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Abstract 

The aim of this research is to assess the detectability of small spatial scale selective logging 

in tropical forests using optical very high spatial and spectral resolution data. Among the 

forest change processes contributing to the global greenhouse gas emissions, the 

degradation processes like selective logging represent the most challenging ones to be 

detected and quantified due to their partial forest canopy removal and their small scale. 

Furthermore selective logging events are considered as precursor of deforestation and 

important drivers for reduction of ecosystem services provided by tropical forests. In this 

research an Unmanned Airborne Vehicle (UAV) with a hyperspectral camera was used to 

detect small scale canopy gaps originating from selective logging in the tropical regions of 

Guyana and Indonesia. The UAV-based radiometric detection analysis provides the 

possibility to calibrate and validate a selective logging radiometric detection method based 

on airborne or satellite-borne very high spatial resolution data. The data consists of 

hyperspectral, Digital Surface Model (DSM) images and photos from a commercial camera 

(RGB). Two flights, a pre-harvest and a post-harvest flight performed with a tree harvested 

in between on each plot. With the UAV derived DSM and RGB images, the newly created 

canopy gaps were firstly visually identified. Then their spectral characteristics were 

explored using the hyperspectral data-cube. Three types of gaps were identified according 

to their spectral properties, the “Shadowed gap”, the “Non Photosynthetic Vegetation (NPV)-

Soil gap”, and the “Understory gap”. Using spectral unmixing (SMACC algorithm), abundance 

maps were derived. Depending on the type of gap, the corresponding endmember was 

loaded. A subtraction between the pre- and post-harvest datasets revealed the area that the 

logging event affected. It was found that the “Understory gap” was the hardest to detect due 

to its small size and spectral variability. Finally, a detectability analysis gave insight on how 

much area should the gap cover in a pixel in order to be detected. The Signal to Noise Ratio 

(SNR) was set at 10 as a threshold to distinguish the change over the background of the 

image. The analysis showed that the required sub-pixel gap area for detection is 68% for 

“Shadowed gaps”, 89% for “NPV-Soil gap”, and 100% sub-pixel gap area for “Understory 

gap”. The gap sizes found in this study were 189 m2 for “Shadowed gaps”, 79 m2 for “NPV-

Soil gap”, and 51 m2 for “Understory gap”. Finally, the hyperspectral pixel size required for 

detection was calculated combining the sub-pixel gap area and the gap size of each gap type 

found in this study. The pixel sizes were defined as: 9.3x9.3 m2 for “Shadowed gap”, 7x7 m2 

for “NPV-Soil gap”, and 1x1 m2 for “Understory gap”. However the pixel size represents only 

the gaps studied in this research.  
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Chapter 1: Introduction 
 

The degradation in tropical forests is receiving a growing attention by scientists and policy 

makers over the last years. Data are needed in order to plan and apply a forest oriented 

policy to control, quantify, and qualify the degradation (FAO, 2011a). According to Food and 

Agriculture Organization FAO (2010a), forest degradation can be defined as: a gradient 

depletion of the ability of a forest to supply with goods and services. This definition can be 

interpreted in many different ways, depending on the nature of the degradation, for 

example: forest health and vitality, biological diversity, protective functions of forest 

resources, productive functions of forest resources and, socio-economic functions of forests 

(FAO, 2011a).  

Moreover, the climate change policies in the context of REDD+ (reducing emissions from 

deforestation and forest degradation, conservation of existing forest carbon stocks, 

sustainable management of forests and, enhancement of forest carbon stocks) are interested 

in the emissions that are caused from forest degradation (Romijn 2013). In this framework, 

forest degradation is defined as the negative human influence to the forest’s carbon stock in 

areas that forests remain forests, meaning that their values and properties persist over the 

boundaries of what is defined as forest (Herold and Skutsch 2011). 

In rainforests and specifically in Indonesia which is one of the two study areas there are 

multiple drivers pushing forests to degrade such as: shifting cultivation, fuel wood 

collection, wood extraction for charcoal production, legal and illegal selective logging, and 

more (Miettinen et al., 2014). There have been reports that selective logging is been 

practiced in large areas of Southeast Asia since the mid of the 19th Century (Schlich, 1907). 

When selective logging is practiced in a sustainable way it does not lead to forest 

degradation (Miettinen et al., 2014). On the other hand, selective logging practiced in an 

unsustainable way can lead to forest degradation (Mon et al., 2012a), and according to 

Kissinger et al. (2012) is the leading driver of forest degradation in these areas. In Southeast 

Asia the main reasons for forest degradation are shifting cultivation, fire, and selective 

logging (Stibig et al. 2007b). Particularly, in the islands of Southeast Asia (Malaysia, 

Singapore, Brunei, East Timor, Indonesia, and the Philippines) (Miettinen et al., 2014), the 

logging activities due to the valuable tree species and also because these countries are not 

practicing the Reduced Impact Logging (RIL) (FAO, 2011b), are more intense than in other 
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tropical regions (Miettinen et al., 2014). Moreover, short rotational logging times such as 20 

years (Wilcove et al., 2013) are adding to the unsustainable logging practices resulting in a 

biomass reduction cycle (Miettinen et al., 2014).  

1.1 Literature Review 
Traditionally the forest canopy gaps where characterized through field surveys (Brokaw & 

Grear 1991). For larger and wider areas where the field methods are limited (Runkle 1982), 

remote sensing found to be cheaper and less labor intensive (Woodcock et al., 2001). 

Various techniques to map forest degradation from selectively logged areas have been 

developed for different study areas. Visual interpretation using images from Landsat 

Thematic Mapper (TM) to characterize selective logging was tested by (Stone and Lefebvre, 

1998). The authors managed to measure the logged areas under the condition that the 

image is acquired in a short period after the logging. Due to Landsat’s TM coarse resolution 

(30x30m), this method is feasible only when the logging areas are at least as big as the pixel 

size (Souza et al., 2005).  Moreover, visual interpretation is subjective and labor intensive 

when it comes to large areas (Mietinen et al., 2014). Negron-Juarez et al. (2011) and Asner 

et al. (2004) also used Landsat images to map selective logging but with the 30x30m area 

limitation to remain.  

Minimum distance and maximum likelihood classification (Stone & Lefebvre, 1998) was 

used in Amazonia to classify selectively logged areas using Landsat TM satellite data.  This 

approach was not capable to define a different spectral class for selectively logged areas due 

to the complexity of the forest’s structure, the coarse resolution of the sensor, and the cloud 

coverage in the area. The authors stated that an automated classification procedure to 

detect the logging areas is unlikely to be developed under this setting. Reflectance and 

texture analysis (Asner et al., 2002a) have also been used for mapping selective logging but 

without robust results due to Landsat’s spectral and spatial limitations. The difficulty lies 

due to the fact that gaps that are formed by selective logging are small and therefore very 

difficult to detect with Landsat.  

Franke et al (2012) used multi-temporal Rapid Eye satellite data in Southern Kalimantan, 

Indonesia and they were able to apply Mixture-Tuned Matched Filtering (MTMF), a linear 

spectral unmixing technique to detect areas that were disturbed by unplanned (illegal) 

logging. Malahlela et al (2014) used WorldView-2 data to detect gaps in a subtropical forest 

with dense vegetation in South Africa. They used two classification techniques, the pixel 

based (Maximum likelihood, Support Vector Machine, and Random Forest) and the object-
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based image analysis. Both methods succeed higher accuracy compared to sensors with the 

conventional visible and Near-Infrared (NIR) bands. However this paper outlines that these 

methods are still inferior to the methods that are using Light Detection And Ranging 

(LiDAR) technology and this is because laser scanners can also capture tree height where 

the traditional optical sensors cannot (Dubayah and Drake 2000; Harding et al. 2001; 

Nelson, Oderwald and Gregoire 1997). 

However, the costs and the data dimensionality of the LiDAR technology are high (Mutanga, 

Adam and Cho 2012) and therefore its application especially in large areas with dense 

revisit times is limited. Gong, Biging and Standiford 2000, Swellengrebel 1959, and Green 

2000 used digital aerial photography and digital surface models to map canopy gaps with 

success. Depending on the application, aerial photography has some disadvantages because 

it is time consuming and their availability for tropical areas is limited (Asner et al., 2002b). 

Canopy gaps where also derived using Synthetic Aperture Radar (SAR) interferometry 

(Ferrazoli and Guerriero 1994; Imhoff 1995) but with the same practical limitations as 

LiDAR scanners (Malahlela et al., 2014). 

Some methods that were developed for the Amazon basin could possibly be used in other 

tropical regions. Some examples of these methods are: segmentation based automated 

statistical method for gap detection (Pithon et al., 2013) and combination of Spectral 

Mixture Analysis (SMA) information into one band, using the Normalized Difference 

Fraction Index (NDFI) to detect forest areas with canopy damage (Souza et al. 2005). 

1.2 Problem Definition 
In our study areas, forests in their non-affected state have closed canopies. A forest with 

closed canopy makes simpler the degradation monitoring because areas with gaps and 

reduced canopy cover can be counted as a sign of selective logging activity (Miettinen et al., 

2014). Furthermore, the climate conditions result in small yearly variations of forest 

features making the detection less complex (Miettinen et al., 2014). However, even with the 

aforementioned detection advantages of the tropical forests, the mapping of selective 

logging using optical remote sensing remains hard since the cloudy climatic conditions and 

atmospheric disturbances make the acquisition of suitable satellite images difficult 

(Miettinen et al., 2014). Moreover, the scale of the disturbance is small and variates in signal 

characteristics and thus hard to detect with conventional sensors. The fast regrowth of 

those forests makes the detection problematic because the traces of the gaps fade quickly. 

That results in low differentiation between gap and vegetated pixels (Miettinen et al., 2014).  
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1.3 Objectives 
This research is focusing on the radiometric detection of canopy gaps that are created by 

selective logging in the tropics. The main objective is to develop a method to detect gaps 

caused by selective logging, through radiometric differences in high and very-high (5-10m) 

spatial resolution satellite imagery.  

For achieving this, the following research questions have to be answered. 

RQ1. What are the spectral characteristics of a canopy gap caused by selective logging in the 

tropics? 

RQ2. Can selectively logged canopy gaps be detected by spectral unmixing of bi-temporal 

hyperspectral datasets?  

RQ3. How big should the pixel be and how much subpixel area should the gap cover in 

order to be detectable? 

Chapter 2: Study area and UAV data 

2.1 Study Areas 
The UAV data were collected in two study areas, covered by tropical forests: one in 

Indonesia, (Central Kalimantan) and one in Guyana, (South of Bartica). 

2.1.1 Indonesia 

The first study area (Figure 1) is located in Southern Central Kalimantan, Indonesia, and it 

lies between Latitude -2.40° and Longitude 113.13° (datum WGS84). The study area 

consists of peat swamp forests, which are moist forests with hard access due to their 

density and soil condition. The peat swamp forests occur where very wet soils do not let 

wood and dead leaves to decompose creating a “carpet” of acidic peat which can reach a 10-

12m thickness.  

In 1996 a project called Mega Rice Project was initiated in order to counter Indonesia’s 

growing food shortage. The aim was to turn one million hectares of peat swamp forests into 

rice paddies. The project failed and was abandoned but causing significant damage to the 

ecosystem.  

In the study area logging events and natural canopy gaps took place before the data 

acquisition creating openings in the canopy which were heterogeneously distributed in the 
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area. The peat swamp forests are well-known for their abundance in valuable trees. This 

leads to fast deforestation caused by legal or illegal logging (Nurhayati, 2015).  

Three plots of 40x30m size each were stablished in a peat swamp forest area prior to 

selective logging operations. In each plot at least one major tree was logged. Geolocation of 

the tree logged and the plot boundaries was acquired with two hand held GPS averaging 

1000 measurements for 13 locations on the boundaries of the plot and centre. Each tree 

with Diameter at Breast Height (DBH) larger than 10 cm was identified, labelled, measured 

its DBH, and its geolocation in a local relative coordinate system (in relation to one corner 

of the plot). Tree damage of each individual tree was assessed after the logging operation 

and canopy gap information was recorded.  

 

Figure 1. Location of the Indonesian plots. In the small rectangles are shown the RGB (larger 
extent greenish images) and Hyperspectral images (smaller extent area with distinct colors 
within the RGB image) acquired by the UAV. The red rectangles depict the delineated plot area 
where the logging event occurred. 
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2.1.2 Guyana 

The study area is located in the forest of central Guyana, south of Bartica (Figure 2) and it 

lies between Latitude 6.33° and Longitude -58.62°. According to Ter Steege et al. (2002), the 

climate is wet with 2764mm/year rainfall with two dry seasons from January to March and 

August to September. The yearly mean daily temperature is 25 °C. In the study area, dry 

evergreen forest is the dominant forest type (Ter Steege et al., 2002). These types of forests 

cover 7% of the forested areas. Four plots of 40x30 m size each were used, plot 6, 7, 8 and 

10.  

 
Figure 2. Location of the Guyanese plots. In the small rectangles are shown the RGB (larger extent greenish 
images) and Hyperspectral images (smaller extent area with distinct colors within the RGB image) 
acquired by the UAV. The red rectangles depict the delineated plot where the logging event occurred. 
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2.2 UAV data 
The data were collected using a small lightweight (5kg when fully equipped) octocopter 

(Aerialtronics Altura AT8) equipped with the Hyperspectral Mapping System (HYMSY) 

(Figure 3) developed at Wageningen University, and a high spatial resolution RGB camera  

(20 cm) for ortho-photography. The HYMSY consists of a push-broom spectrometer, a 

consumer camera and a GPS-INS device. (Suomalainen et al., 2014).  

 
Figure 3. The UAV mounted with the HYMSY 

The spectrometer is able to derive 101 bands ranging from 450-950nm with 5nm intervals. 

The pixel size varied between the flights due to different flight altitude (  Table 

1).  

  Table 1. Plots and their corresponding pixel size 

 

Study area and Plot 

number 

 

Pixel Size (cm) 

Indonesia 2 0.197 

Indonesia 8 0.192 

Indonesia 11 0.253 

Guyana 6 0.215 

Guyana 7 0.246 

Guyana 8 0.211 

Guyana 10 0.227 
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In this research, the RGB high resolution photos, the Digital Surface Model (DSM) derived 

from the orthophotogrammetry of the RGB imagery, and the hyperspectral datasets were 

used. 

Each plot had the size of 40x30 meters. The plots were delineated using the main tree and 

its predicted falling direction to define the plot’s orientation (Figure 4). The distance from 

the main tree to the closest plot edge was 10 meters for Indonesia and 5 meters for Guyana. 

 

Figure 4. Schematic representation of the plot delineation. The arrow 
indicates the falling direction of the harvested tree 

In order to study the canopy changes due to the selective logging events, two flights for each 

plot were carried out (Error! Reference source not found.). The first flight was to derive 

the pre-harvest (benchmark) dataset and the second flight to derive the post-harvest 

(logged) dataset. Between pre- and post-harvest flights a major size tree was logged 

creating a change in the canopy structure.  

 
 Figure 5. Generalized steps for the UAV data collection 

Error! Reference source not found. shows the date and time of the pre- and post-harvest 

flights. Moreover, the solar zenith angle for each instance has been calculated. The solar 

angle is an important aspect of the data collection because if it is not consistent it can 

introduce differences in the shadowing effect between pre- and post-harvest flights.  

These data have some unique characteristics that had to be taken into consideration before 

any further action. The mean flight height of the UAV was less than 100 meters. In this 
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altitude an atmospheric correction is not needed because it is assumed that the interference 

of the atmosphere is marginal. The sensor was calibrated before each flight using a white 

panel in order to calibrate for the illumination conditions. Finally, even with the UAV flying 

below the clouds, the image acquisition is still affected introducing shadows. However, in 

both the study areas, the flights where performed when no clouds blocking the sun.  

     

Table 2. Date, time and solar zenith angle of pre- and post-harvest flights. The negative solar zenith 
angle in Guyanese plots means that the sun angle is west of south. 

Study Area and 

Plot No. 

Date-Flight time 

(local time) 

Solar zenith angle ° 

Pre Post Pre Post 

Indonesia 2 17-08-2014 
16:17 

27-08-2014 
17:09 

13° 10° 

Indonesia 8 02-09-2014 
16:38 

07-09-2014 
17:12 

8° 6° 

Indonesia 11 08-09-2014 
15:32 

09-09-2014 
16:50 

5.5° 5° 

Guyana 6 21-11-2014 
14:32 

23-11-2014 
13:48 

-20° -20° 

Guyana 7 21-11-2014 
15:19 

23-11-2014 
15:36 

-20° -20° 

Guyana 8 22-11-2014 
15:36 

30-11-14 
16:41 

-20° -21° 

Guyana 10 30-11-2014 
14:20 

30-11-2014 
16:10 

-21° -21° 

 

Chapter 3: Methods 
The methodology was tested in 7 plots, 4 in Guyana and 3 in Indonesia. This research used 

only a subset of 7 out of the 20 plots where data acquired (Indonesia plot 2, 8, and 11; and 

Guyana plot 6, 7, 8, and 10) but the naming was kept the same for convenience. The datasets 

that were omitted did not fit the criteria for this research. In some of the omitted plots the 

pre-harvest datasets were missing and in other plots the pre and post-harvest datasets did 

not overlap meaning that the pre- and post-harvest dataset comparison would not be 

possible. 

3.1 Forest canopy gap definition 
There are many forest canopy gap definitions available in the literature (Oldeman, 1978 

Runkle, 1981; Brokaw, 1982; Popma et al., 1988, Whitmore et al., 1993, Koukoulas and 
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Blackburn 2004). Oldeman (1978) defined them as openings in the forest canopy that are 

irregularly shaped and they do not have clear borders between the gap area and the closed 

forest. The definition by Oldeman is focusing on defining the gap’s vertical and horizontal 

structure and its borders. In this research is important to consider gaps from a remote 

sensing point of view. Koukoulas and Blackburn (2004) stated that gaps are ecological 

features that have optical properties. After a gap is created, changes affect the structure of 

the canopy and the radiation reflected from the forest in the logged area (Koukoulas and 

Blackburn 2004). This characteristic provides the theoretical background under which 

passive optical remote sensing can be used for the study of gaps. (Koukoulas and Blackburn 

2004). 

For the scope of this research, a gap is used as a proxy for detection of potential selective 

logging event occurred in an area via comparing bi-temporal remote sensing images. A gap 

is considered as the area that is affected during a selective logging event.  

Based on their optical characteristics, three gap types were distinguished (Figure 6). “NPV-

Soil gap” is the type of gap where a mixture of soil and Non-Photosynthetic-Vegetation 

(NPV) is exposed after the logging. “Shadowed gap” is the type of gap characterized by an 

increase in shadow in the area after the tree harvest. In this occasion the harvested tree 

affects the canopy creating a gap but this gap is shadowed and NPV or soil could not be 

spotted. This can be explained by the solar angle, the density of the forest, the size of the 

harvested tree etc. Finally, “Understory gap” is the type of gap where understory vegetation 

is exposed after the tree harvest. This type does not fit the gap definitions found in the 

literature because after the harvest there is not a ground reaching opening in the canopy. 

Still, in this research it is known that a tree was harvested and it did not create a gap so it is 

interesting to try and detect the selectively logged affected area, even if the harvest did not 

create a “traditional” gap.  

The “Understory gap” has similarities with the “Shadowed gap” such as the increase in 

shadow after the tree removal. However, it is relevant to introduce this gap category 

separately from the “Shadowed gap” because of the secondary vegetation that is exposed 

after the harvest and not a clear shadowed area. With a visual assessment the logged area 

appears intact as nothing changed. However, the analysis showed that a subtle change in 

shadow occurred after the logging. Hence, the spectral characteristic that is used to detect 

the “Understory gap” is the shadow. Still, the term “Understory gap” is used in order to 
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underline that this change is very subtle and difficult to detect because spectrally the 

difference is very small.  

   
Figure 6. Example of gap types as they are visualized in the hyperspectral datasets The selected RGB 
composite corresponds to a wavelength of 665nm (red), 565nm (green), and 465nm (blue). “NPV-Soil 
gap” (left), “Shadowed gap” (middle), and “Understory gap” (right) 

 

3.2 Method for spectral characterization of canopy gaps (RQ1)  
To answer research question 1 the following steps were implemented (Figure 7). 

 

 

 
Figure 7. Workflow to derive the spectral characteristics of the gaps 

Visual identification using only the hyperspectral data was hard due to the small scale of the 

change. Comparing the pre and post-harvest DSM (Figure 8) and RGB datasets made the 

identification easier. After the visual detection, the logged area was delineated from the 

hyperspectral datasets using ENVI version 5.3 (Exelis Visual Information Solutions, Boulder, 

Colorado). The hyperspectral datasets were used for the delineation because the 

delineation of the  logged area using the RGB or DSM dataset would include details that in 

the lower resolution hyperspectral data will disappear. Furthermore, the hyperspectral 

dataset is the one that the spectral signature of the gap was extracted from so the 

delineation should be based in this dataset in order to include only the pixels that represent 

the gap area. After the delineation, the next step is to export the mean value of all the pixels 

contained in the gap area to an ASCII file. Finally, the files were imported into an Excel 

spreadsheet for plotting.  

Visual Identification of 
gap in RGB and DSM 

data 

Visual Identification of 
gap in Hyperspectral 

data 

Manual gap 
area 

delineation 

Spectral Signature 
exportation and 

plotting 
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Figure 8. DSM dataset used for visual gap identification, pre (left) and post-harvest 
(right) in Indonesia, plot 2. The red rectangle represents the delineated plot 

3.3 Method for radiometric detection of selective logging (RQ2) 
The steps followed in order to answer the second research question are presented in 

(Figure 9. Workflow developed to answer the second research question). A spectral 

unmixing approach was chosen for two reasons. Firstly, the method should be able to apply 

in high -very high spatial resolution (5m-10m) satellites. Even with 5m pixel size the 

satellite might not be able to “catch” the subtle changes the selective logging event created. 

A spectral unmixing approach should solve this problem and derive information in a sub-

pixel level. Secondly, the UAV data have high spectral resolution which is an advantage for 

spectral unmixing algorithms because the detailed spectral signature curve helps to 

distinguish between similar endmembers.  

 

 

 

                 

 

    

      

3.3.1 Image registration Workflow 

The accuracy of the GPS mounted on the UAV produced a spatial offset between the pre- 

and post-harvest data, implying that co-registration is needed before further analysis. The 

co-registration will make sure that the corresponding pixels represent the same object. The 

co-registration was performed using ENVI’s version 5.3 tool “Image registration workflow”. 

Image co-

registration  
Pre and post-harvest 

image alignment   

SMACC endmember 

derivation for pre and 

post-harvest Data 

  Endmember’s 
spectral signature 

evaluation 

Compute pre and post-
harvest endmember 

abundance difference  

Detect and 

delineate the 

gap  

     Figure 9. Workflow developed to answer the second research question 
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The pre-harvest dataset was used as a base image and the post-harvest as a warp image.  

Seed tie points were provided by the user in order to improve the accuracy of the 

automated tie point generation. The tie points were used by the algorithm to compute the 

parameters of the geometric transformation between the two datasets. The tie points are 

also used by the algorithm to align and resample the warp image in a way that matches the 

base image. Cross correlation was used as a matching method for the automated tie point 

generation because both the images were optical images. The minimum matching score 

which filters tie points based on a radiometric criterion was set at 0.7. This value is a 

fraction and it means that the matching window around the tie point in the warp image 

scored at least 0.7 when cross-correlated with the corresponding tie point of the base 

image. The “Fitting Global Transform” with a first-order polynomial transform was chosen 

as the geometric model and the maximum allowable error per tie point set at 0.5. This value 

represents the maximum error distance from the predicted tie point location. So, if the tie 

point exceeds this value then it’s been omitted. Finally, the polynomial equation was chosen 

as warping parameter and nearest neighbor as resampling method. 

3.3.2 Alignment of pre and post-harvest datasets 

A necessary step before the analysis is to spatially align the images in a way that the extent 

of the pre and post-harvest datasets match. After the co-registration the two images still 

differ in extent and the pixels are not perfectly aligned. If they are not aligned then the 

comparison by subtraction will not be possible. The alignment forces the pixels of the two 

datasets to fall on top of each other. To do that an R script was used. The script is provided 

in Appendix A. The aligned datasets exported in a GeoTIFF format and loaded in ENVI 

version 5.3 where then the format changed into ENVI file format. 

3.3.3 Spectral Unmixing using SMACC algorithm 

The Sequential Maximum Angle Convex Cone (SMACC) is an automated endmember 

extraction method which can also derive each endmember’s abundance in an image. 

Endmembers are spectral signatures that represent surface materials. The algorithm, finds 

the brightest pixel and then the pixel that is most different from the brightest. After, it 

searches for the pixel that is most different from the first two. This procedure continues 

until it finds the specified number of endmembers or find a pixel that already have been 

accounted for in the team of the previous pixels. A detailed explanation about the algorithm 

can be found in the paper of Gruninger et al. (2004). 
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For the scope of this research, 3 endmembers were defined: Vegetation, Shadow and 

Endmember 3. The Endmember 3 depending on the plot was either a mixture of NPV-Soil or 

vegetation that was differentiating from the dominant vegetation endmember. This 

approach was selected because at some plots the algorithm for the selected parameters 

could not distinguish an endmember for NPV-Soil but it could differentiate between 

different vegetation spectral signatures.  The sum to unity constraint which is a constraint 

that dictates the sum of the fraction in a pixel to be 1 was chosen. According to the 

software’s help documentation, this constraint is suggested when dark endmembers like 

shadow will included in the unmixing process. Finally, the RMS error tolerance was set at 

0.2. 

3.3.4 Endmember Assessment 

As it was mentioned in the section 3.3.3, SMACC is an automated endmember detection and 

unmixing algorithm which means that it cannot receive spectral signature as endmember 

input in order to solve the unmixing equation. It is important to assess the derived 

endmembers in order to understand and be sure of what is the unmixing result. The 

resulted endmembers were exported to an excel file and plotted as a wavelength function. 

They were assessed plotting them with the observed spectral signatures. Moreover, a 

comparison between the pre and post-harvest endmember extraction is important in order 

to see if the viewing conditions and the co-registration errors introduced dissimilarity in 

the endmember definition.  

3.3.5 Detection of the gap areas 

The pre and post-harvest abundance maps were loaded in ENVI version 5.3 using single 

endmember abundance as gray scale. By plotting the dominant endmember, the gap type is 

differentiated. If the type is “Shadowed gap” then the endmember dominant in the gap area 

is the shadow endmember. For “NPV-Soil gap” the NPV-Soil endmember is the most present. 

In the case of the “Understory gap” the shadow endmember depicts the best the disturbance 

of the harvest. The vegetation that is exposed after the harvest is not spectrally varying 

significantly from the vegetation in the pre-harvest dataset. However, the green vegetation 

remainder in the gap generally belongs to the sub-canopy layers which have lower height 

than the surrounding main canopy, and then the former gets shadowed by the latter. 

Therefore, a small increase in the shadow endmember was observed.  

Using “band math” in ENVI version 5.3, the pre-harvest dataset was subtracted from the 

post-harvest dataset. This resulted in pixels with high value where the endmember 
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abundance is increasing and pixels with low value where the endmember abundance is 

decreasing. After the logging event it was expected to observe an increase in the 

corresponding endmember in the area where the main tree was removed. The areas that 

appear with higher value in the endmember abundance difference map should reveal the 

location that is affected by the logging event. Therefore, the gap is detected by the pixels 

that showing large change in the endmember difference map. These pixels show a big 

contrast and this contrast indicates change between the pre and post-harvest datasets and 

therefore could be used for delineating the affected area.  

3.4 Method to derive detectability of the canopy gaps (RQ3) 
The last research question is about the spatial resolution requirements of a sensor in order 

to detect the logging gaps. A detectability analysis was performed for providing the 

maximum pixel size and the sub-pixel area that should be covered by the gap area in order 

to be detectable. The steps to answer this question are presented in Figure 10. 

 

 

         

 

         

3.4.1 Digitization of the affected area  

Manual digitization of the gap was used to determine which pixels were included in the 

affected area. The high value pixels that revealed the logging area were included in the 

digitizing process. A vector layer was created and then transformed into a Region Of 

Interest (ROI) providing statistics like the mean value of the endmember difference and the 

number of the pixels that form the ROI.  

3.4.2 Growing Pixel 

To analyze the sub-pixel approach, a 1x1 meter pixel was placed manually in the affected 

area. The pixel was growing by approximately 40x40cm until it reached the borders of the 

difference dataset. The mean value of each pixel was extracted from the difference dataset. 

This technique allowed to explore how the endmember difference in the affected area was 

decreasing as the pixel was growing, including areas where change did not occur. Figure 11 

demonstrates how the growing pixel expanded in plot 8 in Guyana. Similarly, the same 

method used for the other plots. 

Digitization 
of the gap 

Growing pixel 

Intersect affected 
area with the 

growing pixels 

Detectability over a 
growing pixel size 

Define acceptable S/N 
for detection 

Threshold for maximum pixel 
size and minimum sub-pixel 

gap area 

Figure 10. Workflow developed to answer the third research question 
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Figure 11. Growing pixel used to extract in this case the mean shadow abundance difference, Guyana 
plot 8. The black polygon represents the digitized affected area. 

3.4.3 Fraction of total pixel area covered by gap area 

To find out how much pixel area is covered by gap area, each one of the growing squares 

was intersected with the gap area. The sub-pixel fraction covered by gap area was 

calculated dividing the amount of gap pixels by the total amount of pixels for each growing 

pixel (Figure 12). The gap pixels where calculated intersecting the delineated area with the 

growing pixel. The number of the intersected pixels was exported to an Excel spreadsheet 

and the sub-pixel gap area percentage was calculated.  

 

Figure 12. Intersection between the delineated affected area and the growing squares. 
Guyana plot 6. 
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3.4.4 Noise quantification 

The different illumination (solar angle and viewing conditions) between the two flights and 

the co-registration inaccuracies introduce incoherency in the pre and post-harvest 

abundance maps. In the derived abundance maps, changes where the logging did not affect 

the area can be spotted. This incoherency hereinafter is going to be referred as noise. To 

quantify the noise, in each plot a sample of 15 circles of around 4 meter radius was taken 

excluding the area where the logging event affected the canopy (Figure 13).  

 

Figure 13. Circles constructed in order to calculate the noise, Guyana plot 8 

For the unaffected pixels, it is expected that the endmember fraction should be the same 

between the pre- and post-harvest datasets. Therefore, the difference between them is 

indicating the noise level. The mean value of the circles for the corresponding endmember 

for both pre and post-harvest datasets and their difference was calculated. Below, a detailed 

explanation of the noise calculation is presented. 

The observation can be written mathematically as: 

SFobs = SFreal ± σSF 

Where: 

SFobs = the measurement 

SFreal = the noiseless/errorless observation 

σSF = the noise 
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The noiseless endmember fraction value SFreal is not known and cannot be calculated 

because there is always some noise in the measurements. What is possible to calculate is a 

noise estimation. To do that, the first step is to calculate the pre and post-harvest residual 

for each circle. 

RES = SFpost - SFpre 

 If the method was insensitive to illumination conditions the residual should be always 0. 

This means that the real value of the residuals is 0 for all the circles. The Root Mean Square 

Error (RMSE) of the residuals can be calculated and quantify the noise of the residuals. 

RMSE = √
 𝛴(𝑅𝐸𝑆)2

𝑛
    

Where: 

n = the number of the observations    

σRES =RMSE (RES, 0) 

Where: 

σRES = Root mean square error of the residuals 

To express the relationship between the noise of the residuals and the noise of the 

observation, error propagation was used. 

σ2RES = (
𝑅𝐸𝑆

𝑆𝐹𝑝𝑟𝑒
)

2
 σ2SFpre  + (

𝑅𝐸𝑆

𝑆𝐹𝑝𝑜𝑠𝑡
)

2
 σ2SFpost  

The partial derivatives are solved: 

𝑅𝐸𝑆

𝑆𝐹𝑝𝑟𝑒
 = -1,  

𝑅𝐸𝑆

𝑆𝐹𝑝𝑜𝑠𝑡
 = 1 

Assumption that the pre and post observations have the same noise: 

σSF = σSFpre = σSFpost  

Making the relation: 
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σ2RES = 2σ2SF  

The noise in the endmember abundance observations can be calculated as: 

σSF = 
𝜎𝑅𝐸𝑆

√2
                 

3.4.5 Calculation of Signal to Noise Ratio (SNR) 

In this thesis research, signal was defined as the change in endmember abundance between 

pre and post-harvest datasets where logging occurred. Large abundance difference in the 

logged area indicates large dissimilarity between the pre and post-harvest datasets hence 

high signal. Noise is considered as the difference on the pixel values between the two flights 

in areas where logging did not occur and is calculated as it was described in the section 

3.4.4. A signal 10 times greater than the noise was set as the threshold for considering 

reliable change detection.  

3.4.6 Maximum pixel size and minimum sub-pixel gap area 

To define the maximum pixel size and the minimum sub-pixel gap area that is detectable for 

the specific gaps that observed in this research, a threshold of detection is important. This 

threshold is deriving from the average SNR of each image. This means that the required 

square (pixel) size will be chosen as the one that includes enough endmember abundance 

difference (10 times larger than the noise level) to reliably detect the change. 

Chapter 4: Results 
 

A Shadowed gap type was created after the selective logging event in all the plots except 

plot 8 and 11 in Indonesia where an “Understory gap” and a “NPV-Soil gap” were created 

respectively.  

4.1 Spectral characteristics of forest canopy gaps caused by selective 

logging (RQ1). 
Three types of gaps were distinguished according to their optical properties (spectral 

signature). Figure 14 presents each gap’s spectral signature. The vegetation’s spectral 

signature is included as a reference. 

1. The “Understory gap” shows a vegetation curve, with chlorophyll absorption at 500 

and 650nm and high reflectance in the near-infrared bands.  
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2. The “NPV-Soil gap” shows less absorbance at the 500 and 650nm which indicates 

less chlorophyll. Moreover, at the near-infrared part of the spectrum their 

reflectance is not rising as steeply as for the Understory gap signature. However, 

this increase in the red-edge is indicating the presence of organic matter.  

3. The “Shadowed gap” reflects the least, representing the dark pixels with a small 

increase in the near-infrared indicating that the shadowed pixels contain 

chlorophyll. Moreover, when the light “hits” the vegetation, scatters in multiple 

directions. The diffuse light which also scatters in the shadowed areas adds to the 

small increase that can be observed in the near-infrared region. 

 
Figure 14. Spectral signature of each gap type. The vegetation spectral signature is 
provided as reference. 

 

Figure 15 shows how the gap types appear in an RGB photo. These images are taken 

before and after the harvest of the main tree. The red rectangle represents the 

delineated plot and the red arrow point to the location where the main tree was 

harvested. The “Understory gap” shows no remarkable difference after the tree removal. 

When the main tree was removed the secondary vegetation was exposed. This explains 

why the spectral signature of the “Understory gap” is not differentiating much from the 

green vegetation spectral signature. The “NPV-Soil gap” is visibly identifiable as a 

mixture of NPV, Soil and Green Vegetation (GV). Finally, the “Shadowed gap”, appears as 

a dark area where it is not possible to clearly distinguish what is lying beneath the 

shadow.  
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Figure 15. RGB photos demonstrating the gap types that can be distinguished in the study areas. A) 
“Understory gap” in Indonesia plot 8, B) “NPV-Soil gap” in Indonesia plot 11, and C) “Shadowed gap” in 
Indonesia plot 2. In the pre-harvest (left) and post-harvest (right) RGB images the arrows point the 
location of the main tree (pre) and the affected area (post). 
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4.2 Radiometric detection of selectively logged canopy gaps using bi-

temporal hyperspectral data (RQ2). 
In order to illustrate the use of endmember abundance maps for detection of canopy gaps 

Figure 16 is provided. The figure depicts the pre- and post-harvest abundance maps for Plot 

2 in Indonesia. Each color has 0 as a minimum value and 1 as a maximum. An endmember 

with high abundance will appear with an intense and clear color. The abundance of each 

endmember in a pixel is represented by a fraction. In each pixel the sum of all the 

endmembers will yield 1. The yellow ellipses are placed to point out the location of the 

logging. In this case, the main tree which was set to fall in northeast direction, took down 

the neighbor tree also. The logging created a “Shadowed gap” as it can be seen in the post-

harvest abundance map where an increase in red color is observed. Examining the pre and 

post-harvest abundance maps it’s clear that dissimilarities other than the tree harvest are 

present. The dissimilarities could be attributed to the differences in viewing conditions and 

the co-registration process. To avoid repetition, the abundance maps from the rest of the 

plots are included in Appendix B.  

 

  

Figure 16. pre (left) and post-harvest (right) abundance maps of Indonesia plot 2. The red color 
represents the shadow endmember, the green color represents the vegetation endmember and the 
blue color represents the NPV-Soil endmember. The yellow ellipses indicate the location of the 
logging. 
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4.2.1 “Shadowed gap” detection 

In 5 out of the 7 plots studied a “Shadowed gap” type was detected. To illustrate this type of 

gap detection Figure 17 presents the results of the shadow endmember abundance 

subtraction for plot 2 in Indonesia. Yellow (increase) and dark blue (decrease) areas 

indicate change in the endmember abundance in the post-harvest flight. The black polygon 

specifies the area affected by the logging event. The differences in the endmember 

abundance where the selective logging did not affect the area are considered as noise. This 

noise could be attributed to the illumination and viewing conditions (Error! Reference 

source not found.) between the flights, and the co-registration inaccuracies. The large 

abundance difference around the borders of the datasets can be explained due to the 

different spatial overlap and the masking that was applied in order to match the borders of 

the pre and post-harvest datasets. In this plot, after the removal of the main tree, a 

“Shadowed gap” was created. The area that was affected appears with higher pixel values 

meaning that the shadow abundance was increased. In the other 4 plots where a “Shadowed 

gap” occurred, similar high pixel value areas were detected after the subtraction of the pre 

and post-harvest shadow abundance maps (Appendix B). The rest of the “Shadowed gaps” 

showed a similar shape. The common characteristic was that the disturbance was creating a 

gap across the delineated plot, following the direction of the fallen tree.  

 

Figure 17. Shadow endmember subtraction between pre- and post-harvest datasets. The 
black polygon was delineated via the endmember subtraction and indicates the area that 
was affected after the logging event in Indonesia plot 2 
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4.2.2 “Understory gap” detection 

In plot 8 in Indonesia an “Understory gap” was created (Figure 15). In this case, after the 

tree was harvested the secondary vegetation was exposed. The shadow abundance was 

increased also, but the increase was subtle. Still, the shadow abundance difference is 

pointing out the affected area. The difference is small because as the tree was falling it did 

not destroy the surrounding canopy vegetation but rather expose it. To detect that subtle 

change, a prior knowledge of the logged area was of great assistance. Radiometrically there 

is a very small difference in the logged area’s averaged spectral characteristics (Figure 18). 

This figure shows the delineated affected area which was derived by the subtraction of the 

two shadow endmember abundance maps and how the average spectral signature reacts to 

the change. It appears that the logged area reflects more in the NIR part of the spectrum 

before the harvest of the main tree. 

 

  

 
Figure 18. pre and post-harvest spectral signature of the logged area. The 
affected area is indicated by the red polygon. The wavelengths chosen for the 
RGB visualization is 665nm (red), 565nm (green), and 465nm (blue). 

 

Subtracting the shadow abundance datasets revealed a small increase in shadow abundance 

after the logging event (Figure 19). The shadow abundance increase which in this case is 
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subtle shows that the “Understory gap” is similar to the “Shadowed gap” in terms of shadow 

increase. However, the “Understory gap” exposes vegetation and therefore the shadow 

increase is considerably less than the increase that has been visually detected in the 

“Shadowed gap” RGB image (Figure 15)Figure 15. RGB photos demonstrating the gap types 

that can be distinguished in the study areas. A) “Understory gap” in Indonesia plot 8, B) 

“NPV-Soil gap” in Indonesia plot 11, and C) “Shadowed gap” in Indonesia plot 2. In the pre-

harvest (left) and post-harvest (right) RGB images the arrows point the location of the main 

tree (pre) and the affected area (post). This result agrees with Figure 18 which shows the 

pre-logged area to reflect more than the post-logged area. 

 

Figure 19. Shadow endmember subtraction dataset. The black polygon indicates the area that was 
affected after the logging event in Indonesia plot 8. 
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4.2.3 “NPV-Soil gap” detection 

In plot 11 in Indonesia an “NPV-Soil gap” the NPV-Soil endmember was used for the 

subtraction. In Figure 20 the subtraction between the pre and post-harvest abundance 

maps is presented. Like the previous gap types, the affected area appears bright. The pixels 

with high value indicate the location where the NPV-Soil endmember increased after the 

logging event. The black polygon delineates the area that the tree landed creating an “NPV-

Soil gap”. 

 

Figure 20. NPV-Soil endmember subtraction dataset. The black polygon indicate the 
area that was affected after the logging event in Indonesia plot 11. 
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4.3 How big should the pixel size be and how much sub-pixel area 

should the gap cover in order to detect it (RQ3)? 
Following the steps described in the methodology chapter, the relationship between the 

endmember fraction difference and the sub-pixel area that the gap covers is illustrated in 

Figure 21. This figure includes all the plots where a gap was created after the tree harvest.  

It can be seen that as the sub-pixel gap cover is decreasing, the difference in the endmember 

abundance is also decreasing. This happens because the pixel encloses areas without 

change (except noise) meaning that the difference in the endmember abundance is fading.  

 
Figure 21. Graph demonstrating how the detectability of the each gap is decreasing as the sub-pixel 
gap cover is decreasing 

Figure 22 shows how big the pixel should be in order to reliably detect a shadowed gap. The 

noise was averaged using all the plots available (7). The Δ-shadow-abundance values were 

averaged over the 5 plots values in order to combine the information of the different plots 

where a “Shadowed gap” was created. The average noise was calculated to 2.56% ranging 

from 0.9-4.6%. The averaged noise gives an indication about the signal needed for reliable 

detection. As it was stated in the methodology chapter, a SNR ten times greater than the 

noise was set as reliable detection. This means 25.6% of endmember abundance difference 

is the threshold for a reliable detection. This threshold translates in at least a 9.3x9.3 m2 

pixel size in order to detect shadowed gaps. However, in Figure 22 the upper and lower 

limits (black dotted lines) show that the 9.3x9.3 m2 pixel size cannot be used to detect all 5 

“Shadowed gaps”. The range of the limits is between 6x6 m2 and 13.3x13.3 m2 pixel sizes.  



 

28 
 

 
Figure 22. Relationship between averaged Δ-Shadow and pixel size (blue line). The dotted black 
lines represent the max and min values of the averaged Δ-Shadow curve. The X axis value 
corresponding to the intersection (orange dot) between the green line (acceptable signal for 
reliable detection) and blue line provides the required pixel size for reliable shadowed gap 
detection.  

4.3.1 NPV-Soil Gap 

This type of gap occurred in plot 11 in Indonesia where after the removal of the valuable 

tree, an area with Soil-NPV and Vegetation in the form of broken leafed branches was 

created (Figure 23).  

 
Figure 23. Indonesia plot 11, Soil-NPV gap indicated by the red 
ellipse. RGB photo from the post-harvest UAV flight 

9.3x9.3 m2 
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Like the shadowed gap, the “NPV-Soil gap” in Indonesia plot 11 shows similar behavior 

when the NPV-Soil difference is plotted against the pixel size (Figure 24). As the pixel size is 

growing, the difference is decreasing. Applying the same average noise level (2.56%) and 

the reliable SNR (x10) provided an acceptable signal (endmember abundance difference) of 

25.6%, and therefore the required pixel size for a reliable detection is equal or larger than 

7x7 m2. 

 
Figure 24. Relationship between Δ-NPV-Soil and pixel size. The intersection between the green and blue line 
represent the required pixel size for NPV-Soil gap detection 

4.3.2 Understory Gap 

Figure 25 shows the relationship between the shadow abundance difference and the pixel 

size for the plot with an Understory gap type (Indonesia Plot 8). Similarly with the other gap 

types, as the sampling pixel is growing the shadow abundance difference is decreasing 

(including more unaffected pixels). Applying the acceptable SNR and using averaged noise, 

the threshold of reliable detection was set at 25.6%. This translates to a pixel size of 1x1 m2. 

This is the smallest required pixel for detection across the three gap types. This is 

happening because the disturbance was very subtle. Almost did not exceed the detection 

threshold. 

 

7x7 m2 
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Figure 25. Relationship between shadow difference and pixel size. The intersection between the green 
and blue line represent the required pixel size for detection 

4.3.3 Overview 

Table 3 gives an overview of the results of research question 3. The table includes the sub-

pixel area (%) that a gap should cover in order to be detectable, the corresponding pixel 

size (m2) and the average noise (%). 

In the plots that contained a shadowed gap, the gap size is averaged to 189 m2. The 

averaged sub-pixel area that the gap covered was 68% and the corresponding pixel size for 

reliable detection was 9.3x9.3 m2. As it was stated in section 4.3 this pixel size might not be 

able to detect all the “Shadowed gaps”. This size is calculated by averaging 5 plots, with a 

lower limit of 6x6 m2 and an upper limit of 13.3x13.3 m2 pixel sizes.  

The NPV-Soil gap size was 79 m2. And the sub-pixel area that should be covered by gap area 

in order to be detected was 89% of the pixel which in this case corresponds to a pixel’s size 

of 7x7 m2. 

Finally, the “Understory gap” was the smallest with a size of 51 m2. This gap affected the less 

the neighbor vegetated areas resulting into the very high spatial resolution pixel size 

requirement of 1x1 m2 in order to be detected. Moreover, the pixel has to contain 100% of 

gap area to be detected. 

 

1x1 m2 
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Table 3. Overview of the results for each gap type 

 
Gap Type 

 
Plot 

Average Gap Size  
(m2) 

Maximum 
Pixel Size 

(m2) 

Average Sub-
pixel gap area 

(%) 

Average 
Noise  
(%) 

 
 

Shadow 

Indonesia 2 
Guyana 6 
Guyana 7 
Guyana 8 

Guyana 10 

 
 

189 

 
 

9.3x9.3 

 
 

68 

 
 
 

2.56 
 

NPV-Soil Indonesia 11 79 7x7 89 
Understory Indonesia 8 51 1x1 100 

 

Chapter 5: Discussion & Conclusions 
 

5.1 Discussion 

5.1.1 Spectral properties of canopy gaps, RQ1 

It is important to distinguish the gaps according to their spectral properties because if one 

is only looking to detect “NPV-Soil gaps” the results will underestimate the selective logging 

activity in the area. “Shadowed gap” or “Understory gap” type is a possibility when selective 

logging occurs. However, the gap types are strongly connected with the solar illumination 

angle and the gap’s structural characteristics (size, shape and height of remaining 

vegetation in relation to the surrounding canopy height). The solar angle causes certain 

areas to be illuminated or shaded (Koukoulas and Blackburn 2004). For example, an “NPV-

Soil gap” at 12:00 p.m. could be transformed in a “Shadowed gap” at 16:00 p.m. this means 

that the gaps that were studied in the scope of this research could reflect completely 

different if the images were acquired in different time of the day. This is not a problem for 

satellites that will acquire imagery always at the same time of the day. Nevertheless, 

integrating data between satellites that are not synchronized would be problematic. 

Moreover, due to the fast regrowth in the tropics an “NPV-Soil gap” could very fast be 

vegetated resulting in the decrease of the spectral difference (Miettinen et al., 2014) which 

is important in order to detect change when comparing data acquired in different instances. 

However, the cloudy atmospheric conditions that are very common in the tropical regions 

make the cloudless image acquisition very hard. 

5.1.2 Spectral unmixing for gap detection, RQ2 

The main issue with the detection of selective logging in other studies (Stone & Lefebvre 

1998, Asner et al., 2004 and Negron-Juarez et al. 2011) was the small scale of the logging 
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disturbance. In those studies, the disturbance was smaller than the pixel size and therefore 

a robust detection was not feasible. To counter this problem, sensors with higher spatial 

resolution and spectral unmixing analysis were used (Franke et al., 2012). In this thesis 

research the pixel size was not an issue, using a hyperspectral dataset with the spatial 

resolution to range in centimeters. Applying the SMACC spectral unmixing algorithm it was 

possible to derive abundance maps for the defined endmembers and detect the logged area. 

The endmembers were defined keeping in mind that the study areas consist of pure forest 

without man-made objects and therefore the endmembers would relate to expected 

spectral properties. Out of the three defined gap types (Shadow, NPV-Soil and Understory) 

the “Understory gap” was the most difficult to detect due to the low spectral difference 

between the pre- and post-harvest datasets. The low spectral difference can be attributed to 

the understory vegetation that was exposed after the selective logging. The understory 

vegetation does not provide a large spectral difference between the pre- and post-harvest 

datasets as the “Shadowed” and “NPV-Soil gap” types do. A small increase in the shadow 

abundance was the indication that there was a disturbance in the area. However, for all the 

gap types the noise that was introduced to the difference maps through the different 

illumination conditions (solar angle, viewing conditions) and the co-registration 

inaccuracies made the detection trickier as areas other than the logged ones would be 

wrongly detected as areas that change occurred. The noise could be reduced using a 

satellite that will fly over the same area at the same time eliminating the solar angle 

difference. Nevertheless, the spatial resolution should be high enough to detect the small 

scale selective logging. A limitation that the optical sensors cannot counter is the cloudy 

atmospheric conditions in the tropics (Mietinen et al., 2014). Even with a UAV that flies 

under the clouds, the shadowing effect that is introduced by the clouds cannot be 

eliminated. The cloudy conditions in combination with the fast regrowth of the logged areas 

are the reason why a dense multi-temporal image acquisition for monitoring the tropics is 

of great importance.  
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5.1.3 Detectability analysis, RQ3 

The detectability analysis showed that in order to detect selective logging using the 

difference of abundance maps, the pixel must contain a large part of the gap (Table 3).  

Taking into consideration the small scale of selective logging events, this implies that very-

high resolution sensors are needed in order a big part of the changed area will be included 

by the pixel. Table 3 shows that the averaged pixel size to detect a shadowed gap is 9.3x9.3 

m2 and the area that should be covered by the gap is 68%. However, these values are 

calculated averaging the size of the “Shadowed gaps” indicating that not all the “Shadowed 

gaps” will be detected by this pixel size. Moreover, to test the detectability, the center of the 

growing pixel was placed where the pixels appeared with higher value in the difference 

maps. In reality, the pixel is placed automatically according to the sensor’s technical 

characteristics. The issue that rises over that acknowledgement is that the 9.3x9.3 m2 will 

not derive the same results if the pixel will be placed in a slightly different position than the 

one tested in this research because the sub-pixel gap area cover will be lower. This means 

that the sub-pixel gap area might not be enough for detection for the proposed pixel size. 

Figure 26 gives an example of the random pixel placement issue. In the image that the pixels 

placed randomly (right), the sub-pixel gap area cover is smaller than the one with the 

manual placement (left). In this case the gap in the left image will be detected but in the 

right will not.  The black pixel in Figure 26 indicates that the gap should cover a larger sub-

pixel area. 

 

Figure 26. Example of the random placement issue. In the left image the pixel was placed manually and is including 
a big part of the gap. In the right image the pixels were placed randomly resulting in smaller sub-pixel gap area 
coverage. The yellow pixels in the right image demonstrate that if the 9.3x9.3 m2 is placed randomly it might not 
include enough gap area for detection. The black pixels indicate that in real life situations smaller pixel size than 
those in Table 3 are needed because in random placement the pixel might not include enough gap area for 
detection. 
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Franke et al., 2012 used RapidEye MSI to apply MTMF, a spectral unmixing algorithm to 

detect illegal selective logging. They stated that spaceborne sensors like QuickBird-2, 

WorldView2, SPOT-5 HRG, RapidEye MSI, GeoEye-1, IKONOS-2 MS, THEOS MS could in 

principle be used to monitor small scale forest disturbances due to their very-high spatial 

and temporal resolution. The proposed satellite sensors are ranging from 1.5m – 15m in 

spatial resolution. However the aforementioned research considered NPV and Soil as the 

only spectral signatures that indicates selective logging. 

 

5.2 Conclusions  
Small scale selective logging in the studied area created gaps with different spectral 

properties. This spectral variation should be taken into consideration when looking to 

detect selectively logged areas. Gaps other than “NPV-Soil” type can be created after small 

scale selective logging resulting in underestimation of the areas that are affected by 

selective logging. The gaps were categorized into three types according to their spectral 

properties. The “Shadowed gap”, the “NPV-Soil gap” and the “Understory gap”.  

Using high spatial and spectral resolution hyperspectral data it was possible to apply 

spectral unmixing using the SMACC algorithm and derive abundance maps for each 

endmember. Through a subtraction of the corresponding endmember (type of gap) for pre 

and post-harvest datasets it was feasible to detect areas that changed due to a selective 

logging event. In some occasions like the “Understory gap”, it was very hard to spot the gap. 

Noisy areas were also appearing with high value pixels making the detection uncertain. 

However, the RGB and DSM datasets were of great help to spot the changes. 

The detectability analysis showed that the detectability of the selective logging depends on 

many factors. The noise level is an important one defining the minimum detectable 

disturbance. Also the gap size, shape and other structural characteristics is relevant to the 

required pixel size. This indicates that as the gap size is growing, bigger pixels are suitable 

for detection. However, the detectability analysis showed that the gap area should cover at 

least 68% of the pixel area in order to be detected. This coverage percentage in combination 

with the observed small gap sizes, indicate that the pixel size should be small enough in 

order to include a big part of the gap. This leads to the conclusion that even with the SMACC 

sub-pixel approach; the gap area should cover a very big part of the pixel in order to be 

detected. 
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This research showed that a typical “Shadowed gap” size (averaged from 5 plots) is 189 m2. 

This corresponds to a minimum of 68% sub pixel gap coverage and a maximum of 9.3x9.3 

m2 pixel size requirement for detection. However these requirements are not 

representative for all the “Shadowed gaps” but only for the averaged “Shadowed gap” size. 

The “NPV-Soil gap” size was 79 m2 which corresponds to 89% minimum sub-pixel gap area 

and a 7x7 m2 maximum pixel size requirement for detection. Lastly, the “Understory gap” 

size was 51 m2 which corresponds to a full (100%) gap coverage by a 1x1 m2 pixel. 

Due to the pixel random placement issue, smaller pixel sizes than 9.3x9.3 m2, 7x7 m2 and 

1x1 m2 (depending on the gap type) are required in order to detect the gaps in this study. 

The detectability analysis showed that the “NPV-Soil gap” and “Shadowed gaps” could be 

detected using bigger pixels than the “Understory gap” where the pixel size should be much 

smaller. However the detection is very closely connected to the gap’s size. Even an 

“Understory gap” could be detected with a coarser spatial resolution if its size was big 

enough. More gap samples are needed in order to define a decisive pixel size for detection. 

Especially for the “NPV-Soil gap” and “Understory gap” types where only one sample was 

considered. However an indication of the gap sizes and types that one can meet in the 

tropics has been given alongside with the difficulties and the limitations of the small scale 

selective logging detection in the tropics. 
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Appendices 

Appendix A: R script to align the pre- and post-harvest datasets 
 

library (raster) #Install raster library 

library (rgdal) #Install rgdal library 

setwd ("C:/Guyana10/Original") #set working directory to the correct folder 

list.files() #Print the data names contained in the folder 

x.1<- 

brick("Pre_HyperspectralDatacube_FlightLine01_PixelSize=0.227m_DSM=Photogram

metric_FWHM=30nm.bsq") #load the pre-harvest dataset as raster brick 

setwd("C:/Guyana10/Warped")  

list.files() 

x.2 <- brick("Post_G10_Warped.dat") #load the post-harvest warped dataset as raster 

brick 

x.i <- intersect(extent(x.1), extent(x.2)) # find intersection of the pre- and post-

harvest extent 

r.i <- crop(x.1, x.i) # create intersect raster with required dimensions 

x.1.s <- crop(x.1, extent(r.i)) #crop pre-harvest dataset using the extent of the 

intersected raster 

extent(x.1.s) <- alignExtent(x.1.s, r.i)  #align the two rasters 

#same process for the post-harvest dataset 

x.2.s <- crop(x.2, extent(r.i)) 

extent(x.2.s) <- alignExtent(x.2.s, r.i) 

x.2.s[is.na(x.2.s)] <- 0 

setwd("C:/Guyana10/Rallign") 

#export rasters in GTiFF format 

writeRaster(x.1.s,filename = "Pre10.tif",format = "GTiff") 

writeRaster(x.2.s,filename = "Post10NONA.tif",format = "GTiff") 
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Appendix B: Abundance Maps 
This appendix includes the abundance maps as they were derived by the SMACC algorithm. 

Each color represents high endmember abundance. The scale of each endmember is ranging 

from 0 to 1. The shadow endmember is corresponding to green color, the vegetation 

endmember to red color and endmember 3 to blue color. Endmember 3, in Guyanese plots 

represent vegetation whereas in Indonesian plots represents a mixture of NPV and Soil.  
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Figure 27. Abundance maps derived from the SMACC algorithm. A) Indonesia plot 2 pre (left) and post-
harvest (right), B) Indonesia plot 8 pre (left) and post-harvest (right), C) Indonesia plot 11 pre (left) and 
post-harvest (right), D) Guyana plot 6 pre (left) and post-harvest (right), E) Guyana plot 7 pre (left) and 
post-harvest (right), F) Guyana plot 8 pre (left) and post-harvest (right), G) Guyana plot 10 pre (left) and 
post-harvest (right). Each color represents high endmember abundance. Green color corresponds to the 
shadow endmember, red corresponds to vegetation endmember and blue corresponds to endmember 3. 
Endmember 3, in the Indonesian plots 2, 8 and, 11 (A, B and, C) represents the NPV-Soil endmember 
whereas in the Guyanese plots 6, 7, 8 and, 10 (D, E, F and, G) represents a second vegetation endmember 
that was distinguished from the first one. The values for each endmember are ranging from 0 to 1. The 
endmembers in each pixel are summing up to 1. A endmember value of 0 means that the endmember has 
not been identified whereas a value of 1 means that the endmember is fully covering the pixel. 
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Appendix C-Difference Maps 
This appendix includes the difference maps derived by the subtraction of the dominant gap 

type endmember.  
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Figure 28. Difference maps of shadow endmember subtraction in Indonesia plot 2 (A), Shadow 
endmember subtraction in Indonesia plot 8 (B), NPV-Soil endmember subtraction in Indonesia plot 11 
(C), and Shadow endmember subtraction in Guyana plots 6, 7, 8, and 10 (D, E, F , and G). 
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