Comparison of in vitro digestion of infant formula with cow’s milk fat and vegetable fat

Jeske Hageman 1,2, Frédéric Carrière 3, Anouk Feitsma 2, Arie Nieuwenhuizen 1, Jaap Keijer 1

Background
Fat is an important nutrient in human milk and infant formulas (IFs). The current vegetable fat blend used in IF is tailored to the fatty acid composition of human milk. However, studies have shown that also structure, the position of fatty acids at the glycerol backbone, seems important for digestibility of fat 1-4. The fatty acids at the sn-2 position remain attached at the glycerol backbone, while those at the sn-1 and sn-3 position are released. It is known that there is a difference in triglyceride structure between vegetable and animal fat. There are indications that addition of cow’s milk fat to infant formula might be beneficial for digestibility 5.

Objective
The aim of this study was to investigate the digestion kinetics of infant formulas containing fat with different triglyceride structures.

Methods
The triglyceride structures of human milk, cow’s milk fat and a typical vegetable fat blend for infant formula were studied. Cow’s milk and human milk contain mostly long chain saturated fatty acids (C12:0, C14:0, C16:0, and C18:0) along with some unsaturated fatty acids at the sn-2 position. The triglycerides at the sn-1 and sn-3 position contain mostly unsaturated fatty acids (C18:1 and C18:2) at the sn-2 position.

Results
Sn-2 fatty acid composition
The triglyceride structure of human milk fat, cow’s milk fat, and a typical vegetable fat blend for infant formula were studied. Cow’s milk and human milk contain mostly long-chain saturated fatty acids (C12:0-C18:0) along with some unsaturated fatty acids at the sn-2 position, while vegetable fat contains mostly unsaturated fatty acids (C18:1 and C18:2) at the sn-2 position.

In vitro digestion
The three different IFs showed comparable rates of lipolysis, with similar kinetics. In the gastric phase only a small amount of fat was being digested, while in the intestinal phase the digestion proceeded quite rapidly.

Figure 1. Percentage of fatty acids present at the sn-2 position in triglycerides from human milk, cow’s milk fat, and a typical vegetable fat blend for infant formula

Figure 2. Lipolysis kinetics of the three different infant formula blends (presented as mean±SD)

The IF with standard fat blend (IF-1) released the highest percentage of long-chain saturated fatty acids (C12:0-C18:0). The IFs containing cow’s milk fat showed a higher release of short-chain fatty acids (C4:0-C5:0) and medium-chain fatty acids (C6:0-C10:0).

Figure 3. The free fatty acid pattern of the three different infant formula blends at the end of the in vitro digestion

Conclusions
Literature has shown that triglyceride structure influences lipid absorption. Replacing part of the vegetable fat blend by cow’s milk fat will help to optimize triglyceride structure, as shown in figure 1. According to this in vitro digestion model the addition of cow’s milk fat will not influence the speed of digestion. However, this is a static model and does not take into account dynamic aspects, like gastric emptying. The differences in free fatty acids observed at the end of the digestion could lead to differences in absorption and health effects in vivo. Previous studies show that long-chain saturated FFA are for example linked to the formation of calcium soaps and hard stools, while short- and medium-chain FFA are easily absorbable, and can deliver energy fast. Furthermore, some show pathogen reducing effects. Therefore, adding cow’s milk fat to standard vegetable fat blends could be beneficial for the infant.

Acknowledgements
We would like to thank Aarhus University, Department of Food Science for the GC-MS analyses.

References