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Abstract 
 

Forest inventories are mainly based on satellite data for monitoring changes and management 

applications. The latest developments in Unmanned Aerial Vehicles (UAVs) allow rapid 

acquisition of very-high resolution (VHR) data, that could enhance forest inventories with 

information at individual tree level. This study showed that it is possible to extract top of canopy 

(TOC) individual tree crown (ITC) shape parameters based on UAV acquired data, in a dense 

tropical forest. Field survey measurements and terrestrial laser scanning (TLS) data were used for 

validation. 

To overcome geo-referencing inaccuracies of multi-source data a semi-automated co-

registration was proposed. The point clouds derived from photogrammetric processing of 

airborne VHR images and TLS, and field survey measurements, were successfully co-registered 

based on: point clouds to meshes generation, transformation matrices derived by rough and fine 

alignment based on the iterative closest point (ICP) algorithm and trunks mapping. A region 

growing method was followed for the ITC delineation approach with an accuracy of 69.2%, taking 

advantage of the availability of the VHR orthomosaic and the digital surface model (DSM). Based 

on a DSM filtering and local maxima (LM) approach the treetops were detected and used as seeds 

for the geographical object-based image analysis (GEOBIA) on the region growing method. The 

delineated ITC polygons were used for the segmentation of the point clouds. 

A hemi-ellipsoid model approach was proposed, and proved successful for fitting the point cloud 

segments and extracting the upper crown height and width, and the crown curvature. The results 

showed that the hemi-ellipsoid fitting could describe adequately 54.1% of the segments, while 

the erroneous ITC delineation (over- or under-segmentation) is the main reason for model fitting 

failure. Photogrammetric point clouds (PPCs) are an approximation of the real tree crown and 

the hemi-ellipsoid is a simplified way for modelling trees, both influencing the success of this 

approach. The statistical assessment of crown shape parameters for species delineation, in order 

to validate consistency, showed that trees of the species Tristaniopsis whiteana and Dehaasia 

caesia Bl. (Pelawan, Perawas in local name) clustered when tested in paired comparison with 

other species. However, it is not feasible to discriminate between all different species of the 

tropical forest solely based on these parameters. Crown curvature is the most appropriate 

parameter for species discrimination compared to crown height and width.  

Overall, the crown shape parameters are useful for management and monitoring applications on 

forest inventories. Specifically, for forests undergoing development, detection of disturbances, 

growth trends, thinning operations, forest fire and disease spread simulations can take 

advantage of shape parameters. An effort is made within this report on the documentation of 

the possible capabilities and limitations of these parameters. 

Keywords: co-registration, hemi-ellipsoid fitting, crown shape parameters, Unmanned Aerial 

Vehicles, 3D point clouds, tropical forests, geographical object-based image analysis 
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1. Introduction 
 

1.1. Context and Background 
 

1.1.1. Importance of forests 

Forests are of major importance considering their ecological and economical value. Forests 

preserve soil, water, carbon, and biodiversity while nearly one third of earth’s population rely on 

forests resources (FAO, 2014). Globally forests face natural and human-driven disasters such as 

fires, diseases, illegal logging, and converting forest areas to agricultural or other land use due to 

population growth. These disasters, and changes in land use result to deforestation, and forest 

degradation. For the reduction of emissions related to deforestation and forest degradation 

programs like REDD+ were initialized in order to motivate less developed countries towards 

sustainable forest management. Since 2005, estimations show that globally deforestation rate 

was reduced, although still tropical forests are subjected to degradation and deforestation which 

accounts for 12-20% of the global greenhouse gas emissions that contribute to climate change 

(FAO, 2014; Van der Werf et al., 2009). In Southern Asia between 1990-2005 the annual 

deforestation rate actually increased emphasizing the need for consistent monitoring 

applications (Sodhi et al., 2010).  

 

1.1.2. Monitoring forests 

The national forest inventories (NFI) are using remote sensing (RS) techniques with sample-based 

procedures in order to acquire information about forest resources (Koch, 2013; McRoberts and 

Tomppo, 2007). RS techniques are used for mapping forest area and volume, by deploying 

optical, radar, and laser sensors in platforms of different elevation (ground, aerial, and satellite) 

(Fagan and Defries, 2009). Global estimations accuracy rely on the quality of data acquisition and 

depend on statistical errors which are causing uncertainties in monitoring trends in forest areas 

(Grainger, 2008). By reducing the uncertainty, and increasing the accuracy of forest volume and 

area measurements, programs like REDD+ can monitor efficiently the progress of countries 

involved (Herold and Schiller, 2009).  

The more information we can provide about the structure of the forested area the better we can 

understand forest growth trends, allometric relationships, biomass volume variations, and use as 

additional input in species classification. Structural parameters of the tree’s crown can facilitate 

forest management applications, which could result in higher accuracy of forest mapping and 

support the regional and national forest inventories. 
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Most applications rely on satellite missions such as MODIS, and Landsat for monitoring forests in 

a coarse pixel size (Hansen et al., 2009) but the last two decades there is an increasing interest 

for fine scale applications. For the acquisition of VHR data both satellites, and airborne vehicles 

are used; such as UAVs. UAVs that are capable to carry on-board sensors, and to acquire VHR 

data for retrieving structural and spectral information of the forests mostly are referred as 

Unmanned Aerial Systems (UAS). Autonomous UAVs are considered as low-cost compared to 

manned aerial systems (Eisenbeiß, 2009). The technological advances made this possible with 

the miniaturization of metric and non-metric cameras, and GNSS systems (Colomina et al., 2008).  

Koch et al., (2008) refer to the available techniques for forest monitoring and emphasize the 

successful use of light detection and ranging (LiDAR) techniques for regional inventory level. Due 

to operational restrictions of the TLS, and the need for larger area coverage, most studies refer 

to point cloud data collected by airborne laser scanning (ALS), and combination with aerial high 

resolution images (Dalponte et al., 2012; Moffiet et al., 2005; Monnet and Mermin, 2014; Ørka 

and Dalponte, 2013; Orka et al., 2012). ALS and TLS are capable for accurate individual tree 

detection and segmentation in dense forests thus proven in several studies as the most accurate 

techniques for forest volume measurements. However, still are considered as the most data 

intensive, and operationally expensive techniques (Calders et al., 2015; Fagan and Defries, 2009).  

Lately, the capabilities of photogrammetric point clouds (PPCs) acquired by UAVs, are explored 

and compared with the ALS point clouds. Reconstructing the three dimensional (3D) forest model 

with photogrammetric techniques, based on data derived from a UAV, is often a good alternative 

to satellite (models from VHR stereo pairs), and manned aerial systems depending on the study’s 

accuracy requirements. The top of canopy, individual trees delineation performance, tree-

species or tree-type distinguishing ability, and stems mapping are some of the applications where 

PPCs show comparable results with ALS point clouds (Fritz et al., 2013; Rosca, 2015; St-Onge et 

al., 2015). Both VHR optical, and laser data can provide tree-level information based on the 

individual or semi-individual tree crown (ITC) delineation approaches. As mentioned in Orka et 

al. (2012) an increase in classification accuracy can be achieved when different datasets are 

combined using the ITC delineation approach.  
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1.2. Problem Definition 
 

The co-registration of multi-source data is a topic addressed in many studies since it is the only 

way to make valid comparison of datasets and perform further analysis. Finding the least time 

consuming and most accurate approach regarding the requirements of the study, is not always a 

straightforward task. Often, for data geo-referencing during field and aerial surveys the 

differential global navigation satellite systems (DGNSS) are used (Olofsson et al., 2008; Ørka and 

Dalponte, 2013). 

Multi-source data might come with different coordinate systems. Although the different 

coordinate systems can be easily converted into the same system (i.e. WGS84) considering the 

geo-referencing procedure is accurate, in tropical forests there are conditions that can influence 

both the accuracy of the original geo-reference and the quality of the data. Some of these 

conditions are: signal attenuation of the GPS signal in ground measurements due to the dense 

forest canopy (Kaartinen et al., 2015), human induced errors in field survey measurements, 

occlusions on the LiDAR data, duplications in the photogrammetric point cloud (due to the 

reconstruction process) which are also expected to influence the co-registration process in this 

study.  

In order to deal with geo-referencing errors in two dimensional (2D) data, transformations are 

quite common (i.e. image to image, image to map, based on gcp’s orthorectification). However, 

there is no clear approach on performing spatial transformations in point clouds. Most point 

cloud matching algorithms come from the domain of computer vision, some require reference 

points (buildings, crossroads, gcp’s etc.), in order to perform a fine registration (Armenakis et al., 

2013) while some rely on detecting three dimensional self-similarities within the point clouds 

(Huang and You, 2012). In tropical forests it is not as easy to find recognizable features that could 

be used as reference compared with urban areas. Since the source of the point clouds is different 

(photogrammetric and TLS) there will be differences in the point spatial distribution and density 

which can cause confusion in automated matching algorithms. Another issue is that some of 

these algorithms are not open source, therefore cannot be further tested. 

Besides the co-registration, the segmentation of individual trees within the point clouds can also 

be affected by the way branches merge between neighboring trees in dense tropical forests. 

Many studies refer to object based image analysis (OBIA) for ITC delineation when data such as 

VHR orthomosaic and DSM are available. OBIA accounts for several factors (textural, spectral, 

spatial etc.) thus it is estimated that crowns delineated with this approach are useful for the point 

cloud segmentation. 
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The study of Onge et al. (2015) showed that ITC delineation and tree species classification 

accuracy is similar between photogrammetric point clouds (combining 3D shape and spectral 

properties), and ALS point clouds. However, this approach was successful on the classification of 

four species, thus the results could differ when having more species or/and without the use of 

spectral information. Moreover, several approaches exist to derive crown shape parameters 

from ALS point clouds, by modelling the entire tree crown (Holmgren and Persson, 2004), 

however research is limited on crown shape parameter extraction from photogrammetric point 

clouds.  

The appropriate modelling approach is related to the selection of parameters that are expected 

to be extracted thus these parameters should be useful for forest management and monitoring 

applications. In order to identify these parameters, it is essential to review the input parameters 

used in simulation applications for forest management. For example, in BehavePlus (fire 

behaviour modelling system) among the other parameters the crown width and height are of 

importance (Andrews, 2009). In the recent research of Pimont et al. (2016) the following 

parameters prove to be valuable: the diameter at breast height (DBH), crown diameter, crown 

height, and crown geometry (ratio of maximum diameters to heights). These parameters are 

valuable for modelling purposes on thinning, pruning, clearing and prescribed burning. Also are 

identified as important for forest fire modelling, biomass and other canopy structure variables 

through allometric equations (Chen and Qi, 2013; Keane et al., 2012; Reinhardt et al., 2006). 

 

1.3. Research Objectives and Research Questions 
 

The main objective of this study is to propose a methodology for the extraction of individual tree 

crown shape parameters in tropical forests based on a photogrammetric point cloud. A second 

objective is to investigate the consistency of these parameters, by performing a statistical 

analysis on correlation of species based on these parameters. Furthermore, a review will be done 

for potential usage of these parameters regarding forest inventories. In order to derive the ITC 

point clouds and link them with the field survey records a co-registration approach of multi-

source data is mandatory. In order to fulfil these objectives, three separate but sequential 

research questions have been formulated:  

 

RQ 1. Can a semi-automated methodology be applied for co-registration of UAV, TLS, and field 

survey data? 

 RQ 1.1. How to co-register point clouds coming from different sources? 

 RQ 1.2 How to co-register point clouds with field survey measurements? 
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RQ 2. How can the crown shape parameters be extracted from the point clouds? 

 RQ 2.1. How to derive individual tree point clouds? 

 RQ 2.2. What model fitting approach to use for the crown shape parameters extraction? 

 

RQ 3. Are crown shape parameters consistent and what are potential applications for these 

parameters? 

 

1.4. Outline 

The second chapter, reviews the available research methods and techniques, indicating the close 

relationship of RS and forestry. It is essential to investigate how previous studies addressed 

similar challenges, and whether these solutions are applicable in this study. The third chapter 

starts with an introduction to the study area and the available dataset, and presenting the 

methodology followed from pre-processing up to the statistical analysis. To allow coherence in 

chapter three, the pre-processing results are also included. The fourth chapter, consists of the 

results of the processing, towards answering the second and third research question. The fifth 

chapter consists of a detailed discussion and evaluation of the methodology. The sixth chapter 

contains the conclusions and recommendations for future studies in order to facilitate similar 

topics. 
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2. Literature Review 

2.1. Data Co-Registration 

Depending on the quality of the datasets and the requirements of the study there are manual, 

automated and semi-automated techniques. Hauglin et al. (2014) showed that it is possible to 

co-register different datasets manually based on the coordinates of single trees and visual 

interpretation, however this approach is rather time consuming and not applicable for an 

operational scale. An algorithm was proposed by Olofsson et al. (2008) for automated co-

registration of field survey data and remotely sensed data based on the canopy height model 

(CHM) and single trees detection. This method requires a high point density, and very accurate 

measurements during the field survey regarding the location of single trees (measured with 

GNSS).   

The values of diameter, instead of tree height has also been studied for co-registration purposes 

(Monnet and Mermin, 2014). In other studies, algorithms were developed by combining GPS 

measurements and topographic surveying (Pascual et al., 2013). Dorigo et al. (2010) used the 

angle count sampling method related with the DBH. Advanced co-registration approaches 

between point clouds are based on the ICP algorithm (Yu et al., 2006), 3D self-similarity 

parameters (Huang and You, 2012) and plane correspondence (Armenakis et al., 2013). Hausdorff 

distance algorithm was also used for matching ground trees with TLS trees (Beauchemin et al., 

1998). 

During the data collection of this study, the location of individual trees was determined by the 

fieldwork teams based on a local grid (local coordinate system (0,0)) by measuring the x, y 

distance from origin, along with other survey parameters (species registration, DBH and height 

measurements). For the TLS-based data global, project, and local coordinates (different from 

survey data) are available deriving from the GPS device mounted on the TLS. The UAV-based data 

are geo-referenced based on the inertial navigation system (INS-GPS, global coordinates) of the 

hyperspectral mapping system (HYMSY). One of the objectives of this study is to develop a semi-

automated methodology for data co-registration regarding the photogrammetric and TLS point 

clouds, and field survey data. Treating the point clouds as a surface through mesh reconstruction 

and using algorithms appropriate for matching point clouds are some of the techniques that will 

be further investigated. A point of attention is to ensure that spatial resolution remains the same 

within the different data, in order to do comparisons and estimate the co-registration accuracy. 

The UAV INS-GPS measurements are treated as the most reliable source, because the signal is 

not attenuated by the tree’s canopy and hence will be used as reference in order to correct the 

TLS-based and field survey data. 

 



7 
 

2.2. Treetop Detection and Individual Tree Crown Delineation 

According to Wang et al. (2004) ITC delineation is considered as a high-level vision problem, and 

four different types of algorithms have been developed for automatic delineation: local maxima 

(LM)-based, contour-based, template-matching-based, and 3D model-based methods. There are 

several stages for the ITC delineation, the main are: detecting the treetops by geometry and/or 

radiometry, detecting the crown boundaries, and performing a segmentation method. 

Several studies refer to the LM approach for treetop detection (Holmgren and Persson, 2004; 

Persson et al., 2002; Popescu and Wynne, 2004; Suratno et al., 2009; Tiede et al., 2005). 

Regarding multispectral/hyperspectral imagery (satellite or aerial), Brandtberg and Walter (1998) 

used an edge detection approach for mapping the crown boundaries (gradient-based), whereas 

Gougeon and Leckie (2006) used a valley-following method (intensity-based). Regarding LiDAR 

data, crowns are delineated either from a smoothed CHM after finding the local maxima or 

directly from segmenting the point cloud. Zhang et al. (2015) refer to the tree climbing algorithm 

for treetop detection and to the donut expanding and sliding algorithm for tree boundary 

extraction, using LiDAR data. The watershed segmentation approach is frequently used according 

to the literature review for both datasets (LiDAR and hyperspectral images) (Alonzo et al., 2014; 

Heurich, 2008; Holopainen et al., 2013; Hyyppa et al., 2000; Latifi et al., 2015; Reitberger et al., 

2009, 2008; Wang et al., 2004; Xiao, 2012). Recent studies refer to the 3D segmentation as a 

promising approach in forest structural parameters, capable of detecting smaller trees 

(Jakubowski et al., 2013; Reitberger et al., 2009; Yao et al., 2012).  

Moreover, object-based image analysis can be used for individual tree detection because of the 

availability of VHR orthomosaics, and the powerful algorithms of eCognition software (Blaschke, 

2010; Jakubowski et al., 2013). Objects are clusters of pixels with similar spectral, spatial, 

morphological, contextual and temporal properties. Compared to image-based analysis, these 

multidimensional properties of the objects are an advantage (Kumar, 2006). As recommended 

by the minor thesis of Nurhayati (Nurhayati, 2015), VHR orthomosaics can be segmented based 

on the OBIA approach in order to delineate the tree crowns. In this study, OBIA will be referred 

as geospatial object based image analysis (GEOBIA) in order to acknowledge the geographic 

related discipline, as the term OBIA is used broadly in many disciplines. According to (Blaschke et 

al., 2014) GEOBIA is based on the concept of all the previous segmentation methods (edge-

detection, feature extraction), while offers a good potential when spectral properties are not 

unique by using distinct shape or neighborhood relations, texture, context and pattern mining, 

semantics and knowledge integration. 

The reason that so many different methods are proposed by literature is that tree crowns in 

tropical forests are irregular and relatively complex, while advances in technology provide more 

alternatives in methods (development of powerful software and acquisition of high resolution 

data). Once the ITC delineation is achieved, it can be used for the photogrammetric and TLS point 
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clouds segmentation. Then an inventory of each tree’s field survey data, photogrammetric and 

TLS point cloud segment can be created. 

 

2.3. Model Fitting and Crown Shape Parameters Extraction 

A model is an abstract and partial representation of some aspect or aspects of the world that can 

be manipulated to analyse the past, define the present, and to consider possibilities of the future 

(Couclelis, 2000). The art of modelling lies in making the right decisions on the aspects of the real 

world to include. In order to do that the following must be specified: a) the goal of the model, b) 

the available data, c) the skills of the modellers (Ligtenberg, 2016). 

Model fitting of individual trees from point clouds can be done by various methods, generally 

including segmentation algorithms followed by geometric fitting of tree attributes. The following 

geometric fitting methods for tree reconstruction are frequently used: 3D voxel-space and fitting 

cylinders (Gorte and Pfeifer, 2004), neighbor-relations and locally connected surface patches 

(Raumonen et al., 2013), vector model of individual trees for feature extraction (Pyysalo and 

Hyyppä, 2002), 3D cylinder reconstruction (Burt et al., 2013), alpha shapes (Holmgren et al., 

2008), wrapped surface reconstruction and locally applied regression model (Kato et al., 2009), 

implicit surface reconstruction through iso-surfaces (Kato et al., 2007), and ellipsoid modelling 

(Shahzad et al., 2015; Sheng et al., 2001). 

According to literature the basic structural parameters for forest management applications 

suitable for tree species discrimination are the crown length, crown width, DBH, and tree height 

(Korpela et al., 2007; Morsdorf et al., 2004; Pratihast, 2010; Vaccari, 2013; Zawawi et al., 2015; 

Zhang et al., 2015). The majority of the previous studies refer to urban areas or small patches of 

trees, but for tropical forests it is not certain how the segmentation and model fitting algorithms 

will perform. For the purposes of this study the crown length and width, and curvature (concavity; 

upward or downward) will be extracted.  
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3. Methodology 
 

3.1. Study Area 

The study area is located nearby Mentaya river in the peat swamp forests of Central Kalimantan 

province, Indonesia (Figure 3). The climate in this area is characterized as tropical rainforest with 

precipitation rates of 2.776 – 3.393 mm per year. The rivers in the area play an important role as 

transportation paths.  

 

Indonesia 

Figure 1. Map of the study area, Central Kalimantan Indonesia. 
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In Central Kalimantan, approximately 2/3 of the area is covered by forest and the main industries 

include palm oil plantations, timber plantations and coal mining. It is the 3rd largest province of 

Indonesia and the palm oil sector in this area contributes 25% in the provincial GDP (Report of 

Central Kalimantan and GGGI, 2015). The study area is classified as a production forest (HP) based 

on the legal classification, which means that it is a forest area designated primarily for production 

of wood, fiber, bio-energy and/or non-wood forest products (FAO, 2010). The most valuable trees 

are harvested and these changes can easily be detected by satellite images throughout the years 

but only in a coarse scale with no individual tree information.  

In August 2014, a fieldwork took place under the framework of REDD+ program of Center for 

International Forestry Research (CIFOR). In total 14 different plots were measured based on three 

different data acquisition methods: a detailed field survey for biomass assessment (species 

identification, DBH, tree height, crown width measurement etc.), TLS surveys, and UAV flights. 

For the purposes of this research the first plot (Th01) is used as the study area. The plot area 

measures 40x40m and according to the CIFOR biomass inventory data it is an old logged forest 

and intensive logging operations are in progress. During the field survey for the inventory 

database the fieldwork teams registered trees with diameter larger than 10cm.  

The dominant tree species are of the family group Non-Dicerecoptea (Table 4, Appendix 1). 

According to the field survey report, due to the growth of Terantang the forest looks relatively 

intact. For the inventory of plot’s data, a total number of 227 trees were measured, containing 

41 different species with the following 7 contributing to 50% of total trees according to the: Ubar 

(15.7%), Samak (8.9%), Pelawan (7.2%), Jingjiit (6.3%), (Meranti (5.8%), Terantang (4.5%) and 

Perawas (4.5%) referred by their local names.  

 

An inverse distance weighting map 

according to DBH from field 

measurements was prepared in order to 

identify possible clusters of bigger trunk 

trees which might be helpful in the 

future co-registration steps (Figure 4). 

This field map is geo-referenced 

because it was created after step RQ1.1, 

but it was included in this section for a 

better understanding of the study area. 

 

 

 

  

Figure 2. Inverse distance weights map of the trunk's DBH. 
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3.2. Dataset 

Unmanned Aerial Vehicle Derived Data 

The WUR Unmanned Aerial Remote Sensing Facility (UARFS) has been using UAVs for different 

applications, including the forestry mapping campaign in Indonesia’s peat swamp forests in the 

summer of 2014. Under the UARSF the HYMSY sensor was developed, consisting of a pushbroom 

spectrometer, a photogrammetric camera and a GPS-Inertial Navigation System (Suomalainen et 

al., 2014). During the campaign in Indonesia, the Okkie1 with HYMSY collected hyperspectral and 

VHR RGB images before and after logging activities. For the reconstruction of the PPC (Figure 5), 

the RGB orthomosaic and the digital surface model (Figure 3), the derived imagery (VHR RGB 

images down to 0.02m spatial resolution) was used. The top of the canopy (TOC) 3D model 

(Figure 4) can be generated by applying texture to the polygon mesh. The pre-processing 

methodology is further described in Chapter 3.4. Due to the dense tree coverage, trees are 

overlapping and the understory of the forest canopy cannot be fully reconstructed by these 

images, besides the areas within the images that have canopy gaps.  

 

 

Figure 3. Left. The RGB Orthomosaic (0.043m resolution). Right. The Digital Surface Model (0.043m resolution). 

 

Figure 4. Textured 3D model of the forest canopy. 
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Terrestrial Laser Scanner Data  

The Riegl VZ-400V is a full-waveform 3D TLS capable of providing data with accuracy of 5mm and 

a rate of 122.000 measurements per second (Riegl Laser Measurement Systems, 2014). Because 

of the density of the forest area multiple scans were performed and co-registered by reflectors 

that were installed within the plot. The main product of the TLS is the TLS point cloud (Figure 6). 

It will be used for the detection of the boundaries of the plot, the co-registration of the field 

survey data and for comparison with the PPC.  

 

Figure 5. The PPC in different viewing angles, a) top of canopy, b) aerial, c) right side, d) left side and f) front 
side. 

Figure 6. LiDAR point cloud from the Terrestrial Laser Scanning. a) aerial view, b) front side view, and c) 3D view. 
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Field Survey Data 

The field survey is digitally stored in a form of excel sheets containing biomass inventory data. 

The position of the trees was measured in a local grid (x,y) reference system where the (0,0) 

position is the lower left corner of the plot. Each dot represents the identified trees and their 

relative positions which are also described within sub-plots (Figure 7). Apart from the (x,y) 

location for each tree, the field work teams collected further information such as: the tree’s local 

name, botanical name, family group, circumference, and DBH.  

Taking into account the x,y local coordinates a map of the field survey trees (as points) was 

created for further use and stored as shapefile (Figure 8) with the following attributes: Identity, 

Shape, Plot, Subplot, Local_name, Botanical_name, Family, DBH_cm, X_m, Y_m (Table 5, 

Appendix 1). 

An overview of the available datasets of this study can be found in Table 1. The last row of the 

table refers to the coordinate system available for each dataset. 

 
 

 

 

Table 1. Overview of all dataset available (with and without pre-processing). 

 

UAV data TLS data Field survey 

DSM DSM Tree species 

Photogrammetric point cloud TLS Point Cloud Circumference  

Orthomosaic with 0.043 m resolution 

(RGB) 

 

DBH 

DBH 

Raw VHR images 

GPS-INS 

Global coordinates 

Scan positions local, project and 

global coordinate system  

X, Y local coordinates  

Figure 7. Field survey data map in 
excel. 

Figure 8. Tree species map created in 
ArcMap. 
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3.3. Methodology Overview 

The flowchart in Figure 9 depicts an overview of the methodology towards answering the 

research questions. The proposed methodology is based on sequential steps, which are described 

in detail in Chapters 3.4 to 3.8. The data pre-processing is described in Chapters 3.4 to 3.6. An 

overview of the software packages used in this study, regarding each step, can be found in Table 

2. 

 

 

Table 2. An overview of the used software packages and the purpose of use. 

Software Usage Step 

 ArcGIS Vector, Raster GIS analysis, Create Maps RQ1.2, RQ2.1 

LAStools (ArcGIS toolbox) Point Cloud analysis Pre-processing 

RiSCAN Pro Point Cloud analysis Pre-processing, RQ1.2 

Cloud Compare Point Cloud, Mesh analysis RQ1.1, RQ1.2 

eCognition ITC delineation RQ2.1 

FUSION Point Cloud analysis RQ2.1 

Matlab Shape parameter fitting RQ2.2 

MS Excel Create Inventory RQ2.2, RQ3 

R Statistical analysis RQ3 

MS Word Report Writing  

MS Visio Flowcharts  

Figure 9. Flowchart of the methodology. 

UAV-based 
data

TLS-based 
data

Field survey 
inventory 

data

RQ1.1 
Co-registration of 
photogrammetric 

with TLS point 
cloud

RQ1.2 
Co-registration of 

TLS point cloud with 
field survey data

RQ2.1 
ITC delineation and 

point cloud 
segmentation

RQ2.2
Geometrical model 

fitting for crown 
shape parameter 

extraction 

Library

RQ3
Statistical 
analysis

Identify 
dominant 

species
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3.4. Pre – Processing 

3.4.1. Derive Photogrammetric Point Cloud, Orthomosaic and DSM from UAV imagery 

The PPC, is a product derived from the photogrammetric processing of the aerial images acquired 

by the UAV with the Panasonic DMC-GX1 (f=14mm) camera model. This procedure was done in 

Agisoft Photoscan Pro software and it includes steps as: the estimation of the quality of the 

images, alignment, build of sparse and dense point cloud, mesh, and texture. For further 

processing the output can be exported in different formats (LAS, ASCII, OBJ, DSM, XYZ points, 

PDF reports, etc.). The processing chain is entirely automated, and only the quality (high) and 

depth filtering (mild) parameters needed to be predefined for the reconstruction of the 3D 

model. For Plot Th01, 86 aerial images of a flying altitude of 69.3m with ground resolution 

0.016m/pix and a coverage area of 0.03km2 were used. The digital surface model has a point 

density of 902.874 points/m2 and resolution of 0.03m/pix (Figure 10).  

 

 

a) b) 

Figure 10. a) Camera locations and image overlap, b) Digital surface model and c) Orthomosaic. 

c) 
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3.4.2. Detect the Plot Boundaries on TLS point cloud 

The raw data consists of multiple scan positions (13) each in Upward and Tilted direction. The 

detection of the plot boundaries was done by using the height filter in RiSCAN Pro software 

package, where at about 0.5m height the marking tape placed during fieldwork was visible 

(Figure 11). Creating a polyline based on this rectangular area corresponds to the plot boundaries 

extracted for further use. Working in the plot scale instead of the entire area covered by the TLS 

point cloud was done mostly for enabling the co-registration with the field survey data, but also 

for efficiency, data reduction and minimization of output storage requirements (entire area TLS 

point cloud is 9GB, while Plot Th01 is 4GB). Once the TLS point cloud is co-registered with the 

PPC, the boundaries can be retrieved for the orthomosaic and the DSM as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Extraction of plot boundaries from the TLS point cloud. 
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3.5.  Semi-Automated Approach for co-registration of the UAV, TLS and field 
Survey Data 

The first research question is part of the data pre-processing methodology, with the aim to 

propose a semi-automated approach for the co-registration of the data. For this purpose, the 

results of this first RQ will be directly presented after the methodology description and will not 

be included in the results on Chapter 4. 

This step is vital when the conditions during data acquisition can interfere with the original 

georeference. The goal is to co-register UAV, TLS- and field –based data with the lowest possible 

error (RMSE) based on the PPC (reference data). Different software packages were used for this 

pre-processing step: Cloud Compare, ArcMap and RiSCAN Pro. This research question is split into 

two different steps, a) the co-registration of PPC with the TLS point cloud, and b) the co-

registration of the ‘corrected’ TLS point cloud with field survey data.  

 

3.5.1. Co-registration of Photogrammetric with TLS point cloud 

Once the PPC and TLS point cloud are visualized an offset can be observed from the TLS point 

cloud possibly due to the attenuation of the GPS signal due to the dense forest canopy (Figure 

12). An affine transformation based on the boundaries of the plots cannot be done in this stage 

as there is no way to identify the plot boundaries on the UAV data. The actual boundaries 

mismatch is depicted in Figure 13, in order to show the extent of the offset in x, y and z axis (note 

that the plot boundaries for the UAV data, were retrieved only after the co-registration). The PPC 

is used as reference (model data), for the geometric transformations in order to correct for the 

offset on the TLS point cloud.  

 Figure 12. A visualization of the PPC of the entire extent & TLS point cloud, before alignment. 
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The approach for the co-registration of PPC and TLS point cloud is depicted in the flowchart in 

Figure 14. It is based on four processes starting with the generation of meshes from the point 

clouds, the rough alignment of the meshes, and the use of the transformation matrix of the 

meshes for the point cloud co-registration. Last, if the results of the rough alignment are not 

satisfactory a fine alignment can be performed based on the ICP algorithm. Each of the processes 

of the flowchart are further explained in the paragraphs below. The software used for this 

method is Cloud Compare.  

 

 

 

(1) A triangular mesh is a point cloud with an associated topology, a collection of vertices, 

edges and faces that describe the shape of a 3D object. Generating and using the mesh 

permits the selection of relevant reference point pairs, something that could not be done 

in the point cloud directly.  

Figure 13. Left: PPC & TLS point cloud actual boundaries offset in X, Y axis. Right: Z axis offset. WGS 1984 UTM 
S49 projection system. 

Figure 14. Flowchart of the procedure for co-registration of the point clouds. 

1. Point cloud 
to Mesh

RQ1.1 
Co-registration of 

photogrammetric with 
TLS point cloud

2. Rough 
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transformation 
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4. Fine alignment  
based on the ICP 

algorithm

Is result 
satisfactory?

No

Yes

Final output

Semi-automated Processes

Manual Processes
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(2) In this case, instead of point pairs “sphere” pairs are preferred, as the center of the 

spheres can be detected automatically by the software. This increases the speed and 

accuracy of the alignment process. When enough sphere pairs are selected the alignment 

of meshes can be performed, resulting to a transformation matrix which includes the 

RMSE of the procedure (Figure 15). 

(3) For the spatial transformation of the TLS point cloud, the transformation matrix can be 

applied. This procedure results to a rough alignment. In case the result is not sufficient, 

(4) the ICP algorithm can be used for fine alignment of the meshes or directly of the point 

clouds. With the ICP algorithm a least square registration is possible, by converging to a 

local minimum (Besl and McKay, 1992). 

  

3.5.2. Co-registration of TLS Point Cloud with Field Survey Data 

Since the TLS point cloud is successfully co-registered with the PPC, this means that now the plot 

boundaries deriving from the TLS point cloud can be further used, to retrieve the plot boundaries 

in the UAV data and for the spatial transformation of the field survey data. A local to global 

coordinate transformation, based on the four corners of the plot boundaries, could be a sufficient 

solution, for the field survey data geo-referencing. As it was mentioned earlier the fieldwork 

teams acquired manual measurements of the tree locations based on a local grid (Chapter 3.2). 

It is expected that the manual measurements of the trees in the excel sheet could be relatively 

close to the actual tree location, but with a small offset, considering the limitations and 

difficulties of manual measurements in a dense tropical forest.  

For this reason, the proposed methodology co-registers the data not only by using the 

boundaries, but each tree location of the field survey record is linked with a tree trunk location 

detected directly by the TLS point cloud. This is a very crucial step regarding the entire study 

because these trees will later be modelled and assessed for correlation between crown shape 

parameter and tree species, so misidentification of the trees/species could affect the results. In 

order to validate the final results, trees DBH derived from TLS point cloud and DBH from the field 

survey was correlated for several trees, along with visual assessment. 

Figure 15. Sphere pairs selection for the alignment of the meshes. 
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For the co-registration of the TLS point cloud with the field survey data the proposed 

methodology is depicted in Figure 16. This flowchart consists of five processes and the software 

packages used are Cloud Compare (process 1 to 4) and ArcGIS (process 5). Each process is 

explained in the paragraphs below. 

 

 

(1) In order to retrieve the trunks from the TLS point cloud a cross section was created in 

about 1.2m – 1.4m height (approximately the same height used for deriving the DBH). 

The width of the cross section was selected to be of 20cm which is sufficient to identify 

cylindrical objects as the trunks, and to eliminate as much as possible of the noise (hidden 

branches and leaves in the understory in this height). Although, as it can be seen in Figure 

17 there are still non-trunk objects (branches and leaves) that could interfere with the co-

registration process. 

 

  

Figure 16. Flowchart of the methodology for RQ1.2. 

1.  Retrieve 
trunks from 

TLS point 
cloud

RQ1.2 
Co-registration of TLS 
point cloud with field 

survey data

3.  Transformation 
based on plot 

boundaries

4. Fine alignment  
based on the ICP 

algorithm

Is result 
satisfactory?

No

Yes

Final output

Semi-automated Processes

Manual Processes

2. Create 
trunks map

5. Spatial 
Adjustment

Figure 17. Trunks derived after cross section in the TLS point cloud. 
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(2) For the creation of a trunks map, the noise caused by non-trunk objects must be removed, 

and also each trunk must be assigned to a point location. A way to reduce the noise is by 

using the statistical outlier removal (SOR) and/or noise filter algorithm. These algorithms 

work by filtering out points that fall within a certain distance from their neighboring 

points. For this step the number of points to use for mean distance estimation was set to 

5.0, and standard deviation multiplier threshold to 1.0 (max distance = average distance 

+ nSigma*std.dev.) (Figure 18).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each trunk can be assigned manually or in an automated way as a tree point. Therefore, 

it is categorized somewhere between manual and semi-automated in the flowchart. In 

this case a tree point list was created manually (Figure 19). A way to automate this 

process, is to identify the trunks as cylindrical objects using minimum and maximum DBH 

threshold values, to avoid extreme outcomes.  

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Trunks clean up after SOR algorithm (with red color are the points removed, green color are the remaining 
points). 

Figure 19. From trunks TLS point cloud to trunks point location map. 
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(3) An affine transformation of the field survey tree locations from local to global coordinates 

is performed based on the plot boundaries. We can visually assess the result of this 

transformation, compared to the trunk map that was created in the previous process 

(Figure 20. Left). Therefore, we can confirm that a transformation of the field survey data 

solely based on plot boundaries is not enough for the accurate co-registration.  

 
 

(4) In this case the ICP algorithm can be used to perform a fine alignment of the two different 

point entities (trunk points to field survey tree location points) (Figure 20. Right). The 

spatially transformed field survey tree location points, can be exported in a shapefile 

format. Since in Cloud Compare the shapefiles can only retain the location information of 

the points, and not the other attributes, one last adjustment is needed.  

(5) This last process of this co-registration approach is to import the geo-referenced field 

survey tree points to ArcMap and transform the initial field survey file that contained the 

rest of information with the use of the spatial adjustment tool (Affine transformation). 

 

Furthermore, in order to check the accuracy of the co-registration process, a Pearson 

correlation based on DBH values was performed, by comparing the field survey DBH 

measurements and TLS derived DBH measurements on eight randomly selected trees on 

the plot.  

 

  

Figure 20. Left: Transformation based on boundaries. Right: Transformation based on ICP algorithm. 
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3.6. Assessment of the co-registered UAV-, TLS-, and field survey data 

RQ1.1  

In order to assess the accuracy of RQ1.1, the rigid 

transformation matrix used for the alignment of the original TLS 

point cloud, and the Final RMS are presented (Figure 21). It is a 

4x4 matrix that represents rotation (3x3 matrix in green box) 

and translation values (a 3D vector in red box). The last row 

corresponds to the perspective projection of the camera plane 

and it is always 0, 0, 0, 1 in this case (Buss, 2003). The RMS 

corresponds to the square root of the mean value of the 

squared distances (Equation 1). This value represents the 

Euclidean (remaining) distance(𝑑)  between the sphere pairs 

after registration.  

𝑅𝑀𝑆 =  √
1

𝑁
∑ 𝑑𝑖2

𝑁

𝑖=1

                                                                                                                                                 (1) 

The Final RMS of the ICP algorithm performed in 50.000 points was 1.44 (Figure 41, Appendix 2), 

however in this case it did not improve the rough alignment result. This is mainly due the fact 

that many points in the TLS point cloud did not have any correspondence with points of the PPC. 

The RMS value derived from the rough alignment approach is relatively low (0.35m), and the 

result is considered as sufficient for the continuation to the next step. A visualization of the co-

registration result can be found in Figure 22. The accurate detection of the plot boundaries in the 

UAV data (point cloud, orthomosaic, DSM) is now feasible and very important, for the step RQ2.  

 

Figure 21. Transformation matrix 
and RMS of the TLS and UAV point 
clouds rough co-registration.  

Figure 22. The co-registered Point Clouds. Left: view from above and side. Right: Cross section view (Plot Th01). 
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RQ1.2 

As previously mentioned, in order to assess the 

accuracy of RQ1.2, the rigid transformation matrix is 

presented. The final RMS of the ICP co-registration 

(Figure 23) represents the Euclidean distance 

between each point of the not aligned cloud and its 

nearest neighbor in the reference cloud, and is 

computed based on the 226 points. The error of 

1.3m could be attributed to the presence of no 

corresponding trees in the field survey, for some of 

the TLS derived trunk points (not all trees were 

mapped in the field survey tree points).  

The result of ICP algorithm in the co-registration after visual inspection (Figure 24), is considered 

as acceptable as most of the field survey tree points show sufficient overlap with the trunks point 

location on the TLS point cloud. Based on the proximity, for some field survey trees with no 

overlapping trunks, we assume that the closest trunk is the one matching. 

 

According to the correlation results of DBH between field and TLS measurements, a match of 

greater than 95% is estimated based on eight random samples. Therefore, apart from the visual 

interpretation of the results, we can conclude that the co-registration was successful as indicated 

by the DBH correlation (Appendix 2, Figure 42).  

  

Figure 24. a) Field survey tree locations before transformation, b) Trunks map created by the TLS point cloud, c) 
The final result of co-registration of trunk points (yellow) to field survey tree points (red). 

b) c) a) 

Figure 23. Transformation matrix and RMS of 
field survey tree location points and trunks 
location points co-registration. 
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3.7. Individual Tree Crown Delineation Methodology 

During the literature review multiple approaches were found for performing ITC delineation. The 

forest type, the density and the level of heterogeneity, are parameters that can affect the 

performance of delineation and segmentation algorithms. This variation in performance can be 

observed by the differences in the results of previous studies (Brandtberg et al., 2003; Heurich, 

2008; Persson et al., 2002). A LM filtering approach solely based on the DSM, could be 

problematic in the detection of the smaller trees. However, an accuracy of 61% was achieved in 

the study of Nurhayati (2015) in the ITC methodology she proposed, which is comparable with 

results from similar studies (Gebreslasie et al., 2011; Gougeon and Leckie, 2006; Wang et al., 

2004; Wulder et al., 2004). Based on the promising results, and the availability of ArcGIS and 

eCognition tools developed by Nurhayati (2015), the same method was followed in this study in 

order to delineate individual tree crowns. Also, it is important to note that the results of 

Nurhayati were based on the same tropical forest in a neighboring study area (different plots), 

thus expected to perform similarly. 

The DSM and the orthomosaic (0.043m) of the plot Th01 were used as input data for the ITC 

delineation. The workflow of the basic processes is depicted in Figure 25, and the Chapters 3.7.1 

to 3.7.3 refer to these processes; the treetop detection, the crown boundaries detection, and 

finally the point cloud segmentation and assignment of field survey tree per point cloud segment.  

 

 

3.7.1. Treetop Detection 

In several studies the local maxima approach is based in CHM, reconstructed from LiDAR point 

clouds. For a minimization of false detections some studies refer to detection based on a canopy 

maxima model (CMM) (Chen et al., 2006; Monnet et al., 2010; Reitberger et al., 2009). In this 

case the treetop detection approach is based on finding peaks (LM), from variable window size 

on a smoothed DSM. The models in ArcGIS that were used, can perform the following steps, and 

for further documentation one can refer to Nurhayati (2015): 

1. Initial DSM smoothing (focal statistics to derive mean, raster calculator for keeping high 

values) 

2. DSM smoothing with varying degree of smoothness 

3. Finding local maxima (focal statistics to derive maximum, raster to point) 

Figure 25. The GEOBIA approach for ITC delineation and individual tree point cloud segmentation. 
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4. Treetops estimation 

It was necessary to include two more models, for retrieving plot boundaries on the DSM and 

orthomosaic (clip based on the point cloud boundaries, retrieved by lasboundaries - LAStools) 

and a final treetop selection (based on the A4 step of Nurhayati). The final treetops are exported 

as shapefile and will be used as seeds, for the detection of the crown boundaries in the next 

process. 

 

3.7.2. Crown Boundaries Detection 

A GEOBIA approach was followed for the crown boundaries detection, based on two rulesets in 

eCognition that can perform: a) a classification of shadow and gap areas and b) a detection of 

ITC. The chessboard segmentation and assignment of classes (based on tree height values), were 

used for the shadow and gaps classification. As input data the DSM and the orthomosaic was 

used. Next, a region growing method was used, taking advantage of the detected treetops of the 

previous step. Additional input layers for retrieving individual tree crown boundaries are 

produced by filtering the DSM values (Min/Max) and using Canny’s Edge detection algorithm, for 

the region growing method. The rulesets in eCognition used for this purpose, were provided by 

Nurhayati (2015). The output of this operation is a shapefile containing all ITC as polygons. 

Before the point cloud segmentation, it is essential to perform a filtering operation in the ITC 

polygons, in order to keep only complete (crowns near plot boundaries are split) and of significant 

size crowns (>0.44m2). Also performing a topology check in ITC polygons can prevent errors 

before the point clouds segmentation. 

The region growing approach for the ITC delineation as assessed by Nurhayati, is able to perform 

with an accuracy of 61% as on “perfect” detection of the crowns and around 18% of a “good” 

detection, overall an expected 79% ITC detection. The occurrences of splitting trees are 

estimated at 14%, while the false detection around 6%, attributed to errors of omission and 

commission. 

 

3.7.3. Point Cloud Segmentation and Assignment of Field Survey Tree ID 

Each tree should be represented by a PPC segment, in order to fit a geometric model and extract 

the TOC crown shape parameters. For the point cloud segmentation, the PolyClipData algorithm 

was used (FUSION software package) that can perform batch clipping based on ESRI shapefiles 

(Appendix 4).  

Although the field survey data are georeferenced accurately based on the TLS trunks map in step 

RQ1.2, the final assignment of field tree id to each point cloud segment is still a process that 

needs visual interpretation. The proximity is the first rule of the assignment, meaning the closest 

field tree point from the segment has the higher chance of being the correct tree.  
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In case that multiple or none field tree points fall within one segment the DBH value and 3D 

visualization were taking into account for the correct assignment. RANSAC shape detector 

algorithm was used for deriving DBH in the TLS point cloud segments, and also for visualizing the 

trunk orientation, in Cloud Compare (Figure 26).  

 

 

3.8.  Model Fitting Approach for Extraction of Crown Shape Parameters 

An overview of the processes towards answering the last research questions RQ 2.2 and RQ 3 is 

depicted in the flowchart in Figure 27. The Chapter 3.8.1 is addressing to RQ 2.2 where a hemi-

ellipsoid crown modelling approach is proposed while Chapter 3.8.2 is addressing the RQ3, 

proposing a statistical analysis to show whether the parameters extracted by the hemi-ellipsoid 

approach are sufficient for species discrimination.  

 

 

 

 

Figure 26. Example of the RANSAC algorithm in deriving DBH. 

Figure 27. Flowchart of the methodology for RQ2.2 and RQ3. 
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3.8.1. Hemi-Ellipsoid Model 

The data available for fitting, are the individual tree PPC segments that were retrieved based on 

the previous step. A geometric equation of a generalised hemi-ellipsoid was proposed by Sheng 

et al. (2001), for modelling coniferous tree crowns in order to optimize image-matching 

algorithms for individual tree delineation process from aerial orthophotos (Figure 28). This 

equation (Equation 2) is an adaptation of Pollock’s (1996) three dimensional crown model, which 

is an extension of Horn’s (1971) general model for the two-dimensional vertical profile of a crown 

envelops.  

(𝑍 + 𝑐ℎ −  𝑍𝑡)𝑐𝑐

𝑐ℎ𝑐𝑐
+  

((𝑋 − 𝑋𝑡)2 + (𝑌 − 𝑌𝑡)2)𝑐𝑐 2⁄

𝑐𝑟𝑐𝑐
= 1                                                                      (2) 

 

The crown height ( 𝑐ℎ)  and crown radius (𝑐𝑟)  parameters correspond to the vertical and 

horizontal dimensions of a crown respectively. The upwards (𝑐𝑐 < 1) or downwards (𝑐𝑐 > 1) 

concavity of the crown is described by crown curvature (𝑐𝑐), with 𝑐𝑐 = 1 representing a straight 

line. Also the treetop coordinates correspond to (𝑋𝑡, 𝑌𝑡, 𝑍𝑡) parameters.  

In this case, the individual tree crowns are already delineated, based on the GEOBIA approach, 

so the geometric equation will be used for the extraction of the crown shape parameters (height, 

width and curvature). It is interesting to see whether there are patterns in these parameters in 

tropical forest trees, based on the Sheng’s model and the TOC PPC segments.  

The assistance of Dr. Juha Suomalainen made possible this modelling step. More specifically, in 

modifying appropriately the generalized ellipsoid (Equation 3) and aiding in scripting the iterative 

algorithm for the parameters extraction. The programming software that was used was MATLAB, 

the script can be found in Appendix 5.  

Figure 28. Parameters in the tree model and examples of different curvatures, as specified by Sheng et al. 
(2001). 

b) cc = 1 

c) cc = 1.5 d) cc = 2 

a) cc = 0.8 
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The main processing of the script includes the scaling of the data for visualization purposes, the 

generation of the necessary input for the hemi-ellipsoid, the generation of a pixel grid for the top 

of canopy and the application of Equation 3. The extracted shape parameters include crown 

height, radius, curvature and the (𝑋𝑡, 𝑌𝑡, 𝑍𝑡) treetop position within the specific point cloud 

based on finding LM within the point cloud. 

The modified equation as used for the fitting process in Matlab: 

 

((1 − (𝑥 − 𝑋𝑡)2 + (𝑦 − 𝑌𝑡)2) 
  

𝑐𝑐
2

|𝑐𝑟𝑐𝑐|

(
1

𝑐𝑐
)∗|𝑐ℎ|−|(𝑐ℎ+𝑍𝑡)|

   
+   (

0

(𝑐𝑟 > √(𝑥 − 𝑋𝑡)2 + (𝑦 − 𝑌𝑡)2)
)          (3) 

 

Where the second part of the equation is there for producing NaN values outside of the ellipsoid. 

In total, 207 individual tree point clouds were tested with this modelling approach. Although, the 

model proposed by Sheng oversimplifies tree crowns in the real world, it was interesting to see 

whether this approach is adequate for extracting crown parameters and if they are consistent for 

other applications.  

 

3.8.2. Hemi-Ellipsoid Fitting and Extracted Parameters Assessment 

The assessment of the fit was done manually by visual inspection of the hemi-ellipsoid derived 

graphs for each segment, in order to decide if this method is sufficiently describing the crown 

surface and what are the possible reasons if not. The quality of the segmentation is expected to 

affect the performance of the ellipsoid fit.  

For those trees of which the outcome of the modelling is considered as sufficient, their extracted 

shape parameters will be included in the statistical analysis to investigate whether there are 

patterns in these parameters for specific clusters of tree species. For the statistical analysis 

initially a box-and-whisker plot will be created, to show the variation within the parameters on 

the different dominant species. Furthermore, 3D plots will be created to visualize the data and 

identify possible clusters. The software package used for this statistical analysis is RStudio. 
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4. Results 
 

4.1. Treetop Detection, ITC Delineation and Point Cloud Segmentation 

During the treetop detection process 261 treetops were detected. From the field survey, there 

are 226 tree records available (of DBH >10cm). The numbers are relatively comparable; an 

overestimation of treetops could be attributed to the misidentification of bigger branches as 

individual trees. This can be verified in Figure 29; multiple treetops were false detected in an area 

of a fallen tree, as identified by the orthomosaic. Overall, the performance of this approach, is 

comparable with the results Nurhayati achieved in her research. 

 

Before the ITC delineation the shadow and gap areas were identified and excluded from the 

process. The crowns intersecting with the plot boundaries were removed, and smaller polygons 

were filtered out (Figure 43, Appendix 3), resulting in the most representative polygons. The 207 

polygons that remained (Figure 30) were used for the PPC and the TLS point cloud segmentation 

(Figure 31). The PPC segments will be used for the modelling part while the TLS point cloud will 

be used for validation. Results showed an accuracy of 69,19% of good segmentation and of 

30.81% of bad segmentation. An example of what is considered as a representative point cloud 

segment (good and bad), is depicted in Figure 32. 

 

Figure 29. Final Treetops detected in the study area (Plot Th01). 
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Figure 31. Left: Segmentation of RGB point clouds. Right. The TLS point cloud segments, in FUSION. 

Figure 30. Left: The detection of shadow & gaps areas. Right: The result of the ITC delineation process in the 
orthomosaic with the final treetops. 
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4.2. Inventory of Point Cloud Segments with Field Survey Measurements 

Each of the 207 tree point cloud segments was linked with one field survey tree record based on 

proximity, DBH measurements and 3D visualization. A visual inspection confirmed that the 

correct survey ID was assigned to each segment. Results showed that if only proximity was 

considered there would be more than 30% mismatches due to the complexity of the study area. 

In some segments the trunk on breast height, was not visible or was located in the edges of the 

segment since trees do not grow completely vertical but spread in different directions due to 

ecological reasons, such as the competition for space (Figure 33). For further valid comparisons, 

regardless of the segmentation accuracy, each segment must be assigned with the accurate field 

tree. From the 207 segments of tree point clouds, 172 were successfully matched with a field 

survey tree record based on proximity, DBH and 3D visualization when applicable. 

  

 

 

Figure 32. Example of individual tree point cloud segments, a) good segmentation  b) bad segmentation. 

b) a) 

Figure 33. Left: Example of three field tree records falling in one segment. Right: An example of two field records 
falling in one segment while the trunk in breast height is in a different segment.  
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4.3. Modelling Approach based on the Hemi-Ellipsoid Fitting 

For the 172 segments that could be linked to field information, the results of ellipsoid fit approach 

were classified as “adequate” or “non-adequate” based on visual interpretation (Figure 34). The 

extracted parameters from segments that were sufficiently described by the ellipsoid fit will be 

further used for the statistical analysis. 

 

 

The visual inspection showed that the model fitting approach resulted in a 54.07% success of 

adequate fit with 30.23% being characterized as very good fit. An example of different types of 

fitted trees can be find in Figure 35. The remaining 45.93% categorized as non-successful fit was 

further investigated in order to identify the possible reasons. Three basic reasons for the model 

failure were identified; (1) erroneous segmentation, (2) insufficient points in the point cloud, and 

(3) limitation of the model (oversimplified) or limitations of the input data (complexity).  

The erroneous segmentation is attributing with 30.81% to the non-successful fit, and includes 

under- and over-segmentation. The under-segmentation; main tree canopy is partially outside of 

the segment and over-segmentation; multiple trees are within the same segments. Furthermore, 

a 3.49% of the non-successful fit is attributed to segments with insufficient amount of points for 

the fitting process, while a 15.12% had no apparent reason for the non-sufficient fit, thus 

attributed to the simplicity of the ellipsoid model compared to the complexity of dense forest 

canopy or the way PPC data are reconstructed. More specifically the model showed sensitivity 

(confusion) in segments of sparse points, and segments containing double (or more) peaked 

trees. With this approach the upper part of the tree’s crown was fitted to the hemi-ellipsoid 

model, since the PPC can only reconstruct the TOC. The hemi-ellipsoid model succeeded in 

extracting the shape parameters; (upper) crown height, width and crown curvature.  

 

Figure 34. Left: Example of adequate fit of the ellipsoid. Right: Example of failure, due to bad segmentation. 
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The shape parameters of 93 segments classified as “adequate” and can be further used for 

statistical analysis. Within these 93 segments 31 different species are present. Since for many 

species the samples were not enough for making valid assumptions only the species with at least 

four samples were tested. The shape parameters of eight different species were tested in the 

statistical analysis, which are presented in Table 3.  

Table 3. Samples for statistical analysis. 

Local Name Number of samples 

Jingjiit 9 
Meranti 5 

Nyatok_Babi 6 
Pelawan 5 
Perawas 5 
Samak 11 
Ubar 15 

Terantang 5 
 

  

UAV_Tree_070, cc=0.8 (Ubar) 

UAV_Tree_135, cc=1.5 (Terantang) UAV_Tree_030, cc=1.9 (Pelawan) 

UAV_Tree_078, cc=1 (Samak) 

Figure 35. Different types of trees based on crown curvature, fit was classified as “very good”. 
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4.4.  Statistical Assessment of the Parameters for Species Discrimination 
 

Based on the eight different species that have enough samples, a box-and-whiskers plot initially 

was created to see the variation and skewness of the data, and how the parameters differ within 

species (Figure 36). From this plot we observe that some samples behave as outliers, while there 

is no significant variation between the different species. However, some trends were considered 

to be worth further investigation. Therefore, a 3D plot visualization was used to identify possible 

clusters.  

 

Based on the trends that appear in the box-plot we can conclude the following: 

 Relative upper crown height cannot be useful for species discrimination. However, it 

could be useful for other purposes as it can detect and parameterize trees that emerge 

either due to their height difference or due to their location conditions (near gaps or 

sparse canopy area) within the forest. 

 Relative upper crown radius shows differentiation between some of the species (Jingjiit 

and Pelawan)  

 Crown curvature shows differentiation between some of the species such as:  

Nyatok Babi, Pelawan and Terantang, which are expected to have a downward concavity 

compared to the other species. 

Tree species (local name) 

Figure 36. Box-and-whiskers plot of species and shape parameters variations. 
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The 3D plot in Figure 37, confirms that based 

exclusively on shape parameters it is not possible 

to delineate between all eight species because the 

differences between them are not significant 

enough. However, there are some species that 

can be separated from others: 

 Perawas samples, show clustering 

effect when compared with Samak, 

Terantang, Pelawan and Jingjiit (Figure 

38). 

 Pelawan samples, show clustering 

effect when compared with Ubar and 

Jingjiit (Figure 39). 

 

 

 
Figure 38. Example of clustering of Perawas in pairs comparison with other species. 

Figure 37. 3D scatterplot of species samples and their shape 
parameters. 
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An ecological investigation is needed to assess whether these parameters actually coincide with 

the real tree shape attributes which is out of the scope of this study but highly recommended for 

a future study. 

  

Figure 39. Example of clustering of Pelawas in pairs comparison with Jingjiit and Syzygium_Ubar. 
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5. Discussion 
 

This chapter discusses the results derived from both the processing of the data and the statistical 

analysis. It is structured in a way to provide answers to the research questions. The first two 

sections discuss the technical parts of this study while the last part refers to the overall 

importance of crown shape parameters in forest inventories and to the limitations as identified 

from the statistical analysis. 

5.1.  Co-Registration of the Data 

RQ1. Can a semi-automated methodology be applied for co-registration of UAV, TLS and field 

survey data? 

The accurate co-registration of multi-source data always was and always will be the most 

important pre-processing step within the field of remote sensing while the selection of the 

appropriate method for the co-registration is an issue of attention. This is because it ensures that 

further processing will not be affected by spatial errors and valid comparisons or combinations 

can be made with the co-registered data. In dense tropical forests and also in the present study, 

it was expected that the co-registration of the TLS-based data with the UAV-based data is 

affected by the attenuation of the GPS signal on the TLS. Also, for the co-registration of the field 

data with the TLS-based data, it was evident that spatial transformations were needed in order 

to achieve the co-registration. 

Within this study multiple software packages were tested in order to achieve the co-registration 

of multi-source data. The co-registration approach was not enabled by GCP’s information, and 

the plot boundaries were not reliable; only after the first step of the co-registration where geo-

referenced was applied. The aim of the co-registration step was to make available the boundaries 

of the study area, the TLS point cloud and field survey data in global coordinate system without 

geo-referencing errors.  

The methodology for the co-registration between point clouds was based on previous studies 

that showed promising results on the use of the ICP algorithm. However, in the first part (RQ1.1) 

the ICP algorithm did not perform as good as expected. Different approaches were tested in order 

to identify why there are limitations in the use of ICP algorithm for an automated co-registration 

of forest canopy point clouds. For that reason, the TLS point cloud was also clipped to describe 

only the TOC as the RGB point cloud, to assess if this helps in optimizing the matching of the set 

of distance measurements. However, there was no improvement on the results of the ICP.  

Although visually the point clouds appear similar, in terms of distance measurements they are 

not similar enough for the algorithm to overcome false detection of possible matches. The main 

drawback as it was identified, is due to the major structural differences of the two point clouds 

(density and spatial distribution of points). Maybe another approach would be to subsample the 
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TLS point cloud, and extract only the maximum height points mimicking the result of PPC, and 

then apply the ICP algorithm. Due to time limitation this was not investigated any further but 

improvements on the ICP algorithm such as the concept of deletion mask proposed by Marani et 

al. (2016) might increase the performance of the co-registration. The results of the rough 

alignment based on meshes deriving from the point clouds, were sufficient for the co-registration 

of the point clouds in this case.  

The methodology proposed for the co-registration of TLS derived trunks map with the field survey 

tree locations was successful, and to my knowledge no similar approach was described before in 

literature. The ICP algorithm in this case worked sufficiently, and this permitted a high accuracy 

of co-registration between the field survey tree locations with the point cloud data.  

 

5.2. Extraction of Crown Shape Parameters 

RQ2. How the crown shape parameters can be extracted from the point clouds, and 

orthomosaics? 

In order to derive the individual point cloud segments, a GEOBIA approach was followed for ITC 

delineation. The accuracy of the detection of treetops can be directly correlated with the overall 

accuracy of the ITC delineation, since the region growing approach is depending on the treetops 

as seeds.  

The accuracy of the ITC delineation based on the segmentation results of this study is 69,19% 

which is comparable to 69.22% (Singh et al., 2015), 70% (Sium, 2015) and 61.39% (Nurhayati, 

2015) for tropical forests. Previous studies show varying accuracies from 67% (Gougeon and 

Leckie, 2006) to 85% (Gebreslasie et al., 2011) in plantation forests, while higher accuracies can 

be achieved with ALS 96% (Kumar, 2012). The variations are depending on the resolution of the 

input data and the complexity of study area. For tropical forests when using VHR images and 

GEOBIA an accuracy of less than 70% is generally expected. 

The hemi-ellipsoid fitting approach successfully modelled 54.07% of the trees, with 30.23% being 

characterized as with very good fit after visually inspection. To my knowledge there are no other 

studies deriving upper crown shape parameters from photogrammetric point clouds in tropical 

forests, in order to compare the model fitting approach results. Based on the achieved results, 

this method can extract the upper crown shape parameters: relative crown height and width, 

crown curvature, and tree peak location within the segment (Xt, Yt, Zt). 

Since, this model is the simplest way to represent a complex shape, such a tropical forest tree 

crown derived by a photogrammetric point cloud, the results of the fit are considered as 

adequate. Besides the hemi-ellipsoid approach, during this research, first a full-ellipsoid 

approach was tested but the results were not adequate. The full-ellipsoid showed significantly 

less differentiation between the segments, mainly due to the way points are distributed within 

these segments (i.e. not following a bell crown shape) (Figure 40). 
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Below the main reasons of failure for the hemi-ellipsoid modelling approach are listed as 

identified during the data processing and analysis, in order of bigger to smaller impact: 

 ITC delineation and segmentation accuracy. The over- and under-segmentation plays a 

major role as the hemi-ellipsoid performance is limited when more than one tree crown 

is inside the segment or a tree crown is split. Perhaps a pre-processing step of filtering 

out the excessive peaks in the point cloud segments, would help in the cases of over-

segmentation. In cases of under-segmentation, the specific segments that are split must 

be merged in order to be included to the modelling phase, however this would demand 

an advanced ‘matching’ step for the identification of these segments. 

 

 The point clouds are reconstructed from a structure from motion process. The 

distribution of points and the density is not an exact representation of the real tree but 

an approximation. There is a level of uncertainty on how this approximation corresponds 

when looking at an individual tree level for advanced issues such as differences between 

tree species in a tropical forest. 

 

 The hemi-ellipsoid model. A hemi-ellipsoid is a simplified way to represent a tree crown, 

as trees can be seen as 3D objects with horizontal and vertical dimensions, but no other 

information is taken into account. However, considering the uncertainty of the PPC 

approximation of trees representation it is justified to use a simplified model for the 

fitting approach. 

 

 

  

Figure 40. Example of the full-ellipsoid and hemi-ellipsoid approaches for parameter extraction. 



41 
 

5.3. Consistency and Usability of the Crown Shape Parameters 

RQ 3. Are these parameters consistent and which are possible uses for these parameters?  

In order to test the consistency of the shape parameters, a statistical analysis was performed in 

R, to show if there is any correlation between species and the extracted crown shape parameters. 

The box-and-whiskers plot showed that the variation between the parameters is not significant 

enough to differentiate between the eight different species but some species show separation 

from others. From the 3D plot containing all species, no apparent clustering was identified. 

However, in paired 3D comparison, Pelawan and Perawas samples clustering was observed, 

compared to some of the other species.  

Crown curvature could be more useful in species discrimination compared to crown height and 

width, because the vertical and horizontal dimensions could be influenced by environmental 

parameters. There are many parameters that could result in shape differences even within the 

same species such as: tree’s age, tree’s health, location, environmental conditions, adaptation, 

competition for light and space etc. In order to minimize the influence of these parameters a 

larger amount of samples is necessary, and of course a priori knowledge of the trees actual shape 

differences. 

While there are traits of differentiation between different species by observing the shape 

parameters, it would not be feasible to perform a species classification at this stage exclusively 

based on these parameters in tropical forests. However, a species identification based on these 

parameters could have better results in forests composed of fewer species. It is possible that in 

combination with spectral information, structural parameters could increase the classification 

accuracy as showed in the study of St-Onge et al. (2015). In order to assess the trends of shape 

parameters observed between these species, a background on forestry and on the specific 

tropical tree species is necessary. This exceeds the purposes of this study but could be addressed 

as a topic for future research. 

Overall, the crown shape parameters are very important towards conservation measures. 

Detection of disturbances within the forest is feasible based on change detection techniques. The 

parameters are useful for modelling and management applications such as growth monitoring, 

forest fire or disease distribution simulations, and thinning operations. A detailed forest 

inventory containing species distribution, shape parameters, treetop location and other 

parameters would allow management policies to monitor exploitation activities more efficiently 

within region or national inventories and for programs such as REDD+. 
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6. Conclusions 
 

The main objective of this research was to extract tree crown shape parameters from the 

photogrammetric point cloud. For this purpose, a methodology was proposed for the co-

registration of multi-source data, ITC delineation and point cloud segmentation, and a geometric 

model fitting. A secondary objective was to assess the consistency of the crown shape 

parameters. The following three paragraphs correspond to the three research questions and 

present the conclusions drawn based on the results. 

The semi-automated approach demonstrated that the co-registration of multi-source data is 

possible without the use of field GCP’s. The point cloud data were co-registered based on a 

transformation matrix retrieved from a rough alignment of the generated meshes. The ICP 

algorithm showed limitation on the fine alignment of PPC and TLS point cloud. On the other hand, 

the ICP algorithm increased the co-registration accuracy of the field data with the TLS point cloud. 

Differences in point density and spatial distribution of the points within the PPC and TLS point 

cloud, interfere with the performance of the ICP algorithm.  

Taking advantage of the already well implemented GEOBIA approach available by Nurhayati, the 

ITC delineation achieved an 69.19% accuracy, comparable with previous studies. The hemi-

ellipsoid geometric model fitting approach that was proposed succeeded in fitting 54.1% of the 

segments, allowing further statistical analysis. Bad segmentation is identified as the main reason 

of fitting failure, while the tree crown approximation based on the PPC in combination with the 

simplified hemi-ellipsoid approach affect also the fitting success. 

The statistical analysis showed that species discrimination based exclusively on crown shape 

parameters deriving from airborne photogrammetric point clouds, is not possible for all species 

within the tropical forest. Trees of the species Perawas and Pelawan showed clustering and could 

be separated by some of the other species in paired comparison.  

The crown height, width and curvature are parameters that could be of use in various simulation 

applications for forest management such as for growth monitoring, thinning, pruning, clearing, 

prescribed burning, forest fire and disease spread modelling. Crown curvature is more 

appropriate for species discrimination than crown height and radius, but further investigation is 

needed. 
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7. Recommendations 
 

This chapter consists of recommendations for future studies. Problems and potential solutions 

are presented, as identified during the data pre-processing, processing and analysis phases.  

 

Automation of the co-registration of multi-source data 

There are two ways towards automation of co-registration of the PPC and TLS point cloud 

(RQ1.1). Either with optimizing the meshes alignment or direct alignment of the point clouds. 

When the alignment is based on meshes, an advanced image matching algorithm is needed in 

order to automate the rough alignment process, instead of manually selecting sphere pairs. For 

the direct alignment of point clouds, further investigation is needed on how to overcome the 

structural differences of points clouds, deriving from different sources, that affect the matching 

algorithms as shown in the ICP algorithm.  

In step RQ1.2 the trunks location map was created by manually picking the points of visually 

identified trunks. Another approach that was partially tested is the use of RANSAC algorithm in 

automating the trunks detection as cylindrical objects. The initial tests showed false cylinder 

detections by RANSAC, attributed to high sensitivity to noise. Noise can be partially filtered out 

by setting threshold values for minimum and maximum circumference, in cylinder detection of 

the RANSAC algorithm which is worth of further investigation.  

 

Accuracy of the ITC delineation and the model fitting approach 

An increase in the ITC delineation accuracy could lead to better fit results in the hemi-ellipsoid 

model. When it is applicable, the use of ALS or TLS point cloud data as input for the GEOBIA 

approach might result to higher ITC delineation accuracy. Further investigation is needed on the 

way reconstructed photogrammetric point clouds from VHR images represent real objects as 

trees.   

 

Background knowledge regarding the tropical tree species 

In order to investigate further the crown shape parameters consistency and their 

correspondence to species, forestry background is necessary. It is recommended that field 

experts regarding tropical tree species can confirm if the derived crown curvature by the 

extracted parameters coincides with the actual species crown curvature.  
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Appendices  
 

Appendix 1- Field survey measurements of the study plot 

Table 4. Tree species composition in plot Th01

 

 

Local Name Botanical Name Family Group Number of trees % in plot

Ubar Syzygium Non-Dipterocarpaceae 35 15.69507

Samak Mezzettia parviflora Becc. Non-Dipterocarpaceae 20 8.96861

Pelawan Tristaniopsis whiteana (Griff.)  Peter G. Wilson & J.T. Waterh. Non-Dipterocarpaceae 16 7.174888

Jingjit Calophyllum hosei Ridl. Non-Dipterocarpaceae 14 6.278027

Meranti Shorea parvifolia dyer Dipterocarpaceae 13 5.829596

Perawas Dehaasia caesia Bl. Non-Dipterocarpaceae 10 4.484305

Terantang Campnosperma coriaceum (Jack) Hall. f ex Steen. Non-Dipterocarpaceae 10 4.484305

Asam asam putih Tetractomia tetrandra (Roxb.) Merr. Non-Dipterocarpaceae 9 4.035874

Medang Rapanea borne+D50:H50ensis (Scheff.) Mez. Non-Dipterocarpaceae 9 4.035874

Gelam tikus Syzygium cf. cloranthum (Duthie) Merr. & L. M. Perry Non-Dipterocarpaceae 7 3.139013

Jelutung Alstonia pneumatophora Backer ex Den Berger Non-Dipterocarpaceae 7 3.139013

Nyatok Babi Palaquium cf. ridleyi King & Gamble Non-Dipterocarpaceae 6 2.690583

Gandis Garcinia rostrata Hassk ex. Hook. f. Non-Dipterocarpaceae 5 2.242152

Gelam Melaleuca leucadendra Non-Dipterocarpaceae 5 2.242152

Kayu darah Horsfieldia crassifolia (Hook. f & Thomson) Warb. Non-Dipterocarpaceae 5 2.242152

Punak Tetramerista glabra Miq. Non-Dipterocarpaceae 5 2.242152

Bunyau Aglaia rubiginosa (Hiern.) Pannell Non-Dipterocarpaceae 4 1.793722

Darah darah Horsfieldia crassifolia (Hook. f & Thomson) Warb. Non-Dipterocarpaceae 4 1.793722

Jangkang Xylopia fusca Maingayi ex Hook. f & Thomson Non-Dipterocarpaceae 4 1.793722

Pampaning Lithocarpus dasystacys (Miq.) Rehd. Non-Dipterocarpaceae 4 1.793722

Geronggang Cratoxylon glaucum Korth. Non-Dipterocarpaceae 3 1.345291

Mahabai Mezzettia umbellata Becc. Non-Dipterocarpaceae 3 1.345291

Ramin Gonystylus bancanus (Miq.) Kurz Non-Dipterocarpaceae 3 1.345291

Kayu harang Diospyros pilosanthera Blanco Non-Dipterocarpaceae 2 0.896861

Kemantau Species 1 Non-Dipterocarpaceae 2 0.896861

Nyatok rimbang Palaquium cf. ridleyi King & Gamble Non-Dipterocarpaceae 2 0.896861

Papung Sandoricum beccarianum Non-Dipterocarpaceae 2 0.896861

Wansira Species 2 Non-Dipterocarpaceae 2 0.896861

Bansira Ilex hypoglauca (Miq.) Loes Non-Dipterocarpaceae 1 0.44843

Kapas kapas Blumeodendron tokbrai (Blume) Kurz. Non-Dipterocarpaceae 1 0.44843

Kempas Kompassia malaccensis Maing ex Benth. Non-Dipterocarpaceae 1 0.44843

Ketiaw Madhuca mottleyana (de Vriesse) Macbr. Non-Dipterocarpaceae 1 0.44843

Medang kuning Rapanea sp Non-Dipterocarpaceae 1 0.44843

Puri Diospyros evena Bakh. Non-Dipterocarpaceae 1 0.44843

Resak Species 4 Non-Dipterocarpaceae 1 0.44843

Sabura Ternstroemia magnifica Stapf ex Ridl. Non-Dipterocarpaceae 1 0.44843

Tempurung Syzygium syzygioides Non-Dipterocarpaceae 1 0.44843

Tumih Combretocarpus rotundotus Non-Dipterocarpaceae 1 0.44843

Tunjang bakai Blumeodendron tokbrai (Blume) Kurz. Non-Dipterocarpaceae 1 0.44843

Ubah putih Species 3 Non-Dipterocarpaceae 1 0.44843

Table 5. Attribute table of the field survey trees shapefile. 
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Appendix 2 – Data co-registration  

 

 

 

 

 

 

 

 

 

  

Figure 41. Co-registration result after applying the ICP algorithm on PPC and TLS point cloud. 

Figure 42.Correlation between field and TLS DBH for eight randomly selected trees, for assessing co-registration, 
RStudio. 
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Appendix 3. Polygon clean-up result in ArcMap 

 

 

 

 

 

 

Appendix 4. Point cloud segmentation based on PolyClipData – FUSION 

(Runtime: 66 sec)  

This algorithm can run either directly from command prompt or through software packages as R 

and Matlab (McGaughey, 2015). The following syntax is used to specify the function, the switch, 

the shapefile, the output folder and input file: 

Cd C: 

C:\FUSION\polyclipdata /multifile c:\shapefile\ITC.shp c:\las\clip_data.las 

C:\las\UAVTh01Plot.las 

The ‘multifile’ switch allows the creation of separate output data files for each polygon in the 

shapefile, so each tree in this phase can have its own RGB and TLS point cloud representation.  

 

 

 

 

Figure 43. Left. Filtering out tree crowns intersecting with boundaries. Right. Calculating crown area (keep 
only > 0.45m2) 
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Appendix 5. Matlab code for hemi-ellipsoid fitting approach 

1) 
%% set directory and rename files 1 to 001 so to get correct file when asking 

for it – This is only needed to run once in the beginning separately. 

  
FileDetails = dir('*.las'); 
LasFileList = {FileDetails.name};  
for i = 1:numel(LasFileList)  % Loop over the file names 
  newName = sprintf('UAVTree%03d.las',i);  % Make the new name 
  movefile(LasFileList{i},newName);        % Rename the file 
end 

 

2) 
%% Clear the workspace and commands 

  
clear all; 
close all; 

 
%% List all las files in folder 

  
DataDir = 'D:\UAV'; 
OutputDir = 'D:\UAV\output_Sheng'; 
mkdir(OutputDir) 
FileDetails = dir(fullfile(DataDir, '*.las')); 

  
LasFileList = {}; 
for i=1:numel(FileDetails) 
    LasFileList{i,1} = fullfile(DataDir, FileDetails(i).name); 
end 

  
% define file 
OutputFile = fullfile(OutputDir, 'EllipsoidFitParameters.txt'); 
% init the output file 
fid = fopen(OutputFile, 'w'); 
fprintf(fid, '%s\t%s\t%s\t%s\t%s\t%s\t%s\r\n', ... 
    'file', 'ch', 'cr', 'cc', 'Xt', 'Yt', 'Zt'); 
fclose(fid); 

  
%% 
% Process each file 
 for FileNum = 1:numel(LasFileList) 
    % get filename as string 
    LasFile =  LasFileList{FileNum}; 
    [~,filebasename] = fileparts(LasFile); 
    disp(LasFile); 

     
    % load here the data 
    c = lasdata(LasFile); 

     
    % Scale the data for visualization issues and create necessary input for 

the ellipsoid 
    MeanX = mean(c.x); 
    MeanY = mean(c.y); 
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    x = c.x -MeanX; 
    y = c.y -MeanY; 
    z = c.z; 

     
    % do the raster filtering 
    FilterPixSize = 0.25; 
    % build X and Y grid for the pixel grid of top of canopy 
    [XX,YY] = meshgrid(min(x):FilterPixSize:max(x), 

min(y):FilterPixSize:max(y)); 
    ZZ = nan(size(XX)); 
    % loop through each pixel 
    for xi= 1:size(XX,2); 
        for yi= 1:size(YY,1); 
            % get pixel center coordinates 
            x_pix = XX(yi,xi); 
            y_pix = YY(yi,xi); 
            % find the highest point cloud point within the pixel 
            new_z = max(z((abs(x-x_pix)<=FilterPixSize/2) & (abs(y-

y_pix)<=FilterPixSize/2))); 
            % if a point was inside the pixel... 
            if ~isempty(new_z) 
                % store it in output  
                ZZ(yi,xi) = new_z; 
            end 
        end 
    end 

     
    % function to calculate Z value for the Sheng et al ellipsoid model. 
    % The last part "0/..." is there to produce NaN values outside of the 
    % ellipsoid 
    % the crownheigh and cr are forced positive by abs 
    Z_ShengFnc = @(x,y,ch,cr,cc,Xt,Yt,Zt) real(((1-((x-Xt).^2+(y-

Yt).^2).^(cc/2)/(abs(cr)^cc)).^(1/cc))*abs(ch) -abs(ch)+Zt) + 

(0./(cr>sqrt((x-Xt).^2+(y-Yt).^2))); 

   
    % Initial values for the [ch,cr,cc,Xt,Yt,Zt]-parameters 
    p0 = [max(ZZ(:))-min(ZZ(:)), ... % crown height as difference between 

highest and lowest Z value in data 
        (max(XX(:))-min(XX(:)))/2, ... % crown radius from size of the area 
        1, ... % curvature as constant 
        mean(XX(:)), ... % center point as center of area 
        mean(YY(:)), ... % center point as center of area 
        max(ZZ(:))];    % tree height as the highest point in data 
    % find the set of model parameters with minimum error in fit 
    p = fminsearch(@(p) 

CalculateFitQuality(ZZ,Z_ShengFnc(XX(:),YY(:),p(1),p(2),p(3),p(4),p(5),p(6)))

, p0); 
    % Calculate fitted ZZ surface 
    ZZZ = Z_ShengFnc(XX,YY,p(1),p(2),p(3),p(4),p(5),p(6)); 
    % visualize 
    figure(196151289) 
    clf 

     
    subplot(2,2,1) 
    plot(x, z, 'k.') 
    hold on 
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    plot(XX,ZZ, 'mo') 
    plot(XX,ZZZ, 'r*') 
    title(['XZ ', filebasename], 'interpreter', 'none') 
    axis equal 
    xlabel('XYZ') 

         
    subplot(2,2,2) 
    plot(y, z, 'k.') 
    hold on 
    plot(YY,ZZ, 'mo') 
    plot(YY,ZZZ, 'r*') 
    title('YZ') 
    axis equal 

  
    subplot(2,2,3) 
    plot(x, y, 'k.') 
    hold on 
    plot(XX,YY, 'mo') 
    title('XY') 
    axis equal 

  
    subplot(2,2,4); 
    hold on 
    % draw point cloud 
    plot3(x,y,z, 'k.') 
    plot3(XX,YY,ZZ, 'mo') 
    % draw ellipsoid center 
    plot3(center(1),center(2),center(3), 'ro') 
    mesh(XX,YY,ZZZ, 'FaceAlpha',0, 'LineWidth', 2) 
    axis vis3d 
    axis equal 
    campos([min(xlim), min(ylim), max(zlim)]) 
    camlookat(gca) 
    % write the picture 
    print('-dpng', '-r300', fullfile(OutputDir,[filebasename, '_preview.png' 

])); 

    
    % write output 
    fid = fopen(OutputFile, 'a'); 
    fprintf(fid, '%s\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\r\n', ... 
        filebasename, p(1), p(2), p(3), p(4),p(5), p(6)); 
    fclose(fid); 
end 

  
%% visualiaze 
    figure() 
    clf 
    hold on 
    plot3(x_n,y_n,z_n, 'b.') 
    plot3(center(1),center(2),center(3), 'ro') 
     [ellX,ellY,ellZ] = 

ellipsoid(center(1),center(2),center(3),radii(2),radii(3),radii(1),20); 
    surf(ellX,ellY,ellZ) 
    axis vis3d 
    axis equal 


