+)( y ik/y+k - y i//y+/ f = Ckk + c« - 2ck; 

The environmental biplot scores { Cj* } are related to both the sample scores and the species 
scores (Table 6.38). The score Cj* is the slope coefficient from the simple regression of {x'i} on 
they* environmental variable Zj (Table 6.38). When the environmental biplot scores are plotted 
as arrows, the arrow for each environmental variable points in the direction that any particular 
sample point would move to if that variable would increase in value (ignoring the other 
variables). To define the relation with the species scores, let, as in Table 6.38, irijk be the 
weighted average of the kl species with respect to the j ' environmental variable, then Cj* is the 
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slope coefficient of the simple regression of the weighted averages {irijk} of all species with 
respect to t h e / environmental variable on the species scores (Table 6.38). In a biplot with the 
species scores, the environmental biplot score for a particular variable thus approximates the 
weighted averages of the species with this environmental variable. 

In biplot scaling with the focus on inter-species distances (scaling +2), Cj is a correlation 
(last block in Table 6.38). It is thus also the slope parameter of the regression of the data of the 
ƒ environmental variable on the sample scores that have unit mean square. These are the 
environment-derived sample scores in CCA and the species-derived sample scores in CA. When 
the focus is on inter-species correlations, the biplot of the environmental biplot scores with the 
sample scores approximates the environmental data. 

Table 6.38 The environmental biplot scores {Cj*} in CA, CCA and D(C)CA-POL. 

Relation to the sample scores (simple regression of sample scores on Zj): 

Cj* = I j y i + Zy X;* / I ; y i + Zjj2 = I ; y i + Zy x'; / I ; y i + Zy2 = I j y i + Zy x'; / y++ 

=> predict change in Xj* and/or x'; due to change in zy from q 

Relation to the species scores (simple regression of weighted averages {m,k} on the species 
scores): 

q* = I k y+k mjk uk / Ik y+k uk
2 

where mjk is the weighted average of the k' species with respect to the j environmental 
variable 

mjk = l i yik zy / 1 ; yik 

=> biplot: mjk « uki qi* + Uk2 Cj2* 

In biplot scaling with focus on inter-species distances (scaling +2), q* is equal to the 
correlation between the y'th environmental variable and the ordination axis that has unit mean 
square (i.e. the species-derived sample scores in CA and the environment-derived sample 
scores of CCA), hence 

In CA: Cj* = I j y;+ zy x;* / 1 ; y;+ Xj* => biplot: zy « qi xu + q-2 XJ2 

In CCA: q* = I j yi+ zy x'i / 1 ; yi+ x';
2 => biplot: zy » qi* x'n + Cj2* x'i2 

As the name suggests, the centroid score q+ of the ƒ environmental class is the weighted 
mean of the sample scores of samples that belong to the j t h environmental class (Table 6.39). 
The centroid scores are also related to the species scores (Table 6.39). A class of samples acts as 
a super sample in the sense that all relations of the sample scores with the species scores carry 
over to the class centroids by changing the abundance of a species in the sample to the total 
abundance of the species in the class of samples. So, if yjk is the total abundance of the k' 
species in the ƒ h environmental class, then q+ is the weighted average of the species scores {uk}, 
with the total abundances acting as weights, when the focus is on inter-sample distances (scaling 
+1). q+ is proportional to the weighted average, when the focus is on inter-species distances 
(scaling ±2). In biplot scaling, there is an additional regression relation, as there is for the sample 
scores. When the class totals {yjk} are transformed to relative class totals {pjk} by division by the 
expected totals under row/column independence, then, q+ is the slope coefficient of the simple 
regression of the relative class totals {pjk} of all species for they' class on the species scores. In 
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a biplot with the species scores, the centroid scores thus approximate the relative class totals of 
the species (Table 6.39). 

Table 6.39 The centroid scores {Cj+} of environmental classes in CA, CCA and D(C)CA-
POL. 

Relation to the sample scores (centroid of sample scores): 

Cj+ = Ei yi+ Zij X(* / S| yi+ Zij = S; yi+ Zy x'; / Si yi+ zy 

Relation to the species scores: (simple regression of relative class totals pjk on the species 
scores): 

biplot scaling with focus on inter-sample distances (scaling 1) 

Cj+= Sk y+k Pjk uk / Sky+k uk
2 = SkYjkUk / Skyjk 

biplot scaling with focus on inter-species distances (scaling 2) 

Cj+= Sk y+k Pjk uk / Sk y+k uk
2 = X'1 Sk YjkUk / Sk yjk 

with 

yjk = Sj Zjj y;k / Si Zjj, the total abundance of the kth species in the fh environmental class and 

Pjk = yjk / (vj+ y+k/ y++), the corresponding transformed total. 

For given species k, y+k/y++ is constant so that 

=> biplot: yjk/yj+oc pjk « l+UkiCji++ Uk2 Cj2+ (project classes on species arrow) 

For given class j , yj+/y++ is constant so that 

=> biplot: yjk/y+k « pjk ~ 1 + Uki Cji+ + Uk2 Cj2+ (project species on class arrow) 

6.3.2.6 Detrended Canonical Correspondence Analysis with detrending by segments 

In DCCA with detrending by segments and nonlinear rescaling of axes, the relationships 
between scores are less simple. What remains simple are the relations given in Table 6.40. 
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Table 6.40 Some transition formulae in DCCA with detrending by segments. 

* 
Xi 

c = 

x' 

= zkyikUk/ 

= (ZTWZ) 

= Zj Cj Zjj 

' Sk yik 

'Z 'WX* 

=> centroid principle to predict yik in a sample from Xjs " (or x'i) and UR 

When plotted with the species scores, the environmental biplot arrow approximates the 
weighted averages of all species with respect to this environmental variable (Table 6.41). The 
centroids of environmental classes are, indeed, centroids of the sample scores (Table 6.42), but 
have no simple relation with the species scores. 

Table 6.41 The environmental biplot scores {Cj*} in DCA and DCCA with detrending by 
segments. 

Relation to the species scores (multiple regression of weighted averages {m,k} on the species 
scores of two axes): 

Cji = partial regression coefficient on axis 1 

Cj2 = partial regression coefficient on axis 2 

with mjk the weighted average of the k' species with respect to t h e / environmental variable 

nijk = Si yik zy / S; yik 

=> biplot: mjk « uk, CJI* + uk2 cj2* 

Table 6.42 The centroid scores {Cj+} of environmental classes in DCA and DCCA with 
detrending by segments. 

Relation to the sample scores (centroid of sample scores): 

Cj+ = S; y i + Zjj Xi* / S; y i + Zy = S; y i + Zy x'i / S; y i + Zy 

6.3.3 Weights and the eigenvector sample scores 

Let wk* denote the user-specified weights for species k and w;* the user-specified weight 
for sample i, which are both, by default, equal to 1, and equal to 0 for species and samples that 
are deleted or that are made supplementary. For unimodal methods, we adopt the notation that 
y+k and yi+ are the weighted species total and weighted sample total, defined by 

(6.4) y+k = Si Wj* yik, and yi+ = Sk wk* yik 

and that y++ is the overall total, defined by 
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(6.5) y++ = Zi>kWi wk* yik = I j Wj yi+ = I k w k y+k 

Then, in linear methods, wk = wk* and w; = Wj , and, in unimodal methods, wk = wk*y+k, the 
weighted total abundance of a species, and Wj = Wi*yi+, the weighted total abundance of 
a sample. 

With environmental data in the analysis, there are two sets of sample scores in CANOCO: 
species-derived sample scores {XJ*} and environment-derived sample scores {x'i}. In the 
subsequent sections of this chapter we use the term "eigenvector sample scores", denoted by 
{xi}, which are the eigenvectors of the analysis. In direct methods, where there must be 
environmental data in the analysis, 

(6.6) Xj = x'i, the score of sample i that is derived from the environmental data 

and, in indirect methods, where there may be, but do not need to be, environmental data in the 
analysis, 

(6.7) Xj = Xj*, the score of sample i that is derived from the species data 

6.3.4 Species scores 

Table 6.43 - Table 6.45 show examples of tables of species scores. The column "WEIGHT" 
reports the weights wk of each species. Without user-specified weights, wk = 1 in linear methods, 
and wk = Siyik, the species total, in unimodal methods. With user-defined weights, in linear 
methods, wk = wk* and wj = Wi , and, in unimodal methods, wk = wk*y+k, the weighted total 
abundance of a species, and Wj = Wj*yi+, the weighted total abundance of a sample. 

Supplementary species are recognizable by weight 0 (species 31, 32 and 33 in Table 6.43 -
Table 6.45). In the example tables, they happen to be at the bottom of the table but this is not the 
general rule. The weights are useful in interpreting ordination diagrams: in unimodal methods 
species at the edge of the diagram often carry low weights; such peripheral species have little 
influence on the analysis and it is often convenient not to display them at all. 

In linear methods the final column is headed " 1 " and contains ones only. In unimodal 
methods, the final column, headed "N2", is the effective number of occurrences of the species, 
defined by 

(6.8) N2 = l /2 i(w i*y i k /y+ k) 2 

It is analogous to the N2-diversity measure of Hill (1973b). N2 can be understood as follows. 
For presence-absence data, N2 is simply the number of occurrences. With abundance data, a 
species may occur with abundances 1000, 1, 1, say. CA/CCA/DCA are based on weighted 
averages. The weighted average for this species is effectively determined by the sample in which 
it occurs with abundance 1000 and the value of N2 is close to 1. 

The scores of species depend on the scores of the samples (and vice versa). With 
environmental data in the analysis, there are two sets of sample scores in CANOCO. The closest 
is the relation of the species scores with the "eigenvector sample scores", denoted by {xi}, as 
defined in the previous section. 

In linear methods, the species score is defined by 
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(6.9) bk = S; wi y'ik x, / S; Wj x,2 

the linear regression coefficient of the data for species k on the eigenvector samples scores { x; } 
using the weights {WJ}. The species score is thus a slope parameter. In linear methods, the data 
y'ik are the species data after any data transformation, centering and standardization that you 
may have specified for the analysis. The value of the denominator of (6.9) depends only on the 
scaling of ordination scores (Table 6.3) and is set to Xa E; w; in the next section, with X the 
eigenvalue of the axis and a = 1, 0, lA for scaling +/- 1, 2, and 3 of Table 6.3. The formula for 
the species scores can thus be simplified to 

(6.10) bk = r aS1Wiy' ikx i /E iWi 

If a = 0 (scaling +/- 2), then X~a = 1, so that the species score is a weighted sum of the sample 
scores. 

If you specified that the species score must be post-transformed by division by the standard 
deviation (indicated by positive scaling type numbers, Table 6.3) the species scores is divided by 
sdk, the standard deviation of species k. The resulting species scores are said to be adjusted for 
the species variance (Table 6.43). The adjusted species scores can still be interpreted as in (6.9), 
but now with y'ik defined by yjk / sdk. The adjusted species score is the regression coefficient of 
the standardized species data on to the sample scores. The resulting biplot of species and sample 
scores thus displays standardized species data, even if the ordination was carried out on 
unstandardized data. See also Unimodal Models, page 146. The sign of the scaling type number 
in linear methods has no influence on other scores than the species scores. In scaling 2, the 
species score is precisely the correlation of the species with the ordination axis defined by the 
sample scores { Xj}. This is an inter-set correlation in direct methods, because the sample scores 
{ X;} are then derived from the other set, namely the environmental data. 

In unimodal methods, the species score is defined by 

(6.11) uk = ^"a Sj WiVik Xj / S; WiVik 

with X and a as defined above for linear methods. If a = 0 (scaling +/- 2), then A."a = 1, so that 
the species score is the weighted average of the sample scores { x ;} . In the other types of 
scaling, the species score is proportional to the weighted average. The weighted average is the 
center of the species distribution along the ordination axis. It is an approximation of the species 
optimum if the species response curve is unimodal and symmetric. Recall that the species data 
yik must be non-negative in unimodal methods, otherwise (6.11) would not make sense as a 
weighted average. When nonlinear rescaling of axes is in force, which is the default in 
detrending-by-segments, the species score Uk is not a simple function of the sample scores and 
(6.11) does not hold. 

In unimodal methods, the species scores have a weighted mean of 0 (except when nonlinear 
rescaling is in force), whereas in linear methods they do not have a mean of 0, except when the 
species data are centered by samples. With nonlinear rescaling of the ordination axes (default in 
detrending-by-segments) and environmental data in the analysis, the centroid of the species 
scores is reported below the table. Environmental biplot scores should take the centroid as origin 
of the coordinate system. Arrows for environmental variables in a species-environment biplot 
should start from this centroid-point. 

The formulae (6.9) and (6.11) also define how the scores of supplementary species are 
obtained. 
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We now discuss the scaling of ordination scores. In linear methods, the (weighted) mean of 
squares of the (unadjusted) species scores is equal to 

(6.12) 2kWkbk
2 / Skwk = A,1"" 

In unimodal methods with biplot scaling, the (weighted) mean of squares of the species scores 
(Table 6.44) 

(6.13) Ikwkuk
2/Skwk = X'-a 

whereas, with Hill's scaling, the weighted mean square of the species scores is 

(6.14) Ekwkuk
2/Skwk = ^-<7(1- X) 

The factor (l-X) in (6.14) together with the definition of { x;} ensures that the species and 
sample scores are in Standard Deviation units (SD). Species scores in SD-units on average have, 
by definition, unit within-sample variance: 

(6.15) 2i,k Wj wk yik(uk - Xj) /Sijk wi wk yik = 1 

With this scaling, the length of the ordination axis is, by definition, the range of the sample 
scores {XJ}. 

It is of interest to note that the species scores in unimodal methods can also be interpreted as 
regression coefficients (slopes), at least if the axes are in biplot scaling. For this interpretation, 
define 

(6.16) y'ik = (yik/ yi+) / (y+k/y++) 

which is the share of the species k in the total abundance in sample i (yik/ yi+) compared with the 
overall share of species k in the data (y+k /y++). The overall share is a constant for a given 
species. On inserting the definitions for y';k and Wj in (6.9), we obtain 

(6.17) bk = S; {wiVik X; / y+k} / (S; Wi Xi2/y++) = uk (k
a y++/ 2; w; Xj2) = uk 

The last equality only holds true if the biplot scaling is used (scaling 1, 2, or 3), as follows from 
(6.22) and (6.23) in the next section (with y++ = 2; w;). This interpretation motivated the term 
biplot scaling, because in biplots species scores are slopes. 

Table 6.43 Species scores {bk} in linear methods. 
Spec: Species scores (adjusted for species variance) 

NAME AX1 AX2 AX3 AX4 WEIGHT 

EIG .2644 .1701 .0671 .0413 

1 

2 

3 

4 — 29 

30 

31 

Ach mil 

Agr sto 

Air pra 

not shown 

Cal eus 

Hip rha 

-.6878 

.6368 

.2203 

.6031 

.0372 

.1239 

-.5218 

.3987 

.1841 

.4293 

-.1430 

-.0691 

-.0665 

-.1098 

.2180 

.0074 

.0421 

-.4094 

.2219 

-.3724 

1.00 

1.00 

1.00 

1.00 

.00 

1.00 

1.00 

1.00 

1.00 

1.00 
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32 

33 

Poa ann 

Ran acr 

-.3992 

-.3467 

-.2753 

.0615 

-.4247 

.7173 

-.2815 

.3179 

.00 

.00 

1.00 

1.00 

Table 6.44 Species scores {uk} in unimodal methods. 

Spec: Species scores (Biplot scaling) 

N NAME AX1 AX2 AX3 AX4 WEIGHT N2 

EIG .4612 .2981 .1601 .1337 

1 

2 

3 

4 — 29 

30 

31 

32 

33 

Ach mil 

Agr sto 

Air pra 

not shown 

Cal eus 

Hip rha 

Poa ann 

Ran acr 

-.8402 

.7704 

.7395 

1.6569 

.1048 

-.4230 

-.3526 

.3816 

-.5000 

1.7874 

.4507 

1.4608 

-.0766 

.0198 

.0275 

-.1143 

-1.0769 

.3862 

-.4087 

-.4707 

1.0076 

-.3342 

-.0800 

.5319 

-.2538 

.8238 

-.3737 

.7046 

16.00 

48.00 

5.00 

10.00 

.00 

.00 

.00 

6.10 

9.14 

1.92 

2.94 

2.67 

8.83 

5.26 

Table 6.45 Species scores {Uk} in DCA and DCCA with non-linear rescaling (default in 
detrending-by-segments). 

Spec: Species scores 

N NAME AX1 AX2 AX3 AX4 WEIGHT N2 

EIG .5360 .2565 .0833 .0349 

1 

2 

3 

4 — 29 

30 

31 

32 

33 

Ach mil 

Agr sto 

Air pra 

not shown 

Cal eus 

Hip rha 

Poa ann 

Ran acr 

-.2799 

3.5361 

-.4583 

3.8659 

1.1185 

1.0532 

1.3757 

-.0827 

1.7391 

3.8576 

2.0476 

3.3987 

.3620 

2.2444 

1.4066 

.2252 

-.2429 

.7723 

1.6260 

1.7688 

-1.2399 

1.6464 

-.1242 

1.7514 

4.6385 

2.9200 

1.7386 

-.4324 

16.00 

48.00 

5.00 

10.00 

.00 

.00 

.00 

6.10 

9.14 

1.92 

2.94 

2.67 

8.83 

5.26 

Centroid 1.6881 1.4897 .7745 .8722 

6.3.5 Sample scores { x f } that are derived from the species 

The sample scores that are derived from the species scores are labeled "Samp: Sample 
scores" in the solution file. They make the species axis (SPEC AX) in section 6.2.4. The format 
is similar to that of the species scores. The column "WEIGHT" reports the weight w; of each 
sample. In linear methods, Wi = Wj ; in unimodal methods, w; = Wi*y;+, the weighted total 
abundance in a sample where w; are the user-defined weights (see previous section, above 
equation (6.4)). Supplementary samples are always placed at the bottom of the table (see 
samples "SupplSAM" and "Duplicl7" in Table 6.46). 
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In linear methods the final column is headed " 1 " and contains ones only. In unimodal 
methods, the final column, headed "N2", is the effective number of species in a sample, defined 
by 

(6.18) N 2 =l /S k (w k *y i k / y i + ) 2 

N2 is a member of Hill's (1973b) family of diversity measures. The ^-diversity measure is the 
inverse of the Simpson diversity measure. The meaning of N2 can be understood as follows. For 
presence-absence data, N2 is simply the number of species that occur in a sample. With 
abundance data, the species in a sample may have abundances 1000, 1,1, say. C A/CCA/DC A 
are based on weighted averages. The weighted average for this sample is effectively determined 
by the species that occurs with abundance 1000 and the value of N2 is close to 1. 

In linear methods, the table of sample scores ends with the scores of a notional "empty" 
sample that has zero abundance value for all species in the data value. This sample, labeled 
"ORIGIN" (Table 6.46) indicates the point (0,0, ..., 0) in the original species space before 
centering has been applied. The point for "ORIGIN" in the ordination diagram can be useful in 
inferring the alpha-diversity of samples (Ter Braak 1983). 

In linear methods, the sample score is essentially defined by 

(6.19) xi* = Zk wk y'* bk / Sk wk bk
2 

the linear regression coefficient of the data for sample i on to the species scores {bk } using 
weights { w k } . The sample score is thus a slope parameter. In linear methods, the data y'ik are 
the species data after any data transformation, centering and standardization that you may have 
specified for the analysis. The value of the denominator of (6.19) depends only on the scaling of 
ordination scores (Table 6.21) and is set to AI_ct Zk wk with X the eigenvalue of the axis and a = 
1, 0, V2 for scaling +/- 1,2, and 3 (Table 6.21). The formula for the sample scores can thus be 
simplified to 

(6.20) Xj* = XaA Skwkyikbk / Ekwk 

If a = 1 (scaling +/- 1), then A""1 = 1, so that the sample score is a weighted sum of the species 
scores. 

In weighted averaging methods, the sample score Xj is defined by 

(6.21) xi* = A""1 Ikwk* yikuk/ Ekwk* yik 

If a = 1 (scaling +/- 1), the sample score is therefore a weighted average of the species scores 
{uk}. In other scalings, the sample score is proportional to the weighted average. 

If there are covariables in the analysis, the scores {Xj } are made uncorrected to the 
covariables before they are printed in order to avoid distortion by the effects of covariables. The 
sample scores printed are the residuals of a regression of the scores (6.20) or (6.21) on the 
covariables. Scores of supplementary samples for which the values of covariables are available 
are adjusted by use of the equation of the regression just mentioned. 

In unimodal methods (except with nonlinear rescaling) the sample scores have a weighted 
mean of 0, whereas in linear methods they have a mean of 0 in RDA or if the species data are 
centered by species. With nonlinear rescaling of the ordination axes (default in detrending-by-
segments) and environmental data in the analysis, the centroid of the sample scores is reported 
below the table. Environmental biplot scores should take the centroid as the origin of the 
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coordinate system. Arrows for environmental variables in a sample-environment biplot should 
start from this centroid-point. 

In indirect gradient analyses, the transition formulae consist of the formulae (6.9) and (6.19) 
for linear methods (PCA) and the formulae (6.11) and (6.21) in unimodal methods (CA/DCA). 
In indirect methods, the sample scores { x; }, which are derived from the species scores by 
(6.19) and (6.21), are the eigenvector sample scores, i.e. x; = Xj in the notation of the previous 
section. 

We now discuss the scaling of the sample scores. In linear methods, and in unimodal 
methods in biplot scaling, the (weighted) mean of squares of the eigenvector sample scores 
{ X,} is equal to 

(6.22) ZiWi xi2 / SjWi = r 

In unimodal methods in Hill's scaling, the weighted mean square of the eigenvector sample 
scores is equal to 

(6.23) EiWiXi2/SiWi = A,7(l- X) 

The factor (1-X) in (6.23) together with the definition of {Uk } ensures that the species and 
sample scores are in Standard Deviation units (SD) in which the scores have on average unit 
within-sample variance (6.15). With this scaling, the length of the ordination axis is, by 
definition, the range of the eigenvector sample scores {XJ}. 

In detrending-by-segments (with non-linear rescaling of axes) the sample scores are always 
weighted averages of the species scores, and are in SD-units. The type of scaling is thus most 
like that of scaling -1 in the CA and CCA; in the heading of the table the value -1 is given (Table 
6.21).The minimum value of the eigenvector sample scores { Xj} is set to 0, as in DECORANA 
(Hill 1979). With environmental data in the analysis, the sample scores end with the centroid of 
the sample scores. 

Table 6.46 Sample scores { Xj } that are derived from the species scores in linear methods. 

Samp: Sample scores 

N NAME AX1 AX2 AX3 AX4 WEIGHT N2 

EIG .4612 .2981 .1601 .1337 

1 

2 

3 

— 16 

17 

28 

29 

30 

20 

21 

Sample 1 

Sample 2 

Sample 3 

not shown 

Sample 17 

Sample 18 

Sample 19 

Sample20 

SupplSAM 

Duplicl7 

-1.2192 

-.8644 

-.3149 

-.3882 

-.3107 

.6647 

2.0014 

-1.4219 

-.3882 

-.4968 

-.2504 

-1.0096 

2.7700 

1.4947 

2.8731 

1.0029 

.0180 

2.7700 

-.9350 

-.5356 

-.9001 

-1.0653 

-.1467 

-2.6645 

-.2635 

.2932 

-1.0653 

-1.2524 

-1.7028 

-.6378 

.9045 

-.0740 

1.7243 

.3276 

-.8283 

.9045 

18.00 

42.00 

40.00 

15.00 

27.00 

31.00 

31.00 

.00 

.00 

3.77 

9.09 

8.25 

6.08 

7.22 

7.94 

7.57 

2.88 

6.08 

It is of interest to note that the sample scores in unimodal methods can also be interpreted as 
regression coefficients (slopes), at least if the axes are in biplot scaling. For this interpretation, 
define 
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(6.24) y'lk = (y1k/y+k)/(yi+/y++) 

which is the share of sample i in the total abundance of species k (yik I y+k) compared with the 
overall share of sample i in the data (y;+ /y++). On inserting the definitions for y'jk and Wk in 
(6.19), we obtain 

(6.25) Xi* = Sk {wk'yik bk / yi+} / (Ik wk bk
2/y++) 

The last term between brackets equals X]~a from (6.12) , because y++ = Sk wk and Uk = bk in 
biplot scaling. Therefore the formulae for xj in (6.25) and (6.21) correspond. This interpretation 
actually motivated the term biplot scaling, because in biplots sample and species scores are 
slopes. Note that (6.16) and (6.24) are two ways of writing the same data transformation. In the 
calculation of the score of species k from the sample scores, the last term between brackets in 
(6.16) does not depend on the samples and is thus a constant, given the species. Mutatis 
mutandis, the same holds true in (6.24). From a biplot with species and sample points turned into 
arrows by connecting the origin with each of the points, each species arrow thus points in the 
direction of maximum rate of change of the shares { y;k / y+i} and each sample arrow points in 
the direction of maximum rate of change of the shares { yjk / yk+ }• 

6.3.6 Regression coefficients and associated t-values 

The regression/canonical coefficients (Table 6.47) are the coefficients of a weighted 
multiple regression of the sample scores { Xj } from the previous section on the standardized 
environmental variables. Again, there are four columns of coefficients because the regression is 
calculated for each ordination axis separately. Let zy be the value of environmental variable j 
(j = 1,..., q) in sample i and let Zj and s, be the mean and standard deviation of variable j as given 
in section 6.2.4 (Table 6.6). The environmental variable is standardized to mean 0 and variance 
1: 

(6.26) zy = ( zy - Zj ) / Sj 

The regression/canonical coefficients are now derived from the weighted least squares fit of the 
multiple regression model 

(6.27) Xj = c0 + Ej Cj zy + 8j 

where Co is the intercept, Cj the regression coefficient of environmental variable j and 8; is the 
error term with mean 0 and variance inversely proportional to Wi (section 6.3.3). Because the 
environmental variables are centered to mean 0, the intercept Co is equal to the mean of the 
species axis, i.e. Co = 0 except when nonlinear rescaling is in force. The other coefficients are 
estimated - using matrix notation - by 

(6.28) c = (ZTWZy' ZTW x* 

where c and x are column vectors, c = (ci, C2, ... , cq) and x = (x\ , X2 , ... , xn ) , Z is an n x q 
matrix with elements zy and W is an n x n diagonal matrix with as z'th element w; . The fitted 
values of the regression are 
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(6.29) x'i = co + £j Cj Zij 

Note that the {q} in (6.29) are estimates whereas in (6.27) they represent the true values, but this 
difference is not made explicit in the notation; the error term in (6.27) says enough. The fitted 
values {x'i } are termed sample scores which are linear combinations of environmental 
variables (Table 6.49). They constitute the environmental axis (ENVI AX) of section 6.2.4 
(Table 6.5). The correlation between the species axis { Xj } and the environmental axis { x'; } is 
the multiple correlation between the species axis { Xj } and the environmental variables 
(= species-environment correlation). 

Table 6.47 Regression coefficients { Cj} of standardized environmental variables for each 
of the ordination axes. 

Regr: Regression/canonical coefficients for standardized variables 

N NAME AX1 AX2 AX3 AX4 

EIG .4612 .2981 .1601 .1337 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Al 

Moisture 

Manure 

Hayfield 

Haypastu 

Pasture 

SF 

BF 

HF 

NM 

.1243 

.6840 

-.0313 

-.2932 

-.2402 

.0000 

-.2247 

-.2788 

-.4373 

.0000 

-.2646 

-.3684 

-.1257 

-.0185 

-.2334 

.0000 

-.9869 

-.6415 

-.8888 

.0000 

.7458 

-.4711 

-.5311 

-.6231 

-.4044 

.0000 

.2333 

.1876 

.6438 

.0000 

-.5663 

-.0142 

-1.7254 

-.1678 

.2610 

.0000 

1.4094 

-.2459 

1.2964 

.0000 

In indirect gradient analyses, the sample scores { Xj } are derived from the species data 
regardless of any environmental variables. The regression is calculated after extraction of the 
species and sample scores. The coefficients { Cj} are therefore regression coefficients and have 
the well-known statistical properties of regression coefficients (see e.g. Montgomery & Peck 
1982). In contrast, the sample scores {Xj } in direct gradient analyses also depend on the 
environmental variables in the analysis. The regression is calculated within the iterative 
ordination algorithm. The coefficients {CJ} have been chosen so as to optimize the fit of the 
environmental axis {x'i} to the species data (and not just to the species axis { x; }.The 
coefficients are therefore given a different name: canonical coefficients. They do not have the 
same statistical properties as regression coefficients. In particular, canonical coefficients have 
a larger variance than regression coefficients. 

In so-called regression biplots (section 3.8), the canonical coefficients are plotted with the 
species scores. This biplot approximates the q x m table of regression coefficients {djk} of the 
data {y'ik} [i = 1, • • • , n] of each of m species with respect to q standardized environmental 
variables {zy}. See equations (3.20). This type of biplot is explained in the Unimodal models on 
pages 238-258 and discussed on pages 63, 148 and 235. For an ecological application of the 
regression biplot see Baar & Ter Braak (1996). CanoDraw for Windows can create this type of 
biplot. 

The regression/canonical coefficients can also be plotted with the sample scores {x'i}. 
When drawn as arrows, the environmental arrow points in the direction that any particular 
sample point would move if that particular environmental variable would increase in value, 
whereas the other variables keep their values (conditional effect). 
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For interpretation purposes it is sometimes of interest to obtain the regression coefficients, 
{ CjU } say, corresponding to the environmental variables in their original units of measurement, 
i.e. without the standardization in (6.26). By inserting (6.26) in (6.29) we obtain after some 
elementary algebraic manipulation 

(6.30) x'i = {c0 - Ej (zj/sj)} + Sj (Cj/Sj) z,j 

The desired coefficients are thus CjU = Cj/Sj. The value of s, is found in the table of means and 
standard deviations (section 6.2.4). De-standardization is particularly useful for classes of 
nominal variables, because the standard deviation does not have an attractive interpretation for 
class variables. 

The regression/canonical coefficients of class variables can be plotted as points. For this, the 
coefficients must first be de-standardized as just indicated and, optionally, be centered per 
nominal variable (Ter Braak & Looman 1994; Unimodal models: chapter 15). When class 
variables are plotted as points, the vector difference between two points gives the amount and 
direction that any particular sample point would move if the class membership of the sample 
would change from the one class to the other conditional on the values of the other 
environmental variables. 

Table 6.48 shows t-values of coefficients of the regression in equation (6.29). The t-value 
of a regression coefficient Cj of variable on an ordination axis is equal to Cj /se(cj), where se(cj) -
the standard error of the estimate Cj - is the square root of var (CJ) given in (6.2). In indirect 
gradient analyses, the coefficients { Cj } are normal regression coefficients, so that the t-values 
can be used in Student t-tests in the usual way (e.g. Montgomery & Peck 1982; Jongman et al., 
1987, sections 3.2.1 and 3.5.2). To test the null hypothesis that the true coefficient of a particular 
variable on an axis is equal to 0, the t-value of the variable should be compared with the critical 
value of a Student t-distribution with n-q-1 degrees of freedom (n = number of samples, 
q = number of environmental variables). A variable is shown to contribute significantly to the 
regression if its t-value in absolute value exceeds the critical value (the critical value for a t-test 
at the 5% significance level is ca. 2.1, if n-q-1 > 18). 

The Student t-test is not appropriate for tests of significance of canonical coefficients, 
because they have a larger variance. But the t-values still have an exploratory use. In particular, 
when the t-value of a variable is less than 2.1 in absolute value, then the variable does not 
contribute much to the fit of the species data in addition to the contributions of the other 
variables in the analysis. The variable then does not have an effect that is uniquely attributable to 
that particular variable (see Jongman et al. 1987, section 3.5.3) and can be deleted without much 
affecting the canonical eigenvalues. The t-values are therefore of help when one wants to select 
a subset of environmental variables that explains the species data almost equally well as the full 
set. A more direct approach to this aim is to use forward selection of environmental variables. 
The t-values are unimportant, when the only aim of the analysis is to prepare a species-
environment biplot. 

Note that a table of regression/canonical coefficients of a direct gradient analysis may 
contain both canonical coefficients and regression coefficients: even if the first columns contain 
canonical coefficients, the later columns may contain regression coefficients. How many 
columns contain canonical coefficients is indicated by the number of "Canonical axes" given in 
the heading of a table on the output file (e.g. Table 6.19). The different columns of the 
corresponding table of t-values then have different statistical properties! 

The fraction of variance that an ordination axis explains in the species-environment biplot is 
also given in the table of t-values (FR EXPLAINED). It is the same information as given 
cumulatively in the summary of the ordination (section 6.2.5) In CCA and RDA the fraction 
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explained by axis k is simply A.k/(sum of all canonical eigenvalues). See section 6.2.5 for further 
explanation. 

Table 6.48 t-Values of the regression coefficients { Cj} of Table 6.47. 

tVal: t-values of regression coefficients 

N NAME AX1 AX2 AX3 AX4 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

FR EXPLAINED .3781 

Al 

Moisture 

Manure 

Hayfield 

Haypastu 

Pasture 

SF 

BF 

HF 

NM 

1.0315 

5.5690 

-.1203 

-1.9739 

-1.7887 

.0000 

-.8198 

-1.9656 

-2.2666 

.0000 

.2444 

-1.3724 

-1.8752 

-.3019 

-.0777 

-1.0861 

.0000 

-2.2509 

-2.8275 

-2.8797 

.0000 

.1312 

3.0602 

-1.8968 

-1.0094 

-2.0745 

-1.4891 

.0000 

.4210 

.6543 

1.6503 

.0000 

.1096 

-2.7288 

-.0673 

-3.8512 

-.6563 

1.1284 

.0000 

2.9865 

-1.0070 

3.9025 

.0000 

When CANOCO detects a collinear variable (section 6.2.2), its regression coefficients and 
t-values are set to 0.000. In Table 6.47 and Table 6.48, for example, the variables Pasture and 
NM have zero regression coefficients and t-values. These variables were detected to be collinear 
with the other environmental variables in the analysis (section 6.2.2). They are each the last 
category of a nominal environmental variable. 

If there are covariables in the analysis, then the values zy in (6.27) are replaced by the 
residuals of a multivariate multiple regression of the standardized environmental variables on the 
covariables (without any further standardization). The regression in (6.27) is then a partial 
multiple regression (Kendall & Stuart 1973 sections 27.8 and 27.25; Seber 1977, Theorem 3.7 
(ii); note that there is no need to regress the species data on the covariables). In the variance of 
the partial regression coefficient Cj (6.2) and in the Student t-test, q must be replaced by q+p, 
where p is the number of covariables. When the partial regression is performed after extracting 
the ordination, we obtain an indirect analysis of a partial principal components analysis, a partial 
CA or a partial DCA; when it is incorporated within the iterative ordination algorithm, we obtain 
a direct analysis: partial RDA, partial CCA or partial DCCA. 

6.3.7 Sample scores {x ' i } that are derived from the environment 

Table 6.49 shows a table of sample scores { x';} that are derived from the environmental 
variables. These scores are the fitted values of the regression (6.27) and are thus a linear 
combination of the environmental variables as shown in equation (6.29) with { Cj } the 
regression coefficients of Table 6.47. Whereas these scores are a by-product in indirect gradient 
analyses, these scores are the eigenvector scores in direct gradient analyses. In direct gradient 
analyses, the scores are scaled as indicated in equations (6.22) and (6.23) of section 6.3.5, with 
X; = X' i . 

Samples made supplementary or samples without environmental data are missing from the 
table. 

The weighted mean square of the sample scores { x';} is always a factor R2 smaller than the 
mean square of the sample scores { x; } where R is the species-environment correlation of the 
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corresponding axis (this follows from the regression in (6.27)). This rule is reflected in the 
standard deviations given for ENVI AX's and SPEC AX's in Table 6.6. 

The column "WEIGHT" in Table 6.49 is the same as in Table 6.46. The column "%FIT" is 
an ordination diagnostic and is discussed in section 6.3.11.2 . 

Table 6.49 Sample scores { x'i} that are derived from the environmental variables. 
SamE: Sample scores which are linear combinations of environmental variables 

N 

1 

2 

— 16 

17 

28 

29 

30 

NAME 

EIG 

Sample 1 

Sample 2 

not shown 

Sample 17 

Sample 18 

Sample 19 

Sample20 

AX1 

.4612 

-.8862 

-1.0430 

.0404 

-.3146 

1.2056 

1.1923 

AX2 

.2981 

-.4334 

.1049 

2.1449 

2.2724 

1.5490 

1.5775 

AX3 

.1601 

-1.2765 

-.2283 

-.5150 

-.0025 

-1.4515 

-1.5317 

AX4 

.1337 

-.2324 

-1.6488 

.4919 

.3176 

.5585 

.6193 

WEIGHT 

18.00 

42.00 

15.00 

27.00 

31.00 

31.00 

% FIT 

29.38 

62.37 

35.84 

24.73 

53.83 

39.33 

6.3.8 Inter-set correlations of environmental variables with axes 

The inter-set correlations of environmental variables with the axes (Table 6.50) are the 
correlation coefficients between the environmental variables and the species-derived sample 
scores { x; }. The same correlations can also be found in the full correlation matrix in the log-
window (section 6.2.4). If there are covariables in the analysis, the correlations given are partial 
correlations. The correlations are given for all variables, including all categories of nominal 
variables. Beware that correlation coefficients for class variables convey little information. 

In indirect gradient analyses the species axes do not depend on the environmental variables. 
The inter-set correlation for a particular variable is then not dependent on which other 
environmental variables are included in the analysis. But in direct gradient analyses, the species 
axes may depend on the environmental variables included and therefore the inter-set correlations 
may also change. 

In contrast to regression/canonical coefficients, the inter-set correlations do not become 
unstable when the environmental variables are strongly correlated with each other, i.e. when the 
VIF's of section 6.2.4 are large. See also pages 63-64 of Unimodal models. 

Table 6.50 also shows the fraction of the total variance in the standardized environmental 
data that is extracted by each species axis (FR EXTRACTED). The fraction extracted is equal 
to the mean squared inter-set correlation, Ej r / /q, where rj is the inter-set correlation of 
environmental variable j (cf. Gittins 1985: section 3.2.2) 
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Table 6.50 Inter-set correlation of environmental variables with the ordination axes. 

CorE: Inter set correlations of environmental variables with axes 

N NAME AX1 AX2 AX3 AX4 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

FR EXTRACTED 

Al 

Moisture 

Manure 

Hayfield 

Haypastu 

Pasture 

SF 

BF 

HF 

NM 

.1823 

.5392 

.8833 

-.2962 

-.0724 

-.1647 

.2677 

.1421 

-.3491 

-.3459 

.5464 

.1943 

-.1562 

-.1535 

-.6895 

.5453 

-.4992 

-.0281 

-.6273 

.1578 

-.1047 

.6656 

.0762 

.5042 

-.1199 

-.1687 

-.2158 

-.1129 

.3660 

-.3601 

-.0255 

.3758 

.0007 

.0655 

-.0972 

.1507 

-.1603 

.2508 

-.0768 

-.1875 

-.0768 

-.5195 

.4643 

.0379 

6.3.9 Biplot scores of environmental variables 

The biplot scores of environmental variables (Table 6.51) are primarily meant to be plotted 
together with the species scores. This so-called species-environment biplot serves to give, in 
linear methods, a display of approximate values of correlations (or covariances) between species 
and environmental variables and, in unimodal methods, of weighted averages of species with 
respect to environmental variables. The biplot scores of environmental variables are optimized 
to this aim: in principle, they can be obtained by a weighted regression of these 
covariances/weighted averages on the species scores (see Table 6.29 and Table 6.38 and section 
17.1). This regression is actually calculated in CANOCO when detrending-by-segments or 
nonlinear rescaling of axes or a ranking method (a nonstandard analysis) is in force. But for 
other methods there is a short-cut (Jongman et al. 1987: section 5.5): the regression gives biplot 
scores that are a simple function of the intra-set correlations (section 6.2.4), the standard 
deviations of the ordination axes (the ENVI AX's of section 6.2.4) and the eigenvalues, namely 

(6.31) Cj* = (intra-set correlation) x (standard deviation of environmental axis) 

In direct methods using scaling 2, the standard deviation of the environmental axis is equal to 1, 
so that the biplot score of an environmental variable is precisely its intra-set correlation. 
CANOCO uses a slightly different shortcut: as shown in section 17.1, the regression gives biplot 
scores that are a simple function of the inter-set correlations (section 6.3.8), the standard 
deviations of the species axes (the SPEC AX's of section 6.2.4) and the eigenvalues, namely 

(6.32) Cj* = (inter-set correlation) x (standard deviation of species axis) 

In indirect methods using scaling 2, the standard deviation of the species axis is equal to 1, so 
that the biplot score of an environmental variable is precisely its inter-set correlation in this case. 
CANOCO uses shortcut (6.32), because it carries through for supplementary environmental 
variables whereas (6.31) does not. 

For unimodal methods in Hill's scaling, (6.31) and (6.32) must be multiplied by 1-Xk with 
Ik the eigenvalue of axis k. 

In the species-environment biplot, quantitative environmental variables are often 
represented by arrows. The biplot scores of environmental variables (Table 6.51) give the 
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coordinates of the heads of the arrows, the coordinates of the species being given in section 
6.3.4. Classes of nominal environmental variables are often better displayed by centroid points 
as described in the next section. 

The biplot scores can also usefully be plotted together with the sample scores { xj } or 
{x'i }. Consider the simple regression of the samples scores { Xj } on the y'th standardized 
environmental variable, 

(6.33) xi = Co + Cj zij + e; 

with Co the intercept, Cj the simple regression coefficient of environmental variable j and e; the 
error term. Then, Cj is equal to the biplot score given by (6.32). If the dependent variable in 
(6.33), Xj , is replaced by x'i, the regression coefficient is equal to (6.31), and is thus also equal 
to the biplot score (except for supplementary variables in a direct gradient analysis; see Table 
6.53 on page 173). This property of the biplot scores was noted in Appendix B of Ter Braak 
(1994). When drawn as arrows, the environmental arrow points in the direction that any 
particular sample point would move if that particular environmental variable would increase in 
value, ignoring the other environmental variables (which is fine under the assumption that the 
other variables covary with that one environmental variable in the particular way they do in the 
data set). 

Because the sample scores { Xj } are a low-dimensional representation of the species data, 
a related interpretation is that the biplot scores of environmental variables display the marginal 
effect of each variable on the species, as displayed in the ordination diagram, whereas the 
regression/canonical coefficients give the conditional effects. This interpretation holds per axis 
in scaling 2 and for all axes simultaneously in scaling 1, as discussed in Appendix B of 
Ter Braak (1994). These interpretations also hold true for supplementary environmental 
variables. 

In scaling +/- 2 in linear methods and scaling 2 in unimodal methods (focus on species-
relations with biplot scaling), the plot of the environmental biplot scores and the sample scores 
has an extra bonus: the plot displays the approximate values of the environmental data. The 
bonus comes about because the biplot scores of the y'th environmental variable happen to be 
equal to the regression coefficients of the regression of the standardized data ofthat one variable 
on the ordination axes, at least if the sample scores have unit variance. This is the case for the 
scores { Xi } in indirect analyzes and the scores { x'i} in direct analyses; these scores are the 
ones that CanoDraw would plot by default. In these cases, the arrows based on the 
environmental biplot scores also display the approximate values of the correlations among 
environmental variables. The length of each arrow is equal to the multiple correlation of the 
variable with the displayed ordination axes. See Ter Braak (1994: Table I) and Ter Braak & 
Verdonschot (1995: Table 2). Strictly speaking, these interpretations do not hold true for 
supplementary environmental variables in a direct gradient analysis. For these interpretations the 
optimal score to plot is the intra-set correlation given in the log-window, which is not equal to 
the biplot score of a supplementary variable in this case. 

Table 6.51 also shows the species-environment correlations, R(SPEC,ENV). A value of 
0.00, would indicate that the correlation could not be calculated by CANOCO. 

If there are covariables in the analysis, (6.31) is multiplied by the residual standard 
deviation of the regression of each standardized environmental variable on the covariables 
(= the square root of the diagonal element of the partial covariance matrix displayed at the 
screen in the console version of CANOCO). In this way, the arrow of an environmental variable 
becomes shorter, the higher the correlation between this environmental variable and the 
covariables, (i.e., the more the variation in the environmental variable is already explained by 
the covariables). The arrow is unaffected when the environmental variable is not correlated to 
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the covariables, i.e. when it contributes entirely new information about the environment. With 
covariables in the analysis the species-environment biplot approximates in linear methods 
partial covariances and, in weighted averaging methods, weighted averages with respect to 
residuals of environmental variables (i.e. the environmental variables after eliminating 
covariable-effects). See section 17.1. 

Environmental variables with long arrows are the most important in the analysis. The larger 
the arrow, the more confident one can be about the inferred covariances (correlations) or 
weighted averages, and, roughly speaking, the larger the effect of the variable on the species. 
The interpretation of the length of arrows based on the environmental biplot scores is discussed 
in more detail on pages 152 and 169-170 of Unimodal Models. 

The rules for constructing and interpreting species-environment biplots are the same as 
those given in Jongman et al. (1987, section 5.3.4) for PCA biplots. Because the scores for 
species and for environmental variables are often of a different order of magnitude, the biplot is 
constructed most easily by drawing separate plots of species and of environmental variables on 
transparent paper, each one with its own scaling. But note that within each plot the scale units of 
the axes must have equal physical length. The biplot is obtained by superimposing the plots with 
the axes aligned and the origins of the coordinate systems coinciding. However, there is an 
exception to the rule that the origins must coincide: when the mean of a species axis is nonzero, 
then the origin of the "environmental plot" must coincide with the point in the "species plot" 
whose coordinates are equal to the means of the species axes (SPEC AXk) given in section 
6.2.4. This exception happens in linear methods when the species data are not centered by 
species, and in unimodal methods when nonlinear rescaling of axes is in force. In both cases 
there is an extra line below the species and sample scores, starting with the word "CENTROID" 
which specifies the means of the species axes. Note that in the linear case this centroid is not 
necessarily equal to the mean of the species scores. If one does not want to draw separate plots, 
the head of an environmental arrow can be added to the plot of the species at the point whose 
coordinates are obtained by the formula 

(y X biplot-score-of-environmental-variable)+(mean-of-species-axis) 

where y is a constant to be chosen by the user such that all heads of arrows fit in the species 
diagram. 
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Table 6.51 Biplot scores {Cj*} of environmental variables. 

BipE: Biplot scores of environmental variables 

N NAME AX1 AX2 AX3 AX4 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

R(SPEC.ENV) 

AI 

Moisture 

Manure 

Hayfield 

Haypastu 

Pasture 

SF 

BF 

HF 

NM 

.9580 

.5629 

.9221 

-.3092 

-.0756 

-.1719 

.2795 

.1484 

-.3645 

-.3611 

.5704 

.9018 

-.1732 

-.1702 

-.7646 

.6046 

-.5535 

-.0312 

-.6956 

.1750 

-.1161 

.7381 

.8554 

.5894 

-.1402 

-.1972 

-.2523 

-.1320 

.4279 

-.4210 

-.0298 

.4394 

.0008 

.8888 

-.1094 

.1696 

-.1803 

.2821 

-.0864 

-.2110 

-.0864 

-.5845 

.5224 

.0426 

6.3.10 Centroids of environmental variables in the ordination diagram 

Nominal environmental variables can naturally be represented by points in the ordination 
diagram (Ter Braak 1986, Ter Braak 1994, Ter Braak & Verdonschot 1995). Each class of 
a nominal variable gives one point which is located at the centroid of the sample scores 
belonging to the class. CANOCO calculates the centroids from the species axes, i.e. from the 
sample scores { Xj } using the formula 

(6.34) Cj+ = Si Wj Zij Xj'/Si Wj Zij 

where zy is the value of environmental variable j in sample i before any standardization (section 
6.3.6, equation (6.26)). Interestingly, the centroids of the sample scores { x';} coincide with the 
centroids of { x; } obtained in (6.34), except for supplementary variables. 

As the environmental biplot scores, the centroids are primarily meant to be plotted together 
with the species scores in a species-environment biplot. For nominal variables, the plot serves to 
give, in linear methods, a display of approximate mean values of species in classes and, in 
unimodal methods, of relative class totals. The centroid scores are optimized to this aim: in 
principle they can be obtained by a weighted regression of these means and totals on the species 
scores (Table 6.30 and Table 6.39). The resulting scores are simply the centroids given by 
(6.34), except with Hill's scaling and when nonlinear rescaling of axes is in force. See section 
17.2 for details. 

In contrast to the environmental biplot scores, the centroids must be plotted in the ordination 
diagram in the same scale as the sample scores (e.g. Figure 8-2). The reason is that a class of 
nominal variables acts as a new super sample (see also section 13.2). All rules for interpreting 
plots of species and samples, thus also apply to plots of species and centroids. Representing 
environmental variables by points is not only useful for classes (dummy variables with zy = 0 or 
1) but sometimes also for non-negative quantitative variables that can be absent, i.e. where the 
value 0 has a special meaning. 

As the environmental biplot scores, the centroids can also usefully be plotted together with 
the sample scores { x; } or { x'; }. Consider the multiple regression of the samples scores { Xj } 
on all dummy variables (zy) defining a nominal environmental variable with K classes 
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(6.35) x, = EjCj Zij + 8j 

with Cj+ the regression coefficient of class j (j = 1, ..., K) and e; the error term. This multiple 
regression, without intercept, is equivalent to an analysis of variance. Then, Cj+ is equal to the 
centroid score given by (6.34). If the dependent variable in (6.35), Xj , is replaced by x'i, the 
resulting regression coefficient is the same (except for supplementary variables in a direct 
gradient analysis). These properties of the biplot scores were noted in Appendix B of Ter Braak 
(1994). When plotted as points, the vector difference between two class points gives the amount 
and direction that any particular sample point would move if the class membership of the sample 
would change from the one class to the other, ignoring the other environmental variables (which 
is fine under the assumption that the other variables covary with that one nominal environmental 
variable in the particular way they do in the data set). By contrast, the scores for classes based on 
the canonical coefficients (page 163) follow from the multiple regression equation (6.27). So, 
when the de-standardized canonical coefficients for class variables are plotted as points, the 
vector difference between two points gives the amount and direction that any particular sample 
point would move if the class membership of the sample would change from the one class to the 
other class for fixed values of the other environmental variables (Ter Braak & Looman 1994; 
Unimodal Models: chapter 15). 

Because the sample scores { x; } are a low-dimensional representation of the species data, 
a related interpretation is that the centroids for environmental classes of a nominal variable 
display the marginal effect of the variable on the species, as displayed in the ordination diagram, 
whereas the regression/canonical coefficients give the conditional effect. This interpretation 
holds per axis in scaling 2 and for all axes simultaneously in scaling 1, as discussed in Appendix 
B of Ter Braak (1994). These interpretations also hold true for supplementary environmental 
variables. 

Table 6.52 Centroids {Cj+} of environmental variables in the ordination diagram. 

CenE: Centroids of environmental variables (mean.gt.0) in ordination diagram 

N NAME AX1 AX2 AX3 AX4 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

R(SPEC,ENV) 

Al 

Moisture 

Manure 

Hayfield 

Haypastu 

Pasture 

SF 

BF 

HF 

NM 

.9580 

.2236 

.5698 

-.2215 

-.1057 

-.2043 

.4884 

.2278 

-.8030 

-.5375 

1.0726 

.9018 

-.0688 

-.1051 

-.5478 

.8448 

-.6577 

-.0545 

-1.0681 

.3856 

-.1728 

1.3880 

.8554 

.2342 

-.0866 

-.1413 

-.3526 

-.1569 

.7477 

-.6464 

-.0656 

.6541 

.0015 

.8888 

-.0434 

.1048 

-.1292 

.3942 

-.1027 

-.3686 

-.1327 

-1.2879 

.7777 

.0801 

Centroid scores and biplot scores for supplementary environmental variables may look 
strange in a direct ordination diagram as explained Table 6.53. 
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Table 6.53 Centroid scores for supplementary environmental variables. 

Centroid scores for supplementary environmental variables may look strange in a din 
ordination diagram, because centroids based on the scores { x; } differ from those based ^.-
{ x'i }. To illustrate this, let variable Cj indicate a class that consist of sample 1 only, i.e. C'i 
is 1 for sample 1 and 0 for the other samples. If this variable is taken as a supplementary 
environment variable in a direct gradient analysis, then Ci does not coincide with the point 
plotted for sample 1. This point is based on x'i, whereas Ci coincides with xi , which is not 
plotted in a default direct gradient analysis. The reason for this counterintuitive phenomenon 
is that the primary aim of the centroid scores is to display the means or relative totals of the 
species in the class. In this extreme case, the means or relative totals are {y;k } and 
{yik/y+k } [ k = 1, ... , m], which are best approximated, for given species scores, by the 
sample scores xi as follows from the regressions resulting in (6.19) and (6.25). The primary 
aim is thus best served if the centroid point for Ci is xi (and not x'i , as would be more 
intuitive). The regression in (6.35) with Ci and C/i as regressors (with C/i = 1 - Ci) yields ci 
= xi , as expected by now. To extend the example to environmental biplot scores, let us treat 
Ci as a quantitative variable. Its environmental biplot score, which best approximates the 
correlations of the species with Ci, in linear methods, and weighted averages of the species 
with respect to Ci, in unimodal methods, would not point in the direction of x'i but in the 
direction of xi (Ter Braak 1994: Appendix A). An identical result would be obtained from 
the regression in (6.33) with Ci as single regressor. 

CANOCO calculates the centroids defined by (6.34) for all environmental variables whose 
mean is positive. The value assigned to the other environmental variables is the mean of the 
sample scores (usually 0 unless the species data are not centered or nonlinear rescaling of axes is 
in force). For variables whose mean is positive but which have some negative values, (6.34) is 
nonsensical but is still given by CANOCO. 

Why nominal variables are naturally represented by points can also be seen from the case 
that there is a single nominal environmental variable, i.e. when there is a single pre-defined 
classification of samples. CCA with a series of dummy variables reflecting this classification 
provides an ordination to show maximum separation among the pre-defined groups of samples. 
This analysis is mathematically equivalent with Feoli and Orlóci's (1979) "analysis of 
concentration" and also with a simple CA of a two-way table of species-by-groups, the cells of 
which contain the total abundance of each of the species in each of the groups of samples 
(Greenacre 1984, section 7.1). In the CA ordination diagram the groups would be represented by 
points as they take the place of the samples. Similarly, RDA with a series of dummy variables is 
a variant of canonical variâtes analysis/multiple discriminant analysis, in which the groups are 
always represented by group means, i.e., by centroids (6.34). 

The environmental centroids also have an attractive interpretation when there are 
covariables in the analysis, namely in terms of adjusted means and adjusted totals (means and 
totals from which the effects of the covariables have been removed by regression). See section 
17.2. 
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6.3.11 Ordination diagnostics 

6.3.11.1 Introduction 

Usually, an ordination diagram is not an exact representation of the data. Overall measures of 
the quality of the approximation are given in the "Summary of the ordination'" in terms of 
percentages of variance accounted for. But not all species or all samples are equally well 
represented in the data. CANOCO has ordination diagnostics to find out which species and which 
samples are ill-represented and which are well represented. There are three types of statistics: 
measures of fit for species, residual distances for samples, tolerances for species ("niche widths") 
and heterogeneity for samples. Tolerance and sample heterogeneity are not defined in PCA/RDA. 
The fit measures and residual distances are not available in DCA (segments). 

Ordination diagnostics are also of interest to see whether supplementary samples (e.g. historic 
or fossil samples) fit into the structure found for the active samples (e.g. modern samples). 

6.3.11.2 Fit for species and residual distances for samples 

Table 6.54 shows an example table of species fits in a CCA. The fit is shown cumulatively 
and expressed as a fraction of the variance of a species. For example, from Table 6.54 we 
deduce that the fit of "Ach mil" in a CCA ordination diagram of the first two axes is 39%. The 
variance of species k is defined as 

(6.36) var(yk) = Ej wi ( y'ik - Uk f I £i w; 

whereby Wj and y'ik are defined in section 6.3.4 and Uk is 0 in linear methods, and 1 in unimodal 
methods (uk being the weighted mean value of species k after data transformation and/or, in 
linear methods, centering or standardization by species and samples). In unimodal methods, the 
column headed VAR(y) contains values obtained from (6.36) but in linear methods the values are 
rescaled so that their mean is 1. 

The reported fit statistics for species k and axis s are the regression sums of squares of the 
weighted regression of the data {y'ik} [ i =1, ••• n] for species k on the ordination axes 
numbered 1, ... , s, when expressed as a fraction of the total sum of squares for the species. The 
sample weights used in the regression are { w,} and the samples scores used for each axis are 
the eigenvector sample scores (page 156). The fit is discussed in more detail below. 

In unimodal methods, it is not immediately clear what (6.36) means in term of the original 
abundance values y-±. We first express (6.36) as a chi-square statistic and then relate it to the 
regression of the data of the Mi species on the sample scores. Chi-square statistics are of the 
form (observed - expected)2/expected. The expected value under independence in a two-way 
contingency table is eik=yi+y+k/y++ and observed values are y;k . In this notation y'ik in (6.16) is 
yik / eik. On using this and assuming for the moment that there are no user-defined weights (all 
Wk = 1} , we obtain from (6.36), with Ej Wj = y++, 
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(6.37) var(yk) = S; (y1+/y++){ (yik/yi+)/(y+k/y++) - 1 }2 

2 = Si (yi+/y++)( y ik/ eik - 1) 

= Si (yi+/y++) { ( yik - e;k ) / eik }
2 

= Si (yi+/y++) ( yik - eik f /eik
2 

= y+k"1 S; (yik - eik)
2/eik 

so that the variance of species k is the chi-square statistic divided by y+k • Note that 

(6.38) total inertia = chi-square / y++= Sk (y+k/y++) var(yk) 

As an aside, equation (6.37) can also be written as (Greenacre, 1984, eq 2.4.2) 

(6.39) var(yk) = S ; (y++/yi+)( yik/y+k - yi+/y++ f 

The curious aspect of this equation is that samples seem to have weights proportional to l/y;+ 
instead of to y;+, as in the remaining of this manual. 

In the regression of the data of species k on the sample scores (section 6.3.4) the essential 
part of the data is yik/yi+, because yk+/ y++ is constant in that regression. Therefore we wish to 
express the variance of species k in terms of { yik/yi+}, the share of the abundance that the 
species has in each of the samples. On expanding y'jk and w; in (6.36) we obtain 

(6.40) var(yk) = S; w;* yi+{ ( yik/yi+) / (y+k/y++) - 1 }2 / S; Wi 

= (y+k/y++)"2 Si Wi* y;+(yik/yi+-y+k/y++)2/SiWi 

= (yVy++)"2 SiWi(yik/yi+-y+k/y++)2/SiWi 

When yik is compared with yi+ (instead of with y+k as in (6.39)), the implied sample weights are 
the usual ones, { w;} or, equivalently, { Wi y;+}. 

We now give explicit formulae for the fitted values of the regressions. Let Xjs denote the 
eigenvector sample score of sample i on axis s, and bks (or Uks) the species scores of species k on 
axis s. Because of (6.17) we do not need to distinguish between UkS and bkS here. In linear 
methods, the fitted values of the regression of { yik} on the ordinations axes are 

(6.41) & = bki Xu + bk2 xi2 + ... 

with as many product terms as there are axes in the regression. In unimodal methods, the fitted 
abundance values, fk, are 
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(6.42) & / yi+ = (y+k/y++) ( 1 + bki xn + bu xi2 + ... ) 

The variance of the fitted values is 

(6.43) var(f k) = I , Wi ( f ik - uk f 11; Wi 

with fik = fik in linear methods and f -± = (fk / yi+)/(yk+ / y++) in unimodal methods. Equivalently, 
for unimodal methods, flk from (6.42) can be inserted for yjk in (6.40). 

The fraction of the variance of a species fitted is var(f k)/var(yk). The fit by axis 1 is given 
under the heading AX1. In CA, this fraction is sometimes termed the contribution of dimensions to 
the inertia of the species, or the relative contribution; Greenacre, 1984, p.70). The fit by axes 1 and 
2 is given under the heading AX2, etc. The percentage fit by all q environmental variables together 
(i.e. by q canonical axes) is given in the last column, headed % EXPL. 

With covariables in the analysis, VAR(y) is unchanged. All fractions are therefore with 
respect to the original variance, rather than with respect to the residual variance. The fit due to 
the current environmental variables is shown under the heading %EXPL. This fit is additional to 
the fit by the covariables. 

Species influence the ordination more the larger their variance and the larger their weight. 
In PCA/RDA, the weights are usually equal and it is sufficient to look at the species variance. 
Species with extreme variance may have an unduly large influence. A remedy is to transform the 
species data by, for example a log or square-root transformation. If that does not help enough, 
consider given a species less weight in the Data Editing Options. In CA/CCA, species with 
a large value for weight x variance may have a large influence. 

Table 6.54 Cumulative fit per species as fraction of variance of species. 
CFit: Cumulative fit per species as fraction of variance of species 

N 

1 

2 

3 

4 — 29 

30 

31 

32 

33 

NAME 

FR FITTED 

Ach mil 

Agr sto 

Air pra 

not shown 

Cal eus 

Hip rha 

Poa ami 

Ran acr 

AX1 

.2180 

.3252 

.5065 

.0383 

.3698 

.0014 

.1431 

.0571 

AX2 

.1409 

.3923 

.7199 

.2624 

.3972 

.2770 

.1477 

.0573 

AX3 

.0757 

.3926 

.7311 

.3437 

.4173 

.2986 

.3249 

.5241 

AX4 

.0632 

.4441 

.7365 

.3635 

.4259 

.3862 

.4366 

.7523 

VAR(y) 

2.17 

1.17 

14.26 

7.42 

7.74 

1.25 

2.18 

% EXPL 

49.35 

78.20 

37.32 

48.64 

43.61 

57.01 

82.77 

Table 6.55 shows an example of the diagnostics given for samples. The entries are derived 
from the squared Pythagorean distance between the data for the z'th sample point and its fit by 
the ordination axes, {y'ik}, and {f ;k} [ k= 1, ... m], respectively, i.e. from 

(6.44) SQDIST = £k wk (y'ik - f ik)
2 / Sk wk 

Before any ordination axes are fitted, the squared distance is calculated using f j k = 0 in linear 
methods and 1 in unimodal methods and is given under "SQLEN". After fitting s axes, the 
squared distance between the sample point and its s-dimensional fit in the ordination space is given 
under the heading AXs (s=l,...,4). The percentage fit (% FIT) is (within rounding error) equal to 
100 * (1 - entry AX4/SQLEN). 
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In linear methods, the values of SQLEN are proportional to the ones calculated from the raw 
data, because the total mean square of the species data is set to 1 in CANOCO. 

In unimodal methods (CA/CCA), SQLEN is the squared chi-square distance between the 
sample point and the centroid in m-dimensional species space (Greenacre, 1984, p. 35) divided 
by its total abundance. The formula and its equivalent forms are the same as given for species in 
(6.37), (6.39) and (6.40), but with the indices k and i interchanged, i.e. 

(6.45) d(yO Yi+" 2 k (yik - eik) /e ik 

£k (y++/y+k)( yik/yi+ - y+k/y++ ) 

(y;+/y++)"2 £k wk ( yik/y+k - yi+/y++ f I Sk wk 

After fitting s axes, the squared distance between the sample point and the s-dimensional 
ordination space is 

(6.46) SQDIST(yi) = (yiVy^)"2 2k wk ( yik/y+k - fik/y+k )
2 / Ek wk 

with fik from (6.42). 
The percentage fit for samples (% FIT) can take negative values in constrained analyses. Then, 

the residual length is larger than the length, i.e. the sample point is farther from the ordination plane 
than from the centroid of the data. This can happen when there is a strong species-environment 
relation, but an odd sample links an almost 'average' species composition to marked extreme 
environmental values. 

Table 6.55 illustrates a subtle point about the calculation of the diagnostics for 
supplementary samples in direct gradient analyses. The samples Sample 17 and Duplicl7 have 
identical species compositions, but the entries differ, except for SQLEN. The reason is that for 
the Sample 17 the scores x'; are used in the calculations, whereas for Duplicl7 the species-
derived scores x; are used, being the only available scores for this sample, because it does not 
have environmental data. 

CANOCO does not calculate the squared residual lengths if there are covariables in the 
analysis. 

Table 6.55 Squared residual length per sample. 

SqRL: Squared residual length per sample with s axes (s=1...4) 

N NAME AX1 AX2 AX3 AX4 SQLENG % FIT 

FR FITTED .2180 .1409 .0757 .0632 

1 

2 

— 16 

17 

28 

29 

30 

20 

21 

Sample 1 

Sample 2 

not shown 

Sample 17 

Sample 18 

Sample 19 

Sample20 

SupplSAM 

Duplicl7 

2.4239 

.8389 

6.6419 

2.0199 

5.7337 

2.2773 

11.1796 

6.5571 

2.3515 

.8579 

4.4713 

1.5342 

3.7957 

2.0759 

11.1795 

4.2701 

2.2302 

.8270 

4.3381 

1.5341 

2.8949 

2.3222 

11.1658 

4.0884 

2.1596 

.4398 

4.2515 

1.5538 

2.6791 

2.3192 

11.0740 

3.9790 

3.06 

1.17 

6.63 

2.06 

5.80 

3.82 

12.11 

6.63 

29.38 

62.37 

35.84 

24.73 

53.83 

39.33 

8.57 

39.95 
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6.3.11.3 Species tolerance and sample heterogeneity 

The unimodal methods, CA/CCA/DCA, are based on the assumption that the species 
"distribution" (the response function) is unimodal. That is at least one way of looking at 
CA/CCA/DCA, another being the weighted linear regression approach using relative 
abundances in the previous subsection. The species distribution approach is important in many 
ecological applications. In the unimodal methods, the species score is (proportional to) the 
weighted mean of the sample scores, and thereby indicates the center of the distribution of that 
particular species. The width of the distribution can, similarly, be quantified by the standard 
deviation (Chessel et al, 1982), or as I prefer to term it, the tolerance (Ter Braak & Barendregt, 
1986; Ter Braak & Looman, 1986; Ter Braak & Van Dam, 1989). The tolerance is a measure of 
niche width. Green (1971) proposed this niche measure in his variant of discriminant analysis. 
His analysis is equivalent with CCA applied to presence-absence data (Chessel et al, 1987; 
Lebreton et al, 1988). Green (1971) is thus a precursor to CCA as was first noted in Ter Braak 
& Verdonschot (1995). After Green's paper appeared, a series of papers in Ecology discussed 
niche measures in canonical space (Dueser & Shugart, 1978; Dueser & Shugart, 1979; Carnes 
& Slade, 1982; Van Home & Ford, 1982; Dueser & Shugart, 1982). CANOCO follows the 
round up by Carnes & Slade (1982) in providing standard deviations of scores per axes (see 
Green, 1971, Fig.2) and the root mean square standard deviation across the 4 axes (RMSTOL) 
as a summary niche breadth. The population standard deviation is used (divisor n instead of n-1). 
An example for the CCA is given in Table 6.56. 

Table 6.56 Species tolerances. 

Tol : Species tolerance (root mean squared deviation for species) 

N NAME AX1 AX2 AX3 AX4 RMSTOL N2 

1 

2 

3 

4 — 29 

30 

31 

32 

33 

FR FITTED 

Ach mil 

Agr sto 

Air pra 

not shown 

Cal eus 

Hip rha 

Poa arm 

Ran acr 

.2180 

.3702 

.8635 

.5708 

.4499 

.6388 

.5064 

1.1855 

.1409 

.7193 

.9474 

.2919 

1.0854 

1.0312 

1.0954 

.3282 

.0757 

.8210 

1.1364 

.4588 

1.5275 

.6063 

.6476 

.7141 

.0632 

1.0546 

.8557 

.0326 

.5928 

.7442 

.8654 

1.0569 

78.11 

95.75 

39.45 

100.81 

77.34 

81.00 

88.60 

6.10 

9.14 

1.92 

2.94 

2.67 

8.83 

5.26 

The species tolerance is calculated as 

(6.47) tk = { Zi Wj* yik (x; - uk f I Zj Wi* yik } m 

with x; and uk as used throughout the manual. Thus, uk is not the weighted average of the sample 
scores {x ;} , if the scaling of the ordination axes focuses on inter-sample distances or if the 
scaling is symmetric (scaling +- 1 or 3). The tolerance gives a good impression of the range of 
the x-values over which a species occurs, but underestimates the true tolerance or true 
niche-breadth, if the scaling is +- 2. An extreme case is that tk = 0, if a species occurs only once. 
For a fair statistical comparison of niche breadth, the bias must be removed. This can be 
achieved (as in Hill, 1979: p. 28) by dividing tk by the (1 - 1/N2)

1/2 in scaling +- 2 (Ter Braak 
& Verdonschot, 1995). N2 is given in the last column of Table 6.56; it is the effective number of 
occurrences defined in (6.8) and explained on page 157 of this manual. This adjustment is 
performed by CanoDraw for Windows, when it imports a new Canoco project. 
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For samples, one can calculate the same measure of spread as for species. The sample 
heterogeneity (Table 6.57) is defined analogously to (6.47) by 

(6.48) h; = { I k wk* yik (xj - uk f I Sk wk* ylk } m 

The remarks on the bias of tk also apply to hj, but now the bias occurs when the species-derived 
samples scores are weighted averages of species scores (scaling +-1: focus on inter-sample 
distances). For example, if the sample contains just one species, then h; = 0, at least in an 
indirect method. In a direct method, hj is not necessarily 0 in this extreme case, because the 
sample scores used are the eigenvector sample scores, which are derived from the environmental 
data in direct methods. 

The root mean square heterogeneity across the 4 axes is given under the heading "RMSTOL" 
in Table 6.57. RMSTOL is a summary of the heterogeneity of the sample in the four-dimensional 
ordination space. 

Table 6.57 Sample heterogeneity. 

Het : Sample heterogeneity (root mean squared deviation for samples) 

N NAME AX1 AX2 AX3 AX4 RMSTOL N2 

1 

2 

3 — 16 

17 

28 

29 

30 

20 

21 

FR FITTED 

Sample 1 

Sample 2 

not shown 

Sample 17 

Samplel8 

Sample 19 

Sample20 

SupplSAM 

Duplicl7 

.2180 

.3524 

.7291 

.6037 

.5033 

1.0005 

.5791 

.7799 

.6000 

.1409 

.3640 

.4110 

1.4241 

1.8997 

1.0026 

1.4583 

.1527 

2.0170 

.0757 

1.1338 

.2346 

.5983 

.4394 

1.1575 

1.5726 

.4978 

1.0198 

.0632 

.1370 

1.4485 

.4498 

.4671 

.3963 

.6505 

.9781 

.8238 

62.47 

84.46 

85.92 

103.36 

93.58 

115.74 

67.75 

123.96 

3.77 

9.09 

6.08 

7.22 

7.94 

7.57 

2.88 

6.08 

As in the previous subsection, one should be aware that the sample heterogeneity is calculated 
from the eigenvector sample scores { x;} for active samples, whereas for supplementary samples, 
the species-derived scores { x; } are used. If an active and supplementary sample have the same 
species composition (as Sample 17 and Duplic7 in the Dune Meadow data), then their diagnostics 
may differ in a direct gradient analysis (Table 6.57). With covariables in the analysis, an additional 
difference may occur: the diagnostic depends on whether or not values for covariables were entered 
for the supplementary sample, because, if covariable data are available for the supplementary data, 
then these are used to adjust the species-derived sample score (page 160). 

6.3.12 t-Value biplot 

The t-value biplot best approximates the t-values of the regression coefficients { djk }[j = 1, 
... , q; k = 1, ... , m] of the weighted multiple regression of the data { y'jk} [i = 1, ... , n] of each 
of the species [k = 1, ... , m] on to the data of all environmental variables { zy }[i = 1, ... , n; j = 
1, ... , q]. The regression model for the Mi species is 
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(6.49) y'ik = ak + Ij djk zy + eik 

and is fitted using sample weights { w; }. From a t-value biplot we can infer which species react 
significantly to any particular environmental variable and, vice versa, which environmental 
variables contribute significantly to the regression of any particular species (Ter Braak 
& Looman 1994). 

To put the t-ratio biplot into context, recall that direct gradient analysis is a form of 
(weighted) multivariate multiple regression of the species on to the environmental variables 
(section 3.8). To the principal results of a regression analysis belong regression coefficients and 
associated t-values (Jongman et al. 1987: chapter 3). In section 6.3.6 we considered the 
regression of the species-derived sample scores { xj } [i = 1, ... , n] on to the q environmental 
variables. This resulted, for each ordination axis, in q canonical weights and q associated 
t-values, which were collected for all four ordination axes in q x 4 tables such as Table 6.47 and 
Table 6.48). In this section we consider the multiple regression of the values of each species 
separately on the values of environmental variables. In total, there are m such regressions. The 
regression coefficients and their associated t-values can be collected in two q x m tables of 
environment x species. Both tables can be biplotted, either separately or jointly, in so-called 
regression biplots (Ter Braak, 1990, Ter Braak & Looman 1994) . The table of regression 
coefficients is represented by a biplot of the canonical weights (Table 6.47) and the species 
scores (e.g. Table 6.43). The environment x species table of t-values is represented by a biplot of 
the coordinates of species and of environmental variables (Table 6.58 and Table 6.59). 

For a correct interpretation of the t-value biplot, the coordinates for species and environmental 
variables must be plotted on the same scale. The points for the species in the t-value biplot 
indicate the critical t-value 2. The plot can be interpreted as follows. If the environmental points 
are projected on to a line through a particular species' point and the origin of the plot, the 
projection points give the approximate t-values for the environmental variables in the regression 
of this particular species. On this line, the origin marks the t-value of 0 and the species point 
marks the t-value of 2. All other marks can be found by linear inter- and extrapolation. For 
example, the mirror point of the species on the line, marks the t-value of -2. Environmental 
points that project outside the interval indicated by the species point and its mirror image are 
thus inferred to have t-values greater than +- 2 in the multiple regression for that species. These 
environmental variables are inferred to be statistically significant in the regression for that 
particular species. 

It is also possible to indicate in which region of the plot the species lie that react 
significantly positively to a particular environmental variable (Ter Braak & Looman 1994). This 
region is a circle with as its diameter the line-segment that joins the environmental point and the 
origin. Species that have their t-value coordinates in the circle react positively to the 
environmental variable. Similarly, species that react significantly negatively to a particular 
environmental variable (Ter Braak & Looman 1994) lie in the circle with as its diameter the 
line-segment that joins the origin and the mirror image if the environmental point. The circles 
are called Van Dobben-circles after the person who invented them (Ter Braak & Looman 1994). 

The coordinates for the t-value biplot are calculated as follows (Ter Braak & Looman 
1994). The coordinate of environmental variable j on an ordination axis is equal to its canonical 
coefficient Cj on that axis (Table 6.47) divided by the square root of the variance inflation factor 
(VIF) of the variable (Table 6.6). The coordinates of the species depend on the dimension of the 
plot. In a two-dimension t-value biplot, the coordinate of the species k on axis S is given by 
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headings VAR(y) and %EXPL shown in Table 6.58). The %(E+C) column gives for each 
response variable the joint fit by the covariables and the environmental variables as a percentage 
of the variance of the response variable (VAR(y) in Table 6.54). The %E column provides the 
additional fit due to environmental variables. The fit is additional to the fit by the covariables 
and expressed as a percentage of VAR(y). The fit by the covariables alone is simply 
%(E+C) - %E. 

With PCA/CA, the same plots can be made. The fit to the regression coefficients and 
t-values is, however, worse in PCA/CA than in RDA/CCA. 

It is instructive to explicitly write out the regression equations in CCA. The definition of the 
species data y'ik is given in (6.16). In the regression for species k, the term y+k/y++ is a constant 
multiplier. The essential part for the regression is thus yik/y+i. The regression model for species k 
on to the environmental variables is thus essentially 

(6.51) yik/y+i = c0k + £,- djk z;j + eik 

The regression is fitted to the data using sample weights W; = wj y;+. The t-value biplot 
represents the t-values of the estimated coefficients { djk } in (6.51) in two-dimensions. 

6.4 Species-by-environment table 

Canoco for Windows can give an extra output file beyond the solution file. This is the file 
called "SPECJENV.TAB" which is placed automatically in the working directory of Canoco for 
Windows. Each time an analysis is carried out the file overwrites any existing file of this name. 
The file contains a species-by-environment table. This table contains: 

• In linear methods, correlations between species and each environmental variable when 
species are centered and standardized, and similar covariances when species are just centered. 

• In unimodal methods, weighted averages of species with respect to standardized 
environmental variables 

The table is formatted as a CANOCO full format data file (section 4.4.1). Table 6.60 show 
an example from the CCA applied to the Dune Meadow data. The 33 columns refer to the 33 
species and the 10 "samples" of the file to the 10 environmental variables. The names of the 
species and environmental variables are given in the lines after the data. The title indicates that 
the table is from a CCA (analysis 5; see Table 6.1) with 10 environmental variables, 33 species 
and no covariables. From the example table, we see that the third species (Air pra) has 
a weighted average of-0.4647 with respect to the standardized variable, the thickness of the Al 
horizon. Because this value is the lowest of all weighted averages for Al , this species tends to 
occur in samples with lower value of Al than the other species. The maximum value, 3.0704, 
applies to Species 21 (Pot pal). This species occurs in Samples 14 and 15 (Table 16.1), which 
are indeed the ones with the highest A1-value (Table 16.2). 

The species-environment table serves two goals: 

It is this table that is represented in the species-environment biplot (with species scores and 
environmental biplot scores). Inferences from the biplot may be in error, because of the biplot 
contains the main patterns in the table only. Especially when the biplot represents only a small 
part of the variation in the table (a low percentage variance explained of the species-environment 
relation in section 6.2.5), one may wish to verify that inferences drawn from the biplot actually 
hold true in the actual data on weighted averages or correlations in the table. 

If there are many environmental variables compared to samples, the constraints in direct 
gradient methods are weak so that an RDA or CCA give almost the same results as a PCA or 
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CA. If one is dissatisfied with the result, one may try and analyze the species-environment table 
directly by a non-centered PCA. This type of analysis is called co-inertia analysis by Doledec 
& Chessel 1994). To obtain the standard co-inertia analysis in the CA/CCA context, each 
species must be weighted by the weights WR (section 6.3.4). Co-inertia is briefly discussed in 
Ter Braak & Verdonschot (1995). 

Table 6.60 Environment-by-species table in unimodal methods. 
Environment--by-species table 

d o / 5(8F9.4:/)) 

33 
1 

-.4587 
-.2605 
-.5088 
-.4461 

.3793 
2 

-.8240 
-.4629 
-.6522 

.6398 -
-.3054 

10 
-.2302 
-.5318 
-.4486 
1.8805 
-.0932 

0000 
00000000 
00000000 
00000000 
00000000 
00000000 

Ach mil Agr 

.5330 
1.1599 
-.2605 
-.1471 

.7525 
1.2699 
-.9295 

-1.0406 

.1216 

.7226 
-.0679 
-.5318 

sto Air 

-.4647 
-.3143 
-.4038 

.1475 

.5768 
-.4 62 9 
-.4389 
-.0697 

1.8805 
-.5318 
-.3307 

.0328 

pra Alo 

, analysis 

.1215 
-.5292 
-.1036 
-.5157 

.5319 
1.2699 
-.1054 
-.8962 

-.5318 
1.8805 
-.5318 

.0713 

5. 10 Vars 33 

-.2733 
-.5172 
3.0704 

.1375 

-.3804 
.3714 

1.2699 
.0440 

.3872 
1.3445 
1.8805 

.3052 

gen Ant odo Bel per 

-.2068 
.3842 
.8370 
.9644 

-.7740 
1.1416 
1.2699 
1.2699 

-.1606 
.4064 
.8467 

1.1568 

Bro hor 

Specs 0 

-.4396 
.0287 
.0111 

-.2874 

-.7710 
.5590 

-.6555 
-.0297 

-.5318 
-.5318 
-.5318 
1.2775 

• Che alb 

Cov 

-
-
-

1 
-

-

-

-
-

Cir 

.7065 

.0546 

.0967 

.3714 

.2699 

.0886 

.4324 

.4810 

.5318 

.3170 

.1699 

.2302 

arv : 
Ely rep Emp nig Hyp rad Jun art Jun buf Leo aut Lol per Pia Ian Poa pra Poa tri 
Pot pal Ran fla Rum ace Sag pro Sal rep Tri pra Tri rep Vic lat Bra rut Cal eus 
Hip rha Poa ann Ran acr 
Al MoistureManure HayfieldHaypastuPasture SF BF HF NM 
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7. Console version of CANOCO 

7.1 Introduction 

The console version of CANOCO 4.x has the same user interface as CANOCO version 3.x. 
You may want to use the console version of CANOCO, because 

• you have no access to Canoco for Windows, for which you need Microsoft Windows 98, 
Windows NT, or later versions; if so, you need to obtain a version of CANOCO.EXE that 
runs on your system 

• you prefer DOS or similar command-line operating systems, 

• you are well experienced in automating CANOCO yourself using the CON-project file 
(section 7.19 and the readme file in the directory \CANOCO\SAMPLES\PROJECTS) and 
CANOCO.INI file (section 7.3), 

• you want to use one of the options that are not available in the Canoco for Windows. 

7.1.1 Differences with Canoco for Windows 

The most important features in which the console version (i.e. the application 
CANOCO.EXE) differs from Canoco for Windows (i.e. the application CanoWin.exe) are that 

• you cannot point and click using a mouse; instead you can only use the keyboard, 
• you cannot correct mistakes or go back to reconsider options you have set; instead you must 

continue, or must press Control-C to interrupt CANOCO and start from scratch, 

• you cannot browse for the input files; instead you must remember and type the file names 
without error, 

• you cannot indicate species, samples, environmental variables and covariables by their code 
name; instead you must remember and type their identification numbers, 

• you cannot consult on-line help; instead, you must have the manual at hand, 

• you cannot obtain a summary of the forward selection results; instead you must assemble the 
results from the print file, 

• you cannot run CanoDraw as an integrated part of Canoco for Windows; instead you must 
start CanoDraw separately and select the CON-project file yourself when defining new 
CanoDraw project. 

Canoco for Windows uses in the background a DLL-version of the console version of 
CANOCO. Both versions are identical from the user-point of view. There are, however, some 
options that are not available in Canoco for Windows. In order of likely importance in Canoco 
for Windows 4.5, they are 
• you cannot transform the species by piece-wise linear transformations, e.g. to presence-

absence data (Q 34 on page 200) 
• you cannot obtain more than 4 ordination axes (Q 46 on page 208) 

• when you use restricted permutation types within blocks, you cannot have different layouts in 
different blocks (Q 63 on page 215), 
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you cannot adjust the maximum data sizes to the particular problem at hand (Q 4 on page 
188). 

7.1.2 Differences with CANOCO 3.x 

The console version of CANOCO 4.5 extends the capabilities of CANOCO 3.x. The 
extensions concern the size of the data that can be analyzed, and the Monte Carlo permutation 
tests. The new CANOCO version can perform permutation tests for split-plot designs and 
related balanced multi-level designs. CANOCO 3.x could, with difficulty, analyze repeated 
measurement designs, in particular Before-After-Control-Impact designs. The new split-plot 
design options make the analysis much easier to specify. There are also some minor 
modifications: 

• environmental variables and covariables can be indicated both by selection and by omission 
(Q 26 and Q 30) 

• Monte Carlo permutations must be specified at the very beginning of the forward selection 
process, 

• the scaling of the species scores in linear methods has been made more natural. In the new 
scaling, the mean square of the species scores is 1 or equal to the eigenvalue (Table 6.25). In 
earlier versions of CANOCO the divisor for the sum of squares of the species scores was not 
m (the number of species) but n (the number of samples). In the notation of equation (6.12) 
on page 159, Zk Wk is used now instead of Si w;. This change does not affect the way in 
which ordination diagrams and biplots are interpreted. 

The first two modifications imply that CON-project files made for CANOCO 3.x cannot be 
used with CANOCO 4.5. 

7.2 Ways to answer the questions 

In posing a question CANOCO indicates the range of valid answers by ending the question 
with a phrase like this: 

Range of valid answers: 0 [1] 3 
Type your answer or merely press RETURN for default, indicated by []. 

In this example valid answers are obtained by typing one of the values 0, 1, 2 and 3 
followed by pressing the RETURN key (sometimes termed the ENTER key). If one merely 
presses the RETURN key, the implied answer is the "default" answer indicated by "[]" in the 
range. In the example the default answer is the value 1. If the range is indicated like this: 

Range of valid answers: [1] 3 

then the default value is 1 and coincides with the minimum value of valid answers. If the range 
is given as "1 [3]", the default value is 3 and coincides with the maximum value of valid 
answers. If an invalid answer is given, the question is posed again. Real values like 2.5 are 
permitted only when the values in the range have a decimal point, e.g. 
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Range of valid answers: 1.0 [3.0] 

If the program indicates that the answer must consist of two values, the values must be 
entered on the same line and be separated by one or more blanks (spaces) and/or by a comma. In 
this case the range of each of the values is indicated separately like this: 

Ranges of valid answers: [-1] 10 , and [0] 10 

By pressing RETURN, the implied answers are thus the values -1 and 0. If a comma is used 
in the answer, missing entries are replaced by the default value. In the example the answer " ,3" 
is interpreted as the values -1 and 3. Answers with commas only (e.g. "„" or, if 6 numbers are 
expected in the answer "„„„") are interpreted as accepting the default. 

7.3 Initialization file 

Most of the default values used in the console version of CANOCO can be modified by 
using an initialization file, called CANOCO.INI. The initialization file must be placed in the 
working folder or, if you prefer, in the folder C:\CANOCO. 

Table 7.1 Default CANOCO.INI file in Canoco version 4.0. 
osition 2) 

decimal output in solution file 
separator between decimal values in solution file 
character by which to enclose names , , ,, ,, 
character to close the scores of each item ,, ,, 
pagemode of screen 
number of lines on a screen 
scaling ordination scores pca/rda ibi 
scaling ordination scores ca/dca/cca/dcca ibi 
dimension of biplot in DCA and t-value biplot in PCA/RDA 
number of segments in detrending process in DCA 
number of times for nonlinear rescaling 
100 TIMES rescaling threshold 
downweighting of rare species in ca/cca/dca 
centring/standardization by species in pca/rda 
centring/standardization by samples in pca/rda 
long dialogue 

forward selection of environmental variables 
ordination diagnostics 
output of correlation matrix 
spec-envi table on file SPEC_ENV.TAB 
symmetric autocovariance function in grid permutations 
transformation of species data 
value of B in log( Ay + B) transformation 
default analysis number (1=PCA 2=RDA, etc.) 

= (25) answer file (input from file) 
= (26) file with species data 
= (27 ) file with covariables 
= (28) file with environmental data 
= (29) print file 
= (30) solution file for CANOPLOT or other prog 
= (31) output file for spec-envi table 

es in range [0,6] = (32) output ordination results 

CANOCO (values start 
1 = 

= 
= 
= 

0 = 
25 = 
2 = 
2 = 
2 = 
26 = 
4 = 
0 = 
0 = 
1 = 
0 = 
1 = 
0 = 
3 = 
4 = 
1 = 
0 = 
0 = 
1 = 
7 = 

range 0,1] 
TAB char 
char 
char 
range 
range 
range 
range 
range 
range 
range 
range 
range 
range 
range 
range 
range 
range 
range 
range 
range 
range 
range 
range 

SPECIES. DTA 

CANOCO.OUT 
CANOCO.SOL 
SPEC 
2 2 

ENV. T M 
2 2 2 2 

ENDCANOCO 

0,1] 
10,100 
-3,3] 
-3,3] 
1,4] 
10,46] 
0,20] 
0,100] 
0,1] 
0, 4] 

0,3] 
0,1] 

0,1] 
0,3] 
0,4] 

0,1] 

0,1] 
0,3] 

0,1] 

1,9] 

S 
2 2 = 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
-

8 

in p 

(01) 
(02) 

(03) 
(04) 

(05) 

(06) 
(07) 

(08) 
(09) 

(10) 

(ID 
(12) 

(13) 

(14) 
(15) 

(16) 

(17) 
(18) 
(19) 

(20) 

(21) 
(22) 

(23) 

(24) 

valu 

Table 7.1 shows the format of the initialization file. The values in the table are the defaults 
obtained without the initialization file. The meaning of the values will become clearer in 
subsequent sections. 

To get the full advantage of the file CANOCO.INI for your own analyses, copy 
CANOCO.INI to the folder where your data are, make this folder the working folder and edit 
CANOCO.INI with Notepad or another editor or a word processor. (If you use a word processor, 
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make sure you save the file as a text-only or DOS-text file). For example, you may wish to 
replace the default file names by the names of your own data files. 

Because file names are no longer restricted in length, the text after the file names in Table 
7.1 (option 25-31) may have been deleted in the installed CANOCO.INI. The text in Table 7.1 
serves as a reminder of the order of the file names in the CANOCO.INI file. 

7.4 Introductory questions 

Which questions are posed depends on the type of analysis. The questions are numbered as 
Ql , Q2,..., in the order in which they are posed. CANOCO always starts with the question 

Q 1 Type 0 for input from the screen 
1 for input from answer file (2) is reserved for automated input from 

file 
Press RETURN for the default indicated by [] 
Range of valid answers: [0] 2 

By pressing RETURN (or typing 0) CANOCO continues the screen dialogue by asking 
further questions (see the next sections). The screen dialog is logged in the file CANOCO.CON 
in the working folder. If the answer is 1, then you need to answer only one more question from 
the screen: 

Q 2 Type name of file with answers to the questions 

If you type, for example, MYCCA.CON, then the program reads the answers to subsequent 
questions from the file MYCCA.CON and the analysis proceeds automatically. Commonly, the 
file specified here is a modification of the file CANOCO.CON from an earlier analysis. It can 
also be a project file from Canoco for Windows. An example of such a file is given later on in 
Table 7.4. See also the example project files in the directory 
\CANOCO\SAMPLES\PROJECTS. If the file contains too few answers, the screen dialogue 
starts again at the question left unanswered. See section 7.19 for more information. 

The next question allows you to choose between a short and a long dialogue. 

Q 3 Type 1 for long dialogue 
Range of valid answers: 0 [1] 

The long dialogue gives access to all the options in CANOCO. The short dialogue asks 
fewer questions. The values for the questions that are not posed are taken from the initialization 
file, if present. In the short dialogue, you can delete samples, covariables and environmental 
variables and choose a data-transformation for the species data, add supplementary 
environmental variables and carry out Monte Carlo permutation tests. You cannot make species 
or samples supplementary and you cannot set the centering/standardization of the data or the 
scaling of the ordination axes. 

In the long dialogue the next question is 

Q 4 Type 1 for changing maximum data sizes 
Range of valid answers: [0] 1 

The default data sizes are listed in the startup screen. It is a good strategy to first press 
RETURN here and see whether the default data sizes are sufficient; if not, CANOCO reports so 
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and may suggest the values you need. If you need to change the size, CANOCO asks the 
questions: 

Q 5 Type t h e number of a c t i v e samples and t h e number of p a s s i v e samples 
Ranges of v a l i d answers : 3 [20000] 25000, AND 0 [5000] 

Q 6 Type number of s p e c i e s 
Range of v a l i d answers : 1 [5000] 

Q 7 Type number of c o v a r i a b l e s and t h e number of e nv i ronmen ta l v a r i a b l e s 
Ranges of v a l i d answers : 0 [100] 1000, AND 0 [100] 

To get the full output of CANOCO, the number of environmental variables should be 8 
higher than the number actually analyzed. Also, the number of covariables should exceed the 
number in the covariable data file in some analyses, within which CANOCO internally 
generates covariables: 

• in forward selection, the number of covariables should exceed the number of selected 
variables. 

• detrending-by-polynomials requires 12 extra covariables and 

• permutation under the full model uses as many extra covariables as there are environmental 
variables. 

7.5 Selecting data sets and analysis type 

In this subsection, CANOCO asks for the data set(s) that you wish to analyze and the type 
of analysis. 

Q 8 Type name of file with species data 
dunespe.dta 

The suggested file name comes from the CANOCO initialization file CANOCO.INI. 
Ordination (PCA, CA, DCA, RDA, CCA, etc.) is applied to the data of the file specified here. In 
community ecology the data file is typically the species data, but if one wants, for example, 
a PCA of environmental data, the environmental data file should be specified here. If the name is 
a valid name of an existing file, CANOCO will attempt to read the species data from it. The data 
can be either in Cornell condensed format, full format or in free format (see the chapter Data 
input). Note that the data should not contain negative values if a unimodal method (CA, DCA, 
CCA, DCCA) is chosen; if a negative value is encountered, CANOCO stops with an error 
message saying so. 

Q 9 If you wish to eliminate effects of external variables 
from the ordination (e.g. blocks in experiments, seasons, salinity or other 
background variables), 
type name of file with covariables (S to Skip) 

If you specify a name of an existing file here, then the ordination needs the prefix "Partial": 
the effects of covariables are partialled out from the ordination diagram. If a file name is 
suggested, but you do not want any, type a single S. With covariables, CANOCO will give an 
ordination of the residual variation in the species data that remains after fitting the effects of the 
covariables. The ordination axes will be made uncorrected to the covariables. Further, 
environmental variables (if present) will be regressed on the covariables and the residuals of 
these multiple regressions will take the place of the original environmental values. In this way, 
the effect of the environmental variables on the species is "corrected" for the effect that the 
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covariables have on the species. Constrained ordination axes will therefore represent the effect 
that is "uniquely" attributable to the environmental variables- and not to (linear combinations of) 
covariables. With environmental variables in the analysis, covariables play the role of 
concomitant regressors in the multiple regression of the ordination axes. 

The allowed data formats are the same as for species data. In addition, the user may also 
specify here the solution file from a previous analysis. The first set of "Sample scores" in the file 
will then be treated as the values of four covariables named AX1, AX2, AX3 and AX4. By 
specifying the solution file of a previous analysis CANOCO can extract further axes beyond the 
first four. If, for example, the covariables are the first four ordination axes, then the four 
ordination axes to be extracted will be made uncorrelated to these covariables and will thus be 
equivalent to ordination axes 5 to 8 of the previous analysis. See section 8.2.4.2 for further 
details. 

The file with covariables may contain more variables than can actually be analyzed by 
CANOCO, provided the extra variables are deleted later on. 

Q 10 If you wish to relate the ordination axes to external variables, 
type name of file with environmental data (S to Skip) 
duneenv.dta 

The data of the file specified here are used to interpret or to constrain the ordination of the 
data of Q 8. In community ecology, the data of Q 8 are typically species data and the data 
specified here are typically environmental data. In general the file should contain "external" 
explanatory variables, i.e. variables by which one wants to explain the variation in the data 
specified in Q 8. Explanation proceeds by way of a multiple regression of each ordination axis 
on the explanatory variables and by way of correlation coefficients. In a partial RDA and CCA 
the file should contain the explanatory variables of primary interest. 

If you specify name of an existing file here, CANOCO will attempt to open the file and read 
the environmental data from it. The data can either be in Cornell condensed format, in full 
format or free format. In addition, the user may also specify here the solution file of a previous 
analysis. The first set of "Sample scores" in the file will then be treated as the values of four 
environmental variables named AX1, AX2, AX3 and AX4. 

The file with environmental data may contain more variables than can actually be analyzed 
by CANOCO, provided the excess variables are deleted later on. 

Q 11 Type name of print file 
CANOCO.OUT 

If the name is a valid file name, CANOCO attempts to create a new file with this name, and 
write output to this file. Any existing file with the same name is overwritten without warning. 
The lines of this output file have a maximum length of 132 characters. 

Q 12 Type name of solution file for CanoDraw or other program 
CANOCO.SOL 

If the name is a valid file name, CANOCO attempts to create a new file with this name. Any 
existing file with the same name is overwritten without warning. CANOCO will write tables 
with ordination scores to this file. See section 6.3. 

Page 190 Console version 



13 *** Type of analysis *** 
Model Gradient analysis 

indirect direct hybrid 
linear 1=PCA 2= RDA 3 
unimodal 4= CA 5= CCA 6 

7=DCA 8=DCCA 9 
10=non-standard analysis 

Type analysis number 
Range of valid answers: 1 [7] 10 
Answer = 7 

The analysis types are arranged in a 3x3 table of type-of-model by 
type-of-gradient-analysis. For more information than can be supplied here consult Jongman et 
al. (1987) and the Unimodal Models booklet. The first column refers to indirect gradient 
analysis techniques. These are ordination techniques which search for the major gradients in the 
species data irrespective of any environmental variables. The entries under this heading are 

1 = PCA Principal Components Analysis 

4 = CA Correspondence Analysis 

7 = DCA Detrended Correspondence Analysis 

PCA assumes a linear model (row 1) for the relationship between the responses of each 
species and the ordination axes; CA and DCA assume a unimodal model (rows 2 and 3) for the 
relationship between the responses of each species and the ordination axes. Ordination axes can 
be thought of as being theoretical environmental variables or underlying gradients. The linear 
model is fitted by the method of two-way weighted summation which leads to the least-squares 
solution. The unimodal model is fitted by the method of two-way weighted averaging. Use of 
DCA is advised if an ordination by CA shows the arch effect, i.e. if the sample scores on the 
second ordination axis are approximately a quadratic function of the sample scores on the first 
axis. (The arch effect is also termed the Guttman effect, Gifi 1990) Use of PCA is advised in 
particular if in ordinations by CA or DCA the range of the sample scores is less than 1.5 SD. 
This advice is applicable to each choice between techniques of rows 1, 2 and 3. 

Other names for CA are reciprocal averaging and - outside ecology, in particular when 
analyzing nominal response variables - dual scaling, optimal scaling, homogeneity analysis and 
multiple correspondence analysis (Gifi, 1990; Greenacre, 1984). 

The choice among variants of PCA, such as non-centered PCA, species-centered PCA, 
standardized PCA, double centered PCA or log-contrast PCA, is considered in section 7.12 as 
these variants are obtainable by transformation of the species data. Principal coordinates analysis 
can also be obtained as a variant of PCA (see section 3.12). 

CANOCO calculates in a simple run at most four ordination axes. See Q 9 and Q 46 for 
methods to obtain further ordination axes with CANOCO. 

The second column refers to (multivariate) direct gradient analysis techniques (canonical 
ordination). They attempt to explain the species responses by ordination axes that are 
constrained to be linear combinations of supplied environmental variables. The ordination 
diagram obtained from a direct gradient analysis has therefore a known environmental basis. The 
entries under this heading are 

2 = RDA Redundancy Analysis 

5 = CCA Canonical Correspondence Analysis 

8 =DCCA Detrended Canonical Correspondence Analysis 

When CCA is applied to nominal response variables it is termed redundancy analysis for 
qualitative variables (section 3.10; Israels, 1984). 
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The maximum number of constrained ordination axes (= canonical axes) is in general equal 
to the number of environmental variables, unless "detrending" is in force (see for this exception 
Q 15). Because CANOCO calculates in a single run at most four ordination axes, CANOCO will 
in general determine four constrained ordination axes, unless the number of environmental 
variables (q) is less than 4. If q is less than 4, CANOCO will extract, after the q constrained 
ordination axes, one or more unconstrained ordination axes (see below). 

The third column refers to hybrid direct/indirect gradient analysis techniques. If the user 
chooses a technique from this column, CANOCO will ask later on, how many canonical axes are 
to be extracted. If two such axes are required, for example, the first two ordination axes will be 
"canonical", i.e. are constrained to be linear combinations of supplied environmental variables 
and the third and fourth ordination axis will be unconstrained, apart from being uncorrected to 
the first two ordination axes. The unconstrained ordination axes represent the residual variation 
in the species data that remains after extracting the constrained axes, and are therefore "partial" 
ordination axes. Another method to obtain partial ordination axes is by specifying covariables. 

Analysis number 10 stands for nonstandard analysis in which the user can specify unusual 
options or unusual combinations of options (see section 7.20). This option is included for 
completeness of CANOCO as a tool in methodological research of ordination methods. Its use is 
not recommended in any other context. Usage of this option is at the full risk and responsibility 
of the user. 

The methods of row 1 will be called linear methods while the methods of rows 2 and 3 will 
be called unimodal methods or weighted averaging methods, in accordance with the terminology 
in Ter Braak & Prentice (1988). 

7.6 Number of canonical axes and detrending options 

Q 14 Type number of canonical axes (1,2 or 3) 
Range of valid answers: 1 [2] 3 

This question is posed only for hybrid gradient analyses. See Q 13 for explanation. 

Q 15 Type 1 for detrending by segments 
2 for detrending by 2nd order polynomials 
3 for ,, ,, 3rd order ,, 
4 for ,, ,, 4th order ,, 

Range of valid answers: [1] 4 

This question is asked in DCA, DCCA and analysis numbers 9 and 10. Detrending is 
a method for removing the arch effect in CA and CCA (see Q 13). Detrending-by-segments is 
the method of detrending proposed by Hill & Gauch (1980) and used in the computer program 
DECORANA (Hill, 1979). Minchin (1987) found that this method sometimes flattens out some 
of the variation associated with one of the underlying gradients. He ascribed this to an instability 
in the detrending-by-segments method (see also Kenkel and Orloci, 1986). 
Detrending-by-polynomials is intended to be a more stable method of detrending. In the usual 
reciprocal algorithm of CA, trial site scores for a particular axis are made uncorrected to the 
ordination axes already extracted in each iteration step. With detrending-by-polynomials they 
are also made uncorrected to k-th order polynomials of the axes already extracted (k = 2, 3 or 4) 
and to first-order cross products of these axes. 

When the arch effect crops up, the second CA-axis is approximately a quadratic function 
(= a second-order polynomial) of the first CA-axis. Detrending by second-order polynomials 
therefore specifically removes the arch effect. But this may not be enough because when there is 
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a dominant first gradient, the third CA-axis is also a function of the first axis, namely a cubic 
function; and the fourth axis is a quartic function, etc., which may also obscure a true second 
underlying gradient. As the eigenvalues of these polynomial axes steadily decrease, detrending 
by fourth-order polynomials is presumably sufficient in most applications. 

The promise of detrending-by-polynomials was shown to be false by Knox (1989) and Ter 
Braak (unpublished conference contribution). For the artificial data sets generated and analysed by 
Minchin (1987), detrending-by-segments performed consistently better than detrending-by-
polynomials. (For a reasonable performance of DCA for these data sets, a log-transformation was 
essential). As a result, detrending-by-segments is the default in DCA since CANOCO 3.0. 

In DCCA and partial DCA, the method of detrending-by-segments is unattractive on 
theoretical grounds, but the method of detrending-by-polynomials can be modified into an 
acceptable method (see the Appendix of Ter Braak & Prentice (1988); Unimodal Models: 
p. 137). Use of detrending-by-segments is therefore not recommended in DCCA and partial 
DCA. When detrending-by-polynomials is used in a direct gradient analysis, then the number of 
canonical axes that can be extracted is less than without detrending. Less than four canonical 
axes can be extracted if there are less than 10, 13 or 16 environmental variables depending on 
whether the order of polynomials is 2, 3 or 4, respectively. Detrending is, however, almost never 
needed in CCA if only a few environmental variables are included in the analysis. Moreover if 
the arch effect does occur in a CCA, it is an indication that some environmental variable is 
superfluous. 

Q 16 - Q 19 are asked only in the long dialogue for DCA and DCCA with detrending-by-
segments. In the short dialogue, CANOCO uses the default values. The defaults can be modified 
by using the CANOCO initialization file . 

Q 16 Specify number of segments for use in the detrending process 
Range of valid answers: 10 [26] 46 

In order to carry out the detrending process, the systematic relation of the trial scores with 
each of the existing axes must be determined. For this, a weighted running-means smoother is 
used in which the axes are divided in a number of segments (Hill, 1979; Jongman et al. 1987). In 
this question you can specify the number of segments. The default value is 26. The maximum 
permissible value is 46. CANOCO uses the same subroutine as used in DECORANA (Hill, 
1979), except for two minor changes in response to the criticisms of Oksanen & Minchin (1997). 
See also the section 3.13. 

Q 17 Is nonlinear rescaling of axes required? 
type 0 (no rescaling) , or number of times to be done 
Range of valid answers: 0 [4] 20 

This question has the same effect as the corresponding one in DECORANA (Hill, 1979). As 
in DECORANA, the default value is 4. The nonlinear rescaling of an ordination axis attempts to 
equalize the breadth of species response curves along the axis by means of equalizing the 
within-sample variances of the species scores. For this purpose a heuristic method is used in 
which the axis is divided into small segments; segments with samples with a small 
within-sample variance are expanded whereas segments with samples with a large 
within-sample variance are contracted. For further details see Hill (1979). 
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Q 18 Specify rescaling threshold 
Range of valid answers: [-0] 100.0 

Hill (1979) writes: "If the rescaling threshold is set to t, then axes with length less than t SD 
will not be rescaled, while those with length greater than t will be rescaled. The default value is t 
= 0". Here SD stands for the Standard Deviation unit, a measure of the length of an ordination 
axis compared to the average breadth of the species' response curves; (see also section 6.2.5 near 
Table 6.9). 

Q 19 Type number (1-4) of axes for species-environment biplot 
Range of valid answers: 1 [2] 4 

Answer here the number of axes of a planned ordination diagram. The question is needed 
when detrending-by-segments is in force, because the ordination axes are then in general slightly 
correlated. The optimal biplot scores for the environmental variables will therefore depend on 
the number of axes chosen. 

7.7 Forward selection of environmental variables 

Q 20 Type 1 for forward selection of environmental variables 
Range of valid answers: [0] 1 

Ask for forward selection of environmental variables 

• to find a minimal set of variables that explain the species data about as well as the full set, 

• to rank environmental variables in importance for determining the species data, and/or 

• to determine the statistical significance of the effects on the species of a particular 
environmental variable, either unconditionally or conditionally on the effects of some other 
environmental variables (without the need to specify these variables as covariables). 

Selection of variables is a standard topic in books on multiple regression, e.g. Montgomery 
& Peck (1982). CANOCO generalizes forward selection of variables from univariate regression 
to the multivariate case. See also Escoufier & Roberts (1979). At each step, the variable is 
selected that adds most to the explained variance of the species data. The explained variance is 
a straight sum of squares of regression in RDA and is inertia in CCA (see Summary of the 
ordination). With CANOCO, one can test at each step whether the variable to be added is 
statistically significant by means of a Monte Carlo permutation test. This test replaces the F- or 
t-test in forward selection in univariate multiple regression. It tests the effect of the variable 
given the effects of the environmental variables that are already selected. When applied 
repeatedly and in a stepwise fashion, the test shares the shortcomings of the usual tests, in that 
the overall size of the test is not controlled. In practice this means that too many variables will 
be judged significant, or equivalently that the tests are too tolerant overall. 

The questions asked during the forward selection process are given in section 7.18 on page 
216. 

Whereas the forward selection option of CANOCO is excellent for determining the 
statistical significance of any single environmental variable, it is inappropriate to judge the 
significance of all environmental variables jointly. For joint tests, choose the Monte Carlo test 
later on (sections 7.14 and 7.17) 
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7.8 Scaling of ordination scores 

CANOCO has six ways to scale ordination scores. This section explains all six and gives 
guidelines to choose among them. All scalings yield the same ordering of ordination scores and 
the same Summary of the ordination. Different scalings yield, however, a different amount of 
scatter along the one ordination axis relative to that along another axis. As a result, the scaling 
influences some aspects of the interpretation of ordination diagrams. The differences in 
interpretation are minor if the ratios of the eigenvalues are close to 1. 

In the long dialogue, the user is asked which scaling CANOCO is to use. In the short 
dialogue, the default scaling is used; this default can be changed by using the CANOCO.INI file 
(see Initialization file). For the novice, it is probably best to stick to the default scaling. 

21 *** Scaling of ordination scores *** 
1 = Euclidean distance biplot 
2 = correlation biplot 
3 = symmetric scaling 
Type corresponding negative number for covariance-based scores 
Range of valid answers: -3 [2] 3 

This question is asked for linear methods, in the long dialogue only. Specify here whether 
you predominantly want to interpret relationships among samples (scaling ±1) or among species 
(scaling ±2) from the ordination diagram (or whether you prefer the symmetric scaling +3). 
Your choice is unimportant if the ratio of eigenvalues of the axes is close to 1. The relationships 
among samples are expressed as Pythagorean distances (scaling ±1), those among species as 
correlations (scaling 2), or covariances (scaling -2). The species scores are divided by the 
standard deviation of the species if you type a positive scaling number and are left 
untransformed if you type a negative scaling number. Your answer here sets the value of a in 
the chapter Results, section Solution file, subsection Species scores (see Table 6.25 - Table 
6.28). The choice of scaling is discussed in Unimodal Models, on pages 144-152. 

Untransformed, a species' score is proportional to the standard deviation of the species. 
Thus, species with a large variance (often the dominant species) lie far from the centre of the 
ordination diagram and so unduly dominate the diagram. To counteract this effect and to make 
the species scores more comparable, you can opt here to divide them (after extraction of the 
axes) by their standard deviation. Then, the ordination diagram displays standardized species 
data, and correlations instead of covariances. In scaling 2, a correlation biplot is obtained; the 
length of a species' arrow is then the multiple correlation R of the species with the ordination 
diagram. If the analysis is centred and standardized by species (PCA/RDA on a correlation 
matrix), then positive scalings give the same result as the corresponding negative scaling. 

Nominal environmental data define groups of samples. Scalings 1 and -1 then allow you 
to interpret the distances between the groups. With quantitative environmental data, scaling 2 
results in an ordination diagram that reflects the environmental data and the correlations among 
the environmental variables. However, environmental effect sizes are best inferred from 
diagrams in scaling 1 or -1 . With both nominal and quantitative environmental data, either 
scaling may be appropriate. Scaling 3 is intermediate between 1 and 2. It does not have any extra 
mathematical optimality, but may be convenient as a compromise. Irrespective of your choice of 
scaling here, the ordination diagram displays the major patterns in the species data table, the 
table of correlations between species and quantitative environmental variables (see section Table 
6.29) and, for nominal environmental data, the tables of class means per species (Table 6.30), all 
interpreted by the biplot rule. 

Most of what has been said so far continues to hold if there are covariables in the analysis, 
except that the correlations are, strictly speaking, not (partial) correlations, but partial 
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covariances. Partial correlations are more difficult to interpret, because the scale of the species 
and the environmental variables then depends on the covariables in the analysis. (To obtain 
partial correlations, one needs to divide the partial covariances by the square root of the residual 
variances for the species and the environmental variables after fitting the covariables). 
Especially if the residual variances are small, partial correlations are less stable than partial 
covariances. 

Q 22 *** Scaling of ordination scores *** 
1 = sample scores are weighted mean species scores 
2 = species ,, ,, weighted mean sample ,, 
3 = symmetric scaling 
Type corresponding negative number for Hill's scaling 
Range of valid answers: -3 [2] 3 

This question is asked for unimodal methods, in the long dialogue only. Specify here 
whether you predominantly want to interpret relationships among samples (scaling ±1) or among 
species (scaling ±2) from the ordination diagram (or whether you prefer the symmetric scaling 
+3). In scaling ±1, the (species-derived) sample scores are weighted mean species scores, i.e. 
species that occur in a sample will lie around that sample's point in the ordination diagram. In 
scaling ±2, the species scores are weighted mean sample scores, i.e. each species' point will be at 
the centre of its niche in the ordination diagram; samples in which a species occurs are scattered 
around it. These interpretations of weighted averages form the centroid principle. Your choice 
is unimportant if the ratio of eigenvalues of the axes are close to 1. The positive scalings 
standardize the ordination scores to Xa, whereas the negative values standardize the ordination 
scores to Xa/(l-X), with a= 0, 0.5 or 1 (see section 6.3.5). The choice of scaling is discussed on 
pages 163-173 of Unimodal Models. 

The relationships among samples and among species are expressed as chi-square distances 
in the positive scaling numbers 1 and 2, respectively (see Table 6.34 and Table 6.37). Among 
the negative scaling numbers, scaling -1 gives ecological distances among samples expressed in 
standard deviation units of species turnover (SD-units; see text around the Table 6.9). With 
scaling -2, the distances among species are generalised Mahalanobis distances. Scaling ±3 is 
intermediate between ±1 and +2. It does not have any extra mathematical optimality, but may be 
convenient as a compromise. 

The sign of the scaling number determines also how to infer the species data from the 
species-sample plot, other than by the centroid principle. Positive numbers yield a biplot scaling 
which gives a more quantitative interpretation by the biplot rule and is most suited for short 
gradients. In the biplot scaling the values that are approximated for a species are proportional to 
its relative abundance yik/yi+ (see Table 6.33 and Unimodal Models p. 171). Negative numbers 
yield Hill's scaling, which equalizes the average niche breadth for all axes and thus allows, for 
long gradients (strong unimodal response), the distance rule. This rule extends the centroid 
principle by taking a species' point as the optimum of its unimodal response. 

Nominal environmental data define groups of samples. The scaling ±1 then allows you to 
interpret the distances between the groups. With quantitative environmental data, scaling 2 
results in an ordination diagram that reflects the environmental data and the correlations among 
the environmental variables. However, environmental effect sizes are best inferred from 
diagrams in scaling -1. With both nominal and quantitative environmental data, either scaling 
may be appropriate. Irrespective of your choice of scaling here, the ordination diagram displays 
the major patterns in the species data table, the table of weighted averages of the species with 
respect to quantitative environmental variables (Table 6.38 and Table 8.3) and the relative 
abundances of species across environmental classes (Table 6.39). 
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In DCA and DCCA with detrending-by-segments, this question is not asked, because there 
is only one scaling available: the original scaling used in DECORANA (Hill, 1979) and also 
described in Jongman et al. (1987: p.106). This scaling is akin to scaling -1. 

7.9 Ordination diagnostics 

There are three types of statistics: measures of fit for species, residual distances for samples, 
tolerances for species ("niche widths") and heterogeneity for samples. Tolerance and sample 
heterogeneity are not defined in PCA/RDA. The fit measure and residual distance are not available 
in DCA (segments). 

Ordination diagnostics indicate how well or how badly individual species and samples are 
represented in the ordination diagram. 

Q 23 *** Species and sample diagnostics *** 
0 = no diagnostics 
1 = fit and residual distances 
Range of valid answers: 0 [3] 

This question is asked in the long dialogue for linear methods. Measures of fit for species 
and residual distances for samples are reported by typing 1, 2 or 3, or by pressing RETURN. The 
default value for the answer is 3 instead of 1 for uniformity with the same question in unimodal 
methods (Q 24). 

Q 24 *** Species and sample diagnostics *** 
0 = no diagnostics 
1 = Chi-square- fit and residual distances 
2 = tolerances 
3 = both 1 and 2 
Range of valid answers: 0 [3] 

This question is asked in the long dialogue for unimodal methods. You can request tolerance 
measures and/or for measures of fit, that are related to chi-square statistics. The tolerance measures 
are based on the unimodal model of species response. The chi-square measures are derived from 
a linear model for relative abundance data (see Unimodal Models pp. 167). In consequence, the 
tolerance measures are most useful for long gradients (> 4 SD), whereas the chi-square measures 
are most useful for short gradients (< 4 SD). 

7.10 Omitting samples and selecting explanatory variables 

Q 25 Enter numbers (not names) of samples to be omitted 
One at a time, ending list with a zero 
Range of valid answers: [0] n 
n = highest identification sample number in the species data 

CANOCO asks this question after reading the file with the species data. Type only one 
sample number per line. For example, if samples 4, 7 and 10 are to be omitted, then these 
numbers should be entered as follows: 

4 
7 
10 
0 
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If no samples are to be omitted, then simply press RETURN. Samples can also be omitted at 
a later stage (see Q 40). The advantage of doing it here is that omitted samples are skipped when 
reading the environmental data and covariables. 

Q 26 *** Select/omit: covariables *** 
Type -1 to omit particular variables 

1 to select ,, , , 
Press RETURN to select all variables 
Notice: If you later wish to carry out Monte Carlo permutations tests 

within blocks, select covariables that define blocks first. 
If you wish to include all covariables, still choose select 
if block variables are not the first ones in the data file, 
and then select the block variables first. 

If you specified a file with covariable data, CANOCO asks whether or not you wish to use 
all the variables in the file as covariables. You may select a subset of variables, or omit variables 
you do not want to use as covariables. CANOCO asks this question just before the actual 
reading of the file with covariables. 

The notice under the question is important only if you want to determine the statistical 
significance of the environmental variables by a test that requires permutations within blocks. In 
CANOCO, blocks are indicated by covariables. If there are more covariables than the ones 
indicating blocks, the block covariables must come first. This can always be achieved by 
selecting the block covariables before the remaining ones. See the example project file 
E40NP.CON in section 8.3.3. 

Q 27 Enter numbers (not names) of covariables to be omitted 
One at a time, ending list with a zero 
Range of valid answers: [0] p 
p = highest identification number of the covariables 

If you answered -1 to the previous question, indicate here which variables should not be 
used, one per line and ending the deletions by pressing RETURN (see Q 25). 

Q 28 Enter numbers (not names) of covariables to be selected 
One at a time, ending list with a zero 
Range of valid answers: [0] p 
p = highest identification number of the covariables 

If you answered 1 to Q 26, indicate here which variables should be used, one per line and 
ending the selections by pressing RETURN (see Q 25). 

Q 29 *** Interactions of covariables *** 
Enter pairs of numbers of covariables to define product variables 
Press RETURN to continue 
Ranges of valid answers: [0] p , AND [0] p 
p = highest identification number of the covariables 

CANOCO also asks this question before the actual reading of the file with the covariable 
data. Type two numbers per line only. For example, suppose that a data file contains 20 
covariables, numbered 1-20. Suppose that variable 2 is MOISTURE and variable 3 is 
MANURE; then entering 

2 3 

2 2 
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2 22 

-1 0 (or merely press RETURN) 
has the effect that CANOCO creates three new variables with identification numbers 21, 22 and 
23. Variable 21 is obtained by calculating for each sample the product of its MOISTURE value 
and its MANURE value. Variable 22 will contain squared moisture values and variable 23 will 
contain the cubed MOISTURE values. It is also possible to use numbers of variables that are in 
the data file but were deleted or not selected in the previous questions. 

Squares (and products) of covariables may be useful in partial CA or partial DCA to prevent 
the ordination axes from being a quadratic function of the covariables. This may happen if the 
covariables represent a long gradient in the species data and subsequent gradients are much 
shorter. See the DETRENDING question Q9 and section 8.2.4.3. 

After reading the covariables, CANOCO makes the covariables mutually uncorrelated by 
the Gram-Schmidt orthogonalization process (Rao, 1973: section la.4). If environmental 
variables are present, they are regressed individually on the covariables and their values are 
replaced by the residuals of these regressions (without an extra standardization). 

After reading the data, CANOCO lists on the screen which variables are used as 
covariables, e.g. 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
Names of covariables 

*************************************************************************** 
SF BF HF NM 
*************************************************************************** 

Q 30 *** Select/omit: environmental variables *** 
Type -1 to omit particular variables 

1 to select ,, , , 
Press RETURN to select all variables 
Range of valid answers: -1 [0] 1 

If you specified a file with environmental data, CANOCO asks whether or not you wish to 
use all the variables in the file as environmental variables. You may select a subset of variables, 
or omit variables you do not want to use as environmental variables. CANOCO asks this 
question just before reading the file. 

Q 31 Enter numbers (not names) of environmental variables to be omitted 
One at a time, ending list with a zero 
Range of valid answers: [0] q 
q = highest identification number of the environmental variables 

If you answered -1 to the previous question, indicate here which variables should not be 
used, one per line and ending the deletions with a zero or just by pressing RETURN (see Q 25). 

Q 32 Enter numbers (not names) of environmental variables to be selected 
One at a time, ending list with a zero 
Range of valid answers: [0] q 
q = highest identification number of the environmental variables 

If you answered 1 to Q 30, indicate here which variables should be used, one per line and 
ending the selections with a zero or just by pressing RETURN (see Q 25). 
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Q 33 *** Interactions of environmental variables *** 
Enter pairs of numbers of environmental variables to define product variables 
Press RETURN to continue 
Ranges of valid answers: [0] q , AND [0] q 
q = highest identification number of the environmental variables 

This question is analogous to Q 29, but is asked now for environmental variables, when 
present. 

By defining product variables, the user can investigate in very much the same way as in 
multiple regression analysis whether the effect of one variable depends on the value of another 
variable (see Jongman et al. 1987, section 3.5.4). In other words, this is a way to investigate 
interaction of effects. With, for example, P * N the product of the variables P and N, the effect 
that P has on the species can be shown to depend on the value of N, if the first eigenvalue of the 
analysis turns out to be considerably higher than in the analysis without this product variable, or 
if the t-value associated with this product variable is appreciably larger than 2 in absolute value. 
You can also determine the statistical significance of the interaction effect by a Monte Carlo 
permutation test. For this, use the original variables (P and N) as covariables (see section 8.3.3), 
or choose Forward selection and test the product variable P*N after including P and N in the 
model. 

Inclusion of squared variables may alleviate the restriction that only linear combinations of 
environmental variables are considered in the analyses provided by CANOCO. The user should, 
however, be cautious in defining too many product variables, to avoid "data dredging". 

After reading, CANOCO standardizes the environmental variables and their products (if 
defined), to mean 0 and variance 1. 

7.11 Transformations of species data 

Q 34 *** Transformation of species data *** 
0 = no transformation 
1 = In(Ay+B)-transformation 
2 = squareroot-transformation 
3 = piecewise linear transformation 

Range of valid answers: [0] 3 

Species abundance values often display a highly skewed distribution. You can prevent a few 
high values from unduly influencing the ordination by transforming the data. Taking logarithms 
turns linear models into ecologically more plausible, multiplicative/exponential models. The 
values for A and B in the logarithmic transformation are asked next (Q 35). The variance of 
count data can be stabilised by taking square-roots. You can also specify your own 
transformation after typing a 3 (piecewise linear transformation). The transformation that is 
chosen is applied to all species (in general terms: to all response variables). 

Q 35 Type values of A and B for use in In(Ay+B)-transformation 
Ranges of valid answers: -999.9 [1.0] 999.9, AND 0.0 [1.0] 999.9 

If the species data are strictly positive (y>0), use A = 1 and B = 0. However, usually species 
data contain zero values. Then, a small value (B >0) must be added, because log(0) is undefined. 
For technical reasons, B must then be greater than 1 in Canoco, but this limitation can be 
circumvented by specifying a value for A > 1. For example, if you would like to add 0.1 to the 
original data, specify A = 10 and B = 1. See example section 8.4.2. 
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Q 36 Enter couplets of old and new values for 
piecewise linear transformation, ending with -1 0 
Ranges of valid answers: -1.0 [-1.0] 999.9, AND [.0] 999.9 

The piecewise linear transformation works as in DECORANA (Hill, 1979). The following 
description of this transformation is taken with minor modifications from the DECORANA 
manual. A typical transformation might be 

o o 
0.1 1 

2 2 
5 3 
10 4 
20 5 
-1 0 (or merely press RETURN) 

The negative number -1 serves to terminate the transformation data, and it must be followed by 
a dummy value such as 0. The meaning of this transformation is that a quantity 0 in the data is 
transformed to 0, 0.1 to 1, 2 to 2, 5 to 3, etc. For other numbers, the transformation is 
interpolated linearly. Thus 6.9 is transformed to 

3.0 + (6.9-5.0)*(4.0-3.0)/(10.0-5.0) = 3.38 

Non-integer values can be entered in the transformation, so that 

20.3 5.2 

would be a perfectly acceptable couplet. 
Values outside the range of the transformation are converted to the same values as the 

extreme values of the transformation. Thus in the example considered above, numbers bigger 
than 20 would all be transformed to 5. Likewise, if the transformation 

1 . 2 1 . 2 
2 . 3 2 . 3 
- 1 . 0 0 . 0 

is entered, all numbers less than 1.2 would be transformed to 1.2, all numbers greater than 2.3 
would be transformed to 2.3, and numbers between 1.2 and 2.3 would be transformed to 
themselves (i.e. left unaltered)." 

"Three restrictions should be noted: 
1. Negative numbers cannot be considered for transformation, as any negative number 

automatically terminates the transformation data. [But one may transform to negative 
numbers in linear methods]. 

2. Values to be transformed must be entered in ascending order. If this rule is violated, the 
command message "Enter couplets..." is repeated, and the transformation must be entered 
again from the beginning. This feature can be used to correct mistakes. For example, if 
instead of the transformation considered above, the user mistakenly types 

0 0 
0 . 1 1 
1 2 

then this can be put to rights by typing the couplet 

Console version Page 201 



o o 
which is not in ascending order, and which therefore nullifies the transformation that has been 
fed in so far. 
3. Not more than 46 couplets can be entered to define the transformation. If more are entered, 

the program will proceed to the next stage regardless." 

Usually a condensed format file does not contain zero abundance values. However, 
sometimes it does, so as to indicate that the species occurred in a tiny amount. Such zero values 
are stored when the file is being read as species data file and such zeroes can thus be 
transformed for the analysis in a non-zero value, for example with the piecewise linear 
transformation specified by 
o i 
2 2 
5 3 
10 4 
20 5 
- 1 0 

In this transformation the explicit zeroes in the condensed format file are transformed to the 
value 1. 
If the minimum abundance value is >= 1, the transformation 
0 0 
1 1 

-1 0 

transforms abundance to presence/absence. 

Q 37 Type weight to be given to 
* species * that you will be asked to specify next 
Type 0.01 to make species passive 
Type 0 to delete species 
Range of valid answers: .0 [1.0] 100.0 

Weights (w ) can be assigned to species in order to give particular species more (w > 1) or 
less (w < 1) emphasis in the analysis, to delete particular species (w = 0) or to make particular 
species supplementary (w = 0.01). Supplementary species are also called passive. Press 
RETURN if you do not want to specify (other) non-default weights. A "supplementary" species 
has no influence on the extraction of the ordination axes, but is added to the ordination 
afterwards by use of the transition formulae (see section 6.3; see also Jongman et al., 1987; 
exercises 5.2 and 5.3). For w > 0.01, the weight of a sample can be interpreted as "the number 
of times" the species is included in the analysis. For example, if w = 2 for a species, the same 
ordination could also have been obtained from an unweighted analysis by including that 
particular species twice in the data file(s). This interpretation is, of course, strictly valid only for 
integer weights (w = 1, 2, 3, ...), but the mathematics works through equally well for any 
positive weight. 

Q 38 Enter numbers (not names) of species to be weighted 
One per line, ending list with 0. 
Negative numbers denote sequences. For example 

a 4 followed by a -8 weights species 4 through 8. 
Range of valid answers: -m [0] m 
m = highest species identification number 

This question is posed if a non-default weight is specified in the previous question. For 
example, to give species number 3 and the species numbers 11, 12, 13,..., 20, 21 double weight, 
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Q 37 should be answered by typing a 2 and giving a RETURN; then Q 38 appears and should be 
answered by typing 

3 
11 
-21 
-1 (or merely press RETURN) 

i.e. one number per line. Next, Q 37 appears again in order to allow you to give a different 
weight to other species. If a species is weighted more than once, the last given weight is 
decisive. 

Q 39 Type weight to be given to 
* samples * that you will be asked to specify next 
Type 0.01 to make samples passive 
Type 0 to delete samples 
Range of valid answers: .0 [1.0] 100.0 

This question is similar to Q 37, but now posed for samples. Samples that are made 
supplementary (passive) are placed after the active samples in the output tables of sample scores. 

Q 40 Enter numbers (not names) of samples to be weighted 
One per line, ending list with 0. 
Negative numbers denote sequences. For example 

a 4 followed by a -8 weights species 4 through 8. 
Range of valid answers: -n [0] n 
n = highest sample identification number 

This question is similar to Q 38, but now applies to samples. 

Q 41 Weighting of species required? 
0 = no 
1 = downweighting of rare species 
Range of valid answers: [0] 1 

This question is posed only for unimodal methods and is familiar to users of DECORANA 
(Hill, 1979). Hill (1979) writes: "In some applications individual samples with rare species may 
distort the analysis. If it is desired to give rare species less weight, while still retaining them in 
the analysis, then the downweighting parameter can be set to 1. Let AMAX be the frequency of 
the commonest species. Then the effect of downweighting is to reduce the abundance of species 
rarer than (AMAX/5) in proportion to their frequency. Species commoner than (AMAX/5) are 
not downweighted at all." For further details see Hill (1979). Downweights are similar in 
interpretation as the weights in Q 37. Their joint effect is multiplicative. The downweight times 
the weight given i n Q 3 7 - Q 3 8 i s listed for all species identification numbers on the output file 
in a format of 20 species per line. 

Note that rare species can distort the analysis only if they appear in samples with few other, 
more common species. These are, by definition, deviant samples. The same effect can therefore 
often be achieved more elegantly by deleting these deviant samples, or by making them 
supplementary (passive). 
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7.12 Centering and standardization in linear methods 

Q 42 *** C e n t e r i n g / s t a n d a r d i z a t i o n by s p e c i e s *** 
0 = none (non-centered PCA) 
1 = centering (for PCA/RDA on a covariance matrix) 
2 = standardization by species norm 
3 = both 1 and 2 (for PCA/RDA on a correlation matrix) 
4 = standardization using error variance 
Range of valid answers: 0 [1] 4 

This question is posed for linear methods and defines, in conjunction with the next question, 
which variant of PCA/RDA is chosen (Table 7.2). The default is centering by species only. Let 
yik be the current value of species k in sample i (i=l,... ,n; k=l,...,m) and let w; be the weight 
of sample i. Unless requested otherwise in Q 39 - Q 40: w; = 1 . By answering 1, 2 or 3 the value 
of y;k is replaced by the value of 

(7.1) y'ik = yik - 2i Wj'yik / Si Wj* (answer = 1 ) 

(7.2) yik/(2iWi*yik2),/2 (answer = 2) 

(7.3) y'ik/(2iWiVik2)1/2 (answer = 3) 

where y'ik is the value obtained after centring by species (see this question, answer =1) . Note 
that in RDA centering by species is implicit because of the intercept in the regression of the 
sample scores on the environmental variables. 

With environmental data it is possible to weight species inversely to the error variance that 
remains after fitting the species to the environment and covariable data (answer = 4). To put this 
option into context, let us compare RDA with canonical correlation analysis. A disadvantage of 
RDA compared to canonical correlation analysis is that the result depends on the particular units 
of scale of measurement for each response variable (species). On the other hand, canonical 
correlation analysis is unattractive when the number of species is of the same order of magnitude 
as the number of samples. An intermediate solution, proposed in the discussion of Ter Braak 
(1990), is to weight each species inversely to its error variance. CANOCO incorporates this 
solution and reports the relative weights given to species on the output file, in the solution file 
(as weights for species alongside the species scores; see section 6.3.4) and the species-
environment file, SPECENV.TAB (see section 6.4). If the R2 of a species exceeds 0.9, then its 
weight is truncated as if the R2 were equal to 0.9. This is done to avoid extreme weights (larger 
than 10) for species that happen to fit extremely well. 

The technical details are as follows. If standardization using error variance is requested, 
CANOCO first centres and standardizes the species as if option 3 was chosen. For the species 
data so standardized, CANOCO regresses each species onto the environmental variables to 
obtain the error variance. The reported variances of species are therefore all equal with this 
option. 

The weights given to species are not re-estimated in permutations for a Monte Carlo test. 

CANOCO uses the error variance in the full rank model. By contrast, Van der Leeden 
(1990) uses the error variance from the reduced rank model. Advantages of the CANOCO 
approach are that it does not depend on the reduced rank assumption and its solution is much 
simpler, admitting direct rather than iterative computation. 

Page 204 Console version 



Q 43 *** Centering/standardization by samples (in the species data) *** 
0 = none (standard) 
1 = centering (fine for log-percentage data) 
2 = standardization by sample norm 
3 = both 1 and 2 
Range of valid answers: [0] 3 

This question is posed for linear methods and defines, in conjunction with the previous 
question, which variant of PCA/RDA is chosen (Table 7.2). The default is that neither centering 
nor standardization by samples is applied. Let yik be the current value of species k in sample i 
(i = 1, ... , n; k = 1, ... , m) and let Wk be the weight of species k. Unless requested otherwise in 
Q 39 - Q 40: Wk = 1. By answering 1, 2 or 3 the value of yik is replaced by the value of 

(7.4) y'* = yik - Sk wk*yik / Sk wk* (answer = 1 ) 

(7.5) yik/(IkWk*yik
2)1/2 (answer = 2) 

(7.6) y'ik/(2kWkVik2)1/2 (answer = 3) 

where y'ik is the value obtained after centring by samples (see this question, answer =1). 

The centering / standardizations by species and by samples may interact. It should be noted 
that CANOCO first centers and standardizes by samples and then by species. 

How the centering and standardization questions of linear methods (Q 42 and Q 43) interact 
with Q 37 - Q 40, can be deduced from the following example. Suppose Q 42 = 3, i.e. the values 
of each species are standardized to mean 0 and variance 1, so that they have equal weight (in 
a particular sense). If a species is now given double weight in Q 37- Q 38, the weighted analysis 
gives the same results as an unweighted analysis in which that species is included twice in the 
data and the same standardization (Q 42 = 3) is in force. 

After centering and standardization by samples and species, CANOCO calculates the Total 
Sum of Squares of the species data (TSS) and the total standard deviation in the species data by 

(7.7) TSS = Silk Wi'wkVik2 and TAU = {TSS / I A Wi*wk*} Vi 

Subsequently, all species values are divided by TAU. After division, the total mean square of the 
species data is equal to 1. This has the advantage that the eigenvalues reported by PCA and 
RDA are fractions of the total sum of squares and that the sum of all eigenvalues in PCA is 
equal to l.4 When multiplied by 100, these fractions are usually referred to as percentages of 
variance accounted for by the ordination axes. Note that in a partial PCA and in a RDA the sum 
of all eigenvalues is less than or equal to 1. 

4 Except when centering by samples is used (Q 43 = 1 or 3) in conjunction with standardization 
by species (Q 42 = 2 or 3). Use of these exceptional cases is discouraged and they are not 
available in Canoco for Windows; the sample means are equal to 0 after Q 43 but not after Q 42; 
the iterative ordination algorithm will nevertheless calculate an analysis centered by samples. 
The eigenvalues are fractions of TSS as defined in (7.7) but do not sum to 1. 
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Table 7.2 Variants of PCA (also available in RDA if Q 42 = 1 or 3). 

Answers to: 

Ordinary PCA 

Standardized PCA 

Double centered PCA 

PCA standardized by 

sample norm 

PCA standardized by 

sample norm 

and centered by species 

PCA centered and 

standardized by samples 

Noncentered PCA 

Principal coordinate 

analysis 

References: 

Q43 

samples 

cen/stan 

0 

0 

0 

0 

1 

2 

2 

3 

0 

1 

Q42 

species 

cen/stan 

1 

1 

3 

3 

1 

0 

1 

0 

0 

1 

Q21 

scaling 

1 

2 

1 

2 

3 

1 

1 

1 

i;3 

3 

Interpretation of ordination diagram by distances [points] 

and arrows [inner products or angles] 

Pythagorean distance between samples [points](a,c) 

covariances between species [arrows] (b) 

standardized Pythagorean distance between samples [points] (c) 

correlations between species [arrows] (b) 

after ln-transformation: appropriate for percentage data(e; see section 

3.9.2) and can fit a unimodal model (d) 

cosine theta distance (c) between samples [points] 

= angular separation (f) 

cosine theta distance (c) between samples [points] 

"correlation coefficient" between samples [arrows] c,f); 

controversial! 

(g,h) 

dissimilarity between sites when input is -(squared dissimilarity) 

between samples( section 3.12) 

(a) Jongman et al. (1987); (b) Corsten and Gabriel (1976); (c) Prentice (1980); (d) Kooijman (1977);(e) Aitchison (1982); (f) Gordon (1981); 

(g) Noy-Meir (1973); (h) Ter Braak (1983). 

7.13 Output options 

Q 44 **** Output option for **** 
Correlation matrix of eigenvectors and environmental variables 

Type 0 for no output 
1 (4) output on file CANOCO.OUT 

or the value between brackets for output to the screen as well. 
Range of valid answers: 0 [4] 

This question, posed only if there are environmental variables in the analysis, allows you to 
see the correlation matrix, means and standard deviations of eigenvectors (ordination axes) and 
environmental variables at the screen and to write them to the print file specified in Q 11. If 
there is not enough data space available to calculate the (full) correlation matrix some ordination 
results cannot be computed and a warning is given. 
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Q 45 **** Output option for **** 
Ordination results 

Type 0 for no output 
1 (4) output on file CANOCO.OUT 
2 (5) output on file CANOCO.SOL 
3 (6) output on both files 

or the value between brackets for output to the screen as well. 
Enter your choice for each item, all on one line, e.g. 22222222 <RETURN> 
Press RETURN for the defaults indicated below the items. 
Spec-scor Samp-scor Regr-coef t -values In te r -cor Envi-bipl Centroids Linea-com 

2 2 2 2 2 2 2 2 

This question allows you to see the ordination results of the analysis at the screen and to 
write them to the print file (Q 11) and/or to the solution files (Q 12). The default is that all 
output is written to the solution file (section 6.3). The answers for the items must be entered on 
a single line, for example, 

6 2 1 4 4 6 6 5 

ending by pressing the return-key. If more numbers are entered on a line than required, the 
superfluous numbers are ignored. If a solution file has not been asked for in Q 12, the lines 
beginning with 2(5) and 3(6) do not appear; if the answer given is nevertheless 2, or 3 (or 5 or 
6), then CANOCO acts as if the answer 1 (or 4) was given. If an error is detected in the answer, 
the question appears again. 

The items listed in Q 45 depend on the type of analysis. The abbreviations are (between 
brackets) the symbols used in section 6.3. 
SPEC-SCOR = species scores (uk) 
SAMP-SCOR = sample scores, that are species-derived (x; ) 
REGR-COEF = regression coefficients (CJ) of the environmental variables for an unconstrained 

ordination axis, canonical coefficients (CJ) for a constrained ordination axis, and t-values 
associated with the regression coefficients Cj in the multiple regression of {XJ } on {zy} 

T-VALUES = coordinates for species and environmental variables for the t-value biplot 
INTER-COR = inter-set correlations between the environmental variables and the ordination 

scores {x; } 
ENVI-BIPL = scores of environmental variables for drawing a biplot (suitable for quantitative 

variables) {Cj*} 
CENTROIDS = centroids of environmental variables in the ordination diagram (suitable for 

qualitative (nominal) variables) {CJ+} 
LINEA-COM = sample scores which are linear combinations of the environmental variables 

(x'i) 

See section 6.3.2 for further explanation. 
Warning: If the number of items (species or samples) is larger than or equal to 2000, their 

order in the extended output to the print file CANOCO.OUT (Q45) is incorrect. The items 
numbered 2000 and higher are not sorted alongside the others. Sort the scores in Excel instead. 
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7.14 Additional analyses 

Q 46 Type 
0 = stop 
1 = more analyses with current data 
2 = passive analysis of other environmental variables 
3 = as 2, but with regressions 
4 = more ordination axes 
Range of valid answers: [0] 4 

The user can stop the program by pressing RETURN or ask for additional analyses using 
the current species data and covariables. In additional analyses, the answers concerning data 
transformation (Q 34 - Q 43) and covariables (Q 26 - Q 29) and the output files remain in force 
and are not presented again. 

After answering 1, the user can determine the overall statistical significance of the 
environmental variables (Q 51), delete environmental variables (Q 48), designate environmental 
variables as covariables (Q 47), or modify the type of analysis (Q 13 - Q 24). However, the user 
cannot switch between linear methods and unimodal methods and cannot delete samples or 
species. If there are no environmental variables, the program continues immediately with Q 13, 
or else with Q 47. 

After answering 2 or 3, CANOCO asks for a (new) set of environmental variables (with so-
called supplementary environmental variables) which are used to interpret the current ordination 
axes. By answering 3 the current sample scores (x'j) which are linear combinations of the 
previous set of environmental variables, are replaced by fitted values of the regression of the 
current sample scores (x; ) on the newly entered environmental variables. If the answer is a 2, 
then the current sample scores x'j and Xj remain unchanged. In either case, CANOCO will ask 
for a file name with environmental data (cf. Q 8), which environmental variables are to be 
deleted (Q 30), whether interactions are to be included (Q 33), which output is required and how 
to continue (Q 46). 

After answering 4, CANOCO asks how many additional axes you want (Q 50). 

Q 47 Enter numbers (not names) of environmental variables 
to be turned into covariables, one at a line. Press RETURN to continue 
Range of valid answers: [0] q 
q = highest identification number of the environmental variables 

This question, asked after Q 51 = 0 (no Monte Carlo test), allows you to create one or more 
covariables from the existing environmental variables without the need to specify a file with 
covariables. Any environmental variable specified here is removed from the list of 
environmental variables. If you have already specified covariable data, the variables specified 
here are placed after the existing covariables. 

Q 48 Enter numbers (not names) of environmental variables to be deleted 
One at a line. Press RETURN to continue 
Range of valid answers: [0] q 
q = highest identification number of the environmental variables 

This question, asked after Q 47, allows you to delete one or more environmental variables. 
Thereafter, CANOCO calculates a new ordination according to the current type of analysis using 
the remaining environmental variables, asks what output is required and how to continue (Q 46). 
If you do not delete any environmental variables, Q 51 appears in direct or hybrid gradient 
analyses and Q 13 in indirect gradient analyses. 
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7.15 Supplementary environmental variables 

Q 49 Type name of file with supplementary environmental variables 

This question appears after Q 46 = 2 or 3. See Q 10 and Q 46. Supplementary 
environmental variables are used to interpret the current ordination axes. Later on, they can be 
turned into active environmental variables so as to extract ordination axes which are linear 
combinations of them (i.e. to extract new canonical axes). 

7.16 More ordination axes 

Q 50 How many axes more? 
Range of valid answers: 1 [4] 

This question appears after Q 46 = 4. If you press RETURN here, CANOCO proceeds to 
calculate four extra ordination axes (i.e. axes 5 - 8, or after a second time, axes 9-12, and so on). 
In this process the current eigenvector sample scores are moved to the covariable data. 

Asking for one more ordination axis allows you to determine the significance of the second 
ordination axis of a direct gradient analysis. This works as follows. If you ask for one more 
ordination axis, CANOCO moves the current first ordination axis to the covariables. The new 
first axis will be the second axis of the original analysis. The significance of this new first axis 
can then be determined by Monte Carlo permutation (see Q 51). 

7.17 Monte Carlo permutation tests 

7.17.1 Introduction 

The statistical significance of the relation between the species and the whole set of 
environmental variables, given the covariables, can be evaluated using Monte Carlo permutation 
tests. A Monte Carlo permutation test is a test of statistical significance obtained by repeatedly 
shuffling (permuting) the samples. 

The validity of a permutation test hinges on the validity of the type of permutation for the 
particular research design at hand. For completely randomized designed experiments (Cox, 
1958), a completely random permutation is appropriate, whereas for a randomized block design 
the permutation must be within blocks. Data from line transects, time series, rectangular grids, 
repeated measurement studies (e.g. BACI-designs) require specialized permutation types. 
CANOCO can automatically generate valid permutation types for such data, when recorded at 
equal intervals. Since version 4.0, CANOCO can also generate permutations that are appropriate 
for split-plot designs, nested designs and related balanced multi-level designs. If your data 
require yet another type, you can provide permutations from an external file into CANOCO. For 
example, Legendre et al. (1990) propose, for one-way (M)ANOVA tests, a permutation type for 
data from an irregular grid. Permutations generated with their program COCOPAN can be fed 
into CANOCO. Permutation tests for time series data and spatial data, as performed by 
CANOCO, form a nonparametric way of overcoming the difficulty of statistical tests in the 
presence of autocorrelation or spatial correlation (Besag & Clifford, 1989: section 5; Ter Braak, 
1980: part II, chapter 3). They thus form a viable alternative for traditional parametric tests 
based on precise modeling of the autocorrelation structure. 
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We first describe the questions that are asked in all types of permutation tests (section 
7.17.2). This section also covers the permutation test that uses unrestricted permutations. In 
section 7.17.3 we describe block designs. By defining blocks, exchanges of samples from 
different blocks can be excluded. Blocks are specified by covariables. With blocks of equal size, 
the required permutations can sometimes be obtained without block-defining covariables by 
using the split-plot options (see Q 61). Sections 7.17.4 and 7.17.5 describe more advanced 
permutation types. The background theory of the permutations tests is described in section 3.7. 

7.17.2 Unrestricted permutation; common questions 

Q 51 *** Monte Carlo permutation test *** 
0 = no significance test 
1 = test of significance of first canonical axis 
2 = test of significance of all canonical axes together 
3 = both 1 and 2 

Range of valid answers: [0] 3 

This is the first question asked after Q 46= 1 (additional analyses) if there are environmental 
variables in the analysis. You can specify here whether you want to determine the statistical 
significance of the relation between the species and the whole set of environmental variables, 
given the covariables. Two test statistics are available: one based on the first canonical 
eigenvalue and one based on the sum of all canonical eigenvalues (the trace). The resulting tests 
determine the significance of the first ordination axis and that of all canonical axes together, 
respectively. 

By answering 1 or 3, the statistical significance of the first ordination axis is determined. 
The null hypothesis of the test is that, given any covariables, there is no relation between species 
and environment. The test statistic is an F-ratio of the first eigenvalue and the residual sum of 
squares. This test statistic has maximum power against the alternative hypothesis that there is 
a single dominating gradient that determines the relation between species and environment. This 
test statistic requires more computer time than the overall test. 

By answering 2 or 3, the statistical significance of the relation between the species and the 
set of environmental variables is determined. The null hypothesis of the test is the same as 
above, namely that, given any covariables, there is no relation between species and environment. 
The test statistic is an F-ratio of the sum of all canonical eigenvalues (which takes the role of the 
regression sum of squares) and the residual sum of squares. This test statistic yields an omnibus 
test, i.e. a test which is sensitive to all kinds of deviations from the null hypothesis. 

Q 52 *** Type of permutation *** 
0 = permutations read from file 
1 = unrestricted 
2 = restricted for split-plot designs, time series, lines and grids 
Range of valid answers: 0 [1] 2 

Unrestricted permutation (Q 52 = 1) is appropriate for completely randomized designs and 
for simple random sampling. It is also the default for studies without any additional structure. 
Restricted permutation types (Q 52 = 2) are appropriate for line transects, time series and 
rectangular grids, if recorded at equal intervals, and for balanced split-plot designs and related 
designs such as Before-After-Control-Impact (BACI) designs, repeated measurement designs, 
and many ANOVA designs with random (nested or crossed) factors. With covariables the 
question is more extended (Q 55) to allow for block designs. 
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If your data require yet another permutation type, you can feed permutations from an 
external file into CANOCO. After answering 0, the only other questions asked are Q 64 and Q 
54. 

Q 53 Type two integers (1-30000) as seeds for the random number sequence, 
on a single line or press RETURN for default seeds. 
Ranges of valid answers: 1 [23239] 30000, AND 1 [945] 

A Monte Carlo test needs pseudo-random numbers as input. To start a sequence of 
pseudo-random numbers, seeds are required. The default seeds are 23239 and 945. To get 
a different sequence of pseudo-random numbers one needs to specify other values. If more than 
one test is applied to the same data, it is prudent to specify different seeds for each test. 

Q 54 Type number of random p e rmu t a t i on s 
-number t o g e t p e rmu t a t i on under r educed model 

Range of v a l i d answers : -9999 [-199] 9999 

For a test at the 5%-significance level, minimally 19 permutations are required (the result is 
then significant if the test statistic for the data is larger than that for any of the 19 permutations, 
because 1/20 = 0.05). The power of the test increases with the number of permutations, but only 
slightly so beyond 199 permutations. As each extra permutation costs computer time, taking 
a number larger than 199 will not usually be worthwhile (see the discussion in Ter Braak 
&Wiertzl994). 

By typing a negative number of permutations (as in the default), residuals from the reduced 
model ("null model") are permuted. By typing a positive number, residuals from the full model 
are permuted. The reduced model is the current model for the species data with the variables for 
testing being excluded, whereas in the full model the variables for testing are included. In these 
definitions, the current model contains the covariables (if any) and, in forward selection, the 
environmental variables that have already been selected. 

The reduced model method better maintains the type I error in small data sets. Without 
covariables, the method yields the exact Monte Carlo significance level (Hope 1968). The full-
model method gives slightly lower type II error. Recent research shows that there is little reason 
to change the default which permutes the residuals of the reduced model (Anderson & Legendre, 
1999). 

7.17.3 Specifying blocks 

Q 55 *** Type of permutation *** 
0 = permutations read from file 
1 = unrestricted 
2 = restricted for split-plot designs, time series, lines and grids 
3 = unrestricted (as 1) within blocks 
4 = restricted (as 2) within blocks 
Range of valid answers: 0 [1] 4 

This question is the extended form of Q 52 and is asked when there are covariables in the 
analysis. In experimental designs with blocks or sampling designs with strata, exchanges of 
samples between the blocks or the strata must be excluded. This can be achieved by answering 3 
or 4 here and defining blocks by covariables in the next question. If samples are taken in a 
number of different locations, defining locations as blocks provides a test for common within-
location variation. 
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For blocks of equal size, the required permutations can sometimes be obtained without 
block-defining covariables. Try option 2 (split-plot design) for this. See the project file 
mimicblc.con in the subdirectory ..\SAMPLES\PERMUTIO\PLOUGH (section 8.3.2). 

Q 56 *** Specification of blocks *** 
Enter number (not names) of covariables that define blocks, 
one at a line. Press RETURN to continue 
Range of valid answers: [0] 10 

Blocks are groups of samples. Usually each block is indicated by one particular dummy 
covariable that has the value 1 for samples that belong to the block and the value 0 for other 
samples. You must indicate here which covariables define the blocks. If the covariable 
indicating the last block is entered, CANOCO will report that this variable is not in the 
covariable data, even if explicitly entered as such. The reason is that a covariable that is collinear 
with the previous ones, is deleted by CANOCO. See section 6.2.2. With three blocks indicated 
by the variables with identification numbers 11, 12 and 13, for example, CANOCO reports 
nothing special after entering 11 and 12, but after entering 13, CANOCO reports: 

Covariable 13 is not in the covariable data. 
It may have been deleted by CANOCO as being collinear. 
Please try again or press RETURN to continue. 
Range of valid answers: [0] p 
p = highest identification number of the covariables 

Simply pressing RETURN to continue is all that is needed. From the covariables that you 
specified, CANOCO determines which samples belong to each block and reports the result in 
the print file. 

If there are more covariables than the ones indicating blocks, the block covariables must 
come first. This can always be achieved by selecting the block covariables before the remaining 
ones in Q 28 after answering Q 26 = 1. See the project file e40_np.con in the subdirectory 
..\SAMPLES\PERMUTIO\E40 (section 8.3.3). 

If you specify a quantitative variable to indicate blocks, each different value of the variable 
will yield a block (which may not be what you intended!). In general, the samples of a block 
have a unique combination of values on the block-defining covariables. 

7.17.4 Restricted permutation types 

Q 57 *** Type of restricted permutation *** 
1 = time series or line transects (cyclic shifts) 
2 = rectangular spatial grids (toroidal shifts) 
3 = split-plot designs (whole plots with linked split-plots) 
Type -1 or -2 to disable random shift of mirror image 
Range of valid answers: -2 [1] 3 

This question appears after Q 52 = 2 and after Q 55 = 2 or 4. You can specify here whether 
your data are from a line transect / time series (Q 57= 1), a rectangular grid (Q 57 = 2), or 
a split-plot design (Q 57= 3). If you have multiple transects (or series or grid) of equal 
dimension, you may also select here the split-plot design option, which encompasses the other 
options. With the split-plot design you can test for split-plot factors (e.g. within-transect 
variation) as well as for whole-plot factors (e.g. between-transect variation). With the split-plot 
design, you can also analyze Before-After-Control-Impact (BACI) designs, repeated 
measurement designs, and many ANOVA designs with random (nested or crossed) factors. 
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The permutations for series/transects or grids are cyclic or toroidal shifts. It is rarely needed, 
but you may disable shifts from the mirror image of the series/transect or grid by typing 
a negative number. 

For the background theory see Section 3.7. 

Q 58 Type number of rows of the rectangular grid 
Range of valid answers: 1 [2] ng 
ng = number of active samples 

This question is asked after Q 57 = 2 or -2. Rows and columns of the grid are not arbitrary 
entities in CANOCO: a row consists of samples that are consecutive in the data file. For 
example, if you specify that your grid has 4 rows and 14 columns, then CANOCO assumes that 
the first 14 units (samples or whole-plots) in the data file form the first row, the next 14 the 
second row, etc. In contrast, if you specify that your grid has 14 rows and 4 columns, then 
CANOCO assumes that the first 4 units (samples or whole-plots) in the data file form the first 
row, the next 4 the second row, etc. You can check in the print file under "Sample arrangement 
in the permutation test" whether CANOCO interpreted your specification as intended. 

Q 59 Type number of split-plots per whole-plot 
Range of valid answers: 1 [2] ng 
ng = number of active samples 

This question is asked after Q 57 = 3. A split-plot design is a hierarchical design with two 
levels of units: whole-plots containing split-plots. Split-plots are the lowest level sampling units, 
i.e. the samples in your data file. Examples are samples-within-estuaries, plots-within-stands, 
plots-along-transects, relevés-within-time-series (in a permanent plots study). You must specify 
here the number of samples per whole-plot. CANOCO will answer, for example, 

10 whole plots detected with 2 split-plots each 

Q 60 Split-plots per whole-plot are found in the data file by the rule: 
take K, skip L. 
In the default ( 1 0) split-plots are contiguous, within blocks if present 
Ranges of valid answers: [1] 2 , AND [0] 10 

This question is asked after Q 59. You can specify here how the samples forming a whole-
plot are arranged in the data file. If the samples of a whole-plot are consecutive in the data file, 
you can apply the default rule (take 1 sample, skip next 0 samples), because no samples need to 
be skipped. For example, if in a permanent plot study, the vegetation of 50 locations is 
monitored at 20 points in time, locations are whole-plots and relevés (samples) split-plots. In the 
data file, the samples may be arranged by locations or by times. Arrangement by locations 
means that all the data of a single location are consecutive in the data file, so that the default rule 
applies. (The rule 'take 20 samples, skip 0' would work as well). Arrangement by times means 
that all data of a single time point are consecutive in the data file. With a standard order of 
locations within times, the data of each location are found by the rule 'take 1 sample, skip the 
next 19 samples'. 

Here is an example which would require you to specify a take number other than the 
default. Let the whole-plots A, B, and C consist of 6 samples each and let the samples happen to 
be arranged as AABBCC AABBCC AABBCC in the data file. Then, the rule take 2, skip 4 
correctly specifies the whole-plots. Such data arrangements occur naturally in ANOVA designs 
with random crossed factors. 
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Q 61 *** Type of permutation for whole-plots *** 
0 = none (mimics blocks without covariables) 
1 = time series or line transects (cyclic shifts) 
2 = rectangular spatial grids (toroidal shifts) 
3 = exchangeable (unrestricted ) 
Type -1 or -2 to disable random shift of mirror image 
Range of valid answers: -2 [3] 

Having defined what whole-plots are (Q 59 and Q 60), you can specify here how the whole-plots 
must be permuted. The next question asks how split-plots must be permuted. Blocks can be 
emulated (without the need of block-defining covariables) by not permuting whole-plots. By this 
choice (Q 61 = 0), split-plot factors can be tested (a split-plot factor is a variable or set of 
variables that varies within whole-plots). To test for a whole-plot factor (a whole-plot factor is 
a variable or set of variables that varies between whole-plots), whole-plots must be permuted. In 
the standard split-plot design, whole-plots are exchangeable and can be randomly permuted (Q 
61 =3 ) , whereas split-plots are not permuted. The whole-plots may themselves form a time 
series, a line transect or a grid, so that random permutations may not be appropriate. For such 
cases, CANOCO can limit the permutations to cyclic or toroidal shifts. It is rarely needed, but 
you may disable shifts from the mirror image of the series/transect or grid by typing a negative 
number. After answering ±2 (grids), CANOCO asks for the number of rows of the grid of 
whole-plots as in Q 58. 

Q 62 *** Type of permutation for split-plots *** 
0 = none (held together ) 

INDEPENDENT ACROSS WHOLE PLOTS 
1 = time series or line transects (cyclic shifts) 
2 = rectangular spatial grids (toroidal shifts) 
3 = exchangeable (mimics plots in blocks) 

DEPENDENT ACROSS WHOLE PLOTS 
4 = time series or line transects (cyclic shifts) 
5 = rectangular spatial grids (toroidal shifts) 
6 = exchangeable 
Type -1, -2, -4 or -5 to disable random shift of mirror image 
Range of valid answers: -5 [0] 6 

Having defined how whole-plots must be permuted (Q 61), you can specify here how the 
split-plots must permuted. To test for a whole-plot factor in a standard split-plot design, split-
plots are kept together (no permutation). To test for a split-plot factor in a standard split-plot 
design, each whole-plot acts as a block: no permutation of whole-plots, and random 
permutations within whole-plots. The appropriate answer to Q 62 is then 3. If your 
environmental variables vary little or not at all within whole-plots, the test will never show 
significant effects. 

If the split-plots form a time series, a line transect, or a spatial grid, the split-plot 
permutations can be restricted to cyclic or toroidal shifts so as to account for autocorrelation 
among split-plots. If the split-plots form parallel time series and time is an autocorrelated error 
component affecting all series, the same shift should be applied to all time series. This is 
specified by using the "dependent across whole-plots" options (Q 62 = 4, 5 or 6). After 
answering ±2 or ±5 (grids), CANOCO asks for the number of rows of the grid of split-plots per 
whole-plot as in Q 58. It is rarely needed, but you may disable shifts from the mirror image of 
the series/transect or grid by typing a negative number. 

Many designs can be analyzed in the split-plot framework. Section 8.3 gives examples of 
specifying tests in repeated measurement designs, ANOVA with random nested and crossed 
factors and the BACI design. 
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7.17.5 Restricted permutation types within blocks 

This section describes the question after you asked for restricted permutation for line 
transects, grids or split-plots within blocks (Q 55 = 4). If you asked for permutations for time 
series or line transects (Q 57 = +1), CANOCO assumes that each block consists of a time series 
or line transect, and immediately lists which samples belong to each block. It is therefore 
essential that the samples are in their natural order in the data file within each block. On the 
other hand, if you asked for permutations for grids or split-plot designs (Q 57 = ± 2 or 3), 
CANOCO reports on the screen the samples that belong to the first block only. For example, 
CANOCO reports 

Block 1 contains the samples numbered: 
1 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 
21 22 23 24 

With grids, these samples form a grid and CANOCO asks for the number of rows of the 
grid as in Q 58. For the split-plot design, these samples are the split-plots of a smaller number of 
whole-plots and CANOCO asks for the number of split-plots per whole-plot (Q 59), for the rule 
to find the samples of each whole-plot (Q 60), and how whole-plots and split-plots must be 
permuted (Q 61 and Q 62). CANOCO then lists the samples that belong to block 2, for example, 

Block 2 contains the samples numbered: 
25 26 27 28 29 30 31 32 33 34 
35 36 37 38 39 40 41 42 43 44 
45 46 47 48 

and asks whether this and later blocks have the same layout: 

Q 63 Type 1 if this and later blocks have the same layout 
else press RETURN 

Range of valid answers: [0] 1 

If you answer 1 in response to Q 63, CANOCO assumes, for grids, that the grids in this and 
subsequent blocks have the same number of rows and, in split-plots designs, that the design of 
this and later blocks is the same as for the previous one. If you press RETURN instead, 
CANOCO asks the same question as for block 1 (the number of rows of the grid or the details of 
the split-plot design in this block), again followed by Q 63. 

CANOCO uses the convention that sample 1 is always in block 1 ; the second block starts 
with the next higher sample number that is not in block 1, etc. 

Q 64 Type name of file with permutations 

After Q 52 = 0 or Q 55 = 0, CANOCO asks for the file with the permutations, which must 
be a text only file. A very small example file is given in Table 7.3 The example file specifies 
three permutations of the numbers 1, ... , 20 and can be used in conjunction with the Dune 
meadow files dunespe.dta and duneenv.dta. The numbers can be in free format, each one 
permutation starting at a new line. The numbers are not sample identification numbers, but 
sequential numbers for the 20 active samples. The numbers 18, 19 and 20 thus refer to Sample 
18, Sample 19 and Sample 20 (see Table 16.2). In general, if there are n active samples, the 
numbers 1 to n must be permuted. The numbers correspond to the first n samples listed in the 
samples scores in the solution file (even if these samples have other identifying numbers). To 
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avoid confusion it is safest to make sample numbers consecutive. It is not permitted to specify a 
bootstrap sample from the numbers 1 to n; the CANOCO algorithm does not allow this. 
CANOCO will detect an error if the values read do not form a permutation. Another example is 
given in project file permfile.con in the directory ..\SAMPLES\PERMUTI0\BACI1SPE (section 
8.3.7). 

Table 7.3 Example permutation file: three permutations of the numbers 1,..., 20. 

9 18 4 5 
8 3 10 13 

16 15 20 14 
6 19 7 17 
2 11 12 1 

18 9 5 4 
8 3 10 13 

16 15 20 14 
6 19 7 17 

2 11 12 1 
9 18 4 5 
3 8 13 10 

16 15 20 14 
6 19 7 17 
2 11 12 1 

After you specified the file with permutations, CANOCO asks: 

Q 65 Type number of random permutations 
-number to get permutation under null model 

Range of valid answers: -9999 [-199] 9999 

CANOCO simply uses the permutations specified in file, despite the adjective "random" in 
the phrasing of the question. As in Q 54, CANOCO can either permute residuals from the 
reduced model or from the full model. In the example file there are 3 permutations; so, possible 
answers are 3 or-3. 

In forward selection, the file with permutations should contain sufficient permutations for 
each variable tested. For example, if 5 tests are carried with 200 permutations in each test, the 
file should contain at least 1000 permutations. 

7.18 Forward selection dialogue 

Q 66 **** Start of forward selection of variables **** 

*** Monte Carlo permutation test *** 
0 = no significance test 
1 = significance test 

Range of valid answers: [0] 1 

If you asked for forward selection (Q 20 = 1), CANOCO first asks whether you wish to use 
Monte Carlo permutation tests at any stage during the selection process. If so, CANOCO asks 
for the type of permutation using the same sequence of questions as in the previous section (Q 
52 - Q 64), except for the number of permutations (Q 54). The number of permutations (Q 54) 
can be specified each time you ask to test a particular environmental variable. 
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At each step of the selection process, CANOCO gives a list of the environmental variables 
that are available for selection in order of the extra variance each one would explain if added to 
the model, followed by question Q 67, described below. For example: 
Variance explained 

" 
N 
1 
6 
8 
9 
5 
4 
7 

10 
3 

' 
Name 

Al 
Pasture 
BF 
HF 
Haypastu 
Hayfield 
SF 
NM 
Manure 

by the 
" 

Extra fit 
.03 
.03 
.04 
.07 
.07 
.07 
.12 
.14 
.14 

variables selected: 
all variables : 

.22 

.63 

Q 67 Type number of variable to be selected 
" -number to test the variable 

-999 to test the best variable 
" 0 to stop forward selection 

Range of valid answers: -999 [3] 10 

The second and third lines of the question are missing if you did not want Monte Carlo 
permutation tests during forward selection (Q 66 = 0). By pressing RETURN, CANOCO would 
add the best variable at this step of the selection process, but you may decide otherwise by 
typing the number of another variable. If you answer, for example, -3, then CANOCO will 
determine the statistical significance of variable 3 (Manure) by carrying out a Monte Carlo 
permutation test. For each test you can specify the number of permutations to be carried out. The 
progress of the test can be followed on the screen and the test result is reported, for example 

P-value .100 (variable 3; F-ratio= 1.93; number of permutations= -199) 

After this, question Q 67 is repeated, so that you are free to include the variable you just 
tested, to test or include any other variable, or to stop the selection process. See section 6.2.7 for 
an example run and the meaning of the statistics reported by CANOCO. 

7.19 Canoco project files 

CANOCO logs the dialog at the screen in the file CANOCO.CON in the working folder. 
Table 7.4 shows the CANOCO.CON file from the example CCA on the Dune meadow data, the 
output of which forms the example in the Results chapter (the lines with file names are 
shortened for ease of display). The CON-project file can be used to automate further analyses of 
the same kind. If you want to use the CON-project file yourself with the console version of 
CANOCO, make sure that you rename CANOCO.CON first, for example to MYCCA.CON. 
The reason of this is that CANOCO creates a new CANOCO.CON in each analysis, overwriting 
any existing file ofthat name. 

Canoco for Windows uses CON-project files to specify and modify the ordination analysis. 
Most project files can be used with both Canoco for Windows and with the console version 
CANOCO.EXE. Projects from Canoco for Windows using manual forward selection cannot be 
run with the console version. Projects made with the console version that use features that are 
not in Canoco for Windows (see section 7.1.1) cannot be opened in Canoco for Windows. 

You can the edit the CON-project file with Notepad or another editor, or word processor. (If 
you use a word processor, make sure you save the file as a text-only or DOS-text file). For 
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example, you may wish to reran the analysis with downweighting of species. For this change, 
the "0" in "0 = weighting of species" to a " 1 " (Q 41). 

The CON-project file, e.g. MYCCA.CON, can be used in two ways 

• Enter the file MYCCA.CON at Q 2 

• Run the file from the command-line with the piping symbols "<" and ">". Examples are: 

1. prompt> CANOCO < MYCCA.CON 

2. prompt> CANOCO < MYCCA.CON >MYCCA.SCR 

3. prompt> CANOCO < MYCCA.CON >NUL 
In the first example, the usual screen dialog flashes again across the screen, in the second 

example, it is logged to the file MYCCA.SCR, whereas in the last example the screen dialog is 
lost. In all cases the results of the analysis are written to the print file, the solution file and the 
species-environment table (see Chapter 6). 

Entering the file at Q 2 is similar to the first piping example, but allows you to continue the 
analysis interactively when the CON-project file is incomplete. The standard CON-file produced 
by the console version of CANOCO is always incomplete, because it does not contain a line to 
end the analysis (Q 46 = 0: Stop, Table 7.4). This feature allows you to continue the analysis 
interactively. If you wish to use this feature with a CON-project file produced by Canoco for 
Windows, you must remove the last line from the file, including the new line character (remove 
the last two lines, to be sure). 
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Table 7.4 Example CANOCO.CON file with added question numbers. 

Question Answer = annotation 
2 = DO NOT CHANGE THIS LINE 

Q 1: 1 = long dialogue? 
Q 4: 0 = changing maximum sizes? 
Q 8: dunespe.dta = file with species data 
Q 9: S = file with covariables 
Q 10: duneenv.dta = file with environmental data 
Q 11: CANOCO.OUT = print file 
Q 12: CANOCO.SOL = solution file for CanoDraw 
Q 13: 5 = analysis number 
Q 20: 0 = forward selection? 
Q 22: 2 = scaling of sample and species scores? 
Q 23: 3 = spec and sample diagnostics 
Q 25: 0 = sample number to be omitted 
Q 30: 0 = select/delete of environmental variables 
Q 33: 0 0 product of environmental variables 
Q 34 : 0 = transformation of species data 
Q 37: .01000 = weight for species ( noweight=l) 
Q 38: 31 = species given nonstandard weight 
Q 38: -33 = species given nonstandard weight 
Q 38: 0 = species given nonstandard weight 
Q 37: 1.00000 = weight for species ( noweight=l) 
Q 39: 1.00000 = weight for samples ( noweight=l) 
Q 41: 0 = weighting of species? 
Q 44: 4 = output of correlations? 
Q 4 5 : 2 2 2 2 2 2 2 2 = ordination output 
Q 46: 1 = stop, more analyses, other env. data? 
Q 51: 3 = Monte Carlo permutation test? 
Q 52: 1 = type of permutation 
Q 53: 23239 945 = seeds for random numbers 
Q 54: -199 = number of permutations 

7.20 Nonstandard analyses 

A nonstandard analysis may be obtained by typing the number 10 in response to Q 13. The 
user is warned that the program has not been tested with as much regard for nonstandard 
analyses compared to standard analyses, and that the nonstandard analyses do not have a secure 
theoretical basis. There is no user-support for this option. In a nonstandard analysis the user is 
allowed to combine options in a nonstandard way. For example, the question about nonlinear 
rescaling (Q 17) is posed normally only when detrending-by-segments is in force, but in 
a nonstandard analysis this question is posed for all unimodal methods. In this way the user may 
specify an analysis in which nonlinear rescaling of axes is used in combination with 
detrending-by-polynomials or without detrending. (In DECORANA the rescaling question was 
also posed in basic correspondence analysis, but had no effect.) Nonlinear rescaling of axes is 
also possible in CCA and DCCA, but its use is somewhat illogical: the optimal linear 
combinations of environmental variables are searched for, but after these combinations have 
been determined, they are modified by the nonlinear rescaling of axes, so destroying their 
optimality property. 

The only additional question in a nonstandard analysis, which is posed immediately after Q 
13 is: 
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Q 68: Type values of ITY, NEIGZ, IORD, JORD (NO DEFAULTS SUPPLIED!) 

ITY: Allowed values are -100, -4, -3, -2, -1 , 0, 1, 2, 3, 4. The sign of ITY discriminates between 
linear methods (ITY < 0) and weighted averaging methods (ITY > 0). The absolute value 
of ITY determines the order of the polynomial used for detrending. The usual 
orthogonalization procedures in PCA and CA are thus in force if ITY = -1 and 1, 
respectively. The values ITY = 0 and -100 have a special meaning: if ITY = 0, then 
detrending-by-segments is in force; ITY = -100 corresponds to the option in Q 42 
requiring no centring by species. 

NEIGZ: Allowed values are 0, 1,2, 3, 4. Type 0 for an indirect gradient analysis, 4 for a direct 
gradient analysis, and 1, 2 or 3 for a hybrid analysis (cf. Q 14). 

IORD: Allowed values are 0 and 1. Type 1 to replace the samples scores in each step of the 
iterative ordination algorithm by their rank number, else type 0. For technical reasons, 
IORD = 1 should not be used in conjunction with detrending-by-segments. 

JORD: Allowed values are 0 and 1. Type 1 to replace the species scores in each step of the 
iterative ordination algorithm by their rank number, else type 0. For technical reasons, 
JORD = 1 should only be used if the species are numbered consecutively; it should not be 
used if some species numbers are absent from the data. 

The major additional possibility in nonstandard analysis is thus to modify the iterative ordination 
algorithm so that at each iteration the species scores and/or the site scores are replaced by rank 
numbers. This modification is described by Ihm & Van Groenewoud (1984: p. 29-30) under the 
name "reciprocal ranking". This procedure is a heuristic way to circumvent the problem that CA 
is sensitive to the occurrence of deviant samples and rare species in the data set (Jongman et al. 
1987: section 5.2.6). For solving this problem, ranking of either sample scores or species scores 
will be sufficient in most cases. It may be more appealing to rank species scores than to rank 
sample scores: ranking of species scores imposes upon the solution a species packing model in 
which the species optima are equally spaced (cf. Hill & Gauch, 1980: p. 49). 

I do not know whether the reciprocal ranking algorithm gives unique species and samples 
scores, irrespective of the initial scores. To lessen this possible dependency on initial scores, 
ranking of scores is performed after two iterations of the iterative ordination algorithm starting 
from the usual initial scores. (Note that one iteration of this algorithm as implemented in 
CANOCO involves 4 passes of the data.) For technical reasons, the reciprocal ranking algorithm 
usually does not converge in 15 iterations; nevertheless the final scores are precise enough for 
most practical purposes. The final iteration is performed without ranking. If IORD or JORD is 
equal to 1, then it is implied that the sample scores are derived from the species scores (Q 21/Q 
22= 1). As a consequence, the final scores satisfy the equations (6.20), (6.21), (6.28) and (6.29) 
with a = 1. However, the species scores are not a simple function of the samples scores; the 
equations (6.10) and (6.11) do not hold. In linear methods the mean square of the sample scores 
is set to 1 (cf. (6.21)). In weighted averaging methods the sample and species scores are scaled 
in SD-units, either by nonlinear rescaling of axes or by using equation (6.15). 

Q 68 also allows detrending-by-polynomials to be used in linear methods. This use is, 
however, not supported by theory and therefore not recommended: linear methods applied to 
data arising from unimodal models produce a "horseshoe" which scrambles the order of samples 
along the first axis. In contrast, the "arch" produced by weighted averaging methods does not 
scramble the order of samples along the first axis. 
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8. Canoco examples 

8.1 Introduction 

This chapter gives a number of examples of the use of CANOCO 4.5 and Canoco for 
Windows. The data files and project files of examples are placed in four subdirectories of the 
directory C:\CANOCO\SAMPLES where C:\CANOCO is the name of the directory where you 
installed CANOCO. The four directories are 

• UNIMODAL with examples from the "Unimodal Models to Relate Species to 
Environment" booklet 

• PERMUTIO with examples of permutation tests and the decomposition of variance 

• METHODS with examples of other methods that are also available in CANOCO 

• PROJECTS with default project files for most methods that are available in CANOCO 
Each example has a readme.txt file with references to the original authors of the data. We 

are grateful to these authors for making their data available for users of CANOCO. The 
copyrights remain with the original authors. 

The directory C:\CANOCO\PROJECTS is mainly for users of the console version of 
CANOCO. It contains default project files for most methods that are available in CANOCO. 
The names of the different projects are explained in the readme file in the directory. 

For maximum compatibility across different computer platforms, the names of files all use 
the MS-DOS 8.3 convention. This leads to somewhat cryptic names, but we tried to be as 
informative as possible (Table 8.1). All data files that can be analyzed with Canoco for 
Windows have the extension DTA. The project files all have the extension CON. If analyzed, 
the project gives a solution file with the same name and extension SOL. The content of the log-
window (the output file) is in the same directory using the project name with the extension LOG. 

Each example data set starts with a short description of the problem being addressed, the 
data source, what is illustrated, followed by a list of files names with a description of their 
content or purpose. The example data sets are numbered within the first three main groups 
mentioned above. 

Note that the CanoDraw for Windows documentation uses some of the examples 
discussed in this chapter for illustration of the various aspects of visualizing ordination 
results (Chapter 14 of this manual). 
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Table 8.1 Naming convention of files in the examples. 
(*ANA* = type of analysis, e.g. CCA, prefixed or postfixed with extra information 

indicating a serial number, organism or experimental design; ORGANISM: type of 
organism, e.g. ALGAE). 

File type 

Project file 

Species data 

Environmental 
data 

Covariable data 

Solution file 

Log file 

Typical names 

*ANA* 

species 

ORGANISM 

environm 

explanat 

design 

as Environment 

*ANA* 

*ANA* 

Extension 

con 

dta 

dta 

dta 

dta 

dta 

dta 

sol 

log 

8.1.1 How to analyze the examples 

Search for the project file of the example with the Windows Explorer (available either in the 
Start / Programs submenu, or in Start / Programs / Accessories submenu, depending on 
operating system version). Double click the project file to launch Canoco for Windows with the 
project file, then click, in the Project View, the Options button, to view and/or modify the 
options of the project, or immediately the Analyze button. Alternatively, launch Canoco for 
Windows, click the Open button and Browse to the directory with the example project. In order 
not to overwrite existing project files, also click the Save as button and enter a new project 
name, e.g. test. 

On all platforms, open a Prompt-Box (DOS-, Console or Command Box), go to the 
subdirectory where the example file is and invoke either Canoco for Windows (e.g. type 
C:\CANOCO\CANOWIN) or the console version of CANOCO by typing 
C:\CANOCO\CANOCO. With the console version you may also try to use the redirection 
symbols "<" and ">": 

C:\CANOCO\CANOCO.EXE < project.con > project.scr 

After the analysis is completed, the file CANOCO.OUT gives what is in the log-window in 
CANOCO for Windows. 

Most project files can be used with both Canoco for Windows and with the console version 
CANOCO.EXE. It is clearly indicated if a project runs with the console version only. Projects 
from Canoco for Windows using manual forward selection cannot be run with the console 
version. 
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'** To see in Canoco tor Windows which species, samples, environmental variables or 
covariahlcs are being analyzed in the examples, open an example project, click Options 
and, in the Setup Wizard sequence, check the Delete boxes of the Data Editing Choices. 
Canoco for Windows then lists the available species, samples, co\ariables and 
environmental variables. You do not need to actually delete any item, nor do you need to 
uncheck the Delete boxes. 

ty° For the best looking automatic plots in CanoDraw, choose in Canoco for W indows 
"Focus scaling on inter-species correlations" with species scores "divided by Iheir standard 
deviation" or, in unimodal methods, on "inter-species distances" with "biplot scaling". If 
you are satisfied with the analysis, rethink about the scaling and, if needed, adapt the 
scaling in Canoco for Windows and manually optimize the plots in CanoDraw using the 
View/Diagram Settings / Properties I /Show resettling coefficients... option. 

'::r' To inspect the values in a solution tile and to make simple scatter plots, import the 
solution file into a spreadsheet program as a tab-delimited (Windows) ASCII text file. 
Scatter plots are not automatically correct ordination diagrams, however; the aspect-ratio 
must be changed so that axes are isotropic (equal scales). 

8.2 Examples from "Unimodal models to relate species to 
environment" re-analyzed 

The examples in this section show how to reproduce some of the analyses that are published 
in the booklet "Unimodal models to relate species to environment" (Ter Braak, 1996). The pages 
where the example is discussed are indicated as "Booklet: page numbers". Many examples lend 
themselves naturally to further analysis and these are done, where appropriate, in subsequent 
subsections. 

Some of the examples include permutation tests to determine the statistical significance of 
the environmental variables (e.g. section 8.2.3) and/or of the ordination axes of a canonical 
analysis (sections 8.2.4.2 and 8.2.4.3). Permutation testing is further illustrated in a series of 
examples, from simple to advanced, in section 8.3. 

Canoco Examples Page 223 



Table 8.2 List of examples in Unimodal models (n.a. = not available). 

Pages Directory Description 
pp 54-55: SPIDER1 

pp 63-67: SPIDER2 

pp 67-68: DYKE 

pp 68-69: ALGAE 

pp 78-79: DUNEBOOK 

pp79: 

pp79: 

pp 120: 

WEEDS 

SEASHORE 

pp 88-89: n.a. 

pp 116-117: n.a. 

pp 118-120: n.a. 

DUNEBOOK 

pp 122-123: n.a 

pp 140, 149: EPIALGAE 

pp 145-148: DUNEBOOK 

pp 156-175: STREAMS 

pp 189-198: VEGCHANG 

pp 201-216: n.a. 

pp 201-216: n.a. 
pp 229-234: n.a. 

DCA on Spider data (n = 100 samples, m = 12 species, environmental 
data for 28 samples) of Van der Aart & Smeenk-Enserink (1975). 
Indirect environmental gradient analysis and niche study. 
CCA on Spider data (n = 28 samples, m = 12 species, q = 6 - 26 
environmental variables) of Van der Aart & Smeenk-Enserink (1975). 
Environmental gradient and niche study. 
CCA on Dyke vegetation (n = 125 samples, m = 133 plant species; q = 6 
environmental variables) of De Lange (1972). Environmental gradients 
study. 
CCA and DCCA on algae data (n = 25 samples, m =34 algae taxa, q = 7 
environmental variables) of Fricke & Steubing (1984). Pollution 
gradient. 
CCA on Dune Meadow data (n = 20 samples, m = 30 species, q = 8 
environmental variables) of Batterink & Wijffels (report). Observational 
effects of management regimes on vegetation. 
CCA on Arable weeds (n = 96 samples, m =13 species, q = 2 
environmental variables) of Post (unpublished). Spatial gradient in weed 
composition. 
CCA on sea-shore data (n = 63 samples, m = 68 species, q = 2 
environmental variables) of Cramer & Hytteborn (1987). See also 
Jongman et al. (1987: pp 167-168). The samples are along four transects. 
Succession study. Inference of environmental change. 
Partial CCA on diatoms (n = 402 samples, m = 330 species, q = 24 
environmental variables, p = 2 covariables) of Smit (1988). Pollution 
gradient adjusted for sampling and other background variation. 
PCA on diatoms (n = 57 samples in 16 pools, m = 24 species) of Van 
Dam, Suurmond & Ter Braak (1981). Acidification study. Change in 
diversity of diatom assemblages with time. Also data exploration. 
DCA on bird species (n = 526 samples, m = 51 species) of Opdam, 
Kalkhoven & Philippona (1984). Gradients in landscape ecological 
context. 
RDA on Dune Meadow data (n = 20 samples, m = 30 species, q = 3 
environmental variables) of Batterink & Wijffels (report). 
Environmental gradient study. 
Hybrid CCA on tropical forest data (n = 40 samples of which 16 
supplementary samples, m = 285 species, q = 3 environmental variables) 
of Purata (1986). Succession study. Passive samples. 
CCA on algae data (n = 198 samples, m =181 species, q = 29 
environmental dummy variables) of Snoeijs & Prentice (1989). Effect of 
temperature increase on diatom assemblages. CCA on two nominal 
variables coding for 18 sites and 11 months, with 2 supplementary 
environmental variables. 
RDA on Dune Meadow data (n = 20 samples, m = 30 species, q = 8 
environmental variables) of Batterink & Wijffels (report). Observational 
effects of management regimes on vegetation. 
Partial CCA on macro-invertebrate data (n = 40 samples, m = 197 
species, q < 21 environmental variables, p = 5 covariables) of Higler & 
Repko (1981). Land-use effects on macro-invertebrates, adjusted for 
sampling season. Forward selection of variables. 
RDA on vegetation data (n = 40 samples, m = 106 species, q = 2 
environmental variables) of Ter Braak & Wiertz (1994). What causes the 
vegetation change? Sample on a 4 x 5 grid, sampled twice. 
Environmental inference from species data (change model). Monte Carlo 
permutation tests. 
partial RDA of a designed BACI experiment (n = 84 samples, m = 17 
species, q = 1 environmental variable, p = 19 covariables) of 
Verdonschot & Ter Braak (1994). Before-After-Control-Impact design 
in 12 ditches sampled 3 times Before and 4 times After the Impact (an 
insecticide applied in 4 different doses). 
RDA of a completely randomized experiment (n =??) 
Canonical Correlation analysis on political data. Correlation and 
Regression biplots. 
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pp 239-256: DISEASES RDA and partial RDA on regional mortality ratios of 11 diseases (n = 39 
samples, m = 11 species, p > 15 environmental variables) of Kunst et al. 
(1990). Effect of socio-economic status on causes of death. Regression 
biplots. 
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8.2.1 Example SPIDER1 - A niche study by CA and DCA 

Problem: 

Data: 

Booklet: 

Directory: 

Illustration of: 

Determination of the niches of hunting spiders in a dune area 

Van der Aart & Smeek-Enserink (1975) 

pp 54-55 

\CANOCO\S AMPLES\UNIMODAL\SPIDER 1 

• DCA interpretation. 

• How to plot a species response curve against an ordination 
axis using CanoDraw. 

• How to interpret an indirect gradient analysis with 
CANOCO if there are many samples without environmental 
data. 

• How CANOCO links samples in different files. 

• How to relate the ordination axes of different analyses. 

Files Name Description 
Species 
Environmental 

Derived 

Project 

spidelOO.dta counts of 12 hunting spiders in 100 pitfalls in a dune area 
soilveg.dta data for 26 variables on soil and vegetation around 28 of the pitfalls 
soilvgln.dta In-transformed soil and vegetation variables for 28 pitfalls 
dcalOO.dta sample scores on the DCA axes, derived in project spidedca.con from the 

spider counts 
spidca.con CA of spider counts (100 active samples) 
spiddca.con DCA of spider counts ( 100 active samples) 
indirect.con regression of the first axis of the DCA on the soil and vegetation 

variables (28 active samples) 
indiforw.con as indirect.con but using forward selection 
dca28.con DCA of spider counts with environmental data, yielding a DCA of 28 

pitfalls only (28 active samples) 
dca28100.con DCA of spider counts with environmental data, relating the two DCA 

analyses for the 28 pitfalls 
spid cca.con CCA of spider counts on 6 soil and vegetation variables (28 active 

pitfalls) 

8.2.1.1 SPIDER1 : CA with arch effect and DCA with species response curves 

In Unimodal Models; page 54, the spider counts are first analyzed by correspondence 
analysis (CA). The analysis can be carried out with the project file spidca.con. After opening 
this project file and clicking Analyze..., the eigenvalues of the analysis appear in the log-
window of the project. The first two eigenvalues are .65 and .42. The ordination diagram with 
the sample scores can be obtained by invoking CanoDraw. For this, switch back to the Project 
View using the F3 shortcut key or the Switch button on the toolbar and then click CanoDraw. 
When CanoDraw has started, save the new CanoDraw project under suggested name and select 
the Create / Scatter Plots / Samples menu command. The diagram shows an approximate 
quadratic relation between the sample scores of the second, vertical axis and those on the first, 
horizontal axis (arch effect). This arch is removed in detrended correspondence analysis (DCA). 
Switch back to your CANOCO project. To obtain the DCA, either click Options to change the 
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project options from CA to DCA (with option "detrending by segments"), or open the existing 
project file spiddca.con. In the former case, save the modified project using "File | Save as" so 
as not to overwrite the original project file spid_ca.con. After clicking Analyze... the 
eigenvalues and lengths of gradient of the DCA appear in the log-window. The first eigenvalue 
is always the same as that of CA, but the second eigenvalue decreases from .42 to .086, 
suggesting that the second axis is unimportant. The length of gradient of the first axis is 4.4 SD, 
suggesting that some spiders species show a unimodal response to the first DCA axis. This is 
indeed the case as illustrated in Figure 2 on page 56 of Unimodal Models. The fitted curves 
shown in Fig. 2 can be obtained with CanoDraw. Invoke CanoDraw from the project-view. In 
CanoDraw (1) save the new CanoDraw project, (2) select Create I Attribute Plots I Species 
Response Curves, and there select the Generalized linear model option, select all species except 
Pardlugu, click Axis 1 and OK, (3) in the GLM Options dialog select Quadratic and Poisson and 
then confirm with the OK button all the reports about fitted response models, before the diagram 
appears. Consult the section 14.2 of this manual for more detailed instructions. 

8.2.1.2 SPIDER1: Environmental interpretation of first DCA-axis by multiple regression 
in CANOCO 

On page 55 of Unimodal Models, the first DCA-axis of the spider data is interpreted in 
terms of environmental variables. For this, one typically enters these variables as Environmental 
data to CANOCO. In this data set, environmental data are available for only 28 of the 100 
pitfalls. This presents a problem: if these data are entered as Environmental data to CANOCO 
and if we continue to ask for an indirect gradient analysis by DCA with detrending by segments 
(project file dca28.con), the resulting analysis is not that of the section 8.2.1.1; for example, the 
first eigenvalue changes from .65 to .70. The reason for the difference can be found by 
inspecting the log-window more carefully. After the report on reading the environmental data, 
CANOCO reports: 

No. of active samples: 28 
No. of passive samples: 72 
No. of active species: 12 

The DCA is carried out on the spider data from 28 samples only. These are the only samples for 
which there are environmental data. The remaining 72 samples are treated as passive, i.e. as 
supplementary samples that do not influence the DCA. This is clearly not the analysis performed 
on page 55 of Unimodal Models. There, the DCA is performed with 100 active samples. From 
the resulting DCA-scores, the first axis scores are selected for the 28 samples for which there are 
environmental data. These scores are then taken as the response variable which is regressed on 
three of the environmental variables. To obtain the correct analysis with CANOCO, you have to 
carry out the following steps which require the utility WCanoImp and a Windows spreadsheet 
application. The result of these steps is a new file which contains the scores of the 100 samples 
on the first four DCA axes and which can be read by CANOCO. In the Windows environment 
the steps are: 

• Open the solution file of the original DCA (spiddca.sol) with an editor, word processor or 
spreadsheet. The solution file is, by default, a tab-delimited ASCII text-file. 

• Search for the text "Samp: Sample scores". 

• Copy the body of 100 scores to a new spreadsheet, together with the row of headings for the 
columns (N, Name, AX1,...., AX4, Weight, N2). 

• Delete the first column (headed N). 
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• Delete the three rows between the column heading and the scores of the first sample. 

• Copy the columns "Name ... N2" and the row with the heading and the 100 rows with the 
sample scores to the Clipboard. 

• Invoke WCanoImp (Start / Programs / Canoco for Windows / Canoimp menu item) 

• Save the Clipboard content with WCanoImp. 

The result is a file such as dcalOO.dta with the DCA-scores of all 100 samples. The subsequent 
interpretation of these scores can be carried out with the project indirect.con. In this project, the 
file dcalOO.dta with DCA-scores of 100 samples is opened as Species data, and the file with 
environmental variables as Environmental data. 

The environmental data consist of 26 variables that characterize the soil and vegetation 
around 28 pitfalls. Many of the variables have a very skew distribution and are therefore log-
transformed as in the original paper by Van der Aart & Smeek-Enserink (1975). Because 
CANOCO cannot transform data entered as Environmental data, the transformation must be 
carried out outside CANOCO, e.g. in a spreadsheet. The file with log-transformed 
environmental data is soilvgln.dta. 

To regress the first DCA axis on three of the environmental variables (project file 
indirect.con), select direct gradient analysis, enter the file dcalOO.dta as the Species data file and 
the file soilvgln.dta as the Environmental data file, select RDA as the analysis, and in the wizard 
page on Data Editing Choices, click the boxes corresponding to Delete Species and Delete 
Environmental Variables. Recall that the DCA-axes are "Species". Delete all species, except 
AX1 and delete all environmental variables except WaterCon, BareSand, CoveMoss. The latter 
is done most easily by first moving all variables to the right-hand list box and then by moving 
the three required variables to the left again. After analyzing the project so defined, the summary 
says that 90.8 percent of the variance in the species data (i.e. the first DCA-axis) is explained by 
the environmental data. This corresponds to the 90% mentioned in Unimodal Models. In the 
solution file of this analysis you can find the t-ratios of the regression coefficients under "tVal: t-
values of the regression coefficients". These t-values are the usual ratios of the estimate and the 
standard error of the estimate as given by any computer program for multiple linear regression 
analysis. See section 8.4.4 for more information on the use of CANOCO for linear regression. 

To understand how CANOCO links the DCA scores of the 100 samples to the 
environmental data of the 20 samples, you need to inspect the file with environmental data. The 
sample numbers in the environmental file soilvgln.dta are 2, 8, 9, 11, ... , 89. These are the 
pitfalls for which there are environmental data. Check also the sample names at the bottom of 
the file. In the solution file indirect.sol, these 28 samples are listed first, followed by the 
remaining samples. 

You may wish to experiment with other choices of environmental variables to explain the 
first DCA axis, for example by using forward selection. For this, click Options and go to the 
wizard pages where you can ask for forward selection. After ending the wizard sequence it is 
prudent to save the modified project in a new file (click Save as on the tool bar). An example of 
automatic forward selection is in the project file indiforw.con. 

In this example we have obtained two DCA analyses, one using 100 active samples and one 
using 28 active samples. It may also be of interest to know how similar or dissimilar the axes are 
from these two ordinations. One way to investigate this is to correlate the axes pairwise based on 
the 28 samples in common. This can be achieved by specifying the file dcalOO.dta as 
supplementary environmental data as in the project file dca28100.con. The correlation between 
the first axes scores of the two analyses is .9963. This number is given in the second correlation 
matrix in the log-window in the entry SPEC AX 1 and AX1. (The first correlation matrix applies 
to the analysis of species with respect to the environmental data, the second to the 
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supplementary environmental data). To find the entry .9963 in the log-window, open the project 
dca28100.con, click Analyze... , switch to the log-window, move to the beginning of the 
window, position the cursor by clicking the mouse pointer (so that the insertion point is placed 
there), select Find from the Search menu, enter .9963 and click the Find next button. It is of 
interest to note that instead of the file dcalOO.dta, we could equally have specified the original 
solution file spiddca.sol as supplementary environmental file. CANOCO automatically picks 
the first block headed "Sample scores" from this file. In conclusion, the first DCA axis of the 28 
pitfalls is very similar to the first DCA axis of all 100 pitfalls. 

Finally, the spider counts are related to 6 selected soil and vegetation variables by canonical 
correspondence analysis (CCA) in the project file spidcca.con. The results are the same as 
those in the next example (Example 8.2.2), except that the 72 pitfalls without environmental data 
are added as supplementary samples in the solution file. In this analysis, the spider counts are 
transformed by taking square-roots. 

Remark: The theory in the paper from which the DCA-example is drawn (Ter Braak 1985) 
shows that CA and DCA give approximate solutions to quadratic latent variable models for 
Poissonian count data. From this perspective it is not needed to transform the counts by taking 
square-roots or logarithms. However, from the data-analytic point of view, the counts are so 
over-dispersed and the total counts of the species are so unequal that it seems wise to take their 
square-root. This is done in the CCA-example in Ter Braak (1986). 

c' To relaie the ordination axes of an analysis with those of an earlier analysis, specif} the 
solution file of the earlier one as Supplementary Knvironmenlal Dula tile. 
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8.2.2 Example SPIDER2 - A niche study by CCA 

Problem: 

Data: 

Booklet: 

Directory: 

Illustration of: 

Determination of the niches of hunting spiders in a dune area by CCA 

Van der Aart & Smeek-Enserink (1975) 

pp 63-67 

\CANOCO\SAMPLES\UNIMODAL\SPIDER2 

• CCA interpretation. 

• How to interpret numbers in the file SPEC ENV.TAB. 

• How to define products of explanatory variables using the Define 
Interaction Terms option. 

• How to choose names for environmental variables when products 
are to be defined. 

• Potential problems when there are many environmental variables 
and how to cope with them. 

Files Name Description 
Species spid_spe.dta 
Environmental spidenv.dta 

spiden26.dta 
Derived 

Project 

waó.dta 

waall.dta 

spider.con 

ccaall.con 

caall.con 

cca_all2.con 

forward.con 

counts of 12 hunting spiders in 28 pitfalls in a dune area 
6 soil and vegetation variables for 28 pitfalls (In-transformed) 
26 soil and vegetation variables for 28 pitfalls (In-transformed) 
Weighted averages of spiders with respect to the 6 environmental variables 
(copy of specenv.tab from spider.con) 
Weighted averages of spiders with respect to all 26 environmental variables 
(copy of spec env.tab from ca all.con) 
CCA of square-root transformed spider counts on 6 environmental variables 
(In-transformed) 
CCA of square-root transformed spider counts on all 26 environmental 
variables (In-transformed) 
CA of square-root transformed spider counts, interpreted using all 26 
environmental variables (In-transformed) 
CCA of square-root transformed spider counts on 28 samples and 27 
environmental variables 
CCA with forward selection using all 26 environmental variables 

8.2.2.1 SPIDER2: CCA of spider counts on six environmental variables 

In Unimodal Models on page 66, the spider counts of the 28 pitfalls with environmental 
data are analyzed with CCA. The data are shown in a coded form in Table 3 on page 66; the data 
files of this example contain the original data on which the analyses were performed. Largely on 
a priori grounds the number of environmental variables was reduced from the original 26 to six. 
The reported CCA can be generated with the project file spider.con. The eigenvalues and 
species-environmental correlations of this CCA, reported in Table 1 on page 65 of Unimodal 
Models, can be found in the ordination summary at the end of the log-window. The intraset 
correlations in Table 2 on page 65 of Unimodal Models are also in the log-window. They are 
part of the weighted correlation matrix. Search in this matrix for the rows starting with 
WaterCon. The reported numbers are in the fifth and sixth column and are the correlations with 
the environmental axes labeled ENVI AX1 and ENVI AX2. The numbers in the first and second 
column of the matrix are the corresponding interset correlations. These correlations are also 
given in the solution file under the heading "CorE:" All the other output of the CCA listed in 
Unimodal Models depends on the chosen scaling of the ordination scores, which is Hill's scaling 
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with focus on inter-sample distances. This scaling is discussed in Table 6.35 and on pages 171-
172 of Unimodal Models. 

The standardized canonical coefficients (Table 2 on page 65 of Unimodal Models) can be 
found in the solution file spider.sol in the table headed "Regr: Regression/canonical coefficients 
for standardized variables". These coefficients define the linear combinations of environmental 
variables and the resulting sample scores are listed in the last block of scores in the solution file. 
The ordination diagram of Fig. 1 on page 63 consists of the blocks of scores from the solution 
file headed: 

• Spec: Species scores (Hill's scaling). 

• Samp: Sample scores (Hill's scaling). 

• BipE: Biplot scores of environmental variables. 

Following the later advice on page 143 and 171 of Unimodal Models, CanoDraw uses by default 
in CCA and RDA the second set of sample scores in the solution file which is headed 

• SamE: Sample scores which are linear combinations of environmental variables. 

The first set of sample scores better represents the community structure and the second set better 
represents the community response to the environmental variables in the analysis 
(McCune 1997; see also Table 6.35 and Table 6.36). Because the species-environmental 
correlation is .96, there is not much difference here between the two sets of scores. If you wish to 
use the first set of sample scores in CanoDraw, click Project / Settings and check the Plot SAMP 
scores even for constrained axes option.. 

Note that the biplot scores of environmental variables are, for each axis, proportional to 
both the intra- and the inter-set correlations. The scaling of the environmental biplot scores is 
optimized for the interpretation of the weighted averages of species with respect to 
environmental variables by the rule indicated in Fig. 1 on page 63 of Unimodal Models. From 
Fig. 1 the approximate order of the weighted averages can be inferred. The exact order of the 
weighted averages can be obtained from the additional output file of CANOCO, called 
specenv.tab. This text file has been copied to wa_6.dta. The first 12 values are 

-1.1413 .2930 -1.7284 .6562 -2.2010 .3471 .2920 -.3403 
.4253 .3871 .2979 .4864 

These are the weighted averages of the 12 hunting spiders with respect to Water Content, 
expressed as deviations from the mean Water Content (2.6694, given in the log-window). The 
values are standardized by division by the standard deviation of Water Content (.6842). The 
values are thus weighted averages with respect to the standardized environmental variable. For 
example, the lowest value is -2.2010. It is the 5l value and therefore applies to the 5' species 
Arct peri (see spider.sol or the order of names in wa_6.dta). The highest value is .4864 for the 
last species (Zora spin), but there are several species with similar values. The order of the 
weighted mean Water Content of species is well reflected in the ordination diagram of Fig. 1. 
Also, the species with positive values lie to the left of the origin and the species with negative 
values to the right. The file specenv.tab can be inspected by using for example the Notepad 
program. Table 8.3 shows the same information in transposed format. Using the biplot rule, the 
spider points and environmental arrows jointly explain 88.5 % of the variance in this table, as 
given in the summary of the ordination in the log-window: 88.5 is the second entry in the row 
named "Cumulative percentage variance of the species-environment relation". Unimodal Models 
(p. 66) reports 87% rather than 88%. 
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Table 8.3 Weighted averages of hunting spiders with respect to the six standardized 
environmental variables. 

(1 = WaterCon, 2 = BareSand, 3 = FallTwig, 4 = CoveMoss, 5 = CoveHerb, 6 = Refl Lux). 

Environmental variable number 
1 2 3 4 5 

Alop 
Alop 
Alop 
Arct 
Arct 
Aulo 
Pard 
Pard 
Pard 
Pard 
Troc 
Zora 

acce 
cune 
fabr 
lute 
peri 
albi 
lugu 
mont 
nigr 
pull 
terr 
spin 

-1 

-1 

-2 

-

.14 

.29 

.73 

.66 

.20 

.35 

.29 

.34 

.43 

.39 

.30 

.49 

-
1 
-
1 
-
-

-
-
-
-

.70 

.27 

.59 

.10 

.98 

.23 

.42 

.09 

.21 

.36 

.23 

.14 

-.62 
.19 

-.62 
-.13 
-.65 
-.05 
1.30 
-.41 
-.14 
-.26 

.35 

.36 

-
1 
-
1 
-
-

-
-
-
-

.94 

.20 

.07 

.39 

.09 

.29 

.61 

.68 

.42 

.18 

.30 

.41 

-.20 
.06 

-.75 
.50 

-1.26 
.51 

-.92 
.08 
.42 
.54 

-.12 
.00 

-

-
1 
-

-1 

-

-
-

.88 

.08 

.96 

.18 

.21 

.07 

.11 

.51 

.10 

.04 

.36 

.55 

Table 3 on page 66 of Unimodal Models can be prepared by importing the CANOCO 
solution file into Microsoft Excel® and using the values on the first axis of the Species Scores 
(Spec:) to arrange the species in species data (spidspe.dta) and the Environment-derived scores 
(SamE:) to arrange order of samples both in species and environmental data. Note that the 
datasets (spid_spe.dta and spid_env.dta) can be imported into Excel by first transforming them 
into TAB-separated format with the CanoMerge program (see section 4.2). 

After having inspected the CCA-results, you may wish to modify the project file spider.con 
to generate the eigenvalues and correlations of DCA and DCCA in Table 4 on page 67 of 
Unimodal Models. To obtain the DCA, you need to select indirect gradient analysis in the first 
wizard page on Available Data. To obtain the DCCA, select direct gradient analysis and 
detrending by segments. 

8.2.2.2 SPIDER2: CCA of spider counts with many environmental variables 

The authors of the spider data (Van der Aart & Enserink, 1975) measured a total of 26 
environmental variables, nearly as many as there are samples. All these variables are in the file 
spiden26.dta. A CCA using all 26 variables (project file ccaall.con) is theoretically 
a constrained and direct analysis, but because of the number of environmental variables, there 
are, in practice, few constraints. This CCA generates a solution that is very close to that of an 
unconstrained analysis by CA of these data (project file caall.con), as is apparent by comparing 
the eigenvalues of the two analyses. The solutions can be made precisely equivalent by adding 
yet another extra environmental variable by asking for an interaction term. In the project file 
cca_all2.con, a product between two existing variables is added to the environmental variables. 
The eigenvalues of this analysis are equal to those of the CA (at least, in theory; in practice there 
may be small differences because of numerical problems). Indeed, CANOCO reports in the log-
window that it has numerical problems in deriving the CCA by saying 

*** BEWARE *** 

Residual for axis 1 bigger than tolerance, which is .000001 

The maximum of the variance inflation factors of the variables is over 50000. Therefore, the 
canonical coefficients are intrinsically unstable. Variance inflation factors should normally be 
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less than 20, say, to warrant usage of the canonical coefficients. The lesson is to use either far 
fewer variables or to stick to the unconstrained, indirect analysis, as the DCA in Example 8.2.1. 

One statistical way to solve the problem of the number of environmental variables is to use 
forward selection. The project file forward.con gives an example. 

Another way is to represent the environmental data by their first few principal components. 
For this, (1) perform a PCA with the environmental data in the file spider26.dta as Species Data 
file and (2) specify the solution file of this PCA as Environmental Data file in a CCA in which 
the spider counts are the Species Data. 

The project cca_all2.con also serves to illustrate a tip on the naming of environmental 
variables when product variables are to be defined. The product of the two variables CoveCory 
and CoveHerb (variable number 13 and number 7) is given the name Cove*Cov. The square of 
CoveHerb would be given the same name. To avoid these ambiguities in name giving, make 
sure that the start of the name is as informative as possible. Better names in this example are 
CoryCove and HerbCove. 
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8.2.3 Example DYKE - CCA of presence / absence data 

Problem: 

Data: 

Booklet: 

Directory: 

Illustration of: 

How plant species in fresh-water dykes are related to water chemistry and 
soil type. 

De Lange(1972) 

pp 76-68 

\CANOCO\SAMPLES\UNIMODAL\DYKE 

• How to code and display a nominal variable (soil type). 

• How to select species for plotting. 

• How to inspect axes 3 and 4. 

• How to test the statistical significance of the relation between species 
and environment. 

• How to evaluate the importance of (sets of) environmental variables. 

Files Name Description 
Species 
Environmental 
Derived 
Project 

dykespe.dta 
dyke env.dta 
chlorsor.txt 
dyke dca.con 
dyke cca.con 
cca dca.con 
testall.con 
water, con 
soil.con 
forward.con 

occurrence (1/0) of 133 water plant species in 125 fresh water dykes 
3 water chemistry variables and 3 soil type classes 
Weighted Averages of species sorted on chloride 
DCA of plant species interpreted by environmental variables 
CCA of plant species on all environmental variables 
project relating the CCA and DCA axes 
significance test of species-environment relation 
CCA on water chemistry variables only 
CCA on soil type only 
forward selection 

8.2.3.1 DYKE: Occurrence of water plant species explained by CCA 

As mentioned in Unimodal Models on page 67, the DCA axes extracted from the water 
plant occurrences are poorly related to the available environmental data. The first species-
environment correlation (in the summary in the log-window) is .524. When the axes are 
extracted by CCA, this species environment-correlation increases to 0.824. At the same time the 
first eigenvalue drops from 0.344 in DCA to 0.197 in CCA. As expected, CCA explains less of 
the species data but more of the species-environment relation. The latter is best expressed by the 
percentages variance of the weighted averages of the species with respect to the environmental 
variables (file specenv.tab produced by CANOCO; cf Table 8.3) that is explained in two 
dimensions: 55.3 % in CCA against 19.2% in DCA (see the row "species-environment relation" 
in the log-window). The first (species-derived) axes of CCA and DCA have a correlation of 
-0.71, as can be obtained by running the project file ccadca.con. This project differs from the 
CCA-project file dyke_cca.con only in that the solution file of the DCA (dykedca.sol) is 
specified as a Supplementary Environment file. The final species-environment correlations in 
the log-window of this analysis range from 0.915 for the first CCA-axis to 0.391 for the fourth 
axis. These are the multiple correlations of the regressions of each species-derived CCA-axis 
onto the four DCA axes. 
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The entries in Table 5 on page 67 of Unimodal models can be found in the log-window and 
in the solution file of the CCA (dykecca.sol), except for the canonical coefficients for Peat and 
Sand. The footnote to the table says that these two 0/1 variables were not standardized to unit 
variance. The table thus gives the coefficient for the original 0/1 variables, which implies that 
the canonical coefficients in the solution file must be divided by their standard deviations (in the 
log-window: .4026 and .2626, respectively). For example for the 2nd axis: .1755/.4026 = .44 and 
-.0792/.2626 = -0.30 (cf Equation (6.30)). Note that the canonical coefficients for Clay are all 
zero. CANOCO takes Clay (variable 6) as the reference of the soil type classes because it is the 
last of the three soil type variables in the data file. This is also visible in the log-window from 
the message: 

Collinearity detected when fitting variable ****** 

and from the fact that the variance inflation factor of this variable is zero (last column in the 
table of means and standard deviations; Search for Clay in the log-window). You may wish to 
check that the eigenvalues and species and sample scores of the CCA do not change when 
another soil type is taken as the reference class. For this, modify the project (click Options..), 
check the Delete box in the Data Editing choices after environmental variables, explicitly delete, 
for example, Sand and analyze the modified project. You may also wish to open the 
environmental data file dykeenv.dta with Notepad to see how the soil type is coded in the data. 
Soil type is represented by the last three columns in the file that consist of zeroes and ones only 
with one " 1 " per triplet. The columns indicate whether the dyke is on Peat, Sand or Clay, 
respectively; for example the first sample is on Clay. 

In the ordination diagram on page 68, the soil types are displayed by arrows based on the 
environmental biplot scores (BipE: in the solution file). As discussed on page 65 and later on 
page 170, it is more natural to display the soil types as points. To achieve this in CanoDraw, 
select Files, Select nominal env. vars, and select Peat, Sand and Clay. Qualitatively the 
ordination diagram changes little. 

There are 133 species in the data file whereas the published ordination diagram (Fig. 2 on 
page 68) displays, for clarity, only 31 species. It is difficult to present general rules about which 
species to select for display. For Fig. 2 all species were plotted except those that would appear 
close to the center. Because the data set also contains species that occur only once or twice, such 
rare species are prominently displayed if they happen to occur at relatively extreme 
environmental positions. Examples in Fig. 2 are the species Pota *dec and Call hamu, both at the 
bottom of the diagram, which occur only once. From the diagram we know that the two dykes in 
which these species were found, happen to have very low chloride and relatively low EC, as can 
be seen by projecting their position on the extended arrows for Chloride and EC. This can be 
verified in the data by inspecting the file specenv.tab or the sorted file Chlorsor.txt with the 
Notepad program. The data alone are, however, insufficient to conclude reliably that this is the 
true niche of these species! A better, data-driven selection of species, which is available in 
CanoDraw, is to plot only those species that occur, for example, 10 or more times and whose fit 
to the diagram is 5% or more. This results in 23 selected species (see section 14.3). 

Finally, it should be noted that the second and third CCA eigenvalues are quite close (both 
ca. 0.12). In addition to the ordination diagram on page 68, one should therefore also inspect the 
third ordination axis (see section 3.13). Ordination diagrams of the second and third axes can be 
made with CanoDraw by selecting Project, Settings, Contents, the Second and third axis value 
in the Axes to plot, and then creating the diagram from the Create menu.. The first two axes, 
shown in Fig. 2 in the paper, are largely defined by EC, Phosphate and Chloride Ratio whereas 
the 3r and 4th axis are defined by soil type (Table 5). The water chemistry thus appears to 
explain more of the species occurrences than soil type. 
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8.2.3.2 DYKE: Water chemistry and soil type as determinants for plant distribution 

The summary of the CCA ordination (in the log-window of the project dykecca) also 
shows that individual plant species occurrences cannot be explained well by the environmental 
variables. All four axes together just explain 6.3 % of the total inertia (8.257). These summary 
figures have little meaning for presence/absence data and for abundance data with many zeroes. 
For one thing, the relation between the species and the environmental variables is statistically 
highly significant (P<0.01). The test can be obtained by changing the CCA project by selecting 
a Monte Carlo permutation test. In the project testall.con, both available test statistics are chosen 
and, further, all defaults are followed as there is no clear reason to deviate from them. The 
resulting P-values are both 0.005 and thus the above phrase "P < 0.01". 

The suggestion from section 8.2.3.1 that water chemistry explains more of the species 
occurrences than soil type, can be underpinned by running separate analyses on the water 
chemistry variables and on the soil variables. The analyses can be obtained by modifying the 
project dykecca by checking the Delete Environmental Variables box and by deleting either the 
soil variables or the water chemistry variables. The resulting sums of the canonical eigenvalues 
are 0.393 and 0.222, respectively. 

Another way to underpin the suggestion is to use forward selection. A forward selection, 
starting from all variables, selects Phosphate first, followed by Peat, Chloride Ratio, EC and 
sand (Table 8.4). This table has been copied from the Forward Selection Summary dialog box in 
Canoco for Windows. To obtain Table 8.4, open the project dykecca.con, click Save as., and 
type a file name, e.g. my-forward. Then click Options and select forward selection with 
permutation tests. After clicking Analyze... , click FS Summary and Copy, switch to your 
word processor and paste the Clipboard content. 

Table 8.4 Forward selection of water chemistry and soil type variables to determine their 
importance in explaining the occurrence of water plants in fresh-water dykes. 

Conditional 
Effects 

Var.Num. Lambda-A 

0.17 

0.12 

0.12 

0.09 

0.09 

Variable 

Phosphat 

Peat 

Chloride 

EC 

Sand 

V 

2 

4 

3 

1 

5 

P-value 

0.005 

0.005 

0.005 

0.010 

0.070 

F-value 

2.57 

1.87 

1.85 

1.41 

1.30 
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8.2.4 Example ALGAE - A study of a pollution gradient 

Problem: 

Data: 

Booklet: 
Directory: 
Illustration of: 

Effect of pollution on algae distribution in rivulets 

Fricke&Steubing(1984) 

pp 68-69 

\CANOCO\SAMPLES\UNIMODAL\ALGAE 

• How to obtain a DCCA. 

• How to interpret canonical coefficients. 

• How to test the significance of ordination axes. 
• How, given the first axis, a second ordination axis is extracted 

and tested. 

• How to define powers of explanatory variables using the 
Define Interaction Terms option. 

• Detrending-by-polynomials algorithm in DCCA. 

Files Name Description 
Species algae.dta 
Environmental pollutio.dta 
Derived algcca.xxx 

algdcca.xxx 

axlpol2.dta 

axlpol2z.xxx 

weight.txt 

Project algdca.con 
algcca.con 
algdcca.con 
pol_dcc2.con 
axlcca.con 
ax2_cca0.con 
ax2_ccal.con 
ax2_comm.con 

ax2_dcca.con 
rdaini.con 
rdasamw.con 
ax2pol2z.con 

34 algae species (scale 0-5) in 25 sites within rivulets 
7 pollution variables (of which 6 log-transformed) 
solution file of algcca.con with text Sample scores modified to Xample 
scores 
solution file of algdcca.con with text Sample scores modified to 
Xample scores 
AX1 and AX 1-squared of SamE: scores of solution file from 
pol_dcc2.con, made for the test of the second axis of a DCCA with 
detrending by second order polynomials 
made by the recipe in section 8.2.4.3 to test for the second axis of 
a DCCA with detrending by second order polynomials 
default sample weights of (DC)CA used to modify the unweighted RDA 
project rdaini.con (See section 8.2.4.3) 
DCA of algae, interpreted as pollution gradient 
CCA of algae on pollution 
DCCA of algae on pollution (detrending by segments) 
DCCA of algae on pollution (detrending by second order polynomials) 
significance test of the first CCA-axis 
wrong test of second CCA-axis 
correct test of second CCA-axis 
significance test of second CCA-axis in the console version of 
CANOCO 
approximate test of second DCCA-axis (detrending by segments) 
RDA of axlpol2.dta on pollutio.dta 
weighted version of rda_ini.con (sample weights from weight.txt) 
correct test of second DCCA-axis (detrending by second order 
polynomials). See recipe in section 8.2.4.3 
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8.2.4.1 ALGAE: effect of pollution on algae distribution 

The first axis of DCA, CCA and DCCA nearly coincide, being a clear pollution gradient 
(projects algdca.con, alg cca.con and algdcca.con). The example is used in Unimodal Models 
(page 69) to show the possible virtue of detrending in CCA, i.e. of DCCA. The reason for this is 
that the ordination diagram of CCA (Fig. 3) shows the arch effect. Detrending removes the arch 
(Fig. 4). The second DCCA-axis is of minor importance, as its eigenvalue (0.076) is ten times 
smaller than that of the first axis. The axis is interpreted on page 69 as being related to the ratio 
of ammonium to phosphate, the idea being that these variables have on the second axis about 
equal canonical coefficients of opposite sign ( -0.60 and 0.50 in Table 8 on page 70). However, 
the canonical coefficients are for standardized variables. In terms of log-concentrations, the 
canonical coefficients must be divided by the standard deviations (2.1153 and 1.2459), yielding 
- 0.28 and 0.40, respectively. The second axis is still a contrast between ammonium and 
phosphate concentrations, but it is further away from being a log-ratio than the numbers in Table 
8 suggest. The interpretation is also open to criticism because the second axis is non-significant 
as is shown in the next two sections. 

8.2.4.2 ALGAE: testing the significance of CCA axes 

The significance of the first ordination axis of the CCA can be determined by selecting this 
option in the wizard page Global Permutation Test (axlcca.con). The first axis is significant 
(P<0.01). 

To determine the significance of the second ordination axis, we can use the same test after 
we have modified the project in such a way that the second ordination axis becomes the first axis 
of the modified project. This can be done by specifying the first CCA axis as a covariable in the 
new analysis. Let's try and check whether we succeeded. As a first attempt, we specify the 
solution file of the original CCA as the covariable data file, check the Delete option for 
covariables and delete all but the variable AX1. Do not ask for a test yet (ax2_cca0.con). The 
first eigenvalue is 0.171 now, which is different from 0.136 (the second eigenvalue in the 
original analysis). The problem is that CANOCO used the species-derived sample scores from 
algcca.sol, whereas it should use the environment-derived scores. 

The correct procedure to test for the second ordination axis of CCA or RDA in Canoco for 
Windows is to 

• copy the solution file to a new file, say SOLUTION.XXX. 

• search for the first occurrence of text "Sample scores" in the file and modify this text for 
example to "Xample scores". 

• specify the modified file to be a covariable file of which you retain the variable AX1. 

CANOCO now searches in the file for the first occurrence of the text "Sample scores", 
which, as you may wish to check, is now the heading of the environment-derived scores 
("SampE:"). 

In the example the modified solution file is called algcca.xxx and the modified project is 
ax2_ccal.con. After invoking this project, the first eigenvalue is .136 as required and also the 2nd 

and 3rd eigenvalues are the 3rd and 4th eigenvalues of the original analysis. You may also wish to 
check that the species scores, sample scores and correlations of the two analyses are similarly 
related. The only difference is in the canonical coefficients and scores that are derived from 
them, but this difference is immaterial for our purpose of testing the second ordination axis. If 
we now select the option to determine the significance of the first axis, the resulting P-value is 
ca. 0.80, indicating that the second CCA axis of the original analysis is not statistically 
significant. 
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To determine the significance of the 3rd axis, simply retain AX1 and AX2 as covariables. 

The same procedure can be followed to test the axes of an RDA. 

In the console version of CANOCO, the testing can be carried out as described above, but 
also more directly by asking for "More ordination axes", and asking for one more axis. See also 
Q50 in Chapter 7. CANOCO then copies the eigenvector sample scores of the first axis to the 
covariables so that the first new axis is the second in the new analysis (ax2_comm.con). You can 
run this analysis from the command prompt in the directory 

\CANOCO\SAMPLES\UNIMODAL\ALGAE by typing the command 
c:\CANOCO\CANOCO <ax2_comm.con >nu l 

8.2.4.3 ALGAE: testing the significance of DCCA axes 

Testing the first axis of a DCCA presents no difficulty. Testing the second axis is, however, 
more difficult and, strictly speaking, impossible when detrending by segments is used. The 
reason for this is that the second axis is detrended with respect to the first axis, but, after the first 
axis is moved to the covariables as in the previous section, the new first axis is not detrended 
with respect to this covariable (AX1). To obtain an approximate test, you can define powers of 
AX1, so mimicking detrending by segments by detrending by polynomials during the test. This 
can be achieved by entering the modified solution file of the DCCA as covariable data (as 
SOLUTION.XXX in the previous section), checking the Delete and Define Interactions boxes 
for Covariables in the project. You can then delete AX2, AX3 and AX4 of the covariable file 
and then define, for 4th order polynomials, the three extra product variables AX1*AX1, 
AX1*V5 (=AX13) and AX1*V6 (=AX14), as V5 = AX12, and V6 = AX13. An example is the 
project ax2_dcca.con in which the second axis of a DCCA with detrending by segment is tested 
using this procedure. 

With some extra handwork an exact test can be obtained, if detrending by polynomials is 
used. The procedure also provides insight into the details of the detrending-by-polynomials 
algorithm. We illustrate the procedure using detrending by second order polynomials. The initial 
analysis is done by project pol_dcc2.con. The recipe of the test consists of 14 steps. First the 
recipe is given and then some explanatory remarks are provided. 

1. Open the solution file of the original DCCA (pol_dcc2.sol) with an editor, word 
processor or spreadsheet. The solution file is, by default, a tab-delimited ASCII text-
file. 

2. Search for the text "SamE: Sample scores" and copy the body of sample scores below 
this text to a new spreadsheet, together with the row of headings for the columns (N, 
Name, AX1,...., AX4, Weight, N2). 

3. Delete all column except those headed Name and AX1, and delete the three rows 
between the column heading and the scores of the first sample. 

4. Define an extra column as AX1*AX1 (and further powers if the original DCCA used 
a higher order polynomial) and copy all columns to the Clipboard. 

5. Invoke WCanoImp and save the Clipboard content to a file, axlpol2.dta, say. 

6. Run an initial RDA using axlpol2.dta as Species Data file and the original 
environmental data, here pollutio.dta, as Environmental data. 

7. Save the project as rdaini.con. 

8. Extract, with an editor or spreadsheet, the sample numbers and their weights from the 
DCCA solution file to a new file. 
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9. Put the weights as the first column, the sample numbers as the second. Add a column 
with zeroes and reshape the format so that all numbers are on a single line. Finally save 
the file as a text only file, say weight.txt. 

10. Open the project file rda ini.con with an editor and include the file weight.txt before the 
line "1.00000 = weight for sample". Save the file as rdasamw.con. 

11. Open the project rdasamw.con in Canoco for Windows, click Options to modify the 
project to one that uses (a) Inter-species correlations as scaling and (b) Centre and 
standardize Species. 

12. Analyze the modified project rdasamw.con giving the solution file axlpol2z.sol. 

13. Modify the text "Samp: Sample Scores" in the solution file to "Samp: Xample Scores" 
and save the file as text only file, axlpol2z.xxx. 

14. Open the original DCCA project, save it as ax2pol2z.con, enter the file axlpol2z.xxx as 
the Covariable data file, check Delete Covariables, retain the covariables AX1, AX2 (or 
more if the order of the polynomial is 3 or 4), and ask to test the Significance of the first 
ordination axis. 

Remarks: 

• In steps 1-5 a CANOCO-readable file is made that consists of the environment-derived 
samples scores (SamE:) of the first axis of the original DCCA and as many powers thereof 
as are needed in the detrending. In the example, the file contains AX1 and AX 1-squared. 

• In steps 6-12, the variables AX1 and AX 1-squared are regressed onto the environmental 
data of the DCCA, using the sample weights of the DCCA. The RDA-options of step 11 are 
to improve the numerical precision of the procedure. These are the steps that CANOCO uses 
to derive a second axis in a DCCA with detrending by polynomials. For this, see page 136 
and 137 of Unimodal Models (Ter Braak & Prentice, 1988), in particular, Step A10 and Step 
A5, which is referred to in Step A10. 

• In steps 13-14, the fitted values of the weighted regression (equation (A. 10) on page 136) 
are made available to Canoco for Windows. In the terminology of page 137, Step A10, these 
steps "add the resulting variables as new variables to the matrix A". 

• If the initial DCCA is a partial DCCA, i.e. had a Covariable Data file, these covariables 
should also be used in Step 6 as additional environmental variables. Also Steps 13-14 need 
to be modified to the effect that AX1 and AX2 (the environment-derived sample scores of 
step 12) are added to the Covariable Data File. 

On comparing the eigenvalues and eigenvectors of the DCCA for the test of the second axis (in 
ax2pol2z.sol) with those of the original DCCA (in pol_dcc2.sol), we see that, as intended, the 
first eigenvalue (.1099) and first eigenvector in the former is identical to the second eigenvalue 
and eigenvector in the latter (allowing for rounding errors). Note that the second eigenvalue in 
the former (.0806) differs, however, from the third eigenvalue in the latter (.0655). This is due to 
the fact that the third axis in the original DCCA is also detrended with respect to AX1 *AX2 (see 
(A. 14) on page 137 of Unimodal Models); this variable is not included in the analysis of the test 
of the second axis. This difference has no consequence for the test of the significance of the 
second axis. 

In the ALGAE example the second DCCA axis is not significant (P = 0.94 in ax2pol2z.log). 
Interpreting of the second axis as a contrast of ammonium to phosphate is therefore not 
necessarily meaningful here. For the sake of completeness we add that the canonical coefficients 
of the second axis no longer define a clear contrast of ammonium to phosphate when detrending 
is by polynomials of order 4. 
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8.2.5 Example DUNEBOOK - CCA and RDA on observational data 

Problem: 

Data: 

Booklet: 

Directory: 

Illustration of: 

Explore the relation between vegetation and the environmental conditions 
and management of dune meadows 

Batterink & Wijffels (1983) 

pp 78-79 (CCA), pp 120 and pp 145-148 (RDA) and text book: Jongman et 
al (1987) 

\CANOCO\SAMPLES\UNIMODAL\DUNEBOOK 

• How to display species as points in an RDA in CanoDraw. 

• How to display environmental variables by centroids in CanoDraw. 

• How to change the scale of the sample scores in CanoDraw. 

• How to interpret the numbers in the file SPEC ENV.TAB after an 
RDA. 

• How to obtain correlation coefficients between each species and each 
environmental variable. 

• The effect of the scaling options of linear methods on the ordination 
diagram. 

Files Name Description 
Species tableOl.dta 
Environmental table02.dta 

Derived 

Project 

cov_S_E.dta 

corSE.dta 

ccahill.con 

ccabipl.con 

rda_sam.con 

rdaspe.con 

rda cor.con 

rda eco.con 

30 plant species in 20 dune meadows (Table 0.1 in Jongman et al, 1987) 
8 environmental variables (of which four define the nominal variable 
management type) in 20 dune meadows (Table 0.2 in Jongman et al, 
1987) 
covariances between species and 3 environmental variables (file 
specenv.tab after running rdaspe.dta) 
correlations between species and 3 environmental variables (file 
specenv.tab after running rdacor.dta) 
CCA of plant species to 8 environmental variables (Hill's scaling with 
focus on inter-sample distances) (pp 78-79, p 164) 
CCA of plant species to 8 environmental variables (biplot scaling with 
focus on inter-species distances) (p 164) 
RDA of plant species to 3 quantitative variables, focus on inter-sample 
distances (pp 120) 
RDA of plant species to 3 quantitative variables, focus on inter-species 
correlatations 
RDA of plant species to 3 quantitative variables, focus on inter-species 
correlatations, with species centred and standardized 
RDA of plant species to 8 environmental variables, with focus on inter
species correlations, from the Ecoscience paper (pp 145-148) 

8.2.5.1 DUNEBOOK: CCA of dune vegetation on 8 environmental variables 

The ordination diagram on page 76 of Unimodal Models can be made by Opening and 
Analyzing the project ccahill.con. Then click CanoDraw and in CanoDraw ask (after the 
project is saved) for a triplot (Create / Triplots / with Environmental variables command). After 
you return from CanoDraw, you may wish to check that the first two eigenvalues are .46 and 
.29, as reported on page 78, and that the ordination diagram accounts for 63.8 % of the variance 
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in the weighted averages of species with respect to each of the environmental variables (in file 
specenv.tab). In the project, Hill's scaling is used, focusing on inter-sample distances (scaling 
- ! ) • 

The same CCA analysis is also reported on pages 139-143 of Jongman et al. (1987). For 
unknown reasons, the canonical coefficients of the second axis in Table 5.10 (page 140 I.e.) are 
not precisely those found under Regr: in the solution file of the analysis, even if the variable SF 
is deleted in the project to ensure that Standard Farming is taken as the reference class (cf. the 
Peat, Sand, Clay example in Section 8.2.3). The intraset correlations of both axes in the log-
window agree to the two digits reported in Table 5.10. 

The file specenv.tab (copied to wa 8.dta) can be used to check whether the inferences 
made from the ordination diagram in the paper hold true for the data. 

In a later paper in Unimodal Models (pp. 153-187), another type of scaling of ordination 
axes is introduced, namely the biplot scaling with focus on inter-species distances (scaling 2). 
This scaling has three attractive features: 

• The environmental biplot scores are correlations with the axes (footnote g on page 164 I.e.). 

• Species points are weighted averages along the displayed environmental arrows (middle 
page 169 I.e.). 

• The plot of species and sample points can be interpreted both by the centroid principle (page 
167 I.e.) and by the biplot rule (page 171 I.e.). 

Table 2 on page 164 of Unimodal Models summarizes the similarities and dissimilarities among 
the scalings. See also section 6.3.2.5. 

You may wish to modify the project ccahill.con (Open the project, click Options., and 
change in Scaling: Unimodal Methods to Inter-species distances and biplot scaling). In the 
example files the modified project is saved as ccabipl.con. After clicking Analyze..., check in 
the log-window that the summary of the ordination is unchanged. Also the inter- and intra-set 
correlations of the environmental variables with the axes do not change. To evaluate the effect of 
the scaling on the ordination diagram click CanoDraw, and create in the newly defined 
CanoDraw project a triplot using Create / Triplots / with Environmental variables. The extremes 
of the ordination axes produced by CanoDraw do not exceed the scale marks -1 and +1; in 
scaling 2, this is the maximum range of the environmental biplot scores, because these scores are 
correlations with the ordination axes. The species and sample scores and centroids are plotted in 
this diagram by multiplying the scores of the solution file by a certain number. The multiplier 
can be found and also modified before a graph is created in CanoDraw if you select the View / 
Diagram Settings command and in the Properties 1 page check the Show rescaling coefficients 
for composite ordination diagrams option. If it is checked, CanoDraw displays for diagrams, 
where rescaling might be applied, the Rescaling of ordination scores dialog, before the diagrams 
are created. Figure 8-1 shows the ordination diagram in scaling 2. It is described later in section 
8.2.5.3 how to plot nominal environmental variables as symbols. 
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Figure 8-1 Dune meadow data: CCA triplot in biplot scaling with focus on species 
(scaling 2). 

8.2.5.2 DUNEBOOK: RDA of dune vegetation on 3 quantitative environmental 
variables 

The ordination diagram on page 121 of Unimodal Models can be made by Opening and 
Analyzing the project rdasam.con. The scaling focuses on inter-sample distances and species 
scores are not post-transformed. Only three of the eight environmental variables are retained in 
the analysis (Al, Moisture and Manure). Then click CanoDraw and in CanoDraw ask for 
a triplot. 

On page 148 of Unimodal Models it is argued that an RDA with quantitative variables only 
is most easily interpreted quantitatively when scaling 2 is used. In this scaling, the focus is on 
inter-species correlations and species scores are divided by their standard deviations. You can 
evaluate the changes in the diagram yourself by Opening and Analyzing the project rdaspe.con, 
and clicking on CanoDraw, Triplot. See also the next section. You may wish to check that the 
summary of the ordination does not depend on the scaling chosen in the project. Also the inter-
and intra-set correlations of the environmental variables with the axes do not change. 
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This example can also illustrate that a project (e.g. rdaspe.con) that uses centering by 
species and scaling 2 ("species scores divided by their standard error") does not yield the same 
eigenvalues as a project (e.g. rdacor.con) that uses centering and standardization by species 
and scaling 1 or 2. The eigenvalues of the former analysis are .230 and .146 and those of the 
latter analysis are .186 and .105. In consequence, the ordination axes also differ. Although both 
resulting triplots display standardized species data, the species data are standardized after the 
extraction of the eigenvectors in the first analysis (rda spe.con) and prior to the extraction of the 
eigenvectors in the second analysis (rdacor.con) The former analysis is on a covariance matrix 
and the latter on a correlation matrix. 

The resulting file spec_env.tab contains covariances after an analysis by rdaspe.con (file 
Cov_S_E.dta) and correlations after analysis by rdacor.con (file CorSE.d ta) . For example, 
the first set of 30 values in the file Cor S E.dtaare 

.3176 

.0702 

.5511 

.1896 

.3573 

.5103 
-.2094 
-.0773 

-.1582 
-.2264 
-.5754 

.0655 

.0202 
-.1242 
-.1935 
-.2077 

-.2010 
-.1986 

.8710 

.0564 

-.1660 
.1477 
.4011 
.3186 

-.2527 
-.0252 
-.0348 

.1242 
-.2230 
-.1071 

These are the correlations between the 30 species and Moisture (the first environmental 
variable in the Environmental Data File). 

•B' To obtain correlation coefficients between each of the species and each of the 
environmental variables, open a new project, specify your files with species and 
environmental variables and select an RDA method with centering and standardization by 
species). After clicking Analyze..., the resulting file specenv.tab contains the desired 
correlations. 

8.2.5.3 DUNEBOOK: RDA of dune vegetation on 8 quantitative environmental 
variables 

The ordination diagram on page 145 of Unimodal Models can be made by Opening and 
Analyzing the project rdaeco.con. The scaling is the same as that of rdaspe.con; it focuses on 
inter-species correlations and the species scores are divided by their standard deviations. All 
eight environmental variables are used in the analysis. Then click the CanoDraw button and in 
CanoDraw ask for a triplot. If you do not like the arrows for the species, CanoDraw can display 
them as points if you select the Project / Settings command and check the Display species as 
symbols even ... option in the Appearance property page. Even when displayed as points, be sure 
to interpret the species points as arrows in PCA/RDA. The arrows for SF, BF, HF, NM can be 
changed into points by selecting the Project I Nominal variables I Environmental variables 
command and moving appropriate environmental variables into the right-hand list. The heads of 
the environmental arrows are based on the environmental biplot scores ("BipE:", Table 6.29), 
whereas the environmental points are based on the centroid scores for environmental class 
("CenE:", Table 6.30). 

The extremes of the ordination axes produced by CanoDraw carry the scale marks -1 and 
+1; in scaling 2, this is the maximum range of the species scores and the environmental biplot 
scores, because both these scores are correlations with the ordination axes. The sample scores 
and centroids of environmental variables are plotted on this diagram by multiplying the scores of 
the solution file by a certain number. The multiplier can be found (and changed) using the 
method described in the section 8.2.5.1. For the diagram on page 145 the multiplier was set to 
0.46. Table 1 on page 143 summarizes what can be interpreted in the resulting ordination 
diagram. 
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8.2.6 Example WEEDS - A multi-species trend surface 

Problem: 

Data: 

Booklet: 

Directory: 

Illustration of: 

Detection of a spatial gradient in vegetation data 

B. Post (1983: unpublished) 

pp79 

\CANOCO\SAMPLES\UNIMODAL\WEEDS 

• How to de-standarize canonical coefficients. 

• The arbitrariness of the sign of an ordination axis. 

• The meaning of 100% variance explained in the species-
environment relation. 

• How to interpret large "Covariable influence" without 
covariable data. 

• Means, standard deviations and correlations in CCA versus 
RDA. 

• How to obtain means, standard deviations and correlations 
of variables. 

Files Name Description 
Species weeds.dta 
Environmental xycoord.dta 
Project trend, con 

ccasqrt.con 
rdasqrt.con 

counts of 13 arable weeds across a barley field (96 plots) 
spatial coordinates of the plot centers 
CCA of weeds on spatial coordinates 
CCA of weeds on spatial coordinates (square-roots of counts) 
RDA of weeds on spatial coordinates (square-roots of counts) 

8.2.6.1 WEEDS: A multi-species trend surface across an arable field 

On page 79 of Unimodal Models, the results are given of a CCA of counts of weed species 
in 96 plots from a field of summer barley with the spatial coordinates of the plots used as 
explanatory variables. The aim of this analysis was to detect a spatial trend across the field, 
which could then perhaps be interpreted in terms of a known environmental gradient across 
field. The summary of the analysis from project trend.con shows that the eigenvalues of the 
CCA are rather small, the first two being 0.089 and 0.015. Because the first eigenvalue is about 
six times the second eigenvalue, the first ordination axis defines nevertheless a clear gradient. 
The canonical coefficients of the first axis in the solution file are -.2414 and -.1826 for the x-
and y-coordinate. Recall that the coefficients in the solution file are for standardized variables. 
The field was 50 m x 100 m, reflected in the standard deviations of 9.2402 and 15.5980 for the 
x- and y-coordinates of the plots, respectively. To obtain the coefficients that apply to the x- and 
y-coordinates in meters, the standardized coefficients must be divided by the standard deviations 
of the variables, resulting in bi = -.2414/9.2402 = -0.0261 and b2 = -.1826/15.598 = -0.0117. The 
first axis thus makes an angle of arctan(bl/b2) = arctan(0.448) = 24 degrees with the x-
coordinate. Note that bi and b2 are reported on page 79 as positive numbers but recall that the 
sign of an ordination axis is arbitrary. CANOCO could equally well have reported the axis 
scores with all the signs interchanged. 
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Two further points are worth noting about the output in the log-window of the analysis. 
First, the summary of the ordination reports that 85% of the variance of the species-environment 
relation is explained by the first axis and 100% by the first two axes. This 100% is a simple 
reminder that there are just two explanatory variables: the variance in the species data that two 
environmental variables explain (19.6%) is equally well explained by the two CCA axes. 
Second, the check on the influence of individual samples on the ordination results reports that 
the covariable influence of sample 87 is 3.Ox the influence of an average sample. This would 
normally mean that sample 87 is an outlier in the space of the covariables. However, there are no 
covariables specified in the analysis! The reason is that sample 87 has an extremely high weight 
in the analysis. According to the column WEIGHT in solution file trend.sol, the weight of 
sample 87 is 2369.00, which is 3.Ox the average weight of a sample. Despite the high total 
abundance in the sample( = WEIGHT), sample 87 contains effectively only N2 = 6.00 species. 
In total, sample 87 contains 11 species (see data file weeds.dta) but half of them occur in low 
numbers. Looking at the other values in the column N2 shows that the effective number of 
species is in the range 4-7. All these statistics suggest that is might be wise to transform the 
counts by taking square-roots or logarithms. 

In the CCA on square-root transformed counts (ccasqrt.con), there is no report on the 
check for influence, because CANOCO found no outlying samples. The eigenvalues are even 
lower, the first being 3 times the second. On repeating the calculations to determine the direction 
of the first axis across the field, note that the standard deviations of the x- and y coordinates 
differ somewhat from those in the previous analysis. The means differ also. The reason for this 
is that these are weighted means, the weights being the sample totals reported as WEIGHT in the 
solution file. By taking square-roots, the sample totals change, hence the weighted means and 
standard deviations change. The calculations are bi = -.1344 / 9.4953 = -0.01415 and b2 = -
.1295/ 16.1489 = 0.008019 which results in an angle of 29 degrees with the x-coordinate. 

The low first eigenvalue suggests that the gradient is short. By running a DCCA analysis 
with detrending by segments the gradient length is reported as 1.1 SD when counts are analyzed 
and 0.73 SD when square-roots are analyzed. This suggests the application of a linear method 
such as RDA. 

A RDA on square-root transformed counts results in a first axis that explains 31% of the 
variance in the species data and that is 13 times as important as the second axis. The first axis 
makes an angle of 34 degrees with the x-coordinate, as shown from the calculations of 
b, = .3746 / 9.6047 = 0.03900 and b2 = .4332 / 16.3631 = 0.02647. This happens to be the 
direction of the moisture gradient in March 1985 (page 79 of Unimodal Models). 

The means and standard deviations of the x- and y-coordinates reported in the log-window 
of an RDA are the usual unweighted ones, unless you specified sample weights in the project. 
You may wish to check this by running the RDA without transforming the species data or by 
taking logs instead of square-roots; the means and standard deviations remain unchanged. The 
estimated angle changes of course, because the canonical coefficients in the solution file change. 

•<?' If you wish the means, standard deviations and correlations of variables to be 
calculated, specify the data file as Environmental Data File in CANOCO and ask for an 
RDA. If you do not have a natural Species Data File at hand, take a copy of the same data 
as Species Data File. If you would specify a CCA, weighted means are calculated. 
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8.2.7 Example SEASHORE - A vegetation succession study 

Problem: 

Data: 

Booklet: 

Directory: 

Illustration of: 

(1) Rate of land-uplift estimated from vegetation succession data along 
transects 

(2) Does vegetation succession track the land-uplift or does it lag behind? 

Cramer & Hytteborn (1987) 

pp 79 and Jongman et al. (1987: Exercise 5.6) 

\CANOCO\SAMPLES\UNIMODAL\SEASHORE 

• A DCCA with detrending by segments. 

• How to infer environmental change from the change in species 
composition. 

• How the sample weight affects the influence of samples in 
environmental space. 

Files Name Description 
Species plantspe.dta 

Environmental elevyear.dta 
Project uplift.con 

abundance of 68 plant species in 63 sites along 4 transects on a rising sea
shore, sampled in 1978 and 1984 (126 samples) 
elevation in 1984 and sampling year of 126 samples 
DCCA of plant species on elevation and year to estimate the rate of land-
uplift 

8.2.7.1 SEASHORE: Land-uplift estimated from vegetation succession data by DCCA 

This example estimates environmental change from species data. The species composition 
of sites is sampled more than once, whereas the environmental information is available only 
from one sampling date. The estimation of environmental change is based on the assumption 
that the change in species composition is driven by the environmental variable, whose change is 
to be inferred. 

The analysis by detrended CCA (DCCA) described on page 79 of Unimodal Models can be 
carried out with project uplift.con. Exercise 5.6 in Jongman et al. (1987) describes the way to 
estimate the uplift from the output. The 95% confidence interval cannot be easily constructed 
from the CANOCO output. Consult a statistician on this issue. More on the theory of the 
estimation can be found on pages 195 and 200 of Unimodal Models, where a similar model is 
used in RDA. 

You may wish to check that the environmental data file contains the variables described on 
page 79, namely the elevation of each site in 1984 (the year of second sampling) and the year of 
sampling. The names of the samples can be used to check that samples in 1978 and 1984 from 
the same site have, indeed, the same value for elevation, which is essential for the method to 
work. For example, sample 1 and sample 24 have code names Ll-03-78 and Ll-03-84 and have 
the same elevation (-6.0 cm). Some of the sites are sampled only once, e.g. L2-01 in 1984 only. 
This is not problem in the analysis. 

In the log-window, the samples 9 and 185 have large influences due to their position in 
environmental space. In this example, samples can be expected to be reported in pairs, because if 
an elevation of a site is extreme both samples from the site have an extreme elevation. This 
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would be true in RDA. Sample 9 and 185 are not from the same site, however. Sample 9 is from 
1978 and has more influence in a CCA or DCCA than the corresponding sample from 1984 
(sample 32 which has the same elevation), because sample 9 has a higher total abundance than 
sample 32 (19 vs 10, as can be found in the solution file under WEIGHT). Similarly, sample 185 
is from 1984 and has a larger weight than the corresponding sample from 1978 because it has 
a higher total abundance. 

There are two explanatory variables in the analysis and nevertheless the ordination 
summary does not report that the two axes explain 100% of the species-environment relation. 
Instead of 100%, 97.2% is explained in two dimensions. The reason for this slightly lower figure 
is that the analysis is a DCCA and not a CCA or RDA. This is something you do not need to be 
worried about. DCCA was used here to be able to interpret the succession in terms of SD 
(standard deviations of species turnover). 
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8.2.8 Example EPIALGAE - Conditional and marginal effects 

Problem: 

Data: 

Booklet: 

Directory: 

Illustration of: 

Effect of cooling-water discharge from a power plant on epilithic algal 
communities 

Snoeijs& Prentice (1989) 

pp 140-141 and 148-149 

\CANOCO\SAMPLES\UNIMODAL\EPIALGAE 

• The display of environmental variables by way of their canonical 
coefficients. 

• The difference between environmental biplot scores (BipE:) and 
canonical coefficients (Regr:), 

Files Name Description 
Species epialgae.dta 88 epilithic algae in 181 samples from 11 sites 
Environmental sitetime.dta indicators of site and month of sampling 

basinenv.dta ' 20 environmental variables at the 181 samples 
Project epicca.con CCA with model "site+month" and the 20 environmental variables as 

Supplementary Environmental variables 
anomaly.con idem, but with only the mean temperature anomaly and flow as 

Supplementary Environmental variables 

8.2.8.1 EPIALGAE: Seasonal variation with a temperature anomaly in epilithic algae 

The Forsmark Biotest Basin in Sweden is a shallow coastal ecosystem that receives brackish 
cooling-water discharge from a nuclear power plant. Snoeijs & Prentice (1989) investigated the 
effects of the cooling-water discharge on the epilithic algae communities. The communities were 
sampled "every third week throughout one year at 11 sites differentially affected by temperature 
and/or flow rate enhancement. The community variation was summarized in a CCA of species 
abundances as a function of site and date." The project epicca.con follows the analysis done in 
Snoeijs & Prentice (1989). The site and month points in Figure 10 of the paper are the centroids 
obtained by the project. The arrows for supplementary environmental variables are based on the 
biplot scores for environmental variables, labeled BipE: in the solution file. Figure 2 on page 
141 of Unimodal Models shows the site points and the arrows for temperature anomaly and flow 
only. The solid arrows are the ones from Snoeijs & Prentice (1989). (The arrows may differ 
slightly as they were obtained using unweighted regression). It is argued on page 148 that these 
arrows do not display the real effect of the temperature anomaly and flow rate: given the flow 
rate, the arrow for temperature should run more to the west, as is clear from the symbols 
indicating flow and temperature of the sites. To display the effect of temperature given the flow 
rate, the arrow for temperature must be based on its scores in the table of regression coefficients 
(Regr:). The regression coefficients of temperature in the project epicca.con are conditional on 
all other 19 environmental variables. Its variance inflation factor is rather high (6.7). Therefore 
a second analysis was done (project anomaly.con), in which only flow and temperature were 
retained. On comparing the solution file of both projects, we see that the environmental biplot 
scores (BipE:) for flow and temperature are identical, but the regression coefficients differ 
somewhat. This is because the BipE: scores (being based on simple regressions) disregard the 
other environmental variables in the project, whereas the Regr: scores (being based on multiple 
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regressions) are partial coefficients that may change when other environmental variables are 
included. 
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8.2.9 Example STREAMS - Partial CCA on macro-invertebrates 

Problem: 

Data: 

Booklet: 

Directory: 

Illustration of: 

Effect of intensive agricultural land-use on macro-invertebrates in 
streams 

Higler & Repko (1981), Ter Braak & Verdonschot (1995) 

pp 156-175 

\CANOCO\SAMPLES\UNIMODAL\STREAMS 

• A standard CCA with both quantitative and qualitative explanatory 
variables. 

• Forward selection in CCA. 

Files Name Description 
Species species.dta 

Environmental environm.dta 

Derived forward.txt 

Project pcca.con 

forward, con 

197 macro-invertebrate taxa in 40 samples from the Leuvenum (L) and 
Uddel stream (U) 
29 environmental variables from all 40 samples, among which is the 
month of sampling 
result of the project forward.con, as produced with Canoco for Windows 
(via the Clipboard copy) 
partial CCA of taxa on Source Distance, EC, Discharge and the factor 
indicating Shrubs along the stream, adjusted for sampling month, yielding 
Fig. 3 of the paper, (p. 165 in Unimodal Models) 
automatic forward selection yielding Table 3 (except all "-" entries) 
(p. 174 in Unimodal Models) 

8.2.9.1 STREAMS: Partial CCA on macro-invertebrates 

The example data are described on page 156 and page 157 (Table 1) of Unimodal Models. 
The project p_cca.con can be used to generate Fig. 3 of the paper. Note that the sampling months 
are specified as covariables. The selection of taxa displayed in that figure are all species in 
which the effective number of occurrences (N2 in the solution file) is greater than 4 and which 
also have a small N2-adjusted root mean square tolerance, as described in the section on species 
tolerance and sample heterogeneity (section 6.3.11.3 on page 178). Such selection can be 
achieved with CanoDraw for Windows using a species group defined by a combination of two 
rules. But if you wish to display the selected species only, a quicker way is to use the Project I 
Suppress I Species command. See page 163-171 of Unimodal Models for the interpretation of 
the analysis and the ordination diagram. 

Table 3 on page 174 can be obtained with the project forward.con. The result is given as 
example file forward.txt. In the console version of CANOCO you must collect the entries of the 
table from the output file forward.log. The entries labeled "-" can be obtained most easily using 
the manual forward selection. 
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8.2.10 Example VEGCHANG - A study of change in time and space 

Problem: 

Data: 

Booklet: 

Directory: 

Illustration of: 

What caused the vegetation change in a wetland subject to water 
extraction and acidification? 

Both & Van Wirdum (1981), Farjon & Wiertz (1988) 

pp 189-200 

\CANOCO\SAMPLES\UNIMODALWEGCHANG 

• Models with interaction effects. 

• Decomposition of variance in space and time components. 

• Grid permutation. 

• Environmental change inferred from vegetation change. 

Files Name Description 
Species 

Environmental gridenv.dta 
Project dca.con 

pea. con 
rdaO.con 
fig2.con 

fig3.con 

gridspe.dta 100 plant species in 20 plots arranged in a 5*4 grid, sampled in 1977 and 
1988 
plot, strip and year indicators, pH and water depth 
DCA of the species data with environmental interpretation 
PC A of the species data with environmental interpretation 
RDA of the species data with model "plot*year", equivalent with pca.con 
RDA with model "plot+year+strip.year" used to produce fig.2 of the 
paper, which shows the spatial and temporal variation (pp 194) 
partial RDA focusing on how the change in time depends on space (strip; 
pp 196) 

yeartest.con RDA with model "year" and covariables "plot" to test the change in 
species composition between 1977 and 1988 (pp 195) 

waterxyr.con RDA with model "waterdepth88 . year" and covariables "plot and year" 
to test the interaction water depth.year, i.e. whether the change was 
constant against the alternative hypothesis that it depended on water 
depth 

watrxyr2.con RDA with model waterdepth * year and covariables "plot and year" 
stripxyear.con RDA to test the interaction strip . year 
phwater.con RDA to test the component "pH and water depth" 
yrwater.con RDA on water depth and year to infer the change in water depth (ApH=0) 
yrjh.con RDA on pH and year to infer the change in pH (Awaterdepth =0) 
yr_ph_wa.con RDA with model "year+pH+Waterdepth" to infer the joint change 

(pp 196) 

8.2.10.1 VEGCHANG: Spatial dependent vegetation change in permanent quadrates 

The 40 vegetation samples of this example are from 20 plots that are arranged in a 4 by 5 
grid (Fig. 1 on page 191 of Unimodal models). Each plot was sampled twice, namely in 1977 
and 1988. As stated on page 191, a preliminary Detrended Correspondence Analysis was done 
which showed that the gradients are below 2 SD (project dca.con). Because the gradients are 
short, subsequent analyses use linear methods. A Principal Component Analysis showed that the 
vegetation change depended largely on the row label in fig. 2, referred to as strip in the paper. 
To see this, make an ordination diagram of the samples, based on the project pca.con, with 
CanoDraw. The interpretation is facilitated by the fact that the sample names are made as 
informative as possible. To see in the diagram the sample names, you must go into the dialog 
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displayed by the Project I Settings command, and in the Appearance page change the Sample 
labels option in the top row from Indices to Names. A further interpretation can be obtained by 
also plotting the environmental variables of this project. In CanoDraw, mark the variables strip 
(A,B,C,D,E) * year (1977,1988) as nominal variables within the dialog shown by the Project I 
Nominal variables I Environmental variables command. Then use the Create I Scatter Plots I 
Environm. variables command. The resulting plot of centroids and arrows looks pretty much 
like fig. 2 of the paper, except that the first axis is mirrored (and this can be changed using the 
Flip axes: Horizontal option in the Project I Settings I Contents dialog page. The correlations of 
pH and Waterdepth with the PCA axes are -0.77 and -0.91 (see the table CorE: in the solution 
file or the correlation matrix in the log-window). The PCA results could also be obtained by an 
RDA with model "plot*year" (project rdaO.con), which has 39 parameters (40-1). For example, 
the sum of canonical eigenvalues of the project rdaO.con is 1 (everything explained); also the 
species scores in both solution files are the same. This RDA-model is equivalent to "plot + year 
+ plotyear". Fig. 2 on page 194 of Unimodal models is based on a model with fewer degrees of 
freedom, namely "plot + year + strip.year" (pp 193; fig2.con), which has only slightly lower 
eigenvalues, thus confirming our initial observation that the change of the vegetation is 
approximately constant within strips. In fig2.con, Water depth and pH in 1988 are added as 
supplementary variables. 

8.2.10.2 VEGCHANG: Statistical tests and decomposition of variance 

This section gives details of the statistical tests described on page 195 of Unimodal models 
and of the decomposition of variance in Table 3 on page 196. 

The significance of the change in species composition between 1977 and 1988 uses 
permutations within plots (project yeartestxon). The sum of squares for Time (year) in Table 3 
is the trace of the test (.159). The interaction Waterdepth.Year and Strip.Year uses this 
permutation type (projects waterxyr.con and stripxyear.con). Again, the sum of squares for 
strip.year in Table 3 is the trace of the strip.year test. 

The test of the joint effect of pH and water depth in 1988 as described on page 195 can be 
obtained via the permutation type of the "split-plot design" followed by "grid" permutation of 
the whole-plots, (project phwater.con), as described in detail in section 8.3.5.1. This project 
also gives the sum of squares for pH and water depth (0.23). The sum of squares for Space (plot) 
can be obtained by entering all 20 plot indicators as environmental variables. To get this sum of 
squares, it does not matter whether or not year is taken as a covariable because the sampling 
design is balanced (all plots sampled twice). The residual of Space is obtained by subtraction. 
The sum of squares for Space.Time is the remainder after fitting Space and Time and can be 
obtained as 1- 0.59 -0.16 = 0.25. The residual sum of squares for Space.time is obtained by 
subtraction (0.25-0.08). 

Technical Note: In testing the interaction Waterdepth.year, it does not matter whether we 
use the variable Waterdep88 (Waterdepth in 1988 for all samples) or the variable Waterdep 
(compare the eigenvalues, F-ratios and P-values in projects waterxyr.con and watrxyr2.con). The 
reason for this is that Waterdep assumes a constant change of 27 cm in water depth between 
1977 and 1988; the variable Waterdep is thus a linear combination of year and Waterdep88. 
Each linear combination of Waterd88 and year can thus be written as a linear combination of 
Waterdep and year by adjusting the coefficient for year. In consequence the sample and species 
scores in the solution files are identical, except for a change in sign. Also, the canonical weights 
for the two product variables waterdepth * year on each axis should be identical. The apparent 
difference in the solution file (under Regr:) disappears when the standard deviations of the 
variables are taken into account. For the Waterd88*year variable the canonical coefficient of the 
first axis is 2.2196 /65.8138 = 0.0337 and for Waterdep*year -1.7696 /52.4720 = -0.0337. 
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8.2.10.3 VEGCHANG: Environmental change inferred from vegetation change 

The projects yr_*.con are based on the change model of equation (1) on page 192 of 
Unimodal models. For example, the change in waterdepth can be inferred from the vegetation 
change and the 1988 measurements of water depth (in cm) using the project yrwater.con. From 
the solution file, the standardized canonical coefficients of year 1977 and waterd88 on the first 
axis from the solution file are -0.2936 and 0.3889, respectively. These coefficients need to be 
destandardized by division by their standard deviations in the log-window (.5000 and 12.6823), 
yielding -0.5872 and 0.0306647. From equation (2) on page 192, the inferred change is thus 
0.5872/0.0306647 =19 cm (the unit of water depth in the data file). 
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8.2.11 Example DISEASES - Reduced-rank regression 

Problem: 

Data: 

Booklet: 

Directory: 

Illustration of: 

How do the effects of SES on standardized mortality rates (smr) change 
with time? 

Kunst el al. (1990), Ter Braak & Looman (1994) 

pp 239-256 

\CANOCO\SAMPLES\UNIMODAL\DISEASES 

• A regression biplot based on reduced-rank regression (RDA). 

• A t-value biplot. 

Files Name Description 
11 causes of death (smr's) in 39 Dutch regions in 4 periods (decades) 
period indicators (P1-P4), SES, Urbanization (URB) and religion (CAT) 
multiple regression project with model Period + Period. 
(SES+URB+CAT) to obtain the t-ratios of Table 2 for Stomach Cancer 
(StomCa) 
RDA project with model Period + Period.(SES+URB+CAT) from which 
figs. 1 - 3 are constructed 
partial RDA project with model Period.SES, adjusted for Period + 
Period.(UrB+CAT), to obtain Fig. 4 
RDA with main effects only (SES, URB,CAT) to show that there are no 
outliers in these variables 

Species 
Environmental 
Project 

mortality.dta 
explanat.dta 
stomca.con 

fig 1. con 

fig4.con 

sesurbca.con 

8.2.11.1 DISEASES: An example of a reduced-rank regression biplot 

This is an example of multivariate multiple regression and reduced-rank regression. As in 
the paper, we start with the univariate results, which are summarized in Table 2 (page 241 of 
Unimodal Models). The t-ratios and R in this table are easy to obtain with CANOCO, as 
illustrated for one variable, Stomach Cancer, in the project stomca.con. This project defines an 
RDA for StomCa only with model Period + Period.(SES+URB+CAT). For this, all other causes 
of death are deleted. The interaction terms of the model are defined by products of each of the 
period indicators (PI - P4) with SES, URB and CAT. Note that the variables SES, URB and 
CAT are deleted as environmental variables. The t-values for StomCa in Table 2 for SES.Period 
can be found in the solution file in the table of t-values (tVal:) in the rows for SES*P1 -
SES*P4, except for their sign. The difference in sign is caused by the fact that the species score 
for StomCa is -1 (see section 8.4.4 for further details). The value of R is the square-root of the 
percentage explained (%Expl) for StomCA in the table of cumulative fits (Cfit:). The regression 
coefficients themselves can also be obtained from this project by some post-calculations (section 
8.4.4). 

In log-window of the project, there is a long list of samples that have a high influence for 
particular variables, e.g. sample 1 has 8.2 times the influence when variable 8 would be the only 
predictor. This means that the value of variable 8 (SES*P1) is extreme. Remarkably, no sample 
is found to have a large influence in the column "Environment space influence", i.e. in the full 
predictor space. For multiple regression, it is this column that counts. The influence of 
individual variables is given to help you detect which variable may cause the influence. In this 
case, the alarm is false because it is an interaction variable with a dummy variable: the variable 
SES*P1 has the value 0 when the sample is from other periods and is equal to the SES of the 
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region when the sample is from period 1. The variable SES*P1 thus has numerous zeroes and, 
contrasted with these, the value in period 1 may be extreme. You may wish to check that 
CANOCO does not detect outliers in the variable SES itself (project sesurbca.con). 

A reduced-rank regression biplot represents the table of regression coefficients. Figure 1 of 
the paper is based on the project fig 1.con, which uses the same model as in the project 
stomca.con. The 11 causes of death are weighted inversely to their error variance, by selecting 
"Standardize by error variance" in the "Centering and Standardization" wizard page. The 
resulting relative weights can be found in the log-window, but also in the solution file alongside 
the table of species scores (e.g. StomCa is given weight 1.26). The reduced-rank models for rank 
1, 2, 3 and 4 account for 56, 71, 74 and 76 of the total sum of squares as given in the summary 
of the ordination in the log-window. 

The arrows for the causes of death in Fig. 1 can be obtained with CanoDraw for Windows. 
For the points of the periods PI - P4, CanoDraw uses the centroids in the solution file (CenE:), if 
PI - P4 are specified as nominal variables, whereas Fig. 1 uses the centered regression 
coefficients for periods. Because of the balance in the data, the difference is minor. The arrows 
of SES, URB and CAT with period in Fig. 1 of the paper can be obtained with CanoDraw as 
a part of the regression biplot, where the canonical coefficients (listed under Regr: in the 
solution file) of environmental variables are used. In other graphs, CanoDraw uses the 
environmental biplot scores (listed under BipE: in the solution file). The difference between 
these two types of scores is explained in Figure 2 on page 141 and on page 148 of Unimodal 
Models. 

With project fig 1.con, some of Fig. 2 of the paper can be obtained with CanoDraw. The 
T-values Biplot command under Biplots and Joint Plots in Create menu gives the positions on 
the arrows that mark the transition between solid and dashed parts. 

The project fig4.con does a partial RDA to focus on the period-dependent effects of SES. 
The focus is obtained by defining Period, Period*URB and Period*CAT as covariables, and 
Period*SES as environmental variables. The contribution of SES to the explained variance is 
only 4.1% (see log-window). It is this small, but significant part that is of interest in this study. 
Fig. 4 shows the period-dependent SES effects. The arrow heads for diseases in Fig. 4 are the 
species scores (Spec:), the mark on the arrow gives the coordinates of the t-value biplot (StBi:, 
Table 8.5). The arrow heads of SESi, ..., SES4 are the canonical coefficients (Regr:) and the 
marks on the arrows are the environmental coordinates for t-value biplot (EtBi:). Note that the 
column %(E) in Table 8.5 gives the pure SES.Period component, in the sense of section 8.3.1.2, 
for each separate response variable. 

The columns in Table 8.5 and Table 8.6 for the third and fourth axes contain zeroes because 
the t-value biplot is optimized for two dimensions. This default can be changed in the 
initialization file CANOCO.INI (option (09) in the Table 7.1). 
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8.3 Examples of significance tests 

This section illustrates the extensive facilities for significance testing in CANOCO 4.5 using 
real-life examples. All tests use Monte Carlo permutations. The examples show how to specify 
the appropriate permutation type for a number of commonly applied research designs. In 
addition, we explain the distinction between "simple tests" and "partial tests" and between 
"design-based permutation" and "model-based permutation". The examples are arranged in order 
of increasing sophistication. 

In this section we also illustrate the decomposition of the variance into different 
components, as popularized by Borcard et al. (1992), and the Principal Response Curves method 
(Van den Brink & Ter Braak 1998, 1999) used to display time-dependent treatment effects in 
a repeated measurement design. 

8.3.1 Example DUNETEST - Simple and partial tests 

Problem: 

Data: 

Directory: 

Illustration of: 

Determine the significance of differences in vegetation between 
management types 

Batterink & Wijffels (1983) 

\CANOCO\SAMPLES\PERMUTIO\DUNETEST 

• A permutation test. 

• A partial test. 

• How to account for other variables in a permutation test. 

• How an F-ratio is calculated. 

• How to decompose the total variance into different components 

Files Name Description 
Species 
Environmen 
Project 

tablet) l.dta 
tal table02.dta 

manage Leon 
manage2.con 

manage3.con 

soil 1.con 

soil2.con 
manasoil.con 

see DUNEBOOK, page 241 
see DUNEBOOK, page 241 
test of differences among management types 
test of differences among management types after accounting for soil 
characteristics 
test of differences among management types after accounting for soil 
characteristics and manure 
test of effect of soil characteristics (Al thickness and moisture) on the 
vegetation 
test of effect of soil characteristics after accounting for management types 
test of effect of management and soil jointly 

8.3.1.1 DUNETEST: Overall and partial tests using unrestricted permutation 

The dune meadow data were collected to investigate the differences in vegetation among 
dune meadows that have been subjected to different management regimes, namely standard 
farming (SF), biodynamical farming (BF), hobby farming (HF) and nature management (NM). 
To investigate whether the observed differences in vegetation could be accounted for by pure 
chance, we can apply a Monte Carlo permutation test. By analyzing the data with the project 
manage 1.con, the samples in the species data are randomly permuted (199 times). In nearly all 
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Table 8.5 Species coordinates of the t-value biplot (StBi:). 
Coordinates are from the solution file of a partial RDA obtained with project fig4.con, 

giving the marks on the disease arrows in Fig.4 on page 253 of Unimodal models. 
(%(E+C) = percentage variance explained by both the environmental and 
covariables; %(E) = percentage variance explained by the environmental variables 
after adjustment for the covariables . 

N NAME AX1 AX2 AX3 AX4 % (E+C) % (E) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

EIG 

Stom 

Colo 

Lung 

Pros 

Dlab 

IscH 

OthH 

Arte 

COLD 

Traf 

NonT 

Ca 

Ca 

Ca 

Ca 

Me 

ea 

ea 

Di 

fic 

raf 

0.0249 

0.6896 

-0.5232 

-0.1585 

-0.8007 

-0.4616 

-0.0683 

0.5644 

0.29 

1.0463 

0.1637 

0.4066 

0.0139 

0.1861 

-0.0093 

0.0618 

-0.1008 

0.6081 

0.3231 

2.7425 

-0.8101 

-0.12 

0.1396 

-1.041 

0.0015 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.0006 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

82.02 

55.72 

93.08 

49.43 

46.12 

90.74 

67.07 

61.99 

59.25 

83.01 

65.91 

1.27 

6.64 

6.87 

2.29 

2.91 

2.46 

0.39 

1.91 

1.2 

10.52 

0.94 

Table 8.6 Environmental coordinates for the t-value biplot (EtBi:). 
Coordinates are from the solution file of a partial RDA obtained with project fig4.con, 

giving the marks on the SES arrows in Fig.4 on page 253 of Unimodal models. 

8 

9 

10 

11 

EIG 

SES*P2 

SES*P3 

SES*P4 

SES*P1 

0.0249 

-0.5446 

-0.4563 

-0.2938 

-0.6394 

0.0139 

0.0847 

-0.5331 

-0.6043 

0.586 

0.0015 

0 

0 

0 

0 

0 

0 

0 

0 

0 
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permuted data sets, the F-ratio based on the trace (= sum of the canonical eigenvalues) is lower 
than in the data as observed (observed F-ratio = 2.13). In consequence, the reported P-value is 
0.01. It is is therefore concluded that the differences in vegetation among the management types 
are statististically significant. 

Here is an example of how to calculate the observed F-ratio from the values reported in the 
summary of the ordination. The F-ratio is formally defined by equation (3.5). The numerator is 
equal to the regression sum of squares divided by the number of parameters tested. In 
CANOCO, the regression sum of squares is equal to the sum of the canonical eigenvalues or 
trace (0.604). The number of parameters tested is 3 in this case (number of classes -1). The 
denominator is the residual sum of squares divided by number of degrees of freedom 
(n-p-q = 20-l-3= 16). The residual sum of squares is the sum of the unconstrained eigenvalues 
(2.115) minus the sum of the canonical eigenvalues (0.604). In full, the F-ratio is thus (0.604/ 3) 
/{(2.115-0.604)/(20-l-3)} = 2.13. 

If you repeat the analysis with other initial seeds for the random number generator, e.g. by 
clicking Randomize., in the Permutation Type page of the wizard, you may see that the reported 
significance level may vary between analyses. The variability can be seen more clearly by 
decreasing the number of permutations to 19, say. The reason is that other permuted data sets are 
used if other initial seeds are used. The variability in the P-value decreases with the number of 
permutations. Apart from this variability, the test is exact. The same P-value would have been 
obtained if the test statistic was simply the regression sum of squares. The reason is that this is 
a simple test, as there are no covariables (see section 3.7.4). 

In CANOCO, you can also choose another test statistic, namely an F-ratio based on the first 
eigenvalue. This statistic has more power against 1-dimensional alternative hypotheses (i.e. if 
the effects of the management types can be represented by single ordination axis). This case also 
yields an exact test, but, even after many permutations, it does not need to yield the same 
P-value. In the example, the first eigenvalue is 0.32 and the resulting F-ratio is 
0.319/{(2.115-0.319)/16 = 2.84. This test statistic gives in this example a somewhat higher 
P-value than the overall test. 

Another option which you can set is: "Permutation under .. Reduced model or Full model". 
Recent research shows that there is little reason to ever change the default which permutes the 
residuals of the Reduced (null) model (Anderson & Legendre, 1999). The default in this simple 
case is equivalent to the permutation of the raw (transformed) species data and results in an 
exact test. The test using permutation under the Full model would not be exact for small n. 

One may argue that the difference in vegetation among management types is not caused by 
management type but by the differences in the (initial?) soil characteristics of the meadows. The 
standard farms are on the driest places, the nature management meadows on the wettest places. 
With the project soill.con we can check that the effect of the two soil variables, Al and 
Moisture, on the vegetation is highly significant (P <0.01). The question is thus whether the 
differences caused by the soil characteristics can account for the differences among management 
types, or phrased differently, whether there is still a difference in vegetation among management 
types after accounting for the effect of the soil characteristics. This can be investigated with 
CANOCO by specifying the soil characteristics as Covariables, as is done in the project 
manage2.con. The test so performed is called a partial test (based on a partial CCA). In partial 
tests, it is essential to use an F-ratio statistic, as CANOCO does, to ensure a good level-accuracy 
for the test (i.e. to ensure that the reported P-value is accurate). In the example, the new sum of 
canonical eigenvalues is .47, the resulting F-ratio is 1.98 and P <0.01. In conclusion, there 
remains systematic differences in vegetation among management types after accounting for the 
effects of the soil characteristics Al and Moisture. 

Management type is perhaps determined mainly by the amount of manure that is applied. If 
we also account for the effect of manure (manage3.con), the remaining differences among 

Canoco Examples Page 259 



management types are no longer statistically significant. Phrased differently, the variables Al , 
Moisture and Manure are in this data set sufficient to explain the differences in vegetation 
among management types. 

8.3.1.2 DUNETEST: Decomposition of variance 

In a balanced designed experiment, each treatment factor explains a unique amount of 
variance. This is the basis of the usual analysis of variance table. In unbalanced situations, it 
depends on the other variables in the model how much variance a variable or factor explains. 
Table 8.7 (top half) gives an example: management type and soil each explain 29% and 25% of 
the total inertia when taken alone, but together they explain only 48%. (Inertia is the measure of 
variance in CA and CCA and is related to the chi-square statistic; see equation (6.38)). If 
management and soil were uncorrelated, we would have expected that management and soil 
explain together 29 + 25 = 54%. The difference (54-48 = 6%) is their shared variance. To 
calculate the variance that can be uniquely attributed to the management, the soil variables must 
be taken as covariables. Adjusted for soil, management explains only 22%, whereas soil 
explains only 19% after adjustment for management (Table 8.7, lower half). Table 8.8 shows 
a decomposition of the total inertia into terms that sum up to the total inertia. This 
decomposition can be applied with any number of factors or variables (Whittaker, 1984). The 
decomposition was introduced in ecology by Borcard et al. (1992) to decompose the variance 
explained by environmental as opposed to spatial variables. 

Table 8.8 also show an alternative way to obtain the shared variance (using the results from 
two CANOCO projects). Notice that the shared variance can be negative. An example was given 
by Baar & Ter Braak (1996). 

Table 8.7 Variance explained by management type and soil characteristics in the dune 
meadow data. 

Analyses without covariables 

File 

managel.log 

soill.log 

manasoil.log 

Analyses adjusted for covariables 

manage2.log Management adjusted for Soil 0.471 (22%) 

soil2.log Soil adjusted for Management 0.402 (19%) 

Explained variance = sum of all canonical eigenvalues; the total inertia = 2.115 

Source 

Management ignoring Soil 

Soil ignoring Management 

Management and Soil 

Shared: 0.604+0.535-1.006= 

total inertia 

Explained variance 
0.604 (29%) 

0.535 (25%) 

1.006 (48%) 

0.133 (6%) 

2.115 
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Table 8.8 Variance decomposition of the effect of management and soil on dune meadow 
vegetation. 

Component Source Calculation Variance % 

a Pure Management 0.471 22 

b Shared 0.604-0.471= 0.133 6 

c Pure Soil 0.402 19 

d Residual 2.115-1.006= 1.109 53 

Total 2.115 100 
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8.3.2 Example PLOUGH - A randomized block experiment 

Problem: 

Data: 

Directory: 

Illustration of: 

Effect of ploughing time on weeds 

B. Post (unpub.) 

C:\CANOCO\SAMPLES\PERMUTIO\PLOUGH 

• Analysis of a randomized block experiment. 

• Preparation of a data file that defines the design of the experiment. 

• Definition of permutation groups (blocks). 

• Unrestricted permutation within blocks. 

• Mimicking blocks by a split-plot design. 

Files Name Description 
Species 
Environmental 

Project 

weeds83.dta 
factors, dta 
bloctime.dta 
design.dta 
plough, con 

mimicblc.con 

13 weeds in 12 plots of a randomized block experiment 
blocks and treatments coded by factor levels 
7 dummy variables indicating block and treatment 
as bloctime.dta, but in condensed format 
test of the effect of the treatment (ploughing time) on the weeds by 
permutation within blocks 
as plough.con without the usage of the block indicator variables 

8.3.2.1 PLOUGH: Unrestricted permutation within blocks 

Post (1986) carried out an experiment to investigate, among other things, the effect of the 
time of ploughing on the subsequent weed vegetation composition (13 species) in summer 
barley. There were three ploughing times. The experiment was a randomized block experiment 
of 12 sample units laid out in four complete blocks of three sample units each and was carried 
out in 1983. 

Experimental data are commonly analyzed by the analysis of variance. Because the interest 
was not directed on one particular weed species, a multivariate analysis of variance is required 
but it cannot be used in this case, because the number of response variables (13 species) is larger 
than the number of experimental units (12). In this section we show that partial redundancy 
analysis combined with Monte Carlo permutation tests is an attractive alternative escaping the 
restriction on the number of response variables. 

The samples in the data files are arranged in blocks of 3 samples; the treatments within 
blocks are in a standard order, although this is not needed for CANOCO. This is shown in the 
file factors.dta by the two variables Block and Treatment that have values 1, 2, 3 and 4 and 1, 2, 
3, respectively. The file can be read by CANOCO, but is not suited for oui purpose: CANOCO 
would consider the variables as being quantitative whereas they are qualitative. For the analysis 
of the experiment, each block and each treatment must be indicated by a separate dummy (0/1) 
variable, as shown in the file bloctime.dta in full format. The same information is represented in 
the file design.dta in condensed format. 
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Table 8.9 Experimental design with blocks and treatments coded in three different ways. 

(1) by two factors, columns 2 and 3, as in file factors.dta [not useful for the analysis] 

(2) by 7 dummy variables in full format, columns 4-10 as in file bloctime.dta 

(3) by 7 dummy variables in condensed format, columns 11-15 as in file design.dta. 
(var = variable number, val = value) 

The seven dummy variables are named: 1 = block 1,2 = block 2, 3 = block 3, 4 = block 4, and 
5 = pltime 1,6 = pltime 2, 7 = pltime 3. 

column number 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

plot block treat block treatment plot var val var val 
1 2 3 4 1 2 3 

1 
2 
3 
4 
5 
6 
7 
8 
9 
0 
1 
2 

1 
1 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 

1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 

1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
1 
1 
1 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
1 
1 
1 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 

1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 

0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 

0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

1 
1 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 

1 . 
1 . 
1 . 
1 . 
1 . 
1 . 
1 . 
1 . 
1 . 
1 . 
1 . 
1 . 

5 1 
6 1 
7 1 
5 1 
6 1 
7 1 
5 1 
6 1 
7 1 
5 1 
6 1 
7 1 

We are interested in the effect of ploughing time and want to eliminate the possible effects 
of blocks. The block variables (variables 1-4) should thus be entered in CANOCO as 
Covariables, and the ploughing time variables (variables 5-7) as Environmental Variables. This 
is achieved by specifying the file bloctime.dta both as the Environmental Data file and as the 
Covariable Data file and by deleting the superfluous environmental variables (namely, the 
blocks) and the superfluous covariables (namely the ploughing times). We further ask for an 
RDA on log-transformed species data and for a global permutation test. To obtain permutations 
of samples within blocks we check "Unrestricted permutations" and "Blocks defined by 
covariables". Subsequently all four block variables are selected to define the blocks. In the log-
window of the analysis (from project plough.con), we can see that the resulting P-value is 0.02 
showing that ploughing time has an effect on the weed composition. You can check whether 
CANOCO applied the intended permutation type from the report on the "Sample arrangement in 
the permutation test". This reports says, as intended, that samples 1, 2 and 3 are randomly 
permuted in block 1, samples 4, 5 and 6 in block 2 etc. 

RDA was chosen because an initial DCCA showed that the gradient is very short. See also 
section 8.2.6.1. The RDA ordination diagram can be made with CanoDraw and shows, for 
example, that Chenopodium album and Spergula arvensis are most abundant after ploughing on 
March 9 (Pltime 1) whereas Capsella bursa-pastoris is most abundant after ploughing on March 
23 (Pltime 2). 

In spring 1984 the plots were all cultivated by rotary tillage on a single day (to obtain 
a more even distribution of seeds in the seed bank). The counts made thereafter in May 1984 
were subjected to the same analysis as the 1983 counts (k\ = 0.069) but failed to show 
significant differences (P = 0.45, test on first eigenvalue). Apparently the one single date of 
rotary tillage canceled the effects of the previous treatments and/or recruited the same seedlings 
from the field seed bank. 
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In the example, the blocks are of equal size and the plots are arranged in a systematic way in 
the data file. In this special case there is an alternative way to specify permutations within 
blocks, which we mention for completeness. This alternative is exact for tests of simple 
hypotheses, but is approximate for partial tests. The alternative might be useful if you did not 
code the blocks in your data file, for example because there may be too many blocks, as may 
occur in a paired plots design (blocks of size 2). This alternative way is shown in the project 
mimicblc.con. For a simple hypothesis test, as in the example, the resulting P-values are the 
same, despite the fact that the F-ratios differ. The F-ratios differ because the residual sums of 
squares differ; the block effects are not subtracted from the residual sum of squares in the project 
mimicblc.con. The two ways of testing are no longer equivalent if there are other (non-block) 
covariables in the analysis, i.e. if the test is a partial test. 
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8.3.3 Example E40 - A multifactorial experiment with fixed factors 

Problem: 

Data: 

Directory: 

Illustration of: 

Effect of N- and P-addition on the undergrowth in pine forest 

Van Dobben, Ter Braak & Dirkse (1999) 

C:\CANOCO\SAMPLES\PERMUTIO\E40 

• How to analyze a factorial experiment. 

• How to construct a (multivariate) analysis of variance table in 
CANOCO. 

• How to test an interaction effect. 

• How to test a main effect. 

• How to specify permutation blocks from covariables in the console 
version of CANOCO. 

Files Name Description 
Species E40_spec.dta 103 plant species (cover percentages) in 32 plots in experiment E40 
Environmental E40_dsgn.dta dummy variables coding for 4 blocks, 4 levels of N and 2 levels of P of 

the N*P factorial experiment in 4 blocks 
Project e40_nxp.con RDA of treatment groups, model N*P adjusted for blocks 

e40_np.con test of the interaction effect N.P, adjusted for N, P and blocks 
e40_n.con test of effect of N, adjusted for P and blocks 
e40_p.con test of effect of P, adjusted for N and blocks 
e40_nap.con parsimonious model, N + P, adjusted for blocks 
ndesign.con design-based permutation à la Edgington to test the N effect 
pdesign.con idem to test the P effect 
e40_err.con (error) project of the console version of CANOCO in which covariables 

are in the wrong order to define blocks; this error cannot occur in the 
windows version 

8.3.3.1 E40: A multifactorial experiment with fixed factors 

The data of this example come from a factorial experiment with code name E40, that was 
carried out in pine forest in Lisselbo (Sweden) by Tamm et al. (1974) as an optimal nutrition 
experiment for pine tree growth. There were 32 plots, in 4 complete, randomized blocks of 8 
plots each. In each block, all combinations of 4 levels of N (supplied as ammonium nitrate) and 
2 levels of P (supplied as compound PK fertilizer) were applied. In the design file, e40_dsgn.dta, 
the levels of N-addition are coded by the dummy variables Nl, N2, N3 and NO (no additions) 
and the levels of P-addition by the dummy variables PI and P0 (no addition). Block indicators 
Blockl, ..., Block4 complete the design file. The design file is in condensed format: there are 
three couplets (pairs of columns) indicating that each plot receives one level of N, one level of P 
and is in one Block only. In 1987 the undergrowth of the plots was surveyed. The cover 
percentage of plants (including tree saplings, bryophytes and lichens) was estimated and scored 
on a ten-point scale. There were 103 species found. The scale points are re-expressed as mid-
cover-percentages in the species data file. 
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Table 8.10 Analysis of variance table of all species simultaneously for experiment E40 
obtained by RDA on log-transformed cover percentage data, (df = degrees of freedom, 
total SS = sum of squares totaled across species, F = F-ratio, P = Monte Carlo significance 
level, 199 permutations, project = name of project from which results are taken). 

Source df total SS F-ratio P-value project 

blocks 3 0.083 e40_nxp 

N 

P 

N.P 

Residual 

Total 

3 

1 

3 

21 

31 

0.544 

0.051 

0.035 

0.286 

1.000 

13.527 

3.814 

0.857 

0.005 

0.010 

0.645 

e40_n 

e40_p 

e40_np 

e40_nxp 

The published ordination diagram of this experiment (van Dobben et al, 1999), reproduced 
as Figure 8-2, is based on the species scores and environmental centroids in the solution file of 
project e40_nxp.con. In this project, the design file is specified both as Environmental data file 
and as Covariable Data file. The block indicators are the only variables kept as covariables. All 
(!) environmental variables are deleted. After checking the interaction box, 8 interaction 
variables are created, namely the products of the 4 levels of N with PI and with P0. This 
uniquely identifies all 8 treatment combinations, whose centroids are plotted as begin- and end-
points of the arrows for N-levels in Figure 8-2, the begin-point representing P0 and the end-
point PI. The chosen scaling focuses on inter-sample distances because all environmental 
variables are nominal. The diagram explains 92% of the variance of the fitted abundance values 
of the full model; A. = eigenvalues of the axes. 

Table 8.10 shows the analysis of variance table for the experiment as compiled on the basis 
of four different analyses by (partial) RDA. The figures in each row are taken from the log-
window of the project named in the last column. For example, to test the effect of N-addition on 
the undergrowth, Blocks and P are specified as Covariables, and N as Environmental variables 
in the project file e40_n.con. The permutation type is unrestricted permutation within blocks. 
The sum of squares in Table 8.10 for N, P and N.P is the sum of canonical eigenvalues of each 
respective analysis and is also given under the name 'Trace' along with the F-ratio and P-value 
of the Monte Carlo permutation test. Although not fully conventional, the F-ratio of N and P 
neglects the N.P interaction; its denominator pools the N.P interaction with the residual given in 
the table (the pooled residual SS is 0.322). The reason for this is that the "pure" interaction 
cannot easily be specified as covariable in CANOCO. Because testing main effects is usually 
meaningful only if the interaction is not significant, this deviation from the conventional 
ANOVA table does no harm. 
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Figure 8-2 Ordination diagram based on RDA with model block+N*PK in E40 

Explanation of abbreviated species names: Arctost.uv-ur, Arctostaphylos uva-ursi (L.)Sprengel; Betul.pen, Betula pendula Roth; Betul.pub, 

Betula pubescens Ehrhart; Brachyth.oed, Brachythecium oedipodium (Mitt.)Jaeg.; Calluna v, Calluna vulgaris (L.)Hull; Cetr.isl, Cetraria 

islandica (L.)Ach.; Chamer.ang, Chamerion angustifolium (L.)Holub; Cladi.arb, Cladina arbuscula (Wallr.)Hale&Culb.; Clado.cen, Cladonia 

cenotea (Ach.)Schaerer; Clado.cri, Cladonia crispata (Ach.)Flotow; Desch.flex, Deschampsia flexuosa (L.)Trinius; Dicran.scop, Dicranum 

scoparium Hedw.; Dryopt.carth, Dryopteris carthusiana (Villars)H.P.Fuchs; Empet.nig, Empetrum nigrum L.; Hyloc.spl, Hylocomium splendens 

(Hedw.)Schimp.; Linnea bor, Linnaea borealis L.; Luzula pil, Luzula pilosa (L.)Willdenow; Picea abi, Picea abies (L.)Karsten; Pinus sylv, 

Pinus sylvestris L.; Plagiot.laet, Plagiothecium laetum Schimp.; Pleuroz.schr, Pleurozium schreberi (Brid.)Mitt; Pohlia nut, Pohlia nutans 

(Hedw.)Lindb.; Polytr.junip, Polytrichum juniperinum Hedw.; Rubus id, Rubus idaeus L.; Rumex act, Rumex acelosella L.; Sorbus auc, Sorbus 

aucuparia L.; Trienteur, Trientalis europaea L.; Vaccin.myrt, Vaccinium myrtillus L.; Vaccin.vit-id, Vaccinium vitis-idaea L.. 

The figures in the rows for blocks and residual in Table 8.10 require further explanation. 
The sum of squares for the blocks is equal to the total variance (1.0) minus the sum of all 
unconstrained eigenvalues (0.917) with blocks as covariables. The latter sum is the variance that 
remains after fitting blocks. Of this sum, 0.631 (the sum of the canonical eigenvalues) can be 
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explained by the treatments combinations N*P. The sum of squares for the residual is thus 0.917 
-0.631=0.286. 

Conceptually, the figures in Table 8.10 could be obtained by carrying out an ANOVA on 
each of the 103 observed species, totaling the sums of squares of each ANOVA-source across 
the 103 species, and dividing the resulting sums by the sum for the bottom row (Total). 

Table 8.10 shows that the N.P interaction is not significant, whereas both main effects are 
significant. An ordination diagram based on main effects only would thus sufficiently describe 
the data. If N and P are entered as Environmental variables only, we obtain centroids for the N-
and P- levels only. A plot of the sample scores, yields 8 distinct points, one for each treatment 
combination. Connecting these points to form arrows as in Figure 8-2, gives a diagram in which 
the arrows run parallel. A nice feature of the arrows in Figure 8-2 (with interaction) is that the 
arrows for lower N-levels each point approximately in the direction of the next higher N-level, 
suggesting that P and N can replace one another to some extent in this undergrowth. This finding 
contributes to the discussion of multiple versus single element limitation. 

If there is reason to, CCA can be used instead of RDA in the above projects, resulting in an 
"analysis of inertia". Such an analysis would stress the relative abundances of species in each 
sample. The SS in the row "Total" is then unequal to one; it is the total inertia. Optionally, each 
S S can be expressed as a percentage of the total inertia. 

We conclude the example with some more advanced issues. Because F,40 is an orthogonal 
designed experiment, each sum of squares is unique. You may wish to decompose the variance 
as in section 8.3.1.2 to find out that the shared variance is zero. If some samples are deleted or 
weighted, the design is no longer orthogonal and the shared variance is no longer exactly zero. 
An unbalanced design does not necessitate another procedure, however. The resulting ANOVA 
table contains the pure effects only (cf Table 8.8), as desired. With CCA, the shared variance is 
not precisely equal to zero, even in an orthogonal experiment, because the implicit sample 
weights destroy the orthogonality somewhat. As in RDA of an unbalanced experiment, this 
imbalance does not necessitate another procedure to obtain the ANOVA table. 

One might think that another way to obtain centroid points for the N*P treatment 
combinations in the main effects model is to enter the design file as a Supplementary Data file 
also and to use the interaction option of supplementary environmental variables to define the 
N*P product variables (project e40_nap.con). However, the points calculated in this way do not 
coincide exactly with those calculated above and the resulting arrows for N-levels would not run 
exactly parallel. The reason is that the centroids are derived from the species-derived sample 
scores, whereas the environment-derived sample scores are the scores that yield parallel arrows. 

For users of the console version of CANOCO, the project files illustrate one additional 
point. In the projects, the block covariables are selected first, before the nutrient indicators. For 
example, in the project file e40_np.con, all covariables are required in the analysis (all 
covariables are selected: first all blocks, then all nutrients). One might think that one could 
simply answer "no delete/select". However, if this is done, as in e40_err.con, the block 
covariables cannot be selected anymore in the permutation test, as is visible at the end of 
e40_err.log. This error cannot occur in project files generated by Canoco for Windows. 

8.3.3.2 E40: Design-based versus model-based permutation 

This section contains a discussion of design-based versus model-based permutation, which 
is of interest to statisticians using CANOCO. 

The permutation tests reported in Table 8.10 are model-based: there is no exact 
permutational argument for their validity. The level-accuracy of these partial tests hinges on the 
additive model and the usage of the F-ratio as (asymptotic pivotal) test statistic. In contrast, 
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design-based permutation methods have an exact permutational argument for their validity 
(Edgington, 1995). The permutation setup in CANOCO allows you to carry out design-based 
tests, if they exist. The crux is to use all covariables to define blocks. For example, in the design-
based test of the N-effect on the undergrowth, the samples that are given different N-levels are 
permuted within each level of P and each block. This is achieved in CANOCO by selecting PO, 
PI, Blocksl, ..., Blocks 4 as block-defining covariables (project ndesign.con). For example, in 
the resulting "Sample arrangement in the permutation test", the first block is reported to consist 
of the samples 1, 3, 6 and 7. These are all the samples from the first block in the experiment that 
received P (Blockl, PI). The second block in the arrangement (samples 2, 4, 5, 8) consists of the 
remaining samples from the first block that did not receive P (i.e. Blockl, PO). The resulting 
P-value changes little, if at all. The project pdesign.con yields the design-based test for the 
effect of P. 

According to Edgington (1995) there exists no design-based permutation test for interaction. 
However, in special cases an exact test of interaction is still possible (Welch, 1990) and the N.P 
interaction in our case is such a special case. How to obtain the Welch permutation test of 
interaction with CANOCO is postponed to section 8.3.13, as it requires a reordering of the 
present data and the whole-plot permutation options of CANOCO discussed later. To carry out 
this test with CANOCO, we must arrange the data within blocks in standard matrix order, e.g. 
N0P0, NOP 1, NIPO, N1P1 etc. This is not the case for the data files in this directory. 

In summary, design-based methods are exact, but have a limited domain of application, 
mainly designed experiments with one or two factors. Model-based permutation methods are 
almost exact and are more widely applicable, also in observational studies. If both methods are 
applicable, the question arises which method to choose. For large sample sizes there is little 
reason to prefer one over the other, because the model-based permutation tests in CANOCO 
have an extremely good level-accuracy. For small sample sizes, the number of distinct 
permutations may become very small with a design-based method. If there are fewer than 20 
distinct values of the test statistic, the minimum achievable P-value is greater than 5%, so that 
effects, however large, cannot be shown to be significant. In this case, model-based methods are 
to be preferred as they have a good level-accuracy, even for small sample sizes. 
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8.3.4 Example LINES - Line transect(s) across the seashore 

Problem: 

Data: 

Directory: 

Illustration of: 

Effect of environmental variables on plant composition along a transect 

Cramer & Hytteborn (1987) 

\CANOCO\SAMPLES\PERMUTIO\LINES 

• How to test environmental effects in data from cne or more line 
transects. 

• The minimum achievable P-value and the number of samples along 
a line transect. 

• How to select samples for analysis in Canoco for Windows. 

Files Name Description 
Species plantspe.dta 

Environmental line env.dta 

Project linel.con 

lineldis.con 
lines, con 

abundance of 68 plant species in 63 sites along 4 transects on a rising sea
shore, sampled in 1978 and 1984 (126 samples, sea-shore only) 
8 environmental variables and 4 transect indicators (238 samples, sea-
shore+forest) 
forward selection of environmental variables with cyclic permutation tests 
on the data from transect 1 in 1984 only (9 active samples) 
as linel.con with mirror image disabled 
forward selection of environmental variables with cyclic permutation tests 
on the data from all 4 transects in 1984 (63 active samples; transects are 
Blocks) 

8.3.4.1 LINES: Permutation tests for line transect(s) 

This example uses the species data of the Example 8.2.7 together with data on additional 
environmental variables. The effect of these variables on the seashore vegetation is examined by 
forward selection. The permutation tests used in each step of the selection account for the fact 
that the samples lie along line transects, while assuming that each pair of consecutive samples is 
equally correlated. 

The project linel.con analyzes the 1984 data of transect 1 by deleting all other samples in 
the data files in the analysis. In Canoco for Windows, this is achieved most easily by first 
moving all samples from the "Source pool" box to the "To be deleted" box and then moving the 
1984 samples of line transect 1 back to the "Source pool" box. These are the 23 samples from 
LI-03-84 to LI-45-84. Because only the first 9 samples up to the forest edge are in the species 
data file, the ordination (by CCA) is on 9 samples only. Table 8.11 shows the results of 
automatic forward selection with permutation tests. The permutation type is "restricted" for "line 
transects", resulting in cyclic random shifts along the transect. Because there are 9 samples, the 
number of different shifts is 2*9; the "2" arises because there are also 9 shifts from the mirror 
image of the transect. The minimum achievable P-value is thus 1/18 = 0.05.56. The P-value for 
the first, best variable, Elevation, is given as 0.054. The F-ratio for the elevation in the data is 
thus the maximum of all F-ratios that are calculated from the 18 different permuted data sets. 
This is no surprise, as Elevation is expected to be well correlated with the zonation across the 
sea shore. The marginal effect of the variable Inundation (ignoring Elevation) is about equally 
strong. The surprise is that Inundation has also a significant effect after accounting for Elevation 
(P=0.056). The additional effects of the other variables are not statistically significant. 
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Just for demonstration, one may wish to verify the minimum achievable P-value is only 
1/9 = 0.111 if the box "Disable random shifts of mirror image" is checked (project lineldis.con). 
There is little reason to do so in practice. 

The full data are from four different line transects, placed in the data files one after the 
other. Of all samples, 9, 28, 20 and 6 are seashore samples that are in the species data file. To 
carry out the line permutation tests, CANOCO must know which transect each sample belongs 
to. This is achieved by specifying each transect as a Block, i.e. by entering the file lineenv.dta 
also as the Covariable file, and by selecting the dummy variables Transctl - Transct4 as block-
defining covariables (project lines.con). 

Table 8.11 Results of the automatic forward selection with line permutation tests for 
transect 1 (project linel.con) using 9999 permutations for each test. 

Conditional 
Effects 

Variable Var.Num. Lambda-A P-value F-value 

Elevatio 1 0.69 0.054 3.80 

Inundati 7 0.34 0.056 2.20 

Loglight 2 0.34 0.116 2.77 

Stones 3 0.19 0.226 1.90 

Drift 5 0.14 0.330 1.61 

Mosses 4 0.12 0.280 1.64 

Litter 6 0.07 0.724 0.76 
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8.3.5 Example GRID - Samples in a rectangular spatial layout 

Problem: 

Data: 

Directory: 

Illustration of: 

Effect of pH and water-depth on plant species in a wetland 

Both & Van Wirdum (1981), Farjon & Wiertz (1988) 

\CANOCO\SAMPLES\PERMUTIO\GRID 

• How to obtain a permutation test that accounts for spatial 
autocorrelation when sampling points are on a grid. 

• How to check whether the grid dimensions are 5*4 or 4*5. 

• How to specify a permutation of plots (i.e. pairs of samples). 

• Using a CANOCO.INI file to change an advanced option. 

Files Name Description 
Species gridspe.dta 100 plant species in 20 plots arranged in a 5*4 grid, sampled in 1977 and 

1988 
Environmental gridenv.dta plot, strip and year indicators, pH and water depth 
Project grid88.con Toroidal permutation test of the pH effect on the samples from 1988 only 

(5*4 grid) 
griderr.con as above but with wrong grid dimensions (4*5) 
grid7788.con Toroidal permutation test of paired samples to test the pH effect on all 

samples (5*4 grid) 
wholerr.con Wrong attempt to test the pH effect, namely by permutation within sample 

pairs 

8.3.5.1 GRID: Samples in a rectangular spatial layout 

This section uses the same data as the Example VEGCHANG in section 8.2.10. The layout 
of the data is given on page 191 of Unimodal models. The position of each sample is clear from 
its name (letter with digit, e.g. B2 for row B column 2). For illustration, we wish to test the 
relation between pH and the vegetation in 1988. Because the samples lie on a rectangular grid, 
there is a danger that autocorrelation between samples makes the test too liberal if random 
permutations are used. CANOCO allows you to account for autocorrelation by carrying out 
a permutation type that has been designed for rectangular grids. This is achieved by selecting 
"Restricted permutation" for data on a "Rectangular spatial grid" (project grid88.con in which 
all 1977 samples are deleted). We are then asked to specify the dimensions of the grid. From the 
field layout, it is known that the grid is 5 rows by 4 columns or 4 rows by 5 columns, but it 
depends on the order of the samples in the data which one is correct. Let's be lazy and select 5 
rows by 4 columns. After the permutation test has been carried out, the sample arrangement is 
reported in the output (log-window) as being: 
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Row 1 consists of the plots: 
21 22 23 24 

Row 2 consists of the plots: 
25 26 27 28 

Row 3 consists of the plots: 
29 30 31 32 

Row 4 consists of the plots: 
33 34 35 36 

Row 5 consists of the plots: 
37 38 39 40 

The 20 plots are permuted using toroidal shifts 

CANOCO reports here sample identification numbers in the data file. To see the 
corresponding sample names, either inspect the solution file or switch back to the Project View, 
Options, Delete samples. By either method, you can verify that the samples of the first row (21-
24) are A 1 8 8 to A488 , the samples of the second row (25-28) are Bl_88 to B488 , and so on. 
All seems correct. If we had chosen 4 rows * 5 columns, the first row was reported to consist of 
the samples 21 to 25, which are A 1 8 8 to B188 , which is clearly wrong. Instead of being lazy, 
you may want to make the correct choice from the start. For this, click the Help button (or read 
Q58 of the console version of CANOCO) and inspect the order of the samples in the data file by 
returning to the wizard page on Deleting samples. 

As judged by the P-value obtained with project grid88.con, the vegetation is significantly 
related to pH (P = 0.03), also after accounting for spatial autocorrelation. It should be added here 
that any variable that changes gradually across the field is judged significant by this method. In 
the example data, such a variable is Waterdepth in 1988. Section 3.7.3, subsection Rectangular 
Grids, warns against taking spatial trends for environmental effects. Although other explanations 
cannot be excluded on statistical grounds, the significance is interpreted here that pH and/or 
Water depth causes the spatial trend in the vegetation. 

On page 195 of Unimodal models, both the 1977 and the 1988 data are used to test the 
component "pH and water depth", while taking into account the spatial and temporal structure of 
the data. It is proposed to account for the autocorrelation 

• in time by permuting plots instead of individual samples: paired samples are permuted 
together. 

• in space, by wrapping the plots around a torus and then applying a toroidal shift. 

In CANOCO 4.5, this can be achieved by "restricted permutation" using the "split-plot design" 
option. The "split-plots" are the individual samples. The "whole-plots" are the plots from which 
the individual samples are taken. The number of split-plots per whole-plot is thus 2. In the data 
file, the samples are arranged per year, first all 20 samples from 1977, then all 20 samples from 
1988. The rule to find the two samples of the plot Al is thus "take 1, skip 19". With this rule all 
pairs of samples can be found. The whole-plots lie on a spatial grid of 5 rows by 4 columns as 
discussed above. The start and end of the report on the sample arrangement of the permutation 
test so specified reads like 
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Row 1 consists of the whole plots: 
Whole plot 1 : 

1 21 
Whole plot 2 : 

2 22 
Whole plot 3 : 

3 23 
Whole plot 4 : 

4 24 
Row 2 consists of the whole plots: 

Row 5 consists of the whole plots: 
Whole plot 17 : 

17 
Whole 

18 
Whole 

19 
Whole 

20 

These 
The 

37 
plot 

38 
plot 

39 
plot 

40 

20 
2 

18 

19 

20 

whol< 
spli 

20 whole plots are permuted using toroidal shifts 
2 split plots are not permuted 

By inspecting the sample names, you may wish to verify that this arrangement is as 
intended. The resulting P-value is again ca. 0.025. This is an exact Monte Carlo test by design 
(there are no covariables; it is not a partial test; cf section 8.3.3.2). 

To test a spatial component such as pH in these data, plots must be permuted. It is perhaps 
instructive to see what happens if split plots are permuted and whole-plots are not (project 
wholerr.con). In all the permutations so obtained the F-ratio is the same as in the data (8.717), 
as can be seen in the file wholerr.scr, obtained with the console version of CANOCO); the 
resulting P-value is 1.0, i.e. no significance is found. 

We close this example with some remarks on the number of possible permutations. On page 
195 of Unimodal Models, where analyses of the same data are reported, the number is calculated 
to be 80. This number can be reached only if CANOCO is allowed to generate toroidal shifts 
from each of the four grids displayed in section 3.7.3. For this, option (21) in the initialization 
file must be changed from 0 to 1. 

This has been done in the CANOCO.INI file in the directory of this example. The change is 
appropriate if the bivariate autocovariance function is symmetric (see the "Sample arrangement 
in the permutation test"). 
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8.3.6 Example SPLITPLT - A split-plot analysis 

Problem: 

Data: 

Directory: 

Illustration of: 

Ectomycorrhizal fungi occurrence as affected by the manipulation of 
litter and humus in Scots pine stands of different age. 

Baar & Ter Braak (1996) 

\CANOCO\SAMPLES\PERMUTIO\SPLITPLT 

• What a nested design or split-plot design is. 

• What a whole-plot variable is and what a split-plot variable is. 

• The requirements to be able to perform permutation tests in a split-
plot design. 

• How to test for whole-plot variables. 

• Two ways to test for split-plot variables. 

• How to test the interaction between a split-plot variable and 
a whole-plot variable. 

Files Name Description 
Species fungi, dta 

fungi2.dta 

Environmental design.dta 

nutrient.dta 

Derived treatmnt.dta 
Project standi.con 

stand2.con 
agesoil.con 

age.con 
lh.con 

lhsplit.con 

lh_x_age.con 
agetrial.con 
agsl err.con 
fig 1. con 

numbers of sporocarps of 33 ectomychorrhizal fungi in 64 plots in 6 
Scots pine stands 
as fungi.dta with two extra variables (total numbers of sporocarps and of 
species in each sample). Added as supplementary species in fig 1.con 
6 Stand and 3 treatment (S,A,C) indicators, Age and Soil type (Podzol, 
Arenosol) of the stands 
nutrient concentrations and pH in the ectorganic layers (log-transformed). 
Used in figl.con as supplementary environmental file 
as design.dta but without the stand indicators 
project to show that age and soil are constant within stands (=whole-plot ) 
idem by regression of Age and Soil on Stand 
test of the relation between the fungi and the two stand (=whole-plot) 
variables Age and Soil type in a balanced subset of 6*8 = 48 plots (all A-
plots deleted) 
idem, but now for Age adjusted for Soil type 
test of the effects of the treatment of the litter and humus layer (LH, 
a split-plot factor) on the fungi on all data, using block permutation 
within stands 
as above but on the balanced subset of the data, and using "within whole-
plot" permutation of split-plots 
test of the interaction of the LH treatment and age on all data 
attempt to test Age on all data (wrong P-value) 
wrong test of Age and Soil (whole-plots not permuted) 
project upon which fig.1 of the paper is based 

8.3.6.1 SPLITPLT: The experimental design and data: split-plot or nested design 

In this example we study the effect of sod-cutting and sod-addition on the number of 
sporocarps of ectomycorrhizal fungi in Pine stands differing in age and soil type using data from 
an experiment reported in Baar & Ter Braak (1996). The experimental layout is as follows. Six 
stands (Stl - St6) with Scots pine of different age and soil type were selected. Within each stand, 
plots were laid out, with size of 15 m x 15 m. The treatments applied to plots were: 
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S: Sod-cutting in which the litter and humus layers and the herbaceous vegetation were removed 

A: Sod-addition in which removed litter and humus were added on to existing litter and humus 

layers 

C: Control in which the litter and humus layers were left unchanged 

Treatment A (Sod-addition) was not applied in the two oldest stands (St.'5, St6) as their litter 
and humus layers were already quite thick. Each treatment was replicated four times, giving 4*3 
= 12 plots in the younger stands Stl-St4 and 4*2 = 8 plots in the oldest stands (St5,St6). Within 
each stand the treatments were completely randomized. The treatments S, A and C are 
collectively indicated as the LH-treatment (litter and humus). 

The variables in the file design.dta are given in Table 8.12. 

Table 8.12 The variables in the file design.dta. 
variable 

Stl_Aren 

St2_Podz 

St3_Podz 

St4_Aren 

St5_Aren 

StöAren 

S 

A 

C 

Age 

Podzol 

Areno 

explanation: 

stand 1 

stand 2 

stand 3 

stand 4 

stand 5 

stand 6 

Sod-Cut plot 

Sod-Added plot 

Control plot 

log(Age of stand) 

Podzol soil 

Arenosol soil 

Age (year) 

3 

10 

16 

27 

50 

66 

Soil type 

Arenosol 

Podzol 

Podzol 

Arenosol 

Arenosol 

Arenosol 

The experimental layout is a split-plot or nested design: plots are selected within selected 
stands. In the terminology of the split-plot design, stands are called "whole-plots" and plots 
within stands "split-plots". The split-plots are the samples in the data files. With the projects 
standi.con and stand2.con or by inspecting the design data file, it can be verified that the 
variables Age and Soil type vary only between stands. They could therefore be called "whole-
plot factors" or "whole-plot variables" because age is a quantitative variable. 

The species data (in the file fungi.dta) are the number of sporocarps (in 1993) of 40 
ectomycorrhizal fungal species of which 7 turned out be absent in all plots. In addition, nutrient 
concentrations and acidity were determined in the ectorganic layers (humus in C and A, litter in 
S) with the data in the file nutrient.env (log-transformed except pH). 

Because the lengths of gradient as determined by DCA on log-transformed numbers of 
sporocarps are small (<4 SD) and because we are interested in absolute amounts, we analyze the 
data by redundancy analysis (RDA). 

We close this subsection with some information on the projects Standi.con and Stand2.con. 
Standi.con is a project in which the 6 Stand indicators, Age and Soil type are the only 
environmental variables. In the log-window it can be seen that Age and Soil type are both found 
to be collinear with the Stand indicator variables; both have an inflation factor of infinity 
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(reported by CANOCO as being 0). Stand2.con is a project in which Age and Soil type are 
regressed on the Stand indicators by using RDA. The sum of all canonical eigenvalues is 1, 
meaning that the stand indicators explain all the variation in Age and Soil type. Note that in the 
latter project, Age and Soil are specified as Species Data. For this to be possible, the file 
treatment.dta is used instead of design.dta, because CANOCO 4.0 does not allow you to specify 
the same file as Species Data and as Environmental or Covariable Data. 

•*' To treat one subset of variables in a data file as response variables and another as 
explanatory variables, copy the file and specify one copy as Species tile and the other as 
Environmental or Covariable file. Use the Delete boxes to retain the correct variables in 
each subset. 

8.3.6.2 SPLITPLT: Testing the effect of whole-plot variables in a split-plot design or 
a nested design 

The split-plot design options of CANOCO allow you to determine the significance of 
whole-plot factors or variables, but only if whole-plots have equal numbers of split-plots 
(samples). This is not the case in the example data. The design can be made balanced either by 
deleting all samples from Stands 5 and 6 or by deleting all sod-added plots. We choose to delete 
the sod-added plots because we are testing whole-plot factors here and thus want to retain as 
many stands as possible. After deletion, there are 6 whole-plots with 8 split-plots per whole-plot. 

To determine the significance of the stand variables Age and Soil Type, select "Restricted" 
permutation (without blocks) and "Split-plot design", specify the number of split-plots per 
whole-plot (8) and accept the default "take and skip" rule because the samples of the same stand 
are consecutive in the data file (project agesoil.con). In the wizard-page "Split-plot design II", 
specify that whole-plots are freely exchangeable and that split-plots do not have to be permuted. 
The resulting P-value is ca. 0.09. 

It may be instructive to see what happens if whole-plots are not permuted and split-plots are 
(project agslerr.con). CANOCO does not complain. The resulting P-value is 1.0000, because 
the F-ratio of each permuted data set is equal to the observed F-ratio (See the file agslerr.scr, 
which is the screen file obtained from the console version of CANOCO). 

The effect of age adjusted for soil type can be tested by specifying soil type as a covariable 
(the project age.con). Attention: in CANOCO 4.5, such partial tests of whole-plot factors may 
be too liberal, i.e. the real P-value may be higher (Anderson & Ter Braak, 2002). This happens if 
both the environmental data and the covariable data are constant within whole-plots (see section 
3.7.6). 

With restricted permutation types, Canoco for Windows does not always allow you to 
specify the design, if the sample numbers are not consecutive or if you have deleted some 
samples. The console version of CANOCO is more tolerant here. Fortunately, this is not the 
problem in the example data. 

It might be instructive to see what happens if we attempt to test Age using all data (project 
agetrial.con). We again specify "Restricted" permutation and "Split-plot design", but what about 
the number of split-plots per whole-plot? Note that there are 64 samples in the data files. We 
cannot choose 12 (4*3), because 64/12 is not a whole number. We can choose 8 (64/8) because 
the result is a whole number. Canoco for Windows accepts 8 and runs, but from the sample 
arrangement listed in the log-window we see that CANOCO used 8 whole-plots, whereas there 
are only 6 stands. The lesson is to always check the sample arrangement in the log-window. 
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cr' If Canoco for Windows does not accept your specification of th<' design, chirk whether 
the sample numbers are consecutive in the data files. If not, renumber them or use the 
console version of CANOCO. 

8.3.6.3 SPLITPLT: Testing the effect of split-plot variables 

Testing the effect of split-plot variables is best carried out using unrestricted permutations 
within blocks. For this, the whole-plots must be specified as covariables and as blocks. 

The project lh.con gives an example in which the significance of the treatment of litter and 
humus is tested. Note that it is no problem that the number of samples differs between blocks: 
12 in blocks 1-4 (Stand 1-4) and 8 in blocks 5-6 (Stand 5-6). Similarly, in the project 
lhxage.con, it is tested whether the effect of the treatment of litter and humus differs among 
stands of different age (adjusted for possible LH.soil interaction). The interaction is judged 
significant. 

For illustration only, the project lhsplit.con shows, by using the data file treatmnt.dta, how 
the LH effect can be tested without using any stand indicator variables: split-plots are permuted, 
whereas whole-plots are not. 

We close this example with the project figl.con used to produce Figure 1 of Baar 
& Ter Braak (1995). The number of species and the number of sporocarps per sample are 
defined as supplementary species. The nutrient concentrations in the soil are used as 
supplementary environmental variables. 
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8.3.7 Example BACI1SPE - A univariate, unreplicated BACI analysis 

Problem: 

Data: 

Directory: 

Illustration of: 

Does spraying with deltamethrin affect Oedothorax apicatus females? 

Everts (1990), van der Voet (1987), Everts et al. (1989) 

\CANOCO\S AMPLES\PERMUTIO\B ACI1 SPE 

• The univariate analysis of a BACI design by permutation methods. 

• Univariate randomized intervention analysis (Carpenter et al. 1989). 

• How to account for autocorrelation in time in an unreplicated BACI 
experiment. 

• Exploiting the facilities of split-plot permutations in CANOCO. 

• Dependent permutations. 

• Specifying a permutation file. 

Files Name Description 
Species oedoapi.dta 

Environmental toxicant.dta 

Covariables 
Other 
Project 

timesite.dta 
permutio.dta 
bacil.con 

baci2.con 

baci3.con 

baci4.con 
permfile.con 

counts of the spider Oedothorax apicatus from a control site and an impact 
site, sampled 22 weeks 
indicator whether spraying has occurred at a site, and a putative impact size 
proxy (9 minus time-since-spraying) 
time and site indicators 
example of a permutation file 
permutation test of "no impact" against a 
random permutation of differences 
permutation test of "no impact" against a 
dependent time shifts 
permutation test of "no impact" against ; 
extinction" model using dependent time shifts 
as baci3.con with a general impact model 
example project that uses a permutation file 

model using 

model using 

instantaneous effect with 

"constant impact' 

"constant impact' 

8.3.7.1 BACH SPE: Testing a putative impact on a single species in an unreplicated 
BACI experiment 

This is an ecotoxicological example. There are two sites which are each sampled in 22 
consecutive weeks. One site is sprayed with deltamethrin after week 13 (Impact site). The other 
site acts as the Control site. In each week the number of females of the species Oedothorax 
apicatus at each site is counted. 

Stewart-Oaten et al. (1986) proposed to judge the effect of the spraying on the basis of the 
differences in the log-counts, calculated at each time, between the impacted and the control site. 
From these differences, {dt}[t = l...n] say, the significance of the effect can then be determined 
by a two-sample t-test testing the mean difference between Before and After Impact times. 
Carpenter et al. (1989) extended their proposal by using a permutation test. These authors also 
examined the effect of autocorrelation on the test. In this example, it is shown how this 
permutation test can be obtained with CANOCO (project bacil.con) and how it can be extended 
to account for autocorrelation (projects baci2.con - baci4.con). The input data for CANOCO can 
be the original counts at the two sites. This has the advantage that the proposed analysis can 
easily be generalized to multi-species responses and multi-site situations. 
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The BACI model for the original counts is (cf Unimodal Models, page 205) 

(8.1) y = site + time + impact + error 

with y = log(count+l). See Stewart-Oaten et al. (1986) for the assumptions made in this model 
and Underwood (1992, 1994) for extensions. The interest focuses on the impact. This is 
achieved by specifying the site and time indicators (file timesite.dta) as Covariable Data and the 
spraying-treatment (file toxicant.dta) as Environmental data (project bacil.con). The t-value of 
the regression coefficient (tVal: in the solution file) is precisely the t-ratio used in the Stewart-
Oaten et al. t-test. 

The randomized intervention test of Carpenter et al. (1989) consists of permuting the differences 
{dt}. These permutations are obtained by asking for a restricted permutation test using a split-
plot design. In this test, the sites are whole-plots which are not permuted and the samples are 
split-plots that are freely exchangeable, except that the samples taken at the same time travel 
together. This is achieved by asking for dependent permutations across whole-plots. From 
a randomization point of view it also makes sense to freely exchange the sites, as - ideally - the 
spraying treatment is randomly assigned to one of the two sites5. This means that also the values 
{-dt} are being permuted among themselves. Because the test statistic in CANOCO is unsigned, 
this has no effect in this case, as you may wish to check empirically. In the project bacil.con, we 
freely exchange both sites and times and we checked the "Dependent across whole-plots" box. 

Carpenter et al (1989) point out that the differences may be autocorrelated in time. CANOCO 
allows you to account for possible autocorrelation by permutations for "time series". If these are 
made "dependent across whole-plots", the test is based on cyclic shifts of the differences 
(project baci2.con). The dependent time-shift permutation test circumvents the need for detailed 
time-series modeling (van der Voet, 1987) at the expense of some power of the test. Moreover, 
the test is easily extended to the multi-species case as we show in the next subsection. 

There is not much difference between the above two permutation approaches for these data 
- both yield a P-value of ca 0.02 - presumably because the autocorrelation of the differences is 
low (at lag 1, r = -0.23 and at lag 2, r = -0.39; Van der Voet, 1987). Note that the 
autocorrelations in the original counts are much higher (at lag one, r = 0.8). 

These projects test the null hypothesis of no impact against the alternative model of an 
instantaneous impact that is constant after the spraying. In project baci3.con, the alternative 
model is made more realistic: the impact has an instantaneous effect that dies out linearly on the 
log-scale, i.e. exponentially in terms of the original counts. The variable "Sprayed" accounts for 
the instantaneous effect, the variable "Isize" for the extinction of the impact effect. The virtue of 
this linear model is that it is parsimonious and much more flexible than the constant model. 

In project baci4.con, the alternative model is left completely free with as many impact 
parameters as there are After-Impact times. This is achieved by defining products of the Impact 
site variable and the After-Impact times. The test in project baci4.con has less power than that in 
baci3.con, if the impact changes smoothly over time. For the example data, P = 0.12. The test 
statistic in project baci4.con is precisely the F-statistic for the site.time interaction in an analysis 
of variance; only the method to determine its significance level is nonparametric in CANOCO 
and, in project baci4.con, accounts for autocorrelation. 

The file permutio.dta enumerates all 88 different permutations of the dependent time-shift 
permutation test in which also the whole-plots are permuted. This file is used in project 
permfile.con as an example of the option "Read from file" in the Permutation Type wizard page. 

5 Even if not randomized, the sites should be exchangeable under the model of proportional 
population change. 
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Note that the number of permutations in the file (88) must be specified in the previous wizard 
page. 
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8.3.8 Example BACIMSPE - A multivariate, unreplicated BACI analysis 

Problem: 

Data: 

Directory: 

Illustration of: 

Testing the effect of a toxicant on a species assemblage (BACI 
design) 

R.P.A. Van Wijngaarden (unpubl.) 

\CANOCO\SAMPLES\PERMUTIO\BACIMSPE 

• The multivariate analysis of a BACI design by permutation 
methods. 

• Multivariate randomized intervention analysis. 

Files Name Description 
Species species.dta 

Environmental toxicant.dta 
Covariables pondtime.dta 
Project bacirda.con 

logratio.con 
baci cca.con 

57 species from a control pond and an impact pond, each sampled for 10 
consecutive months 
indicator of the impact (a toxicant) after month six at the impact pond 
pond and time indicators 
permutation test of "no impact" against a "constant impact" model using 
dependent time shifts 
as above but using a log-ratios per sample 
as above but using CCA instead of RDA 

8.3.8.1 BACIMSPE: Testing a putative impact on a species assemblage in a 
unreplicated BACI experiment 

As the previous example, this example also has an unreplicated BACI design. The important 
difference is that the response is not univariate, namely the abundance of a single species, but 
multivariate, namely the abundances of an assemblage of 57 species. For each species we 
assume the model of equation (8.1) with possibly different site, time and impact parameters for 
each species. Because the pseudo-F statistic used in CANOCO simply adds sums of squares 
across species, the analysis proceeds precisely as in the previous section. The project 
baci_rda.con uses the same permutation type as the project baci2.con of the previous section. 
The only difference is that the species file contains 57 species instead of one. 

With an assemblage of species as response, there is the additional possibility to focus the 
impact assessment on the ratios of species within each sample, i.e. to carry out a log-ratio 
analysis (project logratio.con). This is attractive if one has already done an separate univariate 
BACI analysis on the total abundance, or if the total abundance in a sample is defined by the 
sampling method. The only difference of the log-ratio analysis with that in bacirdaxon is that 
centering by samples is specified. The model for the analysis can be written as 

(8.2) yuk = c-it + siteik + timetk + impact^ + error 

with y;tk = log(count) or log(count+l) of species k at time t at site i. This equation excludes one 
component of the site x time interaction (namely c;t) from the impact assessment. This 
component is related to the abundance total in each sample. The subscripts attached to the 
impact term in equation (8.2) indicate the general impact model. In the project logratio.con, 
however, all impact terms are taken as equal in time (impact^ = constant impactk), by having 
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just one impact indicator as Environmental variable in the analysis. As in the previous section, 
this "constant impact" model can be made more flexible by adding more explanatory variables. 

Instead of a log-ratio analysis one may perhaps wish to switch to a CCA (project 
bad cca.con). The CCA is then best carried out on log-transformed data so as to ensure that the 
model continues to be multiplicative in terms of the original counts. 
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8.3.9 Example BACI3SIT - A multivariate BACI analysis with three sites 

Problem: 

Data: 

Directory: 

Illustration of: 

Testing the effect of a toxicant on a species assemblage in a three-site 
BACI design 

R.P.A. van Wijngaarden (unpubl.) 

\CANOCO\SAMPLES\PERMUTIO\BACI3SIT 

• The multivariate analysis of a three-site BACI design by permutation 
methods. 

• How to interpret the fit-diagnostics of species in the solution file. 

• Details of the Take and Skip rule when some samples are deleted. 

Files Name Description 
Species 
Environmental 

Covariables 
Project 

species.dta 
toxicant.dta 

pondtime.dta 
bacirdal.con 

bacirda2.con 

bacirda3.con 

baci c h.con 

59 species in three ponds sampled in consecutive months 
treatment indicators of the pond (Control, Low and High dose) and coded 
as 0,1,2 in the variable Toxlevel 
pond and time indicators 
permutation test of "no impact" against a "level of impact" model (linear 
in Toxlevel using 1 degree of freedom) 
permutation test of "no impact" against an "impact per dosage class" 
model (2 degrees of freedom) 
as bacirdal.con but after deleting a species that had extreme influence on 
the analysis (species 8, clo dip) 
re-analysis of Example in 8.3.8.1 by deleting the data from the Low-
impact pond 

8.3.9.1 BACI3SIT: Testing a putative impact on a species assemblage in a BACI 
experiment with three sites 

With two sites (a Control site and an Impact site), the permutation of sites is unimportant. 
The statistical test necessarily focuses on the permutations of the time points, even if sites are 
permuted. If the impact assessment can be based on data from more than two sites, the 
permutation of sites (whole-plots) becomes gradually more important. The permutation of the 
time points is still needed if there are few more sites. In observational studies there may be one 
Impact site and a small (2-4) number of Control sites (Underwood, 1992, 1994). If there are 
a few more Impact sites, they may lie along an impact gradient from putatively strong to low 
impact. The ecotoxicological example that we analyze here is of this form. There are three sites 
(ponds): one Control pond, one pond with a low dose of the toxicant and one pond with a high 
dosage. In bacirdal.con, "no impact" is tested against a "level of impact" model which is 
proportional to the putative impact: 0 for the Control, 1 for the low dosage pond and 2 for the 
high dosage pond. In bacirda2.con, the impact model is a little bit less restrictive in that the 
impact level is coded by classes (Control, Low, High). 

As in the previous section, the RDA analysis can be easily modified to a log-ratio analysis 
by "centering by samples". 

A check of the fit-diagnostics in the solution file indicates that there is one species with an 
extremely high variance in the data: the species "clo dip" (number 8) has a variance of 14.22 
whereas most species have a variance lower than 1. The percentage fit of the species is not 
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extreme (%EXPL = 13.55 in bacirdal.sol). Because the implicit weight of a species in the 
analysis is equal to the product of the last two columns (headed VAR(y) and %EXPL), it is of 
interest to see whether the impact is still significant if this species is deleted from the analysis 
(project bacirda3.con). 

The data of Example 8.3.8 are a subset of the current data, in that the data of the Low 
dosage pond have been deleted. The project bac ich .con shows how the analysis of the 
previous section (in BACIMSPE\baci_rda.con) can be obtained by using the file with the full 
data and deleting the samples from the low-impact pond from the analysis. Note that the "Take 
and Skip" rule is Take 1 and Skip 1 (as in the previous section) instead of being Take 1 and Skip 
2 (as in this section), because the "Take and Skip" rule is applied to the sample sequence as 
given in the solution file rather than to the sequence in the data file. Samples that are deleted are 
also deleted from that sequence, and samples that are made supplementary, are placed at the end 
of the sequence. 
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8.3.10 Example BACI_REP - A multivariate, replicated BACI analysis 

Problem: 

Data: 

Directory: 

Illustration of: 

Testing the effect of liming on nematodes in a replicated BACI 
experiment 

Manger & Schouten (1989) 

\CANOCO\SAMPLES\PERMUTIO\BACI_REP 

• The analysis of a replicated BACI experiment carried out in blocks. 

• Using the split-plot options in combination with blocks. 

Files Name 
Species nematode.dta 

Environmental treatmnt.dta 

Covariable plottime.dta 

Project bacirda.con 

logratio.con 

Description 
4 food groups of nematodes in 72 samples (3 forests * 6 plots * 4 
sampling times) 
3 treatment classes for no liming, 3 and 9 ton/ha (L0, L3 and L9) and lime 
quantity (lime), as applied after the first sampling time 
3 forests (D,E,G), 4 time (0-3) and 18 plot indicators (dl-d6, el-e6, gl-
g6) 
Test of the liming effect by a BACI analysis using permutation of plots 
within forests 
as above, using log-ratio analysis 

8.3.10.1 BACI_REP: Testing a putative impact in a replicated BACI experiment 

If the impact assessment can be based on data from many sites, the permutation of sites 
(whole-plots) becomes the essential part of the analysis, and even with just one Before and one 
After time, valid tests of the impact can be obtained. In the example that we analyze here, there 
are 18 sites (arranged in three blocks) and each site is recorded four times. The test on the 
impact effect uses permutation of sites only. Optionally the time points could be permuted also, 
but this will provide little additional information in the example and, with many sites, has a less 
secure basis than the permutation (randomization) of sites. 

The example is a liming experiment carried out in three forests (labeled D, E and G). In 
each forest, there are six plots, recorded one time before and three times after the treatments 
were applied. Recorded are the abundances of nematodes in four food-groups. The treatment is 
the application of three doses of lime: 0, 3 and 9 ton/ha lime. The code names of the samples are 
best explained by an example. The sample Dt2L3pl4 stands for the 4th plot (pi) in forest D that 
received 3 ton/ha lime(L) and was sampled at time (t) 2. 

The project bacirda.con shows that the forest, time and plot indicators are covariables. 
A "Restricted permutation" for "Split-plot designs" is requested with "Blocks" defined by the 
three forest indicators. The number of split-plots is 4 (for the four samples of each plot). The 
samples of each plot are consecutive in the data file, so that the default "Take and Skip" rule can 
be used. In the console version of CANOCO we also must specify that this layout holds true 
within each block. The resulting "Sample arrangement in the permutation test" in the log-
window clearly indicates both the blocks, the whole-plots per block and the samples that form 
each whole-plot. The resulting P-value is 0.62. 

The test does not reveal a liming effect, or, said otherwise, the strong time and plot effects 
in the data are not mistaken for being an effect of the liming. 
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8.3.11 Example PRC_SIM - Displaying time-dependent effects by PRC 

Problem: 

Data: 
Directory: 

Illustration of: 

How do treatment effects change over time and how to display them? 

Van den Brink & Ter Braak (1999: simulated data of appendix II) 

\CANOCO\SAMPLES\PERMUTIO\PRC_SIM 

• How to obtain the PRC diagram from the CANOCO output. 

• How interpret the PRC diagram quantitatively. 

Files Name Description 
Species 
Environmental 

Derived 

Project 

species.dta Counts of six species (SI -S6) in 5 cosms sampled 4 times each 
design.dta Treatment (Control, Low, High) and time (WkO-4) indicators. There are 

two Control cosms, one Low dosage cosm and two High dosage cosms 
tmxtr.dta 4*3 (time * treatment) indicators (CWO, LWO,..., HW3) 
prc_sim.xls Excel workbook to calculate and display the first PRC 
pcrsim.ppt Powerpoint 4.0 file with PRC diagram (based on prc_sim.xls) 
prc.con PRC analysis of Table 4 of the paper with the product variables of time and 

treatment created in the project using design.dta as both Environmental and 
Covariable data 

prcl .con as above with product variables ordered per treatment 
prcalt.con as above with deletion of the pre-treatment variables (LWO, HWO) 
prcx.con PRC analysis of Table 4 of the paper using the file tm xtr.dta as 

Environmental file and design.dta as Covariable file 

Table 8.13 Data tables used as input files for the PRC analysis in CANOCO: species.dta 
(columns S1-S6) and design.dta (columns C, L H and WO - W3). 

Sample 

C1-W0 

C2-W0 

L-WO 

H1-W0 

H2-W0 

Cl-Wl 

C2-W1 

L-Wl 

Hl-Wl 

H2-W1 

C1-W2 

C2-W2 

L-W2 

H1-W2 

H2-W2 

C1-W3 

C2-W3 

L-W3 

H1-W3 

H2-W3 

SI 

100 

100 

100 

100 

100 

110 

110 

138 

157 

157 

120 

120 

150 

240 

240 

130 

130 

144 

217 

217 

S2 

100 

100 

100 

100 

100 

90 

90 

90 

90 

90 

80 

80 

80 

80 

80 

100 

100 

100 

100 

100 

S3 

100 

100 

100 

100 

100 

120 

120 

96 

84 

84 

140 

140 

112 

70 

70 

160 

160 

144 

96 

96 

S4 

100 

100 

100 

100 

100 

90 

90 

72 

63 

63 

80 

80 

64 

40 

40 

70 

70 

63 

42 

42 

S5 

200 

200 

200 

200 

200 

240 

240 

154 

118 

118 

240 

240 

154 

60 

60 

200 

200 

162 

72 

72 

S6 

100 

100 

100 

100 

100 

130 

130 

83 

64 

64 

70 

70 

45 

18 

18 

100 

100 

81 

36 

36 

C 

1 

1 

0 

0 

0 

1 

1 

0 

0 

0 

1 

1 

0 

0 

0 

1 

1 

0 

0 

0 

L 

0 

0 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

0 

0 

H 

0 

0 

0 

1 

1 

0 

0 

0 

1 

1 

0 

0 

0 

1 

1 

0 

0 

0 

1 

1 

wo 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Wl 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

W2 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

W3 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
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Table 8.14 Output of CANOCO for obtaining the PRC's. 
Standardized canonical coefficients (RegnAXl), standard deviations of environmental 
variables (sdenv) and species scores (Spec:Axl). The treatment scores of the first PRC 
diagram (PRC1) is obtained as (TAU * Regr:AXl)/sd_env) with TAU = .364917, the total 
standard deviation in the species data. 

N 

8 

9 

10 

11 

12 

13 

14 

15 

Name 

WkO*Low 

WkO*High 

Wkl*Low 

Wkl*High 

Wk2*Low 

Wk2*High 

Wk3*Low 

Wk3*High 

RegnAXl 

0.0000 

0.0000 

0.1805 

0.3970 

0.1805 

0.7716 

0.0852 

0.5686 

sd env 

0.2179 

0.3000 

0.2179 

0.3000 

0.2179 

0.3000 

0.2179 

0.3000 

PRC1 

0.0000 

0.0000 

0.3022 

0.4829 

0.3022 

0.9385 

0.1426 

0.6916 

N 

1 

2 

3 

4 

5 

6 

Species 

Spl 

Sp2 

Sp3 

Sp4 

Sp5 

Sp6 

Spec:AXl 

0.7385 

0.0000 

-0.7385 

-0.7385 

-1.4771 

-1.4771 

Figure 8-3 PRC diagram of the simulated data. 

PRC diagram 

Weeks post treatment 

-Cont ro l » Low i - .High 
Sp3 

Sp4 

Sp5 

Sp6 

8.3.11.1 Principal Response Curves analysis (PRC) 

The Principal Response Curves analysis, a novel multivariate method for the analysis of 
repeated measurement designs, is designed to test and display treatment effects that change 
across time. The method is based on a reduced rank regression that is adjusted for changes 
across time in the control treatment. This allows the method to focus on the time-dependent 
treatment effects. The principal component thereof is plotted against time in the PRC diagram. 
The method has been developed for the analysis of ecotoxicologicial studies, an example of 
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which is given below, but may also prove useful in other disciplines. The theory and further 
examples are given in Van den Brink & Ter Braak (1997, 1998, 1999). 

8.3.11.2 PRC_SIM: How to obtain the PRC curves 

We use a small simulated cosm experiment (cosm = microcosm/mesocosm = experimental 
ecosystem) to show how to obtain the PRC diagram with CANOCO. The example cosm 
experiment consists of 3 treatments: Control (C), Low dosage (L) and High dosage (H). The 
treatments C and H are applied to two cosms each, whereas L is applied to a single cosm. All 
cosms are sampled 4 times (t = 1, ..., 4) indicated by WO, Wl, W2 and W3 for week 0, 1, 2 and 
3. The treatment dosages are applied just after the sampling in week 0. Table 8.13 shows 
artificial, noise-free count data for 6 species (the columns labelled SI through S6) in all 5 x 4 
combinations of cosms and weeks, which are the rows of Table 8.13. The file with count data, 
species.dta, are entered as Species data in CANOCO. The remaining columns of Table 8.13 are 
indicator variables for treatment and sampling week. These data are in the file design.dta, which 
is entered as both Environmental and Covariable data. 

In the project prc.con, the RDA option is chosen and the count data are log-transformed. All 
environmental variables are deleted but 2 * 4 = 8 interaction terms are added, namely, all 
products of the variables Low and High and the variables WO - W3. The week variables are 
retained as covariables by deleting the treatment variables Control, Low and High. 

If the product variables are available as a data file, this file can be entered as Environmental 
data, instead of defining the product variables in the project. All 3 * 4 product variables are in 
the file tm_x_tr.dta. So we need to delete in CANOCO the products involving the Control, when 
tm_x_tr.dta file is used as Environmental Data File (project prcx.con). The results of the 
projects prc.con and prcx.con can be seen to be identical. 

The required output items of CANOCO for the formation of the PRC diagram are the 
species scores, the regression/canonical coefficients for standardized environmental variables 
(both in the solution file) and the total standard deviation of the species data (TAU) and the 
standard deviations of environmental variables (both in the log-window). The output for the 
example data is listed in Table 8.14 together with the formula and result for the treatment scores 
of the first PRC diagram. The formula for the treatment scores differs from that given in Van 
den Brink & Ter Braak (1999). They used CANOCO 3.14. The difference arises because 
CANOCO 4.5 reports TAU and uses a different scaling of the species scores. See section 8.4.4 
for the same formula in a multiple regression context. Figure Figure 8-3 shows the resulting 
PRC diagram. 

CanoDraw for Windows assists with the combination of the canonical coefficients values 
with the information obtained from the analysis log (the TAU value and the standard deviations 
of individual environmental variables), in the Project I Import variables I Setup PRC scores 
command (see sections 12.4.8.3 and 14.8). 

On the logarithmic scale, the inferred changes with respect to the control are calculated as 
treatment score * species score. The log-change of species 4 in week 3 in treatment High is 
-0.7385 * 0.6916 = -0.5107, i.e. the species decreases by ca. 50% compared to the control in that 
week. To be precise, the predicted count in treatment High is exp(-0.5107) = 0.60 times the 
count in the Control (70), i.e. 70*0.60 =42, which fits precisely the observed count (Table 8.13), 
because here we are analyzing noise-free simulated data. 

In the projects prc.con and prcx.con and Table 8.14, the explanatory product variables are 
arranged per week. For plotting the PRC diagram, it is more convenient to order the explanatory 
product variables per treatment (project pre 1.con). The results are the same. Note that the sign of 
PRC treatment scores and species weight may be interchanged. This is done in the Excel 
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worksheet prc_sim.xls, so as to stress that most of the species (4 out of 6) decreases in 
abundance with higher dosage. Figure 8-3 is made with Powerpoint (file prcsim.ppt) 

Week 0 is pre-treatment, so that no treatment effects are expected in week 0. Therefore it is 
more logical to delete the variables W0*Low and W0*High from the analysis (project 
prcalt.con). 

For completeness and illustration, the projects are supplemented with permutation tests. In 
the permutation test, we permute the cosms, not the samples. There are 4 samples per cosm 
(W0-W3), i.e. the number of split-plots is 4. The samples in the data file are arranged per week 
(Table 8.13), so that the "Take and Skip" rule is Take 1 and Skip 4. In Table 8.13, this rule 
brings one from, for example, C2-W0 to C2-W1, to C2-W2 and finally to C2-W3. 

Because these are simulated, noiseless species data, the F-ratios are so large that they are 
sometimes printed as ******. A more realistic example of the permutation test is given in the 
next section. 
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8.3.12 Example PRC - Testing time-dependent effects by PRC 

Problem: 

Data: 

Directory: 

Illustration of: 

What is the response across time of an invertebrate community to 
different dosages of an insecticide? 

Van den Brink & Ter Braak (1999) 

\CANOCO\SAMPLES\PERMUTIO\PRC 

• Testing the significance of the first PRC diagram. 

• Testing the significance of the second PRC diagram. 

Files Name Description 
log-counts of invertebrate species in 12 experimental ecosystems 
(mesocosms) 
design data file with 5 treatment (ds0-ds4) and 11 time indicators of which 
two Before (Wk-4 - Wk-1) and 9 After (WkO.1 - Wk24) treatment at WkO 
design file with the first environmental axis of prctestl .sol added 
PRC of Fig.3 of the paper with a test of first axis (first PRC diagram) 
as above with deletion of the pre-treatment variables 
PRC test of the second axis (second PRC diagram) using dsgnaxl.dta 
first, automatic part of the PRC test of the second axis using the console 
version of CANOCO 
second part of PRC test of the second axis using the console version of 
CANOCO 

Species 

Environmental 

Derived 
Project 

species.dta 

design.dta 

dsgnaxl.dta 
prc.con 
pretest Leon 
prctest2.con 
prctst2.con 

prctst2b.con 

prctst2c.con first and second part to give a PRC test of the first and second axis using 
the console version of CANOCO 

8.3.12.1 PRC: Description of the experiment 

The example data are the invertebrate data set in Van den Brink & Ter Braak (1999). This 
data set was obtained from an experiment in outdoor experimental ditches. Twelve mesocosms 
were allocated at random to treatments; four served as controls and the remaining eight were 
treated once with the insecticide chlorpyrifos, applied as Dursban®4E, with nominal dose levels 
of 0.1, 0.9, 6 and 44 |jg/L in two mesocosms each. The dose levels are coded as dsO, dsl, ds2, 
ds3, and ds4 in the design data file, dsO being the control. Sampling was done 11 times, from 
Week -4 pre-treatment through Week 24 post-treatment, giving in total 132 samples (12 
mesocosms times 11 sampling dates) in the statistical analyses. A total of 189 different taxa 
were identified and counted in these samples. The responses and recovery of the invertebrate 
community after chlorpyrifos treatment were analysed in time using RDA in Van den Brink et 
al. (1996) and by PRC in Van den Brink & Ter Braak (1999). 

In the data files, samples are arranged by sampling date. The sample code name "w2,c4", 
for example, stands for a sample from cosm 4 at week 2. This sample has identification number 
52 (see the solution file) and received the third treatment number (dosage ds2), as can be seen in 
the file design.dta. The species data file (species.dta) contains ln(10x+l)-transformed counts. 

8.3.12.2 PRC: Testing the significance of the first PRC diagram 

The project prc_fig3.con does a default PRC analysis on the data. This project forms the 
basis of the first PRC diagram in Van den Brink & Ter Braak (1999). The difference among 
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weeks account for 1-0.781 =0.219 (21.9%) of the total variance; the treatment regime (i.e. the 
remaining week*treatment interaction) accounts for 33.5%. The first two eigenvalues are 0.087 
and 0.029, showing that the first axis dominates the second. The first axis explains 0.087/0.335 
= 26.1%) of the variance captured by the treatment regime, the second axis 8.6% (together 
34.7%). 

The first axis is significant (P < 0.005). The test in project prc_fig3.con does not use the 
Before-After aspect of the data because the Before weeks * treatment terms are also included. 
Any permutation of the time points would yield the same significance level (if the number of 
permutations is large). 

In the project pretest 1.con, the products involving Before weeks are not included. Now the 
data have a small BACI aspect and one would perhaps win a little power by permuting the time 
point also (not done in the project). 

The second axis can be tested as described in section 8.2.4.2. The new point here is that 
there are already some covariables. For this reason the first environment-derived sample axis 
needs to be added to the covariable file first. This will yield a file like dsgnaxl.dta. This file is 
used in project prctest2.con to test the second PRC diagram, which is not significant (P = 
0.5790). As a check, note that the second axis of prctestl.sol is the same as the first of 
prctest2.sol, as required. Van den Brink & Ter Braak (1998) give an example in which the 
second axis is significant. They also show how to visualize the joint effect of the two PRCs. 

It is perhaps easier to test the second axis with the console version of CANOCO. For this, 
the project prctestl.con is copied to prctst2.con and the last two last lines are deleted. In 
a Command-box (DOS-box), type CANOCO and enter at the first question a 1 and specify 
prctsts2.con as answer file. Eventually CANOCO asks you to specify the number of 
permutations (still for the first axis), answer 1, then ask for 

• more ordination axes, namely 1 

• more analyses with the same data 

• a Monte Carlo test of the first axis 

• specify the permutation type 

The answers of this second part are listed in project prctst2b.con. This second part is appended 
to the first part (prctst2.con) to obtain prctst2c.con, which is a complete project with which both 
the first axis and second axis can be tested using the command line 

CANOCO <prctst2c.con 
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8.3.13 Example WELCH - A design-based test of interaction 

Problem: 

Data: 

Directory: 

Illustration of: 

Testing the N.P interaction in experiment E40 by the Welch (1990) 
method 

Van Dobben, Ter Braak & Dirkse (1999) 

\CANOCO\SAMPLES\PERMUTIO\WELCH 

• The Welch (1990) permutation test of interaction. 

• Permuting rows and columns of a data table by using the split-plot 
option. 

• Design-based versus model-based permutations. 

Files Name Description 
Species species.dta 

Environmental design.dta 

Project welchl.con 

welch2.con 

As Example in 8.3.3 (E40) but with the plots arranged in a standard order 
per block 
As Example in 8.3.3 (E40) but with the plots arranged in a standard order 
per block 
permutation test of N.P interaction by permuting rows (P) and columns (N) 
by using split-plot permutation of whole-plots consisting of the same N-
level and dependent split-plots consisting of the same P-level 
permutation test of N.P interaction by permuting rows (P) and columns (N) 
by using split-plot permutation of whole-plots consisting of the same P-level 
and dependent split-plots consisting of the same N-level 

Table 8.15 Layout of the N*P experiment E40: 4 blocks with each 4 N-levels by 2 P-levels. 

P0 

PI 

NO N l N2 N3 Blk2 NO N l N2 N3 Blk3 NO N l N2 N3 Blk4 NO N l N2 N3 

x x x x P0 x x x x P0 x x x x P0 x x x x 

x x x x PI x x x x PI x x x x PI x x x x 

8.3.13.1 WELCH: Design-based test of an interaction as proposed by Welch (1990) 

A factorial design in blocks can be displayed as in Table 8.15. Welch (1990) proposed to 
test for the interaction effects by randomly permuting the rows and columns of the 4*2 table per 
block. The main effects of the experiment, i.e. the row- and column-effects are eliminated by 
specifying the N- and P-indicator variables as covariables. If N*P products are specified as 
Environmental data, the pure interaction effects remain. Such effects are of the form (PiNk -
P/N/) - (P/NÂ>P/N/), where P/N& indicates the plot which received level i of P and level k of N. 
Under the null hypothesis these effects are exchangeable, i.e. in the original data one might 
permute both the N-levels and the P-levels. 

For this to be possible in CANOCO, the data need to be arranged so that, at least per block, 
the order of the P-levels is the same for each N-level. The data of experiment E40 were not in 
this form. Therefore the data files that appear in this directory are just a reordering of the 
original data. 

In project welchl.con, the whole-plots are the N-levels (N0,N1,N2,N3), each consisting of 
two samples (with P-level P0 and PI). Both whole-plots and split-plots are randomly permuted, 
the split-plot permutation being the same per N-level by requesting dependent permutations 
across whole-plots. In this way, the row and columns of the table are permuted. 
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Of course, we can define rows and columns the other way round without changing the test. 
This is done in project welch2.con, where the whole-plots are the P-levels (PO and PI) and the 
split-plots are the N-levels. Both whole-plots and split-plots are randomly permuted, the split-
plot permutation being the same per P-level. In both cases the P-value is .85 (999 permutations). 
For comparison, the model-based permutations of section 8.3.3.2 yielded P = 0.66 (999 
permutations under the reduced model). 
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8.4 Other ordination methods that are also available in CANOCO 

8.4.1 Introduction 

This section describes a number of statistical techniques that can be obtained with 
CANOCO as special cases of the six primary ordination methods in CANOCO (PCA, RDA, 
CA, DCA, CCA and DCCA). 

8.4.2 Example LOGRATIO - Log-ratio analysis of compositional data 

Problem: 

Data: 

Directory: 

Illustration of: 

How does the chemical composition of rock relate to depth and its 
porosity? 

Aitchison (1984a: the Coxite data) 

\CANOCO\SAMPLES\METHODS\LOGRATIO 

• How to obtain a log-ratio analysis in CANOCO using PCA and RDA. 

• How to regress composition on explanatory variables. 

• Problems of the log(Ay+B)-transformation with B = 0. 

Files Name Description 
Species 
Environmental 
Derived 

Project 

coxite.dta 
depthpor.dta 
coxite2.dta 
cox zero.dta 
pcajgrt.con 
pcachck.con 
rdalgrt.con 
rdaforw.con 

error.con 
corr err.con 

chemical composition of rock (5 chemical species in 25 samples) 
depth and porosity of the samples 
percentages changed to fractions except for samples SI and S2 
species C in sample SI set to 0.00 in an all-fractions file 
Log-ratio PCA of compositional data (log-contrasts) 
Log-ratio PCA on coxite2.dta 
Log-ratio RDA of compositional data (with permutation test) 
manual forward selection of variables with permutation tests that account 
for the spatial arrangement of the samples 
Log-ratio PCA on coxzero.dta with log(y) transformation 
Log-ratio PCA on coxzero.dta with log(100y+l) transformation 

8.4.2.1 LOGRATIO: Log-ratio analysis of compositional data (generalized logit 
analysis) 

Compositional data sensu stricto are data scaled so that each sample total sums to 1 or 
100% or data with unequal sample totals in which the sum is arbitrary. Biplots of compositional 
data are briefly discussed on pages 144-145 of Unimodal models. See also section 3.9.2 for the 
theory. In this subsection we illustrate how to obtain such biplots in CANOCO. As an example 
we use the coxite data set presented by Aitchison (1984a: pp. 535-536). These (artificial) data 
consist of the percentages of five chemical constituents in 25 samples of rock taken at different 
depths (file coxite.dta). All percentage values are strictly greater than 0. 

A biplot of log-ratios can be obtained with the project pca_lgrt.con, which does a log-ratio 
PCA or, as Aitchison (1984b) calls it, a loglinear-contrast PCA. Note that the species data are 
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log-transformed (without any added constant: B=0) and that the data are centered by samples as 
well as by species. The scaling may focus either on the samples or on species; there is no need to 
post-transform the species scores. Also note that the data are percentages, not ratios. 

To illustrate that the absolute values are unimportant in log-ratio analysis, the coxite data 
are expressed as fractions, except for the samples SI and S2. In the resulting file, coxite2.dta, the 
sample totals for SI and S2 are 100 and for the remaining samples 1.00. The project 
pcachck.con does a log-ratio PCA on coxite2.dta. You may wish to verify that the ordination 
summary remains as in project pcalgrt.con. Note also that the total standard deviations (after 
site- and species-centering) are identical. The solution files are identical within numerical 
precision. Both projects thus result in the same biplot. This shows that log-ratio analysis focuses 
on relative abundances only. 

In contrast with the analysis of compositions and relative abundances by CCA, the weight 
of samples SI and S2 (with total 100) in the analysis is equal to that of the other samples (with 
total 1). Log-ratio analysis is based on the idea that each fraction is measured equally precisely. 
In contrast, CA and CCA use the idea that, for counts, the precision increases with the sample 
total, hence the different weighting scheme. 

Log-ratio analysis can also be carried out with predictor variables. The composition is 
regressed on the explanatory variable Depth in the project rdalgrtxon. Depth explains only 6% 
of the variance and is not judged significant. The project rdaforw.con specifies a manual 
forward selection (for Canoco for Windows only) with permutation tests based on cyclic shifts. 
The variable Porosity explains 39% and is significant (P=0.03). 

If the data contain some zero values, it is wrong to use the transformation log(A*y+B) with 
A =1 and B = 0. See section 5.6.2. This is illustrated with the data file coxzero.dta (all fractions 
with one zero value) which is analyzed in the project error.con. Please note that Canoco for 
Windows gives warnings as before. However, the results are non-sensical. The biplot of this 
project suggests that sample SI has a very high percentage of component C compared to the 
other samples and other components. However, it was this sample and this component that were 
set to zero! Any reasonable biplot should show that sample SI has an extremely low percentage 
of C. The error is corrected in correrr.con in which the data are log(100y+l)-transformed. The 
100 means that all data (fractions!) are transformed to percentages, to which 1 is added. The 
resulting biplot correctly shows that there is an outlying low value, the original zero. 
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Figure 8-4 Ordination diagram based on the redundancy analysis of the coxite data 
(Aitchison 1984a). 

Figure 8-4 shows the ordination diagram of RDA on porosity; the first axis (A4 = 0.39) 
displays the relation of composition with porosity; the second axis displays the residual variation 
(k2

 = 0.48). Porous rocks lie on the left hand side of the diagram and contain the largest 
percentages of constituent A. The least porous rocks lie on the right hand and contain the largest 
percentages of constituent C. 
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8.4.3 Example CVA - Canonical Variâtes Analysis 

Problem: 

Data: 

Directory: 
Illustration of: 

How do three Iris species differ in flower morphology? 

Fisher's Iris data, e.g. in Mardia, Kent & Bibby (1979) or the Minitab 
example files 

\CANOCO\SAMPLES\METHODS\CVA 

• A standard CVA with triplot showing group overlap and group means. 

• Permutation test of differences between groups using CVA. 

• Forward selection in CVA. 

• How to obtain means and correlations of the variables (for all data or 
per group). 

• How to obtain a pooled within-group correlation matrix. 

Files Name Description 
Species irisspe.dta 

Environmental iris flw.dta 

Derived 

Project 

stmeans.dta 
iris_fl2.dta 

c va. con 
cva_f.con 
cvaforw.con 
meansv.con 

withinco.con 

Indicators to which species (Iris setosa, I. versicolor and I.virginica) each 
of the 150 specimens of Iris belongs (50 per group) 
4 measurements on the flower of each specimen (length and width of the 
sepal and of the petal) 
standardized group means (specenv.tab of the CVA) 
copy of iris flw.dta for the trick to obtain group-means and the within-
group covariance matrix 
default CVA on the Iris data 
as cva.con but with manually modified solution file cvaf.sol 
forward selection of variables 
project giving means and correlations for /. versicolor only (using 
a standard trick) 
project giving the pooled within correlation matrix by specifying the 
groups as covariables 
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Figure 8-5 Triplot based on a CVA of the Fisher's Iris data. 
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8.4.3.1 CVA: Canonical Variate Analysis (Discriminant Analysis) 

We illustrate CVA using Fisher's famous Iris data. These data concern three Iris species, 
each represented by 50 specimens. For each specimen, four measurements of its flower were 
recorded, namely sepal length, sepal width, petal length and petal width. The question which 
CVA addresses is which linear combination of the flower measurements discriminate best 
between the three species as based on the analysis of variance F-ratio (e.g. Mardia, Kent 
&Bibby, 1979, Jongman et al. 1987: pp 148-149). The result is the first axis. After this, 
a second axis is derived that best discriminates and that is uncorrelated with the first. 

In the example the statistical units are the specimens (or flowers if you wish), so that, for 
CANOCO, the flowers are the samples. For CVA, the groups, which are here the three Iris 
species, must form the Species data in CANOCO (file irisspe.dta). The measurements of which 
we want the best linear combinations to discriminate the groups must be the Environmental data 
(file irisflw.dta). The other options for obtaining a standard CVA are: CCA with Hill's scaling 
and focus on inter-species distances (project cva.con). 

The triplot (Figure 8-5) shows that I. setosa specimens are very different from those of the 
other species, the inter-species distance being in this scaling the Mahalanobis distance. Also the 
sample distributions of /. virginica and I. versicolor hardly overlap. The arrows allow an 
inference of the (means of the) original measurements: setosa has smaller flowers except for 
sepal width. The long, nearly vertical arrow for sepal width shows that it differs also 
considerably within species. The output file specenv.tab (stmeans.dta) contains the means after 
standardization of each variable to zero mean and unit variance. The table of species tolerances 
(Tol:) contains the standard deviations along the axes of Figure 8-5 for the groups. They are 
reasonably equal among species and axes, as required. The plot of species centroids and 
specimen scores is given by Krzanowski (1988) with the first axis mirrored. The plot shown in 
Mardia et al (1979) is schematic. The addition of the arrows for the measurements was first 
proposed by Gabriel (1981). 

Unfortunately, there is a problem with the CANOCO environmental biplot scores for use in 
CVA. The problem is that the lengths of the environmental vectors (based on BipE scores; 
section 6.3.9) do not give the right impression about the relative importance of the 
environmental variables for group separation. The reason is that in CANOCO each 
environmental variable is standardized to unit variance. This is the unit of measurement for the 
biplot scores. A better impression about the relative importance would be obtained by 
standardizing each environmental variable to unit within-group variance. The squared length of 
the biplot vector is then a measure of the F-ratio of between-to-within-variance of the 
corresponding environmental variable. Together with the group centroids, so scaled 
environmental biplot scores continue to display the approximate group means, but in a different 
unit of measurement. The new unit of measurement is the within-group standard deviation. To 
obtain this unit of measurement, we need to calculate for each variable a factor f which is the 
ratio of the total variance to the within-group variance and multiply each of the BipE scores with 
the square-root of f. If the within-group variance is relatively small compared to the total 
variance or, equivalently, if the between-group variance is relatively large compared to the total 
variance, the vector for that variable will become relatively larger. 

With Canoco for Windows the factor f can be determined by calculating the between-groups 
variance using the project Betweenco.con. In this project the flower measurements are specified 
as species data and the groups (the Iris species) as environmental data. Using these data, 
a redundancy analysis is carried out. Import the solution file betweenco.sol in Excel and search 
for the table with title CFit (cf. Table 6.54). The values under the heading %EXPL are the 
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percentages variance explained by the groups. The factor f (the ratio of the total variance to the 
within-group variance) is now 100 /( 100 - %EXPL). For the four variables we obtain: 

1 

2 

3 

4 

Variable 

Sep length 

Sep width 

Pet length 

Pet width 

f 

2.622 

1.669 

17.065 

14.065 

Vf 
1.619 

1.292 

4.131 

3.750 

The importance of Petal length and Petal width for the separation among the Iris species is 
thus much higher than suggested by Figure 8.5. To create the modified figure with CanoDraw is 
somewhat tricky. A safe way to go is to open cva.con in Canoco for Windows under the name of 
cvaj.con and to modify the name of the solution file in this project to cvaj.sol. After this, 
manually modify the BipE scores in solution file cva.sol, for example using the Notepad 
program, and save the file under the existing name cvaj'.sol. Make sure to retain the same 
layout of the number as in the original cva.sol. Now invoke CanoDraw from the Start Menu, 
open cvaJ~.con as a new project and click Create I Simple Ordination Plot I Triplot. 

The eigenvalues issued by CANOCO are somewhat atypical for a CVA (see section 3.11); 
they are best reported as 9 = X/(l-X). For the Iris data, CANOCO reports as eigenvalues 0.9699 
and 0.2220. The standard CVA eigenvalues are thus 0.9699/(1- 0.9699) = 32.2 and 0.28. The 
canonical coefficients given by CANOCO are standard; recall that they must be divided by the 
standard deviation to express them in terms of the original measuments. The first canonical 
variate is 

0.84 Sepal length + 1.55 Sepal width - 2.22 Petal length - 2.84 Petal width 

The canonical coefficients are numerically somewhat unstable because of variance inflation 
factors of 31 and 16. In contrast, the triplot is numerically stable. 

The project cvaforw.con does a forward selection of variables with permutation tests. The 
variables are added in the sequence: petal length, sepal width, petal width and finally sepal 
length. The last variable is not significant given the other three variables. 

The means and variances per group can be obtained with CANOCO by applying a standard 
trick: carry out a PCA with the measurement variables specified both as Species data and as 
Environmental data. For this trick, you must make a copy of the data (iris_fI2.dta). The means 
per group are then obtained by deleting the samples (specimens) that do not belong to the group 
(e.g. project meansv.con). 

The pooled within-group correlation matrix can be obtained by specifying the group 
indicators as covariables (project withinco.con). The data entered as Species data are arbitrary. 
Two variance inflation factors are higher than 20, showing that the measurements are also highly 
correlated within-groups. For predictive purposes (determination of new specimens) at least one 
variable must be deleted, as was found also in the forward selection. 
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Insert legend into created diagrams 

This simple on-off option determines whether a legend is created for the ordination and 
attribute diagrams. All the remaining options below this one are available only if this option is 
on (checked). 

Legend is generally composed from one or more legend sections, which collect information 
about the appearance of graphical attributes shared by the diagram items of a similar kind. 
Examples of legend sections may be marks showing types of species symbols, corresponding to 
species of different classes, lines of different color corresponding to different series from an 
active series collection of samples, or square patches of fill patterns corresponding to pie-wedges 
of sample pie-symbols, representing different classes of species. Legend sections therefore 
contain zero, one, or more items of similar type. Legend section can be optimally introduced by 
a heading showing its name. 

Legend position 

The choices for this option determine the actual position of the legend area (rectangle) -
they determine to which window (paper) edge the legend is closest. 

Sections layout 

This item determines the arrangement of whole legend sections across the legend area. 
Legend sections may be arranged horizontally, filling rows until the "wrap quota" is reached. 
Then the starting position of the next legend section moves to the left side of the next row. 
Alternatively, legend sections may have a vertical layout, where each new legend section is 
below the preceding one, until the "wrap" quota is reached. 
Wrap sections after 

This value determines how many legend sections are put into one row (column), before the 
next section is placed in the leftmost position of the next row (or in the topmost position of the 
next column). For example, if the section layout is "Horizontal" and following Wrap field has 
value 2, the second legend section is positioned to the right of the first one, and the third section 
(if any) has its left side aligned with the left side of the first section and is placed below it. 

Items layout in sections 

This layout option is similar to the Section layout option described above, but concerns the 
nested hierarchical level - arrangement of items within a particular legend section. Additionally, 
the two options of horizontal and vertical layout are extended by the optional presence of the 
section heading ("w. heading"). 
Wrap items after 

How many section items are laid out in the horizontal (for horizontal section items layout) 
or vertical direction before the next row (or column) in the legend section is entered. 
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8.4.4 Example MULTREGR - Multiple regression with CANOCO 

Problem: 

Data: 

Illustration of: 

To relate y to predictors xl , . . . , x5 

M. J. Anderson (unpubl.) 

• Multiple linear regression by using RDA. 

• The partial tests and partial regression coefficients. 

Files Name Description 
one quantitative response variable (y) in 9 units 
5 predictor variables (xl-x5) 
all data (y, xl- x5) 
multiple regression of y on xl-x5 
idem, using yxvars.dta as Species data 
regression of y on xl with x2-x5 partialled out (i.e. with covariables x2-x5) 
forward selection with permutation tests 

Species 
Environmental 
Derived 
Project 

yvar.dta 
x vars.dta 
yxvars.dta 
multregr.con 
mltrgr.con 
partialx.con 
forward.con 

Table 8.16 Multiple regression of y on xl - x5: standardized regression coefficients (Regr:) 
and associated t-ratios (Tval:) as given by CANOCO. 

The usual regression coefficients (b) are the Regr-values divided by the standard deviation 
of the predictors (Sd env) times 2.329 (TAU, the standard deviation of y). If the 
species score of y is -1, b must be replaced by -b. The constant of the regression with 
respect to centered predictors is the mean of y (7.3209). 

name 

xl 

x2 

x3 

x4 

x5 

Regr: AX 1 

0.1365 

0.4543 

0.6998 

0.255 

0.5978 

Tval: 

0.828 

2.809 

3.4579 

1.4978 

3.6421 

sdenv 

0.8988 

0.695 

1.0029 

0.6221 

0.6898 

b 

0.353775 

1.522702 

1.625449 

0.954854 

2.018784 

8.4.4.1 MULTREGR: Univariate analysis by multiple regression 

There are many computer packages that provide more extensive facilities for multiple linear 
regression than CANOCO. Multiple regression with CANOCO is nevertheless a good choice if 

• you want to use permutation tests because you do not want to rely on the assumptions of the 
normal distribution in significance testing. 

• your data are already in a CANOCO-format and you want to do a quick exploratory analysis 
The example in this subsection also has an instructive purpose. Some aspects of canonical 

ordination are best explained in the simple context of multiple regression. 
The project multregr.con does a multiple linear regression of a response variable y on five 

predictor variables xl - x5, via RDA with focus on inter-sample distances. This focus is chosen 
because the species scores for y are equal to 1 or -1 in this scaling; this makes the output of 
CANOCO more easily interprétable in a quantitative way. The first and only canonical 
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eigenvalue (and thus the sum of all canonical eigenvalues) of the analysis is the fraction of 
explained variance. The species-environment correlation of the first axis is the multiple 
correlation coefficient, usually denoted by R. The second eigenvalue is the fraction of 
unexplained variance. The log-window also contains the means, standard deviations and 
correlations of the predictor variables. For the example data, CANOCO does not detect any high 
influence points. 

Regression coefficients and associated t-ratios are listed in the solution file. The regression 
coefficients (Regr:) given by CANOCO are standardized regression coefficients: they apply to 
the normalized variables y, xl ... x5, i.e. in which each has zero mean and unit variance (with 
divisor n instead of n-1). If the species score for y is -1 , all signs must be changed. The t-values 
of regression coefficient are the usual ones (estimate divided by the standard error of estimate). 
Because we are carrying out univariate linear regression here, we may conclude from the t-
values that x2, x3 and x5 are significant at the 5% level (at least if the errors are independent and 
approximately normal). To obtain the regression coefficients in terms of the original variables 
we need to divide the standardized coefficients by the standard deviations of the predictors xl ... 
x5, and multiply the result by the standard deviation of y (Table 8.16). The latter is given under 
name of "total standard deviation in the species data TAU" in the log-window, as y is the only 
variable in the Species data. The constant of the regression (with centered predictors) is the 
mean of y, which is -ORIGIN * TAU where ORIGIN is given among the species-derived 
sample scores. In the example, the constant is 3.1427 * 2.329 = 7.32. An alternative way to 
obtain the mean of y is to specify a copy of the y-data among the Supplementary Environmental 
data (yxvars.dta), as is done in the project. 

With one response variable, the species-derived and environment-derived samples scores 
are identical for the first axis. The first axis of the sample scores is the fitted value of the 
normalized response variable, whereas the second axis of (species-derived) sample scores is the 
residual. A plot of the sample scores in CanoDraw thus shows "residuals against fitted values", 
a standard plot to check for homoscedasticity of the error variance. To obtain the usual fitted 
values, use 

(8.3) Fitted values = mean(y) + TAU * Sample scores * Species score 

where all scores are from the first axis, and the species score of y is either +1 or -1 . Note that 
(8.3) is the usual algebraic formula for the biplot rule in one dimension. To obtain the usual 
residuals, multiply the second axis scores by TAU. 

The project mltrgr.con uses the data file with all variables, yxvars.dta, as the Species data 
file. This project shows that it is possible to carry out a univariate regression by deleting all 
superfluous variables in the project. Deleting very many variables from the Species data file 
may, however, occasionally be numerically unstable. To be on the safe side, always put the 
response data in a separate data file. 

A test for a partial regression coefficient is obtained by specifying the other predictors in the 
model as Covariable data. An example is given in project partialx.con. The resulting, 
permutation based P-value for xl is 0.46, which is about the same as the P-value based on the t-
value of xl . The permutation test is obtained using forward selection for reasons of efficiency 
only: in CANOCO, testing the significance of single variables (1 degree of freedom per test) is 
done most efficiently with forward selection. 

Note that the regression coefficient for xl in the Regr: table in the solution file partialx.sol 
is the same as that in multregr.sol. This happens because there is just one response variable. 
With more than one response variable, the coefficients will differ numerically, but their meaning 
remains unchanged in the sense that the coefficients give the conditional effect of the variable, 
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i.e. the effect adjusted for the effects of all other variables in the model (both covariables and 
environmental variables). 

In the project forward.con, the predictors are selected by forward selection. In each step of 
the selection a permutation test is carried out. The variable xl is added last; the resulting P-value 
is the same as in the previous project, provided the number of permutations is large. 
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9.1 Working with PrCoord 

The PrCoord program implements principal coordinate analysis (PCO or PCoA) for non-
negative (semi-)quantitative or presence-absence data. Canoco for Windows is able to calculate 
only a limited number of the most important axes (principal coordinates). To obtain the full 
solution, you must use the PrCoord program. This is needed for example for the distance-based 
redundancy analysis (Legendre & Anderson, 1999), as illustrated in the section 9.3 of this 
chapter. The user interface of the PrCoord program is integrated into a simple application 
window, illustrated in Figure 9-1. 

PrCoord 

SOURCE DATA 

Input date: Calculate 

The above file contains symrnetnc matrix of distances, as ASCII with TABs 

Transformation: P" None <~ Log(y+1) <~ Square-root 

Remove species V" n ' —I occurrence(s) 

Exit 

Help 

-DISTANCE MEASURE 

C Euclidean distance 

C Hellinger distar 

C Ch -square distance 

3rd distance 

r 
r 

Bray-Curt 

SQF 

s distance 

Jaccard) C SQRT(1 •Soerens) ; 

Treatment of negative eigenvalue 

Outp 'mat 

|D \Rrogram Ries lanoco tor W,r,dows\S 

(•" Do not use 

amples\pcoa-dun 

C Correct 

Figure 9-1 User interface of PrCoord program 

To calculate the PCO solution with the PrCoord program, you must proceed with the 
following steps: 

1. Specify input data 
* You can specify an existing Canoco data file as the input data and then select one of 

the available distance measures (see section 9.2 for additional details). Note that 
PrCoord does not accept a data matrix which contains empty samples (with zero sum 
of values) and also does not accept a data matrix with negative values, except when 
the Euclidean distance was chosen. 
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* Alternatively, you can specify as input data file a text file representing the full matrix 
of distances, with each row of the matrix on a separate row of the text file and the 
individual columns separated by the TAB characters. This possibility allows you to 
calculate any kind of dissimilarity measure outside the PrCoord program and use it 
here, if the file contents meet the following requirements. The first row must contain 
the names of individual samples, separated by TAB characters. The following rows 
do not start with the row name. Therefore, if you have a dissimilarity matrix for N 
samples, the input file in TAB-separated format must have N+l rows and N columns. 
To specify to PrCoord program that the input data represent a matrix of distances, 
you must check the option named The above file contains symmetric matrix ... 

2. Decide about optional transformation and reduction of the input data, unless the input 
file represents a matrix with distances. You can omit species (variables) with less than N 
occurrences. The default value of 1 selects all the species present in the data. The data 
can be also optionally log-transformed (with the value 1.0 added before the 
transformation) or square-root transformed. Any negative values are set to zeros when 
the log-transformation or the square-root transformation is applied. 

3. Select the distance measure to be used, unless the input already represents a distance 
matrix. Beside the Euclidean distance and Chi-square distance, the other available 
distance measure include the frequently used Bray-Curtis distance, square-root of the 
Bray-Curtis distance, two distances related to Euclidean distance: the Hellinger distance 
(advocated for example by Legendre & Gallagher, 2001) and Chord distance. 
Additionally, two dissimilarity measures based on the presence and absence of species 
(variables) in the samples are available. These distances are calculated as square-rooted 
complements of either Jaccard or Soerensen similarity coefficients. Note that if one of 
these last two measures is selected, any quantitative input data are implicitly 
transformed to 0/1 values during the calculations. Additional information about the 
distance measures supported by PrCoord can be found in Legendre & Legendre (1998, 
Chapter 7). 

4. Decide (for any kind of input data) about the treatment of negative eigenvalues. PrCoord 
can either ignore the principal coordinates with negative eigenvalues or it can use the 
Lingoes correction method (see Legendre & Legendre 1998, p. 434). Note that the 
negative eigenvalues occur only if the (non-transformed) Bray-Curtis distance was 
selected (as this measure is not metric), or if a matrix of non-metric distances was 
specified as the program input. Note that the correctness of "correcting" the distance 
matrix to prevent occurrence of negative eigenvalues is questionable (see McArdle & 
Anderson, 2001). 

5. Specify the name and location of the output file which will be created using the Canoco 
full format. The sample scores on individual axes are represented by variables named 
Axl, Ax2, etc. 

After you obtained the PCO sample scores using PrCoord, you can display the PCO results 
(the sample scores) using Canodraw for Windows. For this, the output file produced by PrCoord 
must be entered as species data in Canoco for Windows. Then, specify a principal components 
analysis (PCA) with the scaling focused on inter-sample distances and species scores not post-
transformed. The resulting PCA scores are equal (except a constant rescaling factor) to the PCO 
scores and can be visualized in a scatter of samples with CanoDraw. 

You can also use the PCO sample scores as the response variables in a constrained analysis 
in Canoco, producing effectively the solution of distance-based redundancy analysis (db-RDA, 
see section 9.3). 

Page 306 Program PrCoord 



9.2 Implementation details 

The PrCoord program implements the Gower (1966) method of calculating the PCO solution. 
The matrix of distances {Dy} is transformed to {-0.5 Dy2} and then double centred 
(e.g. Jongman et al. 1987: equation 5.17) and then submitted to the singular value decomposition 
(SVD) routine DSYEV (mm the LAPACK library (Anderson et al. 1999). 

PrCoord can read an input data file with up to 25 000 samples and 5000 variables (species). 
Similarly, the input matrix of distances can refer up to 25 000 samples. Note, however, that 
practical limitations of the number of samples will be usually much lower on most computers. 
Input of a symmetrical matrix of distances for 10 000 samples, for example, requires allocation 
of dynamic memory with the size exceeding one gigabyte at one stage of the algorithm. The read 
or calculated distance matrix is stored using the "single-precision" floating-point representation, 
the transformed matrix A passed to the SVD routine uses the "double-precision" floating-point 
values. 

Following paragraphs show the formulae used to calculate the individual distance metrics in 
the PrCoord program. In the formulae, y y is the value of j-th species (variable) in the i-th sample, 
yi+ is the sum of the (species) values in the i-th sample, y+J- is the sum of j-th species values over 
all samples, y++ is the total sum of values in the data matrix, m is the number of species 
(variables), a is the number of species occurring in both compared samples, b and c is the 
number of species occurring, respectively, only in the first or only in the second sample. 

Euclidean distance between samples 1 and 2 is calculated as: 

(9-1) Dl2=2J2(yy-y2j)
2 

Chi-square distance between samples 1 and 2 is calculated as: 

(9 -2) Dl2=ljy++*i k Lu 
l>i+ y-i*) 

y*j 
' y= i 

Bray-Curtis distance between samples 1 and 2 is calculated as: 
m 

(9-3) Dl2 = y=i 

Hellinger distance between samples 1 and 2 is calculated as: 

(9-4) Di2=PJ 

Chord distance between samples 1 and 2 is calculated as: 

( 9 -5 ) DK 2* 
IX-^y 
y=i 

l m m 

\\LylHyl 
Jaccard similarity between samples 1 and 2 is calculated as: 
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( 9 - 6 ) Sl2= — -
a + b + c 

Note that the S12 value is then subtracted from 1.0 and then the square-root of the result is 
taken. 

Soerensen similarity between samples 1 and 2 is calculated as: 

2a 
( 9 " 7 ) S»- 9 ^ 

2a + b + c 
Note that the S12 value is then subtracted from 1.0 and then the square-root of the result is 

taken. 
Also note that the Chord distance is implied in PCA and RDA methods in the CANOCO 

program, when standardization by sample norm was selected. The transformation implied by the 
use of Hellinger distance cannot be directly achieved in the CANOCO program - the original 
data values are replaced by the square roots of the relative contribution of individual species to 
the sample total. 

9.3 How to calculate db-RDA with Canoco software 

In our tutorial, we will use the dune meadow data, described in the DUNEBOOK example 
in section 8.2.5. The aim of our analysis is comparable to the analysis represented by the 
ccabipl.con project in the \CANOCO\Samples\Unimodal\Dunebook directory, but we will base 
our analysis on the Bray-Curtis distances among the samples. 

Start the PrCoord program and select the tableOl.dta as the Input datafile, using the 
Browse button. We will not transform the species data and we will not omit any species, so use 
the default values of the other settings in the SOURCE DATA area. Select Bray-Curtis 
distance in the DISTANCE MEASURE area and keep the Do not use choice for the 
Treatment of negative eigenvalues. In the Output file in CANOCO format field specify 
\CANOCO\Samples\Unimodal\Dunebook\pcoa-dun.dta, where CANOCO should be replaced by 
your actual Canoco install directory. 

After you click the Calculate button, the PCO solution is calculated, and the Analysis 
Report window appears. You can see there that the analysis of the matrix with Bray-Curtis 
distances among 20 samples leads to 20 principal coordinates. Because the Do not use box is 
checked, only the 14 principal coordinates with positive eigenvalues are written to the output file 
pcoa-dun.dta. Close the window and then also the PrCoord program, using the Exit button. 

Open the Canoco for Windows program and create a new project. In the Project Setup 
Wizard specify on the first page that you have Species and environment data available, but do 
also check the Supplementary environment data available option. In the same page, keep the 
default setting of direct gradient analysis. 
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Figure 9-2 Specifying input data for db-RDA in Canoco 

In the next page (see Figure 9-2 for its final look), specify the pcoa-dun.dta file produced by 
the PrCoord program as your species data, specify the Table02.dta (in the 
\CANOCO\Samples\Unimodal\Dunebook directory) as the environment data file, and specify the 
TableOl.dta (which was already used as the input of PrCoord program) as the file with 
supplementary environment data. You can use the pcoa-dun.sol as the name of the Canoco 
solution file. 

Specify RDA on the next wizard page and keep default settings for the remaining options. 
Save the resulting Canoco project under the name pcoa-dun.con and click the Analyze button. In 
the Canoco log view you can see that the first two axes explain 51% of the total variability 
among the Bray-Curtis distances (as represented by the 14 principal coordinates with positive 
eigenvalues, while ignoring the 5 coordinates with negative eigenvalues). The summary shown 
in the log view is actually the second summary which summarizes the relation of the ordination 
axes with the supplementary variables (in this summary the species-environmental correlations 
are given as 0.000, because the fit is perfect, there being more supplementary variables than 
samples). By scrolling up in the log view, you can find the first summary, which summarizes the 
RDA of principal coordinates to the real environmental variables. You can see for instance that 
the third eigenvalues (0.049) is much smaller than the second (0.177) and that all environmental 
variables together explain 64.76 % of the variability in the Bray-Curtis distances. 

We included the actual species data as the supplementary variables in our analysis to enable 
visualization of species occurrences within the db-RDA ordination space. To do so, you should 
specify these variables as nominal variables in the CanoDraw program. The symbols for 
individual species then lay on the (weighted) centroids of samples, in which they occur. 
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Figure 9-3 Diagram from the distance-based RDA, first two axes 

The diagram in Figure 9-3 represents atriplot diagram with both the environmental 
variables and the supplementary variables (individual plant species). The thin arrows in this 
diagram correspond to individual axes of the analysis of principal coordinates. Note that only the 
"species" (PCO axes) with at least 10% of their variability explained by the first two axes of 
db-RDA are shown {Project I Settings I Inclusion Rules). The selection of Axl and Ax2 
demonstrates clearly the coherence between the solutions from the unconstrained PCO and the 
constrained db-RDA. The plotted species are those with correlation with the ordination axes 
exceeding 0.5 in the absolute value {Project I Settings I Inclusion Rules 2, with values -0.5 and 
+0.5 placed in the two fields at the bottom). 
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CanoDraw for Windows 
User's Guide. Version 4 

The code for Generalized additive modelling (GAM) in CanoDraw is partially based on a public 
domain version of GAIM software (Hastie & Tibshirani, 1990). 

Loess model fitting is based on DLOESS code and in the following two paragraphs, its 
copyright notice is quoted: 

1. The authors of this software are Cleveland, Grosse, and Shyu. Copyright (c) 1989, 1992 by 
AT&T. Permission to use, copy, modify, and distribute this software for any purpose without 
fee is hereby granted, provided that this entire notice is included in all copies of any 
software which is or includes a copy or modification of this software and in all copies of the 
supporting documentation for such software. 

2. This software is being provided "as is", without any express or implied warranty. In 
particular, neither the authors nor AT&T make any representation or warranty of any kind 
concerning the merchantability of this software or its fitness for any particular purpose. 

Export in the PNG format uses the PNG library: 

libpng version 1.0.8 - July 24, 2000 

Copyright (c) 1998, 1999, 2000 Glenn Randers-Pehr s on 

(Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) 

(Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) 

My thanks go first and foremost to my wife Marie and to my daughters, for their patience with 
me. Petr Smilauer 
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10. CanoDraw Introduction 

CanoDraw for Windows is a program written specifically for users of Canoco for Windows 
and it is distributed with Canoco in a single package. The Canoco program provides 
the analytical engine, allowing you to address specific research questions by setting-up precisely 
specified analyses based on constrained and unconstrained ordination methods. CanoDraw 
focuses more on the exploratory and presentation aspects of data analysis. It allows you not only 
to present the basic ordination results using the ordination diagrams, but also to penetrate deeper 
into your complex datasets and to explore the research hypotheses, suggested by the ordination 
results. 

Among the frequent applications of ordination methods, there are also many cases of 
misuse. Correctness of using an ordination method depends on several assumptions and these 
can be (and should be) checked either before or after the analysis. CanoDraw is able to support 
you in most of those checks, offering a wide variety of variables, which can be plotted, and of 
regression models which can be fitted within such plots. 

Work with CanoDraw program is centred on projects. A project in CanoDraw closely 
corresponds to a Canoco project, which represents a single ordination model fitted to your data. 
This model might have either implied explanatory variables (in unconstrained ordination 
methods, like PCA or DCA) or there could be explicit explanatory variables called, in Canoco, 
environmental variables and / or covariables. Canoco takes the model specification and reads 
the source data (in one or more data-files) and then it produces results, which are stored in the 
Canoco solution file (typically with its name including the .sol extension). The analysis options 
are stored in the Canoco project file (typically using the .con extension). 

To create a new CanoDraw project, you start by selecting an existing Canoco project. At 
this time, the project must have been already analysed by the Canoco program and the results 
stored in a Canoco solution file. CanoDraw needs you to specify the location of the Canoco 
project file and determines from its contents the location of the Canoco results as well as the 
source data-files used in the analysis. The Canoco results as well as the source data provide the 
starting information for the CanoDraw project, allowing the creation of most of the graphs 
needed for an efficient exploration of your data. But you do not need to stop there. You can use 
additional information about your data which can be imported into the CanoDraw project or you 
can compare results from two alternative Canoco analyses by importing results of one of them 
into the other one. 

When exploring the analysis results, you should start with simple ordination diagrams to 
obtain a better understanding of your data. You do not need to save the graphs unless you find 
them to be worth presenting to a wider audience. CanoDraw maintains for each project a log, 
where the names and contents of the saved graphs are listed. You are invited to supplement the 
text, which CanoDraw puts into the log window, by your own comments, summarising, for 
example, the conclusions made from the created graphs. In fact, this text can provide a basis for 
writing your report or research paper. 

CanoDraw also stores the information about the saved graphs within the project file, so you 
can re-open the graphs at any time, assuming that you keep the project information up-to-date 
(i.e. that you save your project file each time you are asked to do so). Similarly, each CanoDraw 
graph file (using the xdg extension) maintains a link to the CanoDraw project from which it was 
created. This is important because it extends the possibilities for re-establishing links between 
the graphs and its parental projects. You can even ask a graph document, opened in CanoDraw, 
to locate and open the CanoDraw project file from which it was created. The links between the 
graphs and the projects are needed for a more substantial exploration of your data. With such 
a link in place, you can, for example, see summary information about individual samples or 
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variables shown in an ordination diagram or to select a particular variable and ask CanoDraw to 
create a new graph, summarising the pattern of the variable' values over the ordination space. 

After you explored the analysis results and recorded your conclusions, based on the created 
graphs, into a log file, you can copy it to the Windows Clipboard and paste the log into a word-
processor document. The text can be then supplemented with the graphs created by CanoDraw. 
To do so, you can either copy the graphs to the Clipboard and paste them from there, or export 
them in various formats. CanoDraw supports the Windows bitmap format as well as the PNG 
format (accepted by all the recent WWW browsers) and it is also able to export files in vector 
formats, namely the Windows enhanced metafile format and the Adobe Illustrator™ format. 
CanoDraw creates each graph as a separate entity and does not have any facilities to combine the 
graphs into more complex layouts. You must use other software to combine the individual 
graphs into composite illustrations. 

The example 14.1 guides you through the basics of CanoDraw for Windows. Before 
working with that example, you are advised to read at least the Chapter 11. 
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11. CanoDraw Concepts 

This chapter introduces some important concepts necessary for understanding this guide, 
but also for working efficiently with the CanoDraw program. It is assumed that you have a basic 
understanding of ordination methods, as implemented in the Canoco for Windows software and 
documented in the beginnig part of this manual. 

11.1 Types of items in Canoco and CanoDraw projects 

All ordination methods work with primary data, often representing the composition of 
biological communities (such as terrestrial vegetation, birds assemblages in particular habitats, 
invertebrate species on river bottoms, etc). Individual records of community composition (taken 
at various places and / or at various times) are called samples in Canoco and CanoDraw, 
although this usage clashes with the traditional meaning of this term in statistics (where sample 
refers to the whole collection of recorded data). The presence or abundance of organisms is 
recorded separately for individual categories, typically representing taxa, most often at the 
species level. Therefore, these categories are called species in Canoco and CanoDraw. A species 
in this meaning represents a specific kind of variable. The primary data are represented by 
a rectangular table where individual rows correspond to samples and individual columns to 
species. 

The species data are usually supplemented with other kinds of information used to interpret 
their variability. In this context, we can call the species the response variables, and the 
additional variables available for individual samples can be called the explanatory variables. 
Canoco and CanoDraw distinguish at least three types of such explanatory variables: 

We use environmental variables as the main source of information for interpreting 
variation in the species data. Their name derives from the fact that these variables most often 
describe properties of the environment in which the communities were recorded (such as water 
or soil properties, landscape characteristics, etc). The constrained ordination methods (also 
called canonical ordination methods) focus on summarising the variability in the species data 
explainable by the available environmental variables. In unconstrained ordination methods, the 
results summarise the total variability in the species data, and the effects of optionally present 
environmental variables can be determined a posteriori. 

The covariables (often called covariates in other statistical software) are another kind of 
explanatory variable, and they differ from the environmental variables in the context of their use. 
Their effects upon the variability in species data are accepted and are not interesting for the 
particular analysis. Therefore, the variability explained by the covariables is removed 
("subtracted") from the total variability and only the additional (partial) variability, not 
explainable by covariables, is portrayed in the ordination results. Therefore, the information 
about the effects of covariables is never directly shown in the ordination results and the results 
are believed to be free of the effects represented by the covariables. The ordination methods 
where covariables are used are called partial ordinations. 

The supplementary variables differ from environmental variables simply by representing 
a secondary set of explanatory variables, in addition to the environmental variables. The 
supplementary variables are never used to constrain the solution of an ordination method; they 
are always projected a posteriori into the calculated ordination space. The supplementary 
variables are most often used as an additional set of explanatory variables in a constrained 
ordination method. 
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To simplify notation, this guide sometimes refers collectively to environmental variables, 
supplementary variables, and covariables as explanatory variables. All the \arious kinds of 
items which can be plotted in the ordination diagrams (sample scores, species scores, 
environmental variable scores, and supplementary variable scores) are collectively 
referred to as various types of items. 

11.2 Indices of items 

In an ordination analysis computed with Canoco, each sample, species or explanatory 
variable is uniquely identified by a whole number, called an index in the CanoDraw 
documentation and user interface (identification number is used in the Canoco documentation). 
These indices are unique within each item type. Each such numbering usually starts from value 
1 and goes through an increasing sequence (2, 3,...). But Canoco allows you to work with 
datasets where only some members of the sequence are present (a data-file may contain samples 
numbered 2, 4, 6 etc., but not 1, 3, 5 etc.) and you can also remove some samples, species, or 
explanatory variables during the analysis. In such cases, the results provided by Canoco contain 
non-contiguous sequences of indices for one or more item types. 

In CanoDraw, the indices are often reported along with the labels attached to items in the 
original data files. Note that the labels, which can be up to eight characters long (see section 
4.3), do not need to be unique for different items. 

The item indices are most important when you are importing additional information into 
a CanoDraw project. If you do not have such information available for all the items present in 
the analysis (e.g. ecological traits are known just for a subset of species) or if this information is 
available for a superset of species (taken from a data-base), CanoDraw can extract the relevant 
part of information from the imported data (e.g. from a Clipboard or from a Canoco data file) by 
matching item indices. 

11.3 Window types 

CanoDraw can present information about a project or about a graph in more than one 
window type. The window types are summarised in Table 11-1 and also illustrated in Figure 
11-1 and Figure 11-2. 

Both projects and graphs have one window type mandatorily connected with them. If you 
close the window titled Project <project-name>, the whole project is closed (along with any 
additional project-related windows, if present). Similarly, the window titled Graph <graph-
name> is always shown for each open graph and closing it implies closing of the graph 
document. On the other hand, the windows containing a tree-like structure (named Project 
Details <project-name> for CanoDraw projects and Graph Contents <graph-name> for graphs) 
are displayed optionally, and their presence is governed by commands in the View menu. 
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Figure 11-2 Two types of graph windows 

The window titled Log <project-name> has a special behaviour. It cannot be closed and it 
accumulates messages generated when new graphs are saved or problems and errors occur 
during the program execution. Log window contents can also persist across the sessions if you 
select so in the dialog invoked by Workspace Settings command (see section 12.3.3). 
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Window title 

Project <X> 

Log <X> 

Project Details <X> 

Graph <Y> 

Graph Contents <Y> 

Window contents 
Shows summary of the ordination analysis on which this project is based; 

a constrained ordination is described with the notation similar to that used in 
software for multiple regression; the window also lists the data files used in the 

analysis, including the number of samples and variables 

Logs various kinds of messages: problems encountered while creating graphs, 
particularly when fitting regression models and calculating species data statistics; 
errors occurring while saving files; records about the name and contents of graphs 

saved to a permanent storage; etc. 

Lists the variables available in a project. There are three main folders in the upper 
level of the hierarchically structured contents: 

* Project Results folder contains variables with item scores and statistics, 
extracted from Canoco™ solution file, and arranged according their placement 
in individual solution file sections. These are usually available for all items of 
the particular type and some of them are available separately for individual 
ordination axes 

* Source Data folder contains variables available in the original Canoco™ data 
files. They are placed into the folder corresponding to individual data file 
types (Species Data, Environmental Data, Passive Data) 

* Imported Variables folder contains variables imported later into this 
CanoDraw project. They are placed into one or more subfolders, depending on 
which type of items they refer to 

You can click on any of the terminal items (corresponding to one variable) with 
right mouse button to display the Variable Summary floating dialog (see section 

13.5 for its description) 

Shows the graph as it will appear when printed (except it is always shown in Ml 
colour here). You can change the magnification to see just a part of the graph in 

higher resolution and you can directly manipulate the graph contents here 

Presents the graph contents in hierarchical manner, displaying organisation of its 
structure. In the window illustrated in Figure 11-2, we can see that the graph 

contains both species scores and the scores of environmental variables, the latter 
represented by biplot scores or by centroids. This window type supports only 

partial manipulation of graph contents: you can perform several types of selection 
of graph objects (direct selection and Select Suchlike and Select Similar 

commands), you can lock selected objects, and you can edit visual attributes of 
selected objects. Using this tree view, you can simply select a group of objects (by 

selecting a non-terminal tree item) and change its visual attributes. Selection of 
objects in this window is independent of the selection in the standard graph view. 

Table 11-1 Contents of individual window types 

Beside the window types described in the above table, CanoDraw can also display three 
types of floating windows described elsewhere: the Properties window that can be used to 
change the visual attributes of selected graph objects (see section 12.3.4), and the two floating 
windows summarising the values of the active variable (Variable Summary window) or the 
values of the active sample (Summary of sample window) - see section 13.5 for their 
description. 

11.4 Graph types 

Graphs produced by CanoDraw can be roughly classified into three types: 
* Ordination diagrams display a two-dimensional projection of the ordination space calculated 

during the analysis performed by the Canoco program. Ordination diagrams most often 
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attempt to summarise the original species (primary) data or their relation to explanatory 
variables. Contents of the ordination diagrams can be interpreted to provide an optimal 
approximation of either the original data or secondary tables derived from such data (e.g. 
matrix of correlations among the species, matrix of weighted averages of species to 
individual explanatory variables, etc.) - see Ter Braak (1994) and Ter Braak & Verdonschot 
(1995) for more details. CanoDraw for Windows optionally provides hints concerning the 
correct interpretation of a particular ordination diagram (see section 13.5 for description). 
Ordination diagrams are created with commands located in the upper part of the Create 
menu. 

* XY andXYZ diagrams display a joint distribution of values of two or three variables either in 
form of scatter plots (with points displayed at the coordinates representing the values of X 
and Y variables) or by displaying the fitted regression curves (representing the relation 
between the response variable Y and the explanatory variable X) or regression surfaces 
(representing the relation between the response variable Z - the attribute variable - and two 
explanatory variables X and Y). In both cases, CanoDraw provides a choice among three 
families of regression models: generalized linear models (including the traditional linear 
regression models), generalized additive models, and regression models based on the loess 
smoother. In XY diagrams, there can be more than one response (Y) variable at the same 
time, but such a display is typically useful only if the fitted regression models, not the 
original scatters of points are shown. See section 12.5.5.3 for more details about creating XY 
and XYZ diagrams, and section 13.6 for additional discussion about fitting regression 
models. 

* Ordination-based attribute plots stand halfway between the previous two categories. They 
show the patterns of values of a selected variable, an attribute, in the positions 
corresponding to the sample (or species, or environmental variable) scores in the ordination 
space. You can use as an attribute either an original variable from the source data, 
an imported variable, or any variable present in the file with the Canoco results. The 
visualisation of the attribute values can be done either by varying the size of symbols 
representing individual plotted items (usually the samples), or by fitting a regression model 
(generalized linear model, generalized additive model, or loess smoother model) using the 
horizontal and vertical axis as two predictors and the attribute as a response variable. In the 
latter case, the pattern of attribute values across the ordination space is shown as contour 
plot, representing the fitted "response surface". The ordination-based attribute plots are 
created using the menu commands Data Attribute Plot and Results Attribute Plot. See 
sections 12.5.5.1 and 12.5.5.2 for additional descriptions. 

11.5 Graph object types 

The contents of each CanoDraw graph can be viewed from two different points. First, you 
can concentrate on the meaning of the graph contents and see, for example, an ordination 
diagram with species and samples as presenting information about the changes of expected 
values of individual species along the ordination axes, about the expected co-occurrence of 
species in samples, and about the similarity of species composition among the samples. 
Alternatively, you can focus more on the visual aspects of the graph. In that case, you want to 
differentiate among the symbols representing individual samples and the labels connected to 
them, you are concerned with the length of tickmarks on the plotted axes, and you want the 
envelopes enclosing samples from different classes to be easily distinguishable by the viewer. 

Certainly, the first view is the one of ultimate importance, but you need to pay attention also 
to more formal aspects of your graphs, to facilitate an easy interpretation of their contents. When 
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we consider a CanoDraw graph from the point of view of its visual attributes, we work with 
individual graph objects. Often, a single plotted item (such as one species or one sample) is 
represented by at least two graph objects (e.g. species arrow and its label), and additional graph 
objects combine into graph axes, legend, etc. CanoDraw graphs may contain up to seven 
different kinds of graph objects, listed in Table 11-2, together with a summary of their main use. 

Graph object type 

labels 

lines 

arrows 

polylines 

symbols 

pie-symbols 

rectangles (bars) 

How this type is used in CanoDraw graphs 
to label individual items plotted in graphs (species, samples, explanatory variables) 

to label ordination axes - either at minimum and maximum values or at all the 
tickmark positions 

to name individual categories differentiated in graph legend 

to draw the coordinate system of each graph: the scale (axis) lines and the tickmark 
lines; the tickmarks can be transformed to a reference grid within the graph 

to plot ordination items representing vectors, not positions (quantitative explanatory 
variables, species in linear ordination methods) 

to represent isoline contours in contour diagrams 

to represent one or more ordered series of samples or species 

to visualise the area occupied by items of particular class (using envelopes) 

to represent ordination items corresponding to positions in the diagram space 

to provide special representation for ordination items corresponding to sample or 
species positions in the diagram space: in addition to marking item location, the pie 
symbols visualise distribution of classes of complementary items (section 12.4.1.1) 

used only to allow manipulation of graph legend area 

Table 11-2 Graph object types in CanoDraw graphs 

11.6 Graph scaling and coordinate units 

The size of a CanoDraw graph depends on the currently specified properties of the output 
media. The media properties (size and orientation of the output page) are selected in the Print 
Setup dialog. If the currently active window in CanoDraw corresponds to a project or there is no 
window opened in the CanoDraw workspace, the output media properties are used as defaults 
for all the newly opened or created graphs. If, on the other hand, the currently active window 
corresponds to a graph, then the page size and orientation is set just for this graph. In this way, 
you can change the original layout of the graph with respect to the output media. Note, however, 
that this change is not persistent across the CanoDraw sessions. When you open an existing 
CanoDraw graph file again, the graph is scaled to fit as well as possible onto the currently active 
output media format. This is the result of the way CanoDraw constructs the graphs: they are 
scaled so that they fit best into a virtual coordinate space. 

The virtual coordinate space used by CanoDraw is a two-dimensional drawing space with 
isomorphic scaling in the horizontal and vertical directions (the same physical distance 
corresponds to an identical difference in coordinate space units in both directions). The main 
graph contents (all the plotted data items as well as the graph axes and their labels) are always 
fitted into the area spanning from coordinates [0,0] at the lower left corner to the coordinates 
[1,1] at the upper right corner. The graph may not (and usually does not) fill this whole area, 
unless it has the unit aspect ratio (i.e. the same height and width). The labels can reach over this 
unit area of the virtual coordinate space. For example, if a label is adjusted to be on the right side 
of a point with virtual coordinates [x=0.990, y=0.5], its right edge is likely to reach over the 
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value of 1.0 in the horizontal direction. If a graph contains a legend, the legend area is placed on 
one of the edges of the output media, depending on user-specified settings (see section 12.4.1.2). 
If these settings specify the placement of the legend on the left or bottom edge of the output 
page, the graph is shifted correspondingly towards the right or upwards, so its right edge or top 
edge can reach over the coordinate value 1.0. Similarly, if the legend is placed on the right or top 
edge of the output page, the right or top edge of the legend frame is likely to reach over the 
coordinate value of 1.0. 

The longer side ef the main graph ares maintains its length fa virtual coordinate units 
equal to 1.0 minus the specified Outer Graph Margins (see section 123.12}. The unit 
length to the virtual coordinates provides a reference for specifying the sfa of symbols or 
feats, width of lines, and other dimensions in varions places where CanoDraw options 
might he set 

When displaying or printing a graph, CanoDraw scales the original unit rectangle (extended 
on its right and / or the upper side if any graphs objects exceed the unit coordinate) into the 
printable area of the output media. 

The actual virtual coordinates of the mouse pointer are displayed in the graph window' 
status bar. 

11.7 Limiting contents of graphs 

If you analyse large data sets, with hundreds of variables and / or of samples or if you ask 
specific questions concerning, for example, just a subset of species with specific ecological 
properties, you might like to restrict the set of items displayed in a graph. 

CanoDraw provides several methods for limiting the set of plotted items. The primary 
method is the selection of plotted items using their properties. There are several criteria, which 
can be active for a particular type of items (e.g. species) at the same time. These criteria are 
called inclusion rules. The primary inclusion rules are limited to the most important criteria 
(e.g. fit of species or samples into ordination space, see section 12.4.1.3, or correlation of 
explanatory variables with ordination axes, see section 12.4.1.4). But you can, in the case of 
sample and species, limit the plotted items to members of a group of items. Such a group can be 
selected based on a very wide range of criteria (e.g. group of all samples with an abundance of 
selected species above a certain limit or a group of species with a specified range of positions on 
the third ordination axis) and these criteria can be combined together (by creating a new group 
either by intersection or union of two existing groups). This allows you to define very complex 
criteria for the appearance of samples or species in an ordination diagram or any other type of 
CanoDraw graph. 

Alternatively, you can override the inclusion rules by specifying directly which items 
should never be plotted (see section 12.4.6) or which items should be always plotted (see section 
12.4.7). 

Kote that limitations imposed on item appearance In graphs are alio used to select] 
observations nsed to fit regression models In the attribute plots» 

11.8 Application-wide and project-specific options 

CanoDraw works as a "state machine". If you change the options concerning the creation of 
graphs, then any new graphs created from this time on are governed by the changed set of 
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options. Any existing graphs are not updated with the changed options, unless you explicitly 
request so (using the Recreate graph command, see section 12.5.6). 
The options concerning the graph contents and appearance are separated into two layers: 
* Application-wide options are used independently of which CanoDraw project you are 

currently working with. These options are persistent across the individual sessions: they are 
loaded from the Windows registry (for Windows NT 4.0, Windows 2000, and Windows XP) 
or from the configuration file (for Windows 98 and Windows Me) and saved again at the end 
of each CanoDraw session. You can additionally store and re-load "snapshots" of the current 
visual graph settings, using the two commands in the Visual Attributes submenu in the Files 
menu. Application-wide options can be changed using the commands in the upper part of the 
View submenu. 

* Project-specific options are stored in the CanoDraw project files and represent all the 
choices, which are supposed to depend on the actual analysis properties. These options 
include classifications of items, definitions of series collections, or the information about 
which items should be explicitly excluded from the plots, and also the choices like using pie-
symbols or plotting envelopes around the classes of items. The project-specific options can 
be modified from the dialog displayed by the Settings command in the Project menu. 

There is little dependence between the options in these two layers, with just one exception. 
CanoDraw records the latest changes to project-specific options concerning the presence of 
a legend in the diagrams and the legend position on one of the output media edges, and defaults 
to those values when initially setting-up a new CanoDraw project. 
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CanoDraw allows one to work with two types of documents: 
* CanoDraw projects have a one-to-one correspondence to Canoco projects and are initially 

created by importing a Canoco project file into the CanoDraw program (using File / New 
Project command). CanoDraw projects are stored in files with extension cdw and contain 
ordination results (imported from a Canoco solution file), original data files ("species, 
environmental, and covariable data" in Canoco terminology), and the project-specific 
settings (like the rules determining which variables should be plotted in the diagrams). 

* CanoDraw graphs represent the individual graphs (ordination diagrams, attribute plots, XY 
plots) produced with CanoDraw using information from a CanoDraw project. Graphs are 
stored in files with cdg extension and contain information linking them to their parental 
projects. So even if the graphs are opened independently of their parental project, they are 
attached to this project if it is opened. Similarly, each project keeps track of the graphs 
created from it, if they were saved. When opening a CanoDraw project file, a list of related 
graphs is optionally offered, so they can be opened alongside the project. 

Each graph or project is represented by one or more windows within the CanoDraw application. 
At any time, only one window is active within the CanoDraw workspace and its identity (i.e. 
whether it belongs to a project or to an individual graph) determines which commands are 
available from the CanoDraw menu. Most menu commands are shared, but there are also some 
distinct differences, marked in the following text using this icon for menu commands available 

only for projects: P and this icon for commands available only for graphs: G. 

12.1 File 

Commands in this menu provide for the opening and saving of projects and graphs, 
exporting graphs in other file formats, storing "visual style" configuration, printing graphs, and 
closing the application. 

12.1.1 New Project 

Use this command to define a new CanoDraw project. Keyboard shortcut for this command 
is Ctrl+N. Each new project is based on an existing Canoco project. Therefore, you must start 
with locating the file representing such project. Canoco project file names usually have a con 
extension and provide sufficient information for CanoDraw to find both the source data files 
(having extensions like dta, env, spe, cep) and also the file with the analysis results (typically 
using the sol extension), which was produced by the Canoco program. 

If the other files expected during the definition of project (data files and .sol file) cannot be 
found in the paths specified within the Canoco project, CanoDraw attempts to find them in the 
same directory where the con file (Canoco project file) is located. If found there, the user is 
asked to confirm the appropriateness of using the file found. This is a feature useful in situations 
where the location of a Canoco project was changed (e.g. by moving the files from one computer 
to another). Note that this feature works only if all the concerned files are located in the same 
directory when the analysis with the Canoco program was performed. 

To create a new CanoDraw project, you need only the Canoco project (.con) file and the file 
with results (.sol file). CanoDraw is able to define a new project even if the original source data 
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are not available. Nevertheless, the absence of the source data limits the set of graphs that can be 
created in the CanoDraw program. 

The source data files must be found by CanoDraw during the project setup to enable the 
full range of CanoDraw diagrams. They can be imported later, but then the range of 
graphs where they can be used (as "imported" variables) is more limited. 

After the Canoco project file was specified, CanoDraw attempts to locate the related files, 
parses the analysis options as well as the source data, and - if successful - asks for the file name 
under which the new CanoDraw project should be saved. The suggested name for the CanoDraw 
project file is the same as the one used for the original Canoco project file, except the .con 
extension is changed to .cdw extension. Also, CanoDraw suggests placing the new project file in 
the same directory where the Canoco project file is located. 

The dialog asking you to'select a name for the new CanoDraw project follows immediately I 
after the dialog box where you had to specify the source Canoco project file. 

12.1.2 Open Project 

Use this command to open an existing CanoDraw project. Keyboard shortcut for this 
command is Ctrl+O. File Open dialog appears, as shown in Figure 12-1. 

Open CanoDidw Project 

Figure 12-1 Open CanoDraw Project dialog box 

Note that as you select a valid project file, a summary description of the project contents is 
shown at the dialog bottom. This summary box shows the project creation date and time, type of 
ordination analysis, name of the source Canoco project, names of the data files, and, for 
a constrained analysis, also the ordination model specification (explanatory variables and 
covariables). Only one project can be selected in this dialog, but several projects may be open at 
the same time in the CanoDraw program workspace. 

Recently used CanoDraw project files can be also opened from the list of files at the bottom 
of the File menu. 
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12.1.3 Open Graph 

Use this command to open an existing CanoDraw graph file. Keyboard shortcut for this 
command is Ctrl+G. 

Open CanoDidw Giaph 

Deatec 16:15 homCanoco project 
D:\Pio»am FtesSCanoco loi Wir<k)wsSSafr^!\UnirnotWSDUNEBOOK\Cca_biplc 

»CCA] 

Figure 12-2 Open CanoDraw Graph dialog box 

Note from Figure 12-2 that the box at the dialog bottom summarises the contents of the 
currently selected graph file. You can select multiple graph files at the same time in the dialog 
box, but no summary information is provided in the case of multiple selection. 

Recently used CanoDraw graph files can be also opened from the list of files in the lower 
part of the File menu. 

12.1.4 Close 

Closes the window currently active in the CanoDraw workspace. If this is the last window 
for a particular graph or project, the document is closed, so you might be asked about saving any 
outstanding, non-recorded changes of the graph or project. 

Note that a short-cut for accelerated closing of graphs of a particular project (optionally-
discarding their changes without prompt) is available from the Windows submenu. 

12.1.5 Save 

Saves the document corresponding to the currently active window in the CanoDraw 
workspace. Keyboard shortcut for this command is Ctrl+S. If the document was already saved 
before, it has a file name assigned and you are not asked about it. Otherwise the following 
command, Save As, is executed. 
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12.1.6 Save As 

Saves the document corresponding to the currently active window, allowing you to specify 
a new name for it. The starting name is identical with the file name currently attached to the 
document. After CanoDraw successfully saves the document under the new name, it closes the 
older file (if it exists), without changing its contents, and then continues working with the new 
copy of the document. 

12.1.7 Export G 

These commands store the currently active CanoDraw graph in formats accepted by various 
graphical packages as well as word processor software. Note that this is an export action: it does 
not change the name of the document being exported and does not update the document file. It 
simply stores the current document state in a new file, which has a format of Windows bitmap, 
Windows metafile, Adobe Illustrator, or PNG format. 

12.1.7.1 Bitmap G 

Exports the active graph in the format of Windows bitmap. This is a common format for 
storing raster graphics on Microsoft Windows® operating systems. The target physical size of 
the image is based on the output page dimensions of the active printer format (see section 
12.1.11 below) and the output resolution you specify in this dialog (see Figure 12-3). The image 
resolution is in DPI (dots-per-inch) units. For example, if your output page format has an 
approximate size of 8.5 x 11 inches like the Letter page format has, the dimensions of an image 
which would occupy a whole page are 850 x 1100 points when 100 DPI resolution is selected. 
Note however, that CanoDraw works with the printable area of the selected output media, 
which is always smaller than the target paper sheet. The image almost never fills the whole page, 
being constrained by its aspect ratio. The estimated physical size of the resulting bitmap image 
is displayed in the two Image size fields at the bottom of the dialog. 

You can also specify Color depth (color resolution) of the target image. 
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Export Bitmap rr 

j _ j CanoDfaw d M ai tea 

Figure 12-3 Dialog for exporting graph in bitmap format 

12.1.7.2 Metafile G 

CanoDraw supports the export of graphs in the metafile format. This format describes 
image contents in terms of graphical operations, not by specifying color of individual image 
dots. The older versions of Microsoft Windows® operating systems (16-bit versions) introduced 
the Windows metafile format, which was deficient in many respects, so it was replaced by so-
called Enhanced metafile format, a more device-independent, more scalable vector format. 

CanoDraw supports both these metafile formats, the older one under the name of Placeable 
metafile, which is an extension of the original Windows metafile format, proposed by the Aldus 
company for use with their Aldus Pagemaker™ desktop publishing software. The place-able 
metafile format is provided to support some legacy publishing software but use of the Enhanced 
metafile format is recommended under other circumstances. 

E Export Metafile rr 

Savejn: | _J CanoOiaw 3 mmmm 

_ 

Save as type: | •<?':•-• - ' wmf/Vemfl 

Metafile file I Enhanced metafile 

J Placeable me'jfile 

Figure 12-4 Dialog for exporting graph in metafile format 

The Microsoft Word for Windows™ editor readily accepts enhanced metafile format, but 
other programs (like Adobe Illustrator® program) have problems with the proper import of 
labels depending on their alignment in respect to the labelled point. For Adobe Illustrator® or 
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Adobe Photoshop® format, export of the image in the Adobe Illustrator format is therefore 
recommended. 

12.1.7.3 Adobe Illustrator G 

CanoDraw exports graphs in the Adobe Illustrator™ version 3.0 format. This format 
specification is readily accepted by the newest versions of both Adobe Illustrator and Adobe 
Photoshop software. Colors specified in the CanoDraw program are transformed into CMYK 
color space and fonts used for the graph' labels are replaced with the similar PostScript fonts as 
specified in Table 12-1. 

CanoDraw font name contains word 

Times or Garamond 

Courier 

Symbol 
All other fonts 

PostScript font 
Times-Roman (Times-Italic, Times-Bold, and 

Times-Boldltalic) 
Courier (Courier-Oblique, Courier-Bold, and 

Courier-BoldOblique) 
Symbol 

Helvetica (Helvetica-Oblique, Helvetica-Bold, 
and Helvetica-BoldOblique) 

Table 12-1 Transformation of fonts used by CanoDraw (TrueType™ fonts) into Adobe 
PostScript™ fonts. Typeface variants in parentheses correspond to italics, bold, or 
bold-italics font styles, respectively. 

Additionally, the characters in the labels are transformed during export to Adobe 
Illustrator™ format files, so that only those from the ASCII character set are retained. The other 
ones are replaced by a question-mark symbol. 

12.1.7.4 PNG G 

PNG (Portable Network Graphics) format is a raster graphics format (like the Windows 
Bitmap format), conceptually most similar to GIF format. It is accepted by the recent versions of 
all mainstream graph editors and WWW browsers, so it can be used to create graphics for 
inclusion in WWW pages. 

The dialog for exporting CanoDraw graphs in PNG format (not shown here) is similar to the 
dialog used for export in Windows Bitmap format, except the color depth cannot be specified 
and is always set to 24 bits. 

12.1.8 Visual Attributes G 

The two commands in this submenu allow you to store permanently application-wide 
settings influencing the look of graphs created with CanoDraw. As explained in section 11.8, 
CanoDraw makes the distinction between settings specific for individual projects and settings 
shared by all the projects. The latter ones can be changed using the dialogs invoked by the 
commands in the View menu (see sections 12.3.1 to 12.3.3). The current state of these settings is 
stored implicitly when you close the CanoDraw application in the Windows Registry and 
retrieved again when you start the program. But you can take their snapshot at any time, using 
the Save command in this submenu and replace the current settings with those stored in such 
snapshot (using the Load command). 
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12.1.8.1 Load 

Retrieves the stored Visual Attributes settings from a file. 

12.1.8.2 Save 

Stores the settings, which are normally modified in the dialog shown by the View / Visual 
Attributes (see section 12.3.2) or View /Diagram settings (see section 12.3.1) commands. From 
the latter, only part of the settings is stored: 
* All the settings from the Properties 2 page 
* From page Properties 1 following settings are stored: Rescale sample or species scores to 

optimality, Limit range of fitted values by extent ..., Plot also the extrapolated values ..., 
Apply additional smoothing of contour lines and the two values in SMOOTHER SETTINGS 
section 

* Additionally, while legend plotting options are specific for individual projects, CanoDraw 
uses the latest settings of two legend options as defaults for newly created CanoDraw 
projects: the actual presence or absence of a legend in diagrams and its position on one of the 
page edges (left, right, top, or bottom). 

Visual Attributes are stored in a proprietary file format, using the cds extension. This extension, 
unlike cdw or cdg, is not registered with the operating system and therefore does not have any 
specific icon in the Windows Explorer™. 

12.1.9 Print G 

This command displays the Print dialog (its look varies across the operating systems) and 
prints the active graph. In the Print dialog, you can change the destination printer and printing 
options for this particular print job. 

12.1.10 Print Preview G 

Allows you to preview the graph appearance on a printed page. Note however, that even the 
standard graph window content is very similar to the output you might expect with the current 
print settings. 

12.1.11 Print Setup 

The Print Setup command utility reaches far beyond influencing the appearance of a printed 
page. The output (printed) page metaphor stands behind the logic of scaling and measuring the 
size of each CanoDraw graph. Therefore, CanoDraw is not able to work appropriately without at 
least one printer being installed on the system. 

When starting, CanoDraw takes the specification of the size of the default printer page to 
obtain default dimensions of the canvas space, available for the creation of graphs. CanoDraw 
changes the default output settings only in one respect - it changes the page orientation to 
landscape mode, where page width is greater than page height. This change is performed 
because the ordination diagrams very often have the lower-order axis longer than the higher-
order one (e.g. the first axis is often longer than the second or third one). 
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If you have no window open in the CanoDraw workspace or the active window corresponds 
to a project document (not to a graph), the changes to the printer settings affect the CanoDraw 
defaults, which are then used when creating new graphs or re-opening existing ones. But the 
print settings are also maintained per graph (while the graph is open in CanoDraw), so you can 
have one graph fitted onto a page oriented in landscape mode, while another is adjusted to fit on 
the page with portrait orientation. You can change the output page orientation for a particular 
graph by selecting the graph window before using the Print Setup command. Note that print 
settings are not persistent. If you close a graph and reopen it again, the graph window adopts the 
current output page size and orientation. This is because the output page orientation is not really 
a property of the diagram: the aspect ratio (ratio of physical height to physical width of a graph) 
does not change with the output page size or orientation - only the physical size of the graph is 
adjusted. 

12.1.12 Recently used files 

The recently used graph and project files are listed at the bottom of File menu, just above 
the Exit command. If you select a file name from this list, the corresponding document is either 
opened in the CanoDraw workspace or - if it is open - its window is brought forward. 

12.1.13 Exit 

Closes CanoDraw program. If there are any modified graphs or projects that were not saved, 
you are asked whether to save them. 

12.2 Edit 

This menu provides general editing commands available for whole graphs, individual 
objects in the graphs, and also for the contents of Log views of the projects. Specialised 
commands for selecting and modifying objects within graphs are available from the Object 
menu (see section 12.6). 

12.2.1 Undo 

For changes of graph objects, CanoDraw tracks the last 32 changes to label positions, 
diagram contents (modified by adding new objects or deleting existing ones), label text, or 
visual attributes of any object within the graph. These changes can be undone in stepwise 
manner, starting from the most recent change. The changes, which are undone with this 
command, can eventually be re-done again using the Redo command (see 12.2.2). Keyboard 
shortcut for this command is Ctrl+Z. 

Nut« (h:it changes tu hihclIM orientât inn (horizontal or \crtical) cannot In' undone lure. 
Nevertheless, the orientation lias just two slates und can In- easiK flipped hack l>\ appl\in» 
the Make laht'lIwrizjmtul ' r<-r;;Vc//command a»ain. 

Tin1 Indo command is also a\ailalile with the l.o» \icw of H project. I>nt there onl> the last 
change can he undone and the meaning of the I »Jo command clianuc to "redo" alter the 
last action was undone. 
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12.2.2 Redo G 

Brings the graph contents state one step forward in the sequence of actions which were 
applied to this contents and were then undone. Keyboard shortcut for this command is Ctrl+ Y. 

12.2.3 Cut P 

This command is available only if the active window represents a Log view of the 
CanoDraw project. It copies the selected text on the Clipboard and then removes it from the log. 
Keyboard shortcut for this command is Ctrl+X. 

12.2.4 Copy 

If the active window shows a graph, the whole graph is copied onto the Clipboard in two 
formats: 
* Windows bitmap format with a size corresponding to the selected output print page 

dimensions and resolution of 120 DPI. Color depth is compatible with the graphics mode 
used on the display. Together with the bitmap, a color palette is placed on the Clipboard, so 
a more precise color management can be performed in the program where the bitmap will be 
pasted 

* Enhanced metafile format 
Copy command is also available with the Log view of currently active project, where it copies 
currently selected text onto the Windows Clipboard. Keyboard shortcut for this command is 
Ctrl+C. 

12.2.5 Paste P 

This command is available only for a Log view of a CanoDraw project, where it inserts text 
available on the Windows Clipboard. Keyboard shortcut for this command is Ctrl+ V. 

12.2.6 Delete 

Available for graph windows, where it deletes all selected objects within the graph, and also 
for project Log windows, where the currently selected text is removed. Keyboard shortcut for 
this command is Delete. 

12.2.7 Change text G 

This command is available only if a single label object is selected in the graph window or in 
the Graph Contents (tree-like) view. A dialog is displayed where you can change the label text. 
This command is also available from the context sensitive pop-up menu invoked by right-
clicking a selected label object. 
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12.2.8 Make label vertical / horizontal G 

This command is available only if one or more label objects are selected in the active graph 
window. It flips the selected label(s) orientation between horizontal and vertical, choosing the 
most compatible alignment settings with respect to the existing alignment point. This command 
is able to flip the horizontal / vertical orientation setting correctly even if a mixture of horizontal 
and vertical labels is selected. The actual text of this menu item depends on whether multiple 
labels are selected (Rotate selected labels) or whether the single selected label currently has 
a horizontal or vertical orientation (Make label vertical or Make label horizontal). 

This command is also available from the context sensitive pop-up menu invoked by right-
clicking a selected label object (or one of several selected labels). Unlike the preceding 
command, the change of label orientation is not possible from the Graph Contents (tree-like) 
window. 

12.2.9 Copy labels to Clipboard 

This commands copies all the object labels, contained in the currently active diagram onto 
the Clipboard in a text format. Labels of items representing separate categories (e.g. labels of 
species vs. labels of environmental variables, in a biplot diagram) are separated into individual 
paragraphs. Items within each paragraph are separated by a comma. 

12.3 View 

This menu contains commands for displaying dialogs where application-wide (project-
independent) settings can be inspected and changed, as well as commands specific for the 
currently active window type (graph-related or project-related). 

12.3.1 Diagram Settings 

This command displays a tabbed dialog (property sheet), with five tabs (pages). 
The options in the first two pages (Properties 1 and Properties 2) affect the program 

behaviour during the creation of graphs and also some aspects of the graph appearance, which 
are project-independent (i.e. reflecting more the user preferences than the particular project 
properties). CanoDraw uses the actual values of these options at the time a graph is being 
created to decide about its contents. A later change of the options does not update the contents of 
already existing graphs. These graphs can be updated explicitly, after the options were changed, 
using the Recreate graph command available either from the Create menu (see section 12.5.6) 
or directly from the context sensitive pop-up menu. 

The other three tabs specify default settings for the three families of regression models 
available in CanoDraw. If the value of Offer approval of regression model settings ... is on 
(checked) in the Properties 1 page (described below), a dialog displaying these default values 
for the given type of regression model is shown immediately before the model is fitted, so that 
you can customise the model settings individually for each fitted model. 
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12.3.1.1 Properties 1 page 

Loess Modd Op 

Piopeite:^ GA 

r Diagram Deabon -

F Oftei approval of regressnn model tettng? before fttbog the model 

F Show summary of each fitted regression model 

F flescale sample or species scores to optrmaity 

F Siyjwre» ampotrte adination tiegre 

Response Curve' 
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F L i t * range of fitted values by extent of response variable 

V Plot also the extrapolated values of i t 

F Aflprove levels of contour ptott 

Plotting resolution for fitted curves and surface'. 

F Apply adettional smoothrg of contour inet 

SMOOTHER 
Expansion ratio: | 3 Tension 

3 

_ J Cancel 

Figure 12-5 Properties 1 dialog page 

Clone diagram on re-plot or change of axes range 
After you change the application-wide settings (as described in sections 12.3.1 and 12.3.2) 

or the project-specific settings (see section 12.4.1), individual graphs can be re-created using the 
Recreate graph command (see section 12.5.6), so the recent settings are applied to their 
contents. Also, the range of diagram axes can be changed using the Range of axes command 
available from the context sensitive pop-up menu. In both cases, a new version of the existing 
graph contents is created and this option determines whether the original graph contents is 
retained and the new one is created as a separate entity (if this option is checked) or whether the 
original graph contents is replaced by the new one. Cloning of the graph contents is particularly 
useful when you want to experiment with the settings and compare results of different settings 
values. 

Display Transformation and Labelling dialog on diagram creation 
The Labels and Transformations dialog provides a final adjustment of the values displayed 

in a diagram and is illustrated in the following figure. The dialog is shown there in the context of 
creating a XY diagram, with moisture values plotted in the horizontal direction and samples 
diversity index plotted on the vertical axis. The bottom dialog area, used to adjust the values of 
an attribute acting as a response variable in XYZ diagrams, is disabled here. As you can see 
from the illustration, this diagram serves three different tasks: 
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Labels and I ran {formation s 

- Hciewtsi ; 

r-Allibjl« • 
AIM 

Figure 12-6 Labels and Transformations dialog box 

Supplementary axis labels can be displayed. For XY(Z) diagrams, the labels' text defaults to 
the names of the plotted variables, and Ordination axis X is the default text for ordination 
diagrams, where the axis number replaces X. 
Selective parametric transformation of plotted variable values can be selected. Logarithmic 
transformation, exponential transformation, and power transformation are available, with the 
option to adjust the additional parameter of the transformation functions. Note that in the 
dialog displayed above, the default axis label was automatically adjusted by CanoDraw, to 
provide information about the selected logarithmic transformation. 
Values plotted along a particular axis can be jittered. Jittering means adding random noise 
to true values, with a sufficiently small extent so the distributional patterns are not washed-
out, but large enough to identify overlap of multiple observations in the diagram. Such an 
overlap typically occurs when variables with a limited set of values are plotted, as illustrated 
in Figure 12-7. 
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Figure 12-7 Effect of jittering on a XY graph where there is substantial overlap of points 

The right-hand graph plots the same data as the one on the left side, but both the X and 
Y variables were jittered. 

CanoDraw applies jittering by adding pseudo-random value obtained from an uniform 
distribution over the interval (-Z, +Z) where Z is equal to 2% of the variable range. For 
example, for the variable BF plotted in Figure 12-7, with the range of values from 0 to 1, the 
added values are randomly drawn from an interval (-0.02, +0.02), with an equal-selection 
probability throughout the whole range. 

In an ordination diagram, the options for parametric transformations and for jittering of plotted 
values are disabled. 
Offer approval of regression model settings before fitting the model 

If this option is enabled (checked), CanoDraw displays a dialog with options for the 
regression model (generalized linear model - GLM, generalized additive model - GAM, or loess 
smoother model) immediately before fitting, so that the actual model parameters or the method 
used to select those parameters may be specified. If this option is not checked, the values 
specified in the last three pages of this dialog (see sections 12.3.1.3, 12.3.1.4, and 12.3.1.5) are 
implicitly used. 

Note ikM this option value is ignored wfcen fitting ««lipte species reipoiwe euros «stag 
Create / Attribute plots / Species response curves, where t ie stored §paclfaittai of 
regrets!©« model is set for all selected tpecto, using mm dialog. 

Show summary of each fitted regression model 
Each fitted model is summarised with a dialog illustrated in Figure 12-8. The actual dialog 

content varies with the regression model type. 
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Fitted Generalized Lineai Model 
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Figure 12-8 Summary dialog for a fitted generalized linear model 

The names of response variable and predictor(s) are shown, as well as the most important 
parts of the model specification. Variability explained by the fitted model is compared with the 
variability explained by the null model and also additional important information is provided 
(here, for a GLM, the table of regression coefficients estimates is shown, and also information 
about unimodal response curve properties, specific to this second-order polynomial model). 

All the regression summary dialogs have a Copy button. Click it to place the model 
summary in a text format onto the Windows Clipboard. 

The OK button closes the dialog and lets CanoDraw proceed with fitting the next regression 
model (if there are multiple models involved) or with creation of the diagram. If you select the 
Skip button instead, this particular model is not included into the diagram being created. If this 
is the only regression model involved or all the models were "skipped", diagram creation is 
cancelled. Otherwise, only a subset of potential diagram content is plotted. 
Rescale sample or species scores to optimality 

During the setup of a Canoco analysis, you have to select the option for scaling of 
ordination scores. There are two alternative scalings, providing better approximation - based on 
the ordination diagrams - to either inter-sample dissimilarities or to (dis-)similarities or 
correlations among the species. In the former case, you are focusing on inter-sample distances, 
in the latter case either on "inter-species distances" (the term used in unimodal ordination 
methods) or on "inter-species correlations" (for linear ordination methods). Selecting one of the 
two options results in ordination scores where one of the two entities (sample or species scores) 
are spread across the ordination space in stronger accordance with the inter-sample 
dissimilarities or interspecies dissimilarities / correlations. This does not mean, however, that we 
must stay with a sub-optimal scaling of species scores when we plot the results from an analysis, 
where the scaling was focused on inter-sample distances. With knowledge of the eigenvalues of 
the ordination axes, the scores with an optimal scaling can be easily calculated from the 
"suboptimal" ones. 
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When this option is checked, CanoDraw rescales the "suboptimally" scaled scores if plotted 
alone (in scatter plots, not when plotted in biplots, joint plots, or triplots). 

Show rescaling coefficients for composite ordination diagrams 

In an ordination biplot, the absolute scaling of the item scores often does not have any 
meaning when the length of vectors with respect to the point positions is concerned, or when 
two independent sets of vectors (like species arrows vs. arrows for environmental variables) are 
compared. But a proper rescaling of one such set with respect to the other one(s) may facilitate 
easier reading of the ordination diagram. CanoDraw uses a custom set of rules for rescaling 
sample scores (including also centroids of environmental variables), species scores, and scores 
of environmental variables in their mutual respects, to provide improved usability of the 
ordination biplots or triplots. 

This option (if checked) allows you to fine-tune the default method for mutual rescaling of 
ordination scores. The suggested rescaling coefficients (constants by which the particular kind 
of scores is multiplied across all items and all ordination axes) are displayed together with the 
information about the range of raw (non-scaled) scores and you can change the coefficient 
values. 

The mentioned dialog is illustrated in Figure 12-9. Note that in this particular case, both 
sample and species scores are suggested to be squeezed to fit into an unchanged range of 
explanatory (environmental) variables. 

CanoDraw does not differentiate between standard environmental variables and 
supplementary (passively projected) variables. 
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Figure 12-9 Rescaling of ordination scores dialog 

Adjust graph aspect ratio by banking to 45 degrees (for XY diagrams) 

Ordination diagrams use positions (point) and directions (vectors, presented as arrows) to 
summarise various aspects of the original data or of the tables derived from these data.in 
a reduced number of dimensions (typically two dimensions, represented by horizontal and 
vertical diagram axes). Consequently, the physical scaling (the actual physical length on the 
output page or on the screen, corresponding to one unit in the ordination space) must be identical 
for the horizontal and vertical axes. The diagram is said to be iso-scaled. 

On the other hand, if the variables used as coordinates for horizontal and vertical axis do not 
have any inherent relation, the scaling from the values of these variables to physical units of the 
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diagram is rather arbitrary and very often chosen so as to achieve unit aspect ratio. Aspect ratio 
is defined here as the ratio between the physical length of the line representing the vertical axis 
to the physical length of the line spanning along the horizontal axis ("diagram height divided by 
diagram width", said very approximately). The unit aspect ratio corresponds to a diagram with 
square shape. 

But the shape of the diagram is not the purpose for creating it: the final goal is an efficient 
presentation of the information encoded in its contents. The patterns of relations between 
variables are often summarised using curves imposed over the plotted points, usually based on 
some kind of regression model. Even when we do not plot any curve, we tend to summarise the 
pattern seen in the scattered points by imaginarily superimposing such a curve. It was shown by 
Cleveland (1994) that the rate of change in response variable values (usually plotted on the 
vertical axis) is best judged by the viewer if the average absolute value of line segments 
inclination is equal to 45 degrees. The algorithm for calculating the optimum aspect ratio to be 
used to achieve this average 45-degree slope of curves is called banking to 45 degrees. If 
a smooth curve is plotted, it must be approximated by several line segments, but this is the way 
the smooth curves are usually presented. 

If no curves are plotted in a diagram, the optimal aspect ratio is estimated based on an 
imaginary polyline, connecting plotted points in the order of their increasing X values. If there 
are multiple curves, the aspect ratio value is calculated separately for each curve and the 
recommended diagram aspect value is then calculated as an average of the aspect ratios of all the 
curves. 

CanoDraw applies the "banking-to-45-degrees" algorithm only in diagrams which are not 
ordination diagrams (those created by the Create / Attribute plots / XY(Z) Plot and Create / 
Attribute plots / Species response curves commands). When XYZ plots (with an attribute - Z -
variable present) are plotted, the banking algorithm is also inactive. 

When banking to 45 degrees is active, CanoDraw calculates the suggested aspect ratio and 
displays it in a dialog box. This allows you to change it to any desired value. Note, however, that 
the changed aspect ratio will not result in an optimum slope for the plotted curves. If the plot 
contains any fitted curve(s), CanoDraw uses only the points on the fitted curves for banking to 
45 degrees. When you select the Cancel button (or press Esc key) in the dialog for aspect ratio 
approval, CanoDraw temporarily sets the banking off and behaves according to the actual value 
of the "iso-scaling" option. 

This option interacts with the option labdled ho-u-ulinx in the .VI" Diagram ttptiom dialog, 
shown after the command Create /Attributeplots /X\(Zj Phi. !f the banking la IS degrees 
option is selected, the request for iso-scaling is ignored. 

Plot also the extrapolated values 
This option is used mainly in the contour plots, which are used by CanoDraw to present the 

dependency of one response variable on two predictors. A regression model (GLM, GAM, or 
Loess model) is fitted to describe such dependency and the fitted model is presented as isolines 
connecting points of the area spanned by the two predictors, having identical predicted values of 
the response variable. Often the resulting isolines (contours) cover large areas without any 
underlying observations, and there the values of response variable are extrapolated. To exclude 
the extrapolated areas from the presentation of fitted model, uncheck this option box. CanoDraw 

* Even the former definition is imprecise. The aspect ratio refers to the ratio of height to width of 
a data rectangle, defined as the smallest rectangle enclosing all the data points. 
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calculates a polygon enclosing the coordinates of the available data points and if this option is 
unchecked (off), only the isolines within such polygon are plotted. 
Approve levels of contour plots 

For the contour plots (see also the preceding option description), CanoDraw suggests the 
plotted contour levels using the same algorithm as the one used for determining tickmark 
positions along the diagram axes. If this option is on (the box is checked), CanoDraw displays 
the suggested levels in a dialog box and you can change them. 
Plotting resolution for fitted curves and surfaces 

To estimate the shape of the response surface in XYZ diagrams (with two predictor axes 
and one additional response variable), CanoDraw imposes a rectangular grid (with uniform 
distances between the grid nodes) over the two-dimensional space of predictors. For each grid 
node, the predicted (fitted) value of the response variable is estimated and this value then 
represents the height of the response surface at that particular point. The value you specify in 
this option field (which must be between 5 and 100) corresponds to the number of points on 
each side of the grid. Therefore, if you specify the value of 20 here, the fitted value of the 
regression model is predicted at 400 points, distributed regularly across the plane of predictors' 
values. 

The same value is also used to regulate the smoothness of displayed curves in XY diagrams, 
which represent the fitted regression model with one predictor (the variable plotted on the 
horizontal axis). Each such fitted curve is approximated by a sequence of connected straight line 
segments, with their endpoints representing the fitted response values for particular predictor 
values. Predictor values are, again, distributed regularly across the whole range and the value in 
this option field determines their number. 
Apply additional smoothing of contour lines 

If a contour plot is created, the smoothness of the determined contours (isolines) can be 
optionally increased by applying a two-dimensional B-spline smoother. This setting enables or 
disables the application of that smoother to contour lines. If this option is off (unchecked), the 
values in the following two fields (under the SMOOTHER SETTINGS heading) are not used at 
all. 

Smoother Settings / Expansion ratio 
The increased smoothness of the contour lines is achieved by a closer approximation of the 

expected smooth paths using a B-spline smoother. The improved approximation is added to the 
existing contours by inserting further points between the vertices of the original polylines. The 
expansion ratio value determines the increase in the number of used points. For example, if the 
value is 2, the number of polyline vertices is doubled during the additional smoothing. This 
parameter takes only integer values between 2 and 5 (inclusively). 
Smoother Settings / Tension 

This parameter determines the smoothness of the approximated B-spline lines. The lower 
the value, the smoother the resulting contours are. Values of this parameter should be between 
0.01 and 10.0. 
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12.3.1.2 Properties 2 page 

; 

Figure 12-10 Properties 2 dialog page 

This page collects additional project-specific options concerning the appearance of the 
diagrams created by CanoDraw. 

Symbol size in attribute plots 

Symbols plots represent one particular type of attribute plots provided by CanoDraw for 
Windows. In all attribute plots, the distribution of values of a response variable is shown in 
relation to two predictor ("independent") variables, plotted along the horizontal and vertical 
diagram axes. In symbol plots, the values of the response variable are coded by the size of each 
symbol. The range of values of the response variable is linearly projected onto a range of either 
symbols diameter or of symbols area values (see the Attribute value is proportional to symbol 
diameter, described below, for explanation). Minimum and maximum values of the response 
variable then correspond to the minimum and maximum diameters of the symbols, which are 
specified here. The two symbol size values are quantified using the virtual coordinates (0-1) 
scaling, explained in section 11.6. 

Symbols with zero values shown as 

This option governs the presence and type of special treatment of the zero values in symbol 
attribute plots. The Normal option corresponds to treating the response value 0.0 in the same 
way as the other values. This choice is always used for symbol attribute plots where negative 
(less than 0.0) values are present. The choice labelled Hidden leads to zero values being plotted 
as empty symbols (existing, but not visible symbols) which are not labelled. The last possibility 
is labelled Cross and the zero values are plotted again unlabelled, but this time the actual data 
points are presented by cross symbols, each with radius of 0.0035 in 0-1 scaling units. 
Attribute value is proportional to symbol diameter 

If this option is on (checked), the radius (and diameter) of each symbol in a symbol attribute 
plot is proportional to the value of the response variable in the corresponding sample. If this 
option is off (unchecked), the radius (diameter) of each symbol is proportional to the square root 
of the response variable value. This, in consequence, leads to the response variable value being 
proportional to symbol area, not to its effective diameter. 
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Tickmarks Extent 
Specifies the relative extent of axis tickmarks in both the inward and outward directions 

from the axis lines. The extent is measured in the virtual coordinate (0-1) units, post-multiplied 
by 100 (to be on a percentage-like scale). The same values are used for both the horizontal and 
vertical axis. An inward (inner side) direction value is treated in a special way, if it is larger or 
equal to 10.0. In that case, the ticks are replaced by lines spanning the whole length of the 
rectangle defined by the diagram axes. In this way, the inner parts of the tickmarks are changed 
into a reference grid. 
All tickmarks with labels 

CanoDraw determines the division of axes into identically sized steps, which are multiples 
of either 1.0*10" or 5.0*10", with x corresponding to the order of the plotted values. The 
resulting size of "steps" can, therefore, be 0.01 in case of x=-2, 0.5 for other diagram with x=-l, 
10.0 for another with x=l, etc. CanoDraw plots the tickmarks at each of the steps to show their 
position on the plotted axis. By default, only the positions of the minimum and maximum step 
values are labelled. If this option is on (checked), the axis value is shown at each tickmark 
position. 
Labels on vertical axis are rotated by 90 degrees 

If this option is on (checked; this is the default setting), the labels of tickmarks on the 
vertical axis do not run from left to right, but rather from bottom to top, with each character 
rotated the same way. 
Relative horizontal space reserved for vertical axis 

This is the relative space in virtual (0-1) coordinate units (see section 11.6) multiplied by 
100, reserved for the vertical axis line and tickmarks. CanoDraw uses this value (together with 
the height of font used for labelling the axes and left and right values of outer margins, see 
below) to shift the position of the rectangle where the actual diagram contents are plotted to the 
right. 
Relative vertical space reserved for horizontal axis 

This is the relative space in virtual (0-1) coordinate units (see section 11.6) multiplied by 
100, reserved for the horizontal axis line and tickmarks. CanoDraw uses this value (together 
with the height of font used for labelling the axes and with the top and bottom values of outer 
margins, see below) to shift the position of the rectangle, where the actual diagram contents is 
plotted, in an upward direction. 
Extent of Outer Graph Margins 

Outer graph margins represent additional space around the graph, inserted there to visually 
separate the graph contents from the output page edges and to change the graph adjustment in 
respect to the page outline. The values are in virtual coordinate (0-1) units (see section 11.6), 
further multiplied by 100 to bring the scale to a percentage-like scale. For example, if you 
specify a value of 50 for the left field (50 is the maximum value for all four fields), the diagram 
is placed into the right half of the output page. 
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12.3.1.3 GLM Options 

Figure 12-11 GLM Options dialog page 

This page specifies the default options for generalized linear models (GLM) fitted by 
CanoDraw. Generalized linear models (McCullagh & Neider 1989, Chambers & Hastie 1992) 
are an extension of classical linear regression model, which allows one to specify distributional 
properties of the stochastic component, and also the transformation function, which transforms 
the scale of predictor variables onto the scale of the response variable (the link function). 

CanoDraw uses GLMs primarily as a tool for simplifying the visual presentation of patterns 
in the data, so the available options are simplified compared with a full-fledged statistical 
software. In such packages (like the S system, see Chambers & Hastie, 1992), the user has 
a greater freedom in combining the type of distribution of the stochastic component with the link 
function, in selecting the predictor variables and the form in which they enter the model. Also 
the number of tools for exploring the fitted models is substantially larger than is provided in 
CanoDraw (see section 13.6.4 for more details on the available regression diagnostic plots). 
Distribution 

Specifies the type of conditional distribution for the response variable*. Rough hints for 
selecting the appropriate distribution type are provided in Table 12-2. 

* The distribution of actual response variable values around the value predicted for the particular 
values of the predictor variables 
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Type of response variable 

Counts of animals or plant units with no strictly set 
upper bound; subjectively estimated percentage 
cover values on the scale from 0 to 100, but not 
approaching too often these limits 

Count of organisms or events out of an a priori given 
fixed number (like the number of plants surviving in 
a plot from a determined total number); presence or 
absence of an organism or events in a plot 

Measures related to the weight or dimensions (plant 
biomass values, animal size, plant height, leaf area) 
Ratio of two measurements with the same units; 
other dimension-less coefficients (e.g. various 
competition indices) 

Measurements where assumptions of classical linear 
model (fitted using least squares) or classical 
ANOVA are fulfilled 

Suggested distribution 

Poisson 

Binomial 

Gamma with log link 

Gamma with inverse link 

Gaussian 

Implied link 
function 

log 

logit 

log 

inverse 

identity 

Table 12-2 Recommended choices for the Distribution field in GLM Options or GAM 
Options property pages 

Degree 
The systematic part of a GLM with a single predictor variable can be expressed in the 

following way: 
g(EY) = ß0 + ßiX 

where g is the link function and EY are the expected values of the response variable given the 
values of the predictor variable X. Here, the value of the linear predictor (the right side of the 
above equation) depends linearly on the predictor values and this dependency is quantified using 
the single regression coefficient ß i, estimated in the fitted regression model by value of b\. If 
you want your predictor to be represented in the fitted model in this form, select the Linear 
value for this option. With two predictors (XI and X2, say) the linear form can be expressed as: 

g(EY) = ßo + ß,Xl+ß2X2 

Of course, we can express the effect of predictor(s) upon values of response variable in more 
complex, non-monotonous form. For example, the classical unimodal model of species response 
to environmental gradients (see Ter Braak and Prentice, 1988) can under certain conditions also 
be expressed as second-order polynomial. This form then leads to the following expression for 
GLM with a single predictor: 

g(EY) = ßo + ß,X + ß2X
2 

which is he classical Gaussian response curve if ß2 < 0 and g() is log() (see p. 59-60), 
and a GLM with two predictors, both in quadratic form, can be expressed in the following way: 

g(EY) = ß0 + ß,Xl + ß2Xl2 + ß3X2 + ß4X22 

Both preceding equations correspond to the Quadratic choice in this option and in the case of 
two predictors, it is assumed that the Fit with interaction terms option is off (unchecked). If 
that option is on (checked), the model with the added interaction term can be written as: 

g(EY) = ß0 + ßiXl + ß2Xl2 + ß3X2 + ß4X22 + ß5X!X2 
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Similarly, the last choice of Cubic form of predictor variable(s) represents a third-order 
polynomial and here is shown only in its most complex form, assuming two predictor variables 
and including the interaction terms (represented by terms with coefficients ß7, ßs, and ßo): 
g(EY) = ß0 + ß,Xl + ß2Xl2 + ß3Xl3 + ß4X2 + ß5X22 + ß6X23 + ß7XlX2 + ß8Xl2X2 + ß,XlX22 

Binomial Total Settings 
If the Distribution option value is specified as Binomial, each observation in the response 

variable must be described by two values: the number of events (successes, surviving organisms, 
etc) and the total, representing the maximum possible number of such events for a particular 
sample. The variable selected as response for the regression model fitted by CanoDraw is 
expected to represent the former type of values, and therefore CanoDraw needs to acquire values 
of the Total variable. In many cases, the value of the Total is identical for all the samples. 
Binarise response (Bernoulli) is an option appropriate for the extreme (but frequently 
occurring, for biological data) case of a binomial distribution, also called the Bernoulli 
distribution, where the total value is fixed to be 1 (there is always one "trial", so the outcome 
can be just success vs. failure, presence vs. absence). If the values of the response variable are 
not all equal to 1 or 0, they are binarised (all nonzero values are replaced with value 1 ). 
Use maximum value -a general form of binomial distribution is assumed but with the constant 
value of the total, and an additional assumption is that the highest observed value corresponds to 
a situation where all the "trials" were successful, i.e. to the constant value of Total parameter. 
Ask for total value this is the most flexible choice for Total parameter specification. When 
this choice is active, a dialog allowing you to specify the Total parameter is shown at the time 
the model is fitted, similar to the diagram in Figure 12-12. 

Binomial Total Selection 
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w 

Figure 12-12 Binomial Total Selection dialog 

Total parameter can be specified here using either an existing variable (the choice Specified 
variable enables the list on the left side) or by a constant value. The default value for the 
constant is again set to the maximum value of the response, but it can be changed (increased). 
The offered variables which may represent the binomial total are checked for their 
appropriateness, concerning the type and availability of all observations needed to support 
values of the actual response variable. 
Fit with interaction terms 

This option is used only if either Quadratic or Cubic forms of predictors are used and the 
regression model has two predictors. See the Degree option description above for additional 
explanation. 
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Use stepwise selection 
CanoDraw allows you to select the complexity of the fitted regression model using either 

a stepwise selection procedure or by comparing candidate regression models using their 
parsimony. The two possible approaches are described below. This checkbox allows you to 
enable their use. If its value is off, the model specification is determined solely by the number of 
predictors (one or two) and by the choice made for the Degree parameter, as described above. 

Use F statistics 
This is the classical way of stepwise model selection. CanoDraw starts from the simplest 

regression model, called the null model, where no predictors are used and so the expected 
response value is assumed to be a constant. The quality of this model is then compared with the 
next more complicated model, which is a model with linear terms for the predictor (or both 
predictors). Comparison is based on a test using an F-like statistic, comparing the scaled residual 
deviance with the scaled residual deviance of the original, simpler model (see chapter 6.2.4 of 
Chambers & Hastie 1992, for a more detailed account of this method). The assumption of 
a F distribution for the calculated statistic under null hypothesis relies on the assumption of a x2 

distribution of residual déviances, but the robustness of the F statistic-based test is higher than 
for direct tests on deviance change. The more complex model is accepted if the Type I error 
estimate of the test (the probability that the calculated F statistics originates from the 
F distribution) is smaller than the Threshold value specified in this property page. 

If the linear model is accepted and the selection for the Degree option is Quadratic or 
Cubic, more complex models are tried. The set of tried models depends not only on the value of 
the Degree option, but also on the setting of the Fit with interaction terms option (only if it is 
on, the models with interaction terms are tried). 

CanoDraw ioes not proceed with stepwise selection of faâMdoal tern». For example, when 
selecting the model with two predictors, CanoDraw compares the null model (simplifiée 
notations follow) Y = ßo with model Y = ßo + ßiXl + ffeXl, bét does not compare the nuO model 
with models containing only one of the two predictors. Similarly, if the linear model is selected, 
CanoDraw compares it with the quadratic model Y = Po + ßiXl + feXl2 + ß3X2 + ß4X22, tat not 
with the models standing in complexity between these two. On jbe other hand, if interaction 
terms usage is on, CanoDraw tries both the models without and with interaction terms. 

There is one additional peculiarity of stepwise selection in CanoDraw, increasing its utility 
in modelling species responses to environmental gradients (represented either by environmental 
variables or by ordination axes). If a regression model with a linear form of predictors is rejected 
in favour of the null model, CanoDraw continues with a comparison of the null model with 
a model where the predictor(s) are used in the second-order polynomial form (without 
interaction terms). This helps in the situation where the relation between the predictor(s) and 
response variable has a strongly parabolic form: the linear model is then rarely judged as 
significantly better than the null model and, therefore, the well-fitting quadratic model would be 
never tried. Note that this feature is applied only when the linear form of the GLM fails. If a 
quadratic form is deemed no better than the linear one, the cubic form is never tried. 
Use AIC statistics 

Akaike Information Criterion (AIC) provides a synthetic statistics forjudging the parsimony 
of particular regression model on a scale comparable across different models as long as they 
have an identical set of data points, identical explanatory variable and identical assumptions of 
the distributional properties. AIC value is based on residual deviance of the fitted model - the 
lower the value, the better is the model able to predict response variable values. But the deviance 
is also penalised by the model complexity - number of model parameters (number of regression 
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coefficients in the case of GLMs) defining that particular model. The actual formula for the AIC 
used in CanoDraw is: 

AIC = deviance + 2 * cp * p 

where/? is the number of model parameters (e.g. p = 3 for the linear form of the model with two 
predictors) and (p is the Pearson statistic - based scale estimate (see McCullagh & Neider, 1989, 
p. 328). 

When AIC is used for model selection, such a selection is, in fact, not truly stepwise, 
because the complete set of candidate models (limited by the values of the Degree and Fit with 
interaction terms options) is compared and the model with lowest AIC statistics is chosen. 

In the model selection approach based on AIC, much of the discussion about problems 
with multiple comparisons performed on the same data-set, which leads some people to use 
Bonferroni corrections, loses its appeal. 

12.3.1.4 GAM Options 

Figure 12-13 GAM Options property page 

Generalized additive models (GAM) are a natural extension of generalized linear models 
(GLM), where predictor(s) effects upon the response variable are not expressed using a linear 
combination of the predictor values (and, eventually, of the second and third powers of those 
values), but using a smooth semi-parametric term, based on one or other kind of smoothing 
model. In GAMs, we do not control the exact shape of the curves corresponding to the smooth 
terms, but we rather control their complexity using a parameter that can be expressed on the 
scale comparable with the degrees of freedom (equivalent to number of parameters - regression 
coefficients in GLM). The two widely applied types of smoothers used in the smooth terms are 
the loess smoother and the smoothing spline model. Additional details can be found in Hastie & 
Tibshirani (1990) and Chambers & Hastie (1992). 

The general formulation of the systematic part of a generalized additive model with two 
predictors (XI and X2) can be written as follows: 

g(EY) = ß0 + f,(Xl) + f2(X2) 

Commands Reference Page 345 



where EY is the expected value of the response variable Y, g is the link function (see section 
12.3.1.3) and/j and fa are the semi-parametric smooth functions describing the effects of 
individual predictors and are called smooth terms. We can demonstrate the relationship 
between GAMs and GLMs by specifying smooth terms in the form ƒ = ßJCi or even ƒ = ßjXj + 
ßi+,Xi2. 

CanoDraw supports only the cubic spline smoothers for the specification of the ƒ functions 
and does not allow fitting of "mixed" GAMs (i.e. where one predictor is represented by a 
smooth term while the other is represented by a linear term, comparable to GLM). 
Distribution 

The offer of assumptions concerning the conditional distribution of the response variable 
values is identical with the one used for generalized linear models (GLM) and you can find its 
description in preceding section 12.3.1.3. 
Smoothness 

The two fields specify the (maximum) complexity of the smooth terms for the first and 
second predictor variable. The minimum value is 1.0, the maximum value is 6.0. Note that 
despite the units of these complexity parameters being comparable to the number of degrees of 
freedom, you can still specify fractional values (e.g. value of 2.4). The greater flexibility 
available with GAMs is achieved at the expense of the more difficult task of finding the proper 
model specification. Model selection using AIC statistics is therefore recommended. 

Binomial Total Settings 
Specification of the Total parameter in the situation where the response variable is assumed 

to have a binomial distribution is identical with generalized linear models and is described in the 
preceding section 12.3.1.3. 
Stepwise selection using AIC 

AIC statistics is calculated for the candidate additive models in the same way as described 
for GLMs in section 12.3.1.3, except that the parameter/» is based on the number of degrees of 
freedom of the smooth term(s). The value(s) specified in the Smoothness field(s) of this property 
page represent(s) the upper limit of the parameter complexity for the smooth term(s). CanoDraw 
starts with a null model (with no predictor) and in the case of a model with single predictor 
continues with using smooth term with 1 degree of freedom, increasing this complexity 
parameter by one until the specified Smoothness value is reached or exceeded. In models with 
two predictor variables, the two sequences of smooth term complexity values are combined to 
define the set of evaluated candidate models. For example, if you have a model with two 
predictors and in the Smoothness section you specify value of 2.4 for Predictor 1 and value 2.0 
for Predictor 2, the complexity values of compared models (value for first predictor goes first) 
are: (null model), (1 1),(1 2), (2 1),(2 2), (2.4 1), and (2.4 2). 
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12.3.1.5 Loess model options 

Diagram Sellings 

Figure 12-14 Loess Model Options dialog page 

Loess (sometimes also called lowess) method is a locally weighted regression smoother 
which summarises the relation of one response variable to one or more predictor variables using 
a smooth curve or surface. The vertical position of such curve (or surface, for two predictors) is 
estimated at a particular point (for particular value(s) of predictor(s)) by fitting a weighted linear 
regression model to a subset of points. The subset membership is determined by the span 
parameter, which quantifies the fraction of closest neighbour points used to fit the model. 
Additionally, the data points used to fit the model have different weights, depending on their 
distance from the estimation point: the closer they are, the higher is their weight. Obviously, as 
the curve or surface is estimated over the whole span of the values of the predictor variable(s), 
the set of points used to estimate the regression model parameters changes, as do the weights of 
the included points. Traditionally, two kinds of local regression models can be fitted: either a 
linear model or a second-degree polynomial model. 

Robust loess method applies to individual observations at each estimation point not only the 
neighbourhood weights (depending on their distance from the actual estimation point), but also 
so-called robustness weights, with their values determined iteratively at each estimation point. 
First, a standard loess model is fitted as described in the preceding paragraph. The robustness 
weights are then calculated, based on the distance of the data points from the fitted curve or 
surface. The further they are (i.e. the larger their residuals are), the lower weight they get. The 
loess model fitting is repeated, this time combining (by multiplication) the neighbourhood 
weights with the newly estimated robustness weight value, and a new set of robustness weights 
is estimated. This process is repeated until the robustness weight values converge. 

Additional details about fitting a loess model, as well as about other options described 
below, can be found in Cleveland (1994) and Chambers & Hastie (1992), Chapter 8. Technical 
details about the algorithm used in the CanoDraw program can be found in Cleveland & Grosse 
(1991). 
Span 

The span value determines the set of observations, closest to the actual estimation point in 
the space (one- or two-dimensional) of predictors, that is used to fit the weighted regression 
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model. Note that even with value of span equal to 1.0, the loess model is not identical with 
fitting a simple regression line or second-order polynomial, because neighbourhood weights 
(and, optionally, robustness weights) are still applied. Therefore, a span larger than 1.0 can be 
also used (value up to 10.0 is allowed by CanoDraw), with the loess model gradually converging 
to a standard regression model. 
Local Polynomial Degree 

Here you can choose the complexity of the locally fitted regression model. If you select 
Local linear model, the fitted model has the form of either EY = ßo + ßi*X (if you have just one 
predictor) or EY = ß0 + ßi*Xl + ß2*X2 (with two predictors). If you select Local quadratic 
model, the corresponding regression model is either EY = ß0 + ßi*X + ß2*X2 with one predictor 
or EY = ß0 + ßi*Xl + ß2*Xl2 + ß3*X2 + ß4*X22 + ß5*Xl*X2 in the case of two predictors. The 
model specification can be additionally modified using the Conditional parametric fit and Drop 
square options, described below. 

Conditionally Parametric Fit 

The fitted loess model with two predictors can be conditionally parametric in one of its two 
predictor variables. If we select, for example, For horizontal axis and the Local Polynomial 
Degree option has value Local linear model, the fitted loess model has a linear parametric 
dependency on the first predictor for any given value of the second predictor. The actual 
parameterisation (values of the regression coefficients) changes with the values of the second 
predictor variable. In this way, a loess model conditionally parametric in one of its predictor is 
a "mixed" model standing between the standard linear regression model and the standard loess 
model. This option has no effect in loess models with only one predictor. 
Drop Square for 

This option allows you to decrease the complexity of a local quadratic regression model 
used to estimate the loess surface. For example, if we select Horizontal axis, the fitted model 
will be EY = ß0 + ßi*Xl + ß3*X2 + ß4*X22 + ß5*Xl*X2 (compare with the above description of 
Local Polynomial Degree option). This option has no effect for loess models with just one 
predictor or using a local linear model. 

Normalize scale for two predictors 
The selection of the closest neighbouring points, used to estimate the loess model, can be 

substantially influenced by differences in the scale of the predictor values if you have two 
predictor variables. If this option is on (checked), the values of the two predictor variables are 
standardised by dividing the original values by the standard deviation of the particular predictor. 
The algorithm does not use the traditional standard deviation estimates, but rather 10% trimmed 
estimates, where 5% of the most extreme value at both ends of the range are ignored. 
Uncheck this box if your two predictors are on the same scale (e.g. spatial coordinates of 
sampling points or sample scores in ordination space). 
Robust fitting algorithm 

If this option is on (checked), the robust loess model is fitted, as described above. 

12.3.2 Visual Attributes 

CanoDraw constructs graphs from the ordination results, original data, fitted regression 
models, and imported or otherwise constructed additional variables, using the settings specified 
in the View and Project menus. The actual graphs are composed from graph objects which are 
labels, symbols, arrows, lines, polylines, pie-symbols, or bars (see section 11.5). Each graph 
object has a particular set of attributes which determine its drawing color, fill color and pattern, 
line width and style, symbol or label size, typeface for labels, type for symbols, etc. You can 
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modify all these visual attributes for a single object or for any selected group of graph objects 
in CanoDraw (see section 12.3.4). But you can also change the default settings for the graphs to 
be created in future, using the Visual Attributes Settings dialog, illustrated in Figure 12-15. 

Visual Allnbutes Seltmqs 

ffl Legend 
- Specie? 

Labels 
inbolS 
RM end Lines 

Contour Isolmes 
Extrapolated contour i< 

•rs Collections 
- Samples 

Labels 

d a n : 
Class 3 
Class 4 

Figure 12-15 Visual Attributes Settings dialog 

The left side of the dialog lists, in a hierarchical arrangement, the categories of graph 
objects recognised by CanoDraw. The right side displays five tabbed pages, usually some of 
them are disabled you can work only with the pages, which are relevant for the type of graph 
objects selected in the left-hand list. The content of individual pages is explained in more detail 
in section 12.3.4. 

Figure 12-15 demonstrates that you can, for example, set different attributes for samples 
being classified into different classes. They can be represented by symbols with different type, 
color, and size. The default attributes for classified items (e.g. symbols or arrows for samples, 
species, environmental variables) are visually different only for the first few classes, so you 
must modify the settings if you have a larger number of classes. The settings specified for 
Class 1 are also used if the items are not classified. 

The visual attributes you specify here apply to all projects and are usually maintained by 
CanoDraw in the system registry, separately for each user account. Additionally, you can store 
the application-wide settings affecting the appearance of your graphs in a file with .cds 
extension (see section 12.1.8). These settings include, among others, all the information 
specified in this dialog. 

12.3.3 Workspace Settings 

This command displays the dialog shown in Figure 12-16, which allows you to modify 
options regulating the behaviour of CanoDraw when working with projects and logging 
information about your work on a particular project. 
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Workspace Sellings 

Figure 12-16 Workspace Settings dialog 

Re-open project opened at the end of last session 

If you close the CanoDraw application at the time when exactly one CanoDraw project is 
open (number of windows with CanoDraw graphs does not matter), CanoDraw records the file 
in which the project is stored and if this option is on (checked), attempts to re-open it at the start 
of the next session. CanoDraw tries to open it only if no other project is requested to be opened 
(i.e. you neither double-clicked an existing CanoDraw project icon in a Windows Explorer 
window, nor you clicked the CanoDraw button within the Canoco for Windows application). 
Offer loading of existing graphs when opening a project 

If you are opening an existing CanoDraw project (.cdw file) and this option is on (checked), 
CanoDraw offers you a list of graphs, which were created in this project and saved to disk. The 
list does not contain graph documents, which are not available for opening or which are found to 
be already open in CanoDraw workspace. The dialog is illustrated in another place, in section 
12.4.10, in Figure 12-50. Each of the CanoDraw graph documents listed in this dialog box is 
preceded by a check-box. You should place a checkmark there for each graph you want to open. 
You can also delete reference to a particular graph (so that it is not offered for opening the next 
time) by selecting it and clicking the Delete button. Note that this does not delete the actual file, 
only the CanoDraw project "loses track" of this graph file. The graphs with checked boxes are 
opened in CanoDraw workspace after the project was opened. 
Display Project Details window when opening a project 

The Project Details window shows a hierarchically arranged list of variables available for 
a particular project (see section 11.3). If this option is on (checked), the window is displayed 
automatically when a CanoDraw project is opened. 

Illustrate diagram explanation with bitmaps 

If you select the Describe contents command from the context-sensitive pop-up menu of 
a CanoDraw ordination diagram, the Graph Description dialog box is displayed, providing hints 
on interpreting diagram contents (see section 13.5). If this option is off (unchecked), only 
a textual description is shown. If it is on (checked), the description is supplemented with 
schematic illustrations. 

Save Log contents in project files 

CanoDraw displays in its workspace Log windows for each opened project (see section 
11.3). This option determines whether each log is created newly each time the project is opened 
or whether the log contents are made persistent across the separate sessions, by storing it in the 
.cdw file. 
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Enable logging of 
This group of options decides what kind of information is stored in the project log: 

Errors and warnings - CanoDraw records here information which may point to potential 
problems with the data, unreliable fitted regression models, missing information, etc. 
Saved graph and project files - CanoDraw records the names of files in which new graphs or 
project files were saved, including a short summary of their contents 
Other information - any other type of information which can be stored in the logs. 
Enable tips in dialog boxes 

The tips pop-up window is shown if the mouse pointer rests for a while over a dialog field 
and contains a short description of the meaning of that particular field. If you want to suppress 
the display of those hints, uncheck this option. 

12.3.4 Properties Sheet G 

This command displays a floating window, which shows the actual visual attributes of the 
graph objects currently selected in the active graph and allows you to change them. Visual 
attributes settings are divided into five property pages and usually only a subset of those pages is 
available, depending on the type of the currently selected graph object(s). The individual pages 
are described in the following text. The shortcut key for displaying this window is F5. 

This window does not need to be closed if you want to continue work with the other 
windows in CanoDraw. Before you change the active window or select a different set of graph 
objects in the currently active graph, you must click the Apply button to commit any changes 
made to the visual attributes. 
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Figure 12-17 Color property page 

This page displays the outline (drawing) color of the currently active graph object(s). You 
can select a different drawing color either from the palette of 32 colors (16 standard Windows 
colors, followed by another 16 - CanoDraw specific - colors) or you can define a new one, 
using the Custom color button. It displays the standard Windows' Color dialog box, where you 
can specify a new color either by selecting from a wide palette, pointing to a particular color hue 
in a color matrix, or entering the numeric values for R-G-B (or H-S-B) model color components. 

If you want to make the color empty (no lines drawn), check the Empty color box. 
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Figure 12-18 Line property page 

On this page, you can change the line drawing style (solid, dotted, dashed, or empty line) 
and the line width, which is specified in the virtual coordinate (0-1) units (see section 11.6). 
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Figure 12-19 Fill property page 

This property page allows you to specify fill style and fill color. The options for selecting 
the fill color are comparable with the Color property page described above. The Fill Style is 
only here, so there are two alternative ways of specifying empty fill style: you can either check 
the Empty color box or select Empty value from the Fill style list. 

The Fill property page is also available for text labels, and in this case the fill style defaults 
to Empty value. But if you select a different fill style (preferably Solid), a background rectangle, 
underlying the displayed label, is drawn. 
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Figure 12-20 Symbol property page 

This page specifies the symbol size and type for the selected symbol (or group of symbols). 
The Symbol Size is specified in the virtual (0-1) scaling units (see section 11.6). 

This property page is also available for the pie-symbols, but in that case you should keep the 
symbol type selection of Circle and modify only the symbol size (pie-chart radius). If you 
modify the symbol type, your action is after-corrected and you are informed about that. 
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Figure 12-21 Font property page 

This page is available only for text label objects. CanoDraw provides only the TrueType™ 
fonts. You can select here the typeface (font) name, the Font Style (Regular, Bold, Italic, and 
Bolditalic). Additional font effects (Strikeout and Underline) can be selected using separate 
check boxes. Another field, named Script, allows you to specify support of special characters 
beyond the standard U.S. ANSI character set. Font Size is specified in the virtual coordinate 
(0-1) units (see section 11.6). Field named Sample shows the approximate look of the label 
formatted with the currently selected font options. 
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12.3.5 Tree view G 

Displays the Graph Contents window (see section 11.3). 
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Figure 12-22 Graph Contents window 

You can use this view of the graph objects hierarchy, in particular CanoDraw graph, to 
select one or more graph objects and modify their visual attributes. 

12.3.6 Zoom G 

Figure 12-23 Zoom Level dialog 

Allows you to specify precisely the zoom ratio for the currently active graph window. In 
addition to the choices in the upper part of the dialog box, which are also available from the 
drop-down list in the CanoDraw main toolbar, this dialog box provides also the Scaling field, 
where you can enter the requested numeric value of the zoom level. 

12.3.7 Project Details P 

Displays the Project Details window (see section 11.3) for the currently active project. 
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Figure 12-24 Project Details window 

This window lists the variables available in a CanoDraw project and belonging to one of 
three broad classes: 

Project Results group corresponds to the contents of the Canoco™ solution (.sof) file and 
provides primarily the scores of samples and species (and. optionally, of environmental 
variables and / or of supplementary variables) on the first four ordination axes. Also the other 
statistics available for species, samples, and environmental and supplementary variables in the 
solution file are provided here. The contents of this group are further structured into sections, 
which - except the Labels section - correspond to the score sections in the original solution file. 
Source Data group collects the Canoco source data variables - values of individual species, 
environmental variables, supplementary variables, and covariables. These are available under 
sub-classes corresponding to individual kinds of data files (Species Data, Environmental Data in 
Figure 12-24). 

Imported Variables group lists the variables which were imported from the Clipboard (see 
section 12.4.8.1), from a Canoco data file (see section 12.4.8.2), created as PRC scores (see 
section 12.4.8.3), or stored during the creation of a residuals plot (see section 13.6 for further 
details). The variables in this group are further collected into one or more subgroups, depending 
on which kind of items they refer to (For samples. For species, etc.). 
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You can display a window with a summary of any variable by clicking the variable name 
with the right mouse button. A floating dialog appears, showing a statistical summary of 
that variable. You can use the Copy button to place a copy of the variable values (together 
with corresponding item indices) onto the Windows Clipboard. You can paste the values 
from there either into a spreadsheet document or into another CanoDraw project. 

12.3.8 Bars 

This submenu allows you to select which control-bars are visible in the CanoDraw 
workspace. 

12.3.8.1 Main Toolbar 
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Figure 12-25 Main toolbar 

The main toolbar collect buttons providing short-cuts to the commonly used operations like 
creating a new CanoDraw project, opening an existing CanoDraw project or CanoDraw graph, 
saving the currently active document, printing it, copying a CanoDraw graph to the Windows 
Clipboard, getting on-line help, or specifying the zoom level value. 
You can also drag the toolbar into CanoDraw workspace so it will become a floating window, or 
dock it on another edge of the CanoDraw workspace window. 

12.3.8.2 Graph Tools 

Figure 12-26 Graph Tools toolbar 

Graph Tools toolbar enables you to select a tool for adding new objects of specific type 
(arrow, label, or line) to a CanoDraw graph. 

To create an arrow, you should select the arrow tool (second from the top in Figure 12-26) 
and then click on the point where the arrow starts (the place of arrow base). As you reposition 
the mouse pointer, the outline of the currently implied arrow object is previewed. After you click 
with the left mouse button the second time, the tip of the arrow object is defined and the new 
arrow object is drawn. 

To create a line, you should proceed in a similar way, selecting the line drawing tool this 
time. 

To create a label, you should select the label-defining tool. You then click just once to 
define the point on which the new label is centred. The label object is defined with a default text 
and default font properties, which can be changed later on. 
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12.3.8.3 Status bar 

The status bar of the workspace window is useful primarily when you are browsing through 
the application menu commands. The status bar area gives you a short help summarising the 
potential effect of the currently selected menu item. 

12.4 Project 

Commands in this menu allow you to manipulate the currently active CanoDraw project. 
The commands in this menu are also enabled if the active window represents a CanoDraw graph 
related to a project, currently open in the CanoDraw workspace. 

12.4.1 Settings 

This command invokes a dialog containing four tabbed (property) pages, collecting options 
specific for individual CanoDraw projects. The actual settings for these options are stored in the 
xdw files. 

12.4.1.1 Contents page 
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Figure 12-27 Contents page 

This page collects project-specific options which affect the diagram contents. 
Axes to plot 

This option determines the pair of ordination axes used in the ordination diagrams. The axis 
with lower number is always plotted in the horizontal direction. The pair of axes selected here is 
used in all the ordination diagrams (or attribute plots based on an ordination diagram), except 
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those created with the Create / Simple Ordination Plot where the axes combination is specified 
directly (see section 12.5.1). 

Flip axes 

Changes the sign of scores on the Horizontal and / or Vertical axis if selected (checked). 
The interpretation of ordination diagrams (using either the biplot rule or distance-based 
interpretation) is invariant to such mirroring operations, if performed on all types of items 
plotted in the same diagram. This feature is useful in the situation where the same type of 
analysis is performed on a group of related data sets (say measurements from different areas and 
/ or from different years). The analyses results may then show comparable patterns, except that 
sometimes the patterns are mirrored with respect to the horizontal or the vertical direction: an 
explanatory variable pointing in most diagrams to the upper left corner points to the upper right 
corner in one or few others, and similarly the arrows (or symbols) for species may be swapped 
in the horizontal direction. You can flip the axis orientation back for such exceptional cases. 
Note that the biplot rule and distance rule, which are used to interpret the contents of ordination 
diagrams, are invariant to flipping orientation of axes. 

Plot SAMP scores even for constrained axes 

If canonical (constrained) axes are plotted in ordination diagrams, samples are by default 
represented on such axes by sample scores which are linear combinations of environmental 
variables (also called SamE scores) - see section 6.3.7. This is because in the constrained 
ordination analyses, the primary task is to explain patterns in the primary ("species") data by the 
values of explanatory ("environmental") variables, using a constrained multivariate regression 
model. The SamE scores represent the fitted values from this model and reflect differences 
among the samples in terms of the values of the explanatory variables. The other kind of sample 
scores, derived from the species (response variables) scores (also called Samp scores), is 
therefore less important for the primary task of constrained ordination. It is used, however, by 
default for unconstrained (non-canonical) ordination axes in a constrained ordination and for all 
axes in unconstrained ordinations (like PCA or DCA). 

When this option is on (checked), the unconstrained sample scores are used even for the 
canonical ordination axes. 

Plot series lines even for incomplete series 

The series collections represent the description of one or more independent sequences of 
samples (or species or explanatory variables) which can be displayed in an ordination diagram or 
XY diagram, where objects of particular type are plotted. 

If some series items are missing from the plot (due to a limited range of diagram axes or due 
to item suppression based on various selection / suppression methods available in CanoDraw), 
the line(s) representing that particular series are not plotted: connection of non-contiguous items 
by a series line would provide false feeling of contiguity. You can override this behaviour by 
setting this option on (checking this box). 

Use Pies instead of Symbols: For samples / For species 

If this option is on (checked) for samples and / or for species, their symbols are replaced by 
pie-symbols. Two additional conditions must be met, however. First, there must exist a 
classification for the complementary type of items (e.g. if you want to plot pie-symbols for 
samples, a classification for species must be available, and vice versa) and the classification 
must be active (see section 12.4.3 for more information about classifications). The second 
condition concerns only pie-symbols for species: the species must in the diagram be represented 
by symbols (points), not by arrows (vectors). 
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Use Pies ... : With slices based on 

This option is available separately for samples and species. Each pie-symbol represents one 
sample [or species] and is divided into slices (wedges) corresponding to classes of species 
[samples] which are present in the sample [in which the species occurs]. The angle taken by 
particular wedge can be calculated in two different ways corresponding to the two choices for 
this option: 

Presences - the relative size (angle) of an individual wedge in a pie-slice representing a sample 
[a species] is proportional to the number of species belonging to the particular species class and 
occurring in this sample [is proportional to the number of samples belonging to the particular 
sample class, in which this species occurs]. 

Values - in this case, the wedge angle is based on the importance of individual occurrences, 
expressed by the actual values in the species data. For example, if your primary (species) data 
represent biomass values of individual species and you want to plot pie-symbols for individual 
samples (with species being classified into distinct classes), then the relative size taken by a pie-
wedge (representing one species classes) in one sample corresponds to the relative fraction 
(percentage) of the total sample biomass, corresponding to the biomass of species from that 
particular class. 

Draw Envelopes around Classes of 

Classified items (samples, species, environmental variables, and supplementary variables) 
can be plotted using symbols of different type and color (or else by arrows of different color and 
line style), if they belong to different classes. Additionally, you can visually assemble symbols 
belonging to items from the same class by drawing a polygon, enclosing all of them and having 
its vertices on the "outermost" members of the class' group. These polygons are drawn if the 
corresponding checkbox is on. 
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12.4.1.2 Appearance page 
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Figure 12-28 Appearance page 

This page collects the project-specific options which affect the way the diagram contents is 
presented to the user. 
Labelling of scores 

The settings in this group apply only to ordination diagrams. These options, with three 
choices (None, Indices, and Names) are available for samples, species, environmental variables, 
and supplementary variables. If None is selected, only bare symbols (or arrows) are plotted, 
without any label. Alternatively, the indices (starting with 1 for the first item) as used in the 
original Canoco source data files are used as item labels (Indices choice). The choice Names 
causes original labels (with up to 8 character positions), available from the Canoco source data 
files (or from the Canoco SOL file), to be used in the ordination diagrams. 
Display species as symbols even in linear ordination methods 

When displaying results from linear ordination methods (PCA or RDA), the response 
variables ("species" in Canoco terminology) should be plotted as vectors (arrows) in the 
ordination diagrams. They are a natural presentation of the response variables in such analyses, 
representing directions of predicted steepest increase in values of a particular variable or (with a 
different presentation of the same concept) the values of regression coefficients of a multiple 
regression using the corresponding species as the response variable and the sample scores on the 
displayed axes as predictors. 

Plotting the species scores from the linear analyses as symbols is not a recommendable 
practice, because it misguides the viewer into judging correlation among species based on the 
distance between such points. Nevertheless, there might be reasons for plotting only the tips of 
the (imaginary) species arrows (e.g. to lower the clutter of arrowlines) and this is acceptable, 
provided the user is well aware of the correct ways of interpreting the resulting plots. This 
option allows you to enable the plotting of species by symbols in linear methods. 
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12.4.1.3 Inclusion Rules page 
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Figure 12-29 Inclusion Rules page 

This page controls the presence of species and samples in the diagrams produced by 
CanoDraw. Their presence is regulated either by a specification of selected sample / species 
statistics (see below) or by selecting a group of species or samples and so limiting the set of 
plotted items just to the group members. Multiple restrictions implied by this property page and 
by the additional explicit removal, available from the Project / Suppress submenu (see section 
12.4.6), are combined together, so any item failing in one or more of the restrictions is not 
plotted. 
Rules passed by ... 

These two fields provide estimates of the expected number of samples and species passing 
the currently specified settings on this page. 

Species Fit Range 

You specify here the lower and upper limit of the interval of values of species fit into the 
ordination space, into which a species must fall to be plotted in an ordination diagram. 

Fit of species into ordination space is based on CFit statistic calculated by the Canoco for 
Windows program (see section 6.3.11.2). Unlike the actual Canoco output, the values of the fit 
as used in CanoDraw are multiplied by 100.0, so they roughly represent the "percentage of 
variance in the values of the particular species, explained by the given ordination subspace". To 
characterise this statistic more precisely, we can imagine that we would take the values of 
particular species in all the samples and use them as a response variable in a linear regression (in 
the case of linear ordination method; weighted regression on relativised species values would be 
used in unimodal methods), with the scores of the samples on the horizontal and vertical axis 
being used as two predictor variables. The coefficient of determination (R - relative amount of 
explained variance) for such a regression then corresponds to the fit value for the particular 
species. 

Two things should be noted here. First, the values specified in this dialog change their effect 
on the selection of subset of plotted species with the change of plotted axes. That is, the same 
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range of fit values will select different species if you plot second vs. first axis or third vs. first 
axis, for example. Second, the used statistic is not the cumulative fit of the species up to the 
highest plotted axis - it is rather the direct contribution of the two plotted axes to the explanation 
of the species abundances. If you plot, for example, the third vs. first axis, the values used to 
decide which species to plot correspond to cumulative fit for the first three axes, with the effect 
of the second axis subtracted. 

This option provides both an upper and a lower limit, so either species with low or high fit 
values can be selected. Additionally, species with intermediate fit values can be selected by 
using limits like 15 and 85, for example. 

Samples Fit Range 

This option is similar to the preceding one, but provides a restriction on samples, not on 
species. The statistic used here is based on the SqRL ("squared residual length per sample") 
statistics provided by Canoco (see section 6.3.11.2), but further post-processed by CanoDraw to 
give it comparable scaling units as for the species fit values. The resulting statistics then 
estimate the percentage of variance in the values of all species (primary variables) in the 
particular sample, explained by the plotted ordination plane. Therefore, a sample with value 100 
would have the values of all the species predicted precisely from the fit using the two ordination 
axes (for linear methods; only the relative proportions of individual species would be predicted 
precisely for unimodal ordination methods). 

Lower Axis Minimum Fit 

The lower axis minimum fit values select the plotted samples or species based on their fit 
just on the horizontal ordination axis (the axis with the lower order). This is an important option 
in the situation where you plot, for example, an ordination diagram with the first two ordination 
axes, but where the first axis is canonical (constrained by the explanatory variable(s)), while the 
second is not. The standard "Fit Range" option does not allow you to differentiate between the 
contribution of the horizontal and the vertical axis to the fit of species and / or samples. 
Species Weight Range 

You can specify here the range of weights the species must have in the ordination analysis 
to be displayed. This option is available only in projects based on an unimodal (weighted 
averaging) ordination (CA, DCA, CCA, DCCA). The original weight values (imported by 
CanoDraw from the Canoco solution file) are rescaled so that the largest value becomes 100.0. 
Therefore, the weights used by CanoDraw represent the percentage of the weight of the species 
(or sample) with the largest impact on the analysis results. 

Samples Weight Range 

This option is similar to the one described in the preceding paragraph, except that the 
sample weights are used here. It is available only for the projects resulting from unimodal 
ordinations. 
Limit to Group 

If you defined one or more groups for your samples or species (see section 12.4.4) you can 
specify here one of them and only the samples (or species) from that group will be plotted (if 
they pass through the other inclusion rules). 

If you need a selection rule combining several groups (like "plot all samples where Spec05 
occurs with quantity at least 10.0 and where the total number of species is more than 7"), 
you can combine existing rules (using logical complement of one group or logical overlap 
or unification of two groups) in the group manager (see section 12.4.4). 
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12.4.1.4 Inclusion Rules 2 page 

Figure 12-30 Inclusion Rules 2 page 

This page provides control over the set of environmental or supplementary variables which 
are plotted in ordination diagrams. For both types of explanatory variables, you can specify an 
exclusion range for T-values and for the correlations with the displayed ordination axes. The 
exclusion range is a range of values of a particular statistic, which leads to the exclusion of the 
corresponding variable from the set of plotted variables. This kind of specification is used 
because the statistics used as inclusion rules for environmental and supplementary variables 
have the property that the values largest in absolute magnitude represent the most important 
variables. For example, a strong relation between an environmental variable and an ordination 
axis is signified by a value approaching -1.0 or +1.0, while a value near 0 implies a very weak 
or non-existent relation between the variable and the ordination axis. 

Rules passed by 

These two fields estimate how many environmental variables and supplementary variables 
pass through the inclusion rules corresponding to the actual thresholds set in the individual fields 
below them. 

Env. Variables T-Values Outside of Range 

T-values used here correspond to the T statistics of linear regression coefficients from 
a multiple regression model where sample scores on a particular ordination axis represent the 
response ("dependent") variable, while the environmental variables are used as predictors. An 
environmental variable passes this inclusion rule, if the value of its T statistics is outside the 
specified exclusion range at least for one of the two ordination axes plotted in the ordination 
diagram. Therefore, the set of environmental variables passing this rule usually changes with the 
change of displayed ordination axes. CanoDraw uses the T-values provided by Canoco in the 
solution file (see section 6.3.6). 
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The T values are for regression coefficients from a multiple regression model, in which all 
the environmental variables are used at the same time. Therefore, these values are 
sensitive to the inclusion of other, correlated environmental variables, and so a selection 
based on these statistics should be carefully reviewed. Generally, redundant explanatory 
variables should be first excluded from the analysis (e.g. using the forward selection of 
environmental variables). Also note that if a group of dummy variables is used to code 
values of a factor, the T-value statistic for one of such dummy variables is not calculated at 
all and its value is set to 0. Therefore the corresponding factor level will be excluded from 
the plot if any non-empty exclusion range is specified here, unless this dummy variable is 
forced into the ordination plot (see Project /Enforce menu). 

Env. Variables Correlations Outside of Range 

The exclusion range to be specified here refers to the correlations between environmental 
variables and individual ordination axes, termed Inter-set correlations in the Canoco™ program. 
These correlations are (weighted) linear correlation coefficients between sample scores on the 
particular ordination axis (derived from the species scores) and values of the particular 
environmental variable. CanoDraw uses the correlation values provided by Canoco in the 
solution file (see section 6.3.8). As for the above criterion, CanoDraw chooses between the two 
candidate correlation values for each variable (correlation either with the horizontal or with the 
vertical axis), using the one with the larger absolute value. 

Supplem. Variables T-Values Outside of Range 

This inclusion rule limits the set of plotted supplementary variables. See the preceding 
paragraph describing the same criterion, used with environmental variables, for an explanation. 

Supplem. Variables Correlations Outside of Range 

This inclusion rule limits the set of plotted supplementary variables, based on their 
correlation with the ordination axes. See the description in the above paragraph explaining the 
use of correlations for environmental variables. 

12.4.2 Nominal variables 

The nominal explanatory variables describe the state of an object or sample using a limited 
set of values. The nominal variables can be also called factors and their possible states (values) 
are called factor levels. In the simplest case of a nominal variable with just two states, 0 and 1 
can be used to identify, respectively, absence or presence of a feature or event. Qualitative 
explanatory variables with more than two possible states (values) must in the Canoco™ program 
be replaced by a group of dummy variables, with 0 and 1 values. There is one such variable for 
each level ("class") of a nominal variable and a value of 1 indicates that the particular 
observation belongs to this level (state). Consequently, there is always just one variable in such 
a group with value 1 and the remaining ones have zero value. 

The two commands in this submenu enable you to specify which of the explanatory 
variables (either environmental variables or supplementary variables) can be treated as levels of 
nominal variable(s). This is necessary because the levels of a nominal variable are often 
displayed in ordination diagrams using symbols representing the centroids of sample scores 
belonging to the particular class (factor level), not by the biplot scores (which are plotted as 
arrows). These centroids are available as CenE scores in the Canoco™ solution file. Additional 
information can be found in the section 6.3.10. 
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12.4.3 Classify 

The individual samples, species, and - if available -environmental variables or 
supplementary variables can be classified into several distinct classes. If one kind of items (e.g. 
the samples) is classified, every such item must be assigned to exactly one class. Such a set of 
assignments is called classification. Each classification may use up to 64 different classes. 
CanoDraw supports, for each kind of items, an unlimited number of classifications, but only one 
of them (or, alternatively, none of them) may be active at a time for a particular kind of items. 

The active classification is reflected in the diagrams created by CanoDraw by symbols of 
different type (circles, squares, crosses, etc.), color, or even size. CanoDraw presets the 
distinguishing symbol attributes for the first 16 sample and species classes (and for the first 8 
classes of environmental and supplementary variables), but you can modify those settings and 
specify distinctive attributes for additional classes in the dialog shown by the View / Visual 
Attributes command (see section 12.3.2). 

Classification of items can also be reflected in envelopes drawn around symbols belonging 
to the same class and in the pie symbol plots (see section 12.4.1.1 in both cases). 

When you select one of the commands (named after the kind of classified items) from the 
Classify submenu, a dialog box similar to the one in Figure 12-31 is shown. 

Available Classifications of Samples 
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Figure 12-31 Available Classifications dialog 

Not all the buttons are enabled for all the types of items. New from data is available only for 
a classification of samples, New from group is available only for a classification of samples or 
species. The buttons in the second row (Edit, Rename, and Delete) and the checkbox are 
available only if at least one classification is defined and selected in the list in the upper part of 
the dialog. 

12.4.3.1 New select 

This command (button) is always enabled and allows you to define a new classification 
from scratch, defining new classes and their members manually. After you select this command, 
a dialog similar to the one in Figure 12-32 is shown. 
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Manual Classification 

Figure 12-32 Manual Classification dialog 

The hierarchical list on the left side shows the current state of classification. Individual 
classes are listed at the top level (these are represented by the labels Species of dry habitats and 
Ruderal species in Figure 12-32) and the nested items correspond to members of the particular 
class. The class members are shown in the list only if the total number of items to be classified is 
not larger than 2000. Otherwise, only the class names are displayed. This does not have any 
adverse impact on the dialog functionality, however, because the commands available here work 
only with the whole classes. 

The non-editable field Not classified items shows how many items are not a member of any 
of the currently defined classes. This value must be zero (i.e. all items must be classified) before 
the OK button is enabled. 

Add class 

If you click this button, a dialog similar to the one in Figure 12-33 is displayed. 
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Figure 12-33 Add New Class dialog 

This dialog suggests default class name (consisting of the word Class and a sequential 
number) but you can change it. The checkbox below the edit field, which is checked by default, 
specifies whether another dialog - used to specify members of this new class - should appear 
after this dialog is closed with the OK button. 

Delete class 

The class selected in the left-hand list is deleted (after confirmation). 

Class members 

This command shows a dialog, which is illustrated in Figure 12-34, for the class currently 
selected in the left-hand list of classes. It is also shown when you add a new class with the 
Continue with Class Members dialog option being checked in the Add New Class dialog. 
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Class Members 
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Figure 12-34 Class Members dialog 

The left-hand list (Pool of not classified items) shows the names of items, which can be 
assigned to the current class, because they are not yet members of any existing class. The right-
hand list (Members of class "XXX") shows the items, which are already members of the current 
class. In both lists, the names are supplemented by the item indices in the square brackets. To 
move items from the left to the right list or in the other direction, select the items in the source 
list and click the Select» or («Deselect) button. Items are listed in both boxes in alphabetical 
order. 
Rename class 

Displays a simple dialog box allowing you to change the name of currently selected class. 

Reset all 

Completely resets the classification, removing all defined classes and moving all the 
currently classified items into the pool of non-classified items. 

Merge classes 

This button displays the dialog illustrated in Figure 12-35. 
Merge Classes 

Other species 
Ruderal species 
Species of dry habitats 

Figure 12-35 Merge Classes dialog 

The currently defined classes are listed here and to merge classes, you should select two or 
more items and click the OK button. 
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12.4.3.2 New from data 

This command (button) displays the Classify From Data dialog (illustrated in Figure 
12-36), which allows you to define classes of samples based on values of one or more variables. 

Figure 12-36 Classify From Data dialog 

The box in the dialog' upper left corner shows the variables available as a source of 
information for the definition of a new classification. To define a new classification, select either 
one (quantitative) variable or a group of several dummy (0/1) variables and then choose the 
classification strategy in the bottom part of the dialog. If you select a single variable in the box, 
the range of values and the number of distinct values are shown in the middle part of the dialog. 
In that case, the first four choices are enabled in the Strategy field. Alternatively, you can select 
two or more variables representing, if combined, individual levels of a factor (nominal variable). 
If more than one variable is selected, CanoDraw checks that values of each of them are either 
0 or 1 and displays an error message if other values are found. Nevertheless, CanoDraw does 
not enforce a crisp classification in the sense that exactly one of the selected 0/1 variables has 
a value of 1 for each sample. 

After you selected the variable(s) and selected the classification strategy, click the Create 
button to proceed with the classification. The possible classification strategies are discussed in 
the following paragraphs. 
All distinct values 

This classification strategy places samples with different values of the selected variable into 
separate classes. If there are more than 63 distinct values, CanoDraw collects all the values 
largest than the upper threshold for the 62" class into one composite class. 

After the classification is created, it is displayed in a dialog similar to the one in Figure 
12-32, where you can inspect and fine-tune the classification. 

Intervals of same length 

CanoDraw divides the range between the minimum and maximum values of the selected 
variable into specified number of intervals of the same length. You are asked to set the number 
of intervals with the dialog illustrated in Figure 12-37. There should be at least two intervals and 
the maximum number of intervals is 63 or the number of distinct variable' values, whichever is 
lower. 

Commands Reference Page 369 



Classes with specified numbei of intervals 
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Figure 12-37 Dialog for specifying number of intervals 

After the number of intervals is specified, CanoDraw calculates the threshold (boundary) 
values and displays them in a dialog box similar to the one shown in Figure 12-38. You can use 
this dialog to modify the actual boundary values and to check how many members the individual 
classes would have. Use of this dialog is explained in more detail in the section Use selected 
thresholds below. After you close this dialog with the OK button, the classification is created 
and displayed in a dialog similar to the one shown in Figure 12-32. You can make additional 
adjustments to the classification, e.g. change names of individual classes. 
Intervals with similar count 

This classification strategy is similar to the one described in the preceding section {Intervals 
of same length), but this time the boundary values (thresholds) between the intervals are found 
so as to create classes with as closely similar number of members as possible. A completely 
identical size of individual classes is usually not achievable even when the number of samples is 
a multiple of the requested number of intervals, due to the presence of identical values in the 
variable used for classification. 

Use selected thresholds 

This is the most flexible form of classification based on the values of a single quantitative 
variable. The dialog illustrated in Figure 12-38 is shown. This dialog displays supporting 
information about the selected variable, as well as the actual boundary values (the limits, 
dividing the range of values of the selected classification variable into intervals corresponding to 
individual classes). 
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Figure 12-38 Dialog for specifying class thresholds (boundaries) 

The area in the upper part of the dialog provides statistics summarising the variable selected 
as the classifying variable. Name of the variable, total number of values (entries), number of 
distinct values, and number of zero values are shown together with the minimum and maximum 
values, median, and arithmetical average. 

The central part of the dialog is an editing field where the required boundary (threshold) 
values must be specified in ascending order. When you enter this dialog using the Use selected 
thresholds strategy, this field is pre-fdled with three values representing lower quartile (0.25 
quantile), median (0.5 quantile), and upper quartile (0.75 quantile) of the variable. If the lower 
quartile is not smaller than the median, it is not displayed. Similarly, if the upper quartile is not 
larger than the median, it is also skipped. If you entered this dialog by selecting the Intervals of 
same length or Intervals with similar count strategies, this field is initialised with boundary 
values (thresholds) calculated from those strategies. 

The boundary values represent the upper, inclusive limits of the intervals. For example, if 
you use for classification a variable with only two values, 0 and 1, for example, you can specify 
0 as the (only) boundary value, and all samples with value 0 fall into the first class, while those 
with value 1 (larger than 0) are in the second class. 

You can check how many samples belong to individual classes, based on the currently 
specified boundary values, by inspecting the list area in the lower part of the dialog box. Note, 
however, that if you change the boundary values in the edit field, you must first click the Refresh 
button to update the list contents. 

Combine dummy variables 

This classification strategy is the only strategy enabled when multiple variables are selected 
and it is always disabled if only one variable is selected. CanoDraw allows you to select multiple 
variables if each of them has only 0 and 1 values. After you select a group of such variables, 
confirm the strategy and click the Create button. CanoDraw then creates separate classes for 
each selected variable and one or two additional classes: the class named OTHER collects the 
samples which have, for all the selected 0/1 variables, only zero values, while the class named 
MissingEntries collects samples with no available information for the selected variables. 
CanoDraw places the remaining samples into the class corresponding to the first of the selected 
variables which has value 1 for the particular sample. If you selected real dummy variables 

Commands Reference Page 371 



representing collectively the levels of a factor, there is only one " 1 " value for each sample, but 
CanoDraw does not check whether the selected variables fulfil this condition. 

After the classification is created using any type of classification strategy, CanoDraw scans 
through the new classes and removes the empty ones. 

12.4.3.3 New from group 

You can create a new classification from a group of samples or of species. A group of 
samples or species often represents a subset of items having a particular property. It can be 
defined manually (by explicit selection) or using a rule (see section 12.4.4 for additional details). 
CanoDraw displays a list of existing groups, as shown in Figure 12-39. 

Figure 12-39 Classification From Group dialog 

After you select one of the groups and click the OK button, a new classification with two 
classes is created. One class contains items (samples or species) which are members of the 
selected group, while the other class contains the remaining ones. The ability to create a class 
from a group is particularly useful because the range of possible criteria for creating groups is 
wider than for the classes (including ordination diagnostics, scores on ordination axes, summary 
properties of primary data, etc). 

12.4.3.4 Edit 

If you click on this button, a dialog similar to the one shown in Figure 12-32 is displayed, 
allowing you to add new or delete existing classes, change membership of items in the classes, 
or change names of classes. 

12.4.3.5 Rename 

Use this button to rename the currently selected classification. 

12.4.3.6 Delete 

Deletes the classification currently selected in the list. 

Page 372 Commands Reference 



12.4.3.7 Use this classification in diagrams 

This checkbox indicates that the items will be displayed with different symbols (as long as 
the symbol types, colours, and/or sizes assigned to individual classes differ) in the diagrams 
created in this project. Note that either none or exactly one of the existing classifications may be 
active at any time. Therefore, if you have more than one classification defined and you select 
a classification different from the active one and check this box again, the original classification 
ceases to be active. 

12.4.3.8 Copy 

Copies definition of the currently selected classification to the Clipboard. The definition can 
be then pasted into another CanoDraw project, assuming that the identity of classified objects 
(samples, species, etc) is comparable between the source and destination project. If you, for 
example, copy a definition of species classification and then you paste it into another CanoDraw 
project, it is assumed that the species with index, say, 20 in the two projects refers to the same 
biological species. 

12.4.3.9 Paste 

Creates a new classification by importing it from the Clipboard. It is assumed that the 
classification was placed on the Clipboard using the Copy button in this dialog box, but when 
a different CanoDraw project was active. Because only the indices of samples, species, or 
explanatory variables are copied, they must refer to identical entities in both the source and 
destination project. 

12.4.3.10 Close 

Closes the dialog managing existing classifications. 

12.4.4 Define Groups of 

Groups allow you to specify subsets of samples or species and work with them. Groups can 
be used to limit the set of plotted items (see section 12.4.1.3), to define a classification of items 
(see section 12.4.3.3), and to visualise the importance of species groups in individual samples 
(see description of the XY(Z) Plot command, section 12.5.5.3). 

Commands in this submenu allow you to manage existing groups of species or samples and 
create new ones. Both commands display primarily a group manager dialog (illustrated in Figure 
12-40), which can be used to define new groups, combine existing ones, change their definition, 
or delete them. 
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Figure 12-40 Group Manager dialog 

The list in the upper left part of the dialog (titled Available Groups) shows the currently 
defined groups and you can select one or more groups there. For the currently selected group, 
CanoDraw displays information about its size immediately under the listbox. The other 
commands, accessible via the dialog buttons, are described in the following sections. 

12.4.4.1 Create Groups 

Commands in this area can be used to create a new group either from scratch or based on 
the existing one(s). 

By Selection 

This command creates a new, empty group, displays a list of available items (species or 
samples), and allows you to select which items should become group members. 

By Rule 

This command displays a dialog where you can specify a rule, defining item membership in 
the new group. The content of this dialog is described below, in the section named By Rule in 
Modify Groups (see 12.4.4.2). 

As Overlap 

This command is enabled only if two different groups are selected in the listbox. It creates a 
new group with members defined as items, which are members of both selected source groups. 
As Union 

This command is enabled only if two different groups are selected in the listbox. It creates 
a new group and all the items, which are members of at least one of the two selected groups, 
become members of this new group. 

As Complement 

Creates a new group as a complement of the currently selected group. This means that only 
the items, which were not members of the original group, become members of the new one. 

Paste 

Create a new group by importing its definition from the Clipboard. It is assumed that the 
group definition was placed on the Clipboard using the Copy button from this dialog box, but 
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when a different CanoDraw project was active. Because only the indices of samples, species, or 
explanatory variables are copied, they must refer to identical entities in both the source and 
destination project. 

12.4.4.2 Modify Groups 

The two commands allow you to modify the definition of an existing group. 

By Rule 

For groups with membership based on a selection rule, this command allows you to define 
or change this rule. For groups specified by direct selection, their original definition is discarded 
and the group is redefined from scratch. 

In both cases, a dialog illustrated in Figure 12-41 is shown. 
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Figure 12-41 Dialog for group definition by a rule 

The dialog shows the group name in the top left corner. The largest area with radio-buttons 
lists the possible criteria (statistics) on which a selection rule may be based. These include 
average values (or medians) from individual samples or for individual species, number of non
zero values (i.e. absolute frequency of species), fits of species or samples (per individual axes or 
cumulatively expressed), values of a selected species or environmental / supplementary variable 
(only for groups of samples), scores on ordination axes and Tol or Het values from the 
ordination output (solution file). Note that many of these options may be disabled (non-
accessible) either because they are not appropriate for the particular kind of items or because the 
particular statistic is not available (incompatible type of analysis, missing source data, etc.). 

After you selected one of the options (type of inclusion rule), the range of values is updated 
in the field at the dialog box bottom. Additionally, the fields in the area named In range (below 
the OK and Cancel buttons) are initialised to specify the full range of values, covering therefore 
all the items. These two fields {FROM and TO) are used to limit the range of values, which 
implies membership of each sample or each species in the group. 
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The rules named value of selected species, value of selected env. variable or value of 
selected pas. variable require, if selected, specification of the variable to use. This variable can 
be selected in the Using this XXX roll-down list in the middle right part of the dialog box. 

The area in the lower right part of the dialog previews the group size and contents (list of 
items fulfilling the currently specified rule settings). 

Manually 

Allows you to explicitly specify which items are members of the modified group. If the 
group was originally defined using a rule, you are requested to confirm the change to the 
explicitly (manually) selected group. 

12.4.4.3 Other Operations 

Remaining commands for the manipulation of the group(s) are placed in this area. 

Delete Group(s) 

Removes one or more groups currently selected in the list. 

Rename 

Shows a dialog where you can change the name of the currently selected group. 

Copv 
Copies the group definition (list of its members) to the Clipboard. This definition can be 

then pasted into another CanoDraw project, assuming that the identity of group members is 
comparable (for identical indices) between the source and destination project. 

12.4.5 Define Series of 

Series can be used to visualise a spatial, temporal, or any other logical sequence of items 
(species, samples, or explanatory variable). A single series is presented in a CanoDraw diagram 
with a line connecting individual points in the order they have in the series. Individual series are 
grouped into series collection. A series collection for samples, for example, can represent 
repeated yearly measurements performed on permanent plots. Each permanent plot is then 
represented by one series and samples taken at that particular plot are ordered in the series by the 
year of sampling. Each item (e.g. sample) can be a member of multiple series in a series 
collection. Therefore, if your samples were collected in field in a spatial arrangement resembling 
a rectangular grid with, say, 5 rows and 6 columns, you can visualise the spatial contiguity of the 
samples in a CanoDraw diagram by defining (and displaying) 11 series. First 5 series (each with 
6 samples) represent the rows, while the other 6 series (each with 5 samples) represent the 
columns of the grid. The defined series collections do not need to include all the available items. 

When plotting a series in a diagram, CanoDraw does not draw a particular series if some of 
its members are not shown. This is because otherwise non-sequential series member could 
follow immediately in the displayed series sequence. You can overcome this behaviour in the 
dialog displayed by the Project / Project Settings command, in the page Contents, by checking 
the option Plot series lines even for incomplete series (see section 12.4.1.1 ). 

When you select any item from this submenu, a dialog (illustrated in Figure 12-42) is 
displayed. 
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Figure 12-42 Series Collections dialog 

The list in the upper part of this dialog shows the currently defined series collections for the 
particular type of items (species, samples, etc.)- The checkbox This collection is used in the plots 
indicates whether the currently selected series collection is plotted within ordination diagrams 
created by CanoDraw. Only one series collection can be visualised at any time and CanoDraw 
switches the "activity" flag for series collections as needed. In the bottom half of this Series 
Collections manager dialog are the buttons allowing you to work with the existing series 
collections and to create new ones. 
Create 

Creates a new collection of series. A new dialog box is displayed (see Figure 12-43), where 
you can create new series and select the items they contain and the item order. 

Figure 12-43 Dialog for editing series collection 

The left half of this dialog shows the existing series within the series collection and allows 
you to add a new series (the Add button), delete the currently selected series (the Delete button), 
and change the name of currently selected series {Rename button). The right half of the dialog 
box contains the list of the items belonging to the series, which is currently selected in the left-
hand list. 

You can change the order of items by selecting the item you want to move and dragging it 
to the desired position. The dragging is achieved by pressing the left mouse button over the 
selected item and moving the pointer while keeping the button pressed. You cannot relocate list 
items beyond the last item, but the same effect can be achieved by dragging the last item 
upwards. 

Use the Add button to add new items to the currently selected series. A currently selected 
item can be deleted either using the Delete button or by pressing the Delete key. 
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From class 

Creates a new series collection based on the existing classification of items. CanoDraw 
displays first the dialog where you must select the classification to use for the definition of the 
new series collection (see Figure 12-44). 

Figure 12-44 Dialog for selecting classification 

After you have selected one of the classifications and clicked the OK button, CanoDraw 
creates a new series collection where each series corresponds to one of the classes and the class 
members are arranged in the series in their original order in the primary data. 

Paste 

Creates a new series collection by importing its definition from the Clipboard. It is assumed 
that this definition was placed on the Clipboard using the Copy button in this dialog box, but 
when a different CanoDraw project was active. Because only the indices of samples, species, or 
explanatory variables are copied, they must refer to identical entities in both the source and 
destination project. 

Modify 

Changes the definition of the currently selected series collection. The dialog box is similar 
to the one illustrated in Figure 12-43. 

Close 

Closes the series collections manager 

Rename 

Displays a simple dialog box where you can change the name of the currently selected 
series. 

Delete 

Deletes - after confirmation - the currently selected series collection. 

Copy 
Copies the definition of currently selected series collection to the Clipboard. The definition 

can be pasted into other CanoDraw project, assuming that the identity of classified objects 
(samples, species, etc) is comparable between the source and destination project. If you, for 
example, copy a definition of a sample series collection and then you paste it into another 
CanoDraw project, it is assumed that the sample with index, say, 5 is identical in the two 
projects. 

12.4.6 Suppress 

Use the commands in this submenu to select items of particular type (species, samples, 
environmental variables, and supplementary variables) which are not displayed in the diagrams 
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created by CanoDraw. Additionally, the suppressed items are also ignored when fitting 
regression models (GLM, GAM, and Loess) in CanoDraw. 

12.4.7 Enforce 

The enforced items are unconditionally included in the diagrams created by CanoDraw, 
even if they do not fulfil the other inclusion rules (fit into ordination space, item weight in the 
analysis, etc). 

12.4.8 Import variables 

CanoDraw provides three ways to import additional information about your samples and, 
eventually, species and explanatory variables, into an existing project. The imported variables 
are stored in the Imported folder, which is accessible from several places. The primary point of 
use is the dialog box for creating XY(Z) diagrams (see section 12.5.5.3), but you can also use 
the imported variables to define new classifications of samples. 

12.4.8.1 From Clipboard 

CanoDraw is able to import data from the Windows Clipboard, assuming the information is 
stored there in a standard format, resulting from copying a data table from a spreadsheet 
program. The table should have a rectangular form (with fixed number of columns and rows), 
with individual entries (columns) in each row separated by the TAB character, and the 
individual rows separated by the newline (NL) character. The first row should contain the names 
of individual variables (columns). The table being imported may contain indices for individual 
entries, which should be 1-based (i.e. the logically first entry should have value of 1). If the 
index column is present, it must be the first column in the table. Its presence provides greater 
flexibility in matching the values being imported with individual items available in the 
CanoDraw project - you can import information for a subset or a superset of the items present in 
the project. 

When you select this command (which is enabled only if a suitable data format is detected 
on the Clipboard), a dialog is displayed, similar to the one shown in Figure 12-45. 
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Figure 12-45 Import data from Clipboard dialog 

You can import not only the information available for individual samples, but also 
information concerning individual species or environmental (or supplementary) variables. The 
type of items must be selected in the options field, in the upper left corner of the dialog. 

Commands Reference Page 379 



CanoDraw disables the choices which are not compatible with the type of items present in the 
analysis (for example in Figure 12-45, the analysis does not contain supplementary variables, so 
the corresponding type option is disabled). Also, if you specify in this dialog that there is no 
index included in the imported table, then the number of rows (after accounting for the first row 
containing the variable names) must exactly match the number of items in the CanoDraw 
project. 

In the dialog displayed in Figure 12-45, the option box First column contains indices is 
checked, so several item types are enabled, irrespective of the number of items present on the 
Clipboard. 

In the list-box named Variable names, CanoDraw displays the column names parsed from 
the first row of the table present on the Clipboard. You can select one of those names and use 
the Rename variable button to change the name under which the variable will be imported into 
the CanoDraw project. 

If the first column contained item indices, it will not be visible in the list of imported 
variables, but CanoDraw imports it and maintains its relation to the variables imported together 
with it. 

You cannot influence which variables will be imported. All the data columns present on the 
Clipboard are imported. Note, however, that the typical usage context for this command 
involves preceding the selection of columns in a spreadsheet application (like Microsoft 
Excel®), so you can make the selection of imported variables there. 

12.4.8.2 From Canoco file 

CanoDraw enables you to import additional variables from data files in Canoco format. 
Note that this command is usually not needed for the data files which were used in the Canoco 
analysis on which the CanoDraw project is based. It is rather more useful if you have any 
additional information about the samples, which was not used in the original analysis. 

After you have selected this command, CanoDraw displays dialog for selecting the file 
containing data in Canoco compatible format. After that, the file is parsed and on success 
a dialog similar to that in Figure 12-46 is shown. 
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Figure 12-46 Dialog for importing selected variables from Canoco data file 

All the variables found in the data file are listed, each with a pre-checked box. You should 
uncheck the boxes for all variables you do not want to import. 
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12.4.8.3 Setup PRC scores 

Canoco for Windows version 4.5 provides only a limited support for creating principal 
response curve (PRC) diagrams, which were described in section 8.3.11 of this manual and in 
the paper of Van den Brink & Ter Braak (1999). To calculate the scores to be plotted in PRC 
diagram, you must combine information from the Canoco solution file with information 
provided in the Canoco output file (TAU value and the standard deviations of the environmental 
variables). 

To setup PRC scores, you must have a CanoDraw project with appropriate options: it must 
be a redundancy analysis with covariables (partial RDA) where time (coded as a series of 
dummy variables for individual time points) is used as covariable(s) and the interactions 
between the time indicators and treatment variables are used as the explanatory variables 
("environmental variables" in Canoco terminology). CanoDraw does not even enable this 
command if the project is not based on a constrained analysis with covariables. 

Additionally, after you have executed the redundancy analysis in Canoco, you must save the 
analysis log (present in the Log View window) into a text file (presumably with the .log 
extension). This log contains the information, which is ultimately needed to calculate the PRC 
scores. 

When you execute this menu command {Setup PRC scores), a dialog similar to the one 
illustrated in Figure 12-47 is displayed. 
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Figure 12-47 Create PRC Scores dialog 

You must select in the list (placed in the central part of the dialog) the environmental 
variables representing the interactions between the dummy variables corresponding to individual 
time points and the dummy variables representing the treatments. Then you should specify how 
many sets of PRC scores are to be created. The first principal response curve corresponds to the 
first axis of RDA and provides the most important patterns in the community response to the 
treatments, but the higher order PRCs can also provide interesting information. Scores for the 
first PRC are stored among the imported variables under the name PRC1, scores for second PRC 
as PRC2, etc. Additionally, you should specify in this dialog box the name of the file with the 
stored Canoco log of the redundancy analysis, on which this project is based. 
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After you press the OK button, CanoDraw parses the log file and reports any encountered 
problems. It calculates the scores and stores them in the PRCi variables. The use of these scores 
is illustrated by the example PRCSIM (section 14.8). 

12.4.8.4 Delete 

This command displays a simple manager of imported variables, where you can select one 
or more imported variables and remove them from the CanoDraw project using the Delete 
button. 

Delete Imported Variables 

Specify imported variables to be deleted 

PRC; 

Figure 12-48 Delete Imported Variables dialog 

12.4.9 Export Statistics 

This command displays a dialog similar to the one shown in Figure 12-49 and containing 
a list of species data statistics available for export. These statistics are further described below. 
Originally, all the items in the list are pre-selected (their check-boxes are checked), so you must 
uncheck the boxes for the statistics you do not want to export. After you have made your 
selection, press the OK button to proceed. CanoDraw informs you about the successful 
accomplishment of the command or reports an error. The statistics are placed on the Clipboard 
in a TAB-separated text format, so they can be easily pasted into any spreadsheet application. 

Checked statistics will he exported 

HN2 diversity of samples 
(Ihn richness of samples 

5N2/N1 evenness of samples i: 

3Number of species in samples 

^Shannon' diversify (H) of samples 

3Log(Number of species) in samples 

3H/log(N) evenness of samples 

^Variance of samples 

'iTotal of samples 

HCount of group "Well fitting species" 

"Well fitting 

Figure 12-49 Export Statistics dialog 

CanoDraw provides several species data statistics. For their description, you are advised to 
further study section 6.5 of Legendre & Legendre (1998). These sample statistics are always 

Page 382 Commands Reference 



calculated from the original, non-transformed species data, using all the species that are 
available there (ignoring any selection rules used in CanoDraw graphs). For samples with 
peculiar properties (usually with none or one species occurring), some of the statistics described 
below cannot be calculated and are replaced by some reasonably chosen degenerate values. In 
such case, CanoDraw places information about this failure into the project log window. The 
conditions leading to the use of degenerate values are noted (using text in italics) at the end of 
the section describing particular statistics. 

N2 diversity of samples 

The N2 diversity statistics, introduced by Hill (1973), is equal to the inverse value of the 
Simpson concentration index (see Legendre & Legendre 1998, p. 242) and can be also 
interpreted as the number of "effective species occurrences" (see section 6.3.5). 
A degenerate value ofO is used if the sum of species values in a sample is equal to zero, i.e. for 
a sample without any occurring species. 

Nl richness of samples 

This is another measure from the system of diversity numbers, introduced by Hill (1973). It 
can be related to Shannon entropy statistics (H), discussed below, using the relation Nj = eH. 
Most often, this statistics is used as a measure of species richness. The other component of 
diversity - the evenness can be then calculated as a ratio N2 / Ni. 

A degenerate value ofO is used if the sum of species values in a sample is equal to zero, i.e. for 
a sample without any occurring species. 
N2/N1 evenness of samples 

The ratio of Hill's N2 diversity number to Ni richness number can be used as a measure of 
a compositional evenness of particular sample. 

A degenerate value of 1 is used whenever the Nl value for a sample is not greater than 0.0. 

Number of species in samples 

The number of species present in a sample is probably the simplest and most often used 
measure of sample richness. Formally, it can be labelled as Hill's No coefficient. The number of 
species in a sample is always larger or equal to Ni, as it represents its upper bound (maximum 
value), achieved with maximum evenness of species composition. 

Shannon' diversity (H) of samples 

This is the familiar entropy measure. It is calculated by first taking the sum of species 
values in a sample, referred to as SUM and then calculating the H statistics from the relative 
proportions of the abundances of individual species, pj = Yj / SUM, where Yj is abundance of the 
j-th species in the sample. H is then calculated as: H = -Epjlog(pj) where log(x) is the natural 
(base e) logarithm. 

A degenerate value ofO is used if the sum of species values in a sample is equal to zero, i.e. for 
a sample without any occurring species. 
Log(Number of species) in samples 

The logarithm of number of species occurring in a sample has a similar relation to Shannon' 
entropy statistics H as the (non-transformed) number of species (N0) has to Hill's N] coefficient. 
It represents the maximum achievable value of the H statistics for a given number of occurring 
species. 

A degenerate value of 0 is used if there is no species occurring in the sample. Consequently, 
samples with none or one species end up with an identical value of this statistics 

H/log(N) evenness of samples 

This ratio represents a widely used statistic for compositional evenness, with values 
between zero and one. 
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A degenerate value of 0 is used if the number of species in a sample is less than two, i.e. for 
samples without any or with just one occurring species. 

Variance of samples 

Calculates the variance of the species values in a sample, around the sample average. Note 
that the statistical sample variance is calculated (dividing the sum of squares by the number of 
species in the data decreased by one) and also that the zero values (for species not occurring in 
the sample) are included in the calculation. 

There are no degenerate values generated, but the calculation would fail for species data with 
just one species. 

Total of samples 

Calculates the sum of species values in each sample. 

Count of group "XXX" 

This statistics is (together with the following one) offered for each group of species defined 
in the current CanoDraw project. Count of group statistic calculates how many species from the 
specified group occur in a particular sample. 

Share of group "XXX" 

For a particular group of species, this statistic calculates the percentage of the total sum of 
the abundances belonging to species from that particular group. The values are on the scale from 
0 to 1, with a value of 0.5 implying, for example, that half of the sum of values in that sample 
represents the species which are members ofthat particular species group. 
A degenerate value ofO is used for samples with a non-positive total of the species abundances. 

12.4.10 Manage graphs 

This command displays a dialog listing the CanoDraw graphs created from the active 
CanoDraw project, saved to a permanent file, and currently not opened in the application 
workspace. An example of this dialog is shown in Figure 12-50. 

Manage Dependent Graphs 

Please check tite graph lies 5*311 want So be opened 
OK 

Cancel 

Delete 

Figure 12-50 Manage Dependent Graphs dialog 

This dialog can be also used to remove reference to the created graph files: select the 
desired entries in the list and click the Delete button. Note that only the reference will be 
removed, not the actual files. More importantly, you can use the checkboxes in the front of the 
file names to specify which of the referred graphs should be opened. After you click the OK 
button, the graphs stored in the checked files will be opened. 
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12.5 Create 

All the commands used to create graphs in CanoDraw are placed in this menu. Execution of 
any of these commands results in the creation of a new graph window, with its initial name 
consisting of the word Graph, followed by a sequential number. These numbers are unique for 
the current CanoDraw session (i.e. during the time between opening and closing the CanoDraw 
application), but are restarted with a new session. When you save a newly created graph to file, 
CanoDraw suggests to use this initial label, supplemented with the .cdg extension, as the file 
name. You can change it to any other name, however. 

The diagrams are initially represented by the Graph view, but you can also display an 
additional Graph Contents view (using the command View I Tree view). See section 11.3 for 
additional information. 

This reference guide does not provide any systematic explanation of the rules for 
interpreting the contents of ordination diagrams. These rules can be found in a variety of 
publications, including the section 3.5 of this manual, p. 39), Ter Braak (1994) for 
ordination diagrams resulting from linear ordination methods, or Ter Braak & 
Verdonschot (1995) for ordination diagrams resulting from ordinations based on the 
unimodal species response model. Note, however, that CanoDraw for Windows provides 
an utility for suggesting an interpretation of any ordination diagram - see section 13.5 for 
more details. 

12.5.1 Simple Ordination Plot 

This command provides the easiest way to create a traditional ordination diagram, but only 
the most frequently used types are available from here. 

CanoDraw displays a dialog box illustrated in Figure 12-51. 

Figure 12-51 Dialog for creating simple ordination diagram 

You must choose the type of the ordination diagram to be created and which ordination axes 
to plot (this option is located in the lower part of the dialog). 
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CanoDraw normally uses the ordination axes specified in the Project Settings dialog, on its 
Contents page (see section 12.4.1.1). Only here can you temporarily override this setting 
and specify the plotted pair of ordination axes directly. The Simple Ordination Plot 
command supports plotting only the first three ordination axes, however. 

12.5.2 Scatter Plots 

Commands in this submenu create simple diagrams containing only one kind of items 
(species, samples, environmental variables, or supplementary variables) at a time. The items are 
represented by symbols. The symbols are always used for plotting samples, and environmental 
or supplementary variables if they are specified as nominal variables. Species are plotted as 
symbols only in projects based on a weighted-averaging ordination method (CA, DCA, CCA, 
and DCCA). In linear ordination methods, the tips of the vectors (arrows) representing the 
species can be exceptionally displayed as symbols (check section 12.4.1.2 for more details). This 
type of presenting species in PCA or RDA ordination space is generally not recommended, 
however. Arrows are used for species in results from linear ordination methods and for (semi-) 
quantitative environmental or supplementary variables. 

If symbols are plotted, the items can be represented by symbols of varying appearance 
(different symbol types, colors, and sizes). This differentiation of symbol types is governed by 
the currently active classification of items. Only one (or none) classification may be active at 
any time for each of the item types. To use a classification, you must first create it, and then you 
can specify the active classification from the Available Classifications dialog (see section 
12.4.3.7). The symbol graphical attributes can be specified per class, using the dialog displayed 
by the Visual Attributes command in the View menu (see section 12.3.2). Specification of 
symbol attributes is illustrated by Figure 12-15). 

As can be seen from Figure 12-15, the visual attributes of arrows can be also differentiated 
among the individual classes of species and / or explanatory variables. 

If the plotted items are represented by symbols, there are three additional types of visual 
information, which can be encoded into the plots: envelopes, series, and pie symbols. 

The envelopes represent the borderline of the area, in which all the symbols belonging to 
a particular class lay. The envelopes are drawn as the smallest convex polygons using the 
outermost symbols of the group as their vertices. The envelopes are displayed when the option 
for drawing envelopes around the items of particular kind is checked (see section 12.4.1.1). Each 
envelope is drawn with a solid coloured line, using the drawing color of symbols of the 
particular class. 

You can also display series of items using lines connecting series members in their specific 
order. Each item can be a member of one or several series or it may not belong to any of the 
defined series (see section 12.4.5 for a more detailed discussion). Series have a separate 
subgroup of attributes in the Visual Attributes dialog box, but you can diversify series lines only 
for the first 16 series in a series collection. Seventeenth and following series take the attributes 
of the first series. 

Pie symbols may replace the standard CanoDraw symbols, but only for samples or species. 
For each sample (or species) pie symbol, a traditional pie-chart circle is displayed which shows 
the distribution of species (or samples) quantities or presences across the individual classes of 
species (or samples). Therefore, the pie symbols are applied only if a classification of 
complementary items is defined and active. For example, to replace the standard sample 
symbols with pie symbols, you must have an active classification of species. Each pie symbol 
will then be divided into slices, indicating how large part of the total abundance or how large 

Page 386 Commands Reference 



fraction of the occurring species belongs to individual species class. Similarly, pie symbols for 
species report, for a classification of samples, how large a fraction of the sum of that species 
abundances over the whole data set occurred in samples from individual sample classes or what 
was the fraction of species occurrences in samples belonging to individual sample classes. The 
use of pie symbols is governed (beside the availability of an active classification of 
complementary items) by the checkboxes in the Contents page of the dialog invoked by the 
Project / Project Settings command (the section Use Pies instead of Symbols). Whether the 
species occurrences or abundances are used is determined by the attached option named With 
slices based on with two choices {Values or Presences). If you want to change visual attributes 
of the whole pie symbols (size and outline properties) or of the wedges corresponding to 
individual classes, you should open the Visual Attributes Settings dialog (see section 12.3.2) and 
go to the Pie Wedges group. This group has two subgroups, one for samples and the other for 
species. In both subgroups, the first item is named Size and outline and allows you to specify the 
line color and style as well as pie symbol size. Note that you cannot change the symbol type 
from Circle. If you do, CanoDraw displays a warning dialog box and reverts back to 
a circle. The other items in the two subgroups provide the possibility to change the properties of 
the fill style for wedges of up to 64 classes, supported in a CanoDraw classification. You should 
note that the class entries, for example in the Sample pies subgroup, refer to classes from a 
classification of species. 

The symbols and/or the arrows may be labelled with the 8-character labels taken from the 
Canoco project output (the "SOL" file), or by their indices, or they can be plotted without any 
labels. The options for selecting among these three possibilities for each type of items are 
available in the Appearance page of the Project Settings dialog (see section 12.4.1.2, Labelling 
of scores group). These settings are used when plotting symbols or arrows in ordination 
diagrams. The settings are not applied to graphs created using the commands in the Create I 
Attribute plots submenu, where the labelling method can be specified within their respective 
setup dialogs (see sections 12.5.5.1 and 12.5.5.3). 

12.5.2.1 Species 

The scatter diagram of species can display either the positions of individual species in the 
plotted ordination plane (for results from weighted averaging ordination methods) or directions 
of the fitted steepest increase of values of individual species, indicated by arrows (for results 
from the linear ordination methods). 
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Figure 12-52 Scatter of species symbols 

To limit the set of species plotted in such scatter-plot, you can use the rules conditioning 
species appearance by their fit in a regression model using ordination axes as predictors or by 
the weights they had in the analysis (for weighted averaging ordinations only) - see section 
12.4.1.3 for additional information. In the same dialog, you can also specify a single group of 
species and then only the species belonging to this group will be plotted (see section 12.4.4). 
You can also enforce the plotting of the species not qualified to appear in the diagram, based on 
those rules (see section 12.4.7) or explicitly exclude particular species from the diagrams (see 
section 12.4.6). 

12.5.2.2 Samples 

Samples are always shown in ordination diagrams as a scatter of symbols (or pie-symbols, if 
specified), as illustrated in the sample diagram in Figure 12-53. 

In constrained ordination methods (also called direct gradient analysis), two types of sample 
scores are available: the scores based on species scores {Samp scores) and the scores defined as 
a linear combination of environmental variables {SamE scores, also called fitted sample scores). 
For further explanation, see section 6.3.3 of this manual (p. 156), or Legendre & Legendre 
(1998), section 11.1.1 (p. 584). CanoDraw for Windows displays for constrained ordination 
methods (RDA and CCA) usually the SamE scores, if they are available (i.e. if canonical 
[=constrained] axes are used and not for the supplementary samples). To change this behaviour, 
use the option Plot SAMP scores even... in the Contents property page of Project Settings dialog 
(see section 12.4.1.1). 
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Figure 12-53 Scatter of sample symbols, with symbol type coded by the management type 

To limit the set of samples which are drawn in scatter plots, you can use the rules 
conditioning samples appearance by their fit in a regression model using ordination axes as 
predictors or by their weights in the ordination analysis (for weighted averaging ordinations 
only) - see section 12.4.1.3 for additional information. At the same dialog page, you can also 
specify a single group of samples and then only the samples belonging to the selected group will 
be plotted (see section 12.4.4). You can also enforce the plotting of the samples not qualified to 
appear in the diagram based on the above listed rules (see section 12.4.7) or explicitly exclude 
particular samples from the diagrams (see section 12.4.6). 

12.5.2.3 Environmental variables 

12.5.2.4 Supplementary variables 

The scatter plots for those two types of explanatory variables are described jointly, because 
there is no difference in their treatment, they only have a different default visual appearance of 
their symbols and arrows. 

Unlike species and samples, a scatter plot of explanatory variables often contains two 
different visual presentations at the same time (as illustrated by the diagram in Figure 12-54). 
This is due to the difference between so-called nominal explanatory variables and the (semi-) 
quantitative variables. Nominal variables usually possess only two distinct values, typically 
0 and 1. A group of nominal variables can be used to represent a single factor, with each factor 
level represented by a single nominal variable. In such case, the nominal variables are best 
represented by the centroids of environmental variables (CenE), which are calculated by Canoco 
also for the supplementary variables, if they are present in the analysis. These centroids 
represent (weighted) averages of scores of the samples which had the value of 1 for that 
particular nominal variable (i.e. they possessed that particular factor level / belonged to that 
particular class). 

The other explanatory variables, which cannot be interpreted in the way just described, are 
supposed to be quantitative ones, or at least to be on an ordinal scale. When you create a new 
CanoDraw project (by importing an existing Canoco project), all explanatory variables are 
treated as (semi-)quantitative ones. To designate a variable as nominal, you should use one of 
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the two commands in the Nominal variables submenu in the Project submenu (see section 
12.4.2). 
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Figure 12-54 Scatter of explanatory variables represented by arrows (quantitative 
variables) and symbols (dummy variables) 

To limit the set of explanatory variables which are drawn in scatter plots, you can use the 
rules conditioning their appearance by their values of T statistics calculated by Canoco or by 
their correlations with the ordination axes appearing in the diagram - see section 12.4.1.4 for 
additional information. You can also enforce plotting of the variables not qualified to appear in 
the diagram based on the above listed rules (see section 12.4.7) or explicitly exclude particular 
variables from the diagrams (see section 12.4.6). 

12.5.3 Biplots and Joint Plots 

While the scatter plots of particular kinds of items provide the simplest summaries of the 
ordination results (displaying similarity among the samples, correlations among the explanatory 
variables, etc.) the most interesting information is provided by diagrams where two or more 
kinds of entities are plotted together: biplots, joint plots, and triplots (see section 12.5.4). These 
diagrams summarise in a few dimensions the original primary data table ("species data"), 
relations between variability in community composition and explanatory variables, or similar 
types of information. References to publications discussing the use of biplots (and joint plots) in 
detail are given in the introductory remarks of section 12.5. 

When specifying the contents of ordination diagrams with multiple kinds of items, you 
should proceed as described in the preceding section about Scatter Plots submenu (section 
12.5.2). But here the contents of individual scatters are superposed in the same ordination 
diagram. The scaling of different kinds of items is not always on a comparable common scale 
and therefore CanoDraw provides an algorithm for choosing the respective re-scaling of the 
ordination scores, depending on the type of ordination analysis and the type of items combined 
in an ordination diagram. See the description of the option named Show rescaling coefficients 
for composite ordination diagrams in section 12.3.1.1 for further explanation. 
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If you combined several kinds of items in the same ordination diagram, particularly if 
optional features are included (like series lines, envelopes, pie symbols), the diagrams become 
quickly complicated even for small data-sets. In such a situation, it becomes useful to 
supplement the ordination diagram with a legend, displaying a graphical summary of the visual 
attributes used to plot different kinds of items(see the Figure 12-55 below), or even of classes of 
such items. Reference material concerning the legends in CanoDraw diagrams are available in 
the section 12.4.1.2. Additional description of the concepts behind the legends in CanoDraw 
diagrams and procedures needed for their efficient use are described, respectively, in sections 
13.4 and 13.3. 

12.5.3.1 Species and env. Variables 

This command creates an ordination biplot diagram containing species and environmental 
variables. Such a biplot is illustrated in Figure 12-55. 
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Figure 12-55 Biplot with species and environmental variables, based on a Canonical 
Correspondence Analysis (CCA) 

12.5.3.2 Species and samples 

This command creates an ordination diagram displaying, at the same time, species and 
samples. This diagram can be called a biplot or a joint plot, based on the interpretation rule 
appropriate for the ordination method used and the data properties. Anyway, interpretation of 
this diagram can lead (at least in theory) to a summary of the primary ("species") data table. The 
problem concerning the two types of sample scores that may be used in ordination diagrams is 
explained in the section about scatter plots of samples (12.5.2.2). 
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12.5.3.3 Samples and env. variables 

The command creates a diagram displaying both the samples and environmental variables. 
The problem concerning the two types of sample scores that may be used in ordination diagrams 
is explained in the section about scatter plots of samples (12.5.2.2). 

12.5.3.4 Species and suppl. variables 

This command creates a diagram combining the presentation of species scores (shown 
either as points or as arrows) with supplementary variables, which can be presented as centroids 
or as arrows or a mixture of those two types (see section 12.5.2.3). 

12.5.3.5 Samples and suppl. variables 

The command creates a diagram displaying both the samples and supplementary variables. 
The problem concerning the two types of sample scores that may be used in ordination diagrams 
is explained in the section about the scatter plots of samples (12.5.2.2). 

12.5.3.6 Environm. and suppl. variables 

Displays a diagram where both types of explanatory variables (environmental variables, 
used as predictors in the fitted ordination model; and supplementary variables, post-hoc 
projected into the resulting ordination space) can be present. Both environmental and 
supplementary environmental variables can be presented by a mixture of centroid symbols and 
arrows (see section 12.5.2.3). 

12.5.3.7 T-values biplot 

T-values biplot is a special type of diagram approximating a table of T value statistics, each 
one corresponding to a simple regression model with one predictor (explanatory variable) and 
one response (species). You can find the species with an important response to the particular 
explanatory variables using the interpretation rules for the T-values biplot (see section 6.3.12, 
starting on p. 179 of this manual, and Ter Braak & Looman 1994). Beside drawing the T-values 
biplot scores for species and explanatory variables, CanoDraw offers two additional options, 
which can be specified in a dialog that appears after selecting this command (see Figure 12-56). 
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T-Values Biplot Options 
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Figure 12-56 T-values Biplot Options dialog 

First, CanoDraw allows you to plot so-called Van Dobben circles for a selected variable. 
This is a pair of circles, touching each other at the origin of coordinate system. Species that are 
represented by arrows which end within one of these two circles are predicted to have their T-
value statistic larger than 2.0. This indicates a low probability of Type I Error when testing the 
null hypothesis of the regression coefficient (describing the relation of a species to the selected 
explanatory variable) being equal to zero. 

Second, the explanatory variables can be shown as symbols, not as arrows. This facilitates 
an alternative method of interpreting the T-values biplot - perpendicularly projecting the 
explanatory variables onto species arrows (see the above quoted references for more details). 
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Figure 12-57 T-values biplot diagram 

The visual attributes of the Van Dobben circles are pre-set to a hollow red circle for the 
circle enclosing species with a preference for higher values of the explanatory variable, and to 
a hollow blue circle for those with a preference for lower values of the explanatory variables. 
The circle properties can be manipulated post-hoc, e.g. by changing their fill style, as illustrated 
in Figure 12-57. 
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12.5.3.8 Regression biplot 

A regression biplot (illustrated in Figure 12-58) can be used to approximate individual 
regression coefficients of a multiple regression model, where one of the species (represented by 
points in our example) is used as the response variable and all the environmental variables are 
used as predictors (explanatory variables). The relative extents and signs of regression 
coefficients can be deduced by the perpendicular projections of that species symbol onto 
individual arrows of environmental variables. 

It should be noted that the imaginary regression model referred by the preceding description 
differs between weighted averaging and linear ordination methods. In both cases, the 
environmental variables were standardised to zero mean and unit variance. For linear ordination 
methods (PCA, RDA), the species are usually centred and, optionally, also standardised to unit 
variances. In weighted averaging methods (CA, DCA, CCA), the relative abundances 
(proportions of individual species within each sample) are used in the response variables and the 
weighted linear regression is calculated, using the standard sample weights to weight individual 
observations. 
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Figure 12-58 Regression Biplot diagram from a project based on Canonical 
Correspondence Analysis. 

Creation of regression biplot is available only for the environmental variables, not for the 
supplementary variables. 

12.5.3.9 T-values biplot for suppl. variables 

This command creates a diagram comparable with the T-value biplot for environmental 
variables, described in section 12.5.3.7, except that supplementary variables are plotted instead 
of environmental variables. 

12.5.4 Triplots 

The triplots submenu collects commands for creating ordination plots containing three or 
four different kinds of items at the same time. The most often used type, a triplot with samples, 
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species, and environmental variables (some represented by arrows, some by centroid symbols), 
is illustrated in Figure 12-59. 
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Figure 12-59 Triplot diagram 

A triplot can be viewed as a superposition of ordination scatter-diagrams for individual 
kinds of items, except the scores in individual sets can be stretched or shrunk before being 
combined with other kinds of items, to facilitate easy interpretation of the diagram. See 
introductory comments of Biplots and Joint plots section (12.5.3) for additional information. 

12.5.4.1 with Environmental variables 

Creates a triplot with species, samples, and environmental variables. 

12.5.4.2 with Supplementary variables 

Creates a triplot with species, samples, and supplementary variables. 

12.5.4.3 with Env. and suppl. variables 

Creates an ordination diagram with four kinds of items: species, samples, environmental 
variables, and supplementary variables. 

12.5.5 Attribute Plots 

This submenu collects the commands that create diagrams, which cannot be called 
ordination diagrams, in the strict meaning of the term. Nevertheless, you will see later that the 
boundary between attribute plots and standard ordination diagrams is very blurred and many 
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Ordination diagrams can be also plotted using the procedures for creating attribute plots. There 
are two principal categories of diagrams created with commands in Attribute Plots submenu. 

The first category of diagrams starts from a simple scatter-plot of sample+ scores and 
enhances the information provided by the positions of sample points using an additional 
attribute, representing a single variable. In the simplest variation of this diagram are the 
relativised values of the attribute variable encoded by the size of symbols representing 
individual samples in the ordination plane. Depending on the type of plotted attribute, this 
diagram can be created either by the Data Attribute Plot or by the Results Attribute Plot 
commands. Alternative forms of this diagram can be created by fitting a regression model, 
describing the dependency of the attribute values upon the sample positions on the two 
ordination axes. Instead of plotting the actually observed values of the attribute, the fitted 
regression surface is shown, using a contour plot. 

General XY scatter diagrams represent the second category of diagrams where any two 
selected variables can define the horizontal and vertical axes. Additionally, a regression model 
can be fitted to this scatter of points or you can create diagram, which is a generalisation of the 
attribute plots described in the preceding paragraph. Here the points of the XY diagram have 
their size varying with the values of the third (Z) variable, so we speak about a XYZ diagram 
here. Alternatively, we can again fit a regression model, where the X and Y variables act as 
predictors and the Z variable is the response. The procedures leading to the creation of such 
diagrams are described in section 12.5.5.3. 

12.5.5.1 Data Attribute Plot 

This and the following (12.5.5.2) commands share most of the contents of their setup 
dialogs, but also the meaning of the attribute plots, which they create. These two commands 
differ only by the kind of variables, which are offered as attributes for the diagrams. Therefore, 
their shared functionality is described in substantial detail here, but applies also to the 
commands described in section 12.5.5.2. 

An example of the Attribute Plot Options dialog is shown in Figure 12-60. 

Figure 12-60 Data Attribute Plot Options dialog 

The dialog has a list of variables, which can be used as an attribute in the diagram. To the 
right of this list are three groups of options which you can use to adjust the labelling of symbols 

+ or, exceptionally, scores of species or explanatory variables 
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(if any are plotted), type of the fitted regression model, and additional items to be shown in the 
diagram. 

For data attribute plots, the list contains primarily the individual species, environmental 
and/or supplementary variables (if present), and covariables, retrieved by CanoDraw from the 
Canoco data files, which were used in the analysis. In addition, the list of available species is 
preceded by a sub-list named Sample Stats which contains some summary characteristics of the 
samples, based on the species composition recorded in the species data. These characteristics 
were already described in section 12.4.9. 

Where the attribute variable is visualised by a varying size of symbols (the symbol 
attribute plots, see Figure 12-61 for an example), the options in the Labelling group enable you 
to specify the method of labelling those symbols. Note that the labelling options do not apply to 
the items included in the attribute plot with the choices in the Additional contents options group, 
described below. Instead, the same settings, which are used for the standard ordination plots (see 
section 12.4.1.2), are used here. 

The group of options labelled Visualization Method determines whether a symbol attribute 
plot or a contours attribute plot will be created. In the latter case, CanoDraw offers a selection of 
three different kinds of regression models, discussed elsewhere (see section 13.6). 

The Additional contents options allow you to enhance the diagram interpretation by 
including additional kinds of items in the ordination plots. If you are creating contour-based 
attribute plots, any kind of items available in the active CanoDraw project may be added. If you 
specify symbol attribute plots (by selecting Symbols option in the Visualization Method group), 
you cannot add the plotting of corresponding symbols. 

9.30 

Figure 12-61 Symbol Attribute Plot diagram 
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Figure 12-62 Contour (3-D) Attribute Plot diagram 

Contour-based attribute plots always have their contours labelled. 

12.5.5.2 Results Attribute Plot 

The dialog shown by this command lists the scores and statistics provided by Canoco for 
samples, species, and (if present in the project) environmental and supplementary variables. All 
the variables listed were retrieved from the Canoco solution (.SOL) file and mostly have the 
names used there and explained in the Table 6.22 on p. 133 with more details in the following 
parts of the section 6.3). 
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Figure 12-63 Results Attribute Plot dialog 

The meaning of the options on the right side of this dialog box (see Figure 12-63) is already 
explained in the preceding section 12.5.5.1. 

12.5.5.3 XY(Z)Plot 

The dialog shown by this command (Figure 12-64) provides the most flexible tool for 
creating diagrams in CanoDraw for Windows. You can use it to create plots encoding 
information on the patterns involving up to three variables (like the XYZ diagram in Figure 
12-65) or to create a XY scatter diagrams with fitted regression models (Figure 12-66). 
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Figure 12-64 XY Diagram Options dialog box 

The type of the graph, which will be created, depends on the selections made in the lists 
X VARIABLE, Y VARIABLE, and ATTRIBUTE and on the options chosen in the 
VISUALIZATION MODEL area. In any case, there must be one variable selected in the 
X VARIABLE listbox and its type determines which variables are shown in the remaining two 
boxes. Therefore, it is best to start your selection there. The possible choices for the other two 
list boxes together with options selected in the dialog box are summarised in the following table: 
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Y VARIABLE 

single variable 

single variable 

single variable 

multiple variables 

multiple variables 

multiple variables 

single variable 

single variable 

single variable 

ATTRIBUTE 

no variable ( ) 

no variable (') 

no variable (') 

NOTALLOWED 

NOTALLOWED 

NOTALLOWED 

single variable 

single variable 

single variable 

VISUALIZATION 
MODEL 

None 

Symbol coding 

GLM, GAM, Loess 

None 

Symbol coding 

GLM, GAM, Loess 

None 

Symbol coding 

GLM, GAM, Loess 

Resulting diagram 

XY scatter plot 

NOTALLOWED 

fitted model Y~f(X), like Figure 12-66 (2) 

superposed XY scatters with shared X values (3) 

NOTALLOWED 

multiple fitted models Ys ~ i)(X) (2) (3) 

NOTALLOWED 

symbol attribute plot like Figure 12-65 

contour attribute plot for model Z~f(X,Y) 

Comments: (1) no variable means that either no item is selected in the ATTRIBUTE list or that the first 
item named No attribute used is selected; (2) the original data points used for fitting the regression model 
can be displayed by checking the option Supplement model with datapoints; (3) when multiple response 
variables are plotted either directly or in the form of fitted regression models, the identity of regression 
curves and/or of the data points can be differentiated using color coding: to do so, check the Color code 
multiple contents option. If this option is applied to plotted symbols, it is active only if the items serving 
as data points are not classified. 

The four choices for the Labelling option are applied to symbols used in the scatter 
diagrams. The multiple response curves of regression models based on XY scatters are always 
labelled, unless the Labelling setting is None. The contour lines are always labelled. 

Figure 12-65 XYZ Diagram with Z values coded by symbol sizes 
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Moisture 

Figure 12-66 XY scatter diagram with fitted loess model 

XY(Z) diagrams also support the option for maintaining identical scale for horizontal and 
vertical axis. This option can be activated with the Iso-scaling checkbox and results in the same 
physical distance on a printed graph corresponding to the same extent of the units of the 
variables plotted along the X and Y axes. Iso-scaling is used in the standard ordination diagrams 
and this option allows you to plot the ordination scores without distorting the reported relations 
between the displayed items. Note that the iso-scaling option is ignored if banking to 45 
degrees is active (see section 12.3.1.1 for more details about banking). 

12.5.5.4 Species response curves 

This command provides a shortcut for fitting multiple regression models characterising the 
change of values of multiple species (response variables) along an ordination axis or with the 
values of an environmental variable. 

When you select this command, the dialog shown in Figure 12-67 is displayed. 
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Multiple Species Response Curves 

Figure 12-67 Dialog for fitting multiple species response curves 

When using this dialog, you first specify the family of regression models to use (loess, 
generalized linear models, or generalized additive models) and then you select the species 
{Species to plot). The species can be selected from the list directly, using left mouse clicks, Ctrl-
clicks (for multiple non-contiguous selection), or Shift-click (for multiple contiguous selection). 
Alternatively, the list on the right side of the species list shows the currently defined groups of 
species and if you select one of them, all the species which are members of that group are 
selected. The two lists at the bottom of this dialog provide you with two alternative selections 
for the horizontal axis (the predictor). You can use either the positions of samples on an 
ordination axis (if available, both constrained and unconstrained sample scores are offered) or 
the values of environmental variables. 

After you close the dialog with the OK button, CanoDraw displays a dialog where you 
specify settings of the particular type of regression models. These settings are then shared for 
all the response models being fitted at the same time. If you, for example, ask for a second-
order polynomial form of the predictor in GLM, this specification is then used for all the 
selected species. Note, however, that if you selected a stepwise selection of the regression 
model, this selection is performed independently for each response variable (species). If the 
option Show summary of each fitted regression model, accessible in the dialog invoked by the 
command View /Diagram settings (see section 12.3.1.1), is on, CanoDraw displays a summary 
of each fitted model (preceded by a summary of the stepwise model selection, if performed). 
Each summary dialog can be closed not only by OK button, but alternatively by a Skip button. In 
that case, the particular fitted model is not included in the resulting diagram. This is useful, for 
example, if the stepwise selection concluded for a species that no alternative model is better than 
the null model (i.e. the model stating no change of species values with the predictor). 

CanoDraw does not allow the plotting of original data points here and it automatically sets 
the color-coding of multiple curves. 

Note that if you change the CanoDraw options and then select re-creation of the graph 
created with the Species response curves command, CanoDraw offers the selection of regression 
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model separately for each of the previously selected species. This allows you to fine-tune the 
model settings for individual species. 

12.5.6 Recreate graph G 

This command re-builds the currently active graph, applying the currently active settings, as 
specified in the options available in the first two pages of the dialog invoked by the View / 
Diagram Settings command (see section 12.3.1), in the dialog displayed by the View / Visual 
Attributes command (see section 12.3.2), and in all the pages of the dialog invoked by the 
Project /Project Settings command (see section 12.4.1). The options selected in the specific 
dialog of the graph-creating command or in the following dialogs for the specification of 
regression model cannot be changed during graph re-creation (except for regression model 
settings for the diagram created by the Species response curves commands). 

12.5.7 Range of axes . 

This command allows you to set explicitly the range of values covered by the axes of the 
active graph or to return to the implicit settings for the axes range. When you select this 
command, CanoDraw displays a dialog similar to the one illustrated in Figure 12-68. 

Range of diagiam axes 
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Figure 12-68 Range of diagram axes dialog 

Initially, for a newly created diagram, the first option in the diagram top (Reset range of 
axes) is selected. Clicking the OK button will then have the same effect as executing the 
Recreate graph command. If you select the Use ranges specified below option instead, the edit 
fields in the RANGES group are enabled. They are initially set with the current range of the 
horizontal and vertical axis, but you can change them as needed. After you click OK, the current 
graph is re-created and the range of axes is fixed on the values you specified here, with 
eventually small adjustments. If you select this command again for a graph with an already 
changed range of axes, the dialog box appears in the state illustrated in Figure 12-68, with the 
current axis range settings being displayed. To return to the default axes range, as determined by 
CanoDraw, change back to the Reset range of axes option and click the OK button. 
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12.5.8 Lock legend G 

This command closes the previously unlocked graph legend for editing and the legend starts 
to behave as a single entity when moved around the graph or when deleted (and undeleted). 
Additional information can be found in the next section. 

12.5.9 Unlock legend G 

CanoDraw maintains the legend area, if present in a graph, as a separate opaque entity. The 
only manipulation available for a legend is the change of its position or its deletion. The frame 
enclosing the legend can be selected and moved around the graph, and its contents moves 
together with it. If you select the frame and press Delete key or select the Delete command from 
the Edit menu, both the frame and the legend contents are deleted. 

Nevertheless, this behaviour of the legend area does not allow you to modify its contents. 
To change size and other properties of labels and of other graphical objects in the legend area, 
you must first unlock the legend. After unlocking, the legend starts to behave as a loose group 
of graphical objects. Additionally, all the objects contained in the legend can be moved, 
independently of the others. This allows you to fine-tune the positioning of individual legend 
parts. After you have made the required changes of legend contents, you may again lock it, using 
the command described in the preceding section. 

After you have unlocked the legend, you can select the individual objects in the legend area 
to change their properties. Note, however, that the frame enclosing the legend area is "on 
top" of the other items, so you can initially select and change only this frame. Therefore, 
you must first either move the frame outside its original position or disable it. You can 
disable the legend frame by locking it down. Note that this is not the same operation as 
locking the whole legend (see section 12.6.3 for a more detailed description of locking 
individual graph objects). 

12.6 Object G 

This menu appears in the CanoDraw menu bar only if the active window represents a graph. 
Many of the commands in this menu can be also found in the context sensitive pop-up menu, 
which is displayed when you click the graph outside of any selected graph objects, using the 
right mouse button. 

12.6.1 Select Suchlike 

This command can be executed if exactly one graph object is selected. Keyboard shortcut 
for this command is Ctrl+H. It selects in the active graph all the graph objects, which fulfil the 
following three conditions: 

* They are of the same type as the selected object (see Table 11-2 in section 11.5 for a list of 
graph object types). 

* They are not locked (see section 12.6.3 below). 

* They have identical settings for the selected attributes listed in Table 12-3. 
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Graph object type 

labels 

lines 
arrows 

polylines 
symbols 

pie-symbols 
rectangles (bars) 

Attributes 
draw color, background fill color and fill style, font name, size, and style 

(label orientation is ignored) 

draw color and line style 

draw color and line style, fill color and fill style 

draw color and line style 

symbol type, draw color and outline style, fill color and fill style 

draw color and outline style 

draw color and line style, fill color and fill style 

Table 12-3 Attributes for individual graph object types, checked for identity in Select 
Suchlike command 

12.6.2 Select Similar 

This command can be executed if exactly one graph object is selected. It selects in the 
active graph all the graph objects, which fulfil the following two conditions: 

* They are of the same type as the selected object (see Table 11-2 in section 11.5 for a list of 
graph object types). 

* They are not locked (see section 12.6.3 below). 

This type of selection works on a quite broad scale: if you select one text label and execute this 
command, all labels in the graph are selected. Keyboard shortcut for this command is Ctrl+I. 

12.6.3 Lock selected 

This command temporarily disables access to currently selected objects. Keyboard shortcut 
for this command is Ctrl+L. The locked objects cannot be selected by any selection method (see 
section 13.1 for additional information about selecting graph objects) and, therefore, cannot be 
deleted or visually changed. Locking is a solution for the problem with overlapping graph 
objects during selections. If an object overlaps another one(s), these cannot be easily selected, 
unless the topmost object is first selected and then locked. 

Locking does not unlock the objects that were locked earlier. The list of locked objects is 
extended with each new execution of the lock command. Because locking suppresses any access 
to the objects, you cannot unlock them selectively. Instead, you must unlock all the locked 
objects at the same time. The operations of locking selected objects and unlocking all at once are 
modelled after a similar functionality in Adobe Illustrator® software. 

Do not confuse locking and unlocking one or more graphical objects with locking and 
unlocking the graph legend (see section 12.5.8). Note that when the legend is locked, all the 
graph objects contained in it (except the enclosing frame) are also individually locked. 

12.6.4 Unlock all 

This command unlocks all the previously locked graph objects (see the preceding section 
for a more detailed explanation). Keyboard shortcut for this command is Ctrl+U. The contents 
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of a locked graph legend provide an exception to this: they are not unlocked with this command. 
Instead, you must use the Unlock legend command (see section 12.5.9). 

12.6.5 Graph tool 

The four commands in this submenu allow you to select the type of tool, which can be used 
to work with CanoDraw graph windows. The first of them (Selection) is the default choice 
selected at the start of the CanoDraw program. You are advised to switch to the other graph 
tools only for the time period they are needed, to add new contents to your graph, and then to 
switch back to the default selection tool. The current graph tool settings are maintained 
independently for each of the CanoDraw graphs opened in a session. 

12.6.5.1 Selection 

The mouse pointer has the standard shape of arrow and can be used for various types of 
selection of graph objects (see section 13.1 for additional details about selection). 

12.6.5.2 Arrow 

This tool is used to supplement your graphs with additional arrow objects. These can be 
useful, for example, in situations you must move a label or a group of labels far from the 
object(s) they label. Then an arrow object might visually re-establish connection between these 
two (sets of) items. 

After you select the arrow tool, move the mouse pointer (which has a changed look) to the 
point on your graph where the arrow should start. Click the left mouse button once and move the 
pointer to the place where the arrow should terminate (where the tip of the arrowhead should be 
placed). While you move the mouse pointer, a preview of the arrow placement is drawn on your 
graph. When you are satisfied with the arrowhead tip position, click the left mouse button the 
second time. Note that you cannot cancel the arrow definition once you started with it. If you 
want to abandon the creation of an arrow, place its tip anywhere and then remove the arrow 
using the Edit I Undo Add Arrow command. Note that the arrow position can be adjusted after it 
was created by selecting the arrow object, and using either the direction keys on the keyboard or 
dragging the object to reposition it. 

12.6.5.3 Label 

This tool is used to add new text items to a CanoDraw graph. You can use it, for example, 
to add a title to the graph br to provide any supplementary information. You create a new label 
by clicking with the label tool (marked by a cursor in form of letter A) at the desired label 
position. CanoDraw displays a dialog where you can enter the text to be placed at the selected 
location (the default text is LABEL). The label is centred at the specified point. You can modify 
the typeface and font size later. 

12.6.5.4 Line 

This tool can be used to add straight lines to CanoDraw graphs. The instructions in the 
section describing use of the Arrow tool (section 12.6.5.2) can also be used for this tool. The 
only difference is that both ends of the lines are identical. 
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12.7 Window 

This menu provides commands for selecting windows, arranging their position in the 
CanoDraw workspace, and closing particular group of windows. 

12.7.1 Cascade 

This command disperses the currently opened windows regularly in the application 
workspace so that they do overlap, but it is possible to activate as many of the windows as 
possible, without moving the other ones. 

12.7.2 Tile 

This command regularly disperses the currently opened windows in the application 
workspace, so that they do not overlap. 

12.7.3 Arrange Icons 

This command arranges the position of icons for minimised windows, at the bottom of the 
CanoDraw application workspace. 

12.7.4 Close all 

Closes all the currently opened windows, asking about saving them, if their contents 
changed. 

12.7.5 Close graphs of active project 

Closes all the graphs, which were created from the currently active CanoDraw project. 
A project is active if the currently active window relates either directly to this project or to 
a graph created in this project. If there are any unsaved graphs, CanoDraw first asks whether you 
want to consider saving their current state. If you answer No, the graph windows are closed and 
any newly created graphs or graphs with modified contents are discarded. If you answer Yes, 
you are asked about saving each graph with non-saved modifications (including newly created 
graphs, which were not saved yet). 

12.7.6 Open graph project G 

If you select this command, CanoDraw attempts to find the file with the CanoDraw project, 
which was used for creating the currently active graph. If you changed the project file {.cdw file) 
location, CanoDraw displays a dialog box allowing you to locate the project in its current 
placement. 
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12.7.7 List of windows 

CanoDraw lists the individual windows, currently opened in the application workspace, at 
the bottom of the Window submenu. If there are too many windows open, CanoDraw shows just 
part of the windows' list and concludes the list with the More Windows ... command. If you 
select it, you are presented with a dialog, where all the currently opened windows are listed, and 
you can select one of them and then active it using the OK button. 

12.8 Help 

This menu provides help information about using the CanoDraw for Windows application. 

12.8.1 Help Topics 

This command opens the Microsoft Help application and provides a list of topics available 
in the CanoDraw help. 

12.8.2 About CanoDraw 

This command displays the box with copyright information relevant for the CanoDraw for 
Windows software, as well as additional information about the actual software version and 
license. 

12.8.3 Tip of the Day 

Displays the Tip of the Day dialog box, providing useful hints for using the CanoDraw for 
Windows program (see Figure 12-69 for an example). 

Figure 12-69 Tip of the Day dialog 

The controls at the bottom of this dialog box allow you to set or un-set the display of this 
dialog upon the application startup or to browse through the available tips (using the Next Tip 
button). 

Page 408 Commands Reference 



13. Working with CanoDraw 

The various sections in this chapter describe different aspects of working with the 
CanoDraw graphs. 

13.1 Selecting graph objects 

The selection of an appropriate set of objects is the key to efficient modification of the look 
and feel of CanoDraw graphs. There are several ways how to select desired graph objects and 
they are described in the following subsections. If you open the Properties floating window 
(either using the Properties Sheet command in the View menu or using the F5 keyboard 
shortcut), its content reflects the selection in the active graph window. 

The standard graph window is the place where you select graph objects most of the time. 
Selected objects are marked either by a red rectangle enclosing the symbols, labels, or pie-
symbols or by two red crosses at the opposite ends of a line segments or arrow. For polylines, 
which are composed of multiple line segments, each node where the individual segments start 
and end is marked by a red cross on a selected polyline. 

Alternatively, some of the selection techniques described below can be also used in the 
Graph Contents window, which displays the graph contents in a hierarchical manner. The 
selections made here and in the normal graph window can be set and changed independently. 

13.1.1 Manual selection with mouse 

You can select a single graph object (see section 11.5 for an explanation of this term) by 
clicking it with the left mouse button. New graph objects can be added to the existing selection 
by clicking on them with the left mouse button, while keeping the Ctrl or Shift key pressed at the 
same time. If you click over the graph background (outside of any graph object), all currently 
selected graph objects are deselected. 

The manual selection is also available in the Graph Contents window. There you also select 
a single item by clicking on it with the left mouse button. A non-contiguous sequence of items 
can be selected by holding the Ctrl key, pressed while clicking over the additional items. 
A contiguous sequence of items can be selected by selecting the item on one end of the selection 
range and then clicking the item on the opposite end, while keeping the Shift key pressed. 

13.1.2 Rubber-band selection 

To select all the graph objects in a rectangular area, you can use this type of selection. 
Position the mouse pointer at one of the corners of the desired selection area, which must be 
selected so that no graph objects underlay it. Press the left mouse button and keep it pressed. 
While you move the mouse pointer (keeping the left button pressed) to the opposite corner, an 
outline of the current selection area is drawn. Once you release the left mouse button, the 
selection area is defined. All the objects enclosed by the "rubber-band" rectangle are selected. 

This selection method cannot be used to extend an existing selection. When you finish 
a rubber-band selection procedure, any previously selected objects are de-selected and only the 
objects within the rectangle are selected. 
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13.1.3 Selection by example: similar and "suchlike" items 

In this type of selection, you start by selecting one "example" object - the following 
selection is then based on the properties of this object. If you use the Select Suchlike method, 
only the graph objects of the same type and with very similar visual attributes are selected (see 
section 12.6.1 for a complete list of attributes used in the Select Suchlike command). If you use 
the Select Similar methods, a wider selection is performed: all the graph objects of the same type 
are selected (e.g. all the symbols, all the labels, or all the line segments). See section 12.6.2 for 
additional description. 

These two commands are also available from the Graph Contents view, from the context 
sensitive menu which appears when you click a selected item using the right mouse button. 

13.1.4 Selecting whole class of items 

This type of selection is available only from the Graph Contents view. You select 
a logically connected group of items (e.g. all species symbols or all axes labels) by selecting one 
of the non-terminal items (with bold typeface). 

13.1.5 Selecting graph object by its label and vice versa 

Graphs produced by CanoDraw for Windows usually present one or more sets of items 
(samples, species, explanatory variables), with each item in a set represented by a pair of graph 
objects: a symbol or arrow on the one hand and a label showing the item identity on the other 
hand. If you plot extensive sets of such items, the visual connection between the symbol (or 
arrow) and its label is sometimes lost, due to an over-crowded graph area. Also, you may 
sometimes break this visual connection by moving the label too far from its original position. In 
other cases, you can see multiple labels attached to just one symbol. There are, in fact, as many 
symbols as there are labels, but you can see (and select) only the symbol which happened to be 
on the top and hides the remaining ones. 

The two specific selection commands come to your rescue in such situation. Both 
commands are optionally available from the popup menu, which appears when you click over 
a selected graph object, using the right mouse button. The command named Select object's label 
is included in this menu if you have only one object selected and that object has an attached 
label. When you execute the command, the object is deselected and its label is located and 
selected instead. The other command is named Select labelled object and it appears in the menu 
when your current selection consists of a single label which is attached to some particular object 
(not all labels have this connection). 

13.1.6 Locking and unlocking objects 

All the above described selection techniques select all the graph objects which fulfil the rule 
used for the particular type of selection, with the exception of objects which are locked. Object 
locking is an operation, which adds the currently selected objects to a group of already locked 
objects (see section 12.6.3). The locked objects are completely excluded from the selection and, 
therefore, from any manipulation, including a change of their visual attributes, and also a change 
of their position for the moveable ones (typically labels, but also the legend frame or individual 
items of an unlocked legend). The currently locked objects can be unlocked only all at the same 
time, using the Unlock all operation (see section 12.6.4). 
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13.2 Finding particular object 

If you want to find a symbol or label for a particular sample or species (for example to 
highlight its position in the graph), you can do so most easily using the tree-like view of your 
graph. For example, if you create an ordination diagram representing the scatter of samples in 
the ordination plane spanned by the first two axes, you can locate the symbol corresponding to 
a particular sample by selecting the View / Tree view menu command. A new view of your graph 
appears (titled Graph Contents <GraphName>) and there you must expand the Samples scores 
section and then the Symbols sub-section. A list of available sample symbols appears, stating the 
text of their associated labels. You can select the particular item and modify the symbol 
properties using the Properties sheet (which can be activated with the F5 key, when not visible). 
Note that this method does not work if the symbols are not labelled. Nevertheless, you can 
explore identity of individual symbols even in such case, by clicking the selected item with the 
right mouse button. The displayed context menu shows the index of the selected object in the 
square brackets of the menu command Summary ofxxxx /NN/. 

13.3 Modifying graph contents 

The contents of a graph is the result of decisions made at three different levels of resolution: 

1. First, you decide about the graph contents by selecting the type of graph you want to plot. 
You do so by selecting one of the commands available from the Create submenu. A rough 
classification of CanoDraw graphs is provided in section 11.4 and more detailed description 
of the individual commands for creating graphs is available in section 12.5. 

2. The selected graph type is combined with the additional settings, which are either project-
specific ones or used for all the projects (see section 11.8). As an example, if you execute the 
menu command for creating a scatter of sample points {Create /Scatter Plots / Samples), the 
contents and appearance of the resulting diagram depend on many project-specific options: 

* which ordination axes are currently specified for plotting and whether flipping of scores 
along the ordination axes is in place (section 12.4.1.1) 

* whether the option for plotting sample scores derived from species scores even for 
constrained analyses is active (section 12.4.1.1) 

* whether sample symbols should be replaced by pie-symbols (section 12.4.1.1, but beside 
the Use Pies ...option checked there for samples, there also must exist an active 
classification of species) 

* if the Draw Envelopes around Classes option is checked for Samples (section 12.4.1.1), 
then either all the sample symbols are enclosed by a convex polygon (if the samples are 
not classified) or separate envelopes are placed around the samples belonging to 
individual sample classes 

* sample symbols are labelled by their names (with up to eight characters), by their indices 
(see section 11.2), or they are not labelled, depending on the Labelling of scores section 
in the Appearance page (see section 12.4.1.2) 

* the scatter of sample symbols can be optionally supplemented with a legend, which is 
particularly handy if the samples have an active classification and / or the envelopes or 
series are plotted within the graph; legend presence and layout are specified in the 
Appearance page of the Project Settings dialog (see section 12.4.1.2) 

* the set of plotted samples is restricted by the rules from the Inclusion Rules page of the 
project options dialog (see section 12.4.1.3) 
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3. 

* if the samples are classified (see section 12.4.3), the symbols of samples from different 
classes are of different type and / or of different color, depending on the visual attribute 
settings which are application-wide and discussed below 

* if there is any active series collection of samples (see section 12.4.5), it is also displayed 
in the diagram 

* presence of individual samples in the diagram is further governed (overriding the 
inclusion rules, mentioned above) by the choices you made in the dialogs invoked by the 
Suppress and Enforce commands (see sections 12.4.6 and 12.4.7). 

The diagram appearance is further influenced by the following project-wide options: 

* if you plot the results from a Canoco analysis, where scaling of ordination scores was 
focused on the inter-species distances (in weighted averaging ordination methods) or on 
inter-species correlations (in linear ordination methods), you have the option to ask 
CanoDraw to rescale the sample scores for their optimal interpretation, when they are 
plotted alone (Rescale sample or species scores to optimality, see section 12.3.1.1). This 
rescaling can substantially influence the visual spread of sample points, if the 
corresponding eigenvalues of the two plotted ordination axes differ much in their extent 

* the Axes Tickmarks and Axes Layout options (described in section 12.3.1.2) influence the 
actual appearance of the axes plotted around the diagram area or even the actual area (if 
you change the inward tickmarks into a reference grid). 

* the appearance of individual graph objects within the diagram is directed by the settings 
accessible from the dialog invoked by the Visual Attributes command (section 12.3.2). 
You can change the thickness of various types of axes lines, font properties of axis 
labels, type, color, and size of symbols used for samples (whether classified or not), and 
properties of lines used to draw sample envelopes or representing the sample series. 

The above two sources of diagram contents (the selection of graph type and the current 
settings available from various places in the Project and View submenus) lead to the creation 
of a new graph. Now you can directly manipulate the graph objects and fine-tune those 
initial settings. 

Probably the most important type of graph modification is the readjustment of item labels, to 
minimise their overlap and therefore to increase graph readability. You can change the 
position of any label present in the CanoDraw graph, unless it is locked (see section 13.1.6 
for additional information about locking graph objects). You can move a label if it is the 
only selected object in the graph. Press the left mouse button while the mouse pointer is 
anywhere within the red rectangle enclosing the selected label, keep the button pressed, and 
move the mouse pointer. The shifting label position is previewed using a rectangle drawn 
with a contrasting color. When you release the button, the label is repositioned to the actual 
mouse pointer position. Alternatively, you can move a singly selected label object using the 
arrow keys on your keyboard. On each key press, the label position changes in the implied 
direction by 0.001 in virtual coordinate units (see section 11.6). If you keep the Shift key 
pressed at the same time, the change is by 0.050 units. Dragging the selected label using the 
left mouse button requires two steps: first the label must be selected and then the dragging 
proceeds. To speed-up the process, CanoDraw also supports dragging of labels without prior 
selection. For this to work, there cannot be any graph object selected. You position the 
mouse pointer over the label you want to move, press the left mouse button, and start 
dragging. You do not see the enclosing rectangle outline for a while, because CanoDraw 
"waits" with the decision whether you really want to reposition the label for some time. This 
prevents erroneous shifts of labels while clicking over them. Obviously, this quicker form of 
repositioning labels is not appropriate for changing label position by a very short distance. It 
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is also considerably less precise concerning which label will actually move if you start over 
a group of partially overlapping labels. 

You can also extend the graph contents by adding extra arrows, labels, or lines. Section 
12.6.5 describes in detail how to add the individual types of graph objects. You can also 
delete any items from the graph. Like all the changes performed after CanoDraw has created 
a graph, deletion of graph objects can be undone (see section 12.2.1). 

Finally, you can change the visual attributes for any group of graph items, represented by the 
current selection in the graph window (or in the Graph Contents window). Additional 
information about the visual attributes available for change can be found in section 12.3.4. 

13.4 Creating graph legend 

A legend in a diagram enables the viewer to recognise various facets of the contents that the 
graph has. If you plot just a scatter of points in a diagram, there is no pressing need to have 
a legend alongside it. If you display an ordination diagram containing the arrows for species and 
symbols for samples, the decision about legend usefulness is more difficult. You can report the 
fact that the arrows are used for species and the points for samples in the figure caption, but 
having an example of a short arrow and an example of the symbol used to plot sample positions 
in the legend, together with short labels saying "Species" and "Samples" probably allows your 
reader to comprehend the meaning of the graph more quickly. And, finally, if you have a graph 
where samples belonging to different classes are differentiated by symbol type or response 
curves for multiple species are to be distinguished be their color, the legend utility cannot be 
beaten. 

CanoDraw produces a legend automatically and there are few opportunities to modify this 
process. Primarily, you can switch the legend creation on and off and determine the position of 
the whole legend area, layout of legend sections, and layout of items within the sections (see 
section 12.4.1.2). The legend sections collect legend items with qualitatively comparable 
meaning. For example, if the sample membership in pre-defined classes is coded by the symbol 
type, a legend section named SAMPLES has as many items as there are displayed sample 
classes, each showing one type of symbol alongside with the corresponding class name. If you 
add the option to plot envelopes enclosing samples of the same class (see section 12.4.1.1), there 
is still one legend section named SAMPLES, but the class names are preceded not only by 
symbol examples but also by a short segment demonstrating the color and style of the line for 
the envelope of that particular class. If you then define one or few series of samples and request 
plotting that series collection (see section 12.4.5), a new legend section is created and named 
SERIES OF SAMPLES, demonstrating the style and color of lines used to display the individual 
ordered series of samples. These two sections cannot be merged, because the number of sample 
classes is generally different from the number of series. 

The recommended way of using the facilities for legend creation in CanoDraw is 
summarised in the following steps: 

* Let CanoDraw create the legend with the graph by enabling legend creation (section 
12.4.1.2) 

* Adjust the legend position and the layout of legend sections and items within the sections as 
needed (section 12.4.1.2) and eventually change the font used for the legend (use the 
command Visual Attributes in the View submenu, selecting item Text from the Legend 
folder). Note that this font size is also used to determine the size of the example graph 
objects (if you increase font size, you get larger sample symbols, longer lines, larger patches 
demonstrating fill style in pie-slices, etc). 
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Recreate the graph with the new settings using the Recreate graph command (see section 
12.5.6) 

Repeat the preceding two steps as many times as needed 

After you are satisfied with the general layout, you can adjust the legend position by 
dragging it around the diagram area with the mouse 

You can then unlock the legend (see section 12.5.9), lock its frame, and readjust the position 
of sample graph objects and labels, or change the legend text 
Save the finalised graph 

13.5 Exploring graph contents 

In this section, the graph exploration in CanoDraw is described. Note that by graph 
exploration, I do not mean understanding what has been actually plotted in the graph. The 
awareness of what you are doing belongs to the assumptions I have about you, the CanoDraw 
user. Graph exploration means finding what does the graph tell you about the interesting patterns 
and relations within the analysed data. This involves both an understanding of how to interpret 
the contents of the ordination graphs and a deeper insight into the ideas suggested by the present 
graph contents. 

The ordination diagrams (which are one type of the graphs produced by CanoDraw, see 
section 11.4) help you to summarise patterns in your data and to find interesting relations among 
various variables. The ability to interpret the ordination diagrams in this way results mostly from 
following one of two simple interpretation rules (named biplot rule and centroid principle in 
the Canoco documentation and elsewhere). The consequences of applying such rules to sample, 
species, and environmental variable scores in the ordination diagrams are listed in detail in two 
papers (Ter Braak 1994 and Ter Braak & Verdonschot 1995). CanoDraw provides short 
summaries of the most important rules that can be applied to an ordination diagram. To see the 
summary, you should click the graph area (outside of any selected graph object) with the right 
mouse button and then select from the popup menu the Describe contents command. 

The dialog with title Graph Description contains text summarising the graph contents and 
providing suggestions how to interpret the particular type of items contained in the diagram. The 
suggestions are usually supplemented with a simple graphical scheme. For example, if you 
execute the Describe contents command over a scatter diagram with sample symbols, you obtain 
the following description: 
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Diagram Interpretation 
Ordination diagram [Axis 1 x Axis 2] with samples 

This diagram contains only one type of scores which can be interpreted as follows: 
* Sample points: the distance between the symbols in the diagram approximates the dissimilarity of their species composition, 

measured by their Chi-square distance. 
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Figure 13-1 Example of Graph Description window contents for a diagram with samples 

If, for example, the sample symbols are replaced with pie-symbols, the graph description 
changes accordingly (the inserted illustration was omitted, being identical with that in Figure 
13-1): 

Diagram Interpretation 
Ordination diagram [Axis 1 x Axis 2] with samples 

This diagram contains only one type of scores which can be interpreted as follows: 

Sample pies: the distance between the symbols in the diagram approximates the dissimilarity of their species 
composition, measured by their Chi-square distance. 

Sample symbols are replaced by pie symbols. Segmentation of those symbols into slices is based on the currently 
active classification of species. Relative size of particular pie-slice corresponds to relative importance (measured 
either by presence or by quantity) of species from particular class in the corresponding sample.. 

Figure 13-2 Example of Graph Description window contents for a diagram with sample 
pie-symbols. The illustration provided within the window was removed. 

If there is more than one type of items present in the graph, CanoDraw also provides 
suggestions how to interpret the relations between the various types of items. Figure 13-3 
illustrates one paragraph taken from a description of a biplot diagram with species and 
environmental variables, focusing on the relation between the species and the nominal 
environmental variables. 
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Symbols of individual classes can be projected perpendicularly onto the line overlaying the arrow of the particular species. These 
projections can be used to approximate the average abundance ofthat species in individual classes of samples. Projection points 
are in the order of predicted increase of abundance of the particular species across the classes. Predicted increase occurs in the 
direction indicated by the arrow. In analyses where centering by species was performed (most analyses), the classes projecting 
onto the coordinate origin are predicted to have an average value ofthat species near to the global average value ofthat species 
in data. 
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Figure 13-3 Part of the Graph Description window contents for a biplot diagram, 
suggesting a joint interpretation of species arrows and symbols of nominal 
environmental variables. 

Contents of the Graph Description window can be copied (using the Copy button at the 
window bottom) to the Windows Clipboard and pasted into a word-processing application in 
RTF format. 

Besides suggesting interpretation of the ordination plots, CanoDraw can also provide you 
with additional data about the samples or about the variables (species or explanatory variables) 
seen in the plot. To obtain such information, you must first open one or both types of floating 
windows. CanoDraw has separate windows for providing a summary of variables and for 
summarising samples. To open the window summarising the variables, select one species or 
explanatory variable in the ordination diagram and click the right mouse button, while the mouse 
pointer is over the selected symbol or arrow. From the popup menu select the command 
Summary of <variable-type> '<variable-name>' (the actual text depends on the variable type and 
name, for example Summary of species 'AchMW). The Variable Summary window (illustrated in 
Figure 13-4) appears. It will remain open until you click its Close button. As you move the 
mouse pointer through the diagram, each time the cursor goes over a new variable symbol (or 
arrow), the contents of the window is updated to provide summary information for this variable. 

Figure 13-4 Variable Summary floating window 

The summary in the Variable Summary window includes the name of the variable and the 
number of observations available for it, and the values of mean, median, standard deviation, 
minimum, maximum, and upper and lower quartiles. Additionally, a simple frequency histogram 
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shows the distribution of the variable' values. You can copy the values and related sample 
indices of the currently summarised variable to the Windows Clipboard, using the Copy button. 

To see the Summary of sample window, you proceed similarly, but you should invoke the 
pop-up menu over a selected sample and the command to be executed is named Summary of 
sample <sample-label>. The floating window summarising the sample is shown in Figure 13-5. 
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Figure 13-5 Sample summary floating window 

This window lists the values available for a sample in the individual Canoco source files. 
For the species (primary) data, CanoDraw shows only the positive values (the assumed 
presences of species). CanoDraw displays up to the 500 first rows in any of the data-files. In 
addition, the estimates of Shannon diversity measure, as well as the N2 diversity measure (see 
section 12.4.9) are shown for primary data. In some circumstances, these statistics have little 
meaning (e.g. if the primary data represent chemical properties of water samples), but they are 
useful for the typical species composition data. 

In addition to providing a continuously updated summary of the individual variables and 
samples, CanoDraw also provides a quick access to the creation of diagrams summarising, for 
a selected variable, the distribution of its values through the ordination space. If you click with 
the right mouse button over a selected variable, a popup menu similar to the one shown in 
Figure 13-6 is displayed. 
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Figure 13-6 Popup menu displayed for a selected variable 

The commands starting with the word Attribute provide an easy access to creating attribute 
plots, using the currently active pair of ordination axis (see section 12.4.1.1) as the horizontal 
and vertical axes and the selected variable as the attribute. The first command {Attribute symbol 
plot) creates the symbol-based attribute plot, where the attribute value determines the size of 
sample symbols, while the other three commands create contour-based attribute plots, presenting 
the fitted regression model of the particular type (loess, GLM, GAM). Additional information 
about specifying regression models is provided in the following section. 

13.6 Fitting regression models 
• 

Regression models can be added to various types of attribute plots created by CanoDraw. In 
plots where an attribute value is compared with the values of two other variables, a regression 
model with two predictors can be fitted, in the other plots (XY diagrams), a regression model 
with one predictor is fitted. 

CanoDraw provides three general families of regression models and you can freely choose 
among them. Their implementation in CanoDraw and suggested use are summarised in the 
following sections. 

Note that facilities available in CanoDraw for fitting regression models are limited, 
because their anticipated use is restricted to summarising patterns in diagrams. For any 
extensive modelling exercise, you are advised to work with general-purpose statistical 
packages (such as the R, S-Plus, or SAS software). 

Implementation of algorithms fitting GLM, GAM, or Loess models was validated by 
comparing the results with the software S-Plus for Windows 4.5 and S-Plus 2000. Note, 
however, that the exact values of estimated coefficients, amount of explained variance, etc., may 
differ to the order of about 1.0e-4 to 1.0e-5. This is inevitable, giving the different 
implementation of the model fitting code. 

13.6.1 Generalized Linear Models (GLM) 

The GLMs represent a straightforward extension of the classical linear models (McCullagh 
& Neider 1989) and their specification in CanoDraw is described in section 12.3.1.3. CanoDraw 
allows you to specify the expected distributional properties of the response variables but only 
the canonical link functions are available for each type of supported distribution (except the 
Gamma distribution where the log link function is supported beside the canonical inverse link 
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function). GLMs represent the most rigid modelling approach among the three regression 
families offered in CanoDraw. The relation between the response variable and the predictor(s) is 
described by a few parameters (regression coefficients). With GLMs, you can fit simple, 
hypothesised statistical models of change of species abundances along the resource gradients 
(the "species response models"). This includes both the model of linear change of abundance 
along the gradient, as well as the model of symmetric unimodal response, popularised in ecology 
in connection with CA and CCA ordination methods. CanoDraw provides a special support for 
estimating the parameters of fitted unimodal response curves (see below). 

When fitting regression models, CanoDraw uses the model specifications representing 
application-wide defaults. These defaults can be modified in the last three pages of the Diagram 
Settings dialog. Generalized linear models are on the GLM Options page (see section 12.3.1.3). 
If the option Offer approval of regression model settings ... in the Properties 1 page of the same 
dialog is checked, CanoDraw also presents the model options immediately before a regression 
model is fitted, so you can adjust the model specification for the particular response variable and 
predictor(s). Fitted GLM is summarised with a dialog illustrated in Figure 13-7 below. 

Fitted Generalized Lineal Model 

Response variable: 

Predictors): 

Distribution: I 

Poapta 

P.1 

Poisson 

Nut mode! deviance: 

Fitted model deviance: 

I U L I SkJP 

Copy 

Link function: | Log 

with 1 13 residual DFs 

15.% with 17 residual DFs 

Model significance: F= | 14 51 P* | 0.000213 A I O 20732 

- Uninioda! response cuve: 

Optimum. | -0-628 S.E.; | 0.2758 Conf. interval: | Cannot estifRate 

Tolerance: &ggg S.E.: | 0.2253 Max. vakje: Ü 

oefficients 

(Intercept) 
Samp.1 
(Samp.ir2 

1.03234 
-0.78195 
-0.62254 

0.216751 
0.293081 
0.314117 

5.03363 
-2.62328 
-1.38187 

Figure 13-7 Fitted GLM summary dialog 

The dialog shows the names of the response variable and of the predictor(s), the selected 
type of distribution for the response, and the link function. The total variance in the values of the 
response variable is displayed in the Null model deviance field, together with the corresponding 
number of degrees of freedom. The fitted model residual variability is shown in the next line, 
together with the residual degrees of freedom. The next line summarises the fitted model quality 
using a deviance-based test (with F-ratio statistics, see McCullagh & Neider 1989) as well as 
using the AIC statistics (see Hastie & Tibshirani 1990). 

The following area labelled Unimodal response curve is used only for the specific situation, 
where a second-order polynomial model with a single predictor variable is fitted and where 
an appropriate type of link function is chosen {log or logit link function). In such cases, the 
dialog shows estimates of the unimodal response curve optimum and curve width (tolerance) on 
the left side, followed by the estimated standard errors of the estimated optimum and tolerance. 
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On the right side, the 95% confidence interval for the optimum (i.e. the range of values in which 
the true value of species optimum lays with a probability of 0.95) is displayed, if it can be 
estimated. Finally, the predicted abundance (or probability of occurrence) of the species 
(response variable) is given in the lower right corner of this area. Additional information about 
calculating various parameters of unimodal response curves from fitted second-order 
polynomials can be found in Ter Braak & Looman (1986). 

The lowest part of this dialog displays the individual estimated regression coefficients, 
together with the standard errors of such estimates, and an approximate T statistics. The 
T statistics can, in theory, be used to test hypotheses about a regression coefficient being equal 
to zero, but the test is very approximate for GLMs. 

Note that the standard error estimates for regression coefficients, as well as the standard 
error estimates for Optimum and Tolerance parameters and the estimates for Optimum 
confindence interval, do not use the estimated scale parameter for Poisson and binomial 
distribution families. Rather, the value of scale parameter is assumed equal to 1 in this case. 

The Copy button can be used to place the model summary in a text format on the Windows 
Clipboard. You can use the Skip button to ask CanoDraw not to plot the response curve (or 
response surface, with two predictors) corresponding to this model. Note that if there is no 
additional plot contents, the diagram creation is cancelled. 

In the case you selected that your model should be based on a stepwise selection (and you 
have enabled the option for displaying the fitted model results - see section 12.3.1.1), 
CanoDraw displays a report about the performed model selection. In the case you asked for 
model selection using the analysis-of-deviance based test, the report looks like the one 
illustrated in Figure 13-8. 

HHHHHH 
VISE MODEL SELECTION BASED ON 

NESTED MODELS COMPARISON 
Response Moisture 
Predictors; Axis 1 • Axis 2 
Last model is the selected one 

Model Deviance F P 

Null model 
X I • X? 

poMxl+xa, 2> 

17 42 
8.20 
3.56 

13.9 
5.B 

Copy this information to Clipboard? 

Yes I 1 . No I 

Figure 13-8 Report on stepwise selection of GLM using deviance tests 

Note that only the models which were tried and found significantly "better" than the 
preceding more simple model are displayed. Therefore, if we specified that CanoDraw should 
check up to quadratic models at most, but the interaction of predictors should be also considered 
(see section 12.3.1.3), the report in Figure 13-8 means that the model poly(Xl*X2, 2) (i.e. 
including the interaction between XI and X2) was tested against the last displayed one 
(polyXl+X2, 2), but the resulting drop of residual deviance was not found to be sufficiently 
large. See section 12.3.1.3 for additional discussion of the models considered during stepwise 
model selection. 

When you specify model selection based on the AIC statistics, the selection report looks 
differently (see Figure 13-9). 
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Figure 13-9 Report on GLM selection using AIC statistics 

CanoDraw uses a different strategy for model selection here. It performs a stepwise 
extension of the systematic part of the regression model, but does not stop at the stage where no 
additional improvement is seen, but goes through all the candidate models and evaluates their 
parsimony using the AIC. The selected model (the one with the lowest AIC value) is then 
marked in the report dialog by an asterisk in its front, and all the considered models are shown. 

The contents of these report dialogs can be copied to the Windows Clipboard. 

13.6.2 Generalized Additive Models (GAM) 

GAMs were already discussed in section 12.3.1.4, and an in-depth description can be found 
in Hastie & Tibshirani ( 1990). Response curves based on fitted generalized additive models do 
not have such rigid form as for linear or polynomial GLMs, so their use is recommended in 
situation where the shape of response curve has to be suggested by the actually observed data or 
where the assumptions about the response curve shape are being validated. 

Fitted Generalized Additive Model 

M model dswanee: 

Fïöed modelte' with 18.0 leaduäDFt 

Modelsignificance F« | 2.85 P » | 0.108030 A I O ] 11385 

Figure 13-10 Fitted GAM summary dialog 

The dialog summarising the fitted GAM is illustrated in Figure 13-10. Its largest part is 
identical with the dialog used to summarise a generalized linear model (GLM), described in the 
preceding section. The only difference is that the degrees of freedom of the model and, 
consequently, also the residual degrees of freedom, may be represented by fractional numbers. 
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You should also note that the deviance-based test (represented by the F and P field values) is 
even more approximate than for the GLMs. 

The dialog area named Nonlinearity test displays the results of the approximate test(s) of 
"non-linearity" of the smooth terms for the individual predictors. With a cubic smoothing spline 
(estimated using a penalised form of least squares), a linear component with 1 DF can be 
"extracted" from it and the amount of variability explained by the non-linear part of the smooth 
term can be then tested, as suggested by Chambers & Hastie (1992). CanoDraw uses here 
an F-ratio based test, not the originally suggested x2-based test. In Figure 13-10, the field for the 
first predictor shows too low DF, because the whole smooth term complexity was set to df=l, so 
nothing was left for the non-linear component. The field for the second variable says (absent), as 
this model had only one predictor. 

The Copy button can be used to place the model summary on the Windows Clipboard in a 
text format. You can use the Skip button to ask CanoDraw not to plot the response curve (or 
response surface, with two predictors) corresponding to this model. Note that if there is no 
additional plot contents, the diagram creation is cancelled. 

If you select complexity of a generalized additive model based on the AIC statistic, 
CanoDraw can report selection results with a dialog shown in Figure 13-11. 
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Figure 13-11 Report on GAM selection using AIC statistics 

As for generalized linear models, CanoDraw reports here all the candidate models and 
marks the selected one (with the lowest AIC value) with an asterisk preceding the model 
description. 

13.6.3 Loess (locally-weighted regression) models 

A loess smoother represents the most flexible regression model. Unlike the generalized 
additive models, loess models do not separate the effects of multiple predictors (explanatory 
variables). If you have two or more predictors, their joint effect is modelled by fitting local 
regression models, with their definition (which data points are used and what weight they have) 
changing smoothly across the data space (see Cleveland & Devlin 1988 for the detailed 
description of the loess method). The implementation of loess used by CanoDraw allows, in the 
case of two predictors, to define a mixed model standing on the border between a parametric 
(linear) regression model and the smoother (using so called conditionally-parametric terms - see 
section 12.3.1.5). After a loess model is fitted, a summary dialog is displayed, as illustrated in 
Figure 13-12. 

Page 422 Working with CanoDraw 



Loess Model Results 

Response variable | Moistuie 

Predtetoi(s); 1 Axis T'A.*;: 

Skip 

Zm 

Distribution: [ symmetric Span: | 1.000 Degree | 1 

Observations; j 20 £quivalentfturfib£rotr>aiametefs: 

Residual standard error: 0.8041 Multiple R-squared: | 

3.5 

0.866 

Figure 13-12 Loess Model Results summary dialog 

This dialog shows the names of explanatory and response variables, model options 
{Distribution, Span, and Degree) and the main properties of the fitted model {Residual standard 
error, Multiple R-squared - i.e. the amount of explained variability in the response variable). 

The Copy button can be used to place the model summary in a text format on the Windows 
Clipboard. You can use the Skip button to ask CanoDraw not to plot the response curve (or 
response surface, with two predictors) corresponding to this model. Note that if there are no 
additional plot contents, the diagram creation is cancelled. 

13.6.4 Regression diagnostics in CanoDraw 

Whenever you fit a regression model, you should explore not only the estimated regression 
coefficients or the fitted regression curve (or surface), but you should also check whether the 
assumptions made during model selection are fulfilled by your data. The set of techniques 
developed for checking such assumptions and the fitted model properties are known as 
regression diagnostics. Most (but not all) of the individual regression diagnostic methods work 
with the regression residuals. Regression residuals quantify the discrepancy between the true 
values of a response variable and the corresponding predictions, made by the regression model 
(the fitted values). The simplest type of the regression residuals, so called raw residuals are 
calculated as the difference between the observed and fitted values of the response variable. 

CanoDraw provides only a limited subset of regression diagnostic methods. It allows the 
plotting of three types of residuals (discussed below, when describing the dialog illustrated in 
Figure 13-14) against the fitted values and such plots can be used for two purposes: (a) to 
visualise the changing variability of residuals with the changing predicted values, i.e. response 
variable heteroscedasticity, or (b) to check for grossly underestimated variability - "curvature" 
of the true response curve / surface. 

Additionally, CanoDraw allows you to plot the residuals against the predictor variable(s) of 
the originally fitted model. Such a plot can detect the inadequate description of the effects 
a particular predictor has over the response variable. For example, conclusions about using 
a polynomial term instead of a linear one can be made, based on such a plot. 

To create a regression diagnostic plot, called a residual plot in CanoDraw, you must start 
from an existing diagram containing one or more fitted regression models. If you click within 
this graph outside of any selected graph object with the right mouse button (and the CanoDraw 
project from which the graph was created is available), the context menu contains command 
Residual plots... and if you select it, CanoDraw displays the dialog illustrated in Figure 13-14. 
This dialog can be preceded by the dialog shown in Figure 13-13, where you can select which 
regression model of the multiple models present in a graph, you are interested. 
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Figure 13-13 Select Model dialog box 

The dialog box used to specify residual plot contents is shown in the following figure. 
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OK 
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Figure 13-14 Create Residual Plot diagram 

The area marked Residuals Type specifies how the regression residuals should be 
transformed. CanoDraw can plot either the original raw residuals, or it can take their absolute 
values, or the square-root of the absolute residual values. The last type of residuals is good for 
detecting heteroscedasticity in your model. 

The selected type of residuals can be plotted against either the predictor(s) of the original 
regression model or the fitted (predicted) values of the response variable, and you can select 
which kind of plot to create in the dialog area named Plot Against. 

You can generalise the pattern of regression residuals in the residual plot by adding 
a smooth curve to them, using a loess model. To do so, check the box preceding the Add LOESS 
model option. Note that this option is enforced if you have two predictors in the model and you 
decide to plot residuals against them. 

This dialog can be also used to store permanently the residual values (of the selected type) 
and the fitted model values in the CanoDraw project, among the imported variables. To do so, 
check the box preceding the Save resids and fitted in imported vars option and specify the base 
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name for the two variables. In our sample dialog, the base name is specified as Loess(Ach mil). 
The two variables created in the Imported variables folder will be therefore named 
Loess(Ach mil).Fitted and Loess(Ach mil).Residuals. You can then use the two stored variables 
to create other types of regression diagnostic plots, with the general XY(Z) attribute diagrams. 
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14. CanoDraw Examples 

In this chapter, several examples of creating graphs from the results of statistical analyses 
performed with the Canoco software are shown. These examples use selected sample projects 
described in the Chapter 8 of this manual. The description of the steps needed to produce the 
graphs tries to be reasonably brief and you should check the suggested parts of the command 
reference to fully understand them. Each example description starts from a new CanoDraw 
project created from an existing Canoco sample project. The Canoco sample projects are 
optionally installed with the Canoco for Windows software, in the Samples sub-directory of the 
Canoco installation folder. You are supposed to create the initial CanoDraw projects yourself, 
using the suggestions contained in section 12.1.1. CanoDraw samples subdirectories (under the 
Samples\CanoDraw\ subdirectory) contain the final states of the CanoDraw projects and graphs. 

The behaviour of CanoDraw as well as the actual appearance of the graphs you create can 
differ from the description provided here. This happens if you already worked with the 
CanoDraw for Windows software before and changed the program settings. 

14.1 SPIDER1 

Canoco sample directory: Samples\Unimodal\Spiderl 

Description of the corresponding Canoco example starts on page: 226 

We will start our exploration of the data used in this example by looking at the results of 
canonical correspondence analysis (CCA), defined by the Canoco project spidcca.con. You 
should create a CanoDraw project from it first. There are two possible ways of creating a new 
CanoDraw project. First, if you work with a Canoco project within the Canoco for Windows 
application, you can click the CanoDraw button to start the CanoDraw program. CanoDraw 
automatically suggests to create a new CanoDraw project from the currently active Canoco 
project. If the CanoDraw button is disabled in the Canoco project view, the ordination results (in 
Canoco sol file) are probably out of date or absent and you must click the Analyze button to 
actualize them. Alternatively, you can start CanoDraw yourself from the Start I Programs menu 
of Windows and create a new project directly within the CanoDraw program, using the File / 
New Project menu command and specifying the file (with con extension in its name) containing 
the Canoco project on which the new CanoDraw project should be based. 

We will continue by creating a triplot diagram, containing symbols for samples and species, 
and also arrows for environmental variables. You may create the triplot diagram easily using the 
Create / Triplots / with Environmental variables menu command. Note that the resulting 
diagram (not shown here) is perhaps too overcrowded, particularly due to the many sample 
labels (containing sample indices). Sample identity is probably not so important for interpreting 
the ecological relations in these data. Therefore, you need to specify that CanoDraw should not 
label the symbols representing individual samples. Close the graph first (using the X box in its 
upper right corner; select No when asked about saving the graph) and then execute menu 
command Project / Settings and select the Appearance page in the displayed dialog. The options 
for labelling different types of items in ordination diagrams are in the upper part of that dialog 
page: change the selection in the Sample labels row to None (see Figure 14-1). 
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Figure 14-1 Changing labelling style for samples 

After you close this dialog with the OK button, create the triplot diagram again, using the 
Create / Triplots / with Environmental variables command. The resulting diagram differs 
somewhat from the one displayed in Figure 14-2. 
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Figure 14-2 Triplot based on SPID CCA project 

The above graph was adjusted after its creation using the following three methods: 
First, the background of the labels for the environmental variables was made opaque. To do 
so, you must select one of the labels (say Refl Lux, for example) and then select the other 
labels using the Select Suchlike command from the context menu (see section 13.1.3). Then 
invoke the Properties Sheet with the menu command View / Properties Sheet or with the F5 
key and change the settings on the Fill page as indicated in Figure 14-3. Note that the 
decision whether to use opaque or transparent background of the labels is often very 
difficult: while the labels with opaque background become more readable, the underlying 
symbols and / or labels become more obscured at the same time. 
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Figure 14-3 Making the background of labels opaque 

The positions of species and environmental variable labels were adjusted to minimise their 
overlap. Check the section 13.3 for a description of how to reposition the labels within 
CanoDraw graphs. 

After that, the labels of the environmental variables still interfered with the sample symbols. 
The circles were overwriting the opaque background because they were drawn later than the 
labels. To override that, you must open the additional Graph Contents window, using the 
View / Tree View command. Then select the group named Sample scores, click it with the 
right mouse button, and from the popup menu select the command Move group upwards (see 
Figure 14-4). Close or minimize the Graph Contents window to return back to the 
CanoDraw graph. 

• 
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Figure 14-4 Moving group of graph objects upward in the hierarchy 

The triplot diagram in Figure 14-2 plots both the active and the supplementary samples in 
the same way (using the empty circles). You can try to differentiate the active samples from the 
samples with missing environmental data by following the additional steps. This exercise is not 
recommended unless you already have some experience with the CanoDraw for Windows 
program. 
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* Create a group of active samples by the Project / Define groups of/ Samples command and 
in the displayed dialog box select the By Rule button in the Create section. In the dialog box 
Modify Group select the weight in analysis option and change the value in the FROM field, 
replacing the zero value with 0.1. This excludes the supplementary samples from the group, 
because they have a zero weight in constrained ordination analysis. Close the dialog box 
with the OK button. You can optionally rename the newly created group of samples, using 
the Rename button in the Sample Groups Manager dialog. Close then this dialog box using 
the Close button 

* The created sample group can be then used in the Inclusion Rules page of the dialog invoked 
by the Project / Settings command to plot only the active samples. But we will prefer to plot 
both kinds of samples in the same diagram, differentiating them by their appearance. To do 
so, define a new classification of samples based on the created group of active samples. 
Using the Project / Classify / Samples command, open the Available Classifications of 
Samples dialog and click there the New from group button. Select the recently created 
sample group from the list (confirming with the OK button) and a new classification is 
created. Check the box titled Use this classification in diagrams. 

* If you want to change symbols used for the active and supplementary samples (contained in 
the first and in the second class, respectively), you can do so in the dialog invoked by the 
View / Visual Settings menu command. In this dialog, select in the Attribute category field 
the section Samples /Symbols and modify there the attribute settings for Class 1 and Class 2. 

Before we continue our tutorial, you might like to close the created graph(s) and the CanoDraw 
project that we worked with until now. This can be done simply by clicking the close (X) 
buttons of their windows. It is useful to close the graph windows first, so that the still opened 
project may notice the names of files, in which the graphs were saved. If you created several 
graphs from a project, the Window / Close graphs of active project command can provide an 
useful short-cut (see section 12.7.5). For each graph being closed, CanoDraw asks you whether 
to save it. Graphs can be re-opened and modified later on, with or without their parental project. 
Additionally, you can print each graph (using the File /Print command, see section 12.1.9) or 
export it into a file with a different format (using the commands in the File / Export submenu, 
see section 12.1.7). 

The section about the SPIDER1 Canoco example (p. 226) suggests to compare the sample 
scores of two different DCAs, using the Canoco project dca28100.con. The one DCA uses 28 
samples (the ones with the environmental data available), while the other DCA uses all 100 
samples. In the project dca28100.con, the axes of the latter analysis are used as supplementary 
environmental variables with the former DCA. The correlation between the scores on the first 
ordination axes, for example, can be then shown using the arrow of the supplementary variable 
AX]. Here we show not only this graph, but also two alternative ways of visualising the 
closeness of the sample scores of the two analyses. 

You must start by creating a new CanoDraw project called dca28100.cdw from the Canoco 
project dca28100.con. The simplest presentation of the relations between the ordination axes of 
the two detrended correspondence analyses can be seen from the graph in Figure 14-5. 
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Figure 14-5 Comparison of two DCAs 

To create this graph, select the menu command Create / Biplots and Joint Plots / Samples 
and suppl. variables. The sample scores are initially labelled by indices, but you can get rid of 
the sample labels by selecting one of them, pressing Ctrl-H (the shortcut to Select suchlike 
command), and then pressing Delete (Del) key to remove all the labels. This diagram shows 
a good correlation between the first ordination axes of both analyses, but not such a good 
correlation between the scores on the second ordination axes. But do not jump to conclusions 
about correlations among the variables represented by the arrows (i.e. correlation between the 
scores on different axes of the DCA with 100 active samples). The correlations among 
supplementary (or environmental) variables are not presented optimally in such an ordination 
plot. Note also that there are 100, not 28 circles plotted in the diagram. This is because even in 
the analysis with environmental variables, there were 100 samples, but 72 of them were passive. 

One alternative way to show the relation between, say, the first ordination axis of the DCA 
with 28 samples and the first few ordination axes of the DCA with 100 active samples can be 
seen in Figure 14-6. 
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Samp.1 

Figure 14-6 Relation between first axis scores of one analysis and scores on first three axes 
of another analysis, visualised using a loess smoother 

In this graph (stored as dc28100a.cdg), only the scores of 28 samples, which were active in 
both analyses, are shown. To achieve this, you must exclude the supplementary (passive) 
samples, i.e. the samples with zero weights. This can be done in the Inclusion Rules page, which 
is part of the dialog invoked by the Project / Settings menu command (see Figure 14-7). 
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Figure 14-7 Selecting only active samples 

Specifying value 1 in the indicated field excludes the samples with a weight less than 1% of 
the largest sample weight in the data. 

To create the actual plot, use the Create /Attribute Plots /XY(Z) Plot command and make 
the following choices in the setup dialog (Figure 14-8): 
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Figure 14-8 Creating XY diagram with multiple response variables 

The selection in the X VARIABLE list can be achieved by expanding the Analysis Results 
item (clicking on the + box in its front) and then the Sample scores item. Similarly, you must 
expand the Data Files item and the Passive variables data subitem in the Y VARIABLE list. 
Worth of mentioning is the multiple selection in the Y VARIABLE list: only this list supports the 
multiple selection. To select additional items there, combine the left mouse button with the Ctrl 
key. Also note the choices made in the VISUALIZA TION MODEL area of which the Loess 
model selection is the most important one. The effect of the Color code multiple contents option 
is difficult to see in our gray illustration, but the color-coding provides very distinctive graphs 
on screen or color printer print-outs. 

After clicking the OK button, three additional dialogs are displayed, corresponding to loess 
model options for each of the three response variables. Leave the default choices in the dialogs: 
linear local regression, span equal to 0.67, robust algorithm. The resulting diagram was slightly 
modified for printing purposes (increased size of labels, increased width of lines, and 
differentiation of symbols which were originally differentiated only by their color). 

Finally, we will demonstrate how to show the relation between two axes of the current 
analysis and one axis of another analysis. We do so using a contour-based attribute plot. From 
the menu, select the Create / Attribute Plots / Data Attribute Plot and specify its contents as 
illustrated in Figure 14-9. 
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Figure 14-9 Data Attribute Plot dialog 

After you click the OK button, CanoDraw displays a dialog where the loess settings can be 
adjusted. Keep the default values for local polynomial degree (linear) and for span (0.67), and 
make sure that the option Normalize scale for two predictors is not checked (because the scores 
on two ordination axes are already on the same scale). CanoDraw then displays a summary of 
the fitted model and suggests values for the contour levels (from 0.5 to 5.0, with step 0.5). 
Confirm them with the OK button. The resulting attribute plot is shown in Figure 14-10. 
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Figure 14-10 Contour-based attribute plots displaying the patterns of first axis scores of 
the other DCA 

Obviously, the largest correlation is seen between the scores on the first axes of both 
analyses. Contour lines do not fill completely the area, only the interpolated part of the fitted 
loess surface is shown. This can be changed using the Plot also the extrapolated values of 
response in the Diagram Settings dialog box (see section 12.3.1.1). 

To remove the currently open project and the graphs created from it, you can close the 
individual windows separately or you can use the Window / Close all menu command. 
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14.2 SPIDER2 

Canoco sample directory: Samples\Unimodal\Spider2 

Description of the corresponding Canoco example starts on page:: 230 

This example focuses on interpreting the relation between species optima (represented by 
weighted averages) and individual environmental variables, using the variable Water Content as 
an example. We will visualise the relation of spider species to an environmental variable by 
fitting species response models. 

Start by creating the CanoDraw project spider.cdw from the Canoco project spider.con. We 
want to see which species have a good relation with the substrate water contents. As this 
variable is strongly correlated with the first CCA axis, you can base your decision on the 
strength of the relation of individual species with the first ordination axis. To do so, define 
a group of species based on their fit statistics on axis 1. The fit measures the percentage of 
variability in the species values which can be explained by the species symbol position on the 
axis, with respect to the positions of individual samples. To define the group, select the Project / 
Define Groups of / Species command. In the dialog with title Species Groups Manager, select in 
the Create area the button By Rule (which is immediately below the Close button). Another, 
larger dialog appears (titled Modify Group) and there you should select the criterion used to 
define group membership for individual species. Our criterion is the fit on first ordin. axis option 
in the first column. As you click it, the values in the FROM and TO fields on the right side 
change, respectively, to 0.0968 and 0.8145. The former value represents the smallest value 
found among the 12 species, while 0.8145 is the value of the species with the best fit. The 
FROM and TO fields specify the allowed range of the criterion for a species to be a member of 
the group. Therefore, initially all the species are group members. We will limit the group range 
by increasing the value in the FROM field somewhat, for example to 0.33. This implies that a 
species must have at least one third of the variability in its values explained by the first 
ordination axis to be a group member. You can see in the lower right area that five species pass 
this condition, and you can check their names. Close this dialog using the OK button and return 
to the groups manager dialog. The new group is named Group of species 1. Change this name to 
something like Good fit on axis 1 by clicking the Rename button and entering the desired group 
name. Then close the groups manager dialog using the Close button. 

To specify that only the species from the group just created should be plotted, you must go 
to the dialog invoked by the Project / Settings command and select the dialog page named 
Inclusion Rules. At the bottom is the area named Limit to Group. Select there the group name 
instead of the DO NOT USE value. Note that these two steps (creating species group based 
on their fit and specifying that only group members are plotted) can be replaced by one, 
simpler step: you would enter on this page the value of 33 (instead of default 0) in the 
Species field of the Lower Axis Minimum Fit area. We followed the more complicated way 
because you will use the defined group also at another occasion. Also note that the 
alternative approach does not refer to fit on the first axis, but rather on the horizontal axis, 
whatever ordination axis it represents. 

Before you close the Project Settings dialog, note that the Contents page contains an option 
named Plot SAMP scores even for constrained axes, and that by enabling this option, you would 
have Samp scores (instead of SamE scores) used in the ordination diagrams created from this 
project. Note however, that enabling this option is probably not appropriate for our current 
example. Close the settings dialog with the OK button and create a biplot diagram with species 
and environmental variables, using the command Create / Biplots and Joint Plots / Species and 
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env. variables. This diagram (illustrated in Figure 14-11) displays only the five species having 
a good fit with the first ordination axis. 
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Figure 14-11 Biplot of well-fitting species and environmental variables 

Now we would like to describe the relation between the species and the variable WaterCon 
(or the sample scores on the first ordination axis: we assume these two predictors are closely 
correlated). To do so, we will use generalized additive models, as these models do not 
substantially prescribe the shapes of fitted response curves (compared, e.g. with second-order 
polynomials we will use later on). In the additive models, we will determine only their 
complexity, measured with degrees of freedom. We will use the model selection procedure to 
select the optimum model complexity separately for each of the species. You should start by 
selecting from the CanoDraw menu the Create / Attribute Plots / Species response curves 
command. The displayed dialog is illustrated in Figure 14-12, including the required settings. 
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Figure 14-12 Species Response Curves with GAM 

In the upper part of the dialog, select the Generalized additive model (GAM). Then select 
the set of response variables (species) by selecting the name of species group in the middle right 
dialog area. Additionally, you should change the predictor selection from ordination axes to 
environmental variables and select the WaterCon variable. After clicking the OK button, a new 
dialog is shown, where you specify settings for the generalized additive models (see Figure 
14-13). 

Figure 14-13 GAM Options for species response curves 

Given the fact that we ask for model selection using AIC (see checked box in the lower left 
corner), the specified complexity for Predictor I (DF=3) represents an upper limit for the 
evaluated model complexities. When selecting the model, CanoDraw evaluates the model 
performance using AIC statistics (see section 12.3.1.4 for additional details) for varying 
complexity of model terms for each predictor. It starts with the null model, and continues with 
a model term with complexity corresponding to one degree of freedom and increasing by one 
DF until the specified upper limit is reached or exceeded. Therefore, in our case with an upper 
limit equal to 3.0 and only one predictor, four alternative model specifications are compared: 
a null model, a model where the WaterCon predictor has a complexity df=l, a model where the 
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WaterCon term has a complexity df=2, and a model with the WaterCon term complexity df=3. 
You should also specify that a Poisson distribution of the species values is expected, with the 
logarithmic link function implied by CanoDraw. 

After you close this dialog with the OK button, CanoDraw reports on fitting individual 
regression model with two dialogs for each of the species. We will illustrate them for the first 
species, Alopacce. CanoDraw first summarises the model complexity selection process (see 
Figure 14-14). 
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Figure 14-14 Report on regression model selection 

The most complex form of describing the effects of soil water contents upon this species has 
the lowest AIC value, so it was selected. You can copy this report in text format to the Windows 
Clipboard. Note that the default answer is No (i.e. nothing is copied to Clipboard). After you 
close this dialog, the fitted GAM summary dialog appears (Figure 14-15). 
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Figure 14-15 Fitted GAM model summary 

You can see in this dialog that the fitted model fares much better than the null model (more 
than 60% of total variability was explained by the model) and that it is also better than 
a generalized linear model with a linear form of dependence of Alopacce upon WaterCon 
(P=0.0125). If you want the response curve for this model to become part of the diagram, click 
the OK button. If you prefer suppression of this particular model, click the Skip button. This is 
useful in the situation where the model selection procedure selects a null model (displayed by 
a horizontal line in the diagram). In our example, all species have a strong relation to soil water 
content, so we include all of them in the resulting graph. 
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If you are not interested in seeing the reports on mode] selection and the summaries of the 
fitted regression models, you can suppress them by disabling the Show summary of each 
fitted regression model option in the Properties 1 page of the Diagram Settings dialog. 

The created graph (Figure 14-16) was additionally adjusted for non-color printing by 
changing the line style of some of the response curves. 
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Figure 14-16 Species response curves fitted using generalized additive models 

Note that the maximum value for the vertical axis is perfectly sound, the species Trocterr 
has a maximum value of 118 in sample "Pitf 24". 

Now we will use an alternative approach involving fitting parametric generalized linear 
models (GLMs). We will again use model selection, this time a stepwise selection where the null 
model is compared, in turn, with the linear and second-order polynomial models. The selection 
is based on a parametric test using an analysis of deviance (see section 12.3.1.3). You must start, 
again, with the Create / Attribute plots / Species response curves command, but in the first 
dialog, select the Generalized linear model (GLM) option, instead of GAM. Set the other options 
as the last time, when you fitted generalized additive models. In the following dialog with GLM 
options (Figure 14-17), select the following settings: 
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Figure 14-17 GLM options for species response curves 

The Degree option has value Quadratic, so a third-order polynomial will not be considered 
during the stepwise model selection. The selection is specified to be done using the F statistics 
based test, and the significance threshold value is 0.05. The distribution of response variables is 
set to Poisson. Model selection and model summaries are again reported before the graph is 
shown. 
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Figure 14-18 Species response curves fitted using generalized linear models 

Comparing the linear models (Figure 14-18) with the alternative additive models (Figure 
14-16) shows, for example, that for Alopfabr a linear model was judged better than the 
alternative unimodal shape, although the selected GAM suggests an unimodal response. This 
might be due to the non-symmetric character of the unimodal response, with the increase of 
Alopfabr values being slower than their subsequent decrease along the gradient of increasing 
water contents. 
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14.3 DYKE 

Canoco sample directory: Samples\Unimodal\Dyke 

Description of the corresponding Canoco example starts on page:: 234 

In this example, we will illustrate the problems mentioned in the original Canoco example: 
how to specify the plotting of nominal explanatory variables by centroids, how to select which 
species appear in an ordination diagram, and how to display the scores on the third ordination 
axis. Start with creating aCanoDraw project dykecca.cdw from the Canoco project 
dykecca.con. 

The three variables representing soil type are nominal variables, classifying the samples into 
three distinct classes, and are better represented in ordination diagrams by centroid scores. You 
arrange for this in the CanoDraw project using the dialog invoked by the Project / Nominal 
variables / Environmental variables command. In the dialog, select the three variables Peat, 
Sand, and Clay in the left list and transfer them into right list using the Select button. 

Next, you will specify the plotted species using the rules suggested in the Canoco example 
text (p. 235 of this manual): species should appear in the ordination diagram only if their fit to 
the diagram is 5% or more, and if they occur 10 or more times in the data. While the first 
condition is easy to specify, the limitation by the number of occurrences is more difficult to set. 
You should start by defining a group of species occurring in 10 or more samples. 

You define a new species group using the command Project /Define Groups of /Species. In 
the group manager dialog, select the By Rule button in the Create area. A new dialog, titled 
Modify Group, appears and there you should select the # of nonzero values criterion. You can 
see from the range of values (1 to 64) that the species with the highest number of occurrences is 
present in 64 samples. Change the value in FROM field from 1 to 10. You can see that there are 
61 species with 10 or more presences in the data. Close this dialog using the OK button and in 
the Species Group Manager dialog rename the group to "More than 9 occurrences" and close 
the dialog with the OK and then the Close button. 

Now you can set the restrictions in the Project Settings dialog (invoked by Project / Settings 
command). In the Inclusion Rules page, start first with the species group you just created. At the 
bottom of this dialog page is the area called Limit to Group and there you must select the group 
in the Species list. Then you should change in the Species Fit Range area the zero value in the 
From field to 5. You can see that 23 species pass both inclusion rules (see Figure 14-19). 
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Figure 14-19 Limiting species presence in diagrams 

Before you leave this dialog, switch to its first page (Contents) and take a look at the value 
of the Axes to plot option. The value is set to First and second axis and it can be easily changed 
to any combination of the first four axes. When you change it, the new settings remain in effect 
until reset again. Therefore, as we need to make just one diagram (species - environmental 
variables biplot) with a change in the ordination axes used, you will use an existing shortcut. 
From the Create menu, select the first command (Simple Ordination Plot), keep the default 
selection in its upper part (Species and environmental variables), but change the Ordination 
Axes to Plot option in the lower part, to the value First and third. There is one additional 
problem with the graph - the arrows of quantitative environmental variables are very short. You 
can change their rescaling with respect to the plotted species scores and the centroids for soil 
types. To do this, select the menu command View / Diagram Settings, and in the dialog first 
page (Properties 1), enable the option Show rescaling coefficients for composite ordination 
diagrams. Now you should create the biplot again (note that you cannot use the Recreate graph 
command, because it would apply the permanent selection of plotting first and second ordination 
axes), as described before. This time, a new dialog is shown before the diagram is created (see 
Figure 14-20). You should change the edit field in the Explanatory variables area from the 
original value 0.64965 to a larger coefficient value, e.g. 5.0. Note that the dialog shows a scaling 
value also for samples, despite the fact that this diagram shows the environmental variables and 
species. This is because the centroids of environmental variables are, in fact, the weighted 
averages of the sample scores, so their rescaling must be synchronised with the sample scores. 
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Figure 14-20 Changing scaling of ordination scores 

The final graph (after repositioning of species labels and making their background opaque, 
with white fill color) is shown in Figure 14-21. 
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Figure 14-21 Species - env. variables biplot with first and third CCA axis 

14.4 DUNEBOOK 

Canoco sample directory: Samples\Unimodal\Dunebook 

Description of the corresponding Canoco example starts on page:: 241 

The data describing vegetation of dune meadows is a classical example, thoroughly 
discussed in Jongmann et al. (1995). The intermediate level of data heterogeneity allows us to 
demonstrate both the linear and unimodal ordination methods with the same data-set. We will 
limit our example to just one kind of analysis, represented by the Canoco project file 
rdaspe.con. In this project, a constrained linear method (redundancy analysis, RDA) is used to 
summarise information about the meadow vegetation composition, explainable by three of the 
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available explanatory variables: thickness of Al soil horizon, a semi-quantitative description of 
soil moisture, and a semi-quantitative descriptor of the amount of applied manure. 

You should start, as usual, by creating a CanoDraw project file named rdaspe.cdw from 
the Canoco project. We will first look at the triplot diagram using the first two ordination axes. 
You create it using the Create / Triplots / with Environmental variables command. If you try 
the examples from this chapter in a sequence, you will probably see, before the diagram is 
drawn, a dialog of the type illustrated in Figure 14-20, which displays the re-scaling of 
ordination scores within the diagram, allowing you to change it. To suppress displaying this 
dialog, you must go into the Diagram Settings dialog (menu command View / Diagram Settings) 
and in its first page (Properties 1) uncheck the box in front of the option Show rescaling 
coefficients for composite ordination diagrams. The triplot diagram (after adjustment of label 
positions) is shown in Figure 14-22. 

m 

Figure 14-22 Triplot diagram (including species, environmental variables, and samples) 
for a redundancy analysis of dune meadow data 

Note that even with the extremely small size of data, a diagram containing all three types of 
entities becomes crowded. 

The analysis discussed here uses only the three (semi)quantitative environmental variables 
and the other variables, recording the type of agricultural management, are ignored. But we can 
still see how the management type is correlated with the environmental descriptors used in our 
analysis. We will restrict ourselves to one of the two alternative descriptors of agricultural 
management, provided in this project. We will use the four nominal (0/1) variables BF, HF, NM, 
and SF representing four levels of a qualitative variable (factor), describing the farming type 
(biodynamic farming, hobby farming, nature protection management, and standard farming). 
To see the relation of the farming type descriptors with the three environmental variables active 
in this analysis, you will classify the samples into four classes corresponding to the farming type 
at the corresponding sites. Samples from different classes are routinely represented by symbols 
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of different type and/or color in CanoDraw and you will use this feature to visualise the pattern 
of farming types across the plane spanned by the first two ordination axes. 

Start with the menu command Project / Classify / Samples which displays the dialog 
illustrated in Figure 14-23 and described in more detail in section 12.4.3. 
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Figure 14-23 Dialog for management of sample classifications 

There are no classifications available in the newly created project (the listbox is empty), and 
you will create the new classification using the New from data button. CanoDraw displays yet 
another dialog (shown in Figure 14-24) listing the variables which can be used to classify 
samples. The lower part of the dialog shows five strategies how the values of selected variable(s) 
can be used to define sample classes. The first four strategies are available if exactly one 
variable is selected. The fifth strategy {Combine dummy variables) is, on the other hand, 
available only if multiple variables were selected. CanoDraw allows multiple selection of 
variables (achieved by depressing the Ctrl key at the same time an item is clicked) only if each 
of the variables has just two distinct values - zero (0) and one (1). In our example, four such 0 / 
1 variables were selected and the middle part of the dialog box contains a message confirming 
the selection of four nominal variables. You must then specify the classification Strategy (even 
when this is the only one permissible for a multiple selection of variables) and click the Create 
button. 
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Figure 14-24 Classify From Data dialog 

CanoDraw then creates the classification, creating separate class for each selected nominal 
environmental variable, and displays the classification in a new dialog (Figure 14-25). This 
dialog is titled Manual Classification because, at this point, you can adjust the classification by 
moving members from one class to another, remove classes or merge two or more existing 
classes into one class. Note, however, that before you close this dialog, all available items 
(samples, in this case) must be members of one of the defined classes. 
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Figure 14-25 Manual Classification dialog 

After you click the OK button, you are back in the original dialog for managing sample 
classifications. The new classification appears in the list and you can perhaps change its name 
now, to be more self-explanatory (use, for example, the name Type of farming). Also, you need 
to check the box in front of the Use this classification in diagrams option. Close this dialog 
using the Close button. Now you will check what symbols are used to represent samples from 
individual classes in ordination diagrams. To do so, create a biplot with samples and 
environmental variables using the command Create / Biplots and Joint Plots / Samples and env. 
variables. This initial attempt to present the relation between the type of farming and the 
explanatory variables representing soil development, soil moisture, and amount of manure is 
shown in Figure 14-26. 
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Figure 14-26 Samples and environmental variables biplot with sample symbols appearance 
coding the type of farming 

There are several problems with this graph, listed below in the approximately decreasing 
order of their importance: 

1. Symbols are too small and their types too similar, so it is difficult to group visually all the 
symbols representing one class. 

2. There is no key that would enable us to recognise which type of farming corresponds to 
which type of item. 

3. The indices used to label the sample symbols are perhaps redundant, if the primary purpose 
of this graph is to see the patterns in farming type distribution, not to identify individual 
samples. 

4. As we present this graph without colours, it will be probably better to abandon the original 
color-coding and assign black drawing color to all the symbols. 

To solve these problems, you need to make the following changes in the CanoDraw 
settings. These changes correspond one-to-one to the issues listed above: 

1. We have four classes of samples, so you need to modify the visual attributes of sample 
symbols for the first four classes. To do so, open the Visual Attributes Settings sheet, using 
the menu command View / Visual Attributes. On its left side, locate the group named 
Samples and open it by clicking on the + sign preceding the label. Within the Samples group, 
open (expand) the subgroup named Symbols. This subgroup contains 64 items corresponding 
to attributes of symbols representing up to 64 sample classes. You will start with the first 
class, by clicking on the Class 1 item. Select the Symbol tab in the right part of the dialog. 
Keep the Symbol Type setting {Circle) for this class, but increase the symbol size from 0.008 
to 0.015. The resulting state of this attribute page is illustrated in Figure 14-27. For the Class 
2, you will again increase the symbol size to 0.015 and change the symbol type from Square 
to Cross. You may then switch to Color tab and change the violet color to black. For the 
Class 3, you will change the green color to the black one in page Color and in the Symbol 
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page, set the size to 0.015, and change the symbol type from Diamond to Up-triangle. And, 
finally, for Class 4 set again the black drawing color, and change the symbol type from Box 
to Star and its size from 0.008 to 0.015. 

Figure 14-27 Visual Attribute Settings for sample symbols of first class 

2. To display a legend for the diagram, use the Project / Settings command, and in the 
Appearance page of the Project Settings dialog, check (enable) the option Insert legend into 
created diagrams. The recommended setting for the Legend position is Right side, Sections 
layout should be Vertical and adjacent Wrap after value should be 2 or more. The layout of 
items in sections should be set to Vertical or Vertical w. heading, and the value Wrap after 
should be 4 or more. 

3. To suppress the plotting of sample indices, you should change in the same dialog page, 
which you used in the preceding paragraph, one option in the Labelling of scores area: 
Sample labels should be set to None instead of Indices. Close then this dialog with the OK 
button. 

4. The last change (concerning the black color of all symbols) was already made in the point 
1 above. Note that you have manipulated only the drawing (outline) color of the symbols. 
This was sufficient because all the selected symbol types were either pre-set to be empty or 
they cannot be filled (the cross symbol). To change the fill settings, the options in the Fill 
attribute page would need to be modified. 

Finally, create the new biplot diagram (Figure 14-28) using the command Create / Biplots 
and Joint Plots I Samples and env. variables. You can alternatively use the Create / Recreate 
graph command, but this would not change the labelling of sample symbols as this setting is 
invariable for an existing diagram. 

The settings made to Visual Attributes in step 1 above are application-wide and will be 
automatically saved at the end of CanoDraw session. If you want to preserve the current visual 
attributes used in CanoDraw graphs before changing them, you must use the File / Visual 
Attributes / Save command to store them in a file. You can then revert to the stored settings 
using the File / Visual Attributes /Load command. 

Additional support for easy visual assessment of symbols belonging to one sample class can 
be achieved with the envelopes. To enable plotting of polygons enclosing symbols of individual 
classes, you must select the Project / Settings command and in the dialog page named Contents, 
you need to check the Samples option in the area named "Draw Envelopes around Classes of'. 
Note, however, that the color of envelope lines is based on the drawing color of sample symbols, 
so after our unification of drawing color, all the envelopes will have an identical black color. 
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Figure 14-28 Final look of the biplot with samples and environmental variables 

As another example of exploring the multivariate data-sets based on the ordination results, 
we might note that the first ordination axis is mostly correlated with soil moisture. We can 
therefore wonder, how the occurrence (and abundance) of individual species relates to this 
environmental factor. There are multiple approaches one can take when addressing such 
a question, including fitting species response curves along the moisture gradient (see section 
14.2 for an example). Here we will use an alternative approach and we will start by classifying 
samples depending on soil moisture. We arbitrarily decide to have three classes of samples, 
corresponding to increasing soil moisture. Finally, we will visualise the distribution of species 
values over the three sample classes, using a diagram with the pie symbols. 

To start, define a new classification for samples. Display the dialog with classifications of 
samples using the Project / Classify / Samples menu command (the dialog should already list the 
classification we created in the preceding part of this section) and click the New from data 
button. In the dialog that appears, select the variable Moisture in the Environmental data group. 
You can see in the middle part of the dialog box that this variable has four distinct values, the 
smallest one being 1 and the largest being 5. We would like to divide the range of its values into 
three so that there would be a comparable number of samples in each of them. To do so, select 
the option Intervals with similar count at the bottom of this dialog box and then click the Create 
button. CanoDraw asks you about the number of intervals you want to divide the range of the 
variable values into. Obviously, there cannot be more than four intervals, as there are just four 
distinct values available for this variable. Change the suggested value 4 to 3. After clicking the 
OK button, CanoDraw displays a new dialog titled Confirm Class Boundaries, illustrated in 
Figure 14-29. 
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Figure 14-29 Confirm Class Boundaries dialog 

The upper part of this dialog again summarises the variable representing the base for this 
classification. The essential part of the dialog is the line in its middle. The values entered in this 
line define the threshold values separating the individual regions of the range of the variable 
values, corresponding to individual prospective sample classes. The algorithm you selected 
(creation of intervals with similar counts of items) was used to suggest the default values in this 
line, but you can freely change them. The values represent the upper inclusive values of the 
interval borders. The outer margins - the lower value of the first interval and the upper value of 
the last interval - are implied, respectively, by the minimum and maximum value of the variable. 
In our example the first interval starts and ends at the value 1, the second interval includes 
values 2 - 4 , while the third interval obviously includes only the samples with Moisture value 
equal to 5. 

The list in the lower part of this dialog shows the size of individual classes implied by the 
thresholds currently specified in the line above it. Note, however, that when you change these 
values, you must indicate to CanoDraw that you have finished the changes by clicking the 
Refresh button: only then is the content of the list changed. You can see that a remarkable 
equitability of counts of samples in three intervals was achieved. Confirm this classification by 
clicking the OK button. As in our previous example in this section, CanoDraw continues by 
displaying the Manual Classification dialog, where you can fine-tune the created classification 
manually. You do not need that, however, so close this dialog using the OK button. 

After you return to the dialog named Available Classifications of Samples, you can see our 
new classification listed with the name Classification from values of Moisture. You can also see 
that it is not active - the older classification is still the one enabled for use in diagrams. You 
should therefore select the new classification in the list and then check the box Use this 
classification in diagrams. Then close the dialog using the Close button. 

There are two additional changes you must make before you can create the diagram. Open 
the dialog with project-specific settings using the command Project / Settings. In the 
Appearance page, enable (check) the option named Display species as symbols even in linear 
ordination methods. While displaying species scores as symbols is generally an inappropriate 
choice with linear ordination methods, it is needed for the specific type of graph we want to 
create. Then switch to the Contents page of the same dialog and specify that you want to replace 
species symbols with pie symbols. To do so, check the For species option in the area named Use 
Pies instead of Symbols. There is another setting you need to consider, named With slices based 
on. Select the option Values, so that the size of slices representing individual sample classes will 
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report what fraction of total abundances of a species can be found in samples from the 
particular class. Selecting the other option (Presences) would result in displaying fractions of the 
total number of occurrences. 

Close this dialog using the OK button and create the diagram (Figure 14-30) using the 
command Create / Scatter Plots /Species. 

4 to gen 

Ranfla 

SPECIES PIES CLASSES 

D 

• 
LJ 

Moisture-1 

Moisture-2 

Moisture-3 

Figure 14-30 Pie symbols plot visualising distribution of species over classes of samples 
with different soil moisture 

Note that the above diagram has been substantially adjusted by shifting the labels of the 
individual pie symbols. This presents a certain difficulty because several labels overlay the pies 
and it is difficult to select them before displacement. To facilitate easy shifting of the labels, all 
the pie symbols were selected (by clicking one of them and then executing the Select Suchlike 
command from the Object menu) and then locked (by clicking over one of the pies with the right 
mouse button and selecting the Lock selected command from the popup menu). 

14.5 WEEDS 

Canoco sample directory: Samples\Unimodal\Weeds 

Description of the corresponding Canoco example starts on page:: 245 

This example demonstrates the use of spatial coordinates of samples in a Canoco project. 
We will show here the possibilities for visualising the spatial variation of community 
composition using CanoDraw. You should begin by creating a new CanoDraw project 
(trend.cdw) from the Canoco project trend.con. Next, you will visualise the position of samples 
in space. To do so, you will create a XY diagram based on the X and Y coordinates of the 
individual samples. Select the command Create / Attribute Plots / XY(Z) Plot and specify the 
options in the dialog as shown in Figure 14-31. 
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Figure 14-31 Creating a diagram with spatial positions of samples 

The resulting graph is shown in Figure 14-32 (after deleting the sample labels). 
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Figure 14-32 Spatial coordinates of samples 

You do not need to stop here, however. You can visualise the sample scores on the first 
ordination axis within this diagram. If you code the position of samples on the first ordination 
axis by the size of sample symbols, you obtain the symbol attribute plot, like the one shown in 
Figure 14-33. 
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Figure 14-33 Symbol attribute plot showing the pattern of CCA Axis 1 coordinates in 
space 

To create this symbol attribute plot, use again the XY(Z) Plot command and choose the same 
options in the upper part of the dialog, but make a different selection in the lower part of the 
dialog box (keeping the selection in lists for X and Y variables identical) - as illustrated in 
Figure 14-34. 

Note that we had to create a completely new graph here. This is needed because we are 
changing the graph contents, not only its appearance. Using the Create / Recreate graph menu 
command would not help us, as this action only applies the current options to an a graph with 
already defined contents (see also section 11.8). If you make a mistake during new graph 
creation, for example you forget to enable iso-scaling, you may close it using the File / Close 
menu command (select No button when asked about saving the changes) and start again from 
scratch (with the Create /Attributes Plots /XY(Z) Plots command). 

Figure 14-34 XY(Z) Plot settings for creating a symbol attribute plot 

Alternatively, you can formalise the same pattern using a regression model - probably the 
best one for this purpose is the loess smoother. The required settings in the lower part of the 
XY(Z) Plot Options dialog are illustrated in Figure 14-35. The settings in the upper part are the 
same as illustrated in Figure 14-31. 
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Figure 14-35 XY(Z) Plot settings for creating a contour-based attribute plot 

The resulting diagram is shown in Figure 14-36. 
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Figure 14-36 Contour-based attribute plot displaying the change of sample scores on the 
first CCA ordination axis throughout the sampling area 

Similar graphs can be then made for the second CCA axis, as well as for the following, 
unconstrained ordination axes, if needed. 

14.6 SEASHORE 

Canoco sample directory: Samples\Unimoda1\Seashore 

Description of the corresponding Canoco example starts on page:: 247 

In this project, temporal change in vegetation composition along transects running from the 
seashore is quantified and explained by the sample altitude, measured at the first sampling date. 
There are four transect lines and two sampling dates. We can visualise the temporal and spatial 
relatedness of individual samples in the ordination diagrams by displaying the ordering of 
samples in individual transect lines in CanoDraw series, using separate series for the two years 
of sampling. 

Start with creating a CanoDraw project uplift.cdw from the Canoco project uplift.con. Then 
you must define anew series collection. To do so, select the menu command Project /Define 
Series of / Samples. CanoDraw displays a dialog titled Series Collections for Samples which 
allows you to manage existing series collections. We do not have any such collection yet, so 
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Start with the button Create to establish a new one. CanoDraw asks first for the name of your 
new series collection. You can replace the default text with the title "Line Transects in Two 
Years" and click the OK button. Now you need to define each series separately: there are eight 
series in total (four transect lines times two sampling years). We will illustrate the necessary 
steps for the first series. The newly displayed dialog has two listboxes. The left one shows the 
existing series and if one of the series is selected (active) there, the right-hand list box displays 
the samples, which are members of that series. The ordering of samples is important here, too, 
and the right-hand list supports a change of sample order. 

You must first click the Add button below the left-hand list (named Defined series). The 
new series, named Series 1, is placed into the list. Change its name to, say, Trans 1 - 1978, 
using the Rename button. Now you can add samples to this series using the other Add button -
the one placed below the right-hand list. In the Add Series Items dialog, you need to select the 
sample names starting with LI and ending with 78. As these samples are interspersed with the 
samples collected at the same transect in the year 1984 (labels ending with 84), you must make 
your selection using the left mouse button combined with the Ctrl key. After clicking the Add 
button, you return to the previous dialog and the right-hand list contains the samples assigned to 
this series. They already have the appropriate order, but you can still exercise how to change 
their ordering, if that would be needed. This is illustrated in Figure 14-37. Let us assume you 
need to relocate the first sample (Ll-03-78) to follow the sample Ll-06-78. To do so, select the 
sample to be relocated, click it with left mouse button, keep the button pressed, and drag the 
mouse pointer downwards. CanoDraw indicates the position where the item being relocated 
would be placed if you release the mouse button. You do so in the position indicated in our 
snapshot image. Remember to return the relocated item back to its original position before 
continuing with this example. 

You should define the remaining seven series (up to Trans 4 - 1984) using the similar 
procedure as described above. Note that the samples which were already assigned to previous 
series are still offered for inclusion in the new ones. Each sample can be member of more than 
one series in a series collection. When finished, close the dialog for editing series using the OK 
button. In the dialog for managing series collection, you should see the name of the just created 
series collection highlighted. Enable (check) the option named This collection is used in the 
plots. Only one series collection can be used (for the particular type of items) at the same time in 
diagrams. 

Series Collection: "Line Transects in T 

Figure 14-37 Defining new series and changing position of item in a series 

We will start our data exploration by examining the changes in vegetation composition, as 
portrayed by the sample scores on the first ordination axis, with the changes in altitude. Here we 
will use the Samp.1, not SamE.1 scores, because the former scores represent best the vegetation 
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composition. Before creating the graph, you must be sure that you will be able to recognise 
individual series lines. You must enable legend creation for this plot. From the Project Settings 
dialog, select the second page (named Appearance) and enable (check) the option Insert legend 
into created diagrams. You can see that the default layout of sections is vertical, while the items 
within sections are laid out horizontally. This might not be appropriate for our situation (with 8 
items within the series legend section, each one with a rather long label). Therefore, keep the 
sections layout vertical, but allow two sections to be in one column, and specify a vertical 
arrangement of section items with up to eight items in a single column (see Figure 14-38). 
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Figure 14-38 Legend options for a plot with series collections 

To create the graph, select the Create /Attribute Plots /XY(Z) Plot command and set the 
options in the dialog as shown in Figure 14-39. The resulting graph is shown in Figure 14-40. 

Figure 14-39 XY(Z) diagram options needed to produce the following graph. 
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Figure 14-40 Change of CCA Axis 1 scores with site elevation, for individual series 

However beautiful the graph is, there are actually four pairs of series, each pair representing 
the shift of vegetation composition on particular line transects between the two sampling years, 
and we need to concentrate our attention on these shifts. This is somewhat difficult in our graph, 
with the large overlap of lines. We probably need to plot separate graphs for each transect, 
sampled in the two years. There are several ways to achieve this in CanoDraw, probably the 
quickest one is to suppress plotting of samples except those samples on a particular transect line. 
As an example, you can show the compositional changes, as reflected by the scores on the first 
ordination axis, for the samples on the transect number 3. To do so, you need to suppress all the 
other samples. Select the command Project / Suppress / Samples and move all the samples not 
beginning with L3 to the right-hand list by selecting them in the left-hand listbox and clicking 
the Select» button. Before you leave this dialog, it should look similar to Figure 14-41. 
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Figure 14-41 Suppression of samples not in transect line 3 

After that, go to the already drawn diagram (illustrated in Figure 14-40), click on it with the 
right mouse button and select from the context menu the command Recreate graph. The figure 
clearly shows that a 1978 sample has a lower score on the first CCA axis than a corresponding 
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1984 sample at the same elevation, indicating a systematic shift in community composition in 
time. 
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Figure 14-42 Final XY diagram 

If you were interested in identity of individual samples, displayed in the Figure 14-42, you 
can either check the information displayed in the status bar of the graph window, as you move 
the mouse pointer over the plot, or you can add sample labels to this diagram. To do so, you 
should select the labelling options within the XY Diagram Options dialog (using the choices in 
the PROPERTIES area): the labelling choices specified in the Appearance page of the Project 
Settings dialog (see section 12.4.1.2) are not used by CanoDraw for the XY and XYZ diagrams. 

14.7 DISEASES 

Canoco sample directory: Samples\Unimodal\Diseases 

Description of the corresponding Canoco example starts on page:: 255 

This Canoco example focuses on the exploration of the effects of socio-economic status and 
other factors upon the incidence of various types of diseases. It is used here to demonstrate the 
creation of special types of ordination diagrams - the regression biplot and T-value biplot. 

We will limit our discussion to the Canoco project named figl.con, which was used to 
produce Figures 1 to 3 in the original paper (Ter Braak & Looman 1994). You must first create 
from it a CanoDraw project, named figl.cdw. To create a diagram similar to Fig. 2 in the 
original paper (Unimodal Models booklet, p. 250), you must specify which variables are plotted. 
To do so, select the menu command Project / Suppress / Env. variables and select all the 
variables except the interactions between SES and PI to P4 groups (i.e. except the variables with 
numbers 8 to 11). Move the selected variables into right-hand list box using the Select button 
(Figure 14-43). 
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Figure 14-43 Select suppressed env. variables dialog box 

Next, you can optionally suppress the legend for this diagram by selecting the Project / 
Settings command and un-checking the option Insert legend into created diagrams on the 
Appearance page. Finally, create the diagram using the Create / Biplots and Joint Plots / T-
values Biplot command. Before the diagram is created, CanoDraw presents a dialog (Figure 
14-44) where you can select plotting of Van Dobben circles for one of the available variables. 
This time, keep the default setting (None) in the upper part of this dialog and un-check (disable) 
the option in the lower part, named Plot explanatory variables as symbols. After you click the 
OK button, the diagram is created. 
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Figure 14-44 T-Values Biplot Options dialog 
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Figure 14-45 T-values Biplot diagram 

Note that this diagram shows only part of the information displayed in Fig. 2 of the Ter 
Braak & Looman paper. Particularly, the arrows for SESx variables represent only the solid thick 
lines in the original figure, while the arrows for the response variables (disease types) represent 
only the dashed parts of the corresponding arrows in the original Fig. 2. Nevertheless, this is the 
part of information used to infer significant predictors for individual response variables (or, 
alternatively, to infer which response variables respond significantly to a change in the values of 
a particular predictor). The complementary part of the Fig. 2 (i.e. the full arrows of the response 
variables, including the solid parts, and the full arrows of the predictors, including the dashed 
segments) is a regression biplot and can be obtained with CanoDraw using the Create / Biplots 
and Joint Plots /Regression biplot command. 

The T-values biplot illustrated in Figure 14-45 is also somewhat different from the diagram 
you can see in the CanoDraw workspace now. To obtain a comparable graph, you must go 
through the following steps: 

1. You must change the range of axes, adding 0.1 unit on the left side of the horizontal axis (i.e. 
to change the horizontal range from -0.2, +0.3 to -0.3, +0.3). To do so, click the diagram 
using the right mouse button and select the Range of axes command from the popup menu. 
CanoDraw displays a dialog where you should change the option in its upper part from Reset 
range of axes to Use ranges specified below and modify the value in From field for the 
Horizontal Axis (Figure 14-46). 
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Figure 14-46 Changing range of horizontal axis for T-values biplot 

2. Also, you must change the names of explanatory variables. CanoDraw uses labels indicating 
these are the interactions between the quantitative predictor SES and the four nominal 
variables PI to P4. To modify the text of a label, select one label, right-click it and select the 
Change text command from the pop-up menu. In Ter Braak & Looman (1994), the arrows 
are labelled SESi to SES4. Note, however, that you cannot format lower indices within 
CanoDraw labels. To achieve such effect, you would need to either add another label for the 
digit, using a smaller font and aligning it properly with the SES label, or you must export the 
diagram in Adobe Illustrator format and modify the label formatting there. 

Ter Braak & Looman paper also shows so-called Van Dobben circles, e.g. in Fig. 3. The pair of 
Van Dobben circles, helping to identify response variables responding significantly to the 
particular predictor either in a positive or a negative way, can be easily obtained with 
CanoDraw, using the settings in the upper part of the T- Values Biplot Options dialog, which was 
illustrated in Figure 14-44. 

14.8 PRC SIM 

Canoco sample directory: Samples\Permutio\Prc_sim 

Description of the corresponding Canoco example starts on page:: 287 

This example illustrates how to create diagrams with principal response curves (PRC), 
described in Van den Brink & Ter Braak (1999). For additional details you can also refer to 
section 12.4.8.3 of this manual. 

We start by creating a CanoDraw project, using the analysis defined in the pre.con Canoco 
project file. In this new CanoDraw project (named prc.cdw), we begin by importing the PRC 
scores. To do so, select the Project / Import variables / Setup PRC scores menu command. 
A dialog box appears where you select the environmental variables defining the interaction 
terms between the experimental treatments levels (except the control treatment) and the 
individual time points in which the community composition was measured. You should also 
specify the number of principal curves to import. In our analysis, we have just one principal 
curve available. Finally, you should specify in this dialog where the analysis log for the original 
Canoco project is located. In our case, the file has name pre.log and it is located in the same 
place as the Canoco project file was. Figure 14-47 illustrates the final appearance of the dialog 
box. 
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Figure 14-47 Create PRC Scores dialog box 

After you click the OK button, CanoDraw imports the scores which can be used to plot the 
first response curve and stores them in the PRC1 variable, among the Imported variables. 

To use this variable, however, you must perform several additional steps. First, the 
calculated PRC1 variable represents only the vertical coordinates of the PRC diagram. You must 
define the horizontal scores, too. To do this, the easiest method is to copy the labels of 
environmental variables, together with their indices to the Clipboard and paste them into 
an empty spreadsheet, assuming the labels are informative enough to identify the associated 
sampling time. To copy the labels of environmental variables, display the CanoDraw Project 
Details window (using the View I Project Details menu command) and navigate there into 
Project Results I Labels folder. Then you must right-click the item named EnvV.Labels. The 
Variable Summary floating window is shown, with individual labels being listed. You should 
click the Copy button and then close this window using the OK button. This procedure is 
illustrated in Figure 14-48. 
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Figure 14-48 Copying labels of environmental variables onto Clipboard 

After that, you must open a spreadsheet program and select the Paste command to include 
the copied data into the spreadsheet. The first column contains the indices of environmental 
variables, the second contains their labels. Because we cannot import back the labels, it is 
suggested you write the horizontal scores of points for the PRC diagram (the quantitative time 
values) into the third column, based on the guidance provided by the labels in the second 
column, and then you delete the no-longer-needed second column. The new column should 
contain the quantitative description of the horizontal (time) axis. The Figure 14-49 illustrates 
how the data looks in your spreadsheet after you added the quantitative time values. Note that 
the column with labels was not deleted here. It was relocated beyond the Time column and will 
not be copied back to the Clipboard. 
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Figure 14-49 Adding Time variable in spreadsheet program 

Now you should select the two columns (the indices and the quantitative time values, the 
latter called Time), copy them to the Clipboard (using for example the Ctrl-C shortcut in 
Microsoft Excel®), and import them back into CanoDraw project. To do so, select the Project / 
Import variables /From Clipboard menu command. The displayed dialog box already lists the 
two variables found, but you must also change the settings in the left part of the dialog. The 
individual rows in the spreadsheet correspond to environmental variables, not to samples (see 
Figure 14-50). Click the Import button then. 
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Figure 14-50 Importing the Time variable back into CanoDraw 

The next step needed for plotting the imported response curve is to define the series of the 
environmental variables (actually series of the interactions between time and treatment), which 
would connect, in the temporal order, the interaction terms corresponding to a particular 
treatment level. That means that each level of the experimental treatment will be represented by 
a separate series in the series collection. Because we want to plot not only the series lines, but 
also the symbols for individual dummy environmental variables (similarly to Figure 8-3 in this 
manual, p. 288), we will start with classifying our environmental (explanatory) variables. Select 
the Project / Classify / Env. variables menu command. In the dialog box named Available 
Classifications of Env. Variables click the New select button. Another dialog appears, with the 
name Manual Classification. Click the Add class button in this dialog and specify the name Low 
for this class. Leave the box Continue with Class Members dialog checked, so that you can 
specify this class' members after you click the OK button in this dialog box. In the Class 
Members dialog, select the items in the left-hand list, containing the word Low, and transfer 
them to the right-hand list using the Select» button. To select non-contiguous items, you must 
combine the left mouse click with pressing the Ctrl key on the keyboard. Close this dialog box 
with the OK button and proceed similarly (by adding a new class and specifying its four 
members) with the High class. At the end, the Manual Classification dialog should look as 
illustrated in Figure 14-51. Close the dialog with OK button. 
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Figure 14-51 Classifying environmental variables by treatment 

In the dialog box, to which you return, rename the classification from New Classification to 
Treatments and check the box below the list, labelled Use this classification in diagrams. Then 
you can close the dialog using the Close button. 

We can use the existing classification to simplify the creation of the series collection we 
need to plot the curves. To do so, select the Project /Define Series of/Env. variables menu 
command. In the dialog named Series Collections for Env. Variables click the From class 
button. Confirm the use of Treatments classification in the subsequently displayed dialog by 
clicking the OK button. CanoDraw defines the new series collection, based on the selected 
classification of environmental variables and displays it for optional further editing. The 
important task is to check that the items in both series defining this series collection are in the 
appropriate temporal order. This is the case in our sample data, but might not be so in other 
projects. You can change the ordering of series items in the righ-hand list using the mouse 
pointer (see section 12.4.5). After you close this dialog box using the OK button, you return to 
the original Series Collections for Env. Variables dialog box. Check there the box labelled This 
collection is used in the plots and leave this dialog using the Close button. 

After you have performed all these preliminary steps, you can plot the PRC by creating 
an XY diagram with the imported Time variable on the horizontal axis and the first PRC scores 
(imported variable PRC1) on the vertical axis. Before you do that, change the project options so 
that the diagram will be supplemented with a legend. Select the Project / Settings command and 
in the Appearance property page enable the legend creation by checking the Insert legend into 
created diagrams box. This and the other choices to be made in the lower part of this dialog 
page are illustrated in Figure 14-52. 

Legend position: 

Figure 14-52 Selecting legend options 

Then select the Create /Attribute Plots /XY(Z) Plot menu command and make the choices 
there as shown in Figure 14-53. 
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Figure 14-53 Creating the XY diagram with first PRC 

The resulting diagram is illustrated in Figure 14-54. 

Figure 14-54 PRC diagram with PRC1 

You can also attempt to simulate the one-dimensional diagram with species scores along the 
first RDA axis, as shown in the Figure 8-3. To create it, you should first make sure that the 
created diagram is not un-neccessarily wide, because the horizontal direction brings no 
information and it only provides space for species labels. Therefore, you should start with the 
View / Diagram Settings menu command and check the Adjust graph aspect ration by banking 
to 45 degrees option on the dialog page named Properties I. Close this dialog box and select the 
Create /Attribute Plots /'XY(Z) Plot menu command to display the XY Diagram Options dialog. 
The coordinates for the horizontal axis should be constant and you achieve this in the 
X VARIABLE list-box by expanding the Analysis Results / Species scores folder and selecting 
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the Constant item near the end of the list for this folder. In the Y VARIABLE list, select the 
Spec. 1 variable from the Analysis Results / Species scores folder. Make sure that the Labelling 
area has the Labels option selected. After you click the OK button, a small dialog is shown, 
requesting you to specify the aspect ratio for the diagram. Change the suggested value to 4.0. 
This will result in a diagram four times taller than it is wide. Note that the resulting diagram is 
far from perfect: we do not need the legend, so you should delete it (using the Del key after its 
selection). Likewise, you should delete any labels describing the horizontal axis (there are three 
labels). The species labels in this project can be simplified to their look in Figure 8-3, their 
positions re-adjusted to prevent overlap, and their font size somewhat increased. The resulting 
diagram is shown in Figure 14-55. 
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Figure 14-55 Species scores for the principal response curve diagram 
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16. Appendix A: The extended Dune Meadow Data 

Table 16.1 shows a slightly modified version of the species data matrix of the Dune 
Meadow from Ter Braak (1987) and Jongman et al. (1987). Along the top are the sample 
identification numbers. The sample identification numbers 18, 19 and 20 in the original papers 
have been modified in to 28, 29 and 30. The samples with identification numbers 20 and 21 have 
been added and will be treated as supplementary samples that do not influence the analysis. 
Notice that sample 20 is actually a duplication of sample 17. The species numbered 31-33 have 
also been added and will be treated as supplementary species. For 20 out of the 22 sites we also 
have environmental data (Table 16.2). Five "environmental" variables were recorded at these 
sites, two of which are nominal. The (semi-) quantitative variables are (1) Al: thickness of the 
Al horizon (in mm), (2) Moisture: moisture content of the soil scored on a five-point scale, (3) 
Manure: quantity of manuring, also scored on a five-point scale. The nominal variables are (4) 
agricultural use, with the three classes hayfield, haypasture and pasture, and (5) management 
regime, with the four classes standard farming (SF), bio-dynamical farming (BF), hobby farming 
(HF) and nature management (NM). In the original data there were two missing values. For 
these the mean of the variable has been imputed. The imputed cells are indicated by an asterisk 
in Table 16.2. The original numbering of the samples is reflected in the sample code name in 
Table 16.2. The sample identification numbers correspond to those in Table 16.1. 
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Table 16.1 Dune meadow vegetation data of the island of Terschelling, The Netherlands. 
The table shows the abundance values (response values) of 33 plant species (rows) in 22 

sample plots (columns of one digit width). The values are on a 1-9 scale and replace 
the original codes of the Blaun-Blanquet scale. A blank (space) denotes absence. 
The data is a subset from M. Batterink and G. Wijffels (unpubl.). 

Samples 1111111122223 
123456789012345 67 01890 

species 

1 Achillea millefolium 13 222 4 2 2 
2 Agrostis stolonifera 48 43 45447 5 
3 Aira praecox 2 2 3 
4 Alopecurus genicula'tus 272 53 85 4 
5 Anthoxanthum odoratum 4 32 4 4 4 4 
6 Bellis perennis 3222 2 5 2 
7 Bromus hordaceus 4 32 2 4 
8 Ghenopodium album 1 
9 Cirsium arvense 2 

10 Eleocharis palustris 4 458 4 
11 Elymus repens 44444 6 
12 Empetrum nigrum 2 
13 Hypochaeris radicata 2 2 5 
14 Juncus articulatus 44 33 4 
15 Juncus bufonius 2 4 43 
16 Leontodon autumnalis 52233332352222 2 2562 
17 Lolium perenne 75652664267 2 
18 Plantago lanceolata 555 33 2 23 
19 Poa pratensis 44542344444 2 1413 
20 Poa trivialis 2765645454 49 2 
21 Potentilla palustris 22 
22 Ranunculus flammula 2 2222 4 
23 Rumex acetosa 563 2 2 3 
24 Sagina procumbens 5 22 242 3 
25 Salix repens 335 
26 Trifolium pratense 252 
27 Trifolium repens 52125223633261 22 
28 Vicia lathyroides 12 1 
29 Brachythecium rutabulum 2226222244 44 634 
30 Calliergonella cuspidata 4 3 3 
31 Hippophae rhamnoides 1 21 
32 Poa annua 3364 2 232 3 4 
33 Ranunculus acris 232 2 11 
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Table 16.2 Dune meadow environmental data 
Netherlands. 

The asterisk denotes an imputed value (the mean of 

of the island of Terschelling, The 

the variable). 

Sample 

Code name 

Sample 1 

Sample 2 

Sample 3 

Sample 4 

Sample 5 

Sample 6 

Sample 7 

Sample 8 

Sample 9 

Sample 10 

Sample 11 

Sample 12 

Sample 13 

Sample 14 

Sample 15 

Sample 16 

Sample 17 

Sample 18 

Sample 19 

Sample 20 

Sample 

Identification 

Number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

28 

29 

30 

Al 

horizon 

2.8 

3.5 

4.3 

4.2 

6.3 

4.3 

2.8 

4.2 

3.7 

3.3 

3.5 

5.8 

6.0 

9.3 

11.5 

5.7 

4.0 

4.6* 

3.7 

3.5 

Moisture 

1 

1 

2 

2 

1 

1 

1 

5 

4 

2 

1 

4 

5 

5 

5 

5 

2 

1 

5 

5 

Manure 

4 

2 

4 

4 

2 

2 

3 

3 

1 

1 

1 

2* 

3 

0 

0 

3 

0 

0 

0 

0 

Use 

Haypasture 

Haypasture 

Haypasture 

Haypasture 

Hayfield 

Haypasture 

Pasture 

Pasture 

Hayfield 

Hayfield 

Pasture 

Haypasture 

Haypasture 

Pasture 

Haypasture 

Pasture 

Hayfield 

Hayfield 

Hayfield 

Hayfield 

Management 

regime 

SF 

BF 

SF 

SF 

HF 

HF 

HF 

HF 

HF 

BF 

BF 

SF 

SF 

NM 

NM 

SF 

NM 

NM 

NM 

NM 
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17. Appendix B: Mathematical derivations 

17.1 Environmental biplot scores represent covariances or weighted 
averages 

In this section we show that the environmental biplot scores, given by equation (6.32), can 
in linear methods be obtained from a weighted regression of the weighted covariances between 
species and environmental variables on the species scores. For given species scores, the 
environmental biplot scores thus best approximate the covariances between species and 
environmental variables. We then show that, in unimodal methods, weighted averages between 
species and environmental variables are approximated. The formulae in this section hold for 
both direct and indirect gradient analyses, and also for supplementary environmental variables. 
For direct gradient analysis, the biplots have even stronger least-squares properties: not only the 
environmental arrows are optimally positioned but the species points are optimally positioned 
simultaneously, as shown in the Appendices of Ter Braak (1986, 1987) [Unimodal models: 
pp 72 and pp 80]. 

The weighted covariance of species k and environmental variable j is given by the formula 

(17.1) rjk = 2 j Wj Zij y ' i k / S; w ; 

If both the species data and environmental data are standardized to unit variance, covariances are 
equal to correlation coefficients. Let bk be the species score of species k on a particular 
ordination axis (k = 1, ... , m). The regression coefficient of the weighted regression of the 
covariances between the m different species and environmental variable j on the species scores 
{bk} yields 

(17.2) q* = Sk wk rjk bk / Sk wk bk
2 

where Cj is called the environmental biplot score for environmental variable j on the ordination 
axis. On inserting (17.1) in (17.2) and interchanging the order of summation, we obtain, 
consecutively, 

(17.3) Cj* = Sk wk ( li Wj zy y'ik / l i w; ) bk / Sk wk bk
2 

(17.4) Cj* = S; S k (w; w k zy y'ik bk / S k w k bk
2) / Si w ; 

(17.5) Cj =Si Wi Zy [ Sk wk y'ik bk / Sk wk bk ] /SjW; 

The term between square brackets is equal to the species-derived sample score Xj (6.19), so that 

(17.6) Cj = S j Wj Zjj X; / S j W i 

which is the weighted covariance between environmental variable j and the sample scores {x; }. 
Equation (6.32) is obtained from (17.6) by noting that the environmental variables are 
standardized to unit variance. 

Appendix B Page 479 



For unimodal methods the above theory carries over by noting that the weighted covariance 
(17.1) is actually a weighted average when using the definitions for WJ, given below (6.5) on 
page 157, and for y'jk, given by (6.16). On inserting these definitions in (17.1), we obtain 

(17.7) rjk = IiWi* yik Zi,7y+k = Si w;* yik Zy / S; w,* ylk 

the weighted average of species k with respect to environmental variable j (cf. (6.11) with 
a = 0). For unimodal methods in biplot scaling, bk = uk, and the formula for the species-derived 
sample score xi , equation (6.19), also holds true as was shown in equation (6.25). With these 
equivalencies the theory carries over. The factor 1-A,k in (6.32) for methods in Hill's scaling 
derives from the term 1/Zkbk

2 in (17.2) which differs a factor (1-A,) between Hill's scaling and 
the biplot scaling (compare (6.14) with (6.13) with uk replaced by bk). 

If there are covariables in the analysis, the environmental variables are adjusted for 
covariables. This means that each environmental variable is residualized with respect to the 
covariables, i.e. the environmental data are replaced by the residuals of the regression of the 
environmental data on the covariables (see Unimodal models: pp 134 - 138). After the 
replacement, the {zy} in equations (17.1) - (17.7) represented the residualized environmental 
data. The covariance (17.1) is then a partial covariance in terms of the original variables. By 
consequence, if there are covariables in the analysis, the species scores and environmental biplot 
scores represent, in linear methods, partial covariances and, in unimodal methods, weighted 
averages with respect to residualized environmental variables. 

17.2 Environmental centroid scores represent class means or class 
totals 

Each nominal environmental variable groups samples in to a number of classes. The mean 
abundance of a species in a class is called its class mean. In this section we show that the 
centroid scores, given by equation (6.34), can in linear methods be obtained from a weighted 
regression of the class means on the species scores. For given species scores, the environmental 
centroid scores thus best approximate the means of species in environmental classes. We then 
show that, in unimodal methods, relative class totals are approximated. The formulae in this 
section hold for both direct and indirect gradient analyses and for supplementary environmental 
classes. For direct gradient analysis, the biplots have even stronger least-squares properties: not 
only the environmental points are optimally positioned but the species points are optimally 
positioned simultaneously, as shown in the Appendix of Ter Braak (1994) [Unimodal models: 
ppl51] . 

The weighted mean abundance of species k in class j , indicated by the dummy variable zy, 
is defined by the formula 

(17.8) m j k = SiWiZijy' i k /EiWiZy 

For class j , the regression coefficient of the weighted regression of the class means {mjk} [k = 1, 
..., m] on the species scores {bk} [k = 1, . . . , m] is given by 

(17.9) e/ = 2k wk mjk bk / Skwk bk
2 

On inserting (17.8) and (17.9) and interchanging the order of summation, we obtain, analogously 
to the derivation in the previous section below equation (17.3) 
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(17.10) Cj = Ei Wj Zij Xj /SiWiZy 

which is precisely the centroid scores defined in (6.34). 

The class mean (17.8) has a special meaning in unimodal methods. On inserting the 
definitions for Wj, given below (6.5) on page 157, and for y'ik, given by (6.16), in (17.8), we 
obtain 

(17.11) nijk = (y++/y+k) Si w;* zy yik / E; w;* yi+Zij = Yjk y++ / (Yj+Y+k) 

where, in a loose, but informative notation, yjk is the total abundance of species k in class j and 
yj+ is the total abundance across all species in class j . With this notation, (17.11) is analogous to 
the transformation (3.6), that is implicit in (canonical) correspondence analysis. The notation 
emphasizes that a class acts as a super sample: mjk is related to the total abundance yjk in the 
class as y'ik is related to yik. On inserting (17.11) in (17.9) yields (17.10) if the biplot scaling is 
used. The class centroid q is thus the result of the weighted regression of the relative class 
totals mjk on the species scores. The class centroids and species scores together thus form a 
biplot that represents the relative class totals. These totals are fitted by weighted least-squares. 
The interpretation is precisely as that of the biplot of samples points and species points, namely 
in terms of either yjk/yj+ or yjk/y+k, as described in sections 6.3.4 and 6.3.5, and as summarized 
on page 171 of Unimodal models,. 

In Hill's scaling, the class centroids and species scores do not form a biplot. Nevertheless, 
the plot represents the (relative) class totals by the centroid principle: the centroid scores Cj 
given by (17.10) and the sample scores x; have the same relation to the species scores {uk}. In 
particular, by inserting (6.21) in (17.10), we obtain, analogously to (6.21), 

(17.12) Cj* = Xa'] SkWkVjkUk / SkWk*yjk 

The interpretation is thus precisely that of a joint plot of sample points and species scores in 
Hill's scaling. The derivation shows that the class point is added in very much the same way as 
a supplementary sample, using as data the values yjk. The same can be shown in linear methods, 
with the data {y'ik} replaced by the means {mjk}. 

The environmental centroids also have an attractive interpretation when there are 
covariables in the analysis, namely in terms of adjusted means and adjusted totals. Adjusted 
means and totals are means and totals from which the effects of the covariables have been 
removed by regression. This is most easily proven by using projection operators and matrix 
algebra, but the essence of the proof is given here in terms of residuals of regressions on the 
covariables. If there are covariables in the analysis, the centroids are still calculated by equation 
(17.10). The species-derived sample scores {x; } are uncorrected with the covariables, because 
they have been regressed on the covariables (see Step A3 and (A. 16) in Unimodel models: 
pp 136-137). This means that both sides of equation (17.10) can be interpreted as residuals of 
a regression on the covariables. Carrying this interpretation over from (17.10) to (17.9) implies 
that the right-hand side of (17.9) should not change if replaced by residuals of a regression on 
the covariables. Therefore, the {mjk} must be uncorrected with the covariables, i.e. the {mjk} are 
adjusted means. An adjusted mean is the mean of a residualized variable. In the present case, the 
species data {y'ik} are residualized, i.e. y'ik in equation (17.8) is replaced by the residual of the 
regression of the species data {y'ik} on the covariables. 
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17.3 Sum of all canonical eigenvalues (trace) 

The trace, if reported as result of the Monte Carlo test, is equal to the sum of the canonical 
eigenvalues. The subsection gives the short-cut formula by which the sum of the canonical 
eigenvalues is calculated, using the notation of the Appendix of Ter Braak & Prentice (1988) 
[Unimodal models: ppl34-138]. Their notation differs from that in this manual in that samples 
are columns, not rows. The sum of the canonical eigenvalues is calculated in CANOCO as the 
trace of the matrix 

(17.13) R^YZ^ZzWZz')"1 Z2Y 

where Z2 is the "Z2 with tilde" in Ter Braak & Prentice (1988). 
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18. Appendix C: Format of (W)Canolmp files 

This appendix gives a formal description of the output files produced by Canolmp and 
WCanoImp. The condensed-format data files have the following general format (characterized 
here by a FORTRAN format specification, which appears on the second line of the output data 
file): 

(I5,1X, <NPL>(I6,F<w>.<p>)) 
where <w> is the total width of the single value field (plus one, to get the values preceded by 
a blank ), <p> is the number of decimal digits, and <NPL> is the number of the data couples per 
a single line (so that the line is no longer than 80 characters in total). 

The full-format data files have the following general format (displayed again as 
a FORTRAN format specification): 
(15, IX, <N>F<w>.<p>) 

where <w> and <p> have the same meaning as before and <N> is the number of variables in the 
data set. That form is used if all the values for a single sample fit into one row of the output file. 
If not, the following format specification is used: 

(15, IX, <N>F<w>.<p>, <NL>(/6X, <N>F<w>.<p>)) 

where <w> and <p> have the same meaning as before, <N> is the maximum number of value 
fields fitting on a single line of the output file, and <NL> is the number of the continuation lines 
needed to display values of the all variables in the data set. Note that the value of (<NL>+1) * 
<N> might be, in fact, larger than the number of variables in the data set. In any case, the correct 
number of variables is given on the third line of the output data file and this is the number used 
by CANOCO when reading the data files. 
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19. Appendix D: CanoDraw software setup 

CanoDraw supports work in a networked environment and generally in any environment with 
increased security restrictions (e.g. where the installation directory is read-only for the ordinary 
users). In the following comments, I discuss various aspects of the CanoDraw setup which might 
be useful for a system administrator who wants to assure unlimited use of CanoDraw in such 
environments. 

* CanoDraw for Windows can be installed either as part of a new installation of the Canoco 
for Windows package or as an upgrade of the already installed Canoco package. During the 
software installation, the CanoDraw setup program modifies settings stored in the 
HKEY LOCAL MACHINE sub-tree of the Windows™ registry, so it must be installed by 
an user with administrative rights. 

* On the other hand, the CanoDraw program itself does not modify the 
HKEY LOCAL MACHINE registry sub-tree, but only modifies the entries in the registry 
sub-tree corresponding to the current user. CanoDraw settings are stored in the key named 
HKEY CURRENT_USER\ Software\ SmilaueA CanoDraw4.0, which has several subkeys. 
Most of the key values stored in this CanoDraw subkey should not be directly modified with 
the registry editor, because they are accessible using the CanoDraw for Windows user 
interface (particularly in the dialog boxes invoked by the menu commands View / Diagram 
Settings, View / Visual Attributes, and View / Workspace Settings). The only exception is 
discussed in the next paragraph, which is an option, which can be modified by the system 
administrator. 

* CanoDraw stores most of the current settings corresponding to the options in Diagram 
Settings and Visual Attributes dialog boxes at the time of application exit and retrieves them 
again when the application starts. For Windows NT 4.0, Windows 2000, and Windows XP, 
these data are stored in the Windows™ registry, as a binary value (type REGBINARY) 
named Global, with an approximate size of 101 KB. The Global value is set for the key 
named HKEY CURRENT_USER\Software\Smilauer\CanoDraw\Settings. The Windows 
registry does not accept such large data on the operating systems Windows 95, Windows 98, 
or Windows ME, so CanoDraw must store these defaults in a file. The default file name is 
settings.ini and its location is identical to the folder where the CanoDraw program file 
(canodrw4.exe) is stored. This might cause problems in the situation where the installation 
directory is not available for writing for the programs started by ordinary users and where 
user's profile roaming needs to be supported. When looking for the settings file on Windows 
9x or Windows ME, CanoDraw first checks a registry key named HKEY CURRENT USER\ 
Software\ SmilaueA CanoDraw4.0\ Global, looking for the value named SettingsFile (with 
string type REGSZ). This value is stored in the registry for each user at the time CanoDraw 
first starts (under the above-listed types of operating systems) if it is not already present 
there. If found, CanoDraw takes it as a full path (containing both the volume and folder 
address and the file name and extension) to the file from where the settings should be 
retrieved at the program start and where the settings are stored at the program exit. You can 
therefore use this registry value to relocate the position of the file to another place. Note that 
you must setup the file location separately for each user, because the contents of the 
HKEY_CURRENT_USER sub-tree changes depending on the identity of currently 
logged user. The recommended path is <WindowsNT-dir>V3ro/z/esl<user-
name>\Application Data\CanoDraw\settings.ini, but you must create the innermost folder 
{CanoDraw) yourself, it is not created by CanoDraw. 
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20. Index 

Active species and samples • 117, 174, 227 
AIC • 344 
Algorithms • 35, 36, 38, 64, 164, 307, 311 
Amplitude ecological • See Species tolerance 
Analysis of concentration -173 
Analysis of variance • 14, 51, 63, 104, 172, 210, 212, 260, 

262, 265 
Arch effect • 62, 88, 191, 192, 220, 226, 238 
Attribute plot • 395 
Autocorrelation • 45, 54, 109, 214, 272, 279 

B 

Before-After Control-Impact design • 54, 104, 110, 210, 
212, 279, 282, 284, 286 

Bell-shaped response curve • See Gaussian curve 
Biplot-34, 194,390 

interpolative • 41 
predictive • 41 
regression • 41, 54, 56,164, 180, 181, 255, 394 
rule • 40, 41, 56, 91, 195, 196, 231, 302,414 
T-value • See T-value biplot 

Biplot scaling • 41, 92, 144, 147, 151, 159, 169, 196, 242, 
480 

Biplot scores of environmental variables • 41, 137, 141, 
153,156,168,182,194,479 
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