# The Economic Feasibility of Aquaponics

A post-hoc Cost-Benefit Analysis of investing in a fish vegetable farm near Dumaguette, Philippines

August 2016: Roel Bosma







## Until 2015 economic feasibility little studied

Aquaponics = producing fish and vegetables

- ✓ in a closed-loop water system,
- ✓ reduces fertilizer use and effluent discharge,
- ✓ fish effluents suppress fungal diseases and stimulated root growth in tomato.
- => promoted as a sustainable venture.

Economic feasibility poorly studied since 1999:

Chaves P.A, Sutherland RM & Laird LM, 1999. An economic and technical evaluation of integrating hydroponics in a recirculation fish production system. Aquac. Econ. & Management 3(1): 83-91

Love DC., Fry JP, Ximin Li, Hill ES, Genello L, Semmens K, Thompson RE, 2015. Commercial aquaponics production and profitability: Findings from an international survey. Aquaculture 435 (2015) 67–74.



3

#### Methods

ACT group of 7 MSc students from various nationalities:

- Literature and grey literature
- Survey by phone and e-mail;
- System simulation => Post-hoc cost-benefit analysis,

Nutrients in effluent of fish component =>

- volume of fish tank : area vegetables 1:30 to 1:100 depends on used species of both.
- => farm size set by quantity marketable fresh vegetables.

Kaikanen et al., 2012: N-output of the fish component.

Mori et al., 2008: Tomato's N-demand (vegetative & fruit).

De Pinheiro Henriques & Marcelis, 2000: Lettuce N-demand.

ACT= Academic Consultancy Training = Interdisci--plinary Group Assignment on a real world question.



#### Methods

- Discounted benefit-cost :  $DBCR = [\sum_{t=0}^{n} B_t/(1+r)^t]/[\sum_{t=0}^{n} C_t/(1+r)^t]$ Bt = benefit in yr t; Ct = cost in yr t; n = project length (yr); r = discount rate: 8%, similar projects between 6% and 10%.
- Cost prices for materials from local providers & survey.
- Operational cost : insurances not included.

For taxes: two scenarios: without and with taxes.

VAT = not paid when farmers sell directly to consumers & when total gross sales are below 1.919.500 PHP.

Fingerling catfish 12 PHP/pcs ; seabass 24 PH/pcs Feed catfish 34 PHP  $kg^{-1}$ , seabass: 51 PHP  $kg^{-1}$ 

- Revenues: wholesale prices, i.e. farm-gate price,
  - Tomato's: 18 PHP kg-1; Lettuce: 55 PHP kg-1.
  - Catfish: 79 PHP kg-1; Seabass: 300 PHP kg-1.



Investments: Material Amount Life span (yr) Greenhouse 542.5 5,10,20\* Cost (\*1,000 PHP) Media beds 411.9 1,3,5,20\* for the materials 115.1 Land n.a. and the life. Roof for fish tanks 40.7 10 Bio-filter 30.8 10 Depending the 27.0 Fish tanks 10 component 27.0 Plumbing 10 and its material. Crates for vegetables 26.0 3 15.5 Well for fresh water 20 5.9 Air pump 10 5.0 5 Fishing gear Water pump 4.9 5 Test toolkit 2.2 10 Clarifier 5 1.4 Trays for seedling 1.2 0.33;1\* Fish transport container 0.7 Total amount **1,259.8** = USD31,500

# Operational cost (\* 1,000 PHP)

| Description                | Amount |  |
|----------------------------|--------|--|
| Seeds                      | 27.6   |  |
| Fertilizer                 | 7.0    |  |
| Fingerlings catfish        | 17.5   |  |
| Fingerlings seabass        | 35     |  |
| Feed catfish               | 22.6   |  |
| Feed seabass               | 34     |  |
| Treatment pests & diseases | 5.5    |  |
| Electricity                | 35.5   |  |
| Transportation             | 3.9    |  |
| Repairs                    | 12.0   |  |
| Labour                     | 184.8  |  |
| Total amount               | 316.4  |  |

## Cost Benefit Analysis for catfish

CBA over 20 year for aquaponics with catfish only (\*1000 PHP)

|                       | Year | 1     | 3   | 4   | 8   | 11 | 12  | Total |
|-----------------------|------|-------|-----|-----|-----|----|-----|-------|
| Total Disc. Investme  | nt   | 1,683 | 16  | 42  | 11  | 83 | 8   | 2,079 |
| Total Disc. Operation | al   | 301   | 271 |     |     |    | 136 | 3,339 |
| Total Disc. Revenus   |      | 407   | 510 |     |     |    | 255 | 6,115 |
| Undisc. Net Benefits  |      | 1,150 | 259 |     |     |    | 259 | 3,336 |
| NPV = Disc. Net Ben   |      | 1.150 | 222 | 178 | 151 | 48 | 111 | 1,131 |

Disc. Benefit / Cost = TD Revenus / (TD Inv.+ TD Oper.)

|     | <b>No VAT</b><br>Catfish |        | <b>No VAT</b><br>Seabass |       | Catfish / seabass |       |         |       |  |
|-----|--------------------------|--------|--------------------------|-------|-------------------|-------|---------|-------|--|
|     |                          |        |                          |       | No VAT            |       | 10% VAT |       |  |
| r   | 10 yr                    | 20 yr  | 10 yr                    | 20 yr | 10 yr             | 20 yr | 10 yr   | 20 yr |  |
| 4   | 1.16                     | 1.31   | 1.61                     | 1.81  | 1.38              | 1.61  | 1.21    | 1.42  |  |
| 8   | 1.10                     | 1.23   | 1.53                     | 1.70  | 1.29              | 1.52  | 1.14    | 1.32  |  |
| 16  | 0.99                     | 1.07   | 1.42                     | 1.54  | 1.17              | 1.33  | 1.02    | 1.13  |  |
| T v | VAGENIN                  | GEN UR |                          |       |                   |       |         |       |  |

### Discounted Benefit Cost Ratio

Insurance not in Operational cost =>

DBCR > 1.3

Paying insurance = benefit shareholder = loss farmers. Capital investors want >12% benefit on their investment.

In LDCs: Interest rate < 8% are rare =>

- Aquaponics with catfish only too risky;
- Fish needs to focus on niche markets (expensive fish);
- · Start with catfish for testing and learning but
- shift to seabass as soon as possible;
- When paying tax need to find better paying buyers.



# Contribution of fish component to revenue, investments and operation

Netherland's farmers did not adopt aquaponics with tilapia:

- fish component asks relatively too much capital and effort.
- Accounting to the fish component:
  - 100% of the cost for fingerling,
  - 50% for feed and electricity, and
  - 20% for transportation, repairs and labour.
- The operation cost attributable to
  - catfish was estimated at 28%
  - seabass was estimated at 34%.
- In case of catfish only, revenues from fish =17% of total
- After the shift to seabass this contribution > 40% of total.



Integration of fish - vegetables

Aquaponics

Financially sustainable if:

- 1. High end niche market for fish,
- 2. large market for fresh organic vegetables.



11