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Abstract 
Van Pelt, M. L. (2017). Genetic improvement of longevity in dairy cows. PhD thesis, 
Wageningen University, the Netherlands 
 
Improving longevity helps to increase the profit of the farmer, and it is seen as an 
important measure of improved animal welfare and sustainability of the sector. 
Breeding values for longevity have been published since in 1999 in the Netherlands. 
For AI-companies and farmers it is necessary that breeding values are accurately 
estimated and will remain stable for the rest of life. However, current breeding 
values for longevity of bulls seem to fluctuate more than expected. The main aim of 
this thesis was to revisit the genetics of longevity and develop a genetic evaluation 
model for longevity, where breeding values reflect the true breeding value quicker 
during early life and therefore breeding values become more stable. Genetic 
parameters were estimated for survival up to 72 months after first calving with a 
random regression model (RRM). Survival rates were higher in early life than later 
in life (99 vs. 95%). Survival was genetically not the same trait across the entire 
lifespan, because genetic correlations differ from unity between different time 
intervals, especially when intervals were further apart. Survival in the first year 
after first calving was investigated more in depth. Survival of heifers has improved 
considerably in the past 25 years, initially due to the focus on a high milk 
production. More recently, the importance of a high milk production for survival 
has been reduced. Therefore functional survival was defined as survival adjusted 
for within-herd production level. For survival the optimum age at first calving was 
around 24 months, whereas for functional survival calving before 24 months 
resulted in a higher survival. Over years, genetic correlations between survival in 
different 5-yr intervals were below unity, whereas for functional survival genetic 
correlations did not indicate that survival changed over years. This suggested that a 
genetic evaluation using historical data should analyze functional survival rather 
than survival. A new genetic evaluation system for longevity was developed based 
on a RRM analyzing functional survival. Based on the correlation between the first 
breeding value of a bull and his later breeding values, the ranking of bulls was 
shown to be more stable for RRM than the current genetic evaluation. Bias in 
breeding value was observed, mainly for bulls with a large proportion of living 
daughters. Adjusting for within-herd production level reduced this bias in the 
breeding values greatly. Before implementing this new model for genetic 
evaluation, the cause of this bias needs to be further investigated. 
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1.1 Introduction 
Longevity or length of productive life of a cow is a complex trait that reflects total 
lifespan of a cow. The actual longevity of a cow is determined by the farmer, 
because the farmer makes the decision to cull the cow or not, unless the cow dies, 
and the farmer takes into account milk production, health, fertility and workability 
traits when deciding to cull a cow. Longevity has been of economic importance and 
Rendel and Robertson (1950) already described how increasing longevity helps to 
increase profitability of the dairy farmer: 1) reducing annual costs of replacement 
of cows, 2) increasing the average milk production of the herd through an increase 
in the proportion of cows in the higher producing age groups, 3) reducing the 
number of replacements to be reared, and therefore allowing an increase in size of 
the milking herd for a given acreage and 4) increasing voluntary culling. Which of 
these factors is more prominent depends on the production circumstances of a 
farm and the culling decision of the farmer. For example, when a quota system is in 
place, extra production of the herd has little extra value, but the farmer could 
reduce the number of replacements, or cull more cows voluntary and herewith 
increase the average milk production per cow. In both cases, the profit will increase 
by lowering the costs for the same amount of milk. Van Arendonk (1985) showed 
that if involuntary culling is decreased, a higher voluntary culling rate can be 
applied, resulting in a larger profit for the farmer, but not necessarily increasing 
lifespan as a whole in the herd. Hence, the important economic aim for the farmer 
should be to reduce involuntary culling, rather than to increase herd life per se. 
Additional changes in production practices that affect animal health and welfare 
are needed, particularly given the societal concerns, such as animal welfare and 
antibiotic resistance, and will likely affect the profitability of the dairy herd 
(Barkema et al., 2015). Therefore, breeding for longevity is not only important as it 
will result in more profit, as well as increased animal welfare and social acceptance 
of the dairy sector. 
 
1.2 Culling reasons 
The longevity of a dairy cow is determined by the culling decision of the farmer, 
and farmers decide to cull dairy cows for various reasons such as mastitis, fertility 
problems, lameness, or low production (Beaudeau et al., 2000, Zijlstra et al., 2013). 
Longevity reflects a cow's ability not to be culled. Culling for low production is 
usually referred to as voluntary culling, culling for disease and low fertility as 
involuntary culling. Voluntary culling is an economically based decision where it is 
no longer worth breeding a cow compared with replacing her with a heifer, 
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whereas with involuntary culling a cow exists the herd for biological reasons, for 
example for mastitis or infertility (Van Arendonk, 1985, Fetrow et al., 2006).  
In the Netherlands, farmers can voluntarily record culling reasons, but not all 
farmers record these reasons and data are only available for the past decade. Main 
culling reasons in the Netherlands are for poor fertility, mastitis and feet and leg 
disorders (Zijlstra et al., 2013), which was similar to a study in Germany (Heise et 
al., 2016). Both studies also showed that culling reasons differed within and over 
lactations. However, recorded culling reasons are subjective scores of the farmer, 
and culling of a cow is often done for multiple reasons (Fetrow et al., 2006). For 
example, poor fertility or bad udder health combined with a low daily milk yield will 
result in a cow not being inseminated again. Therefore it is difficult to evaluate on 
the basis of voluntary recording of culling reasons whether longevity has changed. 
The dairy industry has undergone profound changes in recent decades, that 
affected productivity, health and welfare of dairy cows, for example, herd size, use 
of hired labor, housing system, milk price and use of new technology (Barkema et 
al., 2015). At the same time, milk production per cow has more than doubled in the 
previous 40 years. Culling reasons are likely to be affected over years by these 
changes. Further factors that have changed the culling reasons over time are, for 
example, national regulation and legislation (e.g. quota system). In Europe, a quota 
system was in place until April 2015 to limit the amount of milk produced annually 
per country, but also per farmer (Bergevoet et al., 2004). Individual farmers that 
produced more than the allowed quota, had to pay a penalty for the excess of milk 
that they produced. This system may have affected culling reasons over the years. 
Also, the changing viewpoint of dairy farmers might have changed culling reasons. 
As demonstrated by the fact that worldwide, national selection indexes have 
changed drastically over the past 2 decades, where the breeding goal moved from 
selection for production only toward selection for production, longevity, and health 
traits (Miglior et al., 2005). Moreover, changes in productive life were analyzed 
over a 15-yr period in the United States, (Tsuruta et al., 2004), and survival of first 
lactation was analyzed over a 20-yr period in Australia (Haile-Mariam and Pryce, 
2015). However, it was difficult to conclude if survival in the United States and 
Australia changed in those years, as genetic correlations between traits in different 
years from RRM and multi-trait models differed. 
Taking all these factors together, it is very unlikely that longevity has been the 
same “trait” over the past decades, but there is little insight how culling reasons or 
longevity have changed over the past decades, and the most important factors that 
play a role in the culling decisions of dairy farmers. 
 



1 General introduction 

 
 

13 
 

1.3 Longevity 
Without proper objective information on culling reasons, it is preferred to analyze 
longevity. However longevity can be defined in multiple ways also. Longevity can 
be measured as a lifetime trait or a stayability trait. Lifetime traits measure the 
whole lifespan of a cow or length of productive life. These can be measured only 
after the death of a cow. Stayability traits measure whether or not a cow is alive at 
a certain point in time (e.g., at a fixed number of months from birth or to a certain 
parity). These traits can be measured at any point in time, although they do not 
contain complete information on a cow's longevity as they are binary traits. Use of 
binary survival implies that only the animals having the opportunity to survive the 
entire specified period can be used in genetic analysis. Linear traits for longevity 
are number of lactations (Brotherstone et al., 1997), and length of productive life at 
84 months (VanRaden and Klaaskate, 1993). 
 
1.4 Statistical models 
Longevity of dairy cows can be analyzed with several models. Survival analysis is a 
term generally accepted for as a set of methods for analyzing data in human and 
animal studies (Kalbfleisch and Prentice, 1980, Cox and Oakes, 1984). Survival 
analysis is characterized by data where the outcome variable is the time until the 
occurrence of an event of interest. The event can be death, occurrence of a 
disease, marriage, divorce, etc. The time to event or survival time can be measured 
in days, weeks, years, etc. For dairy cows the event of interest is culling and the 
survival time can be the time in days after first calving until a cow is culled. Typical 
advantages of survival analysis compared to more classical models are: 1) using 
time to event is more efficient use of information than just whether or not the 
event has occurred, 2) it may be inconvenient to wait until the event has occurred 
in all subjects (e.g. for dairy cows this may be 10 years until culling or more for 
some cows), and 3) possibility to include subjects whose time to event is not known 
yet (censored). Most common is right-censoring, meaning the event has not 
occurred at last follow-up. The most popular class of survival models is the class of 
proportional hazard models (PHM) (Cox, 1972, Kalbfleisch and Prentice, 1980). The 
hazard of an animal (or its risk of being culled) at time t is described as the product 
of a baseline hazard function and of a positive term which is an exponential 
function of a vector of covariates w’ multiplied by a vector of regression 
parameters θ. The baseline hazard function is either left completely arbitrary (Cox 
model) or has a parametric form (e.g. exponential, Weibull or gamma).  
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In animal breeding PHM is a popular model used in genetic evaluations for 
longevity, since the software package Survival Kit was introduced in 1994 (Ducrocq 
and Sölkner, 1994, 1998, Ducrocq et al., 2010). This model attempts to estimate 
the probability an animal will survive to time t given that it has survived to time t-1. 
The PHM can handle censored data and the non-normal distribution of survival 
data, but also time-dependent environmental effects can be included in the model.  
Since the PHM and other survival models have some practical disadvantages, in 
animal breeding several alternative approaches have been developed. For example 
to score survival as a binary trait; for example, survived or not up to a specific 
endpoint (i.e., time, age, lactation) or survived or not in a specific interval of time. 
This binary trait for survival can then be analyzed with a linear model or a threshold 
model. If survival is scored as a single binary trait, however, information from 
culling before the endpoint or information from survival after the endpoint is 
ignored. In addition, information from living animals that did not have the 
opportunity to survive a certain specified time interval cannot be used in the 
analysis. To overcome these major limitations, an expansion of censored records to 
expected lifespan has been suggested and implemented in the UK (Brotherstone et 
al., 1997), and US (VanRaden and Klaaskate, 1993), but also multi-trait models 
including survival to several endpoints have been suggested (Boettcher et al., 1999, 
Sewalem et al., 2007). The advantage of the multi-trait model is that information 
for survival after first calving of younger animals still alive can be used to score the 
traits of the first intervals (they already survived), and the traits for the later 
intervals can be set to missing; also, variation across the lifetime of a cow is 
included in the genetic evaluation. Ideally, many traits with different endpoints 
should be included in the analysis, but when the life of a cow is split in many binary 
traits, the multi-trait parameterization becomes impossible and random 
regressions models may be useful to find a more parsimonious parameterization 
(Schaeffer and Dekkers, 1994). For this reason, Veerkamp et al. (2001) proposed 
the random regression model (RRM) for survival analysis, which was further 
investigated by Jamrozik et al. (2008). Veerkamp et al. (2001) proved, by 
comparison of the likelihood, the equivalence between the PHM and the RRM 
when a large number of survival intervals were defined in the random regression 
model. Compared with the PHM, the advantage of the RRM is that, in a linear 
model context, multiple genetic effects can be fitted. Random regression models 
therefore enable the modeling of longevity as a different but genetically correlated 
trait across the entire productive life of a cow, whereas the applied PHM in genetic 
evaluations is restricted to an univariate analysis handling longevity as one genetic 
effect (Forabosco et al., 2009). 
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1.5 Genetic evaluation 
Genetic evaluation methods evolved over the past 50 years. In 1949 Henderson 
published the method for best linear unbiased prediction (BLUP), but was not 
actually applied until 1970 because of limitations in computer hardware (Grosu et 
al., 2013). The application of BLUP has evolved since then from the sire model in 
1970, to the sire and maternal grandsire model, the univariate animal model in 
1989, to the multivariate animal model, and in 2000 the random regression model 
for the analysis of longitudinal data was implemented for the genetic evaluation 
using test day records for milk yield. More recently SNP-BLUP or GBLUP enabled 
the addition of genomic data in the genetic evaluations (Mrode, 2014). Next to the 
inclusion of DNA information, over the past 15 years advances in genetic evaluation 
were made due to automated collection of phenotypes for example for health and 
fertility traits. All these aspects, computing power, solving algorithms, and data, are 
connected and have led to the dramatic developments in genetic evaluation 
procedures, and currently more than a hundred breeding values traits are routinely 
available in the Netherlands. The focus here is on the genetic evaluation for 
longevity. 
 
1.5.1 Genetic evaluation for longevity in practice 
In animal breeding the application of longevity data is to predict the genetic merit 
for lifespan of animals and make selection decisions. However, this makes longevity 
a complex trait, because the true longevity of a cow is available at the end of her 
life, whereas the selection decisions are made earlier in life. For this purpose it is 
necessary that breeding values are accurately estimated and will remain stable for 
the rest of life. Worldwide, different approaches are used for genetic evaluation of 
longevity (Forabosco et al., 2009). In the Interbull genetic evaluation for longevity 
19 countries participate of which 10 countries use survival analysis with a 
proportional hazards model, 8 countries use a single or a multiple-trait animal 
model, and one country uses a random regression lactation survival animal model. 
The current model used in the Netherlands to estimate breeding values is a 
piecewise Weibull mixed model for longevity (Van der Linde et al., 2004, Van der 
Linde et al., 2007). Differences in the approaches or models to estimate breeding 
values for longevity are described in Veerkamp et al. (2001): 1) handling of 
censored records, 2) use of time-dependent fixed effects, 3) accounting for non-
normal distribution of longevity data, 4) combining information from other 
predictors, for example health and type traits, 5) number of distinct genetic effects 
assumed during lifetime, and 6) possibility of fitting an animal model to large data 
sets. No method available is best or worst for all six points. 
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A crucial aspect for the stability of breeding values appears to be whether the 
model can extrapolate survival data to predict the full lifespan, and the 
assumptions that are made in the underlying model. For example, whether 
longevity is the same trait in terms of (co)variances, or number of distinct genetic 
effects, during the total lifespan and across lactations. If longevity is not the same 
trait across time, then a model is needed that has the ability to handle survival data 
differently during that time span. There are some indications from studies using 
linear multi-trait models that genetic correlations between parities differ from 
unity, indicating longevity is not the same trait over the total lifespan (Visscher and 
Goddard, 1995, Brotherstone et al., 1997, Boettcher et al., 1999, Veerkamp et al., 
2001, Sewalem et al., 2007). Similar results were found with a lactation random 
regression model (Gengler et al., 2005).  
At the same time several studies with simulated and/or real data showed 
correlations of 0.90 or higher between breeding values of different models, 
indicating the used model may not be a major issue (Boettcher et al., 1999, Lubbers 
et al., 2000, Veerkamp et al., 2001, Jamrozik et al., 2008). However, Jamrozik et al. 
(2008) concluded that the random regression model showed a slight superiority 
over linear multiple-trait and PHM in predicting the proportion of sire’s daughters 
that survived to different endpoints after the first calving. A random regression 
model can estimate changes over time if they are gradual (Tsuruta et al., 2004). 
Ducrocq (1999) proposed some suggestions to investigate survival analysis further, 
one of the suggestions is to use time-dependent sire effects, which is possible with 
random regression using orthogonal polynomials (Schaeffer, 2004), and in the 
newest release of the Survival Kit it is also possible to analyse two correlated 
random effects (Mészáros et al., 2013). 
 
1.5.2 Use of predictor traits 
Despite the different models to analyze censored records for survival, predictor 
traits may also be valuable to predict longevity early in life. These predictor traits, 
measured early in life, can improve the reliability of the breeding value due to the 
genetic relationship. Most countries in the Interbull evaluation for longevity 
combine breeding values of predictors and direct longevity to have a more reliable 
breeding value when only few cows are culled (Forabosco et al., 2009). 
Conformation traits, production traits, somatic cell count, calving traits, fertility 
traits and likability are used as predictors. 
Reviews of Dekkers and Jairath (1994), Essl (1998) and Vollema (1998) covered a 
wide range of studies until the nineties and showed weak to moderate genetic 
correlations between type traits and longevity. In later studies similar results were 
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found (Vollema and Groen, 1997, Weigel et al., 1998, Buenger et al., 2001, 
Larroque and Ducrocq, 2001). Somatic cell count is another predictor with a 
moderate genetic correlation with longevity as well (Heringstad et al., 2003, Powell 
and VanRaden, 2003, Holtsmark et al., 2008). Most of these studies estimated 
genetic correlations between predictors and total lifespan and are indirectly 
assuming predictors have the same effect over the total lifespan. However, at 
phenotypic level culling risks or culling decisions for health disorders differ across 
lactation (Beaudeau et al., 2000, De Vries et al., 2010) and therefore it could be 
possible that genetic correlations between predictor traits and longevity are 
different across lifetime as well. If this is the case, the use of predictor traits in a 
multiple trait breeding value estimation with varying (co)variances may predict 
longevity better and estimate more stable breeding values. In contrast of using the 
correlation with predictor traits to estimate the breeding value for longevity, most 
countries (14 of 19) adjust longevity for cows for production level by including milk 
production as a covariate in the analysis and herewith provide an approximation of 
functional longevity (Forabosco et al., 2009). Functional longevity is perceived as 
the ability to delay involuntary culling, whereas true or productive longevity is the 
ability to delay culling. 
 
1.5.3 Experience with genetic evaluation in the Netherlands 
Breeding values for longevity have been published since the introduction in 1999 in 
the Netherlands, and have become very important due to the inclusion of the 
breeding values in the national index, and the introduction of genomic selection. At 
the same time the breeding value for longevity was included in the national index 
DPS in the Netherlands, with substantial weight of 33%. Since the introduction the 
weight has gradually decreased from 33% to 11% in the current national index 
(NVI), since more health and fertility breeding values became available and were 
included in the NVI. By weighing these traits directly in the NVI, less weight was 
required for longevity. Still, the longevity breeding value is perceived as an 
important breeding value for bulls. 
Currently, most breeding companies use genomic information to select and sell 
bulls. For genomic selection genomic markers are calibrated using genotypes and 
breeding values of bulls with accurate breeding values (Meuwissen et al., 2001). 
Utilizing the genomic prediction equation, selection candidates, i.e., young bulls, 
are now selected at birth with greater accuracy than the parent average 
information that was available previously, and an accuracy very close to the 
accuracy of the breeding value based on progeny information (where bulls had to 
wait five years for). Genomic selection can be very beneficial for traits with a low 
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heritability (health traits), traits expressed late in life (longevity), traits expensive to 
measure (feed efficiency), or traits that cannot be directly measured on the 
selection candidates (milk production). Genomic selection is very important for 
longevity, because bulls depend for a long time on the genomic information, as it 
takes several years before the daughters are culled. Although genomic selection 
may suggest that classical breeding value estimation became less important, this is 
not the case. For genomic prediction the breeding values for longevity are 
important, since these are used as input in the reference population to train the 
genomic prediction. 
Hence, the importance of longevity in the national breeding goal, and the 
introduction of genomic selection made classical genetic valuation for longevity 
very important. However, the difficulties in estimating breeding values for longevity 
as described before, is also observed in practice. For example, current breeding 
values of bulls seem to fluctuate more than can be expected from theory, i.e., the 
change in breeding value compared to the increase in reliability (Figure 1.1). This 
perception was amplified by some famous bulls that were highly favorable for 
longevity initially, but dropped considerable in their breeding value when more 
information became available. Also, in most countries, like in the Netherlands, 
genomic prediction for longevity has poorest validation reliability (Gao et al., 2013; 
Stoop et al., 2015). Therefore, almost 20 years since the first genetic evaluation for 
longevity was developed in the Netherlands, an important aim of this thesis was to 
revisit the genetic aspects influencing the breeding value of longevity. 
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Figure 1.1. Difference in breeding value in days for longevity of individual bulls (n=54) with 
second crop daughters per round of evaluation (interval of 4 months) compared with the last 
evaluation based on first crop daughters only (round 1); The red dotted lines are the upper 
and lower bound of the 95%-confidence interval for allowed changes in breeding value 
based on the increase in reliability between round 1 and the other rounds. 
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1.6 Aim and outline of thesis 
The main aim of my thesis is to investigate the genetics of longevity and develop a 
genetic evaluation model for the prediction of breeding values for longevity, with 
the objective that breeding values reflect the true breeding value quicker during 
early life and therefore breeding values become more stable. To develop this 
model three parts are investigated first: 
1. Genetic analysis of longevity in Dutch dairy cattle using random regression. The 

aim in Chapter 2 is to investigate if survival across the life of a cow genetically 
should be treated as one trait and if lifespan needs to be split in time intervals 
of 1, 3, 6 or 12 mo. 

2. Changes in the genetic level and the effects of age at first calving and milk 
production on survival during the first lactation over the last 25 years. The aim 
in Chapter 3 is to investigate cow survival in the Netherlands for the period 
1989–2013, and whether the associations of survival with season of calving, 
genetic level of survival, AFC and within-herd production level have changed 
over these decades. 

3. Genetic changes of survival traits over the past 25 years in Dutch dairy cattle. 
The aim in Chapter 4 is to evaluate if survival in first lactation has become a 
different trait over the past 25 years or not, and if this is affected by adjusting 
for production level or not. 

In Chapter 5 the prototype for the genetic evaluation model of longevity in the 
Netherlands and Flanders is developed using a random regression animal. This 
Chapter uses the findings from Chapter 2 to 4, and to evaluate the impact of these 
model changes on the breeding values for longevity of bulls, i.e. that breeding 
values reflect the true breeding value quicker during early life of the bulls and 
therefore breeding values become more stable, and compare the new random 
regression animal model with the current genetic evaluation with a PHM. In the 
general discussion, Chapter 6, the proposed model is first discussed within the 
context of the specifications defined in Chapter 2 to 4 and other models used 
worldwide. Following this, longevity and its association with other traits are 
examined and discussed. Finally, practical considerations for the implementation of 
a routine genetic evaluation of longevity based on the final model are put forward. 
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Abstract 
Longevity, productive life, or lifespan of dairy cattle is an important trait for dairy 
farmers, and it is defined as the time from first calving to the last test date for milk 
production. Methods for genetic evaluations need to account for censored data; 
that is, records from cows that are still alive. The aim of this study was to 
investigate whether these methods also need to take account of survival being 
genetically a different trait across the entire lifespan of a cow. The data set 
comprised 112,000 cows with a total of 3,964,449 observations for survival per 
month from first calving until 72 mo in productive life. A random regression model 
with second-order Legendre polynomials was fitted for the additive genetic effect. 
Alternative parameterizations were (1) different trait definitions for the length of 
time interval for survival after first calving (1, 3, 6, and 12 mo); (2) linear or 
threshold model; and (3) differing the order of the Legendre polynomial. The 
partial derivatives of a profit function were used to transform variance components 
on the survival scale to those for lifespan. Survival rates were higher in early life 
than later in life (99 vs. 95%). When survival was defined over 12-mo intervals 
survival curves were smooth compared with curves when 1-, 3-, or 6-mo intervals 
were used. Heritabilities in each interval were very low and ranged from 0.002 to 
0.031, but the heritability for lifespan over the entire period of 72 mo after first 
calving ranged from 0.115 to 0.149. Genetic correlations between time intervals 
ranged from 0.25 to 1.00. Genetic parameters and breeding values for the genetic 
effect were more sensitive to the trait definition than to whether a linear or 
threshold model was used or to the order of Legendre polynomial used. Cumulative 
survival up to the first 6 mo predicted lifespan with an accuracy of only 0.79 to 
0.85; that is, reliability of breeding value with many daughters in the first 6 mo can 
be, at most, 0.62 to 0.72, and changes of breeding values are still expected when 
daughters are getting older. Therefore, an improved model for genetic evaluation 
should treat survival as different traits during the lifespan by splitting lifespan in 
time intervals of 6 mo or less to avoid overestimated reliabilities and changes in 
breeding values when daughters are getting older. 
 
Key words: dairy cattle, survival, longevity, random regression 
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2.1 Introduction 
Longevity is of economic importance for dairy farmers because increased longevity 
helps to increase profitability by (1) reducing the annual costs of replacement of 
cows; (2) increasing the average herd yield through an increase in the proportion of 
cows in the higher-producing age groups; (3) better use of a given acreage by 
reducing the number of replacements to be reared, and therefore allowing an 
increase in size of the milking herd; and (4) increasing voluntary culling (Rendel and 
Robertson, 1950). Van Arendonk (1985) showed that when involuntary culling 
decreases, a higher voluntary culling rate can be applied, resulting in a larger profit 
for the farmer but not necessarily increasing lifespan as a whole. Hence, an 
important economic aim for the farmer should be to reduce involuntary culling by 
using genetic selection. 
In animal breeding, selection for longevity is complex because the true longevity of 
a cow is available only at the end of her life, whereas selection and breeding 
decisions are made earlier in life. Therefore, censored data are used in genetic 
evaluations, and expected lifespan needs to be extrapolated from survival data 
during life. To enable this analysis of censored data, different genetic evaluation 
models are used (Forabosco et al., 2009). Survival analysis with a proportional 
hazard function is a popular model used in genetic evaluations for longevity, since 
the software package Survival Kit was introduced in 1994 (Ducrocq and Sölkner, 
1994, 1998, Ducrocq et al., 2010). That model attempts to estimate the probability 
that an animal will survive to time t given that it has survived to time t − 
1. Although current genetic evaluations are restricted to a single genetic effect 
during life, in the newest release it is possible to analyze 2 correlated random 
effects (Mészáros et al., 2013). 
An alternative approach to the survival model is to score survival as a binary trait; 
for example, survived or not up to a specific endpoint (i.e., time, age, lactation) or 
survived or not in a specific interval of time. This binary trait for survival can then 
be analyzed with a linear model or a threshold model, although correlations 
between breeding values based on a linear and a threshold model are very high 
and no or little reranking is expected (Boettcher et al., 1999, Holtsmark et al., 
2009), which has also been shown for other traits (Meijering and Gianola, 1985, 
Carlén et al., 2006). Therefore, several countries apply a linear model with survival 
defined as a binary trait in their routine national genetic evaluations (Forabosco et 
al., 2009). 
If survival is scored as a single binary trait, however, information from culling 
before the endpoint or information from survival after the endpoint is ignored. In 
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addition, information from living animals that did not have the opportunity to 
survive a certain specified time interval cannot be used in the analyses. To 
overcome these major limitations, an expansion of censored records to expected 
lifespan has been suggested and implemented in the UK (Brotherstone et al., 
1997), and data augmentation (Guo et al., 2001) or multi-trait models including 
survival to several endpoints have been suggested (Boettcher et al., 1999, Sewalem 
et al., 2007). The advantage of the multi-trait model is that information for survival 
after first calving of younger animals still alive can be used to score the traits of the 
first intervals (they already survived), and the traits for the later intervals can be set 
to missing; also, variation across time is included in the genetic evaluation. Ideally, 
many traits with different endpoints should be included in the analysis, but when 
the life of a cow is split in many binary traits, the multi-trait parameterization 
becomes impossible and random regressions models might be useful to find a more 
parsimonious parameterization (Schaeffer and Dekkers, 1994). For this reason, 
Veerkamp et al. (2001) proposed the random regression model (RRM) for survival 
analysis, which was further investigated by Jamrozik et al. (2008). Veerkamp et al. 
(2001) proved, by comparison of the likelihood, the equivalence between the 
survival model and the RRM when a large number of survival intervals were 
defined in the random regression model. Compared with the survival model, the 
advantage of the RRM is that, in a linear model context, multiple genetic effects 
can be fitted. Random regression models therefore enable the modeling of 
longevity as a different but genetically correlated trait across the entire productive 
life of a cow. 
The assumption that longevity is genetically the same trait during the entire 
productive life of a cow is often violated, because evidence shows that survival is 
not necessarily the same trait during the total lifespan of a cow, phenotypically as 
well as genetically. Cows in higher parities have a higher culling risk compared with 
earlier parities (Ducrocq, 2005, Terawaki and Ducrocq, 2009, De Vries et al., 2010) 
and dairy producers cull more intensively for low production in first than in later 
parities (Dürr et al., 1997, Dürr et al., 1999). Studies using linear multi-trait models 
showed genetic correlations between parities that significantly differ from unity, 
averaging 0.77, with a range from 0.33 to 0.96, where correlations decrease with 
increasing distance between parities (Visscher and Goddard, 1995, Brotherstone et 
al., 1997, Boettcher et al., 1999, Veerkamp et al., 2001, Sewalem et al., 2007, 
Holtsmark et al., 2009). Similar results were found with a lactation RRM (Gengler et 
al., 2005). Hence, this supports the question of whether the use of the survival 
model with 1 (or 2) genetic effects over the entire life of a cow is optimal, and 
whether a linear RRM with many time intervals across the life of a cow provides an 
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alternative. A first step to adopting a new model for genetic evaluation is to 
determine if survival is genetically the same trait across the entire life of a cow. 
Therefore, the objective of this study was to estimate genetic parameters for 
survival across the life of Dutch dairy cows using random regression and multi-trait 
models of different orders. However, a concern might be that when the lifespan of 
a cow is split into many short time intervals, the risk of culling becomes too low in 
each time interval to apply a linear model. Therefore, both a generalized linear 
model with a logit link function (GLMM) and an ordinary linear model ignoring the 
binary nature of the trait were used, and 4 different lengths of time interval for 
survival were evaluated. 
 
2.2 Materials and Methods 
 
2.2.1 Data 
Productive life or lifespan was defined as the time from first calving to the last test 
date for milk production before the animal died or was culled for slaughter 
(including dry periods). Data were available from the Dutch/Flemish cattle 
improvement cooperative CRV (CRV, Arnhem, the Netherlands). The data set was 
constructed from records of pedigree, lactations, and movements of cows in the 
Netherlands. Records were constructed for each month that a cow had been 
present in a herd since the first calving. A cow, culled in month j has j − 1 records 
with score 100 (alive) and record j with score 0 (culled). After culling, 
monthly records were treated as missing. Records for survival per month in 
productive life were created for cows containing at least 87.5% black and white 
genes; that is, Holstein Friesian or Dutch Friesian, and having a first calving 
between 21 and 40 mo of age. Maximum lactation length was 18 mo and only 
lactations with the last test date after January 1, 1988, were included. Survival 
records after 72 mo in productive life were discarded. Animals were required to 
have the first observation in mo 1 in parity 1; that is, left-censored animals were 
deleted, because those animals had missing milk production data or changed 
herds. Right-censored animals (e.g., still alive or exported) were included in the 
final data set. In the period from 1988 to 2012, the total data set comprised 
354,014,073 records from 10,004,624 animals in 44,550 herds. For the parameter 
estimation, the total data set was reduced by criteria on the herd level. Herds with 
at least 95% black and white genes were selected. Only herds with at least 60 cows 
present every month in the period from 1993 to 2012 were selected. This was done 
to exclude herds with nonconventional culling management, because, for example, 
the farm could have stopped milk production and sold animals all at once or in 
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batches, or the entire herd could have been culled at once because of a breakout of 
a disease. Because of the exclusion of left-censored animals, selection of herds was 
not based on the entire period, but started in 1993. In total, 560 herds fulfilled 
these criteria and contained 477,105 animals with 15,958,047 records for monthly 
survival. Additional requirements were that (1) sires had, as sire or as maternal 
grandsire or combined, at least 12 progeny that could have been productive for at 
least 36 mo after first calving; (2) sires had progeny in at least 2 herds, and (3) 
every herd-year-month class had at least 50 observations. These additional 
requirements for progeny per sire, herds per sire, and observations per herd-year-
month were repeated until the final data set met all criteria. The resulting data set 
consisted of 112,000 cows with 3,964,449 observations for monthly survival 
originating from 153 herds and 1,329 sires and maternal grandsires. Pedigree 
information of these sires was traced back 6 generations, resulting in a pedigree file 
with 1,718 sires. 
The data set with monthly survival records was used to create 3 other data sets 
with different lengths for the time interval for survival of 3, 6, and 12 mo. The 
records for these 3 data sets were created by combining monthly records for 
survival to 1 record per 3, 6, or 12 mo for survival. Compared with the initial data 
set, the resulting data sets contained fewer animals because living animals without 
information up to the first endpoint were excluded from the data set, because it 
was not possible to determine whether the cow reached that endpoint or not. An 
overview of all 4 data sets is given in Table 2.1. 
 
Table 2.1. Number of records and cows for 4 data sets for survival, where each data set has a 
different length for the time interval for survival 
Data set Time interval (mo) No. of records No. of cows 
1 1 3,964,449 112,000 
2 3 1,338,371 109,458 
3 6 682,225 107,595 
4 12 354,737 105,716 
 
2.2.2 Statistical Model 
To determine whether heritability for survival changes during the total lifespan and 
to what extent survival is genetically the same trait across the lifespan, genetic 
parameters were estimated using a random regression sire-maternal grandsire 
model as base: 
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where y is the binary observation for survival of an animal in herd × 5-yr period k, 
with sire m and maternal grandsire n, for time interval 1, 3, 6 or 12 mo; µ is general 
mean; FIXED included fixed effects of parity × year of calving, a third-order 
Legendre polynomial on time interval, and a second-order Legendre polynomial on 
age at first calving; hcik is the ith-order random regression coefficient of the second-
order Legendre polynomial on time interval tl for the herd curve effect of herd × 5-
yr period k; sireim and mgsin are the ith-order random regression coefficients of 
the pth-order Legendre polynomial on time interval tl for the additive genetic effect 
of sire m and maternal grandsire n; and εklmno is the residual effect. The random sire 
effects were fitted by overlaying the relationship matrix for sire and one-half the 
maternal grandsire matrix, resulting in one estimate per effect for a sire. Variance 
components were estimated with ASReml (Gilmour et al., 2009). 
The permanent environment effect of an animal is usually fitted in RRM. However, 
with survival data, a record of zero indicates that the animal died in the time 
interval and no subsequent records will follow for this animal. Thus, as only one of 
the categories can be repeated (i.e., records coded alive), such data structures are 
not well suited for estimation of permanent environment effects (Ødegård et al., 
2006). We tested this effect and the permanent environment variance was close to 
zero in all models. Therefore, we excluded it from the final analysis. 
In our study, we analyzed productive longevity instead of functional longevity. 
Productive longevity is defined as the ability to delay culling, both voluntary (i.e., 
for production) as well as involuntary. Functional longevity is the longevity of a cow 
adjusted for individual milk production relative to the production level of the herd, 
and it is suggested as a way to exclude voluntary culling from the breeding value 
(Robertson, 1966). However, this adjustment has been under debate in the 
Netherlands (e.g., little voluntary culling for yield, health also affects yield), and 
therefore we did not investigate functional longevity here. 
Residual variances were estimated for intervals of 3 mo for the time interval of 
1 mo and for each time interval for the time intervals of 3, 6, and 12 mo, and were 
assumed to be uncorrelated. Heritabilities for each time interval were calculated as 
4 × sire variance divided by the sum of 1.25 × sire variance (1.25 because both the 
sire and the maternal grandsire, i.e., 0.25 × sire variance, were fitted in the model), 
the herd curve variance, and the residual variance of the corresponding interval. 
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Estimates of the (co)variance components for the random effects are functions of 
time and were expanded to (co)variances attributable to time intervals by 𝚽𝚽′𝑽𝑽𝚽𝚽, 
where 𝚽𝚽 is an l × p matrix whose elements are the Legendre coefficients for time 
intervals l, and 𝑽𝑽 is p × p matrix with the estimated covariance components for the 
additive genetic effect or the herd curve effect. The resulting l × l matrix contained 
the (co)variances for all l time intervals. Heritabilities for survival per time 
interval l were derived from these 𝚽𝚽′𝑽𝑽𝚽𝚽 matrices. To compute approximate 
standard errors for variances and heritabilities for all time intervals using the 
method described by Fischer et al. (2004), an automated process (to generate 
ASReml pin files) was implemented. The statistical significance of the estimated 
parameters was tested with a chi-squared test with 1 degree of freedom (P < 0.05). 
 
2.2.3 Alternative Model Parameterizations 
To estimate the genetic parameters, alternative parameterizations of the base 
statistical model were considered. For each model also, breeding values were 
predicted and correlations were calculated between the breeding values (EBV) for 
lifespan (LS) based on 555 sires with at least 10 daughters at mo 36 in productive 
life. 
Trait Definition. Traits were defined by varying the length of the time interval for 
survival, and time intervals of 1, 3, 6, and 12 mo were analyzed using the base 
model with a second-order Legendre polynomial for the genetic effect. For the 
length of the time interval of 1 mo, it was possible to correct for the dry period, and 
fixed classes were used for parity × month in lactation, with a separate class for dry 
cows, instead of a third-order Legendre polynomial on the time interval. Because of 
the short time interval, it was possible to fit fixed effects for year × season of 
observation and for parity × year × season of calving. 
Linear or Threshold Model. To test the suitability of using a linear model for 
analyzing survival as a binary trait, especially when the risk of culling becomes 
smaller with shorter time intervals, a generalized linear model with a logit link 
function (GLMM) was also fitted to all 4 data sets. The same base model was used, 
with a second-order Legendre polynomial for the genetic effect. Different residual 
classes were fitted as in the base model, except for the threshold model with the 
length of the time interval for survival of 12 mo, which showed convergence 
problems. Therefore, only one residual class was fitted in this case. 
Order of Legendre Polynomial. Different orders of the random regression 
component were tested and, as a result, different numbers of genetic coefficients 
were estimated in the statistical model. The genetic effect was modeled with a 
second-order (RR2) or fifth-order (RR5) Legendre polynomial or as the full multi-
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trait model (MT) fitting an interaction between genetic effect and time interval. 
The interaction between genetic effect and the 12 time intervals is equivalent to 
fitting a 11th-order Legendre polynomial. For this analysis, observations with a time 
interval of 6 mo were used, because it was feasible to get convergence for RR5 and 
MT. 
 
2.2.4 Transforming Survival to Lifespan 
In animal breeding, we are interested in improving total longevity; that is, LS. In the 
statistical analysis, survival was modeled as survival in a time interval i conditional 
on survival up to the previous time interval i − 1. An animal that survived time 
intervals i – 1 and i was coded “alive-alive”, and an animal that was culled in time 
interval i was coded “alive-culled” for time intervals i − 1 and i. To transform these 
conditional survival probabilities into total lifespan, the following transformation 
from survival into LS was performed. 
Let 𝜋𝜋𝑖𝑖𝑖𝑖  be the probability that an animal j dies in month i, and survives i − 1 months. 
So, the mean lifespan of animal j is 𝐿𝐿𝐿𝐿𝑖𝑖 = Σ𝑖𝑖𝜋𝜋𝑖𝑖𝑖𝑖(𝑠𝑠 − 1). The probability that animal j 
dies in month i follows a binomial distribution and equals the probability that it 
survives mo 1, 2, …, (i − 1) times that it dies in month i; thus, 𝜋𝜋𝑖𝑖𝑖𝑖 = (1 −

𝑝𝑝𝑖𝑖𝑖𝑖)∏ 𝑝𝑝𝑘𝑘𝑖𝑖
(𝑖𝑖−1)
𝑘𝑘=1 , where 𝑝𝑝𝑖𝑖𝑖𝑖  is the probability that animal j survives month i; that is, 

𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑖𝑖 + 𝑚𝑚𝑖𝑖𝑖𝑖, with 𝑝𝑝𝑖𝑖  denoting the average survival rate in month i, and 𝑚𝑚𝑖𝑖𝑖𝑖  
denotes the genetic value of animal j for surviving month i, as estimated by the 
above analysis. For example, if we consider a maximum LS of 4 mo; that is, every 
animal that survives up to mo 3 dies in mo 4 (𝑝𝑝4𝑖𝑖  = 0), the lifespan of animal j can 
be written as 
 
𝐿𝐿𝐿𝐿𝑖𝑖 = 0�1 − 𝑝𝑝1𝑖𝑖� + 1�𝑝𝑝1𝑖𝑖 − 𝑝𝑝1𝑖𝑖𝑝𝑝2𝑖𝑖� + 2�𝑝𝑝1𝑖𝑖𝑝𝑝2𝑖𝑖 − 𝑝𝑝1𝑖𝑖𝑝𝑝2𝑖𝑖𝑝𝑝3𝑖𝑖� + 3𝑝𝑝1𝑖𝑖𝑝𝑝2𝑖𝑖𝑝𝑝3𝑖𝑖 ,      [1] 
𝐿𝐿𝐿𝐿𝑖𝑖 = 𝑝𝑝1𝑖𝑖 + 𝑝𝑝1𝑖𝑖𝑝𝑝2𝑖𝑖 + 𝑝𝑝1𝑖𝑖𝑝𝑝2𝑖𝑖𝑝𝑝3𝑖𝑖,          [2] 

 
Transforming phenotypic survival to LS is relatively straightforward with equation 
[2], and extension to more months or different time intervals is also 
straightforward. However, to obtain breeding values and variance components for 
LS from the random regressions components, it is important to account for the 
mean survival rate per time interval in the multiplicative effects. For this 
transformation, equation [2] can be redefined as a (part-)profit function (other 
non-LS related parts of the profit function are not relevant here), which expresses 
lifespan as a linearized equation [2] of survival in each time interval where we have 
breeding values for (𝑝𝑝𝑖𝑖𝑖𝑖). Thus, estimation of the breeding value for lifespan follows 
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that of the usual estimation of a breeding value for profit; that is, the aggregate 
breeding value for LS of animal j is 
 
𝑚𝑚𝐿𝐿𝐿𝐿𝑗𝑗 = 𝑣𝑣1𝑚𝑚1𝑖𝑖 + 𝑣𝑣2𝑚𝑚2𝑖𝑖 + 𝑣𝑣3𝑚𝑚3𝑖𝑖,          [3] 

 
where 𝑣𝑣1 is the partial derivative of equation [2] to 𝑝𝑝𝑖𝑖𝑖𝑖  evaluated at the trait means 
(e.g., 𝑣𝑣1 = 1 + 𝑝𝑝2 + 𝑝𝑝2𝑝𝑝3 for mo 1). Following this definition, calculation of the 
variance components for LS and the correlation between survival until a certain 
endpoint and LS becomes straightforward following selection index theory: the 
variance of the aggregate breeding value for LS is 𝒗𝒗′𝚽𝚽′𝑽𝑽𝚽𝚽𝒗𝒗, where 𝒗𝒗 is a (number 
of time intervals × 1) vector of partial derivatives 𝒗𝒗𝒊𝒊. 
To compare the variance components (and EBV) from the threshold model with the 
linear model, a transformation was needed. The threshold model here used a logit 
link function; to transform the estimated variances in each time period back to the 
linear scale, the mean survival rate in each time interval 𝑝𝑝𝑖𝑖  in equation [2] needs to 
be transformed to the mean survival on the log scale (𝑝𝑝𝑖𝑖∗) by using 
 

𝑝𝑝𝑖𝑖∗ = 𝑙𝑙𝑙𝑙𝑚𝑚 � 𝑝𝑝𝑖𝑖
1−𝑝𝑝𝑖𝑖

�. 

 
Then, the deviance around the mean survival in each time interval was calculated 
by adding and subtracting 1 genetic standard deviation (calculated with 𝚽𝚽′𝑽𝑽𝚽𝚽) to 
these means on the log scale, 𝑝𝑝𝑖𝑖 +1𝑠𝑠𝑠𝑠∗ =  𝑝𝑝𝑖𝑖∗ + 𝜎𝜎𝑔𝑔𝑖𝑖∗and 𝑝𝑝𝑖𝑖 −1𝑠𝑠𝑠𝑠∗ =  𝑝𝑝𝑖𝑖∗ − 𝜎𝜎𝑔𝑔𝑖𝑖∗. 
Subsequently, these deviances in each interval were retransformed to the linear 
scale as 
 

𝑝𝑝𝑖𝑖 ±1𝐿𝐿𝑆𝑆 = � 𝑒𝑒𝑝𝑝𝑖𝑖 ±1𝑠𝑠𝑠𝑠
∗

1+𝑒𝑒𝑝𝑝𝑖𝑖 ±1𝑠𝑠𝑠𝑠
∗ �. 

 
Then, the genetic variance can be calculated by 
 

𝜎𝜎𝑔𝑔𝑖𝑖
2 = �𝑝𝑝𝑖𝑖 +1𝑠𝑠𝑠𝑠

∗ −𝑝𝑝𝑖𝑖 −1𝑠𝑠𝑠𝑠
∗

2
�
2
, 

 
and genetic covariances between time intervals on the linear scale are 
 

𝜎𝜎𝑔𝑔𝑖𝑖,𝑗𝑗 = 𝑠𝑠𝑔𝑔𝑖𝑖,𝑗𝑗
∗ �𝜎𝜎𝑔𝑔𝑖𝑖

2 ∗ 𝜎𝜎𝑔𝑔𝑗𝑗
2 , 
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where 𝑠𝑠𝑔𝑔𝑖𝑖,𝑗𝑗

∗  is the genetic correlation. Having the genetic (co)variances on the linear 

scale, genetic parameters for LS can be calculated with the partial derivatives of the 
part-profit function, as described above. 
 
2.3 Results 
 
2.3.1 Mean Survival 
The average lifespan was 41.2 mo from first calving to last test date for the culled 
cows in the data set. After 72 mo in productive life, 17.2% of the cows were still 
alive and producing milk. Figure 2.1 shows the survival rate per time interval for 
cows up to 72 mo in productive life for the 4 trait definitions for time interval. The 
survival rate decreased with an increasing number of months in productive life. 
Survival rates per time interval were lower with increased length of the time 
interval, with survival rates between 96 and 100% for survival per 1 mo, between 
88 and 98% for survival per 3 mo, between 78 and 95% for survival per 6 mo, and 
between 61 and 88% for survival per 12 mo. Moreover, survival curves became 
smoother with increased length of time interval. The survival curves were spikier 
when we used intervals of 1 and 3 mo, with the peaks approximately 1 yr apart, 
and smoother when the intervals were 6 and 12 mo. With relatively short time 
intervals (i.e., 1 and 3 mo), it was possible to capture more detailed information on 
survival compared with longer time intervals. 
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Figure 2.1. Average survival rate for 4 different lengths for the time interval for survival 
(panels a, b, c, and d show observations per 1, 3, 6, and 12 mo, respectively) for Dutch dairy 
cows with observations in the period 1988 to 2012. 
 
2.3.2 Trait Definition 
Heritabilities for survival in each time interval were (very) low (Table 2.2), especially 
for the intervals of 1 and 3 mo (0.002 to 0.014). Still, they were significantly 
different from zero, and the phenotypic variances were similar to the expected 
variance from the binomial distribution, being 𝑝𝑝(1 − 𝑝𝑝). Hence, these low 
heritabilities reflect the trait definition and the low incidence of culling for time 
intervals of 1 and 3 mo. The heritabilities for lifespan over the entire period of 72 
mo after first calving were considerably higher, ranging from 0.115 to 0.149, with 
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genetic standard deviations ranging from 7.0 to 8.0 mo. Phenotypic standard 
deviations for lifespan were comparable for the 4 data sets: 20.4 mo for the 
interval of 1 mo, 20.6 for the interval of 3 mo, 20.7 mo for the interval of 6 mo, and 
20.8 mo for the interval of 12 mo. 
 
Table 2.2. Heritabilities for survival (h2) and genetic standard deviations (𝜎𝜎𝑚𝑚) in months 
estimated with a random regression model with a second-order Legendre polynomial for the 
genetic effect1 

  Time interval 
  1 mo  3 mo  6 mo  12 mo 
Month     h2 𝜎𝜎𝑚𝑚         h2 𝜎𝜎𝑚𝑚         h2 𝜎𝜎𝑚𝑚         h2 𝜎𝜎𝑚𝑚 

6 0.003 0.005 0.005 0.03 0.010 0.13   
12 0.002 0.005 0.004 0.04 0.011 0.15 0.022 0.567 
18 0.003 0.006 0.007 0.05 0.014 0.19   
24 0.003 0.007 0.008 0.06 0.017 0.22 0.034 0.77 
30 0.003 0.008 0.009 0.07 0.018 0.25   
36 0.004 0.009 0.010 0.08 0.021 0.28 0.049 0.991 
42 0.004 0.010 0.011 0.08 0.021 0.30   
48 0.005 0.012 0.011 0.09 0.023 0.32 0.060 1.191 
54 0.006 0.013 0.012 0.09 0.023 0.35   
60 0.007 0.015 0.012 0.10 0.026 0.37 0.072 1.378 
66 0.009 0.017 0.013 0.11 0.027 0.40   
72 0.011 0.020 0.014 0.11 0.031 0.43 0.075 1.581 
LS 0.128 7.28 0.115 6.96 0.121 7.22 0.149 8.02 
1Survival was defined for 4 different lengths for the time interval for survival (1, 3, 6, and 12 
mo), and heritabilities are shown for every sixth month in productive life up to 72 mo, and 
heritability for lifespan (LS) is shown. 
2Parameters ending in specific months are shown; for the 1-mo interval, parameters of mo 6 
are shown; for the 3-mo interval, parameters of mo 4 to 6 are shown; for the 6-mo interval, 
parameters of mo 1 to 6 are shown; and for the 12-mo interval, there is no estimate at 6 mo 
but the first parameters are at mo 12. Standard errors ranged from 0.0002 to 0.0015 for the 
1-mo time interval, from 0.0005 to 0.0023 for the 3-mo interval, from 0.0012 to 0.0054 for 
the 6-mo interval, and from 0.0030 to 0.0106 for the 12-mo interval. 
 
For the data set with survival rates defined per 1 mo, genetic correlations between 
intervals ranged from 0.36 to 1.00 (Table 2.3, below diagonal); for the 3 data sets 
with other intervals, genetic correlations ranged from 0.66 to 1.00 (Tables 2.4, 2.5, 
and 2.6, below diagonal). The genetic correlations between time intervals not far 
apart were close to unity and departed from unity with increasing distance 
between the intervals, especially for the data set where an interval of 1 mo was 
used. With the 3 data sets with survival defined over longer time intervals, most 



2 Genetic analysis of longevity 

 
 

41 
 

genetic correlations were 0.90 and higher, except for the first time interval, 6 or 12 
mo, for which the genetic correlations were 0.80 or lower. 
 
Table 2.3. Genetic correlations between 1-mo intervals for survival, estimated with a linear 
(below diagonal) and a threshold (above diagonal) random regression model with a second-
order Legendre polynomial for the genetic effect1 
Mo 6 12 18 24 30 36 42 48 54 60 66 72 
6  0.99 0.94 0.88 0.80 0.72 0.64 0.57 0.49 0.41 0.33 0.25 
12 0.97  0.99 0.95 0.89 0.83 0.76 0.68 0.60 0.51 0.40 0.29 
18 0.90 0.98  0.99 0.95 0.91 0.85 0.78 0.70 0.60 0.48 0.35 
24 0.84 0.95 0.99  0.99 0.96 0.92 0.86 0.78 0.68 0.55 0.40 
30 0.78 0.91 0.96 0.99  0.99 0.96 0.92 0.85 0.76 0.62 0.46 
36 0.72 0.86 0.93 0.97 0.99  0.99 0.96 0.91 0.82 0.69 0.54 
42 0.67 0.80 0.88 0.93 0.97 0.99  0.99 0.95 0.88 0.77 0.62 
48 0.60 0.73 0.81 0.88 0.93 0.97 0.99  0.99 0.94 0.85 0.71 
54 0.54 0.66 0.74 0.81 0.88 0.93 0.97 0.99  0.98 0.92 0.81 
60 0.48 0.58 0.67 0.74 0.82 0.88 0.93 0.97 0.99  0.98 0.91 
66 0.42 0.51 0.59 0.67 0.75 0.82 0.89 0.94 0.98 0.99  0.98 
72 0.36 0.44 0.52 0.60 0.69 0.77 0.84 0.90 0.95 0.98 1.00  
1Standard errors for the genetic correlations between 1-mo intervals ranged from 0.0003 to 
0.114 for the linear model and from 0.0004 to 0.111 for the threshold model. 
 
Table 2.4. Genetic correlations between 3-mo intervals for survival, estimated with a linear 
(below diagonal) and a threshold (above diagonal) random regression model with a second-
order Legendre polynomial for the genetic effect1 
Mo 6 12 18 24 30 36 42 48 54 60 66 72 
6  0.97 0.88 0.77 0.67 0.60 0.56 0.55 0.58 0.64 0.72 0.79 
12 0.95  0.97 0.90 0.84 0.78 0.75 0.74 0.76 0.80 0.84 0.84 
18 0.87 0.98  0.98 0.94 0.91 0.89 0.88 0.89 0.90 0.90 0.84 
24 0.82 0.96 0.99  0.99 0.97 0.96 0.95 0.95 0.94 0.91 0.81 
30 0.78 0.94 0.98 1.00  1.00 0.99 0.98 0.98 0.96 0.90 0.77 
36 0.76 0.92 0.97 0.99 1.00  1.00 0.99 0.99 0.96 0.90 0.75 
42 0.75 0.91 0.96 0.98 0.99 1.00  1.00 0.99 0.97 0.90 0.75 
48 0.74 0.90 0.95 0.97 0.98 0.99 1.00  1.00 0.98 0.91 0.77 
54 0.74 0.88 0.93 0.95 0.97 0.98 0.99 1.00  0.99 0.94 0.81 
60 0.74 0.86 0.91 0.93 0.94 0.96 0.97 0.99 1.00  0.98 0.88 
66 0.73 0.84 0.87 0.89 0.91 0.92 0.94 0.96 0.98 1.00  0.96 
72 0.72 0.80 0.83 0.84 0.86 0.88 0.91 0.93 0.96 0.98 0.99  
1Standard errors for the genetic correlations between 3-mo intervals ranged from 0.0002 to 
0.106 for the linear model and from 0.0002 to 0.100 for the threshold model. 
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Table 2.5. Genetic correlations between 6-mo intervals for survival, estimated with a linear 
(below diagonal) and a threshold (above diagonal) random regression model with a second-
order Legendre polynomial for the genetic effect1 
Mo 6 12 18 24 30 36 42 48 54 60 66 72 
6  0.96 0.85 0.72 0.62 0.54 0.50 0.48 0.50 0.54 0.61 0.70 
12 0.94  0.96 0.89 0.82 0.76 0.72 0.71 0.72 0.74 0.78 0.80 
18 0.85 0.98  0.98 0.94 0.90 0.88 0.87 0.87 0.88 0.88 0.84 
24 0.79 0.95 0.99  0.99 0.97 0.96 0.95 0.94 0.94 0.91 0.84 
30 0.75 0.93 0.98 1.00  1.00 0.99 0.98 0.98 0.96 0.92 0.82 
36 0.73 0.91 0.97 0.99 1.00  1.00 0.99 0.99 0.97 0.92 0.81 
42 0.73 0.90 0.96 0.98 0.99 1.00  1.00 0.99 0.98 0.93 0.81 
48 0.73 0.89 0.95 0.97 0.98 0.99 1.00  1.00 0.98 0.94 0.82 
54 0.74 0.88 0.92 0.94 0.96 0.97 0.98 1.00  0.99 0.96 0.86 
60 0.74 0.86 0.89 0.90 0.92 0.94 0.96 0.98 0.99  0.98 0.91 
66 0.74 0.82 0.84 0.85 0.87 0.89 0.92 0.95 0.97 0.99  0.97 
72 0.73 0.78 0.78 0.79 0.80 0.83 0.86 0.90 0.94 0.97 0.99  
1Standard errors for the genetic correlations between 6-mo intervals ranged from 0.0007 to 
0.085 for the linear model and from 0.0006 to 0.089 for the threshold model. 
 
Table 2.6. Genetic correlations between 12-mo intervals for survival, estimated with a linear 
(below diagonal) and a threshold (above diagonal) random regression model with a second-
order Legendre polynomial for the genetic effect1 

Mo 12 24 36 48 60 72 
12  0.91 0.82 0.77 0.73 0.68 
24 0.92  0.98 0.96 0.92 0.85 
36 0.83 0.98  0.99 0.97 0.89 
48 0.77 0.95 0.99  0.99 0.93 
60 0.72 0.90 0.95 0.99  0.97 
72 0.66 0.82 0.89 0.94 0.98  

1Standard errors for the genetic correlations between 12-mo intervals ranged from 0.003 to 
0.075 for the linear model and from 0.002 to 0.082 for the threshold model. 
 
In addition, genetic correlations between lifespan and cumulative time intervals up 
to mo 6 in productive life ranged from 0.79 to 0.85 for intervals of 1, 3, and 6 mo, 
and genetic correlations increased to unity with longer cumulative intervals for 
survival (Figure 2.2). Genetic correlations with lifespan were >0.95 when the 
cumulative interval was longer than 30 mo for the interval of 1 mo or 24 mo for the 
other time intervals. 
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Figure 2.2. Genetic correlations between cumulative intervals for survival for 4 different 
lengths for the time interval for survival (1, 3, 6, and 12 mo) and lifespan, where the genetic 
effect is estimated with a linear random regression model with a second-order Legendre 
polynomial. 
 
2.3.3 Linear or Threshold Model 
The genetic correlations between time intervals of the threshold model were 
comparable with those of the linear model, where the greatest differences were 
between the intervals at the beginning or end of the 72-mo period with the other 
intervals (Tables 2.3, 2.4, 2.5, and 2.6, above diagonal). The greatest difference in 
genetic correlation was 0.25 between the linear and threshold models. For genetic 
correlations between cumulative intervals and lifespan (Figure 2.3), differences 
between the linear and threshold models were smaller (<0.10) and occurred only 
for correlations of cumulative survival in early life with lifespan. 
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Figure 2.3. Genetic correlations between cumulative intervals for survival for 4 different 
lengths for the time interval for survival (1, 3, 6, and 12 mo) and lifespan, where the genetic 
effect is estimated with a threshold random regression model with a second-order Legendre 
polynomial. 
 
2.3.4 Order of Legendre Polynomial 
Heritabilities for the 3 models (RR2, RR5, and MT) fitted to the data set with 
survival per 6 mo are shown in Figure 2.4. The heritability for RR2 ranged from 
0.010 to 0.031, for RR5 from 0.012 to 0.032, and for MT from 0.013 to 0.036. 
Heritability for MT showed a more spiked pattern, as expected, because the RR fits 
a more parsimonious model. For MT, the first 2 intervals only include survival of 
first-parity cows and show that survival in early lactation is less heritable than 
survival in late lactation. Two other peaks are clearly visible at mo 24 and 36. These 
peaks are mainly from cows in second and third lactations, and indicate higher 
heritabilities in late lactation compared with early lactation. The heritabilities and 
genetic standard deviations for lifespan over the entire period of 72 mo for the 3 
parameterizations were similar: 0.121 and 7.2 mo for RR2, 0.124 and 7.3 mo for 
RR5, and 0.130 and 7.5 mo for MT. Heritabilities for lifespan were similar, although 
heritabilities for intervals of 36 to 60 mo were higher for RR5 and MT compared 
with RR2. Lifespan parameters were calculated with 𝒗𝒗′𝚽𝚽′𝑽𝑽𝚽𝚽𝒗𝒗, where 𝒗𝒗 is the 
vector with partial derivatives. The intervals in early life have more weight in 𝒗𝒗 than 
the intervals later in life; therefore, intervals later in life influenced lifespan 
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heritability less than did intervals early in life. Besides the partial derivatives ν, the 
genetic correlations between life stages also affected the heritability of lifespan, 
and genetic correlations for RR5 and MT were on average lower than those for RR2 
(−0.04 and −0.15). 
 

 
Figure 2.4. Heritability for survival with a 6-mo interval, where the genetic effect is 
estimated with a random regression model with a second-order (RR2) or a fifth-order (RR5) 
Legendre polynomial or as interaction between genetic effect and interval of 6 mo (MT). 
 
For comparison with the genetic correlations for RR2 (Table 2.4), genetic 
correlations for RR5 and MT are shown in Table 2.7. With more genetic effects 
fitted in the model, genetic correlations between adjacent intervals deviated more 
from unity. For example, the correlation between mo 6 and 12 was 0.94 for RR2, 
0.73 for RR5, and 0.51 for MT. Genetic correlations between cumulative survival 
and LS were comparable between the parsimonious models RR2 and RR5 as well as 
MT (Figure 2.5). In very early life, up to mo 6, the genetic correlations with LS 
became lower when a higher order of fit was used, with the lowest correlation for 
MT (0.76) and highest correlation for RR2 (0.85). 
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Table 2.7. Genetic correlations between 6-mo intervals for survival, where the genetic effect 
is modeled with a random regression model with a fifth-order Legendre polynomial (RR5, 
below diagonal) and as interaction between genetic effect and interval of 6 mo (MT, above 
diagonal)1 
Mo 6 12 18 24 30 36 42 48 54 60 66 72 
6  0.49 0.62 0.51 0.75 0.59 0.67 0.59 0.71 0.69 0.65 0.71 
12 0.73  0.31 0.91 0.58 0.88 0.75 0.81 0.63 0.64 0.52 0.48 
18 0.72 0.96  0.34 0.77 0.47 0.62 0.48 0.71 0.66 0.69 0.71 
24 0.75 0.86 0.96  0.69 0.92 0.83 0.89 0.69 0.69 0.61 0.55 
30 0.76 0.85 0.94 0.99  0.73 0.85 0.79 0.91 0.84 0.80 0.79 
36 0.74 0.88 0.94 0.96 0.99  0.94 0.94 0.80 0.83 0.73 0.70 
42 0.71 0.89 0.92 0.92 0.96 0.99  0.95 0.91 0.91 0.83 0.80 
48 0.70 0.88 0.91 0.91 0.94 0.98 1.00  0.86 0.88 0.80 0.74 
54 0.72 0.82 0.87 0.91 0.94 0.96 0.97 0.98  0.95 0.90 0.88 
60 0.72 0.67 0.77 0.86 0.89 0.88 0.87 0.89 0.96  0.94 0.93 
66 0.69 0.54 0.67 0.78 0.81 0.78 0.75 0.78 0.88 0.98  0.97 
72 0.73 0.78 0.82 0.83 0.85 0.88 0.89 0.91 0.95 0.94 0.90  
1Standard errors for the genetic correlations between 6-mo intervals ranged from 0.002 to 
0.143 for RR5 and from 0.047 to 0.167 for MT. 
 

 
Figure 2.5. Genetic correlations between cumulative intervals for survival with a 6-mo 
interval and lifespan, where the genetic effect is estimated with a random regression model 
with a second-order (RR2) or a fifth-order (RR5) Legendre polynomial or as interaction 
between genetic effect and interval of 6 mo (MT). 
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2.3.5 Breeding Values for Lifespan 
Correlations among EBV for lifespan of sires from all linear and threshold random 
regression models with a second-order Legendre polynomial for the genetic effect 
are presented in Table 2.8. Only bulls with at least 10 daughters at mo 36 in 
productive life were included. In general, correlations between EBV of different 
time intervals were (very) high between linear and threshold models (≥0.97). 
However, EBV were more sensitive to trait definition, and correlations between 
EBV for LS became much lower when estimated from survival data split across 
different intervals. Especially comparing LS breeding values from 12-mo intervals 
with those coming from 1- and 3-mo intervals gave correlations around 0.60 and 
0.80, respectively. When computing EBV based on a time interval of 6 mo, very 
little reranking was expected with the different parameterizations because all 
correlations were ≥0.99 (Table 2.9). 
 
Table 2.8. Correlations between EBV of lifespan for sires based on linear and threshold 
random regression models with a second-order Legendre polynomial for the genetic effect 
with 4 different lengths for the time interval for survival (1, 3, 6, and 12 mo)1 
Time interval 1 mo 3 mo 6 mo 12 mo 
1 mo 0.99 0.93 0.85 0.59 
3 mo 0.96 0.98 0.98 0.82 
6 mo 0.91 0.98 0.97 0.91 
12 mo 0.61 0.78 0.87 0.98 
1Correlations between linear and threshold model for same time interval in bold on 
diagonal, correlations between different time intervals with linear model below diagonal, 
and correlations between different time intervals with threshold model above diagonal. 
 
Table 2.9. Correlations between EBV of lifespan for sires based on linear and threshold 
models with a 6-mo interval for survival, where the genetic effect is modeled as second- or 
fifth-order Legendre polynomial (RR2 and RR5) or as interaction between genetic effect and 
interval of 6 mo (MT)1 
Model RR2 RR5 MT 
RR2 0.97 1.00 1.00 
RR5 1.00 0.98 1.00 
MT 0.99 1.00 0.98 
1Correlations between linear and threshold model for same model in bold on diagonal, 
correlations between different models with linear model below diagonal, and correlations 
between different models with threshold model above diagonal. 
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2.4 Discussion 
The major objective of this paper was to investigate whether survival is the same 
trait across the life of a cow. For this purpose, analyses were performed until 72 mo 
in productive life. Phenotypically, survival rates were not constant during the 
productive life of a cow in this study, because monthly survival percentages were 
higher in early life than in later life, and survival curves became smoother when 
intervals of 12 mo were taken to define survival compared with shorter time 
intervals. The cyclic pattern observed for survival was also shown by Pritchard et al. 
(2013) for the UK population, with clear peaks of numbers of culled animals at the 
end of lactation or the start of a new lactation. In first and second lactation, the 
peaks for numbers of culled animals were more prominent and in later lactation, 
the peaks faded out over multiple months, which is in accordance with our results 
(Figure 2.1), because cows could be in different lactations at the same month in 
productive life because of different calving intervals. Roxström et al. 
(2003) proposed a piecewise baseline hazard function to model survival for each 
lactation number × lactation stage group to have a better fit of the data in studies 
using the Survival Kit software. Differences found in our study in survival rates 
within and between lactations were, although expressed on a different scale, in 
accordance with the larger relative culling risks with increasing lactation number 
and lactation stage (Roxström and Strandberg, 2002, Ducrocq, 2005, Terawaki and 
Ducrocq, 2009, Sasaki et al., 2012). 
All applied alternative parameterizations of survival—different trait definitions, 
linear versus threshold model, and different orders of the Legendre polynomial—
resulted in nonunity genetic correlations. From all of these parameterizations, the 
interval over which survival was defined was clearly the most critical factor. 
Correlations between EBV for LS of linear and threshold models were very high and 
resulted in little reranking of bulls. Also, the order of the Legendre polynomial 
(RR2, RR5, or MT) for the genetic effect had some effect on the correlation 
structure for survival at different time intervals but had little effect on the 
correlations with LS or the correlation between the breeding values. 
Genetic correlations seem to be lower for survival defined over shorter time 
intervals than when survival was defined for a whole year, as was shown at the 
level of the mean in Figure 2.1. In addition, the correlation with LS became much 
weaker. The reason for this is that there were different reasons for culling in the 
first year at different stages in lactation, and the shorter time intervals allow for 
these differences, whereas the 12-mo interval included a mixture of culling 
reasons. Hence, this resulted in clearly different breeding values for LS for bulls. 
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2.4.1 Random Regression Parameterization 
A linear RRM was used to estimate variance components for survival by fitting one 
random regression curve across the entire lifespan. Only a few applications of 
random regression for survival in cattle have been reported so far (Veerkamp et al., 
2001, Schaeffer, 2004, Gengler et al., 2005, Jamrozik et al., 2013). One difference 
between our study and that of Schaeffer (2004) was the trait definition of the 
observation. We modeled the observation for survival as a record for each time 
interval a cow was “alive” and one record “dead” in the time interval the cow was 
culled, followed by missing records up to the end of the observed period 
(following Veerkamp et al. (2001)). Schaeffer (2004), however, proposed having 
the same number of records up to a certain endpoint for each uncensored cow. 
After culling, a cow has records coded “dead” up to a certain endpoint instead of 
missing records. Because of Schaeffer’s definition of the observation, (co)variances 
for survival can be summed using standard matrix algebra (Jamrozik et al., 1997). 
The latter definition is close to the survival function in the proportional hazard 
model, whereas our definition was close to the hazard function in the proportional 
hazard model. By modeling the hazard, we were able to estimate covariances 
between independent time intervals, which was the main aim of our study. The 
parameterization used by  Schaeffer (2004) yields a more continuous 
parameterization, resulting in part-whole correlations between time intervals. 
A second difference compared with the earlier studies using random regression 
was the length of the time intervals for survival. In the earlier studies, the trait was 
defined as survival per lactation, whereas we analyzed 4 different lengths for the 
time interval for survival. Our study showed that it is critical to define survival in 
smaller time intervals (e.g., 6 mo or less) to account for within-lactation variation. 
Random regression and multiple trait models are 2 approaches to estimate 
(co)variances for longitudinal survival data, and we used an RRM with a second-
order Legendre polynomial. However, compared with a multiple trait model, our 
model does not require an a priori definition of the trait based on lactation number 
or year of productive life but is more flexible because a curve is fitted through the 
data. Therefore, strictly speaking, we did not need to partition the observations per 
month, and a parsimonious description with a second-order Legendre polynomial 
for the genetic effect for survival was shown to be sufficient because correlations 
between EBV of RR2, RR5, and MT were 0.99 or higher. 
One change that could be made in the model for time interval of 1 mo would be to 
estimate residual variances for each month instead of per 3 mo. We think this 
could be an over-parameterization of the model but we did not test it. Another 
point is that we compared the order of the Legendre polynomial to test if genetic 
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parameters were comparable between different parameterizations. Therefore, we 
chose 2 extreme parameterizations (RR2 and MT) and 1 parameterization in the 
middle (RR5). Other parameterizations (e.g., RR3 and RR4) should also be 
investigated before choosing a model for the genetic evaluation. 
We also compared computing time and number of iterations between the linear 
and threshold model on all trait definitions with an RRM with a second-order 
Legendre polynomial (Table 2.10), in addition to comparing genetic parameters. For 
both the linear and threshold models, computing time per iteration decreased 
when the time interval length increased. However, the number of iterations 
decreased for the linear model and increased for the threshold model. Computing 
time between linear and threshold models did not differ much for time intervals of 
1 and 3 mo, whereas the linear model was 5 times faster than the threshold model 
for the time interval of 6 mo and 10 times faster for the time interval of 12 mo. 
 
Table 2.10. Computing time in minutes and number of iterations for linear and threshold 
random regression models with a second-order Legendre polynomial for the genetic effect 
with 4 different lengths for the time interval for survival (1, 3, 6, and 12 mo) 
 Linear model  Threshold model 
Time  
interval (mo) 

Computing 
time 

No. of 
iterations 

 Computing 
time 

No. of 
iterations 

1 426 23  539 14 
3 514 59  344 30 
6   72 10  332 37 
12   64 11  666 93 
 
2.4.2 Transformation of EBV for Monthly Survival to EBV for 
Lifespan 
In this study, we approximated the variance of lifespan by the nonlinear profit 
function for estimated parameters. Brotherstone et al. (1997) and Visscher et al. 
(1994) derived expected lifespan and the variance of lifespan from a geometric 
distribution with E(LS) =  1/(1 −  𝑝𝑝) and var(LS) =  𝑝𝑝/(1 −  𝑝𝑝)2, where 𝑝𝑝 is 
the survival probability from lactation n to lactation n + 1. Heritability for lifespan is 
based on a scaling of the heritability for survival per lactation with 1/(1 −  𝑝𝑝) and 
results in 3 to 5 times higher heritability for lifespan compared with survival per 
lactation. However, the approach suggested by Brotherstone et al. 
(1997) and Visscher et al. (1994) assumed all lactations or periods to be genetically 
the same trait with equal variances. In our study, estimated (co)variances between 
all months over the entire period of 72 mo were different and, using the 
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approximation for the variance of lifespan, we approximated the variance for 
lifespan across the entire period of 72 mo. 
For similar model parameterizations for RR2, we estimated genetic standard 
deviations for LS ranging from 7.0 to 8.0 mo for the linear models and from 7.3 to 
9.3 mo for the threshold models. The higher values were found with survival 
defined across 12-mo intervals. Using the estimated variances from our study, we 
can also mimic the current model, assuming genetic correlations of unity across all 
intervals for the 4 trait definitions for the length of the time interval, and we found 
genetic standard deviations in the range of 7.3 to 8.6 mo. Hence, the trend is that 
the more we assume that survival is the same trait across the entire life, the higher 
the estimated genetic variance will be. This leads to a higher suggested heritability 
in the range of 0.125 to 0.174 for unity genetic correlations versus 0.115 to 0.149 
with nonunity genetic correlations with the 4 trait definitions for the length of the 
time interval. Also, applying RR5 or MT instead of RR2 to the data set with time 
intervals of 6 mo, with genetic correlations deviating more from unity, resulted in 
higher genetic standard deviations, 7.8 and 8.7 versus 7.3 mo, and higher 
heritabilities, 0.141 and 0.175 versus 0.125. Therefore, ignoring the nonunity 
genetic correlations in the calculation of LS leads to overestimation of the genetic 
standard deviation and reliability of breeding values. Thus, the method presented 
here is, in that sense, a refinement of the method described by Brotherstone et al. 
(1997) and Visscher et al. (1994), because correlations between time intervals not 
equal to unity are taken into account. 
 
2.4.3 Genetics of Survival 
In this study, the heritability of lifespan was in the range of 0.115 to 0.149 for the 
linear RR2 models and within the range of 0.016 to 0.181 used in different national 
genetic evaluations (Forabosco et al., 2009) and is within the range of 0.003 to 
0.197 listed in the review of Sasaki (2013). The linear increase in total heritability 
for lifespan up to 36 mo in productive life is similar to the heritabilities reported 
by Ducrocq (2005). 
Heritabilities for short time intervals for survival were very low compared with that 
for lifespan. This is caused by the definition of the trait, where each interval of 1, 3, 
6, or 12 mo is an observation for survival. Regardless of the prediction equation, 
genetic or phenotypic, it is difficult to predict the probability that a cow is culled in 
a certain time interval. The noise-to-signal ratio is very low with short time 
intervals, but the ratio is higher with more time intervals (e.g., lifespan). 
Genetic correlations between different time intervals suggest that survival is 
genetically not the same trait during the productive life of a cow, because most 
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correlations were <0.90. In previous studies, genetic correlations of survival 
between different (part)lactations were in the range of 0.33 to 0.96, where lowest 
correlations were estimated between more distant periods (Visscher and Goddard, 
1995, Brotherstone et al., 1997, Boettcher et al., 1999, Veerkamp et al., 2001, 
Sewalem et al., 2007, Holtsmark et al., 2009). The range of genetic correlations in 
our study was slightly wider because of a greater number of analyzed time points 
with shorter time intervals and because the analyzed period was longer. The 
genetic correlations indicate that survival early in productive life is a different trait 
than survival later in life; for example, young cows are culled more for fertility 
problems and low production, whereas older cows are culled more for poor udder 
health and poor claw health (Zijlstra et al., 2013). 
 
2.4.4 Genetic Evaluation 
The current genetic evaluation for longevity in the Netherlands uses a piecewise 
Weibull model implemented in the Survival Kit software (Van der Linde et al., 
2007). The applied heritability is 0.12 and the genetic standard deviation is 270 d or 
9 mo; in the current study, the heritability for lifespan was comparable for most 
parameterizations but genetic standard deviations were smaller. The Survival Kit 
used in the current genetic evaluation is based on the assumption that longevity is 
genetically the same trait over the total lifespan; in the current study, estimated 
genetic correlations were not unity between individual time intervals in productive 
life and not unity between individual time intervals and lifespan. Based on data 
from the first 6 mo in productive life, breeding values estimated with the Survival 
Kit can have reliabilities up to 99% when bulls have very large progeny groups. With 
results from this study, where the genetic correlation between survival up to 6 mo 
and the entire period of 72 mo was between 0.79 and 0.85 for the linear RR2 
models, the maximum reliability would be between 62 and 72%. Therefore, 
reliabilities are overestimated in the current Dutch genetic evaluation, and changes 
in the breeding value for the entire period of 72 mo are still expected. In the 
current genetic evaluation, a waiting period of 9 mo to include data is applied and 
this is a short-term fix to reduce bias until a suitable model is developed that can 
treat longevity as different traits during lifespan. Moreover, it should be tested 
whether the estimated genetic parameters are robust enough to be applied in the 
national genetic evaluation. Carlén et al. (2009) concluded that a linear RRM was 
unstable and sensitive for the estimation of parameters for longitudinal binary 
observations for clinical mastitis, but it is expected to work for breeding value 
estimation when the genetic parameters are known. Before implementing an RRM 
for survival in the genetic evaluation, a formal comparison should be made with the 
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Weibull model using the national data set, comparing stability of breeding values 
over time instead of only comparing the genetic parameters. Cross-validation 
procedures could be used to test the stability of genetic parameters to be used for 
genetic evaluation. 
 
2.5 Conclusions 
Our results indicate that survival is genetically not the same trait across the entire 
lifespan after first calving because genetic correlations differ from unity between 
different time intervals in productive life, especially when intervals are further 
apart. Heritabilities for survival after first calving within a time interval (1, 3, 6, and 
12 mo) were low. However, heritability for lifespan across the entire period of 72 
mo after first calving was higher and ranged from 0.115 to 0.149. To estimate 
breeding values for lifespan, the trait definition of the length of the time interval 
for survival is important. The breeding values were more sensitive to the trait 
definition than to whether a linear or threshold model was used or to the order of 
Legendre polynomial in the model. Based on the results of this study, genetic 
evaluations would be improved if survival were treated as different traits during 
lifespan by splitting lifespan in time intervals of 6 mo or less to avoid overestimated 
reliabilities and changes in breeding values as daughters of bulls get older. 
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Abstract 
Survival during the first year after first calving was investigated over the last 25 
years, 1989–2013, as well as how the association of survival with season of calving, 
age at first calving (AFC) and within-herd production level has changed over that 
period. The data set contained 1 108 745 Dutch black-and-white cows in 2185 
herds. Linear models were used to estimate (1) effect of year and season and their 
interaction and (2) effect of AFC, within-herd production level, and 5-year intervals 
and their two-way interactions, and the genetic trend. All models contained AFC 
and percentage of Holstein Friesian as a fixed effect, and herd-year-season, sire 
and maternal grandsire as random effects. Survival and functional survival were 
analysed. Functional survival was defined as survival adjusted for within-herd 
production level. Survival rate increased by 8% up to 92% in the last 25 years. 
When accounting for pedigree, survival showed no improvement up to 1999, but 
improved since then. Genetically, survival increased 3% to 4% but functional 
survival did not increase over the 25 years. We found an interesting difference 
between the genetic trends for survival and functional survival for bulls born 
between 1985 and 1999, where the trend for survival was still increasing, but was 
negative for functional survival. Since 1999, genetic trend picked up again for both 
survival and functional survival. AFC, season of calving and within-herd production 
level affected survival. Survival rate decreased 0.6%/month for survival and 1.5% 
for functional survival between AFC of 24 and 32 months. Calving in summer 
resulted in 2.0% higher survival than calving in winter. Within herd, low-producing 
cows had a lower survival rate than high-producing cows. However, these effects 
became less important during the recent years. Based on survival optimum AFC is 
around 24 months, but based on functional survival it is better to have an AFC<24 
months. Overall, survival rate of heifers has improved considerably in the past 25 
years, initially due to the focus on a high milk production. More recently, the 
importance of a high milk production has been reduced towards attention for 
functional survival. 
 
Key words: dairy cattle, longevity, survival, age at first calving, within-herd 
production level  
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3.1 Implications 
Survival rate in the first year after calving increased from 8% to 92% between 1989 
and 2013. Genetic selection made a positive contribution of 4% for survival, 
whereas functional survival – adjusted for within-herd production level – declined 
until 1999 and is since then increasing again. Culling risk increased with older age at 
first calving (AFC) and decreased with higher production within herd. However, 
over the years, the effect of AFC and production level on survival in first lactation 
has reduced significantly. 
 
3.2 Introduction 
The dairy industry has undergone profound changes in recent decades, that 
potentially affect the productivity, health and welfare of dairy cows, for example, 
herd size, use of hired labour, housing system, milk price and use of new 
technology (Barkema et al., 2015). At the same time, milk production per cow has 
more than doubled in the previous 40 years, and till the end of the last century 
single trait selection dominated breeding programmes. All these changes over time 
have stimulated the discussion in Western Europe about the effects of these 
changes on health and welfare and the underlying lifespan of cows. For example, as 
discussed in more detail by Veerkamp et al. (2008), there is clear evidence that 
genetic selection solely for milk yield has negative consequences for health and 
fertility, but it is not the absolute milk yield that apparently created the problems 
(Weigel, 2006, Windig et al., 2006). Also, studies on the trend in longevity over the 
past decades vary from the opinion that the effect of larger farms and (selection 
for) higher milk production have decreased the survival rate of dairy cows 
(Oltenacu and Broom, 2010, Froidmont et al., 2013), to the opinion that improved 
management and multi-trait genetic selection have had a positive impact on the 
survival of dairy cows (Dematawewa and Berger, 1998, Dechow and Goodling, 
2008, Miglior et al., 2012). But, apart from the conflicting literature, there is little 
insight into how longevity has changed over the past decades, and the most 
important factors that play a role in the culling decisions of dairy farmers. 
Culling decisions are likely to be affected by changes in national regulation (e.g. 
milk quota system), legislation, feed costs, milk price and revenues for culled 
animals, and therefore culling reasons are likely to have changed over the years or 
seasons as well. In Europe, a milk quota system was in place from April 1984 until 
March 2015 in order to limit the amount of milk produced annually per country, 
but also per farmer (Bergevoet et al., 2004). Individual farmers that produced more 
than the allowed quota, had to pay a penalty for the excess of milk they produced. 
This system might have affected culling reasons towards the end of the quota year 
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(31 March), because farmers might have decided to cull more cows in order to 
avoid the penalty. How such a national regulation affected the culling, on a 
seasonal basis for example, has not yet been investigated. 
In the literature, it has been suggested that animals calving in the optimal range of 
22 to 26 months for AFC achieved highest lifetime milk yield and longest productive 
life, and resulted in highest profit per cow (Nilforooshan and Edriss, 2004, 
Froidmont et al., 2013, Wathes et al., 2014). But within-herd production level also 
affects survival. Cows are culled on both voluntary and involuntary bases; the 
voluntary case is, for example, when the farmer decides to remove a healthy cow 
for low production, and the involuntary case is, for example, when the farmer is 
forced to remove the cow because of poor health, injury or poor fertility. With a 
high level of involuntary culling, a farmer has less opportunity to cull low-producing 
cows voluntarily. In the past, voluntary culling was assumed to be mainly for milk 
yield, and there is evidence that low-producing cows are more likely to be culled 
than high-producing cows (Vollema et al., 2000, Sewalem et al., 2005, Terawaki and 
Ducrocq, 2009). However, in expanding herds in Wisconsin, for low-producing cows 
the relative risk for culling decreased during the period 1981–2000, whereas the 
relative risk increased for high-producing cows (Weigel et al., 2003). Hence, in 
Western Europe it is unclear what the association is between production level, AFC 
and survival, and whether these associations have changed over decades. For 
example, breeding goals have changed over the past 15 years, from selection 
mainly on yield towards selection related to more extensive breeding goals 
including health, fertility and longevity (Miglior et al., 2005, Miglior et al., 2012). 
Therefore, the objective of this study was to investigate cow survival in the 
Netherlands for the period 1989–2013, and whether the associations of survival 
with season of calving, genetic level of survival, AFC and within-herd production 
level have changed over these decades. 
 
3.3 Material and methods 
 
3.3.1 Data 
For this study, survival after first calving was defined: (1) survival until month 12 
(surv_12mo), that is, a cow was considered to have survived until month 12 if she 
did not die and was not culled for slaughter and (2) survival to parity 2 
(surv_1st_lac), that is, a cow was considered to have survived her first lactation if 
she had initiated her second lactation by having at least 1 test day belonging to the 
second lactation. 
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We have chosen to analyse survival in early life instead of total lifespan, because 
surv_12mo had a high genetic correlation (~0.85) with survival up to 72 months 
(Van Pelt et al., 2015), information for surv_12mo and surv_1st_lac is rather more 
rapidly available for each animal compared with lifespan, and more importantly 
modelling of the data is less complex. With only first lactation animals without 
censored information, all animals within a calving year can be compared, instead of 
comparing a mixture of different age groups at the same time within a herd. 
Survival was coded as 1 for animals that survived surv_12mo/surv_1st_lac, and as 0 
for animals that died or were culled for slaughter. Data were available from the 
Dutch/Flemish cattle improvement cooperative (CRV) from 1989 to 2013. Records 
for survival were constructed from the national movement database considering 
herdbook-registered cows. Compared to using milk recording information, the use 
of the movement database allowed accurate differentiating between animals that 
died, that were slaughtered, that were exported or that moved to another herd. All 
animals were a combination of at least 87.5% Holstein Friesian and Dutch Friesian, 
and AFC was between 21 and 40 months. Herds with at least 95% Holstein Friesian 
and Dutch Friesian genes were selected. Animals were required to have the first 
observation in month 1 in parity 1; that is, left-censored animals were deleted, 
because those animals had missing milk production data or changed herds. Data 
were created for all cows at herd level, containing all milking cows in all age classes. 
Only herds with at least 30 cows present every month, in the period 1994–2013, 
were selected in order to exclude herds with a non-conventional culling 
management, because, for example, the farm stopped operating or the entire herd 
was culled at once because of an outbreak of a veterinary disease. Due to the 
exclusion of left-censored animals, selection of herds was not based on the entire 
period, but started in 1994. Additional requirements were that (1) sires had (i.e. as 
sire or as maternal grandsire or combined) at least 15 progeny that could have 
been productive for at least 12 months after first calving, (2) sires had progeny in at 
least two herds and (3) every herd-year-month class had at least 25 observations. 
These three additional requirements for progeny per sire, herds per sire and 
observations per herd-year-month had to be repeated 11 times until the final data 
set met all three criteria. The creation of the final data set with surv_12mo and 
surv_1st_lac was as follows: for surv_12mo animals were selected that could have 
been in the herd for at least 12 months after first calving, that is, animals calving 
after 31 December 2013 were excluded. The data set with surv_12mo contained 1 
108 745 animals. For surv_1st_lac animals were selected that could have been in 
the herd for at least 18 months after first calving, that is, animals calving after 30 
June 2013 were excluded. The data set with surv_1st_lac contained 1 062 276 
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animals. In both data sets 2185 herds were included. Pedigree information of the 
sires and maternal grandsires was traced back six generations, resulting in a 
pedigree file with 11 268 sires. 
 
3.3.2 Statistical Model 
Two analyses were performed to test the effect on survival for (1) year and season, 
(2) AFC, within-herd production level, 5-year interval and to estimate the genetic 
trend. The following base model was used: 
 

𝑦𝑦 = 𝜇𝜇 +  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + ℎ𝑦𝑦𝑦𝑦 + (𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠 +
1
2
𝑚𝑚𝑚𝑚𝑦𝑦) + 𝑠𝑠 

 
where 𝑦𝑦 is the observation for surv_12mo or surv_1st_lac, 𝜇𝜇 the overall mean, ℎ𝑦𝑦𝑦𝑦 
the random effect of herd-year-season of first calving, 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠 the random effect for 
sire, 𝑚𝑚𝑚𝑚𝑦𝑦 the random effect for maternal grandsire and 𝑠𝑠 the residual. The random 
sire effects were fitted by overlaying the relationship matrix for sire and 1/2 times 
the maternal grandsire matrix, resulting in one estimate per effect for a sire. Both 
analyses contained fixed effects for AFC (15 classes: ⩽21, 22, … , 34, ⩾35 months) 
and percentage of Holstein Friesian genes (five classes: ⩽50.0%, 62.5%, 75.0%, 
87.5% and 100%). The other fixed effects differed per analysis. 
The first analysis contained fixed effects for year, season and the interaction 
between year and season; year was year of first calving (1989–2013) and season 
was season of first calving (winter, 1 January to 31 March; spring, 1 April to 30 
June; summer, 1 July to 30 September; autumn, 1 October to 31 December). 
The second analysis contained fixed effects for 5-year interval (5-year intervals of 
first calving were 1989–93, till 2009–13), and the interaction between 5-year 
interval and AFC. This model was used to analyse survival. The same model was 
used to analyse functional survival, where survival is adjusted for individual milk 
production relative to the production level of the herd, and it is suggested as a way 
to exclude voluntary culling from the breeding value (Robertson, 1966). Therefore, 
for functional survival the fixed effect for within-herd production level was 
included, together with the interactions between 5-year interval and within-herd 
production level, and between AFC and within-herd production level. Within-herd 
production level was a ranking of animals within a herd by 5-year interval for 
predicted or realized 305-day yield of combined kg fat and protein, and animals 
were ranked into seven classes from worst to best, with 1: 1% to 5%, 2: 6% to 20%, 
3: 21% to 40%, 4: 41% to 60%, 5: 61% to 80%, 6: 81% to 95% and 7: 96% to 100%. 
The genetic trend for bulls was obtained by averaging estimated breeding values 
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(EBV) by birth year for bulls that were at least 87.5% Holstein Friesian. The genetic 
trend for cows was approximated by averaging for each animal 1/2 EBV of sire plus 
1/4 EBV of maternal grandsire, as a sire model was used no EBV for the maternal 
grandam were available. 
Effects were estimated with ASReml (Gilmour et al., 2009). Subsequently, in order 
to compare levels within an effect, corrected for all other effects in the model, y-
values were predicted using least squares means of the effects with the PREDICT 
statement in ASReml (Gilmour et al., 2009). Predicted y-values were tested for 
significance based on the t-statistic. Fixed effects in the models were tested for 
significance based on the F-test (P<0.01). 
 
3.4 Results 
In a 25-year period, the analysed farms showed changes in mean survival rate, but 
also in herd size and milk production figures (Table 3.1). When we compare 1989–
93 with 2009–13, herd size increased by 48%, percentage Holstein Friesian 
increased from 80% to nearly 100%, AFC remained stable around 26 months, 
lactation length increased by 13%, and 305-day production increased by 18% for kg 
milk, 11% for kg fat and 18% for kg protein. With the increase in herd size and 
production, surv_12mo increased by 7.3% and surv_1st_lac increased by 7.1%. 
Overall, the results were comparable for surv_12mo and surv_1st_lac, therefore 
only results of surv_12mo are presented here. 
 
Table 3.1. Number of cows, number of herds, means for percentage of Holstein Friesian 
(HF), survival rate at 12 months after first calving (surv_12mo), survival rate of first lactation 
(surv_1st_lac), age at first calving (AFC), lactation length, 305-day yield for milk, fat and 
protein, divided into five 5-year intervals. 
5-year interval 1988-93 1994-98 1999–2003 2004-08 2009-13 
Cows (n) 175 822 209 941 226 278 236 362 260 342 
Herds (n) 2185 2185 2185 2185 2185 
HF (%) 80.2 91.7 98.0 99.4 99.4 
Surv_12mo (%) 83.4 84.9 88.0 90.3 90.7 
Surv_1st_lac (%) 79.5 80.1 83.0 85.8 86.6 
AFC (mo) 25.8 26.0 25.9 25.8 25.7 
Lactation length 309 322 339 350 348 
305-day milk yield (kg) 6664 7266 7541 7796 7883 
305-day fat yield (kg) 299 315 326 331 332 
305-day protein yield (kg) 231 250 259 268 272 
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Raw and predicted means for surv_12mo are presented per calving year in Figure 
3.1. Mean survival rate increased phenotypically between 1989 and 2013 by about 
8%. Survival rates fluctuated between years, and was lowest in 1991 (82.0%) and 
highest in 2007 (91.8%). When survival was predicted as the least squares means in 
the model with effects for year, season and year-season, then there was less 
variation between years and there was no improvement of survival up to 1999, in 
contrast to the trend observed in the raw means. The effect in the model that 
caused this shift in curve was by accounting for the pedigree in the model. We 
tested this by excluding the pedigree from the model. Not accounting for genetic 
covariance between records led to a too optimistic trend for survival up to 1999, 
and improvement between 1991 and 2007 was reduced to 6.5% when accounting 
for pedigree. The direct effect of Holsteinization was relatively small. Compared 
with a model without accounting for percentage Holstein Friesian, a model 
including percentage Holstein Friesian gave predicted means for survival that were 
lower, the maximum difference was 0.5% between 1989 and 2013, the years where 
the mean percentage Holstein Friesian differed the most. 
 

 
Figure 3.1. Raw and predicted means for survival at 12 months for calving year (reference: 
2006). 
 
  



3 Changes of survival over the last 25 years 

 
 

68 
  

Cows that calved in winter had the lowest survival with 86.8%. Compared with 
calving in winter, survival was 0.5% higher in spring, 2.0% higher in summer and 
0.9% higher in autumn. Within a year, the difference in predicted means for 
survival between cows calving in summer and winter was 2% or more in 1989–
2001, and the largest difference (−5.6%) in this period was between summer 1994 
and winter 1995 (Figure 3.2). In later decades, this difference between summer and 
winter became much smaller and the difference in predicted means for survival 
between summer and winter was 1.2% or less in 2009–13. 
 

 
Figure 3.2. Predicted means for survival at 12 months for year×season of calving (reference: 
winter 2006, winters are marked by squares and summers are marked by triangles). 
 
In the raw data, survival showed a clear optimum of 89% at AFC of 23 to 24 months 
and cows calving at a younger or older age had a lower survival (Figure 3.3). For 
predicted means for survival, that is, not adjusted for within-herd production level, 
the same pattern was observed as for the raw means. However, for functional 
survival, that is, survival adjusted for within-herd production level, no optimum was 
observed for survival at 24 months and AFC<24 months resulted in higher survival 
rates. This suggests that calving at a younger age resulted in a higher survival rate 
as long as production level was not decreased. Calving at a higher AFC resulted 
always in a decline in survival rate, especially when production level did not 
improve. The average decrease in survival rate per extra month AFC was 0.6% for 
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survival and 1.5% for functional survival between AFC of 24 and 32 months. Also 
over the last decades the effect of AFC on functional survival changed, not only at 
the level of the intercept, as expected because mean survival increased over the 
years (Figure 3.1), but the effect of AFC on survival also reduced (Figure 3.4). The 
difference in survival rate between AFC of 24 and 32 months declined from 14.8% 
in 1989–93 to 10.0% in 2009–13. 
 

 
Figure 3.3. Raw means for survival and predicted means for (functional) survival at 12 
months for age at first calving (reference: 24 months). 
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Figure 3.4. Predicted means for survival at 12 months for age at first calving (reference: 24 
months, 2004–08). 
 
Similar to the effect of AFC on survival, the effect of within-herd production level 
on survival changed over the past decades (Figure 3.5). In 1989–93, the difference 
in survival rate between the lowest (1% to 5%) and average (41% to 60%) within-
herd production level was 43.6%, and this difference decreased to 28.6% in 2009–
13. In addition, the difference in survival rate between the highest (96% to 100%) 
and average production level decreased from 12.4% in 1989–93 to 7.4% in 2009–
13. Only 41.8% of the lowest-producing cows were surviving the first year in 1989–
93, and in 2009–13 this survival rate increased to 64.3%. Hence, these results 
suggest that the within-herd production level became less important for culling 
over the past decades. The effect of the interaction between AFC and production 
level on functional survival (Figure 3.6) showed that for the high-producing cows, 
AFC did not influence the survival rate as much as for the low-producing cows. 
Cows producing below herd-average already had a lowered survival rate, but when 
they also calved at an older age, 24 v. 32 months, the survival rate decreased faster 
(−27.1%) compared with high-producing herd mates (−3.1%). 
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Figure 3.5. Predicted means for survival at 12 months for within-herd production level per 5-
year interval (reference level: 41% to 60%, 2004–08). Class 96% to 100% is the highest 
within-herd production level. 
 

 
Figure 3.6. Predicted means for survival at 12 months for age at first calving per within-herd 
production level (reference: 24 months, level 41% to 60%). Class 96% to 100% is the highest 
within-herd production level. 
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Genetic levels for survival increased over the 25-year period with 3.7% for bulls and 
2.9% for cows, and functional survival did not increase for bulls and declined 0.4% 
for cows (Figure 3.7). However, there was an interesting difference between 
survival and functional survival of bulls born between 1985 and 1999. The genetic 
trend for survival increased (0.16%/year), but genetic progress for functional 
survival declined over this period (−0.10%/year). Initially, the genetic improvement 
of the bulls came due to the higher production of their daughters within herd, 
rather than a better functional survival per se. For survival and functional survival 
the genetic trend picked up again for the bulls after 1999, and both increased 
0.15%/year. Also for cows we see a positive genetic trend since that time albeit 
lower than the trend for bulls. 
 

 
Figure 3.7. Estimates of genetic trend for (functional) survival for Holstein bulls and cows 
(reference: bulls 1985, cows 1987). 
 
3.5 Discussion 
The objective of this study was to investigate whether cow survival changed 
between 1989 and 2013, and whether the associations of survival with year and 
season of calving, AFC, within-herd production level and genetics have changed 
over these decades. Analysis of a unique data set collected over the past 25 years, 
which includes movement records to decide if an animal was really culled or just 
sold to another farm, demonstrated clear phenotypic and genetic trends over time, 
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but also how trends are affected by taking into account the pedigree or not, or by 
adjusting for milk yield or not. Furthermore, it was demonstrated how effects of 
AFC and within-herd milk production interact and changed over time. Although 
results are based on Dutch dairy cows, results might be applicable to other 
countries in Western Europe. 
To enable proper modelling, and to facilitate the investigation of the effect of milk 
yield on survival, this study was limited to survival during first lactation only. 
Obviously, survival in the first year is a prerequisite for a longer lifespan of an 
animal. However, it is more common to analyse lifespan, and culling during first 
lactation differs from culling patterns in later lactations (Boettcher et al., 1999, 
Sewalem et al., 2007, Van Pelt et al., 2015). Notwithstanding, we think we can 
compare these results with full lifespan because surv_12mo had a high genetic 
correlation (~0.85) with survival up to 72 months, and a similar change as we 
observed for survival in the first year in genetic trend was observed in the national 
evaluation for total lifespan, both for bulls and cows (CRV, 2015a and 2015b). 
Numerically, it is possible to extrapolate survival rate till 12 months to lifespan at 
72 months, with some simple assumptions on survival rate during later parities. 
Van Pelt et al. (2015) found survival rates (mean across all years in a subset of this 
data set) for each 12-month period up to 72 months of 0.88, 0.83, 0.77, 0.70, 0.66 
and 0.61, and when they were extrapolated they gave an average lifespan of 3.00 
years. If we assume that only survival in the first 12 months improved over the past 
decades, then we expect that a change in survival rate from 84% to 92% at 12 
months, which is about the change between intervals 1989–93 and 2009–13, would 
have increased lifespan by 0.27 years from 2.87 to 3.14 years. However, it could be 
hypothesized when survival rate in the first year has improved, that survival in later 
years has improved as well, and the impact on lifespan would be greater. Assuming 
this improved survival rate across whole lifespan, then lifespan is expected to be 
improved by 0.79 years from 2.64 to 3.43 years over the last decades. Thus, 
probably the increase in lifespan over the past 25 years that is predicted from the 
results in this study is in the range of 0.27 to 0.79 years. Comparing this prediction 
with the Dutch cow population, lifespan improved by 0.60 years for cows culled 
during the period 2000–08 (CRV, 2015a). 
Only farms that were in business during the entire period (1989–2013) were 
selected. The advantage was that the effects of year, AFC and within-herd 
production level could be evaluated across the same farms. In the analysed years, 
the number of dairy farms in a milk recording scheme decreased in the Netherlands 
from 30 000 to 15 000 and the number of cows per farm almost doubled from 46 
to 87 (CRV, 2015a). The number of cows also increased in the farms that we 
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selected, albeit that this increase was only 48% (Table 3.1). Therefore, our selection 
of farms might not be a precise reflection for the whole dairy industry, but the 
selected farms stayed in business and probably reflect the best sample of farms to 
evaluate changes in survival rate over these decades. 
The peak in survival rate in calving year 2007 coincided with a high milk price in 
2008 in the Netherlands (Jongeneel and Van Berkum, 2015). Hence, milk price and 
economic circumstances were important factors affecting the survival rate of cows 
and might also explain that heifers calving in summer had on average a 2.0% higher 
survival than heifers calving in winter. In the Netherlands, dairy factories gave a 
premium on the milk price for milk produced in fall and winter, and a penalty in 
spring and summer. Therefore, farmers were likely to be more tolerant in culling 
their summer calving heifers. However, the opposite results for the seasonal effect 
were found across countries. In the United States, survival rate for Holstein Friesian 
was higher for heifers calving in summer and fall (Hadley et al., 2006). In Wallonia, 
Belgium, negligible effects of season of calving were found on herd life (Froidmont 
et al., 2013), whereas in Spain survival rate was higher for heifers calving in winter 
and spring (Bach, 2011). These opposite results for season could be due to climatic 
differences, where cows in hot climates had impaired reproduction and also had 
lower survival rates in the hotter summer months (Vitali et al., 2009). Furthermore, 
national regulations, like the milk quota system, might have affected seasonal 
differences. Autumn and winter calving heifers that were not pregnant at the end 
of the quota year, that is, before 1 April, had a higher risk of being culled compared 
with summer calving heifers, because the farmer had to decide which cows to cull 
and especially when exceeding the milk quota. Over the years though, seasonal 
differences in survival rate became smaller (Figure 3.2), and it could be argued that 
farmers were better able to handle the quota system. In the beginning of the quota 
system, farmers probably culled animals more drastically to avoid exceeding their 
quota, and over time they became better in planning the introduction of their 
young stock to the milking herd and consequently better in planning the culling of 
animals. 
The phenotypic increase for survival rate observed in the current study was not 
consistently found in all countries. In the United States, the phenotypic trend for 
productive herd life was negative for the past decades (Nieuwhof et al., 1989, Hare 
et al., 2006), apparently because of more intense culling primarily due to 
management decisions rather than genetics (Hare et al., 2006). Oltenacu and Algers 
(2005) reported that in the United States the proportion of cows still alive at 48 
months of age decreased from 80% to 60% for the period 1957–2002. However, 
survival to second parity stabilized, and similar to our results showed an increase 
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for all analysed breeds since 1996 (Hare et al., 2006). In Austria, the average herd 
life decreased by 0.5 years to 3.5 years for the period 1990–2005 (Fürst and Fürst-
Waltl, 2006). The differences between these countries might be partly explained by 
the introduction of genetic evaluations for longevity since the mid-1990s, for 
example, in the United Kingdom (Veerkamp et al., 1995) and in the Netherlands 
(Vollema et al., 2000). Normally, more awareness among farmers arises, AI 
(artificial insemination) companies excluded inferior bulls and breeding goals 
change when a genetic evaluation for a new trait is introduced, leading to a change 
in genetic trend. 
In 1999, the genetic evaluation for functional longevity was introduced, and was 
changed to longevity in 2008 (Van der Linde et al., 2007). Before the introduction of 
the genetic evaluation there was a strong genetic trend for survival, that was 
reduced after introduction of the genetic evaluation. However, for functional 
survival we saw a decline in genetic trend before introduction of the genetic 
evaluation. After introduction of the genetic evaluation for functional survival a 
positive trend was observed, which is in line with expectation. The initially strong 
genetic progress for survival was probably due to a narrow breeding goal with 
strong emphasis on milk production, and the strong emphasis on increasing yield 
through heifer selection. That there was no accompanying genetic trend for 
functional survival during those years is probably due to the well-known 
association between selection for milk yield only and negative correlated responses 
for health and fertility (Pryce et al., 1997). Thus, genetic progress was due to the 
fact that sires that inherited a high milk production were used more often and their 
daughters were favoured during first lactation. This imbalance in the data is 
adjusted for by taking into account the pedigree structure with both sire and 
maternal grandsire in the model, which had also a clear impact on the phenotypic 
trend over those years (Figure 3.1). Furthermore, 305-day milk production 
increased from 6664 to 7266 kg between 1989–93 and 1994–98 and increased 
from 7796 to 7883 kg between 2004–08 and 2009–13. This also demonstrates that 
increasing milk production per se became of less importance for farmers. Also, in 
the early 1990s there was a stronger association between within-herd production 
level and the opportunity to survive (Figure 3.5), but genetic trend for functional 
survival declined until birth year 1999 (Figure 3.7). Another observation was that 
the genetic trend was sensitive to the inclusion of fixed effects for AFC and within-
herd production level in the model. Here we presented the genetic trend from an 
analysis that included the effects of the interaction of AFC, within-herd production 
level and 5-year intervals. These effects were clearly important (Figures 3.4 and 
3.5) in the data. Initially, when AFC was fitted as one fixed effect across 25 years, 
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we saw that genetic trend for functional survival was affected to such an extent 
that it even declined after 1999. Modelling fixed effects as if these are the same 
across production levels and years is clearly too simplistic. The effect of AFC on 
survival had an interaction with 5-year interval (Figure 3.4) and within-herd 
production level (Figure 3.6). Also, within-herd production level is affected directly 
by AFC, as later calving leads to a higher milk yield (Nor et al., 2013). These results 
show that it is important to adjust survival correctly for milk production and AFC 
over the years in genetic evaluation and when evaluating genetic trends for 
longevity of animals properly. 
With survival there was an optimum AFC of 23 to 24 months for survival. Also, in 
most other countries an AFC around 24 months was found to be related with 
highest survival rate, but also with highest lifetime production: the Netherlands 
(Nor et al., 2013), Wallonia, Belgium (Froidmont et al., 2013), France (Ducrocq, 
2005), Ireland (Evans et al., 2006, Berry and Cromie, 2009), United Kingdom 
(Wathes et al., 2014), Italy (Pirlo et al., 2000), Israel (Weller and Ezra, 2015), Iran 
(Nilforooshan and Edriss, 2004), Australia (Haworth et al., 2008) and Canada 
(Sewalem et al., 2005). However, with functional survival, that adjusts all cows to 
an average production level, no optimum AFC was found for survival. A lower AFC 
resulted always in a higher survival (Figure 3.3). Although cows with AFC<24 
months tend to have lower within-herd production levels (results not shown), this 
lower production was why they were culled and not AFC alone. If rearing 
management ensures sufficient development of heifers before starting to breed 
them, generally influenced by nutrition and pre-pubertal growth rate during the 
rearing period (Wathes et al., 2008), then cows that calve at AFC of 24 months or 
younger are more likely to survive first lactation than when calving at a higher AFC. 
Furthermore, AFC offers a good option to improve survival of first lactation 
animals. 
 
3.6 Conclusions 
In the Netherlands, survival during first year after first calving increased by 8% up 
to 92% in the last 25 years, but when accounting for the pedigree, survival showed 
no improvement up to 1999. Genetically, survival increased 3% to 4% and 
functional survival did not increase over this period. We found an interesting 
difference between the genetic trends for survival and functional survival for bulls 
born between 1985 and 1999, where the trend for survival was increasing, but was 
negative for functional survival. Since 1999, genetic trend picked up again for both 
survival and functional survival. AFC, season of calving and within-herd production 
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level affected survival. However, these effects became less important in the most 
recent years. Based on survival the optimum AFC is around 24 months, but based 
on functional survival it is better to have an AFC<24 months. Overall, the survival 
rate of heifers has increased considerably in the past 25 years, initially due to the 
focus on a high milk production. More recently, the importance of a high milk 
production has been reduced towards attention on functional survival. 
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Abstract 
Genetic correlations and heritabilities for survival were investigated over a period 
of 25 yr to evaluate if survival in first lactation has become a different trait and if 
this is affected by adjusting for production level. Survival after first calving until 12 
mo after calving (surv_12mo) and survival of first lactation (surv_1st_lac) were 
analyzed in Dutch black-and-white cows. The data set contained 1,108,745 animals 
for surv_12mo and 1,062,276 animals for surv_1st_lac, with first calving between 
1989 and 2013. The trait survival as recorded over 25 yr was split in five 5-yr 
intervals to enable a multitrait analysis. Bivariate models using subsets of the full 
data set and multitrait and autoregressive models using the full data set were used. 
Survival and functional survival were analyzed. Functional survival was defined as 
survival adjusted for within-herd production level for 305-d yield of combined 
kilograms of fat and protein. Mean survival increased over time, whereas genetic 
variances and heritability decreased. Bivariate models yielded large standard errors 
on genetic correlations due to poor connectedness between the extreme 5-yr 
intervals. The more parsimonious models using the full data set gave nonunity 
genetic correlations. Genetic correlations for survival were below 0.90 between 
intervals separated by 1 or more 5-yr intervals. Genetic correlations for functional 
survival did not indicate that definition of survival changed (≥0.90). The difference 
in genetic correlations between survival and functional survival is likely explained 
by lower emphasis of dairy farmers on culling in first lactation for low yield in more 
recent years. This suggests that genetic evaluation for longevity using historical 
data should analyze functional survival rather than survival. 
 
Key words: longevity, survival, genetic correlation  
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4.1 Introduction 
Longevity, also known as survival, is an important trait for dairy farmers because it 
is related to economic and animal welfare reasons. In the Netherlands, pressure 
exists from society to increase the longevity of dairy cows (LTO, 2011). The 
longevity of a dairy cow is determined by the culling decision of the farmer, and 
farmers decide to cull dairy cows for various reasons such as mastitis, fertility 
problems, lameness, or low production (Beaudeau et al., 2000, Zijlstra et al., 2013). 
These culling reasons are likely to be affected over years by changes; for example, 
in national regulation and legislation (e.g., quota system), feed costs, milk price, 
and revenues for culled animals. In Europe, a quota system was in place until April 
2015 to limit the amount of milk produced annually per country, but also per 
farmer (Bergevoet et al., 2004). Individual farmers that produced more than the 
allowed quota had to pay a penalty for the excess of milk they produced. This 
system might have affected culling reasons over the years. From 1990 to 2014 the 
average herd size increased, milk production per cow increased, and fertility 
declined in the Netherlands (CRV, 2015). Also, worldwide, national selection 
indexes have changed drastically over the past 2 decades, where the breeding goal 
moved from selection for production only toward selection for production, 
longevity, and health traits (Miglior et al., 2005). This might have changed the 
perception of the right culling reasons for dairy farmers. Currently, in the genetic 
evaluation in the Netherlands, 30 yr of records are included, but it is still assumed 
to be 1 trait. 
In the Netherlands, farmers can voluntarily record culling reasons, but not all 
farmers record these reasons and data are only available for the most recent years. 
Recorded culling reasons are subjective scores of the farmer, and culling of a cow is 
often done for multiple reasons (Fetrow et al., 2006). For example, poor fertility or 
bad udder health combined with a low daily milk yield will result in a cow not being 
inseminated again. For these reasons, it is difficult to evaluate if culling reasons 
have changed over the years. Another way to evaluate changes in the trait survival 
is to analyze phenotypic records for longevity and compare the mean and standard 
deviation across years; however, this provides little information if the trait 
definition (i.e., culling reasons) of survival changed. The trait definition can be also 
evaluated by analyzing if daughters of the same bulls survive longest in each year 
or if a reranking of bulls occurred. Genetic links between animals culled in different 
years allow estimation of genetic correlations between years, and a unity 
correlation is expected when culling reasons are not different between years. In 
the United States, changes in productive life were analyzed over a 15-yr period 
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(Tsuruta et al., 2004), and in Australia survival of first lactation was analyzed over a 
20-yr period (Haile-Mariam and Pryce, 2015). In both studies multitrait and random 
regression models were used to detect changes in their survival trait, and in both 
studies it appeared that with random regression models genetic correlations 
between survival in different years were high. However, with multitrait models, 
estimated genetic correlations were as low as 0.21, with large standard errors 
(Haile-Mariam and Pryce, 2015), and 0.22 (Tsuruta et al., 2004); therefore, it was 
difficult to conclude if survival in the United States and Australia changed in those 
years. 
Two different definitions for survival were proposed by (Ducrocq, 1987): survival 
and functional survival. Survival is defined as the ability to delay culling, and 
functional survival is defined as the ability to delay involuntary culling. Adjustment 
of survival for individual deviation from within-herd production levels provides an 
approximation of functional survival. By adjusting for production level, the 
assumption is made that functional survival is independent of voluntary culling, 
assuming that voluntary culling is primarily for low production. Voluntary culling is 
an economic decision of the farmer because more profit from a new heifer is 
expected. If involuntary culling is decreased, a higher voluntary culling rate can be 
applied, resulting in a larger profit for the farmer, but not necessarily increasing 
longevity as a whole (Van Arendonk, 1985). It is of interest to investigate whether 
survival and functional survival have evolved differently over time. 
The objective of this study was to evaluate if survival in first lactation has become a 
different trait over the past 25 yr or not, and if this is affected by adjusting for 
production level or not. This was achieved by computing the genetic correlation 
between survival of first parities starting in different years. For the Dutch situation, 
it was the first time that such a long time span could be analyzed, as data on 
survival has been available in the Netherlands since 1988. 
 
4.2 Material and Methods 
 
4.2.1 Data 
In this study, 2 definitions for survival after first calving were used: (1) survival until 
mo 12 (surv_12mo; i.e., the animal did not die or was not culled for slaughter), and 
(2) survival of first lactation (surv_1st_lac; i.e., a cow was considered to have 
survived first lactation if she had initiated her second lactation). Besides 
surv_12mo, we analyzed surv_1st_lac because over the past decades calving 
interval has increased and culling for infertility could have shifted beyond mo 12. 
Survival in early life was analyzed instead of total lifespan, because information for 
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surv_12mo and surv_1st_lac is more rapidly available for each animal compared 
with lifespan, and, more importantly, because the modeling of the data is less 
complex. With only first-lactation animals, all animals within a calving year can be 
directly compared instead of comparing a mixture of different age groups at the 
same time within a herd. 
 
The surv_12mo and surv_1st_lac were coded as 1 for animals that survived and as 
0 for animals that died or were culled for slaughter. Data were available from the 
Dutch and Flemish cattle improvement cooperative CRV, and cows with first calving 
between 1989 and 2013 were used. Records for survival were constructed from 
records of pedigree, lactations, and movements of cows in the Netherlands. All 
animals were a combination of at least 87.5% Holstein Friesian and Dutch Friesian, 
and the required age at first calving was between 21 and 40 mo. Herds with at least 
95% Holstein Friesian and Dutch Friesian genes were selected. Only herds with at 
least 30 cows present every month, in the period from 1994 to 2013, were selected 
to exclude herds with a nonconventional culling management; for example, 
because the farm has stopped or the entire herd was culled at once because of the 
outbreak of a disease. Additional requirements were that sires had at least 15 
progeny or grand-progeny that could have been productive for at least 12 mo after 
first calving, sires had progeny in at least 2 herds, and every herd-year-month class 
had at least 25 observations. The additional requirements for progeny per sire, 
herds per sire, and observations per herd-year-month had to be repeated 11 times 
until the final data set met all criteria. The creation of the final data set with 
surv_12mo and surv_1st_lac was as follows. For surv_12mo, animals were selected 
that could have been in the herd for at least 12 mo after first calving (i.e., animals 
calving after 31 December 2013 were excluded); the data set with surv_12mo 
contained 1,108,745 animals. For surv_1st_lac, animals were selected that could 
have been in the herd for at least 18 mo after first calving (i.e., animals calving after 
30 June 2013 were excluded); the data set with surv_1st_lac contained 1,062,276 
animals. In both data sets 2,185 herds were included. Pedigree information of the 
sires and maternal grandsires was traced back 6 generations, resulting in a 
pedigree file with 11,268 sires. 
 
4.2.2 Statistical Model 
To determine whether genetic parameters for survival changed across years, the 
period of 25 yr was split into 5 intervals of 5 yr (1989–1993, 1994–1998, 1999–
2003, 2004–2008, and 2009–2013) and analyzed as 5 traits. The basic mixed model 
equation for all models to analyze survival was: 
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𝐲𝐲 = 𝐗𝐗𝐗𝐗 + (𝐙𝐙𝐬𝐬 + 𝐙𝐙𝐦𝐦𝐦𝐦𝐬𝐬 𝟐𝟐⁄ )𝐮𝐮𝐬𝐬 + 𝐞𝐞 
 
where y is a vector of observations (0/1) for survival (surv_12mo or surv_1st_lac); X 
is an incidence matrix linking the observations to the fixed effects; b is a vector of 
fixed effects of herd-year of first calving, year-month of first calving, fixed 
regression on age at first calving (15 classes: 21, 22,..., 34, ≥35 mo) with a second-
order Legendre polynomial, and percentage of Holstein Friesian genes, divided into 
5 classes (≤50.0, 62.5, 75.0, 87.5, and 100%); 𝐙𝐙𝐬𝐬 and 𝐙𝐙𝐦𝐦𝐦𝐦𝐬𝐬 are the incidence 
matrices for sire and maternal grandsire, which are overlaid to estimate random 
sire effects; us is the vector of random sire effects; and e is a vector of random 
residual effects. The variances were defined as 
 

𝑉𝑉𝑉𝑉𝑉𝑉 �𝒖𝒖𝒆𝒆� = �𝑮𝑮⊗ 𝑨𝑨 0
0 𝑹𝑹⊗ 𝑰𝑰� 

 
where G is the 5 × 5 sire (co)variance matrix for five 5-yr intervals; A is the additive 
genetic relationship matrix between sires; R is a 5 × 5 diagonal heterogeneous 
residual (co)variance matrix for five 5-yr intervals; I is identity matrix; and ⊗ is the 
Kronecker product. 
 
4.2.3 Bivariate Analysis 
We first used a bivariate model to estimate genetic correlations between all 
pairwise combinations of 5-yr intervals. To validate the consistency of the genetic 
correlations for survival, 2 alternative models were considered. The first alternative 
model was surv_12mo analyzed as functional survival, where survival was adjusted 
for individual production level relative to the production level of the herd; this has 
been suggested as a way to correct for voluntary culling due to low production 
(Robertson, 1966). Therefore, for functional survival, a fixed effect for within-herd 
production level was included, where within-herd production level was the cow 
ranking within a herd by 5-yr interval for predicted or realized 305-d yield of 
combined kilograms of fat and protein. Animals were ranked into 7 classes from 
worst to best for combined kilograms of fat and protein, as (1) 1 to 5%, (2) 6 to 
20%, (3) 21 to 40%, (4) 41 to 60%, (5) 61 to 80%, (6) 81 to 95%, and (7) 96 to 100%. 
The second alternative model was surv_12mo analyzed with a threshold model, 
using the logit link function, to test for a difference in estimated parameters of 
linear and threshold models with high survival rates. 
Our base model was the linear model for surv_12mo because our interest was if 
surv_12mo changed genetically over 25 yr. In subsequent analyses we changed the 
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base model to explore sensitivity of the assumptions. In analysis 2 we changed the 
trait from surv_12mo to surv_1st_lac to analyze the effect of culling in late 
lactation on the genetic correlations between intervals; in analysis 3 we added the 
fixed effect for within-herd production level to analyze functional surv_12mo; and 
in analyses 4 and 5 we used a threshold model instead of a linear model to validate 
that ranking of bulls was similar to a linear model for surv_12mo and functional 
surv_12mo, respectively. 
Variance components were estimated with ASReml (Gilmour et al., 2015). 
Heritability for each 5-yr interval was calculated as 4 × sire variance divided by the 
sum of 1.25 × sire variance (1 for the sire and 0.25 for the maternal grandsire) plus 
the residual variance of the corresponding interval. 
 
4.2.4 Alternative Parameterizations 
For some combinations of 5-yr intervals the number of common sires and maternal 
grandsires was very low (Table 4.1), indicating poor genetic links. Because of the 
poor connectedness between the extreme 5-yr intervals, we also examined more 
parsimonious models to estimate the genetic (co)variance matrix G on the full data 
set. The following models were used [examples of genetic (co)variance matrix G are 
displayed for the multivariate and autoregressive models in Figure 4.1]. 

a) Univariate model with one genetic effect and homogeneous residual 
variances for 5-yr intervals (UNhom). 

b) Univariate model with one genetic effect and heterogeneous residual 
variances for 5-yr intervals (UNhet). 

c) Uncorrelated multivariate model with heterogeneous variances (MTUC), 
which is equivalent to a separate univariate analysis for each 5-yr interval. 
All covariances in G are zero. 

d) Multivariate model with a constrained correlation of 0.95 between all 5-yr 
intervals and with heterogeneous variances for 5-yr intervals (MT0.95). 

e) Multivariate model with a constrained correlation of 0.99 between all 5-yr 
intervals and with heterogeneous variances for 5-yr intervals (MT0.99). 

f) Full multivariate model with heterogeneous variances for 5-yr intervals, 
where the additive genetic (co)variance matrix G is an unstructured matrix 
(MTUS). 

g) First-order autoregressive (AR) model with heterogeneous variances for 5-
yr intervals (AR1). Matrix G has an autoregressive correlation structure 
with the correlation function 𝐶𝐶𝑖𝑖𝑖𝑖 = 1, 𝐶𝐶𝑖𝑖+1,𝑖𝑖 = 𝜙𝜙1, and 𝐶𝐶𝑖𝑖𝑖𝑖 = 𝜙𝜙1𝐶𝐶𝑖𝑖−1,𝑖𝑖. Only 
one extra parameter, 𝜙𝜙1, is needed, besides the variances, to estimate the 
genetic correlation structure. 
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h) First-order autoregressive model with heterogeneous variances for 5-yr 
intervals and constrained parameter 𝜙𝜙1 of 0.90 (AR10.90). 

i) Second-order autoregressive model with heterogeneous variances for 5-yr 
intervals (AR2). Matrix G has an autoregressive correlation structure with 
the correlation function where correlation 𝐶𝐶𝑖𝑖𝑖𝑖 = 1, 𝐶𝐶𝑖𝑖+1,𝑖𝑖 = 𝜙𝜙1/(1 − 𝜙𝜙2), 
and 𝐶𝐶𝑖𝑖𝑖𝑖 = 𝜙𝜙1𝐶𝐶𝑖𝑖−1,𝑖𝑖 + 𝜙𝜙2𝐶𝐶𝑖𝑖−2,𝑖𝑖. Two extra parameters, 𝜙𝜙1 and 𝜙𝜙2, are 
needed, besides the variances, to estimate the genetic correlation 
structure. 
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⎢
⎢
⎢
⎡
1 𝑉𝑉 𝑏𝑏 𝑑𝑑 𝑔𝑔
𝑉𝑉 1 𝑐𝑐 𝑒𝑒 ℎ
𝑏𝑏 𝑐𝑐 1 𝑓𝑓 𝑖𝑖
𝑑𝑑 𝑒𝑒 𝑓𝑓 1 𝑗𝑗
𝑔𝑔 ℎ 𝑖𝑖 𝑗𝑗 1⎦

⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎡
1 𝑉𝑉 𝑏𝑏 𝑐𝑐 𝑑𝑑
𝑉𝑉 1 𝑉𝑉 𝑏𝑏 𝑐𝑐
𝑏𝑏 𝑉𝑉 1 𝑉𝑉 𝑏𝑏
𝑐𝑐 𝑏𝑏 𝑉𝑉 1 𝑉𝑉
𝑑𝑑 𝑐𝑐 𝑏𝑏 𝑉𝑉 1⎦

⎥
⎥
⎥
⎤
 

MTUS AR1, AR10.90 and AR2 
 
Figure 4.1. Genetic covariance structures fitted to full data set for survival for the multitrait 
(MT) and autoregressive (AR) models. Different letters (a, b, etc.) represent different values 
of correlation. MTUC has an uncorrelated covariance matrix. MT0.95 and MT0.99 have 
constrained correlations, where a is 0.95 and 0.99. MTUS has an unstructured (US) covariance 
matrix. First order autoregressive (AR1) correlation 𝐶𝐶𝑖𝑖𝑖𝑖 = 1, 𝐶𝐶𝑖𝑖+1,𝑖𝑖 = 𝜙𝜙1, and 𝐶𝐶𝑖𝑖𝑖𝑖 = 𝜙𝜙1𝐶𝐶𝑖𝑖−1,𝑖𝑖. 
In AR10.90 parameter 𝜙𝜙1 is constrained to 0.90. Second order autoregressive (AR2) 
correlation 𝐶𝐶𝑖𝑖𝑖𝑖 = 1, 𝐶𝐶𝑖𝑖+1,𝑖𝑖 = 𝜙𝜙1/(1 − 𝜙𝜙2), and 𝐶𝐶𝑖𝑖𝑖𝑖 = 𝜙𝜙1𝐶𝐶𝑖𝑖−1,𝑖𝑖 + 𝜙𝜙2𝐶𝐶𝑖𝑖−2,𝑖𝑖. For AR1, AR10.90 
and AR2 a is 𝐶𝐶𝑖𝑖+1,𝑖𝑖, and b, c, d are 𝐶𝐶𝑖𝑖𝑖𝑖. 
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Table 4.1. Number of common sires and maternal grandsires (in parentheses) in same 5-yr 
interval (diagonal) and in two 5-yr intervals (below diagonal) 

Item 1989–1993 1994–1998 1999–2003 2004–2008 2009–2013 
1989–1993 2,195     

 (1,988)     
1994–1998 697 2,557    

 (1,855) (3,679)    
1999–2003 179 759 3,186   

 (737) (2,463) (4,649)   
2004–2008 90 259 1,029 3,189  

 (168) (894) (2,992) (5,239)  
2009–2013 43 130 349 1,125 2,569 

 (56) (242) (1,228) (3,336) (5,281) 
 
4.2.5 Model Comparison 
For selection of the best-fit model among the 9 alternative models, Akaike’s 
information criteria (AIC), and Bayesian information criteria (BIC) were used. The 
AIC and BIC were defined as: 
 

𝐴𝐴𝐴𝐴𝐶𝐶 = −2 log(𝐿𝐿𝑖𝑖) + 2𝑡𝑡𝑖𝑖  
𝐵𝐵𝐴𝐴𝐶𝐶 = −2 log(𝐿𝐿𝑖𝑖) + 𝑡𝑡𝑖𝑖 log 𝑣𝑣 

 
where 𝐿𝐿𝑖𝑖  is the log-likelihood of model i, 𝑡𝑡𝑖𝑖  is the number of (co)variance 
parameters to estimate in model i and 𝑣𝑣 = n − p is the residual degrees of freedom, 
where n was the number of observations and p was the number of estimable fixed 
effects in the model. The AIC (Akaike, 1973) and BIC (Schwarz, 1978) were 
calculated for each model and the model with the smallest value was considered 
the preferred model. In addition, when AIC and BIC gave a different preferred 
model, the ranking based on AIC and BIC were combined and the model with the 
best overall ranking was considered the preferred model. 
 
4.3 Results 
Mean survival rate was 87.8% for surv_12mo and 83.2% for surv_1st_lac in the 
total data set. Between 1989 to 1993 and 2009 to 2013 survival increased by 7.3% 
for surv_12mo and 7.1% for surv_1st_lac (Table 4.2). The largest increase in mean 
survival rate was between 1994 to 1998 and 2004 to 2008 for both surv_12mo 
(5.4%) and surv_1st_lac (5.7%). Mean survival rates were more similar for 5-yr 
intervals 1989 to 1993 and 1994 to 1998, as well as for intervals 2004 to 2008 and 
2009 to 2013. The difference between surv_12mo and surv_1st_lac can be 



4 Genetic changes of survival traits 

 
 

93 
  

considered as culling at the end of lactation, and their difference varied between 4 
and 5% across all 5-yr intervals. However, the relative reduction of percentage 
culled animals from 1989 to 1993 and 2009 to 2013 was 44% for surv_12mo and 
35% for surv_1st_lac. Therefore, in more recent years, animals are more likely 
culled after 12 mo. 
 
Table 4.2. Number of cows and mean survival rate (%) for survival after first calving and 
survival of first lactation per 5-yr interval 

 Survival at 12 mo  Survival of first lactation 
5-yr interval No. of cows Mean  No. of cows Mean 
1989–1993 175,822 83.4  174,216 79.5 
1994–1998 209,941 84.9  207,547 80.1 
1999–2003 226,278 88.0  222,360 83.0 
2004–2008 236,362 90.3  231,588 85.8 
2009–2013 260,342 90.7  226,565 86.6 

 
4.3.1 Variances and Heritabilities 
Parameter estimates for survival across 5-yr intervals based on bivariate analyses 
are shown in Tables 4.3, 4.4, 4.5, 4.6, and 4.7. Across 5-yr intervals genetic and 
residual standard deviations reduced for all 4 analyses. The decrease of genetic 
standard deviations was relatively larger for surv_12mo (Table 4.3) and 
surv_1st_lac (Table 4.4) than for functional surv_12mo (Table 4.5). Residual 
standard deviations also decreased across 5-yr intervals, except for surv_12mo and 
functional surv_12mo analyzed with the threshold model, which has by definition 
equal residual variances for both traits (Table 4.6 and 4.7). The changes in genetic 
and residual standard deviations were not proportional; the relative decrease of 
residual standard deviations was smaller compared with the relative decrease of 
the genetic variance. This resulted in decreasing heritabilities across 5-yr intervals. 
When surv_12mo was adjusted for within-herd production level, this is functional 
survival, heritability for the first three 5-yr intervals was constant, followed by 
lower heritabilities in the later 5-yr intervals (Table 4.5). Heritabilities of survival 
across 5-yr intervals estimated with the threshold model were decreasing as well, 
similar to the linear models (Table 4.6), where heritabilities for functional survival 
were more constant again (Table 4.7). When heritabilities estimated with a linear 
model for surv_12mo were transformed to the underlying scale with the formula of 
Dempster and Lerner (1950), they were similar to the heritabilities from the 
threshold model (0.04–0.14). Heritabilities on the underlying scale for functional 
surv_12mo ranged from 0.07 to 0.10 and for surv_1st_lac from 0.06 to 0.12. 
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Table 4.3. Genetic standard deviation (𝜎𝜎𝐴𝐴), residual standard deviation (𝜎𝜎𝐸𝐸), heritability (in 
bold on the diagonal), and genetic correlations (offdiagonal) for survival at 12 mo after first 
calving divided in five 5-yr intervals (SE in parentheses) 
   heritability and genetic correlations 
5-year 
interval 

𝜎𝜎𝐴𝐴 𝜎𝜎𝐸𝐸 1989 – 
1993 

1994 – 
1998 

1999 – 
2003 

2004 – 
2008 

2009 – 
2013 

1989 – 1993 
 

0.093 
 

0.365 
 

0.063 
(0.007) 

    

1994 – 1998 
 

0.084 
 

0.353 
 

0.88 
(0.04) 

0.056 
(0.006) 

   

1999 – 2003 
 

0.059 
 

0.320 
 

0.95 
(0.06) 

0.98 
(0.02) 

0.034 
(0.006) 

  

2004 – 2008 
 

0.044 
 

0.293 
 

0.74 
(0.19) 

0.83 
(0.08) 

0.96 
(0.03) 

0.022 
(0.006) 

 

2009 – 2013 
 

0.033 
 

0.288 
 

0.97 
(0.22) 

0.99 
(0.09) 

0.86 
(0.09) 

0.90 
(0.05) 

0.013 
(0.006) 

 
Table 4.4. Genetic standard deviation (𝜎𝜎𝐴𝐴), residual standard deviation (𝜎𝜎𝐸𝐸), heritability (in 
bold on the diagonal), and genetic correlations (offdiagonal) for survival of first lactation 
divided in five 5-yr intervals (SE in parentheses) 
   heritability and genetic correlations 
5-year 
interval 

𝜎𝜎𝐴𝐴 𝜎𝜎𝐸𝐸 1989 – 
1993 

1994 – 
1998 

1999 – 
2003 

2004 – 
2008 

2009 – 
2013 

1989 – 1993 
 

0.097 
 

0.397 
 

0.059 
(0.006) 

    

1994 – 1998 
 

0.091 
 

0.393 
 

0.84 
(0.05) 

0.053 
(0.006) 

   

1999 – 2003 
 

0.078 
 

0.370 
 

0.94 
(0.06) 

0.92 
(0.03) 

0.044 
(0.006) 

  

2004 – 2008 
 

0.066 
 

0.344 
 

0.76 
(0.17) 

0.80 
(0.08) 

0.94 
(0.03) 

0.036 
(0.006) 

 

2009 – 2013 
 

0.051 
 

0.337 
 

0.80 
(0.31) 

0.91 
(0.12) 

0.87 
(0.07) 

0.95 
(0.03) 

0.023 
(0.005) 
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Table 4.5. Genetic standard deviation (𝜎𝜎𝐴𝐴), residual standard deviation (𝜎𝜎𝐸𝐸), heritability (in 
bold on the diagonal), and genetic correlations (offdiagonal) for functional survival at 12 mo 
after first calving divided in five 5-yr intervals (SE in parentheses) 
   heritability and genetic correlations 
5-year 
interval 

𝜎𝜎𝐴𝐴 𝜎𝜎𝐸𝐸 1989 – 
1993 

1994 – 
1998 

1999 – 
2003 

2004 – 
2008 

2009 – 
2013 

1989 – 1993 
 

0.070 
 

0.346 
 

0.041 
(0.005) 

    

1994 – 1998 
 

0.068 
 

0.336 
 

0.92 
(0.04) 

0.040 
(0.005) 

   

1999 – 2003 
 

0.062 
 

0.308 
 

0.93 
(0.07) 

1.00 
(0.01) 

0.039 
(0.005) 

  

2004 – 2008 
 

0.048 
 

0.284 
 

0.96 
(0.12) 

0.91 
(0.06) 

1.00 
(0.01) 

0.028 
(0.005) 

 

2009 – 2013 
 

0.043 
 

0.279 
 

0.90 
(0.18) 

0.86 
(0.13) 

0.90 
(0.06) 

0.94 
(0.03) 

0.023 
(0.005) 

 
Table 4.6. Genetic standard deviation (𝜎𝜎𝐴𝐴), residual standard deviation (𝜎𝜎𝐸𝐸), heritability (in 
bold on the diagonal), and genetic correlations (offdiagonal) for survival at 12 mo after first 
calving divided in five 5-yr intervals (SE in parentheses) estimated with a threshold model 
   heritability and genetic correlations 
5-year 
interval 

𝜎𝜎𝐴𝐴 𝜎𝜎𝐸𝐸 1989 – 
1993 

1994 – 
1998 

1999 – 
2003 

2004 – 
2008 

2009 – 
2013 

1989 – 1993 
 

0.721 
 

1.814 
 

0.150 
(0.015) 

    

1994 – 1998 
 

0.656 
 

1.814 
 

0.85 
(0.05) 

0.125 
(0.014) 

   

1999 – 2003 
 

0.566 
 

1.814 
 

0.93 
(0.07) 

0.97 
(0.02) 

0.095 
(0.013) 

  

2004 – 2008 
 

0.500 
 

1.814 
 

0.69 
(0.19) 

0.80 
(0.09) 

0.94 
(0.04) 

0.075 
(0.013) 

 

2009 – 2013 
 

0.412 
 

1.814 
 

0.83 
(0.27) 

0.98 
(0.11) 

0.84 
(0.09) 

0.89 
(0.05) 

0.052 
(0.012) 
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Table 4.7. Genetic standard deviation (𝜎𝜎𝐴𝐴), residual standard deviation (𝜎𝜎𝐸𝐸), heritability (in 
bold on the diagonal), and genetic correlations (offdiagonal) for functional survival at 12 mo 
after first calving divided in five 5-yr intervals (SE in parentheses) estimated with a threshold 
model 
   heritability and genetic correlations 
5-year 
interval 

𝜎𝜎𝐴𝐴 𝜎𝜎𝐸𝐸 1989 – 
1993 

1994 – 
1998 

1999 – 
2003 

2004 – 
2008 

2009 – 
2013 

1989 – 1993 
 

0.648 
 

1.814 
 

0.120 
(0.014) 

    

1994 – 1998 
 

0.600 
 

1.814 
 

0.89 
(0.05) 

0.106 
(0.013) 

   

1999 – 2003 
 

0.648 
 

1.814 
 

0.89 
(0.08) 

1.00 
(0.01) 

0.123 
(0.013) 

  

2004 – 2008 
 

0.600 
 

1.814 
 

0.91 
(0.13) 

0.89 
(0.07) 

1.00 
(0.02) 

0.106 
(0.012) 

 

2009 – 2013 
 

0.539 
 

1.814 
 

0.90 
(0.19) 

0.83 
(0.14) 

0.89 
(0.07) 

0.90 
(0.04) 

0.086 
(0.012) 

 
4.3.2 Genetic Correlations 
Most genetic correlations obtained with the bivariate analyses were higher than 
0.85 and did not differ significantly from unity. The few genetic correlations that 
did differ significantly from unity were high (>0.80). Standard errors of the genetic 
correlations became larger when two 5-yr intervals were further apart, because the 
number of sires and maternal grandsires with progeny in both intervals decreased 
when intervals were further apart (Table 4.1). Pooled over 10 bivariate analyses per 
model, the average correlation between 5-yr intervals was 0.91 for surv_12mo, 
0.87 for surv_1st_lac, and 0.87 for surv_12mo with the threshold model. Adjusting 
for within-herd production level resulted in a higher average correlation of 0.93 for 
functional surv_12mo and 0.91 for functional surv_12mo with the threshold model. 
Also, the range of genetic correlations was smaller for functional surv_12mo (0.86–
1.00) than for surv_12mo (0.74–0.99). However, based on standard errors of the 
genetic correlations, it was difficult to conclude whether difference existed 
between the models or whether survival between 5-yr intervals differed genetically 
(i.e., genetic correlations below unity). 
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Table 4.8. Univariate (UN), multitrait (MT), and autoregressive models (AR) models fitted to the full data set for survival with the total number of 
variance components estimated (#VC), the number of variance components estimated for the genetic (#gen) and residual (#res) components, the 
value to which the genetic correlations (𝑉𝑉𝑔𝑔 = 0, 0.95, 0.99) or the autoregressive parameter 𝜙𝜙1 were constrained or estimated (s was estimated 
from the data), Akaike’s information criteria (AIC), and Bayesian information criteria (BIC) for each model for surv_12mo, surv_1st_lac, and 
functional surv_12mo1 

      AIC    BIC  

Model2 # VC # gen # res 𝑉𝑉𝑔𝑔/AR surv_12mo surv_1st_lac 
functional 

surv_12mo  surv_12mo surv_1st_lac 
functional 

surv_12mo 
UNhom 2 1 1 ̶ 19306.7 9051.8 15428.4  19209.8 8957.2 15331.3 
UNhet 6 1 5 ̶ 268.6 177.6 60.9  219.2 130.3 11.3 
MTUC 10 5 5 0 324.7 364.8 383.6  322.7 364.8 381.4 
MT0.95 10 5 5 0.95 2.0 9.7 2.2  0.1 9.7 0.0 
MT0.99 10 5 5 0.99 24.6 48.5 6.2  22.6 48.5 4.1 
MTUS  20 15 5 s nc3 nc nc  nc nc nc 
AR1 11 6 5 s 0.0 0.4 0.0  9.9 12.2 9.7 
AR10.90 10 5 5 0.90 2.0 0.0 12.7  0.0 0.0 10.5 
AR2 12 7 5 s 1.7 2.1 3.9  23.5 25.7 25.4 
1Model with lowest AIC or BIC was set to 0.00. surv_12mo = survival until mo 12; surv_1st_lac = survival of first lactation. 
2Descriptions of models can be found in the Alternative Parameterizations section. 
3nc = models that did not converge.  
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4.3.3 Alternative Parameterizations of Genetic Covariances 
Table 4.8 contains the results of the comparison of alternative parameterizations of 
the genetic covariance structure G. In comparison with the bivariate analyses, all 5-
yr intervals were included rather than two 5-year intervals at the time; most 
parameterizations of G converged, except MTUS. This exception was the main 
reason why the results of the bivariate analyses were presented above. The 
parsimonious models gave similar heritability estimates, except for the univariate 
models. According to the AIC, AR1 was the best model for surv_12mo and 
functional surv_12mo, and AR10.90 was the best model for surv_1st_lac. According 
to the BIC, which puts a higher penalty when modeling more variance components, 
AR10.90 was the best model for surv_12mo and surv_1st_lac and MT0.95 was the 
best model for functional surv_12mo. Ranking models according to both AIC and 
BIC suggests that, for surv_12mo and surv_1st_lac, AR1, AR10.90, and MT0.95 gave a 
better fit than the other parameterizations, and for functional survival MT0.95, AR1, 
and multivariate model with a correlation of 0.99 gave a better fit. 
With AR1 the estimated autoregressive correlations 𝜙𝜙1 were 0.94 for surv_12mo, 
0.92 for surv_1st_lac, 0.93 for surv_12mo estimated with the threshold model, 
0.97 for functional surv_12mo, and 0.96 for functional surv_12mo estimated with 
the threshold model; this resulted in genetic correlations between the most 
extreme intervals of 0.78, 0.73, 0.74, 0.88, and 0.83 respectively (Table 4.9). 
Compared with the bivariate analyses, standard errors of the genetic correlations 
were smaller because the full data set was used (all 5-yr intervals simultaneously), 
resulting in better connectedness due to common sires and a more parsimonious 
model with fewer variance components. Interestingly, for functional surv_12mo, 
genetic correlations were closer to unity compared with the analyses without 
adjusting for within-herd production level. This was supported by the model 
comparison which suggest that models with a fixed genetic correlations of 0.95 and 
0.99 were better for functional survival. The average genetic correlations from the 
bivariate model between two 5-yr intervals with zero, one, or two 5-yr intervals in 
between, were in agreement with the estimates from the autoregressive model 
(Table 4.9). Both the bivariate analyses and the autoregressive models showed 
genetic correlations for survival between 5-yr intervals closer to unity for functional 
survival than for survival. Therefore, when adjusting for within-herd production 
level, we found little change in the survival trait over the past 25 yr. 
 
  



4 Genetic changes of survival traits 

 
 

99 
  

Table 4.9. Genetic correlations between 5-yr intervals estimated with first-order 
autoregressive function and average genetic correlations from bivariate models for 
surv_12mo, surv_1st_lac, functional surv_12mo, and surv_12mo and functional surv_12mo 
estimated with a threshold model (SE in parentheses)1 
No. of 5-year 
intervals in 
between2 

 
 

Surv_12mo 

 
 

Surv_1st_lac 

 
Functional 
surv_12mo 

 
Surv_12mo 
(threshold) 

Functional 
surv_12mo 
(threshold) 

Autoregressive      
0 0.94 (0.02) 0.92 (0.02) 0.97 (0.01) 0.93 (0.02) 0.96 (0.01) 
1 0.88 (0.03) 0.85 (0.03) 0.94 (0.02) 0.86 (0.03) 0.91 (0.03) 
2 0.83 (0.04) 0.79 (0.04) 0.91 (0.03) 0.80 (0.04) 0.87 (0.04) 
3 0.78 (0.05) 0.73 (0.05) 0.88 (0.04) 0.74 (0.05) 0.83 (0.05) 
Bivariate      
0 0.93 (0.04) 0.91 (0.04) 0.96 (0.02) 0.91 (0.04) 0.95 (0.03) 
1 0.88 (0.08) 0.87 (0.07) 0.92 (0.06) 0.86 (0.08) 0.89 (0.07) 
2 0.87 (0.14) 0.84 (0.14) 0.91 (0.12) 0.83 (0.15) 0.87 (0.14) 
3 0.97 (0.22) 0.80 (0.31) 0.90 (0.18) 0.83 (0.27) 0.90 (0.19) 
1surv_12mo = survival until mo 12; surv_1st_lac = survival of first lactation. 
2Combinations with 0 intervals between 5-yr intervals: 1989–1993 with 1994–1998, 1994–
1998 with 1999–2003, 1999–2003 with 2004–2008, and 2004–2008 with 2009–2013; 
combinations with 1 interval between 5-yr intervals: 1989–1993 with 1999–2003, 1994–
1998 with 2004–2008, and 1999–2003 with 2009–2013; combinations with 2 intervals 
between 5-yr intervals: 1989–1993 with 2004–2008, and 1994–1998 with 2009–2013; 
combinations with 2 intervals between 5-yr intervals: 1989–1993 with 2009–2013. 
 
4.4 Discussion 
In the current study, we investigated the changes in survival over the past 25 yr in 
the Netherlands and used genetic parameters to evaluate whether survival was a 
different trait according to years of first calving. Raw means for survival of first 
lactation increased from 79.5 to 86.6% over the past 25 yr, whereas in Australia 
survival of first lactation appeared to be stable around 85% between 1993 and 
2010 (Haile-Mariam and Pryce, 2015); in the United States, between 1980 and 
2000, survival of first lactation decreased from 77 to 72%, followed by an increase 
to 74% (Hare et al., 2006). Although survival to 12 mo increased in our study, the 
difference between surv_12mo and surv_1st_lac was rather constant, with 4 to 5% 
between 1989 and 2013. The genetic correlation between surv_12mo and 
surv_1st_lac was 0.97 when survival of all 25 yr was analyzed as 1 trait. Because of 
this high genetic correlation, not all results for surv_1st_lac were shown. Of all 
culled first-parity cows, a larger proportion was culled after 12 mo in more recent 
years. In Germany, it was shown that culling at the end of first lactation is mainly 
due to infertility, up to 50% of all culling, whereas main culling reasons until 12 mo 
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were udder diseases, claw and leg disorders, metabolic diseases, and other 
diseases (Heise et al., 2016). In the United States, infertility was also one of the 
main culling reasons in first 3 lactations (Tsuruta et al., 2015). Thus, it is likely that 
relatively more emphasis has gone to culling for fertility in the past 25 yr, which 
agrees with the decline in fertility observed over the past decades (Veerkamp et al., 
2015). 
Genetic parameters for different 5-yr intervals were estimated using genetic links 
(i.e., sires and maternal grandsires) across existing data. Different covariance 
structures were modeled for the additive genetic effect to investigate whether 
survival changed genetically across years. Genetic correlations were analyzed with 
bivariate models using subsets of the full data set or with parsimonious models 
using the full data set. Bivariate analyses with subsets of the data many years apart 
proved of limited value to estimate the genetic correlations, as it was difficult to 
conclude if genetic correlations were different from unity. Although convergence 
was rather fast with these models, estimated genetic correlations had large 
standard errors (0.09–0.31). This was not surprising, because a small number of 
sires were common in 5-yr intervals separated by 2 or more 5-yr intervals. For 
example, only 1 sire had at least 10 daughters, and 3 sires had at least 10 
granddaughters in both 5-yr intervals 1989 to 1993 and 2009 to 2013. To maintain 
genetic connectedness between the data collected over so many years, the full 
data set should always be considered and not split over time. A genomic 
relationship matrix could improve the connectedness between sires born in 
different years and separated by multiple generations, as was also observed when 
estimating genetic correlations between countries (Berry et al., 2014) or between 
traits (Veerkamp et al., 2011), resulting in smaller standard errors. However, 
estimation of all the genetic correlations between all 5-yr intervals might still be 
problematic given that genetic correlations are close to unity. Genetic correlations 
close to unity lead to estimation problems because sampling forces variance 
components to be outside the parameters space, but software packages try to 
estimate them within the parameter space. We attempted to estimate the full 
genetic (co)variance matrix allowing ASReml to get outside of the parameters 
space, but attempts were unsuccessful; therefore, we chose to analyze the full data 
set with parsimonious models. Parsimonious models that made a priori 
assumptions about the correlation structure for survival across the five 5-yr 
intervals; the autoregressive models required only 1 (or 2) parameters to model the 
correlation structure, compared with MTUS that used 10 covariances to describe the 
full genetic (co)variance matrix. The combined effect of being able to analyze data 
in all five 5-yr intervals together and the simplified models was that standard errors 
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became smaller and convergence improved. Analyses of MTUS resulted in 
convergence problems and nonpositive definitive matrices. Many other 
parsimonious models could be used. Another parsimonious model that has been 
used for estimating the genetic correlation for survival across many years is the 
random regression model (Tsuruta et al., 2004, Haile-Mariam and Pryce, 2015). A 
random regression model is more often applied to estimate genetic correlation 
over a time trajectory on the same animal [i.e., lactation curve (Schaeffer and 
Dekkers, 1994), weight (Meyer, 2004), or survival (Veerkamp et al., 2001, Van Pelt 
et al., 2015)], but can also be used to model traits in different animals in different 
environments (Calus and Veerkamp, 2003). A random regression model appears 
also very well suited to model longevity over a time span of 25 yr. However, more 
general solutions exist to fit parsimonious models to a set of highly correlated traits 
(Thompson et al., 2003, Thompson et al., 2005); these have not been attempted 
here, as we expect little difference from the autoregressive models. 
We saw that genetic variance, residual variance, phenotypic variance, and 
heritability decreased over 25 yr. Because the mean survival rate, 𝑝𝑝, increased, a 
reduction of phenotypic variance, which is 𝑝𝑝 (1 −  𝑝𝑝), was expected. With an 
increase in survival rate it was expected that the heritability on the observed scale 
would decrease with the linear model when the heritability on the underlying scale 
was constant. However, heritability estimates from the threshold model also 
decreased across 5-yr intervals, albeit less for functional survival. Across all 
analyses, heritability in 1989 to 1993 was 2 to 5 times higher than heritability in 
2009 to 2013. This continuous reduction in heritability was not found in other 
studies analyzing survival of first lactation (Haile-Mariam and Pryce, 2015) or 
productive life (Tsuruta et al., 2004). A difference with those studies was that 
survival of first lactation or productive life did not improve over time. Though the 
effects of selection are relatively slow, we considered it important to evaluate the 
change in genetic parameters over a longer time period; the data from the current 
study are also included in the genetic evaluation for longevity. 
Ducrocq (1987) proposed 2 different trait definitions for survival: survival and 
functional survival. Survival is defined as the ability to delay culling and functional 
survival is defined as the ability to delay involuntary culling only. According to this 
definition, functional survival rather than survival is the trait that should be 
selected for, and it is the genetic correlation between functional survival and milk 
yield which is of primary interest for dairy cattle breeders (Essl, 1998). Adjustment 
of survival for within-herd production level provides an approximation of functional 
survival, and most countries participating in the Interbull evaluation for longevity 
(14 out of 19) accounted for production in their national evaluation for survival 
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(Forabosco et al., 2009). In the Netherlands, a genetic evaluation for functional 
longevity was introduced in 1999, but changed to longevity in 2008. The effect of 
adjusting for within-herd milk production is shown in several results in the current 
study. For example, for functional survival heritability was stable (~0.04) between 
1989 and 2004 (Table 4.5), whereas the heritability for survival decreased from 
0.063 to 0.034 (Table 4.3). 
Models assuming high genetic correlations between the years were significantly 
better for functional survival, whereas they were not for survival. More 
convincingly, genetic correlations between the 5-yr intervals were with all models 
(bivariate models using subsets of the full data set, with parsimonious models using 
the full data set, or linear models or threshold models) lower for survival than for 
functional survival. For functional survival, most genetic correlations between 
different 5-yr intervals were ≥0.90, indicating that when adjusting for within-herd 
milk production survival did not change across the 25 yr. For survival analyzed with 
a linear model for surv_12mo and surv_1st_lac or with a threshold model for 
surv_12mo, genetic correlations were <0.90 when 5-yr intervals were separated by 
at least one 5-yr interval. Other studies found genetic correlations <0.40 for 
survival in 2 different periods that were separated by at least 10 yr when using MT 
models (Tsuruta et al., 2004, Haile-Mariam and Pryce, 2015). Their standard errors 
of the genetic correlations were larger than in our study, and these low genetic 
correlations did not significantly differ from unity. Both studies used random 
regression fitting a Legendre polynomial of first order (intercept and linear) to 
estimate the genetic covariance structure. Haile-Mariam and Pryce (2015) found 
genetic correlations between different 2-yr intervals that were >0.90, and Tsuruta 
et al. (2004) found that most genetic correlations between breeding values for 
different years were >0.70. From these studies it was not obvious that survival 
changed across time, because results from different models were conflicting with 
each other. We concluded that the trait functional survival (i.e., involuntary culling) 
did not really change across years, and bulls rank more similar using functional 
survival in comparison with using survival. After adjusting for the deviation of 
individual production from herd production level, farmers were still culling animals 
for roughly the same reasons in, for example, 1995 and 2010. However, voluntary 
culling did change across years (Ducrocq, 1999), as shown by genetic parameters in 
our study, which agrees with phenotypic analyses performed on the same data set 
(Van Pelt et al., 2016). Van Pelt et al. (2016) showed that the effect of culling for 
within-herd production level changed in the past 25 yr, and in more recent years 
animals with low production had a lower risk of culling. Therefore, it is important 
that we consider adjusting for within-herd production level in the genetic 
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evaluation to have more consistent breeding values, both for selection and for 
setting up the reference population for genomic prediction. 
 
4.5 Conclusions 
Analyses of 25 yr of data on survival in first lactation in Dutch dairy cattle 
demonstrated that survival increased, whereas genetic variances and heritability 
decreased. Genetic correlations between 5-yr intervals showed that survival 
changed over time, whereas genetic correlations for functional survival did not 
indicate that survival changed. The difference in genetic correlations between 
survival and functional survival are likely explained by less emphasis of dairy 
farmers on culling in first lactation for production in more recent years. This 
suggests that genetic evaluation for longevity using historical data should analyze 
functional survival rather than survival. 
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Abstract 
Longevity is an important trait for dairy farmers, and genetic evaluation has been 
available since 1999 in the Netherlands and Flanders. A new model is developed 
here based on a random regression animal model (RRM), and the impact of this 
new model on the stability of estimated breeding values (EBV) for longevity was 
analyzed. The trait analyzed was survival per month, fitted with a fifth-order 
Legendre polynomial until 72 months after first calving. Three different RRMs were 
tested, which were stepwise improvements on the current proportional hazards 
model (PHM) ), and for functional longevity a RRM was used where survival was 
adjusted for within-herd production level. The stability of EBV was analyzed by 
checking the difference between the first EBV a bull had received since 2006 with 
EBV in 2016. Correlations between the first and later EBV were higher for the RRM 
(0.60–0.70) than for PHM (0.50), meaning that the ranking of bulls was more 
consistent using RRM. The standard deviation of the difference between first EBV 
and EBV-2016, expressed in genetic standard deviations, was similar (0.57–0.63) 
between the models; however, expressed in months this ranged between 4.1 and 
5.5 mo, where the smallest changes were in RRM for functional longevity and the 
largest changes in PHM. The ranking of bulls and the stability of EBV over 
sequential runs appear to be better for RRM. Bias due to incomplete daughter 
information was observed for all models; more bias in EBV was observed with RRM, 
however, due to the estimation of the genetic trend. Before implementing this new 
model for genetic evaluation of longevity, more research is needed in order to 
reduce the bias in the breeding values. 
 
Key words: longevity, random regression, genetic evaluation   
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5.1 Introduction 
Longevity is of economic importance for dairy farmers; in animal breeding, 
however, selection for longevity is complex. The true longevity of a cow is available 
only at the end of her life, whereas selection and breeding decisions are made 
earlier in life. Therefore, censored data is used in genetic evaluations, and expected 
lifespan is extrapolated from survival data during early life. Various genetic 
evaluation models are used for the analysis of censored data (Forabosco et al., 
2009), and survival analysis using a proportional hazard model (PHM) has been 
popular in genetic evaluations since the software package Survival Kit was 
introduced (Ducrocq and Sölkner, 1994, 1998, Ducrocq et al., 2010). This package 
has been implemented for routine genetic evaluation in the Netherlands since 
August 1999. Until 2007, breeding values for functional longevity predicted survival 
adjusted for within-herd production level (Vollema et al., 2000); however, from 
2008 onwards no adjustment was made for within-herd production level in genetic 
evaluation (Van der Linde et al., 2007).  
In recent years, practical experience has shown that the breeding values for 
longevity fluctuate greatly between runs, more than could be expected from the 
change in reliability of the breeding value between runs. One hypothesis put 
forward for this fluctuation was that the current genetic evaluation model used in 
the Netherlands was too simplistic a model for the genetic variation in longevity 
over the life of a cow. Veerkamp et al. (2001) had previously proposed the random 
regression model (RRM) for survival analysis. The advantage of the RRM is that 
multiple genetic effects can be fitted over time, rather than assuming one genetic 
effect over the life of an animal; non-unity genetic correlations for survival using 
different time intervals and heterogeneous genetic variances can thus be modeled 
over the life of a cow. The RRM was further investigated by Jamrozik et al. (2008), 
Van Pelt et al. (2015), and Sasaki et al. (2015). Van Pelt et al. (2015) examined the 
importance of fitting different genetic effects in Dutch Holstein, and found genetic 
correlations of between 0.25 and 1.00 for survival at different time intervals over 
the lives of cows, showing that survival was not the same genetic trait over the life 
of a cow. In other countries, genetic correlations for survival between parities have 
been estimated in the range 0.33 to 0.96, with an average of 0.77 (Visscher and 
Goddard, 1995, Brotherstone et al., 1997, Boettcher et al., 1999, Veerkamp et al., 
2001, Gengler et al., 2005, Sewalem et al., 2007, Holtsmark et al., 2009). 
Another reason for breeding values fluctuating more than expected may be 
changes in fixed effects over the long time periods in which data is collected; time-
dependent fixed effects are required to be calculated by fitting an interaction 
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between the fixed effect and a time variable. Van Pelt et al. (2016a) demonstrated 
that survival at first lactation was affected differently by age at first calving (AFC) 
and within-herd production level in the mid-1990s, compared with later decades. 
AFC and within-herd production, and the interaction between these, have become 
less important in recent years. This change in culling reasons also affected the 
ranking of bulls across the 25 years of data (Van Pelt et al., 2016b). Genetic 
correlations for survival at first lactation measured more than 10 years apart were 
below 0.90 when within-herd production level was not accounted for. However, 
when within-herd production level was fitted in the model, genetic correlations 
were ≥0.90. This suggested that a genetic evaluation for longevity using historical 
data should take account of the changes in fixed effects over time; in particular, the 
change in emphasis on milk production suggested that functional survival (adjusted 
for milk production) should be analyzed rather than survival without adjustment 
for milk production, at least when the genetic effects are modeled as being 
constant over time. 
The studies above have given rise to the development and investigation of a new 
prototype for the genetic evaluation of longevity in the Netherlands. The aim of 
this research was to evaluate the impact of these changes to the model by: 1) 
fitting multiple genetic effects across the life of a cow; 2) fitting time-dependent 
fixed effects; and 3) adjusting for milk production on the breeding values for 
longevity of bulls. Thus, breeding values reflect the true breeding value at an earlier 
stage in the life of the bull; breeding values therefore become more stable, and the 
new random regression animal model can be compared with the current genetic 
evaluation using a PHM. 
 
5.2 Material and Methods 
 
5.2.1 Data 
Longevity or length of productive life was defined as the time from first calving to 
the last test date for milk production before the animal died or was culled for 
slaughter; this also includes dry periods. For the PHM, total length of productive life 
was analyzed; for the RRM, the analysis period was length of productive life until 
72 mo after first calving. 
Data were available from the Dutch/Flemish cattle improvement cooperative CRV 
(CRV, Arnhem, the Netherlands). The dataset was constructed from records of 
pedigree, lactations and movements of cows in the Netherlands. Herdbook-
registered cows from a dairy breed with a test-day record on or after January 1, 
1988 were included. Data up to February 15, 2016 were used, and this study 



5 Genetic evaluation of longevity 

 
 

114 
  

therefore covered 28 years. Cows were required to be at least 640 d old at first 
calving. If the date of first calving was unknown, it was assumed that a cow first 
calved at 800 d of age, the average of the total data set. If the first calving of a cow 
took place before the starting date of the study, the record was considered to be 
left-truncated. Records of cows that were still alive at the time of data collection 
were considered to be right-censored. Records of cows that were moved to 
another milking herd were also considered to be right-censored, if this herd was 
not participating in the milk recording scheme. 
Records for the RRM were constructed for each month a cow was present in a 
herd, from first calving up to the month the cow was culled, or 72 mo, or when the 
cow was censored. A cow culled in month j has j – 1 records with score 100 (alive), 
and record j with score 0 (culled). Monthly records were treated as missing after 
culling. Additional procedure for RRM was that cows with an AFC of > 40 mo were 
deleted. The total dataset comprised 357,140,952 records from 10,788,976 animals 
in 48,272 herds. 
The dataset for the PHM contained 10,553,223 animals. The number of animals for 
PHM was lower than that for RRM since bulls needed to have at least 10 daughters 
to be included in the dataset. In contrast to the national genetic evaluation no 
voluntary waiting period of 270 days was applied; the information was included at 
a time when the cow could have been productive for at least 270 days after the 
first calving. The voluntary waiting period is applied in the national evaluation as a 
short-term fix to reduce bias in breeding values. In order to compare PHM and RRM 
using similar selection criteria, the voluntary waiting period was not applied for 
PHM. 
 
5.2.2 Statistical Model 
Current Proportional Hazard Model. The current model used in the genetic 
evaluation for longevity is a proportional hazard model, as described in (Van der 
Linde et al., 2004, Van der Linde et al., 2007). The piecewise Weibull model used to 
analyze longevity was: 

ℎ(𝑡𝑡) = ℎ0,𝑝𝑝𝑝𝑝(𝜏𝜏) ∗ 𝑒𝑒𝑒𝑒𝑒𝑒 �� 𝑓𝑓𝑚𝑚(𝑡𝑡)
𝑚𝑚

+ ℎ𝑦𝑦𝑦𝑦𝑖𝑖 + 𝑦𝑦𝑗𝑗 + 0.5 𝑚𝑚𝑚𝑚𝑦𝑦𝑘𝑘 + 𝑚𝑚𝑚𝑚𝑙𝑙� , 

where the hazard function ℎ(𝑡𝑡) at time t was modeled with a piecewise Weibull 
baseline hazard function of general form ℎ0,𝑐𝑐𝑝𝑝(𝜏𝜏) = 𝜆𝜆𝜆𝜆(𝜆𝜆𝜏𝜏)𝜌𝜌−1 with scale 
parameter 𝜆𝜆 and shape parameter 𝜆𝜆. Since the risk of being culled differed 
between lactations and at various stages of lactation, different baselines (i.e., 
different scale and shape parameters) were defined for each combination of 
lactation p (1, 2, ≥3) and stage of lactation q (1 to 6), giving 18 different baseline 
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hazard functions. Changes to the hazard function were assumed to occur at 𝜏𝜏 = 0, 
30, 190, 250, 330, and the dry date of each consecutive lactation, where 𝜏𝜏 denotes 
days since last calving. The time scale 𝜏𝜏 is needed since values of t at the second 
and later calvings differ between cows; ∑ 𝑓𝑓𝑚𝑚(𝑡𝑡)𝑚𝑚  is the sum of fixed effects which 
increase or decrease the instantaneous culling risk. Fixed effects included in the 
model were parity-year-two-month (this two-month class effect is time-dependent, 
changing on the 15th of each odd month, starting in January 1988 for 10 parity 
classes), change in herd size (calculated as the number of cows on January 1 of one 
year minus the number of cows on January 1 of the next year, divided by the 
number of cows on January 1 of the next year. Seven classes are distinguished: 
shrinkage between 90% and 50%; shrinkage between 50% and 30%; shrinkage 
between 30% and 10%; neither shrinkage nor growth over 10%; growth between 
10% and 30%; growth over 30%; and herds that were terminated, i.e., more than 
90% shrinkage), AFC (classes of 15 to 30 days, depending on the number of animals 
per class), heterosis (10 classes in steps of 12.5%: Class 1 for animals without 
heterosis, and Class 10 for animals with 100% heterosis), and recombination (10 
classes in steps of 6.25%: Class 1 for animals without recombination, and Class 10 
for animals with 50% recombination). Random effects included in the model were 
herd-year-season i (assumed to follow a log-gamma distribution with a fixed 
parameter 𝛾𝛾, and with changes occurring at April 1 and October 1 of each year or 
when a cow is transferred to another herd), sire j + maternal grandsire k + genetic 
group l (representing the additive genetic contribution of sire j, maternal grand sire 
k, and genetic group l of the maternal granddam of the cow). 
 
New Random Regression Animal Model. Suggested improvements for the genetic 
evaluation were the incorporation of non-unity genetic correlations over the life of 
a cow, the fitting of time-dependent fixed effects for AFC and adjustment for 
within-herd production level. All suggested improvements were tested using a full 
RRM (RR-full), and three alternative RRMs (RR-1 to RR-3). In RR-full, functional 
survival was analyzed; in RR-1, survival was analyzed; in RR-2, several time-
dependencies were excluded compared with RR-1; and in RR-3, a unity genetic 
correlation between all months was modeled. RR-full was: 

𝑦𝑦𝑘𝑘𝑙𝑙𝑚𝑚𝑘𝑘 =  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + �ℎ𝑐𝑐𝑖𝑖𝑘𝑘

5

𝑖𝑖=0

𝑡𝑡𝑙𝑙 + �𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑖𝑖𝑚𝑚

5

𝑖𝑖=0

𝑡𝑡𝑙𝑙 + 𝜀𝜀𝑘𝑘𝑙𝑙𝑚𝑚𝑘𝑘 , 

where y is the observation for the survival of animal m in a herd x five-year period k 
in month l (periods of five years were created by counting backwards from the last 
test date; if the oldest five-year class contained less than three years of data, the 
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class was merged with the next five-year class in time); FIXED included fixed effects 
for herd-year-season of observation (seasons were winter, 1 January to 31 March; 
spring, 1 April to 30 June; summer, 1 July to 30 September; autumn, 1 October to 
31 December), parity x month in lactation x five-year class (for month in lactation 
classes of 1 mo between 1 and 17 mo; ≥18 mo; and a separate class for dry 
periods), parity x year x season of calving, year x month of observation, AFC x five-
year (classes of 1 mo between 21 and 34 mo, and ≥ 35 mo), parity x within-herd 
production level x five-year (within-herd production level was a ranking of animals 
within a herd by five-year interval for predicted or realized age-corrected 305-day 
yield of combined kg fat and protein. Animals were ranked into seven classes from 
worst to best, with (1) 1% to 5%, (2) 6% to 20%, (3) 21% to 40%, (4) 41% to 60%, (5) 
61% to 80%, (6) 81% to 95% and (7) 96% to 100%), heterosis and recombination; 
ℎ𝑐𝑐𝑖𝑖𝑘𝑘  is the ith-order random regression coefficient of the fifth-order Legendre 
polynomial in time interval 𝑡𝑡𝑙𝑙 for the herd curve effect of herd x five-year period k; 
𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑖𝑖𝑚𝑚  is the ith-order random regression coefficient of the fifth-order Legendre 
polynomial in time interval 𝑡𝑡𝑙𝑙 for the additive genetic effect of animal m; and 𝜀𝜀𝑘𝑘𝑙𝑙𝑚𝑚𝑘𝑘 
is the residual effect. Residual variances were fitted for each month (mo 1 to 72) 
separate. 
In RR-full the fixed effect within-herd production level was fitted in the model to 
correct for culling due to low production, which is assumed to be the major source 
of voluntary culling. To compare the stability of breeding values of RR-full with 
PHM, the statistical model of RR-full was changed in three steps (RR-1 to RR-3) to 
observe which change had the highest impact in obtaining more stable breeding 
values. In RR-1, compared with RR-full, the fixed effect within-herd production level 
was excluded from the model. In RR-2, compared with RR-1, the fixed effects for 
AFC and parity x month in lactation were made time-independent by removing the 
interaction with five-year interval. In RR-3, compared with RR-2, a (close to) unity 
genetic correlation was fitted between all 72 mo, to mimic one genetic effect over 
the lifetime of a cow, but allowing for heterogeneous genetic variances. With these 
three adjustments, RR-3 was most similar to the PHM, mainly due to the use of 
genetic correlations close to unity between all 72 mo and the similarity of the fixed 
effects used in the model. 
 
5.2.3 Genetic Parameters 
Variance components were estimated for RRM using the procedure described by 
Van Pelt et al. (2015) with three more years of data and a fifth-order Legendre 
polynomial for the genetic effect and for the effect of herd curve. Functional 
longevity was modelled in RR-full, and within-herd production level was fitted as an 
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extra effect compared to analyzing longevity in RR-1 to RR-3. The data set for the 
parameter estimation consisted of 71,404 cows with 2,565,405 observations for 
monthly survival from January 1988 to December 2015, originating from 89 herds 
and 711 sires and maternal grandsires; where sires had (i.e. as sire or as maternal 
grandsire or combined) at least 20 progeny that could have been productive for at 
least 36 months after first calving, (2) sires had progeny in at least two herds and 
(3) every herd-year-month class had at least 45 observations. Pedigree information 
of sires was traced back 6 generations, resulting in a pedigree file with 1,040 sires. 
Variance components were estimated with ASReml (Gilmour et al., 2009). The 
partial derivatives of a profit function were used to transform variance components 
on the survival scale to those for longevity, using the phenotypic means for survival 
per month (Van Pelt et al., 2015). 
 
5.2.4 Breeding Value for Longevity 
Survival rate per month, or hazard rate, was analyzed in the RRM. The total 
estimated breeding value (EBV) for longevity can be written as an index with 72 
monthly EBVs for survival in that month (Van Pelt et al., 2015). The index predicting 
longevity is: 𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑣𝑣1𝑚𝑚1 + 𝑣𝑣2𝑚𝑚2 + ⋯+ 𝑣𝑣71𝑚𝑚71 + 𝑣𝑣72𝑚𝑚72, where 𝑣𝑣𝑖𝑖  is the weight 
month i, and 𝑚𝑚𝑖𝑖  is the genetic value for surviving month i. Equivalent to the 
derivation of the economic weights in a non-linear profit equation, the weighting 
factors 𝒗𝒗 for each 𝒈𝒈 were derived from partial derivatives from the equation using 
mean survival per month after first calving up to 72 mo. If 𝐿𝐿𝐿𝐿𝐿𝐿 =  𝑒𝑒1 +  𝑒𝑒1𝑒𝑒2 +
𝑒𝑒1𝑒𝑒2𝑒𝑒3, then 𝑣𝑣1 = 1 + 𝑒𝑒2 + 𝑒𝑒2𝑒𝑒3, 𝑣𝑣2 = 𝑒𝑒1 + 𝑒𝑒1𝑒𝑒3, and 𝑣𝑣3 = 𝑒𝑒1𝑒𝑒2, where 𝑒𝑒𝑖𝑖  is the 
survival in month i. Genetic variance of longevity over 72 mo was calculated using 
𝒗𝒗′𝚽𝚽′𝑮𝑮 𝚽𝚽𝒗𝒗, where 𝚽𝚽 is an k × l matrix whose elements are the Legendre 
coefficients for k time intervals and order l of the Legendre polynomial, 𝑮𝑮 is an l × l 
matrix containing the estimated covariance components for the additive genetic 
effect, and 𝒗𝒗 is a vector with k partial derivatives.  
 
5.2.5 Calculation of Reliability 
In the RRM, the reliabilities of the EBV for survival in each month were estimated 
using the method of Liu et al. (2004). This reliability approximation method is based 
on the concept of the multiple-trait effective daughter contribution for the RRM. 
The reliability of the EBV of (functional) longevity was derived using the weights in 
𝒗𝒗 in a selection index. The reliability of the EBV in PHM was calculated using the 
method of (Yazdi et al., 2002), and the number of observations was the number of 
culled daughters + 0.5 x number of culled maternal granddaughters (Meyer, 1989).  
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5.2.6 Validation 
In total, five models were examined: PHM, RR-full, RR-1, RR-2, and RR-3. To 
evaluate the stability of breeding values for bulls, subsets of data for all five models 
were used in the genetic evaluations by deleting the most recent years. The 
national dataset contained data up to February 15, 2016. First a genetic evaluation 
was carried out using all data (full run, EBV-2016). Following this, 10 historic runs 
were carried out by deleting one year of data for each subsequent run. The first 
historic run involved data from January 1, 1988 to February 15, 2015 (EBV-2015); 
the tenth run involved data to February 15, 2006, (EBV-2006). Per model, a bull 
could have a maximum of 11 breeding values for longevity, one from each 
evaluation (i.e., the full run and 10 historic runs), depending on when the bull 
received the first proof based on progeny. 
For black and white Holstein bulls born since 2000 and tested in the Netherlands 
and Flanders, the first EBV for both PHM and RRM was defined in the evaluation 
run where ≥15 daughters were at 4 mo after first calving and ≤50 daughters were 
≤18 mo after first calving. It should be noted that currently for PHM a waiting 
period of 9 mo is applied before including an animal, and therefore a bull with 15 
daughters at 4 mo after first calving will not yet receive an EBV. For comparing 
PHM with RRM, these requirements were set to define first EBV from all models. 
We defined test bulls and proven bulls for the validation. Test bulls were defined as 
bulls with ≤250 daughters in any of the evaluation runs, and proven bulls as those 
with >250 daughters. Most of the test bulls only had daughters born in a single 
year, and these form the so-called first crop. The majority of proven bulls first had 
an EBV based on first-crop daughters; when these were used again, new batches of 
daughters were born, the so-called second crop. The mean change in EBV, the 
standard deviation of the mean change in EBV, and the correlation between EBVs 
of sequential runs were calculated separately for test bulls and proven bulls. These 
runs were not sequential in terms of yearly evaluations, but represented the 
sequential run after the first evaluation of a bull. 
 
5.3 Results 
 
5.3.1 Genetic Parameters 
Estimates of genetic parameters for longevity for all five models are presented in 
Table 5.1. For PHM, genetic parameters from the current national evaluation were 
used, with a heritability of 0.12 and genetic standard deviation of 9.0 mo. For RRM, 
the heritability of longevity ranges between 0.12 and 0.15, and genetic standard 
deviations between 7.1 and 8.0 mo. RR-full analyzed functional longevity, whereas 
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the other RRMs analyzed longevity, i.e., not corrected for within-herd production 
level. RR-full showed the smallest genetic standard deviation, with 7.1 mo. RR-3 
showed genetic correlations close to unity over all 72 mo, and PHM modeled one 
genetic effect; both of these models showed the largest genetic standard deviation 
(8.0 and 9.0 mo). Correcting for within-herd production level resulted in different 
genetic correlations for survival between months as well as a lower genetic 
standard deviation. For longevity, genetic correlations between months ranged 
between 0.51 and 1.00, and for functional longevity between 0.06 and 1.00 (Table 
5.2). Genetic correlations between longevity and cumulative time intervals up to 6 
mo after first calving were comparable, with 0.78 for longevity and 0.80 for 
functional longevity (Figure 5.1). However, the genetic correlation with longevity 
was >0.95 when records were available after 30 mo or more. For functional 
longevity, the genetic correlation was >0.95 only after 42 mo. 
 
Table 5.1. Heritability (h2) and genetic standard deviation (𝜎𝜎𝑔𝑔) in months of longevity for five 
different models (RR-full, RR-1, RR-2, RR-3, and PHM) 
Model h2 𝜎𝜎𝑔𝑔 
RR-full 0.12 7.1 
RR-1 and RR-2 0.14 7.6 
RR-3 0.15 8.0 
PHM 0.12 9.0 
 
Table 5.2. Genetic correlations between one-month intervals for survival, estimated using a 
random regression model with a fifth-order Legendre polynomial for the genetic effect for 
longevity (below diagonal) and functional longevity (above diagonal) 
Mo 6 12 18 24 30 36 42 48 54 60 66 72 
6  0.96 0.85 0.70 0.58 0.49 0.39 0.29 0.19 0.11 0.07 0.06 
12 0.92  0.90 0.73 0.63 0.56 0.48 0.38 0.27 0.18 0.13 0.14 
18 0.89 0.96  0.95 0.89 0.84 0.78 0.71 0.63 0.56 0.52 0.49 
24 0.86 0.91 0.98  0.98 0.95 0.91 0.86 0.81 0.76 0.73 0.69 
30 0.84 0.87 0.96 0.99  0.99 0.97 0.93 0.89 0.84 0.81 0.80 
36 0.81 0.85 0.94 0.98 0.99  0.99 0.97 0.93 0.88 0.86 0.87 
42 0.77 0.82 0.91 0.95 0.98 1.00  0.99 0.96 0.91 0.89 0.92 
48 0.71 0.78 0.88 0.93 0.96 0.98 0.99  0.99 0.95 0.94 0.96 
54 0.65 0.72 0.85 0.91 0.94 0.96 0.97 0.99  0.99 0.98 0.97 
60 0.59 0.65 0.80 0.87 0.90 0.92 0.94 0.96 0.99  1.00 0.95 
66 0.55 0.59 0.75 0.83 0.87 0.90 0.92 0.95 0.98 1.00  0.96 
72 0.51 0.53 0.65 0.74 0.81 0.86 0.90 0.92 0.93 0.92 0.94  
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Figure 5.1. Genetic correlations between survival over cumulative intervals (in steps of 6 
months) and EBV for longevity (RR-1 and RR-2) and EBV for functional longevity (RR-full). 
 
5.3.2 Reliabilities 
Number of bulls, number of progeny and the reliability per model are shown in 
Table 5.3 for test bulls and in Table 5.4 for proven bulls from the first to 11th EBV. 
Selected bulls were born between 2000 and 2010, and all 3,149 (432) test (proven) 
bulls had at least the first EBV, while 432 (45) test (proven) bulls had 11 EBVs. First 
EBV was based on an average of 108 daughters for test bulls and 175 daughters for 
proven bulls, and reliability ranged between 42% and 53%. Mean reliability for test 
bulls ranged from 76% to 79% for the sixth EBV, while proven bulls with a larger 
progeny group had a mean reliability between 87% and 91%. When bulls had 11 
EBVs, the mean reliability increased further, to 80%–83% for test bulls and ≥95% 
for proven bulls. 
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Table 5.3. Number of bulls, number of daughters, and reliability of EBV for RR-full, RR-1 to 
RR-3, and PHM for test bulls from first to 11th EBV 
   Reliability (%) 

EBV no. 
No. of 
bulls 

No. of 
daughters RR-full 

RR-1 and 
RR-2 RR-3 PHM 

1st 3,149 108 43 44 49 42 
2nd 2,924 124 54 57 61 53 
3rd 2,719 126 65 68 70 63 
4th 2,551 126 72 74 75 69 
5th 2,340 127 75 77 78 73 
6th 2,081 127 76 78 79 76 
7th 1,805 127 77 79 80 77 
8th 1,488 129 78 79 81 79 
9th 1,135 133 78 80 81 80 
10th 779 142 80 81 82 82 
11th 432 149 80 82 83 83 
 
Table 5.4. Number of bulls, number of daughters, and reliability of EBV for RR-full, RR-1 to 
RR-3, and PHM for proven bulls from first to 11th EBV 
   Reliability (%) 

EBV no. 
No. of 
bulls 

No. of 
daughters RR-full 

RR-1 and 
RR-2 RR-3 PHM 

1st 271 175 46 47 53 43 
2nd 264 349 59 63 69 57 
3rd 245 374 71 74 77 68 
4th 210 537 79 81 83 75 
5th 181 1,336 84 86 88 82 
6th 157 2,579 88 90 91 87 
7th 132 3,779 91 92 93 90 
8th 105 3,870 93 94 94 92 
9th 85 4,392 94 95 95 94 
10th 66 4,765 94 95 95 94 
11th 45 5,049 95 95 96 95 
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5.3.3 Correlations between Models 
Correlations between the EBV-2016 from the five models are shown in Table 5.5. 
RR-full had the lowest correlations with the EBV from the other four models, 
ranging from 0.73 to 0.77, since RR-full gave the EBV adjusted for within-herd milk 
production (functional longevity) whereas the other models gave the EBV for 
longevity. PHM had correlations with RR-1 to RR-3 of 0.93. RR-1 to RR-3 correlated 
very highly (≥0.99). 
 
Table 5.5. Correlations between EBV from current PHM and four different RRM 
Model RR-full RR-1 RR-2 RR-3 
RR-1 0.77    
RR-2 0.75 1.00   
RR-3 0.75 0.99 1.00  
PHM 0.73 0.93 0.93 0.93 
 
5.3.4 Correlations between first EBV and later EBV for test Bulls 
and proven Bulls 
The correlation between first EBV and later EBVs are shown per model in Table 5.6 
for test bulls (with only first-crop information) and in Table 5.7 for proven bulls 
(with first- and second-crop information). A total of 2,924 test bulls, born between 
2000 and 2010, had more than 15 daughters in two genetic evaluations, and 432 
test bulls born in 2000 and 2001 had 11 EBVs. The calculation of the correlations 
between first EBV and later EBVs was based on a different number of bulls, 
depending on the nth EBV compared with the first EBV. The correlation between 
the first and second EBV of a bull ranged between 0.79 for PHM and 0.86 for RR-
full. For later EBVs, more information on daughters was included in the last 
evaluation, and the correlation decreased to ~0.50 for PHM in the eighth to the 
10th EBV, ~0.60 for RR-1 to RR-3 in the sixth to the 10th EBV, and ~0.67 for RR-full in 
the fifth to the 10th EBV. For test bulls, the correlation did not drop further after the 
fifth evaluation with the RRM. For all models, the correlation between first EBV and 
11th EBV increased compared to the 10th EBV; however, only two birth years of 
bulls were included in the calculation of this correlation. For proven bulls, the drop 
in correlation between first EBV and later EBV followed a similar pattern to that of 
the test bulls up to the sixth EBV; however, when the information on the second-
crop daughters was included in the EBV of proven bulls, the correlation continued 
to decline. A comparison of the first with the 11th EBV correlation was lowest for 
PHM (0.18), and highest for RR-full (0.43). 
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Table 5.6. Correlations between first EBV and later EBV (second to 11th) for five models for 
test bulls (born between 2000 and 2010, with fewer than 250 daughters) 
EBV no. RR-full RR-1 RR-2 RR-3 PHM 
2nd 0.86 0.83 0.83 0.82 0.79 
3rd 0.75 0.71 0.71 0.71 0.68 
4th 0.69 0.66 0.65 0.66 0.62 
5th 0.67 0.63 0.63 0.63 0.58 
6th 0.66 0.62 0.62 0.61 0.55 
7th 0.67 0.61 0.60 0.60 0.53 
8th 0.66 0.59 0.59 0.58 0.50 
9th 0.68 0.60 0.60 0.59 0.50 
10th 0.68 0.62 0.62 0.61 0.49 
11th 0.72 0.65 0.65 0.64 0.55 
 
Table 5.7. Correlations between first EBV and later EBVs (second to 11th) for five models for 
proven bulls (born between 2000 and 2010, with 250 daughters or more) 
EBV no. RR-full RR-1 RR-2 RR-3 PHM 
2nd 0.88 0.83 0.83 0.81 0.75 
3rd 0.78 0.73 0.73 0.72 0.65 
4th 0.70 0.67 0.68 0.67 0.60 
5th 0.64 0.64 0.65 0.64 0.54 
6th 0.60 0.61 0.61 0.60 0.54 
7th 0.56 0.57 0.57 0.57 0.54 
8th 0.54 0.51 0.51 0.49 0.41 
9th 0.44 0.41 0.42 0.38 0.28 
10th 0.41 0.31 0.31 0.26 0.14 
11th 0.43 0.35 0.37 0.28 0.18 
 
5.3.5 Difference between first EBV and all other EBV 
The differences between EBV-2016 and all previous EBVs of a bull are shown in 
Figure 5.2 for test bulls and in Figure 5.3 for proven bulls. For all five models, the 
EBVs of earlier runs were overestimated compared to EBV-2016. The smallest 
difference in terms of genetic standard deviations (gen.sd) from EBV-2016 was for 
PHM (0.31 gen.sd for test bulls and 0.25 gen.sd for proven bulls), and the largest 
difference from EBV-2016 was for RR-3 (0.53 gen.sd for test bulls and 0.50 gen.sd 
for proven bulls). Expressed on the absolute scale in months, the smallest 
difference for test bulls was for RR-full (2.5 mo) and the largest for RR-3 (4.0 mo). 
For proven bulls, the smallest difference was for PHM (2.2 mo) and the largest 
difference for RR-3 (3.8 mo). The difference from EBV-2016 decreased when more 
information was added, and the difference of the fourth EBV from EBV-2016 was 



5 Genetic evaluation of longevity 

 
 

124 
  

0.10–0.20 gen.sd. When test bulls had the sixth or seventh EBV, the information on 
the daughters should be complete, since most daughters have at this point been 
productive for 72 mo; in addition, the correlation with the final proof became 
constant (Table 5.6). For PHM, the difference from EBV-2016 was close to zero for 
the seventh and later EBVs, whereas the mean EBV in all RRM models continually 
decreased. 
 

  
Figure 5.2. Mean difference of EBV in gen.sd 
between EBV-i (i=2006-2015) and EBV-2016 
for test bulls. 

Figure 5.3. Mean difference of EBV in gen.sd 
between EBV-i (i=2006–2015) and EBV-2016 
for proven bulls. 

 
A measure of the variability in the EBV for bulls (i.e., the stability) is the standard 
deviation of the differences between EBV-2016 and previous EBVs, as shown in 
Figure 5.4 for test bulls and Figure 5.5 for proven bulls. Overall, RR-full showed the 
lowest standard deviation of differences, and PHM the largest, meaning that EBV 
for bulls changed less with RR-full than with PHM. 
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Figure 5.4. Standard deviation of differences 
of EBV between EBV-i (i=2006–2015) and 
EBV-2016 for test bulls. 

Figure 5.5. Standard deviation of difference 
of EBV between EBV-i (i=2006–2015) and 
EBV-2016 for proven bulls. 

 
Genetic trends of bulls for four different runs using data up to February 15, 2007, 
2010, 2013, and 2016 are shown for PHM, RR-3, and RR-full in Figures 5.6 to 5.8. 
The genetic trends of RR-1 and RR-2 were almost identical to those of RR-3, and are 
not presented. A sharp increase can be observed in the genetic trend for the bulls 
that received their first EBV; however, with later runs this sharp increase 
disappeared. For example, for RR-3 for run EBV-2010, the EBVs of bulls born in 
2005 were 0.54 sd higher than bulls born in 2004, and with EBV-2016 this increase 
was reduced to 0.17 sd. The decline in mean EBV from first to later EBVs was 
observed for all models. For example, mean EBV for bulls born in 1997 was reduced 
by 0.24 sd for RR-3 and 0.14 sd for RR-full, and only differed by 0.01 sd for PHM. 
The difference in genetic standard deviations based on EBV-2016 between bulls 
born in 1985 and 2011 was 1.80 sd (16.2 mo) for PHM, 2.60 sd (19.8 mo) for RR3, 
and 0.95 sd (6.8 mo) for RR-full. All models showed that longevity has improved 
genetically; however, the responses were not equal in terms of genetic standard 
deviations, and there appears to be a strong bias in the youngest generation of 
bulls. 
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Figure 5.6. Estimates of genetic trend for 
longevity with PHM from runs with data up 
to 15 February 2007, 2010, 2013 and 2016 
for Holstein bulls born between 1985 and 
2011. 

Figure 5.7. Estimates of genetic trend for 
longevity with RR-3 from runs with data up 
to 15 February 2007, 2010, 2013 and 2016 
for Holstein bulls born between 1985 and 
2011. 

  

 

 

Figure 5.8. Estimates of genetic trend for 
functional longevity with RR-full from runs 
with data up to 15 February 2007, 2010, 
2013 and 2016 for Holstein bulls born 
between 1985 and 2011. 
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5.4 Discussion 
A random regression animal model was developed for the genetic evaluation of 
longevity, and breeding values for longevity were compared with the current 
genetic evaluation using a PHM. The differences from PHM were that in the RRM, 
multiple genetic effects over the life of a cow were fitted, extra time-dependent 
fixed effects were included, and an adjustment for milk production was included in 
the model. We expected that these changes would improve the breeding values 
over time, i.e., they would become closer to the final breeding values more quickly 
when all the information was available. The results showed that the correlations 
between first and later EBV were higher for the RRM than for PHM, meaning that 
the ranking of bulls was more consistent using RRM. The EBVs were biased initially 
for both RRM and PHM. In an unbiased breeding value estimation, the mean 
change in EBV between sequential runs for a group of bulls should be zero; our 
results showed a decrease in the mean EBV over sequential runs and, as a group, 
the EBVs of the bulls dropped further over time using RRM. When investigating 
individual bulls, the variability in EBV (i.e., the difference between the first EBV and 
EBV-2016) expressed in genetic standard deviation units was similar (0.57–0.63) for 
all models. The variability expressed in months ranged between 4.1 and 5.5 mo, 
with the smallest variation for RR-full and the largest for PHM. In terms of the 
ranking of bulls, the stability of individual bulls’ EBVs over sequential runs appear to 
be better for RR-full and to a lesser extent for RR-1 to RR-3; however, as a group 
the EBVs of bulls fell over time. 
In the current genetic evaluation for longevity in the Netherlands and Flanders a 
waiting period of 9 mo after first calving is applied to include data of a cow. 
However, in this study was chosen not to apply this waiting period, and investigate 
how EBV evolve for both PHM and RRM based on similar selection criteria. The 
correlations in Table 5.6 and 5.7 gave the impression that the first published EBV 
are not a very good reflection of the EBV including most available information; in 
practice, the users never see these EBV at this stage. Applying a voluntary waiting 
period before including data helps to improve the correlation between first 
published EBV, and a longer waiting period will help to improve this correlation 
(Figure 5.1), and also reduce bias in EBV. 
The bias, as presented in Figures 5.2 and 5.3, can be divided into two types. The 
first type of bias occurs when more information is added; that is, existing daughters 
are getting older, more daughters are becoming available or a combination of both 
of these effects, providing more information for the total breeding value for 72 mo 
of survival. This bias is seen in both PHM and RRM, and occurs until the seventh 
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EBV; at the seventh EBV, all first-crop daughters have been productive for 72 mo, 
and therefore nearly all information is available at this point. The second type is a 
bias in the genetic trend. For RRM, the mean EBV was still falling after the seventh 
EBV, and this bias was also visible in the genetic trends between the sequential 
genetic evaluations presented for RR-full and RR-3. However, for PHM, the bias in 
genetic trend seemed to be smaller, as the mean change in EBV with the eighth and 
later EBVs was close to zero, and genetic trends between sequential genetic 
evaluations overlapped.  
The first type of bias, arising from the addition of more information, contributes 
the most to the total bias; this effect was shown for both PHM and RRM. This bias 
in EBV, expressed in genetic standard deviations, was larger using RRM as 
compared with using PHM. The bias was greatly reduced, to the level of PHM, 
when functional longevity was estimated with RRM. To identify the factors that 
may be causing differences in EBV, RR-full was compared with PHM, as well as 
three models that changed in steps from RR-full towards PHM. We expected that 
fitting a unity genetic correlation between all months (RR-3) would be close to 
modeling a single genetic effect, as in PHM. However, the results from RR-1 to RR-3 
were nearly identical, and all models overestimated first EBV. Hence, the first type 
of bias appears to be intrinsic to the data, and none of the models takes this into 
account. 
The second bias, arising from the genetic trend, is stronger for RRM than for PHM. 
There were certain differences between RR-3 and PHM: heterogeneous genetic and 
residual variances were fitted in RR-3, whereas in PHM one genetic and residual 
variance is fitted, and an animal model was used for all RRM whereas for PHM a 
sire-MGS model was used. With the sire-MGS model, only 31.25% of the animal 
variation is explained; with the animal model, the complete animal effect is 
explained including Mendelian sampling (Jenko et al., 2013). Moreover, a curve for 
the genetic effect was estimated for each animal with RRM; this may be somewhat 
ambitious for a binary trait, since an animal culled in month j has j−1 records with 
score 100 (alive) and only record j with score 0 (culled). Young animals will 
predominantly have a score of 100. In a sire model, the average of the progeny is 
used to estimate a survival curve, and it may therefore be easier to estimate and 
give more consistent breeding values based on young animals. For this reason, a 
more complete validation of the model should also investigate the EBV of cows. 
The way in which the EBV of a cow evolves from being alive to being culled is of 
interest. A stepwise test should be carried out to determine whether the difference 
in bias in EBV between RR-3 and PHM is related to fitting an animal model rather 
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than a sire-MGS model, or whether this is related to fitting heterogeneous genetic 
variances rather than a single genetic variance.  
Another explanation for the bias may be that the parent average is overestimated, 
or that the parent average is not a good starting point for the EBV of offspring. The 
parent average makes a large contribution to the first EBV of a bull, and is reduced 
when more information is added to the EBV. A quick method of testing whether 
the dams of bulls are overestimated would be to set the dam as ‘missing’ in the 
pedigree, or to fit a sire-MGS model (as in PHM). The bias of bull dams is a well-
known phenomenon in dairy cattle breeding; however, in terms of longevity there 
may be an additional mechanism behind this phenomenon. Genetic selection in 
dairy cattle has been primarily focused on milk production, and longevity has also 
improved genetically as a correlated response. In addition, from a phenotypical 
perspective, milk production has been shown to have a large effect on survival at 
first lactation (Van Pelt et al., 2016a). If the dam has good milk production, she has 
a higher probability of surviving than her contemporaries. However, when she is 
tested among the contemporaries of her daughters (the next generation), her milk 
production will be lower than these contemporaries; therefore, she may have a 
lower probability of survival. However, in the parent average, the effect of her 
higher milk production in the previous generation is included. The same holds for 
the other voluntary selection criteria that farmers use to cull animals, and where 
there is a genetic trend in the population. It is also demonstrated here that the 
inclusion of within-herd production level (RR-Full) reduces this bias. However, test 
bulls were still overestimated by 0.35 sd in their first EBV compared to EBV-2016 
with a correction for milk production. It may therefore be necessary to model 
farmers’ preferences for certain specific characteristics in order to overcome the 
bias in breeding values for longevity. 
The correlation between the first EBV and > sixth EBV was expected to be around 
0.80, based on the genetic parameters estimated by Van Pelt et al. (2015). In 
addition, survival in the first year after first calving was not the same genetic trait 
over the years (Van Pelt et al., 2016b). Correlations of below 0.80 were therefore 
expected between first EBV and > sixth EBV, since correlations of around 0.60 for 
longevity were found for test bulls. The authors above showed that functional 
survival was genetically a more similar trait over the years, and from RR-full we 
obtained EBV for functional longevity with correlations between first EBV and > 
sixth EBV that were around 0.70 for test bulls. The adjustment for within-herd 
production level helped to improve the ranking of bulls over time, although a 
considerable re-ranking was still taking place; this was expected from the genetic 
parameters and the change in reliability.  
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The re-ranking of proven bulls was observed to be more prominent than the re-
ranking of test bulls. To some extent this larger change was expected, since the 
change in reliability from first to last breeding value is also clearly larger for proven 
bulls than for test bulls. Other reasons for this may be that the proven bulls are a 
group selected from all tested bulls, and the correlation is likely influenced by this 
selection. Bulls that initially ranked high for longevity were more likely to become 
proven bulls, since longevity was included in the national index. In addition, 
daughters of proven bulls are given more preference by famers, since these have 
been shown to be good bulls. The number of proven bulls with eleven EBVs was 
limited, and the reduction in correlation between first and later EBVs was 
continuous and consistent over all models. A reason for this continuous reduction 
may be that second-crop daughters of proven bulls were culled differently from the 
first-crop daughters. In the progeny testing system, in the pre-genomics era, test 
bulls were mated randomly. The first-crop daughters were not treated 
preferentially by farmers; only if a test bull was promoted to a proven bull and used 
heavily would farmers have been aware that they had a first-crop daughter of this 
particular bull and kept her longer. Therefore, the first batch of second-crop 
daughters may have been treated differently than later batches of second-crop 
daughters of this bull. The first batch of second-crop daughters was based on a 
limited group of first-crop daughters (<200), and the expectations for these bulls 
were high. Farmers were aware that they had the daughters of this bull; if the bull 
turned out to be good, they used the bull again. The later batches were treated 
without extra attention, unless the bull was exceptionally good or bad and the 
farmer was prejudiced in a decision to keep or cull the progeny of this bull. Since it 
is possible that farmers culled first-crop daughters differently from second-crop 
daughters, an investigation should be carried out into whether a fixed effect for the 
type or age of the bull could remove the bias we observed in the breeding values. 
For conformation, this type of fixed effect is included in genetic evaluation in 
Germany, Italy and the Netherlands (Interbull GE-forms, 2016). In the case of the 
Netherlands, an interaction between the type and age of the bull is included in the 
statistical model, together with an effect for the age of the dam. Including these 
two effects in the model helped to reduce the bias in the breeding values for the 
conformation of bulls from different sequential evaluations. 
The suggestions put forward above, including extra fixed effects and testing of the 
differences in EBV between a sire-MGS model and an animal model, should be 
tested and analyzed to determine the impact on the bias of EBV. When the bias in 
the RRM is reduced or removed completely, we expect that the standard deviation 
of differences in EBV will decrease. This could potentially lead to an even higher 
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correlation between first and later EBVs than that found in this study. However, 
before the introduction of the new genetic evaluation for longevity based on 
random regression, Interbull validation tests must be successfully passed, as 
described by Boichard et al. (1995). 
 
5.5 Conclusions 
A new genetic evaluation model for longevity is developed here based on a random 
regression animal model. Based on the correlation between first EBV and later 
EBVs, the ranking of bulls was shown to be more stable for RRM than for PHM. Bias 
in EBV was observed, due to incomplete daughter information. Adjusting for 
within-herd production level reduced this bias greatly in RR-full, to a level similar to 
that for PHM. Before implementing this new model for genetic evaluation, the 
cause of this bias needs to be further investigated. Possible options for 
investigation are the fitting of an extra effect for type of bull or the fitting of a sire-
MGS model. 
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6.1  Introduction 
Longevity is of economic importance for dairy farmers. Cows that live longer help 
to increase the profitability of the dairy farm, since (1) the annual costs of replacing 
cows are reduced; (2) the average herd yield is increased through an increase in the 
proportion of cows in the higher-producing age groups; (3) a given acreage is better 
used by reducing the number of replacements to be reared, thereby allowing an 
increase in the size of the milking herd; and (4) voluntary culling for low production 
can be increased (Rendel and Robertson, 1950). Genetic improvement is an 
important option for increasing the potential longevity of dairy cows. However, 
selection for better longevity is complex, because the true longevity of a cow is 
available only at the end of her life, whereas selection and breeding decisions are 
made earlier in life. Most daughters are still alive when a bull is of interest to the 
market, and right-censored data need to be used in genetic evaluations. Breeding 
values for lifespan are therefore an extrapolation from survival data during early 
life. The use of survival records adds to the complexity of the statistical models 
since survival is a binary trait. This led to the development of many models in the 
mid-1990s, and several different models are currently used for genetic evaluation; 
for an overview see Forabosco et al. (2009).  
The aim of this thesis was to investigate the genetics of longevity and to develop a 
genetic evaluation system for the prediction of breeding values for longevity, with 
the objective that breeding values should reflect the true breeding value more 
quickly during early life and therefore become more stable. The components of an 
improved model were investigated in Chapters 2 to 4 of this thesis. These 
components led to the definition of a new model for genetic evaluation of 
longevity in the Netherlands and Flanders; software for this model was developed 
and the new model was implemented and tested in Chapter 5. In this section, the 
proposed model is first discussed within the context of these specifications and 
other models used worldwide. Following this, longevity and its association with 
other traits are examined, and finally, practical considerations for the 
implementation of a routine genetic evaluation of longevity based on the final 
model described in Chapter 5 are put forward. 
 
6.2  Modeling longevity in genetic evaluation 
The genetic evaluation model should ideally be able to take into account all the 
information available on dairy cows (right-censored records from the early life of 
young heifers); it should allow for fixed effects to vary over time, to account for 
different reasons for culling during the lifespan of animals (fitting more than one 
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genetic effect over life), to handle the non-normal distribution of survival, and 
ideally to include information on genomics and other predictor traits collected 
during early life. Currently, none of the models used in four major dairy breeding 
countries (France, United States, Canada and the Netherlands) fits all of these 
specifications (Table 6.1). How the research in this thesis, and the proposed model 
(NLD5 in Table 6.1) takes into account these specifications will be discussed. 
 
Table 6.1. Specifications of genetic evaluation for longevity in four different countries 
(France, United States, Canada, the Netherlands; current and proposed model) 
Requirement FRA1 USA2 CAN3 NLD4 NLD5 
Use of all data available: trait definition    ()  
Use of time-dependent effects   /0   
Fitting multiple genetic effects across the 
cow’s life 

     

Fitting an animal model to large data sets      
Accounting for non-normal distribution of 
data 

     

Include genomic information     () 
Use of predictor traits     () 
1S-MGS PHM; 2ST AM; 3MT AM; 4current genetic evaluation model S-MGS PHM; 5proposed 
genetic evaluation model RR (MT) AM 
 
6.2.1 Use of all data available: trait definition 
To obtain the breeding values of a bull as quickly as possible, and to avoid bias, the 
data of living and culled cows should be used simultaneously in the breeding value 
estimation. When only data of culled cows is used, for example by analyzing the 
actual longevity of cows, the information on the cows which are still alive is 
ignored, and bulls will have inaccurate and biased breeding values (Veerkamp et 
al., 2001). The trait definition and statistical model determine if all the information 
available can be used in the genetic evaluation. Several different trait definitions 
are used by countries worldwide when estimating breeding values for longevity; for 
example the length of productive life, calculated as the number of days between 
first calving and last known test date; survival over the first three lactations, 
survival over successive lactations; or survival rate at second calving (Forabosco et 
al., 2009). In this thesis, months one to 72 after first calving were investigated in 
Chapter 2, and survival per month was proposed in Chapter 5 for the final random 
regression model (RRM) for estimating breeding values. In this proposed model, 
the observation of survival was modeled as a record for each time interval in which 
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a cow was ‘alive’, followed by one record in which it was ‘dead’, at the time interval 
the cow was culled; this was followed by records marked ‘missing’ up to the end of 
the observed period, following Veerkamp et al. (2001). Thus, in principle, all of 
these records can be used in the genetic evaluation. This approach stands in 
contrast to methods which consider survival over the first three lactations only, and 
where survival over later lactations is ignored. The proportional hazards model 
(PHM) currently implemented in the Netherlands is also able to use all records 
available; however, a voluntary waiting period of 270 days is implemented to avoid 
the fluctuation in breeding values arising when the first records of the second-crop 
daughters of a bull become available. In Chapter 2, evidence was presented that 
those early records should indeed be given a lower weight for the prediction of 
lifespan, because the genetic correlation between survival until 6 mo and lifespan is 
0.80. This lower correlation between early survival and lifespan is taken into 
account; thus, although the proposed model has not yet been formally tested, it 
can be expected that where the records are weighted by the genetic correlation, a 
voluntary waiting period may be less important, and a breeding value may 
therefore be available earlier in the life of a bull. In Chapter 5, no voluntary waiting 
period was applied for the estimation of breeding values, and the random 
regression curves of the animals were based solely on the first month. With only 
one data point and the parent average, the estimation of the regression curve may 
be difficult; thus, bulls need to have at least 15 daughters which are at least 120 
days into first lactation in order to have their breeding value for milk production 
published in the Netherlands and Flanders. However, all information is used in the 
genetic evaluation for milk production, whereas in the currently used model for 
longevity based on PHM, a waiting period of nine months is applied before 
including the information on early life. This means that a cow is required to have 
been alive for at least nine months after first calving at the most recent date in the 
dataset for genetic evaluation. In the model proposed here, a waiting period is not 
applied; however, criteria are recommended to be set at bull level, for example a 
requirement for at least 15 progeny with at least four months of survival data, in 
order to obtain a more reliable estimate of the regression curve as compared with 
publishing the breeding value with only one daughter in the first month. 
When discussing trait definition, it should be noted that there are two different 
ways in the literature in which survival is modeled as time-series data. In the 
proposed approach, observations of survival were recorded as ‘alive’, ‘dead’ and 
‘missing’ as described above. In this way, the hazard of a cow to be culled within a 
time interval is modeled, and this definition is close to the hazard function in the 
PHM. Schaeffer (2004), however, proposed the use of the same number of records 
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up to a certain endpoint for each uncensored cow; after culling, the records for a 
cow are coded as ‘dead’ up to a certain endpoint, rather than ‘missing’. This 
definition is close to the survival function in the PHM. Both of these definitions are 
illustrated in Figure 6.1. Jamrozik et al. (2008) analyzed survival up to 100 mo in 
simulated data; survival up to eight parity in beef cattle was also analyzed by 
Jamrozik et al. (2013) using the definition of Schaeffer (2004). With Schaeffers’ trait 
definition, (co)variances for survival can be summed using standard matrix algebra, 
similar to deriving lactation breeding values for milk yield traits (Jamrozik et al., 
1997). Although both trait definitions are not compared here, the definition used in 
Chapter 2 and 5 for modeling the hazard rate appears to offer a more appropriate 
way to model the contemporary groups. When survival is defined up to a certain 
period, contemporary groups are formed by grouping animals calving for the first 
time in the same herd-year-season (Schaeffer, 2004). However, when survival is 
defined in the way proposed in this work, contemporary groups are formed from 
the animals present within the same herd-year-season. In the first type of 
contemporary group, culled animals are still part of the contemporary group, 
although farmers cannot in fact consider those animals for culling. This last type of 
contemporary group is closer to actual practice, as we used it, in which the farmer 
decides which animals to cull from the current herd composition. 
 

 
 
Figure 6.1. Trait definition for survival according to a) Veerkamp et al. (2001), as used in this 
thesis, and b) Schaeffer (2004), with an example in which 12 time intervals are defined and 
the animal is culled in the ninth time interval. 
 
6.2.2 Use of time-dependent effects 
Some of the fixed effects in the genetic evaluation can be considered to have the 
same effect on survival over the whole life of the cow, while others may vary over 
time. For example, the definition of herd x year x season at birth assumes that 
there is a fixed effect influencing the risk of culling over the entire life of an animal. 
In contrast, the contemporary group of animals in the herd during the evaluated 
survival period, i.e., herd x year x season of the observation, could be used. This 
latter definition of the contemporary group assumes that effects vary over time, 
and these are therefore treated as time-dependent fixed effects. Two types of 

a) 1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 1 1 1 1 1 0 - - -

b) 1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 1 1 1 1 1 0 0 0 0
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time-dependency are distinguished: (1) during the life of a cow; and (2) over 
calendar time. One time-dependent effect during the life of a cow is parity x 
lactation stage. Year x season and age of first calving x 5-year interval of first 
calving are time-dependent effects that vary across calendar time. PHM and RRM 
are able to handle both of these types of time-dependent effects, since these 
models can analyze time-series data. One primary advantage of time-series data is 
that effects which change over life can be modeled more precisely when time 
intervals are short, as compared with single-trait models which use an observation 
measured over a longer time interval. This is the case for parity x lactation stage, 
where it is possible to fit a separate effect for the dry period. We know that if the 
cow has a dry period, she will not be culled. Therefore the hazard of culling is zero 
during the dry period, as opposed to the other classes for stage of lactation. The 
fitting of this dry period is not possible when time intervals are defined over time 
periods longer than 1 mo. Therefore, time intervals of 1 mo are chosen in this 
work, and this allows the modeling of time-dependent fixed effects that change 
every month during life. 
 
6.2.3 Fitting multiple genetic effects over the cow’s life 
Based on earlier literature and the observation that breeding values fluctuate more 
than expected on the basis of changes in the reliability of the breeding value, an 
investigation was carried out in Chapter 2 into whether survival was a genetically 
different trait between different time intervals over life, in order to determine the 
complexity needed for the (co)variance matrices for genetic evaluation. By 
analyzing survival per time interval, the (co)variances between independent time 
intervals could be estimated. RRM thus allows the estimation of genetic 
correlations across life, whereas with PHM or a single-trait model this is not 
possible. Even when genetic correlations between different periods of life are close 
to unity, RRM can fit heterogeneous genetic variances. The parameterization 
proposed by Schaeffer (2004) yields part-whole correlations. The parameterization 
proposed here allows the investigation of the genetic correlation structure 
between different moments in the life of a cow, for example between 3 mo and 36 
mo after first calving. Moreover, with the definition used in this work it was 
possible to calculate part-whole correlations for survival up to different endpoints. 
Genetic correlations between time intervals ranged from 0.25 to 1.00, as shown in 
Chapter 2; in general, genetic correlations decreased when time intervals were 
further apart. In previous studies, genetic correlations of survival between different 
(part) lactations were in the range 0.33 to 0.96, where the lowest correlations were 
estimated between more distant lactations (Visscher and Goddard, 1995, 
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Brotherstone et al., 1997, Boettcher et al., 1999, Veerkamp et al., 2001, Sewalem et 
al., 2007, Holtsmark et al., 2009). The range of genetic correlations in the current 
study was slightly wider, due to the higher number of time points analyzed, with 
shorter time intervals, and because the analyzed period was longer. In Chapter 5, 
genetic parameters were re-estimated for both longevity and functional longevity 
using a fifth-order Legendre polynomial to fit survival per month. For longevity, 
genetic correlations between survival at various months after first calving 
confirmed the results of Chapter 2, albeit they were somewhat higher (0.51–1.00); 
however, when survival was adjusted for within-herd production level, genetic 
correlations showed a larger range (0.06–1.00). The genetic correlation structure 
indicates that survival early in productive life should be treated differently in 
genetic evaluations than survival later in life by fitting multiple genetic effects with 
nonunity correlations. 
 
6.2.4 Fitting an animal model to large data sets 
In 1949, the method of best linear unbiased prediction (BLUP) was first described 
by Henderson, although due to limitations in computing power and hardware the 
first application, known as the sire model, was not used until 1970 (Mrode, 2014). 
BLUP has evolved towards more complex models used for genetic evaluations. The 
first application of the animal model was described in 1989, and in 2000 the 
random regression model was implemented, facilitated by the development of 
computer hardware and increases in sizes of memory (Grosu et al., 2013). Genetic 
evaluation for longevity was introduced in 1999 in the Netherlands, and at that 
time the optimum choice was the implementation of the Survival Kit software 
(Ducrocq and Sölkner, 1994). This software package allowed the analysis of large 
datasets, although only using a sire or a sire-MGS model. Although it is possible to 
use an animal model with the Survival Kit software, memory requirements are very 
large, even for a small population (Jenko et al., 2013). The genetic evaluation model 
developed in Chapter 5 was a random regression animal model, and this showed 
acceptable performance in terms of computer memory usage and CPU time. 
Hence, it is computational possible to use an animal model for the genetic 
evaluation of longevity. 
 
6.2.5 Accounting for non-normal distribution of data 
Survival is coded as 1 (survived) or 0 (culled), making this a categorical trait. Linear 
and non-linear models have been applied for the genetic analysis of categorical 
traits with the assumption of an underlying normally distributed liability (Mrode, 
2014). Usually, the non-linear (threshold) models are more complex and have 
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higher computing requirements. The advantage of the linear model is the ease of 
implementation, as software used for the genetic evaluation of quantitative traits 
can be utilized without any modifications. Meijering and Gianola (1985) showed 
that a linear model is able to perform just as well as a threshold model in terms of 
correctly ranking dairy sires. For survival, no or little re-ranking of bulls was 
expected in other studies with correlations of 0.98 and higher between estimated 
breeding values (EBV) from a linear model and EBV from a threshold model 
(Boettcher et al., 1999, Holtsmark et al., 2009), and also for clinical mastitis (Carlén 
et al., 2006). In the proposed model, little re-ranking was found for bulls with 
correlations of 0.97 and higher between EBV from a linear model and EBV from a 
threshold model estimated with RRM and different interval lengths for survival, as 
described in Chapter 2. Although the proposed model does not fully take account 
of the binary distribution of survival data, little loss in terms of accuracy of the 
breeding value is expected. 
 
6.2.6 Include genomic information 
Genomic enhanced breeding values (GEBV) for longevity in the Netherlands and 
Flanders are currently based on a post-processing step (VanRaden et al., 2009), 
where conventional EBVs are integrated with direct genomic values (DGV) from de-
regressed proofs and SNP information (Stoop et al., 2011). A drawback of this 
method is that the genomic information of an individual does not influence the 
breeding value of non-genotyped relatives. For all other traits, genomic and 
conventional data are combined in a single genetic evaluation, using a method 
based on Mäntysaari and Strandén (2010). In this method, a two-step approach is 
used in which: 1) a DGV is calculated in a genomic evaluation (De Roos et al., 2009); 
and 2) the resulting DGV of an animal is transformed into a pseudo-observation 
(PSR) on absolute scale for a pseudo-trait with a heritability of 0.999, which is 
subsequently included in the national evaluation as a correlated trait (Stoop et al., 
2013). For all traits except longevity, PSRs are used with a multiple-trait animal 
model using the PCG-solving algorithm, which also can handle random regression 
models, resulting in GEBV for males and females. The current genetic evaluation for 
longevity is a single trait sire-MGS PHM; it cannot easily be expanded to a multiple-
trait model or use genomic information directly. Although a two-step approach is 
currently used to obtain GEBV, single-step approaches have been developed which 
directly combine genomic and conventional information into a GEBV (Misztal et al., 
2009, Fernando et al., 2014). The expectation is that future genetic/genomic 
evaluations in the Netherlands and Flanders will use a single-step approach. To 
enable the single step analysis, a change from the PHM model to the proposed 
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RRM model is required, with the added advantage that the genetic evaluations for 
all traits use the same solving algorithm and software.  
 
6.2.7 Use of predictor traits 
Predictor traits, measured early in life, can improve the reliability of the breeding 
value due to the genetic correlation with longevity. Most countries participating in 
the Interbull evaluation for longevity combine breeding values of predictors and 
direct longevity in a selection index to have a more reliable breeding value when 
only few cows are culled. Conformation traits, production traits, somatic cell count, 
calving traits, fertility traits and workability are all used as predictors (Forabosco et 
al., 2009). Instead of combining the predictor traits and longevity in a two-step 
approach with a selection index, the predictor traits can be used directly in the 
genetic evaluation as correlated traits in a multiple trait model. The software 
developed for the proposed model for longevity is already able to perform multi-
trait evaluations, by fitting a linear model for the predictor traits and an RRM for 
survival. This model allows for genetic correlations to differ between the predictor 
traits and survival at different time intervals, as shown by Heise et al. (2016), 
where, for example, the correlation between EBV for longevity and a fertility EBV 
ranged between 0.04 and 0.46 between early and late lactation. Further 
investigation is required to identify the genetic correlations between predictor 
traits and survival per mo, and which traits should be added as predictors in the 
genetic evaluation for longevity.  
 
6.3  Relationship of longevity with other traits 
The lifespan of a cow is affected by many factors, and there are numerous reasons 
for culling (Beaudeau et al., 2000, Fetrow et al., 2006), for example fertility 
problems, mastitis, lameness, health disorders, low production or other reasons. In 
the mid-1990s there was a great deal of interest in developing breeding values for 
health and fertility traits; however, phenotypic data were not readily available for 
genetic evaluation of many of these traits. In the Netherlands, no extra effort was 
needed to collect data, as information about longevity was derived from existing 
information sources on milk production and information on the movement of 
animals between herds. The breeding value for longevity was perceived to be an 
all-inclusive trait, i.e. a reflection of an overall breeding goal focused on improving 
production, health and fertility traits to obtain high-producing, trouble-free cows. 
Animals with poor production, health and fertility have a higher culling risk 
compared to animals that perform well in these traits, since farmers cull animals 
for these reasons and consequently the good animals automatically grow older. 
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Many more breeding values have been developed since the 1990s, and it is 
important to discuss the breeding value for longevity within the context of the 
genetic correlation with these other traits. 
 
6.3.1 Genetic correlations 
From the analysis in Chapter 5, breeding values for longevity and functional 
longevity were available; it is of interest to understand their relationships with 
other traits in the breeding goal. Traits were chosen from the total merit index 
(NVI) of the Netherlands and Flanders. Genetic correlations between (functional) 
longevity and the traits related to milk production, conformation, and health and 
fertility were estimated using bivariate analyses based on the method described by 
Schaeffer (1994). The genetic correlation with claw health was also estimated, 
since this is a health trait expected to be related to one of the main reasons for 
culling. Estimated genetic correlations between all traits and heritabilities used are 
shown in Table 6.2. Differences exist between longevity and functional longevity in 
their genetic correlations with the other traits. The correlation with production 
traits changes from positive for longevity (0.34 to 0.44) to a negative or zero 
correlation for functional survival (−0.27 to 0.04). For fertility traits, the correlation 
changes from no correlation with longevity (0.02 and 0.10) to a positive correlation 
with functional survival (0.25 and 0.30). It was expected that functional survival 
would have a correlation close to zero with production traits, because functional 
survival was adjusted for within-herd production level. Consequently, fertility traits 
show positive correlations with functional survival. The other traits show a 
difference in genetic correlation of 0.10 or smaller.  
When ranking the traits based on the genetic correlation with (functional) 
longevity, the three trait groups with the strongest relationship with longevity were 
udder health, claw health and production; with functional longevity these were 
udder health, claw health and fertility. Udder health and claw health are thus the 
best predictors for both longevity and functional longevity. This is as expected, 
since these traits are related to culling for mastitis and lameness, two primary 
reasons for culling. The third best predictor is production for longevity and fertility 
for functional longevity. The other traits in the NVI also showed a positive genetic 
correlation with (functional) longevity, and aid in improving longevity when bulls 
are selected based on the NVI.  
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Table 6.2. Genetic correlations between traits and heritabilities (in bold) for the traits used in the selection index to predict (functional) longevity 
 lon fun fat pro lac udd f&l udh ifl cin dce mce dlv mlv clw 
lon 0.12               
fun 0.94 0.14              
fat 0.34 -0.27 0.58             
pro 0.44 -0.09 0.61 0.50            
lac 0.35 0.04 0.34 0.83 0.55           
udd 0.23 0.33 -0.11 -0.14 -0.11 0.34          
f&l 0.22 0.17 0.07 0.06 0.04 0.18 0.17         
udh 0.52 0.59 -0.05 -0.13 -0.08 0.29 0.06 0.089        
ifl 0.10 0.30 -0.26 -0.34 -0.40 0.07 0.01 0.26 0.08       
cin 0.02 0.25 -0.31 -0.39 -0.43 0.09 0.11 0.27 0.97 0.15      
dce 0.27 0.26 0.05 0.02 -0.05 0.02 0.04 0.16 0.28 0.23 0.068     
mce 0.24 0.30 -0.03 0.03 -0.01 0.10 0.10 0.19 0.44 0.39 0.79 0.048    
dlv 0.19 0.18 0.04 0.05 0.01 -0.02 0.05 0.08 0.16 0.13 0.42 0.34 0.038   
mlv 0.10 0.11 0.01 0.00 -0.03 -0.07 0.00 0.06 0.32 0.23 0.14 0.53 0.12 0.085  
clw 0.52 0.42 0.17 0.11 -0.08 0.12 0.69 0.14 0.22 0.30 0.35 0.21 0.17 0.08 0.17 
lon = longevity, fun = functional longevity, fat = kg fat, pro = kg protein, lac = kg lactose, udd = udder, f&l = feet and legs, udh = udder health, ifl = 
interval between first and last insemination, cin = calving interval, dce = direct calving ease, mce = maternal calving ease, dlv = direct livabiliy, mlv 
= maternal livability, clw = claw health 
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6.3.2 Accuracy of selection 
If the trait of longevity is the breeding goal, it is of interest to determine the 
accuracy of a selection for longevity when breeding values for the predictor traits 
are available. Selection index theory can be used for this purpose to calculate the 
accuracy of longevity based on correlated traits. The two traits for prediction as 
breeding goals are longevity and functional longevity, as presented in Chapter 5. 
For simplicity, the traits in the NVI plus claw health were chosen. Claw health was 
added to the selection index calculations, since this was the only other trait with a 
moderate genetic correlation (>0.40) with both longevity and functional longevity. 
Accuracies were calculated for four types of bulls and 14 scenarios, for both 
longevity and functional longevity. The four types of bulls were chosen in order to 
simulate the amount of information available at a certain age of the bull, and these 
were: 1) a young bull with genomic information and parent average; 2) a test bull 
with 125 daughters with milk production records from the test period; 3) a heavily 
used genomic bull, with 2,000 daughters with milk production records; and 4) a 
highly reliable proven bull with 50,000 daughters with milk production information. 
The genomic information for a young bull was simulated as 15 progeny for all traits 
in the selection index. The number of progeny for a test bull was not the same for 
all traits: these were 125 for milk production, udder health, and interval between 
first and last insemination; 100 for calving interval; 75 for conformation and 
maternal calving ease; 200 for direct calving ease; 400 for direct livability; 140 for 
maternal livability; and 50 for claw health. The same ratio was used for the number 
of progeny of production traits and the other traits for the heavily used genomic 
bull and the proven bull. The 14 scenarios were chosen in order to gain an 
impression of how well other traits can predict longevity, and to simulate the 
evolution of the NVI. The scenarios were: 1) production only; 2) conformation only; 
3) health only; 4) claw health only; 5) production and conformation; 6) health and 
claw health; 7) production, conformation and health; 8) production, conformation, 
health and claw health; 9) (functional) longevity only; 10) all traits in the NVI; 11) all 
traits; 12) conformation and health; 13) conformation, health and claw health; and 
14) conformation, health, claw health, and longevity.  
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Table 6.3. Accuracy of prediction of longevity using different traits or combinations of traits 
for young genomic bulls (YG), test bulls (Test), highly used genomic bulls with progeny 
information (G+P), and highly reliable proven bulls (Proven) 

Index prod conf hlth+fer claw lon YG Test G+P Proven 
1 X     0.41 0.44 0.44 0.45 
2  X    0.23 0.27 0.29 0.29 
3   X   0.36 0.48 0.58 0.61 
4    X  0.37 0.44 0.51 0.51 
5 X X    0.48 0.53 0.55 0.55 
6   X X  0.54 0.67 0.82 0.90 
7 X X X   0.62 0.74 0.81 0.83 
8 X X X X  0.69 0.73 0.92 0.99 
9     X 0.68 0.90 0.99 1.00 

10 X X X  X 0.77 0.92 0.99 1.00 
11 X X X X X 0.79 0.93 0.99 1.00 
12  X X   0.44 0.57 0.67 0.70 
13  X X X  0.56 0.68 0.85 0.94 
14  X X X X 0.74 0.92 0.99 1.00 

prod = production traits, conf = conformation traits, hlth+fer = health and fertility traits, claw 
= claw health, lon = longevity 
 
Table 6.4. Accuracy of prediction of functional longevity using different traits or 
combinations of traits for young genomic bulls (YG), test bulls (Test), highly used genomic 
bulls with progeny information (G+P), and highly reliable proven bulls (Proven) 
Index prod conf hlth+fer claw fun YG Test G+P Proven 

1 X     0.26 0.30 0.30 0.31 
2  X    0.29 0.33 0.35 0.35 
3   X   0.42 0.55 0.62 0.63 
4    X  0.30 0.36 0.41 0.42 
5 X X    0.38 0.44 0.46 0.46 
6   X X  0.51 0.64 0.74 0.78 
7 X X X   0.55 0.68 0.75 0.77 
8 X X X X  0.63 0.76 0.90 0.99 
9     X 0.70 0.91 0.99 1.00 

10 X X X  X 0.76 0.93 0.99 1.00 
11 X X X X X 0.77 0.93 0.99 1.00 
12  X X   0.49 0.61 0.68 0.70 
13  X X X  0.55 0.66 0.77 0.82 
14  X X X X 0.76 0.93 0.99 1.00 

prod = production traits, conf = conformation traits, hlth+fer = health and fertility traits, claw 
= claw health, fun = functional longevity 
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Table 6.3 shows accuracies of predictions of longevity, and Table 6.4 shows those 
for functional longevity. When the separate trait groups (indices 1 to 4) are used to 
predict (functional) longevity the accuracies are limited: 0.23 to 0.63 for longevity 
and 0.26 to 0.65 for functional longevity. These also depend on the amount of 
information available for the bull. However, health and claw health have higher 
accuracies, especially when progeny information is available. Combining production 
and conformation traits (index 5), as was usual in several countries until the late 
1990s (Miglior et al., 2005), results in a maximum accuracy of 0.55 for proven bulls. 
During these years, most countries carried out genetic evaluations for these traits; 
it was therefore worthwhile to develop a breeding value for longevity and include 
this in the selection index. Later, several other health traits were developed. A 
combination of all health traits (index 6) resulted in better prediction of (functional) 
longevity compared to index 5 for all types of bulls, from 0.74 to 0.90 for bulls with 
at least 2,000 daughters for milk production. Today, the NVI includes production, 
conformation, health and fertility traits (index 7), and this index has a slightly lower 
accuracy than index 6 for bulls with at least 2,000 daughters for milk production; 
however, accuracy was higher for the young genomic bulls and the test bulls since 
production traits have higher reliabilities. Adding claw health to index 6 (index 7) 
resulted in higher accuracies for all types of bulls. For proven bulls with a large 
progeny group it is possible to predict (functional) longevity almost completely, and 
there is no added value from including (functional) longevity in the selection index. 
It also appears that claw health is able to predict the remaining part of longevity, 
from a comparison of indices 6 and 7. Udder health, fertility, and claw health are 
the most related to culling reasons, and it is therefore logical that accuracy 
improves from ~0.80 to 0.99 when claw health is added (index 8). Not all bulls will 
obtain highly accurate breeding values for all traits, especially for health traits with 
low heritability, and accuracy is limited for test bulls, with 0.73 for longevity and 
0.76 for functional longevity. When only direct information for (functional) 
longevity is used (index 9), accuracy increases to 0.90 for test bulls. When the 
breeding goal includes most or all trait groups and longevity, accuracy is 0.76 or 
higher (indices 10 and 11), and this is slightly higher than considering only 
longevity. Indices 12 to 14 are selection indices which do not include production in 
the index, as a reflection of the current situation where production is not used as 
predictor for longevity. Compared to the scenarios with production in the index 
(index 7 vs. 12, 8 vs. 13, and 11 vs. 14), accuracies are lower, especially for longevity 
for young bulls and test bulls.  
From the selection index calculations it is shown that it is possible to predict both 
longevity and functional longevity with high accuracy when breeding values are 
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reliable and all health traits are included in the selection index. However, it is well-
known that accuracies tend to be overestimated when more traits are added into 
the selection index (Hayes and Hill, 1981), and the observation here that the 
variance of (functional) longevity can be completely explained by other traits 
indeed seems to indicate that this accuracy is overestimated. Still, several 
conclusions can be drawn from the selection index calculations. For all scenarios in 
which claw health was included, the accuracy of prediction of (functional) longevity 
increased. It is therefore recommended that claw health should be added to the 
NVI in the Netherlands and Flanders, particularly because this is an important 
reason for culling. For young bulls and test bulls, which have less reliable breeding 
values, the increase in accuracy still justifies the inclusion of (functional) longevity 
in the selection index and therefore to have a genetic evaluation for longevity or 
functional longevity. 
 
6.3.3 Longevity, functional longevity or residual longevity 
Breeding values for longevity are estimated mainly in terms of longevity or 
functional longevity in national genetic evaluations (Forabosco et al., 2009). If 
longevity is not corrected for milk production, the ability of delaying any culling is 
modeled; with functional longevity, the ability of delaying involuntary culling 
(assuming voluntary culling is for yield) is modeled (Ducrocq et al., 1988). Residual 
longevity is used to all variation left when longevity is corrected for all traits taken 
into account by a farmer when culling cows by adjusting for other traits that 
influence longevity (e.g. health and fertility traits). Longevity, adjusted or not, is 
now included in the selection index in most countries worldwide together with 
production and health traits (Miglior et al., 2005, Egger-Danner et al., 2015). A 
selection index in which one trait is adjusted for one or more other traits in the 
index is equivalent to an index that includes the unadjusted traits (Kennedy et al., 
1993), as long as proper economic weights are used. Therefore, it is not important 
if longevity should be adjusted or not, as other traits related to longevity are 
included in the breeding goal. 
Still it is important to consider the differences between adjusted and unadjusted 
longevity. This is also shown in Chapter 3, where genetic trends for longevity and 
functional longevity were completely different till 1999, and became comparable 
since 1999, i.e. the moment longevity was included in the selection index. Also, the 
interpretation of functional longevity and even more for residual longevity would 
be difficult for farmers. Longevity is the reflection of what farmers do and what 
they can see, as all culling is included; in adjusted longevity (functional or residual) 
one or more culling reasons are corrected for, making it less clear for farmers what 
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part of longevity will be selected for. In Chapter 4 it was also shown that for the 
genetic evaluation it matters which trait is considered; the trait definition of 
longevity changed over time, and genetic correlations became as low as 0.78 for an 
interval of 15 years. When survival was adjusted for milk yield, the genetic 
correlation was 0.88. This can be explained by the results in Chapter 3 where it was 
shown that farmers paid less attention to milk yield when keeping heifers to the 
second lactation. Thus, despite that it should not matter if longevity, functional 
longevity or residual longevity is weighted in a selection index, for predicting 
breeding values, it is advised to analyze functional longevity in order to have more 
stable breeding values more quickly during early life.  
 
6.3.4 Culling reasons 
From a biological point of view it is of interest to know for which reason a cow is 
culled and how this is related with other reasons of culling and with other traits, for 
example milk production and fertility, and by analyzing the separate culling reasons 
more insight can be gained in the underlying traits affecting longevity. Though, the 
reported culling reason is a subjective score of the farmer, and culling of a cow is 
often done for multiple reasons (Fetrow et al., 2006). In addition, voluntary culling 
is assumed a (economic) decision of the farmer; expectation of a new heifer is 
higher than expectations for the culled cow. Tsuruta et al. (2015) analyzed survival 
for five different culling reasons (sold or culled for dairy production, poor 
production, reproductive problems, and died at the farm) and survival over the first 
three lactations. Heritabilities for these six survival traits ranged between 0.03 and 
0.11. To understand the biological mechanisms the genetic correlations between 
these six survival traits among them and with other traits would have been helpful, 
but these were not estimated. For animal breeding, however, the aim is to select 
cows that can live longer by delaying the moment of culling for any reason. 
Therefore, it may not yield a higher genetic gain to estimate breeding values for 
specific culling reasons rather than analyzing overall survival as analyzed in this 
thesis. 
In the US the culling reason ‘died at the farm’ is analyzed separately by estimating a 
breeding value for cow livability in addition to the current breeding value for 
productive life (longevity). The use of separate genetic evaluations for cow livability 
and productive life was justified, because about 20% of all culled cows died at the 
farm, the heritability of cow livability was 0.013 and the correlation with EBV of 
productive life was 0.70 (Wright and VanRaden, 2016). Moreover, the economic 
impact of cows dying on the farm is large. The current lost income from the death 
of US cows has a value of about 2.2 billion USD (20% x 9.2 million cows x 1,200 
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USD) or 800 million USD annually assuming an average productive life of 2.75 years 
(Norman et al., 2016). At cow level, this represents an annual loss of income of 
about 87 USD. In the Netherlands, however, the economic loss per cow per year is 
smaller; of all culled cows, about 15% had a culling code of ‘dead’ rather than 
‘slaughter’. The average slaughter price in the Netherlands is about 700 euros, and 
the average productive life is 3.5 years. At cow level this represents a loss of 30 
euros per year (15% x 700 euro / 3.5 years). Compared to the annual loss per cow 
of 78 euro for mastitis (Huijps et al., 2008) and 75 USD for claw health (Bruijnis et 
al., 2010), the economic loss for cows dying on the farm is rather limited. It is 
therefore less important to separate the breeding value for cow livability next to 
the breeding value for longevity, as cow livability should increase due to the 
correlated response with longevity. 
 
6.3.5 Survival before first calving 
This thesis has examined only the productive life of the cow, i.e., from first calving 
until the final test date; however, it is also important to improve survival at the 
earlier stages of life. Breeding values for calf livability over the first 24 hours and 
calf survival from days three to 365 are already available in the Netherlands. By 
selecting for these two traits together with longevity there is potential for 
improving overall survival over the entire life of a cow, that is from birth until the 
last test date. An idea would be to combine the survival in early life with survival 
after the first calving. However, to combine calf livability, calf survival and longevity 
in one statistical model may be too ambitious; for calf livability, the direct effect of 
the calf and the maternal effect of the dam are included as genetic effect in the 
model (Van Pelt and de Jong, 2011). For calf survival, data from female calves as 
well as male calves are included in the genetic evaluation (Van Pelt et al., 2012). 
Genetic correlations between longevity and calf livability are low (Table 6.2), and 
the genetic correlation between longevity and calf survival is also likely to be low or 
moderate, and the traits are genetically different. It is therefore more effective to 
combine longevity, livability and calf survival in one selection index, rather than 
analyzing total life in a single model for genetic evaluation. 
 
6.4  Publication of breeding value for longevity 
From a practical point of view, it is important to decide what the preferred 
publication scale of the breeding value for longevity should be. The models used in 
this thesis offer many opportunities to define different longevity traits, from 
survival probabilities at any moment in life to the expected lifespan in days or 
months. The EBV in Chapter 5 were presented in months, whereas the current 
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breeding value for longevity in the Netherlands uses a scale in days. This was 
purposely chosen, because farmers perceive a change in EBV of 60 days as a large 
change. However, 60 days represents a change of less than 0.25 genetic standard 
deviation in the current evaluation, and therefore presenting the EBV with such a 
high precision in days, is not justified. Also, the perception of such a change may be 
different if the breeding value is presented on a scale of months instead of days. 
Therefore in Chapter 5 it was decided to present the breeding value in months. 
Another discussion point to present the breeding value for longevity is whether 
longevity is presented per lactation or over the entire lifespan. In Chapters 2 and 5, 
survival per month until 72 months after first calving was examined by fitting a 
genetic curve over the life of a cow, resulting in a breeding value for each month. In 
Chapter 2 an equation was derived for combining the EBV per month into one 
overall EBV for longevity. Another approach is to model genetic curves within a 
lactation, as carried out by Sasaki et al. (2015) for cumulative survival rate; this 
enables the modeling of lactation-specific culling. In both studies, nonunity genetic 
correlations were found between survival of different periods. The EBV of Sasaki et 
al. (2015) enables to select for improved survival at lactation level, whereas the 
total EBV in this thesis enables to select for improved total productive life at 72 
months after first calving. The longevity breeding values however, can be 
presented on both scales (lactation or lifespan), depending on the assumptions 
made about the length of the lactation period. In terms of modelling, it is arbitrary 
to model survival at the level of lactation or survival over the entire lifespan, as 
long as nonunity genetic correlations between survival of different periods are 
taken into account.  
 
6.5  Conclusions 
In this thesis, a new model for the genetic evaluation of longevity was developed. 
From a genetic point of view, the trait longevity changed over the years, whereas 
the trait functional longevity, i.e., adjusting for within-herd production level, 
changed less. In the new model, survival up to 72 months after first calving is 
modeled with a random regression animal model using a fifth-order Legendre 
polynomial to allow for nonunity genetic correlations for survival between different 
months after first calving and heterogeneous genetic variances. The genetic 
correlation between survival up to six versus 72 months after first calving is ~0.80. 
The ranking of bulls in the new model was more stable compared to the existing 
model. Bias was shown to be present in the EBV, mainly due to incomplete 
daughter information. Adjusting for within-herd production level reduced this bias 
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greatly, to a level similar to that of the PHM model. The cause of the bias needs to 
be further investigated before this new model is implemented. Predictor traits can 
add accuracy to the EBV for longevity, especially for young genomic bulls. In terms 
of future work, the next step is to estimate genetic parameters for longevity and 
predictor traits, and to implement the genetic model combining data on both 
longevity and predictor traits. 
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Longevity is an important trait both from an economical and welfare point of view. 
Improving longevity helps to increase the profit of the farmer, and it is seen as an 
important measure of improved animal welfare and sustainability of the sector. 
Longevity is a complex trait, since the true longevity of a cow is available at the end 
of her life, whereas the selection decisions are made earlier in life. Breeding values 
for longevity have been published since the introduction in 1999 in the 
Netherlands, and have become very important due to the inclusion of the breeding 
values in the national selection index. It is necessary that breeding values are 
accurately estimated and will remain stable for the rest of life. However, current 
breeding values of bulls seem to fluctuate more than can be expected. This 
perception was amplified by some famous bulls that were highly favorable for 
longevity initially, but dropped considerable in their breeding value when more 
information became available. The main aim of this thesis was to revisit the 
genetics of longevity and develop a genetic evaluation model for the prediction of 
breeding values for longevity, with the objective that breeding values reflect the 
true breeding value quicker during early life and therefore breeding values become 
more stable. 
In Chapter 2, genetic parameters were estimated for survival across the life up to 
72 months after first calving using different survival models. Both linear and 
threshold models were used, and 4 different lengths of time intervals for survival 
were evaluated. The aim was to investigate whether genetic evaluation models 
need to take account of survival being genetically a different trait across the entire 
lifespan of a cow. A random regression model (RRM) with second-order Legendre 
polynomials was fitted for the additive genetic effect. Alternative 
parameterizations were (1) different trait definitions for the length of time interval 
for survival after first calving (1, 3, 6, and 12 mo); (2) linear or threshold model; and 
(3) differing the order of the Legendre polynomial. The partial derivatives of a profit 
function were used to transform variance components on the survival scale to 
those for lifespan. Survival rates were higher in early life than later in life (99 vs. 
95%). Results indicated that survival is genetically not the same trait across the 
entire lifespan after first calving because genetic correlations differ from unity 
between different time intervals, especially when intervals are further apart. 
Heritability for survival after first calving within a time interval (1, 3, 6, and 12 mo) 
were low. However, heritability for lifespan across the entire period of 72 mo after 
first calving was higher and ranged from 0.115 to 0.149. To estimate breeding 
values for lifespan, the length of the time interval used for survival is important. An 
improved model for genetic evaluation should treat survival as different traits 
during the lifespan by splitting lifespan in time intervals of 6 mo or less to avoid 
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overestimated reliabilities and changes in breeding values when daughters are 
getting older. 
In Chapter 3, survival during the first year after first calving was investigated over 
the last 25 years (1989–2013) as well as the association of survival with season of 
calving, age at first calving (AFC) and within-herd production level over that period. 
Survival and functional survival were analyzed. Functional survival was defined as 
survival adjusted for within-herd production level. Survival rate increased by 8% in 
the last 25 years up to 92% in 2013. Genetically, survival increased 3% to 4% but 
functional survival did not increase over the 25 years. An interesting difference was 
found between the genetic trends for survival and functional survival for bulls born 
between 1985 and 1999. Survival still increased, but was negative for functional 
survival. Since 1999, genetic trend picked up again for both survival and functional 
survival. AFC, season of calving and within-herd production level affected survival, 
and there was an interaction between these effects. The average decrease in 
survival rate per extra month AFC was 0.6% for survival and 1.5% for functional 
survival between AFC of 24 and 32 months. Within herd, low-producing cows had a 
lower survival rate than high-producing cows. However, the effect of AFC and 
production level became less important during the recent years. Based on survival 
the optimum AFC is around 24 months, but based on functional survival it is better 
to have an AFC<24 months. Overall, survival rate of heifers has improved 
considerably in the past 25 years, initially due to the focus on a high milk 
production. More recently, the importance of a high milk production has been 
reduced towards attention for functional survival. 
In Chapter 4, genetic correlations and heritabilities for survival were investigated 
over a period of 25 years to evaluate if survival in first lactation has become a 
different trait in this period. The analyses demonstrated that mean survival 
increased, whereas genetic variances and heritability decreased. Genetic 
correlations between 5-yr intervals were below one, showing that survival changed 
over time, whereas genetic correlations for functional survival did not indicate that 
survival changed. The difference in genetic correlations between survival and 
functional survival are likely explained by less emphasis of dairy farmers on culling 
in first lactation for production in more recent years. This suggests that genetic 
evaluation for longevity using historical data should analyze functional survival 
rather than survival. 
In Chapter 5, the findings from Chapter 2 to 4 were used to develop a new genetic 
evaluation for longevity based on a RRM in comparison with the currently used 
proportional hazards model (PHM). The aim was to evaluate the impact of these 
changes to the model by: 1) fitting multiple genetic effects across the life of a cow; 
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2) fitting time-dependent fixed effects; and 3) adjusting for within-herd production 
level on the stability of breeding values for longevity of bulls. The trait analyzed was 
survival per month, fitted with a fifth-order Legendre polynomial until 72 months 
after first calving. The stability of breeding values was analyzed by checking the 
difference between the first breeding value a bull had received since 2006 with his 
breeding value in 2016. Based on the correlation between first breeding value and 
later breeding values, the ranking of bulls was shown to be more stable for RRM 
than for PHM. Bias in breeding value was observed, mainly due to incomplete 
daughter information. Adjusting for within-herd production level reduced this bias 
in the breeding values greatly, to a level similar to that for PHM. Before 
implementing this new model for genetic evaluation, the cause of this bias needs to 
be further investigated. 
In the general discussion, Chapter 6, the proposed model was first discussed within 
the context of requirements for a new genetic evaluation model and other models 
used worldwide. Secondly, longevity and its association with other traits were 
examined, and thirdly, practical considerations for the implementation of a routine 
genetic evaluation of longevity based on the model described in Chapter 5 were 
put forward. The genetic evaluation model should ideally be able to take into 
account all the information available on dairy cows (right-censored records from 
the early life of young heifers); it should allow for fixed effects to vary over time, to 
account for different reasons for culling during the lifespan of animals (fitting more 
than one genetic effect over life), to handle the non-normal distribution of survival, 
to use an animal model to large data sets, and ideally to include information on 
genomics and other predictor traits collected during early life. The developed 
model fulfils most of these specifications, though including genomic and predictor 
information needs further research. Genetic correlations between (functional) 
longevity and predictor traits showed that udder health and claw health are the 
best predictors for both longevity and functional longevity. The third best predictor 
is production for longevity and fertility for functional longevity. Selection index 
calculations indicated that predictor traits can add accuracy to the breeding value 
for longevity, especially for young genomic bulls. It is advised to present the 
breeding value on a different scale than currently used. The current breeding value 
is presented in days, but presenting it in months is preferred, to avoid the 
suggestion that breeding values are very accurate and precise, and feeding the 
perception of farmers what a big change in breeding value is. Moreover, for 
publishing breeding values for longevity, it is arbitrary to model survival at the level 
of lactation or survival over the entire lifespan, as long as nonunity genetic 
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correlations between survival of different periods are taken into account to reduce 
bias in the estimation of breeding values. 
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