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Introduction
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Human health is impacted by a complex network of interactions between biological path-

ways, mechanisms, processes, and organs. To maintain internal homeostasis, many of these 

processes need to act in a continuously changing environment in response to stimuli such 

as exercise, diet, infections, stress, and temperature (Figure 1). The ability to appropriately 

respond to changes in environment is referred to as ‘phenotypic flexibility’. Diseases develop 

when and where these adaptive processes fail [1].

Figure 1. Many disease onsets (outer circle) are related to lifestyle; however, the mechanisms of disease progression 

and the processes that maintain optimal health are different. This figure shows three crucial processes including the 

capacity to maintain flexibility in metabolic, oxidative, and inflammatory stress. Here, flexibility is considered as the 

capacity to maintain optimal homeostasis. CVD = Cardiovascular disease; IBD = inflammatory bowel disease; IR = 

insulin resistance; SOD = superoxide dismutase. (Reproduced from van Ommen B. and Wopereis, S) [1].

The metabolic phenotype provides a readout of the metabolic state of an individual and is 

a product of interactions between several factors such as genetics, diet, lifestyle, environment 

and gut microbiota [2, 3]. To maintain health, understanding these relationships will be one of 

a major challenges for the next decades. To address this challenge, system biology powered by 

genomics, proteomics, bioinformatics, and metabolomics is providing a novel methodological 

framework to unravel the connections between health states [1, 4, 5]. This concept is illustrat-

ed in Figure 2, which shows the application of high-throughput ‘omics’ techniques and elabo-
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rate statistical analyses tools to help resolve the complex relationship between (bio) chemicals 

in human systems and their interaction with other variables including environment /lifestyle 

to produce the measured phenotype [6]. 

Figure 2. A schematic overview of the complex interactions of functional levels including metabolome, proteome, 

transcriptome and genome in biological systems. In general, the phenotype is considered as a product of the 

complex interaction of components from all of the functional levels and environmental effects. (Reproduced from 

Dunn et al.) [7].

The question now is how to measure a subtle shift towards a healthy phenotype. As life-

style and diet induced effects are rather small, sensitive methods are needed to capture these 

slight changes. 

Currently, the biomarkers used in health care research are not based on optimal health 

maintenance but on quantifying disease [1]. Since optimal health is not simply the absence 

of disease, and since the underlying biology of health and disease may be fundamentally dif-

ferent, a new generation of biomarkers is needed to quantify all aspects of systems flexibility, 

with the aim of bringing more insight into the lifestyle factor that promote health optimiza-

tion [1].

In this thesis I describe two ways to monitor phenotype shifts; either by looking directly 

into the baseline metabolome of tissues or by looking at the ability to restore metabolic ho-

meostasis in blood upon a dietary challenge. Both metabolomics and transcriptomics will be 

deployed to get a comprehensive view on the metabolic phenotype.
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Phenotyping via snapshot measurements in organs
Most studies that aim to assess a metabolic phenotype rely on circulating biofluids such 

as blood and urine [8, 9]. Such body fluids can be obtained in a straightforward manner from 

volunteers and are considered to mirror the metabolic events that occur in organs. It should 

be noted, however, that tissues and organs might be more sensitive to report on the metabolic 

phenotype as each organ has strikingly different metabolic patterns [10]. 

Figure 3. Schematic depiction of the metabolic control mechanisms that define (A) the catabolic (fasting) state and 

(B) the anabolic (postprandial) state. Metabolically active tissues have been indicated that predominantly define the 

metabolic phenotype (muscle, liver, adipose) (Reproduced from van Ommen et al. 2014)[11].

Although metabolism for a major part takes place in liver, muscle and adipose tissue (Fig-

ure 3), only few human studies have considered these tissues for defining metabolic pheno-

types [12-15]. Skeletal muscle is an interesting organ to study phenotypic shifts as the phe-

notype can be altered through exercise and nutrition. Current insights are mostly based on 

animal studies [16, 17]. The few metabolic studies that involve human muscle biopsies are 

mostly related to a few metabolites or to specific metabolite classes [14, 15]. Therefore, a com-

prehensive view of the effects on various stimuli on the muscle metabolome is still lacking.

Phenotyping via challenge responses
Phenotypic flexibility is a key factor in the relationship between human health and nutri-



I n t r o d u c t I o n 

13

1
tion and points to the concept of the human body as an orchestrated machinery that adapts to 

external stimuli [11]. Considering ‘health’ as the ability to cope with daily challenges [18], cur-

rent approaches focusing on disease risk biomarkers are not sufficiently sensitive to detect the 

effects of lifestyle factors (including exercise training and nutritional interventions), which in 

general aim to improve and sustain health. Instead, one would like to design new biomarkers 

that tell something about the resilience capacity of an organism, which may be achieved by 

studying the response to specific perturbing stimuli.

In recent years, the application of meal challenges to detect subtle difference in metabolic 

resilience has gained much interest in the nutrition field [19-21]. The best known example is 

the Oral Glucose Tolerance Test (OGTT), which specifically probes the resilience of glucose 

metabolism [22]. In addition, a so called mixed meal challenge—involving a standardized 

meal comprising protein, lipids and glucose— has been employed to more broadly target phe-

notypic flexibility in multiple organs [23]. Consistent with this notion, it was shown that the 

application of a mixed meal challenge in combination with plasma metabolomics and pro-

teomics profiling revealed additional metabolic changes beyond what was observed under 

non-perturbed conditions [24]. 

Similarly, by applying a highly controlled 4 day challenge protocol—which included 36 h 

fasting, Oral Glucose and Lipid Tests (OGTTs & OLTTs), liquid test meals, physical exercise, and 

cold stress—to young healthy male subjects, inter-individual variation was increased even in 

phenotypically similar subjects. Specifically, the challenges enabled the identification of spe-

cific metabotypes that were not observable in baseline metabolite profiles [25]. These findings 

have provided detailed information on the complex metabolic changes induced by OGTTs/

OLTTs and have given novel insights into the regulation of glucose and lipid metabolism. In 

this study, we examined whether a response to a mixed-meal challenge could provide readout 

for a shift in phenotypic flexibility upon diet-induced weight loss in abdominally obese male 

subjects.

Metabolomics 
Metabolomics is the ‘systematic study of the unique chemical fingerprints which specif-

ic cellular processes leave behind’, this pertains in particular to the scientific study of their 

small-molecule metabolite profiles [26]. As the end products of cellular processes, the metab-

olome represents the collection of all metabolites in a biological cell, tissue, organ or organ-

ism [27].In recent years, several strategies to identify and quantify multiple metabolites us-

ing sophisticated analytical technologies have emerged. As a direct functional readout of the 

physiological state of an organism, ‘metabolomics’, is considered to ‘act as spoken language, 
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broadcasting signals from the genetic architecture and the environment’ [28, 29].

 A range of analytical technologies including mass spectrometry, liquid or gas chromatog-

raphy and NMR has been employed to analyse metabolites in different organisms, tissues, 

and fluids. Complementary approaches have to be established to extract, detect, quantify, and 

identify as many metabolites as possible [30].

Metabolite levels are closely linked to the phenotype of an organism. Accordingly, metab-

olomics can be considered as bridging the gap between genotype and phenotype [31], pro-

viding a more complete view of how cells function, as well as identifying novel or striking 

changes in specific metabolites. In particular, studying tissue-derived metabolite profiles is 

probably the closest way to get to the phenotype, yet it is not a well-developed technology. A 

major bottleneck to achieve extended coverage is the limited amount of tissue that can be ob-

tained from human studies. The recent development of a comprehensive targeted metabolic 

profiling platform which was optimized and validated for small muscle biopsies paved the 

way to unravel the observed phenotypical differences at a more comprehensive level [32]. 

In this thesis we covered several metabolite classes including amines, acylcarnitines, organic 

acids, oxylipins and nucleotides. Our hypothesis was to study phenotypic shifts at not only the 

single metabolite level but also at the level of related pathway (Table 1). 

Table 1. Metabolites classes measured in this thesis
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Table 1.Metabolites classes measured in this thesis 

Metabolite  classes   Platform  Relevant pathways per platform  

Amino acids  
& Biogenic 
amines 

Accq-Tag UPLC-MS/MS 
(33) 

& NMR (34) 

Stimulate protein synthesis, Muscle recovery from 
exercise 
 

Acylcarnitines Accq-Tag UPLC-MS/MS 
(33) 

Mitochondrial transport of fatty and amino acids  

Organic acids GCMS (35) TCA cycle, Carbohydrate metabolism and Fatty 
acid oxidation  
 

Oxylipins LCMS (36) Changes in inflammatory lipid metabolism 

Nucleotides Enzymatic assays (32) Energy metabolism 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Transcriptomics 

Transcriptomics uses high-throughput genomic methods, such as microarray analysis 

or RNA sequencing, to assess the expression of thousands of genes. Knowing the pattern of 

gene expression at a given time allows the identification of gene sets that are differentially ex-

pressed in response to challenge/intervention. In this way, it can be used to get more insights 

into the genome-wide effects of a specific stimulus, which in turn can help us to discover the 

effects of regulatory pathways involved in transcriptional regulation.
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In relation to human health, transcriptomics has already proven to be extremely valu-

able to distinguish not only a pathological state from a non-pathological state, but it can also 

show more detailed patterns that reflect different stages of a specific disease progression [37, 

38]. Hence, it can be also useful to study shifts in phenotype following specific challenges/

interventions. By integrating the knowledge derived from transcriptomics, genetics and other 

available tools, our understanding of the phenotype flexibility is expected to greatly improve. 

Gene expression studies can be performed both by directly looking into organ-specific gene 

expression or by looking at peripheral blood mononuclear cells (PBMC’s). The suitability of 

PBMCs for gene profiling is related to their active metabolism [39] and their accessibility by 

simple venipuncture [40, 41], thereby allowing for a repeated time-series analysis of changes 

in gene expression in response to dietary interventions. Still, it should be considered that while 

transcriptomic profiling of organs allows a direct view of gene expression in the tissue of in-

terest, PBMC’s are used as proxies for systemic effects. Importantly, a study by Rudkowska et 

al. supports the use of PBMCs as a surrogate model for skeletal muscle gene expression in nu-

trigenomics studies, as shown by the strong correlation (r=0.84, P<0.0001) between transcript 

expression levels of PBMCs and skeletal muscle tissue after n-3 PUFA supplementation [42].

Model populations for observing phenotype shifts

Frail and healthy elderly subjects: effect of prolonged training 

Populations around the world are aging rapidly. This trend is likely to increase further 

over the next few decades [43]. Due to the association of senescence with a wide range of 

diseases, there is an increase in demand for care at this stage of life. One of the major age-re-

lated functional declines is characterized by loss of skeletal muscle mass and function, often 

resulting in frailty. Physical activity is one of the most effective strategies to improve muscle 

mass and strength in adults [44, 45]. Different claims exist about the effectiveness of resis-

tance-type exercise to overcome muscle loss and weakness in older adults, including its ability 

to improve quality of life [46], and even reversing aging in skeletal muscle [47]. In order to 

elucidate the complex processes that occur in ageing skeletal muscle, we assessed the effect 

of prolonged resistance-type exercise training in skeletal muscle of older subjects to examine 

the possible shift from an older to younger phenotype. Looking directly into muscle gene /

metabolite profiles, we expect to gain more insight into muscle health-related factors as well 

as into the potential underlying molecular mechanisms.
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Obese subjects: effect of weight loss 

The importance of maintaining metabolic flexibility as a key factor to maintain optimal 

health calls for new research on the relationship between nutrition and health. An important 

aspect of phenotypic flexibility is the capacity to switch from carbohydrate to fat oxidation 

and vice-versa in response to certain external stimuli, which is considered crucial for optimal 

metabolic homeostasis. This capacity is in particular compromised in the obese state. As is 

shown in Figure 4, there is an association between the obese, insulin resistant, and T2D phe-

notype, as shown by an impaired fat oxidation during fasting and an impaired switch from fat 

oxidation to the glucose oxidation after a meal [48] or after insulin stimulation [49]. Based on 

these considerations, we expect an improvement in the metabolic response in obese subjects 

after weight loss (following 4 weeks of low calorie diet). Therefore, we examined whether the 

response to a mixed meal challenge could serve as a readout for a shift in phenotypic flexibil-

ity upon weight loss in obese subjects.

Figure 4. An overview of the post absorptive and postprandial adaptations in skeletal muscle substrate oxidation. 

A low respiratory quotient (RQ) indicates a relatively high fat oxidation and vice versa. The closed line represents a 

normal, healthy individual; the dotted line represents metabolic inflexibility (Reproduced from Corpeleijn et al. [50]).

Objective and outline of this thesis
In this thesis, I aim to track shifts in metabolic phenotype through two different approach-

es. First, I investigated whether prolonged resistance-type exercise training could shift the 

elderly phenotype toward a young phenotype, representing a more healthy status (Chapter 2 

and 3). To that end, I used an organ specific approach focused on skeletal muscle tissue. The 

major aim was to better understand the molecular characteristics of the frailty phenotype (as 
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an advanced stage of ageing) by evaluating the gene expression and metabolite profile in skel-

etal muscle of frail older, healthy older, and young subjects. Moreover, I aimed to specify the 

effect of resistance-type exercise training on the skeletal muscle transcriptome/metabolome 

in older people.

In Chapter 4 and 5 of this thesis I examined whether a mixed meal challenge response 

could provide an appropriate readout for a shift in phenotypical flexibility upon weight loss 

in obese male subjects. We combined metabolic profiling and whole genome gene expression 

in PBMCs to comprehensively capture the metabolic mechanisms that underlie phenotypic 

flexibility. We were particularly interested in finding out whether the study of the effect of 

weight loss on the postprandial response would provide a more sensitive readout than the 

study of the effect of weight loss under fasting homeostatic conditions.
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AbsTRAcT

The skeletal muscle system plays an important role in the independence of older adults. 

In this study we examine differences in the skeletal muscle transcriptome between healthy 

young and older subjects and (pre-) frail older adults. Additionally, we examine the effect of 

resistance-type exercise training on the muscle transcriptome in healthy older subjects and 

(pre-) frail older adults. 

Baseline transcriptome profiles were measured in muscle biopsies collected from 53 

young, 73 healthy older subjects and 61 frail older subjects. Follow-up samples from these 

frail older subjects (31 samples) and healthy older subjects (41 samples) were collected after 6 

months of progressive resistance-type exercise training. Frail older subjects trained twice per 

week and the healthy older subjects trained three times per week.

At baseline genes related to mitochondrial function and energy metabolism were differ-

entially expressed between older and young subjects, as well as between healthy and frail 

older subjects. 307 genes were differentially expressed after training in both groups. Training 

affected expression levels of genes related to extracellular matrix, glucose metabolism and 

vascularization. Expression of genes that were modulated by exercise training were indica-

tive of muscle strength at baseline. Genes that strongly correlated with strength belonged to 

the protocadherin gamma gene cluster (r=-0.73).

Our data suggest significant remaining plasticity of ageing skeletal muscle to adapt to re-

sistance-type exercise training. Some age-related changes in skeletal muscle gene expression 

appear to be partially reversed by prolonged resistance-type exercise training. The protocad-

herin gamma gene cluster may be related to muscle denervation and re-innervation in ageing 

muscle.

KEYWORDS: ageing, frailty, skeletal muscle, transcriptomics
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 InTROducTIOn

The number of people aged above 65 has increased rapidly over the past few decades, and 

is likely to increase progressively[1]. Because senescence is associated with a wide range of 

afflictions, including physical disability, cancer, heart disease and diabetes, the demand for 

care for older people will further increase. The loss of skeletal muscle mass and function with 

aging leads to frailty and results in the loss of independence of older adults. 

Frailty, and related sarcopenia, are very complex and many factors contribute to their 

aetiology. This includes physical inactivity, malnutrition, hormonal changes and changes 

within the muscle [2-4]. Mitochondrial function decreases with age [5], fast-twitch muscle fi-

bres demonstrate a smaller cross-sectional area[6], protein synthesis capacity is reduced [7], 

anabolic signals are less effective [4, 8], and there are fewer satellite cells to regulate adaptive 

responses to stimuli [9]. In older adults muscle cells can also undergo continuous cycles of 

denervation and reinnervation, which can lead to both weakness and loss of muscle mass 

[10, 11].

One of the most effective strategies to improve muscle mass and strength in adults is phys-

ical exercise [9, 12]. Resistance-type exercise is particularly suitable to curtail muscle loss and 

muscle weakness in older people. In accordance, quality of life is improved after participating 

in resistance-type exercise training [13]. Some even claim that resistance-type exercise train-

ing reverses ageing in skeletal muscle [14]. 

To elucidate some of these complex processes that occur in skeletal muscle during ageing, 

we examined the effects of prolonged resistance-type exercise training in frail and healthy 

older subjects on the skeletal muscle transcriptome. By comparing genome-level gene expres-

sion in frail and pre-frail older subjects, healthy older subjects and young subjects we aim 

to better understand the molecular causes of frailty. Secondly, we aimed to determine the 

effect of resistance-type exercise training on the skeletal muscle transcriptome in both frail 

and healthy older people. 
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MeThOds

experimental design
We collected a total of 259 muscle biopsy samples from pre-frail and frail older subjects 

(61 subjects, 92 samples), healthy older subjects (73 subjects, 114 samples) and young males 

(53 subjects, 53 samples). Some of these samples were follow-up samples taken after 24 weeks 

of resistance-type exercise training (31 samples from the frail older subjects, 41 samples from 

the healthy older subjects). Training for both groups was similar and consisted of progressive 

full-body resistance-type exercise training. However, the frail older group had training ses-

sions twice per week, whereas the healthy older group trained three times per week. In addi-

tion, subjects took a protein or control drink for the duration of the study. The healthy older 

group received a 15 gram portion of milk protein or control supplement at breakfast. The frail 

older group received a similar drink containing 15 gram supplement drink (milk protein or 

control) at breakfast and lunch. More details can be found in the respective papers [15, 16]. 

Table 1 shows the characteristics of our study population at baseline. Table 2 shows the effect 

of the training intervention on the older subjects that were included in this study and where 

follow-up data is available.

subjects
Biopsies from frail and pre-frail older subjects were collected from participants of two 

studies performed by Tieland et al. [15, 17]. For these studies frail and pre-frail older sub-

jects were selected based on the Fried criteria for frailty [2]. These subjects will hereafter be 

referred to as frail older subjects. These characteristics are unintentional weight loss, weak-

ness, self-reported exhaustion, slow walking speed, and low physical activity. Subjects in the 

healthy older group were not considered frail by any of these criteria at the start of the in-

tervention study[16]. Several additional baseline samples from healthy older subjects were 

collected from several studies from our group [18, 19]. These samples were taken before any 

intervention was undertaken and serve as additional reference samples. Baseline samples 

from young subjects were from healthy male subjects [20]. These were also taken before any 

intervention took place and serve as reference samples. All studies were approved by the 

medical ethical committee of either Wageningen University or Maastricht University and 

comply with the Declaration of Helsinki.

Muscle biopsy
Muscle samples were obtained with a 5 mm Bergstrom muscle biopsy needle from the 
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Musculus vastus lateralis, after local anaesthesia of the skin and fascia. Samples were freed 

from any visible blood and non-muscle tissue and immediately frozen in liquid nitrogen and 

then stored at -80° C. All samples were obtained in the morning, in an overnight fasted state, 

with at least 3 days of no heavy physical activity.

sample preparation and microarray analysis
Total RNA was isolated from the skeletal muscle tissue by using Trizol reagent (Invitrogen, 

Breda, Netherlands). Thereafter RNA was purified using the Qiagen RNeasy Micro kit (Qiagen, 

Venlo, Netherlands) and RNA quality was checked using an Agilent 2100 bioanalyzer (Agilent 

Technologies, Amsterdam, Netherlands). Total RNA (100 ng) was labelled using an Ambion 

WT expression kit (Life Technologies, Bleiswijk, Netherlands) and hybridized to human whole 

genome Genechip Human Gene 1.1 ST arrays coding 19.732 genes, (Affymetrix, Santa Clara, 

CA). Sample labelling, hybridization to chips and image scanning was performed according 

manufacturer’s instructions.

data analysis
Microarray signals were normalized using robust multichip average (RMA). Data was 

filtered using Universal exPression Codes filtering (UPC) with a 50% cut-off, corresponding 

to a 50% likelihood that a gene is expressed [21]. Significant differences of individual genes 

were tested using the limma R library [22]. Baseline differences were tested between the three 

groups (frail older, healthy older or young). Our model included gender, supplementation 

and group. For the effect of exercise we included subject, gender, time and supplementa-

tion in the model. The training effect for frail older and healthy older subjects was analysed 

separately due to differences in training frequency. P-values were adjusted using false dis-

covery rate (FDR) [23]. A q-value below 0.05 was considered significant. Pathway analyses 

were performed using Ingenuity Pathway Analysis (IPA, QIAGEN Redwood City, www.qiagen.

com/ingenuity) on the filtered dataset with the UPC filtered genes used as the background. A 

sparse partial least squares (sPLS) model for leg extension 1RM was made using the caret R 

library [24]. The dataset was split into a training set (75%) and a testing set (25%) before fitting 

the model using cross-validation. This model was validated using 10 times repeated 10-fold 

cross-validation. Final number of components for the sPLS model selected by grid search was 

3. Principal Component Analysis (PCA) was performed using the FactoMineR R library [25]. 

Plots were made using the R libraries ggplot2 and gplots[26, 27].
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ResulTs

baseline differences in transcriptome
Large differences in gene expression profiles between young and older adults (healthy 

and frail) were found, with the expression of 5228 genes significantly different between young 

subjects and both groups of older subjects. However, fold changes of the majority of these 

genes were relatively subtle, which suggested small but consistent differences between these 

groups. Only 825 genes out of these 5228 genes showed fold changes higher than 1.2. Venn-di-

agrams can be found in supplementary figures 1A and 1B. The top 20 genes that were signifi-

cantly different at baseline between the three groups are presented in table 3. Top canonical 

pathways reported by IPA include oxidative phosphorylation, TCA cycle and glucose metabo-

lism (supplementary figure S2).

Table 4 shows the top 20 genes that were different between healthy and frail older subjects 

at baseline. Top genes included METTL21C, FRZB and non-coding RNA. Pathways that were 

significantly different between the frail and healthy older subjects were related to glucose me-

tabolism and RNA processing (supplementary figure S2). In general, expression of genes relat-

ed to glucose metabolism were lower in both frail older and healthy older subjects compared 

to young, with frail older subjects showing the lowest expression of the groups. Principal Com-

ponent Analysis (PCA) summarizes this observation, where the healthy older subjects seemed 

to be between the frail older subjects and the young subjects on the first two components (sup-

plementary figure S3 and S4). While pathways related to mitochondrial function were some 

of the most significantly affected pathways, the fold changes of the individual mitochondrial 

genes were relatively small but consistent. Fold changes for these mitochondrial genes were 

in the range of 1.1 and 1.2. 

effect of prolonged resistance-type exercise training
Prolonged resistance-type exercise training showed a significant effect on the gene ex-

pression profiles in both frail and healthy older people (431 and 1395 significantly changed 

genes, respectively). 307 genes were changed in both groups after resistance-type exercise 

training. Changes in expression of all these overlapping genes were in the same direction. A 

table with the top 20 genes changed by training is presented in table 5. Training resulted in 

the differential expression levels of many genes that are related to the connective tissue and 

the extracellular matrix, including collagen genes and laminin genes, suggesting significant 

tissue remodelling due to the training. Upstream analysis using IPA showed that TGF-β signal-

ling-related genes were significantly activated in both groups, primarily due to the increased 
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expression of collagen and laminin genes (supplementary figure S5). Other significant genes 

include myofibrillar proteins such as myosin heavy chain isoforms and troponin isoforms. 

Genes related to glucose metabolism shifted away from the expression levels of the old-

er subjects at baseline towards the levels of the younger phenotype. This trend is reflected 

in many other genes, where the majority of genes significantly changed by exercise training 

shifted towards ‘younger’ expression levels (325 genes out of 431 in the frail older subjects, 

1106 out of 1395 in the healthy older subjects). Figure 3 shows a heat map of 184 genes that are 

significantly changed by training in both groups and are significant when comparing young 

with either frail or healthy older subjects. Most of these genes shift towards younger levels.

To further analyse the relationship between the 307 genes that are robustly after training 

in both groups changed (q-value < 0.05) we performed sPLS regression to calculate leg exten-

sion 1RM based on gene expression in the baseline samples. The aim was to evaluate whether 

differences in expression of the genes that were changed by training represent the overall 

strength of the muscle at baseline. The samples obtained after training were excluded for this 

analysis. A plot of the predicted leg extension 1RM strength against the measured leg exten-

sion 1RM strength is presented in figure 4. Gene importance for the final model is presented 

in table 6. Cross-validation mean R2 of the model was 0.73, the mean RMSE was 17.7. The 

RMSE for the withheld testing set was 19.1. The top genes contributing to the model include 

genes from the protocadherin gamma gene cluster, CTNNBIP1, C20orf26 (CFAP61), C12orf75 

and USP54. We calculated the eigengene for all protocadherin gamma genes and correlated 

this eigengene with leg extension 1RM. The protocadherin gamma eigengene showed a strong 

direct negative correlation (Pearson r = -0.73) with 1RM leg extension strength. A plot of this 

negative correlation is presented in supplementary figure S7.

dIscussIOn

In this study we compared the transcriptomes of skeletal muscle of healthy young, healthy 

older, and frail older subjects to better understand the skeletal muscle related part of the frail 

phenotype. A schematic overview of our findings is presented in figure 5. To our knowledge 

this is the first study investigating the effect of age on the muscle transcriptome to include 

frail and pre-frail older subjects. We observed clear and pronounced differences at baseline 

between young and older subjects. In our data frailty seems to present itself in the muscle 

transcriptome primarily as a more advanced stage of ageing (see also supplementary figures 

S3 and S4). This may, at least partly, be due to the higher average age of the frail group. There 
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is, however, still significant overlap in age due to the high variation in age in both groups (79.8 

± 8.9, 74.1 ± 4.5 mean age and standard deviation for frail and healthy older subjects respec-

tively, table 1 and 2). 

baseline differences between young and older subjects
There were significant differences in genes related to mitochondrial function and oxida-

tive phosphorylation (supplementary figure S2). It is well known that mitochondrial function 

is impaired in older adults [5] which can be a responsive feature to muscle inactivity [28] and 

mitochondrial protein carbonylation [29]. In this case the average expression of mitochondri-

al genes is lowest in the frail older subjects at baseline. These expression differences may also 

represent a lower abundance of mitochondria [6]. 

There are two genes among the top differentially expressed genes between the three base-

line groups that are as yet unknown, C20orf26 (CFAP61) and C12orf75. Both these genes have 

a higher expression levels in the older subjects and training appears to attenuate expression 

of these genes. Not much is known about the function of CFAP61 except that it is highly ex-

pressed in skeletal muscle tissue and may be related to calcium signalling and/or energy con-

version [30]. C12orf75 may be related to cell proliferation and stem cell signalling [31].

In our data frail subjects showed significantly higher expression levels of METTL21C when 

compared to both the young and healthy older subjects, with a greater fold change difference 

between healthy and frail subjects than between the young and the older subjects (table 5). 

Training decreases the mean expression of METTL21C in both groups, but this does not reach 

significance using our significance cut-off. However, in the frail group it does reach a q-value 

of 0.08 after training, showing a fold change of -1.58. METTL21C encodes for a protein-lysine 

methyltransferase belonging to a group of proteins that are involved in methylation of chap-

erone proteins, where METTL21C appears to methylate HSP70 and HSP90 [32] and has recent-

ly been found to be associated with skeletal muscle development [33]. In vitro inhibition of 

METTL21C expression in myoblasts showed impaired myotube differentiation and calcium 

signalling, suggesting that METTL21C plays an important role in the function of muscle cells 

and possibly also the overall quality of the muscle. 

effect of prolonged resistance-type exercise training
The majority of genes that significantly changed following prolonged resistance-type ex-

ercise training showed a shift in the expression levels towards levels observed in the younger 

group (figure 3). A previous study has shown a similar effect[14]. Indeed, Melov et al. state that 

training reverses the effect of ageing. While there is a shift towards younger expression levels, 
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this does not necessarily mean that there is reversal of ageing. A more likely explanation is 

that the skeletal muscle in these older subjects have been ‘detrained’ due to more sedentary 

lifestyle when compared with healthy younger controls. Physical inactivity is a major contrib-

utor to age-related muscle loss and weakness and is one of the criteria of frailty [2]. In this way 

participation in prolonged resistance-type exercise training is likely to shift gene expression to 

younger levels. Furthermore, in our data the young subjects had higher muscle strength (table 

1). Training leads to subtle but consistent changes in the muscle transcriptome [34]. Thus, a 

shift towards younger expression levels would be consistent with the increased strength after 

more prolonged resistance-type exercise training. 

The genes that shift towards younger expression levels include genes related to the extra-

cellular matrix, vascularisation, glucose metabolism and muscle contraction (supplementary 

figures S2, S5 and S6). The muscle biopsies were taken at least three days after the last train-

ing session. Thus, we are not observing acute effects of a single bout of resistance-type exer-

cise, but rather longer term consistent changes in gene expression. Notably absent among the 

changes induced by prolonged resistance-type exercise training, however, are the primary 

differences observed when we compare young and older subjects: mitochondrial function. 

Possible explanations are that these changes are too subtle to pick up after 24 weeks of re-

sistance-type exercise training or that prolonged resistance-type exercise training does not 

significantly affect these genes. Timing of the muscle biopsies relative to the last training ses-

sion may also be a factor. It may be that expression of these mitochondrial genes only change 

acutely after resistance-type exercise rather than chronically.

Prolonged resistance-type exercise training showed fewer significantly affected genes in 

the frail group. Part of this can be explained by the differences in treatment. The healthy older 

subjects had training sessions three times per week whereas the frail older subjects received 

two sessions per week. The load of the training was also lower in for the frail subjects. Howev-

er, it may also be that the frail are less capable of adapting to the additional stress of prolonged 

resistance-type exercise training. Fortunately, the frail subjects still showed a significant re-

sponse to the training stimulus despite their less adaptive phenotype [2]. Others have already 

reported that older adults in general have a decreased response to resistance-type exercise 

on a transcriptome level [35], and this may also play a role in the smaller response in the frail 

older subjects compared to the healthy older subjects. 

Gene expression and muscle strength
Prolonged resistance-type exercise training led to strength increases in all individuals to the 

point that training increased strength levels in the frail older subjects close to the levels observed 
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in the healthy older subjects at baseline (Figure 1). However, it did not necessarily lead to increas-

es in lean body mass in all individuals (figure 2). This suggests that we primarily observed an in-

crease in muscle quality, cross-bridge cycling efficiency, calcium handling and/or neuromuscular 

adaptation rather than an increase in muscle cross-sectional area. Our data provide evidence 

suggesting disturbances in axon guidance and muscle innervation in the older subjects. 

We performed sPLS regression analysis to calculate leg strength based on expression lev-

els of the genes that are robustly changed after prolonged exercise training in both groups in 

the baseline samples. Our rationale was that since these genes are changed in both groups 

after training, where the leg extension 1RM is significantly higher, that expression of these 

genes could also reflect muscle strength at baseline without training. We were able to build 

a reasonably accurate regression model to calculate leg extension 1RM at baseline based on 

gene expression (mean cross-validation R2 of 0.73 and RMSE of 17.7, figure 4). Thus, expres-

sion of the genes robustly changed by exercise also seems to be indicative of muscle strength, 

not only after training but also prior to prolonged exercise training. This suggests that expres-

sion of these genes may be used as a biomarker to training status prior to study entry.

Several of the most important variables in our sPLS model for muscle strength belonged 

to the protocadherin gene cluster. Genes of the protocadherin gamma gene cluster were sig-

nificantly different between frail older subjects, healthy older subjects and young subjects 

at baseline. Expression of these genes also went down after training in both groups. Older 

subjects had higher expression of this gene than young subjects and expression was highest 

in the frail older subjects. There are good indications that this gene cluster is relevant for neu-

romuscular performance. Many of the genes from this cluster are also significantly changed 

after training in both groups. Protocadherin gamma genes ranked very highly in the variable 

importance for our correlative model for leg extension 1RM (table 6).

Protocadherin gamma genes are primarily expressed in neural tissues such as the brain and 

the spinal cord and appears to be involved in axonal guidance [36]. Protocadherin proteins show 

homeophilic binding to other protocadherin proteins and in this way these proteins provide rec-

ognition sites for axonal binding. By expressing different protocadherin gamma genes from the 

gene cluster axons can be guided to different locations [37]. In knockout mice these genes appear 

to be indirectly related to muscle function: knock-out mice show severe muscle weakness and 

tremors, although this is attributed to loss of spinal motor neurons [38, 39]. It may also be that 

it is expressed at the muscle side of the synapse to facilitate axon guidance towards muscle, and 

increased expression in this case is due to the denervation-reinnervation cycles seen in ageing 

muscle. Therefore, we hypothesise that as muscle loses innervation it increases expression of the 

protocadherin gamma cluster to facilitate axon binding from other nerves.
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Protocadherin gamma is not the only significant group of genes related to neuromuscular 

function that we found in our data. There are several other genes differentially expressed be-

tween frail and healthy older subjects that are related to the innervation of muscle, including 

acetylcholine esterase (AChE) and kyphoscoliosis peptidase (KY). Both play important roles in 

the function of the neuromuscular junction [40, 41]. The top differentially expressed gene at 

baseline, unc-13 homolog C (UNC13C), is involved in neurotransmitter release [42, 43]. Both 

MYLK4 and IGFN1 are also among the top significantly different genes between the three 

groups at baseline. Little is known about MYLK4 and IGFN1, but both have been indirectly 

associated with neuromuscular function. MYLK4 has been shown to be significantly down-

regulated in AChE knockout mice, together with KY, suggesting that it is somehow involved in 

the signal transduction [44]. Like KY, IGFN1 has been associated with both muscle structure 

and neurological function [45, 46]. This gene also binds EEF1A2, which is the gene associated 

with the wasted (Wst) mouse phenotype [46, 47]. This phenotype shows significant immuno-

logical and neuromuscular defects [48]. IGFN1 has many splicing variants, which suggests that 

it plays a pleiotropic role in the muscle. Another indication of denervation is the increased 

expression of the perinatal myosin heavy chain isoform MYH8 in older subjects. Previous 

studies have found that expression of this gene is increased in tissue where the muscle fibres 

have lost innervation [49, 50]. 

cOnclusIOns

Our data suggests a significant remaining plasticity of ageing skeletal muscle to adapt to 

regular resistance type exercise. Many age-related changes in skeletal muscle gene expression 

are partially reversed by prolonged resistance-type exercise training. Expression of the genes 

robustly changed following prolonged resistance-type exercise training in frail and healthy 

older subjects did not only reflect the effect of training itself, but also reflected muscle strength 

at baseline. Expression of the protocadherin gamma gene cluster is negatively correlated with 

muscle strength in our data and may be related to muscle denervation and re-innervation. 

clinical relevance
We have identified a gene cluster that may be related to denervation and re-innervation 

cycles in the muscle. Loss of motor neurons has been suggested to play an important role in 

age-related muscle weakness and sarcopenia, but is unfortunately not yet fully understood. 

Prolonged resistance-type exercise training was able to modulate the expression of proto-
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cadherin gamma. Hence, studying the expression of this gene may provide novel insights on 

whether or not denervation and re-innervation is modulated by interventions or lifestyle fac-

tors such as nutrition and physical activity. Furthermore, in this paper we show that steady-

state gene expression provides information on the strength of the muscle itself. This suggests 

that steady-state gene expression could potentially be used as a tool to provide insight into 

muscle strength of a subject, but theoretically also other muscle health-related factors.

limitations
While we have a large sample size for such a study, we also have a very heterogeneous 

study population. The ratio of male to female among both groups of older adults is not entirely 

equal. We have adjusted for this in our statistical analyses where possible. Another limitation 

is that the muscle biopsies from the frail older adults were obtained from a study performed 

at Wageningen University, whereas the muscle biopsies from the healthy older adults and the 

young adults were obtained from studies performed at Maastricht University. Protocols for 

muscle biopsy collection and preparation in Wageningen are based on those from Maastricht 

and thus are very similar, but there may still be some bias that we cannot account for statis-

tically. The microarray analyses were performed within the same lab at the same time by the 

same technician, which means that batch effects should be minimal. The protocols for the pro-

longed resistance-type exercise training were slightly different for the frail older adults and 

the healthy older adults. The primary difference being that the healthy older adults trained 

three times per week and the frail older adults trained twice per week. As a consequence, the 

training stimulus for the frail older adults was somewhat lower in these individuals and this 

could partially explain the decreased response among the frail older subjects. This difference 

in treatment also prevented us to compare the training responses in both groups directly.
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Table1. Subject characteristics of the baseline only subjects 

  FE HE YO 

N (male / female) 24 / 6 27 / 5 53 / 0 

Age (years) 79.8 ± 8.9 74.1 ± 4.5 21.3 ± 2.4 

Height (m) 1.71 ± 0.09 1.73 ± 0.08 1.84 ± 0.06 

Weight (kg) 80 ± 12.4 75.9 ± 12.9 76.5 ± 10.3 

BMI (kg / m2) 27.3 ± 4.2 25.2 ± 3.2 22.6 ± 3 

Body Fat (%) 28.8 ± 7.2 23.4 ± 5.5 15.4 ± 4.6 

Lean Mass (kg) 52.1 ± 6.3 55.5 ± 8.6 61.9 ± 6 

Leg Extension 1RM (kg) 65 ± 20 68 ± 17 124 ± 20 

Leg Press 1RM (kg) 127 ± 31 155 ± 41 203 ± 36 

Mean±SD, FE=frail older subjects, HE=healthy older subjects, YO=young male subjects. 

 

 

 

Table1. Subject characteristics of the baseline only subjects

Table 2. Subject characteristics of the subjects with before and after samples. 
 

Table 2. Subject characteristics of the subjects with before and after samples.  

  FE pre FE post HE pre HE post 

N (male / female) 11 / 20 

 

26 / 15 

 Age (years) 76.5 ± 7.0 

 

69.9 ± 5.0 

 Height (m) 1.66 ± 0.09 

 

1.71 ± 0.09 

 Weight (kg) 78.5 ± 13.6 79.6 ± 14.1* 76.7 ± 13.2 77.1 ± 13.2 

BMI (kg / m2) 28.5 ± 4.1 29 ± 4.3 * 26.1 ± 2.8 26.2 ± 2.8 

Body Fat (%) 36.7 ± 8.5 36.6 ± 8.8  25.9 ± 5.9 24.4 ± 5.9 * 

Lean Mass (kg) 46.1 ± 10.0 46.9 ± 9.9 * 54.6 ± 11.1 56.0 ± 11.3 * 

Leg Extension 1RM (kg) 59 ± 18 81 ± 24 * 81 ± 17 114 ± 23 * 

Leg Press 1RM (kg) 130 ± 35 178 ± 49 * 179 ± 40 230 ± 50 * 

FE = frail older subjects, HE = healthy older subjects, YO = young male subjects. * indicates a significant effect 

of resistance-type exercise training (p < 0.05). 
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Table 3.Top 20 genes significantly different between young and old. Table 3.Top 20 genes significantly different between young and old.  

Gene FC FE vs. HE FC FE vs. YO FC HE vs. YO q-value FE vs. HE q-value FE vs. YO q-value HE vs. YO 

IGFN1 -1.12 -6.43 -5.71 0.64 0.00 0.00 

UNC13C 1.07 6.20 5.78 0.60 0.00 0.00 

MYLK4 -1.35 -5.13 -3.81 0.07 0.00 0.00 

C12orf75 1.45 4.54 3.13 0.01 0.00 0.00 

SLC38A1 -1.11 -3.50 -3.14 0.55 0.00 0.00 

HCN1 1.16 3.36 2.90 0.30 0.00 0.00 

MYH8 1.16 3.28 2.83 0.50 0.00 0.00 

C20orf26 1.36 3.39 2.49 0.00 0.00 0.00 

NR4A3 -1.86 -3.70 -2.00 0.02 0.00 0.00 

FAM83B 1.11 2.91 2.63 0.39 0.00 0.00 

DAAM2 -1.06 -2.51 -2.36 0.42 0.00 0.00 

NNMT 1.33 2.71 2.04 0.03 0.00 0.00 

ZNF382 1.21 -2.09 -2.54 0.05 0.00 0.00 

TPPP3 1.33 2.62 1.97 0.01 0.00 0.00 

COL28A1 1.07 2.36 2.20 0.42 0.00 0.00 

METTL21EP 1.05 -2.19 -2.29 0.78 0.00 0.00 

HIST1H3E 1.11 -2.08 -2.30 0.30 0.00 0.00 

SNORD115-32 1.02 2.17 2.14 0.91 0.00 0.00 

SERPINA5 1.04 -2.11 -2.19 0.89 0.00 0.00 

METTL21C 1.98 2.84 1.44 0.00 0.00 0.03 

FE = frail older subjects, HE = healthy older subjects, YO = young men. 
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Table 4. Top 20 genes significantly different between the frail 

elderly and the healthy elderly at baseline. 
Table 4. Top 20 genes significantly different between the frail  

elderly and the healthy elderly at baseline.  

Gene FC FE vs. HE q-value FE vs. HE 

METTL21C 1.98 0.00 

NR4A3 -1.86 0.02 

VTRNA1-1 -1.71 0.00 

MIR206 1.58 0.00 

SNORA38B -1.58 0.00 

S100A8 1.51 0.04 

FRZB -1.48 0.03 

HES1 -1.47 0.00 

P2RY13 1.46 0.00 

MIR133B 1.45 0.01 

C12orf75 1.45 0.01 

SNORA60 -1.44 0.00 

SNORD60 -1.43 0.00 

LYZ 1.43 0.03 

SNORD80 -1.42 0.00 

SNORD82 -1.42 0.00 

SNORD29 -1.41 0.00 

EVI2B 1.40 0.01 

UPK3A -1.40 0.00 

ID1 -1.40 0.00 

FE = frail older subjects, HE = healthy older subjects. 
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Table 5. Top 20 genes significantly different in both frail elderly and healthy elderly subjects after training.  

Gene FC FE training FC HE training q-value FE training q-value HE training 

FRZB 1.97 1.55 0.00 0.00 

IGFN1 1.58 1.80 0.04 0.00 

MYLK4 1.45 1.69 0.01 0.00 

COL3A1 1.45 1.68 0.01 0.00 

ANKRD2 -1.44 -1.61 0.01 0.00 

THBS4 1.34 1.66 0.05 0.00 

PFKFB3 1.61 1.38 0.01 0.01 

COL4A1 1.35 1.46 0.00 0.00 

CAPN6 1.37 1.45 0.03 0.00 

COL1A2 1.35 1.45 0.03 0.00 

EDNRB 1.24 1.56 0.01 0.00 

GCNT2 -1.51 -1.28 0.00 0.00 

C20orf26 -1.24 -1.54 0.03 0.00 

C12orf75 -1.42 -1.33 0.01 0.00 

CCDC80 1.34 1.40 0.03 0.00 

OLFML2B 1.38 1.34 0.00 0.00 

SPARC 1.28 1.44 0.00 0.00 

COL4A2 1.32 1.37 0.00 0.00 

LGI1 -1.31 -1.33 0.02 0.00 

ACOT11 -1.30 -1.34 0.04 0.00 

FE = frail older subjects, HE = healthy older subjects. 

 

 
 

Table 5. Top 20 genes significantly different in both frail elderly and healthy elderly subjects after training. 
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Table 6. Variable importance and coefficients of the top 20 variables for the sPLS model. 

Gene Variable Importance Coefficient 

C20orf26 100 -1.93835 

PCDHGA10 99.3099 -0.828 

PCDHGB5 97.59634 -1.17955 

PCDHGB1 95.06749 -1.02454 

CTNNBIP1 91.85769 1.12848 

USP54 90.58105 -0.85727 

PCDHGA8 83.51363 -0.91253 

PCDHGB7 82.41083 -0.80005 

MYOZ2 81.3163 -0.61206 

PCDHGA11 78.54377 -0.6435 

C12orf75 78.18419 -0.82036 

PCDHGA7 77.82971 -0.85683 

PCDHGA2 76.42625 -0.91682 

HEXIM2 75.94954 0.241251 

GRSF1 75.24609 0.38796 

GCNT2 75.11434 -1.0698 

FBP2 72.2918 0.262855 

PLEKHO1 68.54881 0.238599 

CRY2 68.13805 -1.59754 

PABPC4 67.4792 0.848579 

 

Table 6. Variable importance and coefficients of the top 20 variables for the sPLS model.
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Figure 1. A and B – Change of leg extension 1RM after prolonged exercise training for each individual. Left are frail elderly 

subjects, right are healthy elderly subjects.  

 

 

Figure 1. A and B – Change of leg extension 1RM after prolonged exercise training for each 

individual. Left are frail elderly subjects, right are healthy elderly subjects. 
 

 

 

Figure 2A and B. Change of lean body mass after prolonged exercise training for each individual. Left are frail 

older subjects, right are healthy older subjects. 

 

 

Figure 2. A and B. Change of lean body mass after prolonged exercise training for each 

individual. Left are frail older subjects, right are healthy older subjects.
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Figure 3. Heatmap of 184 genes that are significantly different between young and older subjects, and are 

significantly changed by prolonged resistance-type exercise training in both groups.  

 

Figure 3. Heatmap of 184 genes that are significantly different between young and older subjects, and are 

significantly changed by prolonged resistance-type exercise training in both groups. 
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Figure 4. Scatter plot of predicted leg extension 1RM of the baseline samples using sPLS and the actual 

measured 1RM. Red dots indicate samples that were part of the testing data set (25% of the total data set).  

 

Figure 4. Scatter plot of predicted leg extension 1RM of the baseline samples using sPLS and the actual 

measured 1RM. Red dots indicate samples that were part of the testing data set (25% of the total data set). 

Figure 5. Schematic summary of our findings. 

 

 

Figure 5. Schematic summary of our findings.  
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suPPleMenTARy MATeRIAl

Figure s1A.Venn diagram of significant genes (q-value < 0.05) changed after prolonged exercise training in frail (FE 

– training, green) and healthy older subjects (HE – training, red). FE vs HE are genes significantly different at baseline 

between frail and healthy older subjects (blue). 

Figure s1b. Venn diagram of significant genes (q-value < 0.05) at baseline between the young (YO) group and 

both frail (FE) and healthy older subjects (HE). Due to the high number of significant genes with relatively small 

differences an additional fold-change cut-off was used for these data (fold change > 1.2).

 

 

Figure S1A.Venn diagram of significant genes (q-value < 0.05) changed after prolonged exercise training in 

frail (FE – training, green) and healthy older subjects (HE – training, red). FE vs HE are genes significantly 

different at baseline between frail and healthy older subjects (blue).  

 

 

Figure S1B. Venn diagram of significant genes (q-value < 0.05) at baseline between the young (YO) group and 

both frail (FE) and healthy older subjects (HE). Due to the high number of significant genes with relatively small 

differences an additional fold-change cut-off was used for these data (fold change > 1.2). 
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Figure S2. Top 40 (by p-value) significantly changed canonical pathways from Ingenuity Pathway Analysis. 

First two columns represent the prolonged exercise training effect in frail (FE) and healthy (HE) older subjects. 

Last three columns represent baseline differences between frail older subjects (FE), healthy older subjects (HE), 

and young subjects (YO). Colours indicate significance. 
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Figure s2. Top 40 (by p-value) significantly changed canonical pathways from Ingenuity Pathway Analysis. First two 

columns represent the prolonged exercise training effect in frail (FE) and healthy (HE) older subjects. Last three 

columns represent baseline differences between frail older subjects (FE), healthy older subjects (HE), and young 

subjects (YO). Colours indicate significance.
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Figure s3. PCA of all UPC filtered genes for all groups, before and after prolonged 

exercise training. Ellipses indicate 95% confidence interval.

 

Figure S3. PCA of all UPC filtered genes for all groups, before and after prolonged exercise training. Ellipses 

indicate 95% confidence interval. 
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Figure S4.PCA of 307 exercise responsive genes for all groups, before and after prolonged exercise training. 

Ellipses indicate 95% confidence interval. 

 

Figure s4.PCA of 307 exercise responsive genes for all groups, before and after prolonged 

exercise training. Ellipses indicate 95% confidence interval.
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Figure s5. Top 40 (by score) significant upstream regulators from Ingenuity Pathway Analysis. 

First two columns represent the prolonged exercise training effect in frail (FE) and healthy (HE) 

older subjects. Last three columns represent baseline differences between frail older subjects (FE), 

healthy older subjects (HE), and young subjects (YO). Colours indicate predicted activation.

 

 

Figure S5. Top 40 (by score) significant upstream regulators from Ingenuity Pathway Analysis. First two 

columns represent the prolonged exercise training effect in frail (FE) and healthy (HE) older subjects. Last three 

columns represent baseline differences between frail older subjects (FE), healthy older subjects (HE), and young 

subjects (YO). Colours indicate predicted activation. 
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Figure s6. Top 40 (by score) significantly changed diseases and functions from Ingenuity Pathway Analysis. First 

two columns represent the prolonged exercise training effect in frail (FE) and healthy (HE) older subjects. Last three 

columns represent baseline differences between frail older subjects (FE), healthy older subjects (HE), and young 

subjects (YO). Colours indicate predicted activation.

 

 

Figure S6. Top 40 (by score) significantly changed diseases and functions from Ingenuity Pathway Analysis. 

First two columns represent the prolonged exercise training effect in frail (FE) and healthy (HE) older subjects. 

Last three columns represent baseline differences between frail older subjects (FE), healthy older subjects (HE), 

and young subjects (YO). Colours indicate predicted activation. 
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Figure s7. Negative Correlation between the PCDHG gene cluster (eigengene as calculated 

using the NIPALS algorithm) and leg extension 1RM. 

 

Figure S7.Negative Correlation between the PCDHG gene cluster (eigengene as calculated using the NIPALS 

algorithm) and leg extension 1RM.  
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AbsTRAcT

Populations around the world are aging rapidly and concomitant loss of physiological 

functions negatively affects quality of life at older age. A major contributor to the frailty syn-

drome of ageing is loss of skeletal muscle. In this study we assessed the skeletal muscle biopsy 

metabolome of healthy young, healthy older and frail older subjects to determine the effect 

of age and frailty on the metabolic signature of skeletal muscle tissue. Moreover, effects of 

prolonged whole-body resistance type exercise training on the muscle biopsy metabolome 

of older subjects were examined. The baseline metabolome was measured in muscle biop-

sies collected from 30 young, 66 healthy older subjects and 43 frail older subjects. Follow-up 

samples from frail older (24 samples) and healthy older subjects (38 samples) were collected 

after 6 months of prolonged resistance-type exercise training. Young subjects were included 

in order to have a reference for expected shifts of the older towards a younger metabolic phe-

notype. Primary differences in skeletal muscle metabolite levels between young and healthy 

older subjects were related to mitochondrial function, fiber type, and tissue turnover. Simi-

lar differences were observed when comparing frail with healthy older subjects. Prolonged 

resistance-type exercise training revealed a correlative adaptive response of amino acids, 

especially branched chain amino acids, and genes related to tissue remodeling. The impact 

of exercise on branched chain amino acids derived acylcarnitines in older subjects points 

to a downward shift in branched chain amino acid catabolism upon training. We observed 

modest correlations between muscle metabolite and plasma levels. This prohibits the use of 

the latter as read-outs of muscle metabolism and stresses the need for direct assessment in 

muscle tissue biopsies. 

KEYWORDS: muscle biopsy, frailty, aging, tissue remodeling
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inTroducTion

Populations around the world are aging rapidly and concomitant loss of physiological 

functions compromises independence at older age. It has been estimated that people older 

than 60 y will make up 22% of the world population and people older than 80 y will account 

for 4.4% of the world population in 2050 [1]. A major contributor to the frailty syndrome of 

ageing is skeletal muscle loss, which can lead to increased disability in the older population. 

In most people muscle mass and strength start to decline around the age of 35 y with more 

progressive muscle loss observed after the age of 65 y [2-6].

From a recent study [7] we learned that prolonged resistance-type exercise training par-

tially shifts the skeletal muscle transcriptome of older subjects toward an expression pattern 

observed in muscle tissue of young subjects, with changes in gene expression related to vas-

cularisation, tissue remodelling and glucose metabolism. We hypothesize a similar shift to-

wards the young phenotype in the muscle metabolome after resistance-type exercise training 

in older subjects. The transcriptome analysis also revealed substantial differences between 

healthy young men, healthy older subjects and frail older subjects before any intervention 

was undertaken. Particularly genes related to mitochondrial function were downregulated in 

older subjects compared to young. 

Although the effects at gene expression level are expected to be reflected in metabolic reg-

ulation, our insights are limited to only few studies, mostly in animals. Recent work showed 

that ageing affects glucose and fatty acid metabolism in muscle of mice [8]. A study on aged 

rats suggests a muscle group-specific perturbation of lipid and glucose metabolism consistent 

with mitochondrial dysfunction [9]. A recent study in humans showed that lipid content and 

oxidative activity in skeletal muscle are related to muscle fiber type in ageing and metabol-

ic syndrome [10]. Another human study showed that upon training mitochondrial function 

and intermediary metabolism were reprogrammed in insulininsensitive obese subjects [11]. 

Within these human studies the deployed metabolic profiling platforms had limited coverage 

and focused on specific sub-metabolomes. 

A major bottleneck in achieving extended coverage was the limited amount of muscle tissue 

material that can be obtained from human studies. The recent development of a comprehen-

sive targeted metabolic profiling platform [12] optimized and validated for small muscle biopsies 

paved the way to understand the observed phenotypical differences at a more comprehensive 

level. Here we establish the effect of aging and frailty on the skeletal muscle metabolome. We 

further examine the impact of prolonged resistance-type exercise training on the metabolome of 

frail and healthy older subjects. We included a population of young subjects in our study in order 

to have a reference for expected shifts of the older towards a younger metabolic phenotype. 
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MATeRIAls And MeThOds

experimental design
Muscle biopsies (Vastus lateralis) and circulating metabolites samples were collected from 

pre-frail, frail older [13, 14], healthy older [15, 16] and young subjects [17]. Medical history of 

all subjects was evaluated by medical questionnaires which were analyzed by a physician. 

Subjects who were unable to participate in the training due to pain, were excluded prior to 

starting the intervention. Included subjects who showed severe discomfort during the train-

ing sessions were excluded from further participation in the study. Baseline metabolite levels 

were measured in skeletal muscle tissue of 30 young, 66 healthy and 43 frail older subjects 

(Table 1). We also measured metabolites in plasma and serum for 50 young, 76 healthy and 62 

frail older subjects (Supplementary Table S1). The transcriptome of our muscle biopsy set was 

measured in an earlier study[7]. 

 Samples from healthy young male subjects were derived from several studies performed 

within our group, in which exactly the same technique and processing was used for sample 

collection. We used young male subjects as a reference group and samples were only taken 

at baseline. Samples from the frail and healthy older subjects were obtained from two study 

centers. More details of the studies can be found in the respective papers [13, 16]. 

In addition, muscle biopsies were obtained after 6 months of resistance-type exercise 

training for 38 healthy and 24 frail older subjects. All muscle biopsies and circulating metab-

olites samples were obtained in the morning, in an overnight fasted state, after standardized 

meal the evening before, and no strenuous physical activity for 3 days prior to muscle biopsy 

collection. 

Fried criteria [18] were used to assess the frailty in older subjects, in which frailty is 

viewed in terms of the unintentional weight loss, weakness, self-reported exhaustion, slow 

walking speed, and low physical activity. Based on the above mentioned criteria, the healthy 

older subjects were not considered frail or pre-frail at the start of the intervention study [19].

In our study population, all older subjects regardless of their health status (frail or healthy) 

improved in muscle performance following 6 months resistance-type exercise training (Sup-

plementary Figure S1 Table S2 ) as illustrated by significantly increased leg extension and 

leg press strength after training (P-value < 0.01) [7, 13, 19]. Both healthy older and frail older 

subjects followed similar progressive full-body resistance type exercise training. In brief, the 

training consisted of a 5 minute warm-up on a cycle ergometer, followed by 4 sets on the leg-

press and leg-extension machines. In addition, 3 sets on chest press, lat pulldown, ped-dec and 

vertical row machines were performed (Technogym, Rotterdam, The Netherlands).However, 

the healthy older subjects trained 3 times per week and frail subjects trained 2 times per week. 



T h e  m u s c l e  m e T a b o l o m e  d i f f e r s  b e T w e e n  h e a l T h y 

a n d  f r a i l  s u b j e c T s  o f  o l d e r  a g e

59

3

Moreover, subjects received a protein or control supplement during the study. Healthy older 

subjects took 15 gram milk protein or control drink at breakfast and frail older subjects took a 

similar 15 gram drink (milk protein or control) at breakfast and lunch every day throughout 

the entire 6 months intervention. Full details can be found in the earlier papers on the phe-

notypical impact of training on our study population [13, 19].All studies were approved by 

The Medical Ethics Committee of either Wageningen University or Maastricht University and 

comply with the Declaration of Helsinki.

Metabolomics analysis of circulating metabolites
Amino acids and biogenic amines were derivatized (Acc-Tag) in 5 µL aliquots of plas-

ma. Samples were analyzed using an ACQUITY UPLC system with autosampler (Waters, Et-

ten-Leur, The Netherlands) coupled with a Xevo Tandem quadrupole mass spectrometer (Wa-

ters) operated using QuanLynx data acquisition software (version 4.1; Waters). An Accq-Tag 

Ultra column (Waters) was used. The Xevo TQ was used in the positive-ion electrospray mode 

and all analytes were monitored in Multiple Reaction Monitoring (MRM) using nominal mass 

resolution. Acquired data were evaluated using TargetLynx software (Waters), by integration 

of assigned MRM peaks and normalization using proper internal standards[20].

Acylcarnitines, trimethylamine-N-oxide, choline, betaine, deoxycarnitine and carnitine 

were analyzed in 5 µL plasma, spiked with an internal standard, using a UPLC-MS/MS. Also 

here an Accq-Tag Ultra column was used. The Xevo TQ was used in the positive-ion electro-

spray mode and all analytes were monitored in Multiple Reaction Monitoring (MRM) using 

nominal mass resolution. In-house developed algorithms [21] were applied using the pooled 

QC samples to compensate for shifts in the sensitivity of the mass spectrometer over the batch.

Organic acids were measured by GC-MS using 50 µL of plasma sample prepared using a 

two-step derivatization procedure with subsequent oximation using methoxyamine hydro-

chloride (MeOX) and silylation using N-Methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA. 

Samples were measured on an Agilent GC (7890A) coupled to Agilent Quadrupole-MS with EI 

source (Agilent MSD 5975C). Separation was performed using a HP-5MS column (30 m x 0.25 

m x 0.25 μm; Agilent). The raw data were pre-processed using Agilent MassHunter Quanti-

tative Analysis software for GC-MS (Agilent, Version B.04.00), and quantitation of metabolite 

response was calculated as the peak area ratios of the target analyte to the respective internal 

standard. In-house developed algorithms were applied using the pooled QC samples to com-

pensate for shifts in the sensitivity of the mass spectrometer over the batch. Serum metabolite 

concentrations determined by NMR were measured as described by Mihaleva et al. [22]. In 

short, serum samples were ultrafiltrated and automated quantum mechanical line shape fit-

ting of 1H NMR spectra was performed using PERCH.
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In tissue metabolome analysis
Metabolites were extracted from 10 mg of wet muscle tissue. This tissue was further lyo-

philized and weighted to determine the dry tissue mass. After pulverizing the tissue, metabo-

lites were extracted using methanol/chloroform/water (MCW). The extraction method used in 

this study has extensively been described and characterized elsewhere [12]. 

Amines, acylcarnitines and oxylipins were measured using the platforms also used for 

measurement of these metabolites in plasma. The validation of these methods for human tis-

sue biopsies is described in detail elsewhere [21]. To compensate for shifts in the sensitivity 

of the mass spectrometer over multiple batches of measurements, in-house developed algo-

rithms were applied [21]. The metabolite response was determined by the peak area ratio of 

the target analyte to the appropriate internal standard. These response ratios were used in the 

subsequent data analysis. ATP, ADP, creatine and phosphocreatine were determined spectro-

photometrically using established enzymatic assays. For the first 3 metabolites, commercially 

available fluorimetric assay kits were used (BioVision cat.# K354-100, K355-100 and K635-100) 

following the manufacturer’s instructions. Phosphocreatine was measured according to a 

colorimetric assay kit protocol described by Szas et al.[23]. In total 96 metabolites including 

amine, acylcarnitines, organic acids, oxylipins and a number of nucleotides were measured. 

statistical analysis
Statistical analysis was performed on log-transformed data. We used analysis of variance 

(ANOVA) for between group comparisons at baseline. P-value<0.05 was considered signifi-

cant. We used linear mixed models for assessment of the training effect. Our model included 

exercise training, subject, sex, protein supplementation and within subject correlation. Anal-

yses of the training effect was performed separately for frail and healthy older subjects due 

to differences in training frequency. To summarize acylcarnitines into one single metabolite 

(eigen metabolite), the Non-linear Iterative partial least squares (NIPALS) algorithm [24] of the 

mixOmics R library was used to calculate the Singular Value Decomposition (SVD) of acylcar-

nitines. The mixOmics R library was used to perform multilevel sparse partial least squares 

(sPLS) [25, 26]for integration of metabolomics and transcriptomics. A canonical correlation 

cut-off of 0.80 was used for building the network. FactoMineR was used to perform principal 

component analysis (PCA) [27]. All analyses were done using R (version 3.02). 

ASCA (ANOVA Simultaneous Component Analysis) was performed to determine global dif-

ferences on metabolites. ASCA is a multivariate method that partitions variation in the data and 

enables to interpret these partitions by simultaneous component analysis [28]. Analysis was per-

formed separately for the frail and healthy older subjects, using delta values of each metabolite 

for each individual (value after training - value before training) with supplement, sex and their 

interaction in the model as factors. Analysis was done under Matlab  (version R2012a).
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resuLTs

Baseline comparisons between healthy older, frail older and young subjects

Comparison of the circulating metabolites profiles of young and healthy older subjects 

revealed a range of metabolites that differed significantly between both groups. Analysis of 

variance (ANOVA) showed that amino acids and acylcarnitines were responsible for the main 

differences in circulating metabolites between older and young subjects. These differences 

were in line with previous observations of age-related effects on the circulating metabolome 

[8, 29, 30].

Figure 1 shows a principal component analysis (PCA) of the biogenic amine profiles of the 

muscle biopsies obtained from young, healthy older and frail older subjects, before and after 

exercise. We observed clear age-related differences in the biogenic amine profiles of skeletal 

muscle, as well as a difference between healthy and frail older subjects. The PCA plot also 

revealed an effect of prolonged resistance-type exercise training on amine concentrations in 

muscle tissue. PCA revealed a similar effect for organic acids in muscle (Supplementary Fig-

ure S2). 

ANOVA yielded a series of skeletal muscle metabolites that significantly differ between 

healthy older subjects and young subjects. Many of these metabolites are amino acids and 

organic acids (Table 2). The outcome of ANOVA modeling of muscle metabolites in healthy vs. 

frail older subjects is presented in Table 3.

effect of prolonged resistance-type exercise training in frail and healthy 
older subjects

In the PCA plot in Figure 1 we can observe that prolonged resistance-type exercise training 

has an effect on the biogenic amine profile of skeletal muscle tissue of frail and healthy older 

subjects. The trends in the PCA plot suggest that upon training both healthy and frail older sub-

jects shift towards a younger phenotype (see also the plot for the average value of isoleucine 

in Supplementary Figure S3,a). The variation in this PCA plot may not only be due to pheno-

type (young, healthy and frail old) and exercise, but also to sex and protein supplementation. 

Hence we performed ANOVA Simultaneous Component Analysis (ASCA) to account for these 

different sources of biological variation. We observed that prolonged resistance-type exercise 

training had a weak effect on muscle tissue metabolite levels. No significant interaction of 

protein supplementation with training in both frail and healthy older subjects could be ob-

served. Interaction of sex with training was not significant in healthy older subjects, but was 

significant in frail older subjects (P-value=0.03). 

Next we used linear mixed models on univariate metabolite levels to account for phe-
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notype, exercise, protein supplementation and sex as sources of biological variation. We ob-

served that prolonged resistance-type exercise training affected muscle levels of acylcarni-

tines in both the healthy older and frail older subjects (Table 4 and 5, respectively). These 

effects pertain to propionyl (C3), methylmalonyl (C4-DC), and isovaleryl (C5) acylcarnitines 

as products of the oxidation of amino acids, branched chain amino acids (BCAA), and C6-C20 

acylcarnitines as products of fatty acid oxidation [31]. For several acylcarnitines the exercise 

effects were nearly significant (P-value >0.05), hence we used the singular value decompo-

sition to summarize the levels of fatty acid derived and amino acid derived acylcarnitines 

(denoted as FAAC and AAAC, respectively in Figure 4 and 5). Subsequently, we also performed 

linear mixed models to determine the effect of training on the fatty acid derived and amino 

acid derived acylcarnitines. The amino acid derived acylcarnitines levels were significantly 

decreased after training for both healthy and frail older subjects (see example of the effects 

for propionylcarnitine in Supplementary Figure S3, b). 

We used multilevel sPLS to integrate muscle changes in the transcriptome and metabolome 

after training. Here the goal was to investigate the interaction of two matched data sets and the 

selection of subsets of either positively or negatively correlated variables across all subjects. 

This multivariate approach highlighted the training effects within subjects separately from the 

biological variation between subjects. We applied canonical mode, which highlights the stron-

gest correlations between the two data sets. Subsequently, we selected significantly changed 

genes based on training (FDR<0.05) in both frail and healthy older subjects. We observed that 

amino acids, particularly branched chain amino acids, correlate with genes related to connec-

tive tissue/extracellular matrix such as collagen, laminin and SPARC (Figure 2). 

correlation between muscle and plasma metabolites levels
Within this study we simultaneously collected fasting plasma and muscle biopsies. We 

investigated to what extent baseline plasma metabolite levels reflect muscle metabolite levels. 

We first constructed separate correlation heatmaps for muscle and plasma metabolites within 

each compartment. In Figure 3a-b one can observe that metabolites that are in the same group 

of metabolites (e.g. amino acids, acylcarnitines) are correlated to each other within both plas-

ma and muscle. However, the correlation heatmap of muscle and plasma metabolites (Figure 

3c) showed only minor to moderate correlations between muscle and plasma metabolites 

(Pearson correlation between 0.3 and 0.5). The correlation networks (Figure 3d) show that 

strongest correlations pertain to 3-hydroxybutyric acid, 4-hydroxyproline, proline, branched 

chain amino acids and several acylcarnitines. Correlation of serum and muscle metabolites 

are presented in Supplementary Figure S4. Results are generally in line with plasma-muscle 

metabolite correlations.
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dIscussIOn

Comprehensive metabolic profiling of muscle biopsies: age and resistance-
type exercise training effects in a heterogeneous study population

Comprehensive metabolic profiling of muscle biopsies revealed baseline differences between 

the muscle biopsy metabolomes of healthy young, healthy older and frail older subjects. Fur-

thermore, distinct effects of prolonged resistance-type exercise training in the latter two groups 

could be observed. Critical was the deployment of five robust profiling platforms using a single 

and thoroughly validated muscle-biopsy extraction procedure [12]. The analytical variation in 

these profiles, was around 20-30%, which was smaller than the biological variation in the mus-

cle biopsies. In order to separate the sources of biological variation in our heterogeneous study 

population we relied on univariate linear mixed models. The metabolic effects of sex and sup-

plementation however turned out to be relatively minor compared to phenotype and response 

to prolonged resistance-type exercise training. A multivariate approach (ASCA) did not show any 

significant effects of training, probably because not all sources of biological variation could ad-

equately be accounted for [32]. In the following discussion we limit ourselves to univariate ap-

proach since it more strictly accounts for heterogeneity of our study population. 

baseline comparisons
TCA cycle metabolites (succinic acid, fumaric acid, 2-ketoglutaric acid) were lower in the 

healthy older subjects compared to young subjects. These differences were accompanied by low-

er levels of ATP, ADP, branched chain amino acids and acylcarnitines in the healthy older sub-

jects. This indicates impaired mitochondrial function or a lower number of mitochondria in the 

muscle of the older subjects. It may also be a reflection of the lower habitual physical activity of 

the older subjects. These observations are in line with data on the transcriptomics profile of these 

subjects, which show that genes related to mitochondrial function and oxidative phosphoryla-

tion have decreased expression in the older subjects compared to young subjects, with the lowest 

expression occurring in the frail older subjects [7]. This is also in agreement with other studies [8, 

33-37], where the mitochondrial electron-transport chain is also among the significantly different 

pathways in muscle metabolism when comparing older and young subjects. 

Worth mentioning are the lower levels of 4-hydroxyproline and proline in the healthy old-

er subjects compared to the young subjects. Both of these amino acids have been associated 

with collagen turnover [38, 39]. Two precursors of proline, ornithine and arginine, have high-

er muscle levels in the older subjects. Higher levels of ornithine and arginine, together with 

lower levels of 4-hydroxyproline and proline, may be due to dysfunction of the mitochondrial 

ornithine aminotransferase [40], leading to accumulation of arginine and ornithine. This is in 
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line with slightly lower expression of genes related to tissue remodeling, such as collagen in the 

older subjects compared to the young subjects [7]. 

In healthy older subjects we observed higher muscle levels of β-isoamino butyric acid (BAIBA) 

than in young subjects. Hypothetically, this metabolite is produced upon exercise by expression 

of PGC-1α and has been proposed as a myokine stimulating browning of white adipose tissue and 

hepatic β-oxidation [41]. In our study population we observe gene transcription downregulation 

of PGC-1α target genes in healthy older subjects with respect to young and in frail older subjects 

with respect to healthy older subjects [7]. At posttranslational level activity of PGC-1α is modulat-

ed by NAD+ dependent deacetylation by SIRT1 (Figure 4-b) [42]. Since NAD+ levels are decreasing 

with age [43], we expect also here a downregulation of PGC-1α [44]. The expected decrease of 

β-isoamino butyric acid (BAIBA) levels is however only observed when comparing frail to healthy 

older subjects, whereas we observe a significant increase in BAIBA in healthy older subjects com-

pared to young subjects. Thus, the observed changes in baseline levels of BAIBA levels in muscle 

in our study population do not appear to be consistent with age-related down regulation of PGC-

1α. Hence we cannot confirm the recently stated hypothesis that BAIBA acts as a PGC-1α induced 

myokine. An explanation could be that in our study differences in PGC-1α expression are caused 

by age and frailty dependent processes, whereas previously described PGC-1α -mediated effects on 

BAIBA were caused by acute exercise. 

Two polyamines, spermine and spermidine, were found to be significantly different in the 

frail compared to the healthy older subjects. Polyamines are involved in tissue regeneration and 

cell proliferation and differences are associated with both exercise and muscle pathology [45-47]. 

The genes directly involved in the polyamine pathway are however not differentially expressed 

between frail and healthy older subjects. Hence the observed differences in polyamine levels be-

tween the frail and healthy older subjects are more likely to be attributed to effects at the level of 

enzyme activity or metabolite transport. Previous studies have shown that perturbations in poly-

amine metabolism are associated with neuromuscular disorders [48, 49]. On the transcriptome 

level we indeed found indications of neuromuscular perturbations in the frail older subjects [7]. In 

addition, increased spermine levels were recently linked to skeletal muscle atrophy [50]. However, 

our data suggests that at baseline this process is in the opposite direction when comparing frail 

and healthy older subjects, even though frail older subjects generally have less skeletal muscle 

and are likely to exhibit more extensive muscle atrophy. Ost et al. recently reported that spermi-

dine is increased in the skeletal muscle of mice overexpressing uncoupling protein 1. The authors 

proposed that this might be an adaptive response to cope with the additional oxidative stress [51]. 

The level of carnosine is decreased in healthy older subjects relative to young subjects, and 

in frail relative to healthy older subjects. Carnosine is an abundant metabolite in muscle where 

it plays an important role in intracellular pH buffering [52]. Carnosine has also been associated 



T h e  m u s c l e  m e T a b o l o m e  d i f f e r s  b e T w e e n  h e a l T h y 

a n d  f r a i l  s u b j e c T s  o f  o l d e r  a g e

65

3

with chelation of metal ions and antioxidant activity [53]. Carnosine levels are higher in type II 

muscle fibers compared to type I. A likely explanation for the significantly lower levels of car-

nosine in healthy and frail older subjects is therefore the decrease of muscle fiber II/I ratio with 

respectively age and lack of exercise[54].

Several oxylipins derived from linoleic acid (LA) and α-linoleic acid (ALA) occur at higher 

levels in the muscle of the healthy older subjects compared to young subjects. On the other hand, 

metabolites derived from the D-6 desaturase product dihomo-γ-linoleic acid (DGLA) are reduced 

in healthy older subjects. We postulate that due to reduced D-6 desaturase activity linoleic acid 

and α-linoleic acid accumulate in the muscle of the healthy older subjects, whereas downstream 

D-6 desaturase product dihomo-γ-linoleic acid products are depleted [55]. 

effect of prolonged resistance-type exercise training
We compared the effect of prolonged resistance-type exercise training in both healthy and 

frail older subjects with all metabolites using multilevel sPLS. There was a profound correla-

tion between the adaptive response to training between the transcriptome and amino acids in 

the muscle metabolome (canonical correlations between 0.7 and 0.8). There were particularly 

high correlations between expression changes of extracellular matrix genes and amino acids. 

Although it is unlikely that there is a direct link between expression of these genes and levels of 

these metabolites, it does imply that these changes in amino acid levels are part of the adaptive 

response to resistance-type exercise training. 

At the metabolite level, the most striking effects of resistance-type exercise training in frail and 

healthy older subjects were observed for the C3 (propionyl) and C5 (isovaleryl) muscle acylcarni-

tines derived from branched chain amino acids. After training, the amino acid derived acylcarni-

tines showed a significant decrease both in the healthy and frail older subjects, accompanied by an 

increase of branched chain amino acids. A likely explanation is that the flux-determining mitochon-

drial branched chain α-keto acid hydrogenase (BCKDH) complex [56] has a compromised response 

to prolonged resistance-type exercise training. As is schematically depicted in Figure 4-a, the BCKDH 

complex can respond to exercise via different mechanisms. PGC-1 is a known activator of BCKDH, 

but training did not have an effect on its gene expression in our study. Exercise is known to increase 

NAD+ levels [44] and could thus activate PGC-1α in a post-translational manner via SIRT1. Apparently 

also this mechanism is not activated by training in the older subjects. These effects are specific for 

branched chain amino acids oxidation and no significant effects on fatty acid derived acylcarnitines 

were found. A decrease in branched chain amino acids oxidation may stimulate mTOR related path-

ways activation and protein synthesis [57, 58], which is beneficial for older subjects. As this mecha-

nism occurs at enzymatic level, the available metabolomics and transcriptomics data can however 

not confirm this hypothesis and in future studies proteomics would be called for.
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correlation of plasma and muscle metabolome
The weak correlations between plasma and muscle metabolite levels indicate that plas-

ma levels only partially reflect muscle metabolism, even though muscle is one of the largest 

metabolically active tissues in the human body. This seems to suggest that these metabolites 

are also produced by other metabolic compartments. In a recent study, lack of correlation 

between acylcarnitine levels in plasma and tissues in mice was attributed to differences in 

turnover in plasma and muscle compartments, and contribution of other compartments 

than muscle to plasma acylcarnitine levels [59]. The same rationale very likely also applies to 

amino acids involved in collagen metabolism (proline, 4-hydroxyproline), which can also be 

formed in bone. Adipose tissue is also a metabolically active compartment for branched chain 

amino acids besides muscle [60], and this will likely weaken plasma-muscle level correlations. 

As a consequence, correlations between plasma metabolites and muscle metabolites are too 

modest to support their use as direct read-outs of muscle metabolism [61, 62]

cOnclusIOn

The major differences in muscle metabolome of healthy older and young subjects relate to 

mitochondrial function, fiber-type composition, and tissue turnover. Similar differences were ob-

served when comparing frail older subjects with healthy older subjects. Prolonged resistance-type 

exercise training showed a correlative adaptive response of amino acids and genes responsible for 

tissue remodeling. The effect of exercise on amino acid derived acylcarnitines in healthy and frail 

older subjects points towards decreased branched chain amino acids catabolism likely due to atten-

uated activation of the flux-determining mitochondrial branched chain α-keto acid hydrogenase 

complex in older subjects. Only modest correlations between muscle metabolite and plasma levels 

were found, which prohibits the use of the latter as read-outs of muscle metabolism.
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Table 1.Characteristics of subjects of which skeletal muscle tissue biopsies were studied
Table 1.Characteristics of subjects of which skeletal muscle tissue biopsies were studied 

   Young Healthy older Frail older 

N (male / female) 30/0 47/19 25/18 

Age (years) 21.7 ± 2.5 71.7 ± 5.2 77.5 ± 8.0 

Height (m) 1.83 ± 0.06 1.72 ± 0.08 1.67 ± 0.09 

Weight (kg) 76.7 ± 11.8 75.9 ± 13.3 77.5 ± 11.1 

BMIa (kg / m2) 22.6 ± 2.7 25.5 ± 3.0 27.5 ± 3.7 

Body Fat (%) 14.9 ± 4.9 24.5 ± 5.6 32.1 ± 8.8 

 Data was presented as mean ±SD. a: body mass index. 

 



T h e  m u s c l e  m e T a b o l o m e  d i f f e r s  b e T w e e n  h e a l T h y 

a n d  f r a i l  s u b j e c T s  o f  o l d e r  a g e

73

3

Table 2. Muscle metabolites that are significantly different between healthy 

older and young males a

 

 

 

 

 

 

 

Table 2. Muscle metabolites that are significantly different between healthy older and young males a 

Metabolite P-value 

FCb 

(Older/Young)    

TCA Cycle 

Succinic acid 0.02 0.76 

2-ketoglutaric acid 0.03 0.76 

Fumaric acid 0.04 0.82 

Lactic acid 0.05 0.69 

Energy 

ATP <0.01 0.75 

ADP 0.01 0.88 

Branched chain amino acids 

Valine <0.01 0.81 

Leucine <0.01 0.81 

Isoleucine 0.03 0.84 

Acylcarnitines 

Acetylcarnitine (C2) <0.01 0.49 

Malonylcarnitine (C3-DC) <0.01 0.46 

Intracellular buffering 

Carnosine <0.01 0.7 

Arginine, Proline Pathway 

Ornithine <0.01 1.55 

Arginine <0.01 1.34 

4-hydroxy-proline 0.01 0.69 

Proline 0.02 0.84 

Glycylglycine 0.05 0.87 

Methionine <0.01 0.8 
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Table 2 continued 

Other amino acids 

Lysine <0.01 1.44 

Aspartic acid <0.01 1.45 

Oxylipins 

LA (LOX) 

9-HODE <0.01 1.4 

13-HODE 0.01 1.37 

13-KODE 0.03 1.3 

LA(CYP450) 
  

9,10-EpOME 0.04 1.39 

ALA (LOX) 

9-HOTrE 0.01 1.71 

DGLA (LOX) 

15S-HETrE 0.02 0.83 

8-HETrE 0.03 0.85 

Aminobutyric acids 

 β amino isobutyric acid <0.01 1.61 

α-aminobutyric acid 0.01 0.82 

   

a: Out of a comprehensive muscle biopsy metabolic profile those metabolites are  

presented that are significantly (P-value =<0.05) different between young  

and old subjects according to univariate ANOVA models. b: Fold Change    
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Table 3.Muscle metabolites that are significantly different between frail and healthy older subjects.a 

Metabolite Group  Sex  Interaction  FCb(Frail/Healthy)   

TCA Cycle 

Citric acid <0.01 NS c NS 0.54 

Acylcarnitines 

Isovalerylcarnitine (C5) <0.01 NS NS 0.42 

Octenoylcarnitine (C8) 0.03 0.03 NS 0.77 

Malonylcarnitine(C3-DC) 0.02 NS NS 0.77 

Carnitine (C0) 0.01 NS NS 0.75 

Intracellular buffering 

Carnosine 0.01 NS NS 0.8 

Oxylipins 

LA (CYP450) 

12,13DiHOME 0.04 NS 0.03 1.18 

DGLA (LOX) 

8HETrE 0.03 NS NS 0.81 

15SHETrE <0.01 NS NS 0.77 

Polyamine metabolism         

Spermidine 0.01 0.02 NS 1.24 

Spermine 0.04 NS NS 0.9 

Other amino acids  

Histidine <0.01 NS NS 0.79 

Asparagine 0.01 NS NS 0.81 

Taurine 0.01 NS NS 0.79 

Serine 0.01 NS NS 0.86 

Glycine 0.02 NS NS 0.81 

oacetylserine 0.02 NS NS 0.9 

Homoserine 0.02 NS NS 0.85 

Tyrosine 0.02 NS NS 0.83 

Tryptophan 0.02 0.04 NS 0.83 

Methionine 0.02 NS NS 0.83 

Glutamine 0.03 NS NS 0.82 

Pyroglutamic acid 0.03 NS NS 0.83 

Glutamic acid 0.04 NS NS 0.82 

Glycylglycine <0.01 NS NS 0.77 

Aminobutyric acids 

β amino isobutyric acid 0.05 NS NS 0.79 

a: Out of a comprehensive muscle biopsy metabolic profile those metabolites are presented that are significantly (P-value 

=<0.05) different between frail and healthy older subjects according to a univariate ANOVA models that accounted for 

Group effects (Frail vs. Healthy), Sex effect, and Group and Sex interaction; Significance of Group (Frail vs. Healthy older 

subjects) and Group & Sex interactions has been indicated; b:fold change;  c: not significant 
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Table 4. Training effect on muscle metabolites in healthy older subjects a 

Metabolite Training FC(post/pre training)b 

Pipecolic acid 0.002 1.64 

Isovalerylcarnitine (C5) 0.005 0.56 

Linoleylcarnitine (C18:2) 0.01 0.61 

Oleylcarnitine (C18:1) 0.01 0.7 

Propionylcarnitine (C3) 0.01 0.73 

Palmitoylcarnitine (C16) 0.02 0.75 

11.12.EpETrE 0.03 1.26 

Tetradecenoylcarnitine (C14:1 0.03 0.47 

AAACc 0.02 0.77 

FAACd NS 0.96 

a: Metabolites are presented that significantly (P-value =<0.05) differ pre- and 

Post-training in healthy older subjects according to univariate linear mixed models. 

We note that we constructed also linear mixed models that account for other factors  

and their interactions, but these were not found to be significant. b: fold change,  

c,d: Single Value Decomposition (SVD) were calculated for amino and fatty acid  

acylcarnitines, denoted as AAAC and FAAC, respectively. 

 

Table 4. Training effect on muscle metabolites in healthy older subjects a
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Table 5. Training effect on muscle metabolites in frail older subjects a 

Metabolite Training Supplement Sex Interaction FC (post/pre training)b 

Propionylcarnitine (C3) <0.01 NSc NS NS 0.75 

Glucose <0.01 NS <0.01 NS 1.35 

Lactic acid 0.01 NS <0.01 NS 1.55 

Tetradecenoylcarnitine (C14:1) 0.03 NS NS NS 2.00 

Methionine 0.04 <0.01 NS NS 1.22 

Tryptophan 0.04 NS NS NS 1.21 

β Alanine 0.05 NS NS 0.01 0.92 

Isoleucine 0.05 <0.01 0.02 NS 1.21 

Myristoylcarnitine (C14) 0.05 NS NS NS 1.73 

AAACd 0.01 NS NS NS 0.76 

FAACe NS NS NS NS 1.95 

           

a: Metabolites are presented that significantly (P-value =<0.05) differ pre- and post-training in frail older 

subjects according to univariate linear mixed models that account for Supplement, Sex and (Training and 

Supplement) Interaction. We note that we constructed also linear mixed models that account for other 

interactions, but these were not found to be significant. b: fold change, c: Not Significant, d & e: Single Value 

Decomposition (SVD) were calculated for amino acid and fatty acid acylcarnitines (AAAC and FAAC, 

respectively).  
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Figure 1. Principal component analysis (PCA) plot of biogenic amines detected in muscle biopsies. To visualize 

whether groups are significantly different from each other, confidence ellipses (95% Confidence Interval) were 

drawn around them.
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Figure 2. Correlation network of muscle metabolites and genes. Only significantly changed genes were selected 

(FDR<0.05). Metabolite canonical correlation cutoff <= 0.80. Circle: gene, rectangle: metabolite. Green: positive 

correlation.
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were selected (FDR<0.05). Metabolite canonical correlation cutoff <= 0.80. Circle: gene, rectangle: 

metabolite. Green: positive correlation. 

 



80

 

 

Figure 3. Correlation heatmap of muscle to muscle metabolites (a), plasma to plasma metabolites (b), 

muscle to plasma metabolites (c). Pearson correlation were used. (d) Correlation network of the most 

strongly correlated muscle and plasma metabolites (Pearson correlation). Red and blue indicate 

positive and negative correlations, respectively. Thick lines: correlation ~0.5, thin lines: 0.3 

<correlation <0.5. Pink nodes: muscle tissue (T) metabolites and yellow nodes: plasma (P) 

metabolites. 
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Figure 3. Correlation heatmap of muscle to muscle metabolites (a), plasma to plasma metabolites (b), muscle to 

plasma metabolites (c). Pearson correlation were used. (d) Correlation network of the most strongly correlated 

muscle and plasma metabolites (Pearson correlation). Red and blue indicate positive and negative correlations, 

respectively. Thick lines: correlation ~0.5, thin lines: 0.3 <correlation <0.5. Pink nodes: muscle tissue (T) metabolites 

and yellow nodes: plasma (P) metabolites.
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Figure 4. (a) Schematic representation of mitochondrial oxidation of free fatty acids (FFA) and branched chain amino 

acids (BCAA). Arrows indicate effect of prolonged resistance-type exercise training on older subjects (healthy and 

frail) on BCAA (increase) and acylcarnitines (decrease) as well as the proposed (dashed-arrows) downregulation of 

the branched chain α-keto acid hydrogenase (BCKDH) complex. (b) Schematic representation of age-related NAD+ 

dependent acetylation of PGC1α. Dashed arrows indicate NAD+ and SIRT1 dependent downregulation of PGC-1α 

and β-isoamino butyric acid (BAIBA).
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suPPleMenTARy MATeRIAl

Figure s1. Change of leg extension 1RM after resistance type exercise training. Left are Frail older subjects, right are 

Healthy older subjects.
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Figure s2. PCA plot of metabolites detected by the organic acid platform in muscle tissue. To visualize whether 

groups are significantly different from each other, confidence ellipses (95% confidence interval) were drawn around 

them. Post: after training, pre: before training. 
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Figure S3.Group means with 95 percent confidence intervals for (a) isoleucine and (b) 

propionylcarnitine. Standard deviations were relatively constant across groups. Frail_pre: frail older 

subjects before training, Frail_post: frail older subjects after training, Healthy_pre: healthy older 

subjects before training, Healthy_post: healthy older subjects after training.  
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3Figure s4. Correlation heatmap muscle and serum metabolite. Pearson correlation were used. Red 

indicates positive correlation and blue indicates negative correlation.

 

 

Figure S4. Correlation heatmap muscle and serum metabolite. Pearson correlation were used. Red 

indicates positive correlation and blue indicates negative correlation. 

 

 

 

 

Table S1. Characteristics of subjects of which plasma samples were studied 

  Young Healthy older Frail older 

N (male / female) 50/0 51/25    35/27 

Age (years) 21.7 ± 2.3  71.5 ± 5.1 78.1 ± 8.1 

Height (m) 1.83 ± 0.05 1.71 ± 0.08 1.69 ± 0.09 

Weight (kg) 76.4 ± 10.3 76.3 ± 12.9 79.2 ± 12.9 

BMIa (kg / m2) 23.0 ± 2.9 25.5 ± 3.0 27.8 ± 4.1 

Body Fat (%) 15.4 ± 4.5 24.7 ± 5.7 32.66 ± 8.7 

a:body mass index. 

 
 

Table S2.Characteristics of the older subjects with before and after training samples. 

  

Frail  

older prea 

Frail 

 older post b 

Healthy  

older pre 

Healthy  

older post 

N (male / female) 10/14  22/16  

Age (years) 76.0 ± 7.0  69.3 ± 4.0  

Height (m) 1.66 ± 0.09  1.70 ± 0.09  

Weight (kg) 77.7 ± 13.6 78.5 ± 14.0 75.9 ± 13.4 76.2 ± 13.6 

BMIc (kg / m2) 27.9 ± 3.8 28.2 ± 3.9 26.0 ± 2.8 26.0 ± 2.8 

Body Fat (%) 35.4 ± 8.3 35.2 ± 8.8 26.4 ± 5.4 24.7 ± 5.0* 

Lean Mass (kg) 46.9 ± 9.9 47.4 ± 10.1* 53.6 ± 11.2 55.1 ± 11.5 

Leg Extension 1RM (kg) 60.1 ± 18.9 82.7 ± 23.3* 79.8 ± 18.2 112.6 ± 22.5* 

Leg Press 1RM (kg) 130.1± 33 176 ± 43.0* 175.9 ± 40.4 227.0 ± 49.9* 

a:pre indicates before training. b: post indicates after training. c: Body Mass Index. * indicates a significant 

effect of resistance-type exercise training (P-value < 0.05).  

 

Table s1. Characteristics of subjects of which plasma samples were studied

Table s2.Characteristics of the older subjects with before and after training samples.
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AbsTRAcT

The response to dietary challenges has been proposed as a more accurate measure of met-

abolic health than static measurements performed in the fasted state. We examined whether 

the response to a mixed-meal challenge could provide a readout for a weight lossinduced 

phenotype shift in abdominally obese male subjects. Fifteen lean subjects (BMI= 23.0±2.0kg/

m2) were compared to 29 abdominally obese subjects (BMI= 30.3±2.4 kg/m2) in order to have 

a benchmark for weight loss-induced phenotypic shifts. Levels of several plasma metabolites 

were significantly different between lean and abdominally obese at baseline as well as during 

postprandial metabolic responses. Genes related to oxidative phosphorylation in peripheral 

blood mononuclear cells (PBMCs) were expressed at higher levels in abdominally obese sub-

jects as compared to lean subjects at fasting, which was partially reverted after weight loss. 

The impact of weight loss on the postprandial response was modest, both at the metabolic and 

gene expression level in PBMCs. We conclude that mixed-meal challenges are not necessarily 

superior to measurements in the fasted state to assess metabolic health. Furthermore, the 

mechanisms accounting for the observed differences between lean and abdominally obese 

in the fasted state are different from those underlying the differences observed during the 

postprandial response.

KEYWORDS. Mixed-meal challenge, Metabolic health, Phenotype shift
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InTROducTIOn

Healthy individuals are able to respond to external stimuli by keeping biological parame-

ters within narrow homeostatic bandwidths. As a consequence, current approaches focusing 

on disease risk biomarkers mostly lack the sensitivity to detect the effects of lifestyle and di-

etary interventions aimed at improving or sustaining health. Hence, there is a growing aware-

ness that ‘health’ should not just be defined as ‘the absence of disease’, but is more accurately 

described as ‘resilience of homeostatic control’, i.e. the ability to cope with daily challenges [1] 

without drifting out of the regulated homeostatic/allostatic zone [2]. The concept of the human 

body as an orchestrated machinery that continuously adapts to a changing environment has 

been embraced by the nutritional field and coined as ‘phenotypic flexibility’[3]. The earlier 

introduced concept of ‘metabolic flexibility’ departs from a more narrow definition of phe-

notypic flexibility and specifically refers to the ability of organs to change fuel use depending 

on availability [4]. The capacity to switch from carbohydrate to fat oxidation and vice versa 

depending on their supply and demand is crucial for optimal metabolic homeostasis, and thus 

an important aspect of phenotypic flexibility. In both concepts, the resilience capacity can be 

tested by the assessment of the stress response to short-term perturbations. 

Specific dietary challenge tests have been described, each probing the resilience of differ-

ent metabolic regulatory processes. The best known challenge test is the oral glucose toler-

ance test (OGTT), which specifically probes the resilience of glucose metabolism [5]. The oral 

lipid and protein tolerance tests (OLTT and OPTT, respectively) probe the resilience of other, 

and partially overlapping metabolic regulatory processes. The use of a mixed-meal challenge, 

comprising protein, glucose and lipids, has been proposed to target multiple organs and more 

broadly encompass phenotypic flexibility [6]. By challenging metabolic regulatory processes 

by means of a dietary challenge, dynamic changes in nutrient metabolism might be uncovered, 

allowing better exploration of the individual capacity to cope with metabolic stressors [7]. 

Next to metabolite profiling, which has already been shown to be useful in revealing the 

complex changes upon dietary challenges, gene expression of peripheral blood mononuclear 

cells (PBMCs) has been brought forward as readout of biological processes such as inflam-

mation, metabolism [8], oxidative stress and inflammatory status [9-11]. PBMCs can be easily 

collected in adequate quantities for transcriptomics studies, and it has been shown that nu-

tritional components can modulate pro- and anti-inflammatory mechanisms [8, 12]. A previ-

ous study has indicated that long-term consumption of a Mediterranean diet (high content of 

unsaturated fats and polyphenols) reduces metabolic stress and oxidative phosphorylation 

activity in PBMCs obtained from overweight men and women [13]. Furthermore, it has also 

been shown that diet induced weight loss modulates immune-inflammatory and antioxidant 
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responses and mRNA expression in PBMCs [14]. 

We examined whether a mixed-meal challenge response could provide a sensitive read-

out for a shift in phenotypical flexibility upon weight loss in abdominally obese male subjects. 

By combining metabolite profiling in plasma and whole genome gene expression in PBMCs, 

we aimed at comprehensively describing the changes in the metabolome and gene expres-

sion underlying phenotypic flexibility. We were in particular interested whether the effect 

of weight loss on the postprandial response would provide a more sensitive readout than the 

observation in the fasting state. In order to have a benchmark for this comparison, we first 

compared fasting baseline and postprandial response between lean and abdominally obese 

subjects. Subsequently, we assessed the effect of dietary weight loss on the fasting baseline 

and postprandial response in abdominally obese men. 

MATeRIAls And MeThOds

subject characteristics
Fifteen lean men with a waist circumference below 94 cm (BMI= 23.0 ± 2.0kg/m2) and 

29 abdominally obese men with a waist circumference between 102-110 cm participated in 

the study (BMI= 30.3 ± 2.4 kg/m2). Baseline characteristics of subjects of which microarrays 

and metabolomics were performed are displayed in Table1. All volunteers were apparently 

healthy and did not receive proton pump inhibitors, anti-hypertensive medication or drugs 

known to affect lipid or glucose metabolism.

study design 
Full details of the study have been published before [15]. In brief, abdominally obese men 

received a mixed-meal challenge prior to and after an 8-week weight loss or no-weight loss 

control intervention. Lean subjects were included as a reference group and only received the 

mixed meal challenge at baseline (Figure 1). Prior to the intervention (D1), all subjects under-

went a mixed-meal challenge. The standardized mixed meal consisted of two muffins and 

300 ml 0% fat milk, which provided 4.6 MJ (4598 KJ or 1100 kcal): 56.6 g fat, 26.5 g protein and 

121 g carbohydrate. Blood samples were collected at fasting and immediately after ingestion 

of the challenge over 4 hours at regular intervals (0, 30, 60, 120, 180, 240 minutes). Subjects 

assigned to diet-induced weight-loss (WL, Figure 1) program consumed a commercially avail-

able very low energy diet (Modifast; Nutrition et Santé, Benelux, Breda, The Netherlands) for 

4-5 weeks providing 2.1 MJ/day. Once the waist circumference was below 102 cm (the NCEP 

ATP II cut-off value) within this period, subjects consumed a mixed-solid energy-restricted diet 

up to 4.2 MJ/day with a recommended composition for the following 1-2 weeks. Then, subjects 
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consumed a diet matching their energy requirements to maintain their newly achieved body 

weights (weight-stable conditions) for at least 2 weeks. Subjects underwent the same mixed-

meal challenge again after the weight loss intervention (D2). Blood samples were collected at 

the same time intervals as on D1. Subjects assigned to the control (CTRL, Figure 1) intervention 

underwent the same tests, but maintained their habitual diet, physical activity levels and al-

cohol consumption during 8 weeks. The period between the first and second measurements 

was the same for the weight loss intervention (WL) and control (CTRL) groups. More details 

on the composition of low energy diet and mixed meal challenge can be found elsewhere [15].

sample collection
On the day before blood sampling, subjects were asked not to perform any strenuous 

physical exercise or to consume alcohol. On the morning of blood sampling - after a 12 hour 

overnight fast (from 8 PM) subjects were only allowed to drink a glass of water in the morning. 

Subjects were also asked not to consume high-fat foods on the day prior to the test days and 

to come to the test centre by public transport or car to standardize measurements as much as 

possible.

An intravenous cannula was inserted and blood samples were taken at fasting and after 

mixed meal consumption both before and after the weight loss intervention at 6 time points 

(fasting (T0) and 30, 60,120,180 and 240 minutes in the postprandial state). Metabolic profiling 

was performed on all time points and transcriptomics analysis of PBMCs only at fasting (T0) 

and after 4 hours in the postprandial state (T4). 

PbMc and RnA isolation
PBMCs were isolated before and 4 h after mixed meal challenge by using BD Vacutainer 

Cell Preparation Tubes. RNA was isolated (RNeasy Micro kit, Qiagen, Venlo, the Netherlands), 

quantified (Nanodrop ND 1000, Nanodrop technologies, Wilmington, DE, USA) and integrity 

was checked by an Agilent 2100 Bioanalyser with RNA 6000 microchips (Agilent Technologies, 

South Queensferry, UK). Samples were included for microarray analysis if RNA integrity num-

ber (RIN) was > 7.

Microarray processing
PBMC samples from 15 lean and 29 abdominally obese subjects yielded enough RNA of 

sufficient quality at all collection points to perform microarray analysis. Microarray analysis 

was performed for each individual at fasting (T0) and 4 h (T4) in the postprandial state. To-

tal RNA was labelled using a one-cycle cDNA labelling kit (MessageAmp™ II-Biotin Enhanced 

Kit; Ambion, Inc., Nieuwerkerk a/d IJssel, Netherlands) and hybridized to GeneChip® Human 



92

Gene 1.1 ST Array targeting 19 738 unique gene identifiers (Affymetrix, Inc. Santa Clara, CA, 

USA). Sample labelling, hybridization to chips, and image scanning were performed according 

to the manufacturers’ instructions.

Microarray analysis
Microarray signals were normalized using robust multichip average (RMA). Data was fil-

tered using Universal expression Codes filtering (UPC) with a 50% cut-off, corresponding to a 

50% likelihood that a gene is expressed [16]. Significant differences of individual genes were 

tested using the limma R library [17]. At fasting, the expression of genes between groups was 

defined as different when P was < 0.05 in a t-test with empirical Bayes correction. Gene ex-

pression was defined as postprandial changed between T0 and T4 h when the P was< 0.05 in 

a paired t-test with empirical Bayesian correction. Data were further analysed with gene set 

enrichment analysis (GSEA) using pre-ranked lists based on the t-statistic [18]. Gene sets with 

a false discovery rate (FDR Q<0.2) were defined as significantly regulated. Plots were made 

using the R libraries ggplot2 and gplots [19, 20].

Plasma metabolic profiling
Amino acids and biogenic amines were derivatized (Acc-Tag) in 5 µL aliquots of plasma 

and analyzed using an ACQUITY UPLC system equipped with autosampler (Waters, Etten-Leur, 

The Netherlands) and coupled to a Xevo Tandem quadrupole mass spectrometer (Waters) 

operated using QuanLynx data acquisition software (version 4.1; Waters). An Accq-Tag Ultra 

column (Waters) was used. The Xevo TQ was used in the positive-ion electrospray mode and 

all analytes were monitored in Multiple Reaction Monitoring (MRM) using nominal mass res-

olution. Acquired data were evaluated using TargetLynx software (Waters), by integration of 

assigned MRM peaks and normalization using proper internal standards [21]. Acylcarnitines, 

trimethylamine-N-oxide, choline, betaine, deoxycarnitine and carnitine were analyzed in 5 µL 

plasma, spiked with an internal standard, using a UPLC-MS/MS. Also here an Accq-Tag Ultra 

column was used. The Xevo TQ was used in the positive-ion electrospray mode and all ana-

lytes were monitored in Multiple Reaction Monitoring (MRM) using nominal mass resolution. 

In-house developed algorithms[22] were applied using the pooled QC samples to compensate 

for shifts in the sensitivity of the mass spectrometer over the batch. Organic acids were mea-

sured by GC-MS using 50 µL of plasma sample prepared using a two-step derivatization pro-

cedure with subsequent oximation using methoxyamine hydrochloride (MeOX) and silylation 

using N-Methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA. Samples were measured on an 

Agilent GC (7890A) coupled to Agilent Quadrupole-MS with EI source (Agilent MSD 5975C). 

Separation was performed using a HP-5MS column (30 m x 0.25 m x 0.25 μm; Agilent). The raw 
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data were pre-processed using Agilent MassHunter Quantitative Analysis software for GC-MS 

(Agilent, Version B.04.00), and quantitation of metabolite response was calculated as the peak 

area ratios of the target analyte to the respective internal standard. Oxylipins were analyzed 

as previously described [23]. In short, compound extraction was performed with SPE using a 

hydrophilic-lipophilic balance and samples were analyzed by LC using a C18 column coupled 

to ESI on a triple quadrupole mass spectrometer, where oxylipins were detected in negative 

ion mode using dynamic SRM. while chromatographic separation was achieved with a C18 

column. Peak areas of target metabolites were corrected by appropriate internal standards 

and calculated response ratios were used throughout the analysis. In-house developed algo-

rithms were applied using the pooled QC samples to compensate for shifts in the sensitivity of 

the mass spectrometer over the batch. Serum metabolite concentrations determined by NMR 

were measured as described by Mihaleva et al. [24]. Briefly, high resolution 1H NMR spectra 

were acquired on ultrafiltrated serum samples at 300K using a Bruker Avance III 600 MHz 

spectrometer. Automated quantum mechanical line shape fitting of the1H NMR spectra was 

performed using PERCH NMR software to obtain absolute concentrations of 44 metabolites.

Metabolomics statistical analysis 
We used Spearman rank correlations to correlate plasma metabolite concentrations and 

phenotypical parameters (LBM, HOMA). These correlations were also determined for nadir 

and Δ-nadir acylcarnitine values [25]. Nadir acylcarnitine values were defined as the lowest 

value achieved during the 4 hours after the meal. Δ-nadir was calculated as difference be-

tween nadir and T0 values. The postprandial response was considered as the incremental 

area under the curve (iAUC) [26]. For the iAUC calculation, the values at fasting (T0) were 

subtracted from the total AUC. Comparison between abdominally obese and lean group was 

performed using analysis of variance (ANOVA). To evaluate the intervention effect on fasting 

metabolites (T0) and the intervention effect on postprandial response (iAUC) in abdominally 

obese subjects, statistical analysis was performed using linear mixed models. A P<0.05 was 

considered to be statistically significant. 

Local false discovery rate (lFDR) was used to correct for multiple testing [27-29]. All calcu-

lations were performed under R (version 3.2.1).
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ResulTs 

Metabolic differences between lean and abdominally obese subjects 
In order to have a benchmark for the comparison of abdominally obese subjects before 

and after weight loss, we first considered the difference between lean and abdominally 

obese subjects (Figure 1). In the fasted state, 19 plasma metabolites were significantly differ-

ent between abdominally obese subjects and lean subjects (Table 2), including various ami-

no  acids, a fatty acid derived acylcarnitine (FAAC), and metabolites related to the TCA cycle. 

For a number of oxylipins we observed significantly lower plasma levels in the abdominal-

ly obese subjects compared to the lean subjects. Upon the mixed meal challenge, four types 

of postprandial metabolic responses could be recognized, i.e. metabolite changes related to 

glucose metabolism, amino acid metabolism, lipid metabolism, and ketogenesis [30]. Figure 

2 presents typical postprandial curves for these response types. Both lean and abdominally 

obese subjects followed similar responses over time. Metabolites for which the longitudinal 

response, expressed as iAUC, significantly (P<0.05) differed between abdominally obese and 

lean subjects are presented in Table 2. The 8 metabolites that were different between lean and 

abdominally obese included a number of amino acids, but not branched chain amino acids. 

Interestingly, 2-hydroxyisovalerate, a catabolite of branched chain amino acids was also sig-

nificantly different.

In the fasted state, 1862 genes were differently expressed (P< 0.05) in PBMCs between lean 

and abdominally obese subjects. The mixed meal challenge changed the expression of 1305 

genes in abdominally obese and 1707 genes in lean subjects. The response to the meal chal-

lenge of 1537 genes differed between lean and abdominally obese (Δ abdominally obese T4-T0 

vs. Δ lean T4-T0). A total of 359 genes were both differentially expressed between abdominally 

obese and lean after fasting and differed between abdominally obese and lean subjects in 

response to the mixed meal challenge (Figure S1). In the fasting samples, GSEA identified gene 

sets that were enriched in abdominally obese compared to lean subjects (FDR <0.2), which 

mainly belonged to oxidative phosphorylation and the electron transport chain. Gene sets in-

volved in immune regulation were enriched in lean compared to abdominally obese subjects 

(Supplementary Table S1). In the postprandial state, genes related to immune pathways and 

glucose metabolism were enriched in abdominally obese as compared to lean (Δ abdominal-

ly obese T4-T0 vs. Δ lean T4-T0, Supplementary Table S2). In total, in the fasting state 9 gene 

sets were positively enriched and 9 gene sets were negatively enriched in abdominally obese 

compared to lean subjects (FDR<0.2). In the postprandial state, 114 gene sets were upregulated 

in abdominally obese subjects compared to lean subjects, while 15 gene sets were downreg-

ulated.
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Impact of weight loss on fasting metabolism in abdominally obese subjects
All subjects who received the low-calorie diet significantly lost weight (P<0.05) (Table 1). 

To establish whether 

weight loss has any effect on the fasting levels of metabolites in abdominally obese sub-

jects, Δ values were calculated per metabolite per subject (T0 after –T0 before). Table 3 shows 

the three metabolites that were different before and after the weight loss intervention in ab-

dominally obese subjects in the fasted state. We also assessed the connection between weight 

loss and ratios between acetylcarnitine (C2) and longer chain (Cn) acylcarnitines. These (C2/Cn) 

acylcarnitine ratios have previously been suggested as read-outs for lipid β-oxidation and in-

deed significantly correlated with HOMA (Supplementary Material, Table S3). Although these 

correlations suggest that acylcarnitine ratios partly reflect insulin resistance, we could not 

find any significant effect of weight loss on these acylcarnitine ratios, whereas we did observe 

an improvement in the HOMA index [15].

We next determined the effect of weight loss on gene expression in PBMCs in the fasted 

state. Weight loss changed the expression of 835 genes in the abdominally obese subjects (T0 

after weight loss vs. T0 before weight loss, Figure S2). GSEA identified a number of differently 

enriched (FDR <0.04) pathways, including respiratory electron transport, and oxidative phos-

phorylation, which were negatively enriched after weight loss in abdominally obese subjects. 

Gene sets related to immune regulation and insulin signalling were positively enriched after 

weight loss (Supplementary Table S4). After weight loss, genes in oxidative phosphorylation 

and to a lesser extent in carbohydrate metabolism showed expression levels that were closer 

to expression levels in lean subjects (Figure 3).

Impact of weight loss on postprandial metabolic response in abdominally 
obese subjects

The weight loss intervention had a subtle effect on the postprandial metabolic response 

in plasma, of which several examples are presented in Figure 2. For 11 metabolites the post-

prandial response as expressed as incremental area under the curve (iAUC) was significantly 

different. For a major part these metabolites consisted of oxylipins derived from enzymatic 

oxidation of arachidonic acid (Table 3). We also observed shifts in the response to the mixed-

meal challenge after the control intervention (Supplementary Table S5).

To identify differences in PBMC gene expression in response to the mixed-meal challenge 

before and after weight loss, differences were calculated as ∆ values in both groups (T4-T0, 

D2 vs. T4-T0, D1). We identified 384 genes that showed a different postprandial response after 

the weight-loss intervention as compared to the response before weight loss. Furthermore, 

we identified 226 genes that showed a different postprandial response after the control inter-
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vention (Figure S2). GSEA showed that oxidative phosphorylation and the electron transport 

chain were the main affected pathways. Before the intervention oxidative phosphorylation 

and the electron transport chain were downregulated upon the mixed-meal challenge, where-

as after the weight loss intervention oxidative phosphorylation and the electron transport 

chain were upregulated (Figure 3). In contrast, gene sets related to the immune system and 

carbohydrate metabolism showed the opposite pattern with down-regulation upon a mixed-

meal challenge before the intervention and a dampened response or even up-regulation upon 

a mixed-meal challenge after the intervention (Figure 3, Supplementary Table S6).

In short, GSEA showed that at fasting, 161 gene sets were upregulated and 120 gene sets 

were down regulated (FDR< 0.2) in the WL abdominally obese group (Supplementary Table 

S4), while in the abdominally obese control group 219 gene sets were upregulated and 3 gene 

sets were downregulated (data not shown). GSEA showed that upon mixed meal challenge, 6 

gene sets were upregulated and95 gene sets were down regulated (FDR< 0.2) in WL abdomi-

nally obese group (Supplementary Table S6), while in CTRL abdominally obese group only 45 

gene sets were downregulated (data not shown).

dIscussIOn

In this study, we examined whether a standardized mixed-meal challenge could reveal a 

weight loss-induced shift from the abdominally obese phenotype towards a lean one. We were 

particularly interested in finding out whether measurement of the response to a dietary chal-

lenge would reveal additional changes in metabolic phenotype compared to measurements 

in the fasting state.

Metabolic differences between lean and abdominally obese
The observed differences in the fasting levels of BCAAs reflect differences in metabolic 

homeostasis between lean and abdominally obese and are in line with previous observations 

[31]. The shift in fasting levels of these metabolites can be explained by their positive correla-

tion with insulin resistance, which was significantly different for the lean and abdominally 

obese subjects [31, 32]. We could however not confirm previously observed differences in me-

tabolites related to the TCA cycle between the abdominally obese and lean subjects [31]. For a 

range of oxylipins significantly lower plasma levels were observed in abdominally obese sub-

jects relative to the lean group, which we attribute to a decrease in enzymatic lipid oxidation.

Recently, ratios between C2/Cn acylcarnitines were brought forward as putative read-outs 

for β-oxidation rate [7]. Although these ratios correlated with HOMA (Supplementary Table 
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S3), we could not find a difference of C2/Cn acylcarnitine ratios between the lean and abdom-

inally obese groups, even though insulin sensitivity differed between the two groups. This 

suggests that while these ratios are correlated with insulin sensitivity, they do not provide an 

increased sensitivity compared to classical markers. 

The lean and abdominally obese subjects also differed in their postprandial mixed meal 

response. The individual variation, however, was rather large, as shown in Figure 2. An elabo-

rate interpretation of the differences in response between lean and abdominally obese is given 

in the Supplementary Material. Briefly, we could reproduce previously observed differences 

in the postprandial responses of amino acids between lean and abdominally obese [33]. We 

could, however, not reproduce earlier observations showing differences in the postprandial 

responses of free fatty acids between lean and abdominally obese. We attributed this to di-

etary intake of fatty acids during the postprandial phase. We also did not observe differences in 

postprandial response of fatty acid derived acylcarnitines and hence could not confirm earlier 

observations that lean and abdominally obese differ in β-oxidation of fatty acids [33]. Also no 

differences in postprandial responses of BCAAs between lean and abdominally obese could be 

discerned, very likely also due to direct dietary intake of amino acids. We did however observe 

a striking difference for a BCAA transamination product, i.e. 2-hydroxyisovalerate (P< 0.05). 

This metabolite require the branched chain amino transferase (BCAT) and keto acid dehydro-

genase (BCKDH) complex for further catabolism to propionic acid. The function of the BCKDH 

complex is known to be compromised in insulin resistant subjects, leading to increased fasting 

levels of BCAA [33]. Compromised BCKDH function should also increase postprandial accumu-

lation of other upstream metabolites such as 2-hydroxyisovalerate. This is indeed what was 

observed in the abdominally obese relative to lean subjects [34]. We also observed difference 

for a range of oxylipins after a mixed meal challenge in lean and abdominally obese subjects. 

A recent study did however not show differences in postprandial response of oxylipins be-

tween lean and abdominally obese subjects upon high fat challenges [35]. This indicates that 

the postprandial response of oxylipins is not only determined by the lean-abdominally obese 

phenotype but also depends on the composition of the meal challenge. 

Although the lean and abdominally obese showed several distinct differences in the post-

prandial metabolic response, these differences were less pronounced when compared to a 

previous study using an OGTT challenge [36]. That study showed blunted responses of BCAAs 

and FFAs, in contrast to our study. We attribute this to dietary intake of these metabolites since 

our mixed meal challenge was quite rich in protein and fatty acids. This likely shrouds obser-

vation of differences in postprandial response due to phenotypical differences.

Gene sets related to oxidative phosphorylation were higher expressed in abdominally 

obese in comparison to lean subjects at baseline in the fasting state. This is consistent with 
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a previous study that found that dietary background can affect PBMC gene expression. Con-

sumption of monounsaturated fatty acids and Mediterranean diet compared with the satu-

rated fatty acid diet decreased the expression of genes involved in oxidative phosphorylation 

in abdominally overweight males and females [13]. Differences were also found in gene sets 

related to the immune system. These gene sets were lower expressed in abdominally obese 

when compared to lean subjects. However, these effects were relatively small, yet consistent 

with a previous study that also showed rather small differences in a number of immune re-

lated gene sets that showed lower expression in abdominally obese subjects when compared 

to lean subjects [12].

In contrast to the fasting state, we observed that in the postprandial state expression of genes 

related to immune pathways was increased in abdominally obese relative to lean subjects. In 

addition, we observed larger changes in expression of gene sets involved in carbohydrate me-

tabolism in the abdominally obese, which could be due to differences in insulin sensitivity and 

the activity of energy metabolism pathways. The observed differences in PBMC gene expression 

between abdominally obese and lean subjects at baseline and after the mixed meal challenge 

point towards a difference in haemostasis and immune function between the two groups. 

Based on the number of genes differently expressed between lean and abdominally obese 

we can conclude that our mixed meal challenge was not able to magnify differences in tran-

scriptional response in PBMC between lean and abdominally obese when compared to the 

fasting state (fasting: 1862 genes and postprandial: 1537 genes). This is in contrast to a study 

by Esser et al. demonstrating that an OLTT challenge with 95g of fat high in SFA or MUFA 

increased the number of genes significantly differentially expressed between lean and ab-

dominally obese subjects. This study also showed a higher number of changed genes in ab-

dominally obese relative to lean subjects when comparing the MUFA and the SFA challenges. 

The authors hypothesised that a MUFA challenge is more potent in inducing transcriptional 

differences between lean and abdominally obese in PBMCs than a SFA challenge. Our mixed 

meal challenge was higher in carbohydrate and protein and lower in fat content. These fats 

were also predominantly saturated, which may explain the weaker gene expression response 

to our mixed meal challenge. This weaker response can also be explained by large variety in 

response induced by the absorption a complex mixture of nutrients. 

effect of weight loss on fasting metabolism in abdominally obese subjects
The effect of weight loss on fasting metabolism of abdominally obese subjects only in-

volved two amino acids and creatinine. This stands in contrast to the previously observed 

changes in baseline levels of BCAAs, AAACs, carnitine and metabolites of the TCA cycle [37, 

38]. It is also in contrast to the observed improvement of insulin sensitivity upon weight loss 
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in our study population, indicating that the abdominally obese phenotype partially reversed 

towards a lean one [31, 32]. Furthermore, we did not observe an effect of weight loss on C2/Cn 

acylcarnitine ratios.

In our study, weight loss affected the expression of 835 genes in the fasting state. Weight 

loss resulted in lower expression of genes involved in oxidative phosphorylation PBMCs at 

baseline. These genes also show lower expression levels in lean compared to abdominally 

obese individuals (Figure 3). Furthermore, baseline expression of genes involved in carbo-

hydrate metabolism is different between lean and abdominally obese subject. However, the 

expression levels of these genes do not seem to change towards the expression levels observed 

in the lean upon weight loss. Moreover, gene sets involved in immune regulation were higher 

expressed after weight loss, while these gene sets were enriched in lean subjects compared to 

abdominally obese subjects before the intervention. A possible explanation for the observed 

differences in expressions of immune-related genes is a shift in cell population occurring 

during the study. Unfortunately, differentiated blood cell counts were not performed in the 

current study so we cannot confirm this. Therefore, we cannot conclude that the observed 

differences are due to a difference in immune status between lean and abdominally obese.

 We also observed significant differences in the control group, which was not expected 

since our control group matched in BMI and waist circumference at the start of the inter-

vention and the control group did not lose any weight. These differences suggest a seasonal 

effect; however, due to the design of the study this explanation is unlikely. Our remaining 

explanation is that the participants in the control group changed their behaviour during the 

course of the study.

effect of weight loss on postprandial metabolic response in abdominally 
obese subjects

The predominant effect of the weight loss intervention on the postprandial response in 

abdominally obese subjects involved 3 amino acids, 5 oxylipins, choline, creatine and glucose. 

Several differences in the postprandial response that were observed between lean and ab-

dominally obese subjects, however, were not observed after weight loss in the abdominally 

obese. Lower glucose levels after weight loss suggests that the mixed meal challenge stimu-

lates a more prolonged insulin response, which is in line with previous observations [6]. In 

our study the weight loss intervention induced a small number of shifts in fasting metabolite 

level; the impact of the mixed meal on the postprandial metabolic response involved more 

metabolites but was still subtle. This is in line with Geidenstam et al. who also found only 

a modest number of differences in the postprandial metabolic response upon OGTT, mostly 

branched and aromatic acids, after weight loss and a maintenance period in abdominally 
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obese subjects. The authors attribute this to the heterogeneity in the postprandial response 

of abdominally obese to an OGTT challenge. The heterogeneity in postprandial response to a 

mixed meal most likely also explains why also in our study only modest postprandial effects of 

weight loss were observed. In contrast, a recent study by Kardinaal et al. [39], suggested that a 

change in challenge response is a more sensitive biomarker of metabolic resilience than chang-

es in fasting metabolism. This discrepancy might be due to either their particular study popu-

lation, which consisted of a homogeneous group of males with metabolic syndrome, whereas 

within our study the subjects were a more heterogeneous group of healthy abdominally obese. 

The study from Kardinaal et al. also used a high fat challenge, which may provoke a more tar-

geted postprandial response as the mixed meal used in our study. In our study the strong and 

rapid direct uptake of amino acids and fatty acids from the mixed meal may have shrouded 

observation of postprandial metabolic differences. Therefore the recent recommendation of 

a mixed meal as the optimal challenge for demonstrating subtle improvements in metabolic 

flexibility has been expounded with regard to the composition of such a challenge [6]. 

Genes related to carbohydrate metabolism were downregulated in abdominally obese sub-

jects upon a mixed meal challenge after weight loss compared to before the weight loss inter-

vention. Figure 3 shows that the reduced response of genes in the carbohydrate metabolism 

to the challenge results in expression levels that are more comparable to expression levels 

observed in lean subjects. As insulin sensitivity is also improved after weight loss the atten-

uation of the expression of genes in carbohydrate metabolism seems consistent with this im-

provement in insulin sensitivity. Similarly, genes related to inflammatory pathways were also 

showed a dampened response in the abdominally obese after weight loss, which is also more 

in line with the response observed in lean subjects. Overall, we conclude that the post-prandial 

responses to weight loss seem to shift towards the lean response after weight loss with regard 

to carbohydrate metabolism and the inflammatory response. Although the observed shift sug-

gest that subjects after weight loss have a more lean phenotype, they do not reach the level of 

lean subjects, which is in line with the actual weight loss. Furthermore, at the end of the study 

the subjects were maintaining weight. This may result in a less pronounced response when 

comparing to studies in which subjects were still losing weight at the time of measurement.

cOnclusIOn

Our results are in line with recent observations that the metabolic phenotype of abdom-

inally obese and lean subjects is different with respect to both the plasma metabolome and 

PBMC gene expression in the fasting state. The difference in phenotypic flexibility between 
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lean and abdominally obese was also reflected in the mixed meal postprandial response of the 

plasma metabolome and PBMC gene expression. The difference in response of a downstream 

metabolite of a branched chain amino acid suggests compromised function of the BCKDH 

complex in the abdominally obese. The metabolites and genes that differ at baseline show 

minor overlap with those that are differ in their postprandial response. This indicates that the 

mechanisms accounting for the observed differences between lean and abdominally obese 

in the fasted state are different from the mechanisms underlying the differences during the 

postprandial mixed meal response.

Compared to the difference in lean-abdominally obese metabolic phenotype, weight loss 

had a small effect on the fasting plasma metabolome. Also the effect of weight loss on baseline 

gene expression in PBMCs was smaller; the main effect was a shift of genes related to oxida-

tive phosphorylation towards the lean phenotype. The impact of weight loss on the mixed 

meal postprandial response of plasma metabolites and PBMC gene expression was modest 

and mainly point to altered enzymatic lipid oxidation and carbohydrate metabolism upon 

weight loss. The weight loss induced shifts of baseline and postprandial response of plasma 

metabolome and PBMC gene expression showed little overlap with the differences between 

lean-abdominally obese metabolic phenotype. 

The modest number of significant differences in postprandial metabolic responses be-

tween lean-abdominally obese and abdominally obese before and after weight loss may be 

explained by the complex composition of the mixed meal. Hence, the composition of meal 

challenges should be considered carefully in order to provoke a distinct postprandial meta-

bolic response.
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Figure 1. Schematic overview of the study design. D1, D2: before and after intervention, 
respectively. WL: weight loss intervention group, CTRL: control group. The arrows indicate 
the phenotype comparisons made in this study (lean vs abdominally obese, before and after 
interventions. 
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Figure 1. Schematic overview of the study design. D1, D2: before and after intervention, respectively. WL: weight 

loss intervention group, CTRL: control group. The arrows indicate the phenotype comparisons made in this study 

(lean vs abdominally obese, before and after interventions.
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Figure 2. Postprandial mixed meal response curves of, valine, glucose, palmitoylcarnitine and 
acetoacetate, as representative metabolites from glycolysis, amino acid metabolism, lipolysis 
and ketogenesis, respectively. Mean curves are presented for lean (black) and abdominally 
obese subjects are presented , the latter before (green) and after (blue) weight loss intervention 
(see Figure 1). The bars represent variation within these groups. 
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curves are presented for lean (black) and abdominally obese subjects are presented , the latter before (green) and 
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Figure 3.Overview of lean-abdominally obese differences in expression of genes related to 
(Left) oxidative phosphorylation and (Right) carbohydrate metabolism in PBMCs at fasting 
(T0) and during postprandial response (∆Lean vs. ∆ Abdominally obese postprandial) to a 
mixed meal challenge. Also shown are effects of weight loss on gene expression in PBMCs of 
abdominally obese subjects at baseline (abdominally obese after weight loss vs. abdominally 
obese before weight loss) and during postprandial phase (∆ abdominally obese after weight 
loss vs. ∆ abdominally obese before weight loss). The heatmap is based on moderates t-
statistics for each comparison which has the same interpretation as an ordinary t-statistic 
except that the standard errors have been moderated across genes using a simple Bayesian 
model. 
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Table 1.Characteristics of lean subjects and abdominally obese subjects before and after 
weight loss or control interventions. 

 Lean  WL(D1) WL(D2) CTRL(D1) CTRL(D2) 
Number 15 14 14 15 15 
Age (y)  47.4 ±17 44 ± 15  44.8 ± 14.0  
Weight (kg) 73  ±  7.5 96.6 ± 8.6 87.3 ± 8.6* 98.9 ± 9.9 98.1  ± 9.5 
Height (m) 1.8 ± 0.1 1.8 ± 0.1  1.8 ± 0.1  
BMI (kg/m2) 23.0 ± 2.0 30.0 ± 1.8 26.9 ± 1.6* 30.7 ± 2.9 30.4 ± 2.8 
Waist circumference (cm) 85.4 ± 6.7 106.8 ± 3.6 95.7 ± 4.5* 106.8 ± 3.9 106.2 ± 3.8 
Hip circumference (cm) 95.9 ± 4.1 108.4 ± 4.9 102.7 ± 4.5* 109.5 ± 7.0 109.3 ± 7.8 
LBM (kg) 54.2 ± 6.7 67.1 ± 6.9 61.5 ± 8.9 69.2 ±  10.4 69.8 ± 10.7 
Fat mass (%) 19.0 ± 6.5 29.5 ± 4.4 25.8 ± 5.0 29.8 ± 4.3 28.3 ± 4.1 
Glucose (mmol/L) 5.1 ± 2.9 5.3 ± 0.47 5.0 ± 0.33 5.3 ± 0.48 5.3 ± 0.37 
Insulin (uU/mL) 7.0 ± 1.7 12.5 ± 5.5 7.8 ± 3.4* 12.0 ± 6.5 12.1 ± 5.2 
Data are presented as mean ± SD. *: A significant effect of weight loss (P<0.05). WL: weight loss 
intervention, 
 

CTRL: control group, D1, D2: before and after intervention (see also Figure 1), 

 
 

  

BMI: Body mass index, LBM: lean body mass. 

Table 1. Characteristics of lean subjects and abdominally obese subjects before and after weight loss or control 

interventions.
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Table 2. Significant (P<0.05, lFDR< 0.2) differences between fasting metabolite concentrations (FC) and 

postprandial mixed meal response (iAUC) in plasma between lean and abdominally obese subjects.

 
Table 2. Significant (P<0.05, lFDR< 0.2) differences between fasting metabolite 
concentrations (FC) and postprandial mixed meal response (iAUC) in plasma between lean 
and abdominally obese subjects. 
 

 
P(Fasting) 

FC (Abdominally obese 
T0/Lean T0) 

P( iAUC) 

Acylcarnitines 
 

 
Palmitoylcarnitine <0.01 1.25  
Amino acids and 
 related metabolites 

 

 

Serine <0.01 0.86  
Beta alanine 0.02 1.07  
Asparagine 0.02 0.9  
Creatinine <0.01 1.21  
 Isoleucine <0.01 1.24  
 Alanine <0.01 1.18 <0.01 
 Tyrosine <0.01 1.2  
 Valine 0.01 1.13  
Keto-Leucine 0.01 1.13  
 Carnitine 0.02 1.07  
 Leucine 0.03 1.11  
Proline   <0.01 
Methylmalonic acid   <0.01 
Threonine   0.01 
Histidine   0.01 
Methionine   0.01 
Phosphocholine   0.01 
2.hydroxyisovalerate   0.01 
Oxylipins 

  
 

 5-HETE <0.01 0.61  
 12-13-EpOME 0.01 0.65  
 9-HODE 0.02 0.71  
 9-HOTrE 0.02 0.68  
TCA cycle and related metabolites 

 
 

Glyceric acid <0.01 0.95  
 Beta glucose 0.02 1.09  
 Alpha glucose 0.02 1.08  
FC: Fold change. Differences in response were calculated on the basis of iAUC. iAUC: incremental area under the 
curve. 
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Table 3. Effect of weight loss (P<0.05, lFDR<0.2) on fasted state (T0, FC) metabolite 
concentrations and postprandial mixed meal challenge response (iAUC) in plasma of 
abdominally obese subjects.  

Metabolites P FC(WL) P(iAUC) 

Amino acids and related 
metabolites 

   

Glycine <0.01 1.18  
Creatinine <0.01 0.88  
Glutamine   <0.01 
Histidine   <0.01 
Creatine   <0.01 
Pyroglutamic acid   <0.01 
Glutamic acid <0.01 0.66  
Oxylipins    
 TXB2   <0.01 
 PGE2   <0.01 
12S.HHTrE   <0.01 
5.HETE   <0.01 
11.HETE   0.02 
TCA cycle and related 
metabolites 

   

Glucose   0.01 
Acylcarnitines    
Choline   0.01 

FC: Fold change (T0, after weight loss/T0, before weight loss). Differences in postprandial response 
 were determined on the basis of iAUC. iAUC: incremental area under the curve significant at P<0.05. 
 

 

Table 3. Effect of weight loss (P<0.05, lFDR<0.2) on fasted state (T0, FC) metabolite concentrations and postprandial 

mixed meal challenge response (iAUC) in plasma of abdominally obese subjects. 
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suPPleMenTARy MATeRIAl

Postprandial metabolic response in lean and abdominally obese subjects
Despite the significant inter-individual variation between the time-responses, yet differen-

tiating features can be recognized according to four dominant postprandial metabolic events 

[30, 41] : glycolysis, lipolysis, ketogenesis, proteolysis and amino acid oxidation

Glycolysis In lean volunteers the mixed meal provoked a prolonged insulin response, in 

line with previous observations [6]. As a consequence postprandial effects on glycolysis, lip-

olysis and ketogenesis can be expected [30]. Indeed, the initial postprandial increase of glucose 

was rapidly followed by a strong insulin-induced decrease. This pattern was also observed for 

lactate [30] and downstream TCA metabolites [41]. The postprandial response of glucose did 

not differ significantly between the lean and abdominally obese group (lFDR> 0.2), which was 

also the case for most downstream TCA metabolites, except for citrate.

Lipolysis The essential fatty acids linoleic acid (LA) and alpha linolenic acid (ALA) follow 

the characteristic insulin-induced non esterified fatty acid response (NEFA), which is a strong 

decrease followed by an increase after 1 hour (Supplementary Figure S3-a ). Hence in our 

study mixed meal challenge did not induce the lag phase response for longer chain (C>16) fatty 

acids [41] that was previously observed for another mixed meal challenge. Apparently, for 

mixed meal challenge in our study, insulin-induced depletion of FFAs is dominant over intake 

of FFAs. Also the FFA response did not differ significantly between the lean and abdominally 

obese group. 

Within this study we assessed oxylipins since they have been associated with a range of 

inflammatory mechanisms. The enzymatic oxidation pathways of the oxylipins are known, 

but our attempt to model their postprandial response with a recently introduced first order 

kinetic model [42] was not successful. Only modest correlations between oxylipins and their 

precursors were found (Supplementary Table S7) which we attribute this to complexity of 

having both an insulin effect combined with dietary intake of fatty acids in the mixed meal 

challenge. The postprandial response of several oxylipins was however different between the 

lean an abdominally obese group, which suggests differences in lipid oxidation between the 

abdominally obese and lean groups.

Once the free fatty acids (FFAs) are destined as fuel they enter the mitochondria as acyl-

carnitines in order to undergo stepwise β-oxidation to acetylcarnitine which enters the TCA 

cycle for energy production. Plasma levels of fatty acid derived acylcarnitines (FAAC, Sup-

plementary Table S8) reflect increased FFA availability and/or a shift in β-oxidation flux. In 

the lean subjects, the mixed meal challenge induced a monotonous postprandial decrease of 

both fatty acid derived acylcarnitines and acetylcarnitine, in line with reduced availability of 
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FFAs and/or reduced β-oxidation upon switching from b-oxidation to glycolysis [43]. The ratio 

between C2 (acetyl) carnitine and fatty acid derived acylcarnitines has been proposed as di-

rect readouts for intracellular β-oxidation [7]. During the postprandial phase we observe that 

for the C2/FAAC ratios interindividual difference is more pronounced at fasting rather than 

response (Supplementary Figure S3-b). We could however not observe a difference between 

the abdominally obese and lean groups for these C2/FAAC rations. 

Nadir acylcarnitine levels have been proposed as a single parameter summary of their 

postprandial response [25]. We found correlations with phenotypical parameters such as 

HOMA and lean body mass (Supplementary Table S9). Although this suggests that postprandi-

al acylcarnitine responses are related to fatty acid oxidation flux, we could not observe statis-

tically significant differences between the lean and abdominally obese group.

Ketogenesis In lean volunteers we observe a monotonous postprandial decrease of the ke-

tone bodies β-hydroxybutyric acid, and acetone (Supplementary Figure S3-c ) which is in line 

with previous observations upon administration of mixed meal challenge[41]. The decrease 

can be explained by direct inhibition of ketogenesis by insulin and indirectly by decrease of 

FFA due to inhibition of lipolysis. Acetoacetate however, goes up due to enhanced postpran-

dial amino acid flux (Figure 1). In the abdominally obese none of the ketone bodies showed a 

postprandial response.

Proteolysis and amino acid oxidation Upon administration of the mixed meal challenge 

insulin-induced inhibition of proteolysis is expected. An indication for an impact on muscle 

metabolism is the weak postprandial decrease in creatinine for lean subjects (Supplementary 

S5-d), which is in contrast to a previous observation [41]. The postprandial response in the 

abdominally obese did however not differ significantly from[33] the lean group. 

Unfortunately, observation at the level of amino acids is obscured by direct dietary uptake 

upon the mixed meal challenge [33]. Nevertheless, still several amino acids differ in their post-

prandial response in lean vs abdominally obese, in line with a recent study [33]. In this study 

these effects were attributed to impairment of the TCA cycle in abdominally obese, this was 

confirmed by differences in postprandial response of citrate and succinate. 

The mixed meal challenge induces a strong postprandial increase of BCAA which can be 

explained by direct uptake and transamination of other dietary amino acids in the splanchnic 

bed [44]. After the steep increase of BCAAs, their levels drop rapidly due to insulin-induced 

uptake in muscle or other tissues[45]. Within the muscle, BCAAs (leucine in particular) are 

rapidly transaminated to branched chain α-keto acids (BCKAs) and excess nitrogen is subse-

quently released as glutamine. Indeed we observed a second peak in the glutamine response 

curve which we attribute to BCAA’s transferring their amine group (Supplementary Figure 

S3-e ) [46]. The BCKAs are oxidized to C4-5-CoA derivatives of CoA to finally produce acetoace-
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tate, C2(acetyl)-CoA and C3 (proprionyl)-CoA, all of which can enter the TCA cycle [45]. Excess 

levels of the C3-5 fatty acids appear in plasma as amino acid derived acylcarnitines (AAAC, 

Supplementary Table S3) which can be considered as proxies of BCAA oxidation. The kinetic 

profile of the AAACs generally follows the BCAA profile (only propionyl and isovaleryl with 

a bit delay compare to BCAAs. During the postprandial phase we observe that for the BCAA/

AAAC ratios inter-individual differences are more pronounced at fasting rather than for their 

postprandial response (Supplementary Figure S3-f). The postprandial response of the BCAAs 

and AAACs does not differ between lean and abdominally obese, but interestingly we observe 

significant differences in the response of two branched chain keto acids (α-ketoisovaleric acid, 

2-hydroxyisovalerate) and methylmalonic acid (Supplementary Figure S3-g). This indicates 

that in the abdominally obese group oxidation of mitochondrial BCAA by the BCKDH com-

plex might be impaired, causing temporary postprandial accumulation of these downstream 

BCAAs catabolites[34].
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Figure s1. Flow diagram showing the number of genes of which the expression was significantly different between 

lean (n=15) and abdominally obese (n=29) subjects at fasting, the number of genes that changed in expression 

after a mixed meal challenge and the number of genes that changed differently in expression in abdominally obese 

relative to the lean subjects after a mixed meal challenge. A change was significant if P< 0.05. 

Postprandial response
Lean(T4-T0)
1707 Genes

Postprandial response
Obese(T4-T0)
1305 Genes
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Genes:359

UPC filtered 9044 genes

 

Figure S1. Flow diagram showing the number of genes of which the expression was 
significantly different between lean(n=15) and abdominally obese (n=29) subjects at fasting, 
the number of genes that changed in expression after a mixed meal challenge and the number 
of genes that changed differently in expression in abdominally obese relative to the lean 
subjects after a mixed meal challenge. A change was significant if P< 0.05.  
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Figure s2. Flow diagram showing the number of genes of which the expression was significantly different in 

abdominally obese (n=29) before weight loss (D1) in response to mixed meal challenge, the number of genes that 

changed significantly in expression before (D1) and after (D2) intervention (WL, CRTL) in response to mixed meal 

challenge, the number of genes that changed significantly at T0 comparing subjects in WL or CTRL before and after 

intervention. A change was significant if P< 0.05.

 

Postprandial response 
obese ( T4-T0),D1

1305 Genes

8 weeks 

Postprandial response 
obese CTRL (T4-T0),D2

1066 Genes

Postprandial response 
obese LCD (T4-T0),D2

1063 Genes
Overlap

Genes: 284

Difference in response  
∆  LCD (D2) vs. ∆ LCD (D1)

348  Genes

Difference in response  
∆ CTRL (D2) vs. ∆ CTRL (D1)

226 Genes

Difference at T0 
LCD (T0, D2) vs.  LCD (T0,1)

835  Genes

Difference at T0
CTRL (T0,D2) vs. ∆ CTRL (T0,D1)

582 Genes

Overlap
Genes: 14

Overlap
Genes: 75

UPC filtered 9044 genes

Postprandial response 
obese LCD (T4-T0),D1

457 Genes

Postprandial response 
obese CTRL (T4-T0),D1

1254  Genes

Overlap
Genes: 151

Overlap
Genes: 425

Entrez IDs 
19654 genes

 

Figure S2. Flow diagram showing the number of genes of which the expression was 
significantly different in abdominally obese (n=29) before weight loss (D1) in response to 
mixed meal challenge, the number of genes that changed significantly in expression before 
(D1) and after (D2) intervention (WL, CRTL) in response to mixed meal challenge, the 
number of genes that changed significantly at T0 comparing subjects in WL or CTRL before 
and after intervention. A change was significant if P< 0.05. 
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Figure S3. Mean postprandial response curves for linoleic acid and α-linolenic acid (a). Mean 
postprandial curve (lean subjects only) of ratio between acetylcarnitine (c2) and fatty acid 
derived acylcarnitines; each color indicates one individual (b). Mean postprandial curve of 
ketone bodies (c), carnitine (d), glutamine and isoleucine (e). Individual plot (lean subjects 
only) of ratio between Isoleucine and 2-ethylbutyroylcarnitine; each color indicate one 
individual (f); Mean postprandial curve for alpha ketoisovaleric acid and 2-
hydroxyisovalerate (g). 

 
 

Figure s3. Mean postprandial response curves for linoleic acid and α-linolenic acid (a). Mean postprandial curve 

(lean subjects only) of ratio between acetylcarnitine (c2) and fatty acid derived acylcarnitines; each color indicates 

one individual (b). Mean postprandial curve of ketone bodies (c), carnitine (d), glutamine and isoleucine (e). 

Individual plot (lean subjects only) of ratio between Isoleucine and 2-ethylbutyroylcarnitine; each color indicate one 

individual (f); Mean postprandial curve for alpha ketoisovaleric acid and 2-hydroxyisovalerate (g).
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Table s1. Overview of significantly (FDR<0.2) positively /negatively enriched gene sets between abdominally obese 

vs. lean subjects at fasting (T0). 

Table S1. Overview of significantly (FDR<0.2) positively /negatively enriched gene sets 
between abdominally obese vs. lean subjects at fasting (T0).  

 
Positively enriched gene sets 

NAME SIZE NES FDR q-val 
REACT_RESPIRATORY ELECTRON TRANSPORT 56 2.08 0.01 
WIP_HS_OXIDATIVE_PHOSPHORYLATION 46 2.03 0.02 
KEGG_OXIDATIVE PHOSPHORYLATION 92 2.02 0.01 
REACT_RESPIRATORY ELECTRON TRANSPORT 69 2.00 0.01 
WIP_HS_ELECTRON_TRANSPORT_CHAIN 76 1.92 0.04 
KEGG_PARKINSON'S DISEASE 86 1.91 0.04 
REACT_DESTABILIZATION OF MRNA BY KSRP 15 1.84 0.08 
REACT_DEADENYLATION-DEPENDENT MRNA DECAY 39 1.84 0.07 
KEGG_RNA DEGRADATION 60 1.80 0.11 
 

Negatively enriched gene sets 

NAME SIZE NES FDR q-val 
NCI_IL23PATHWAY 18 -2.08 0.08 
WIP_HS_NOTCH_SIGNALING_PATHWAY 24 -2.00 0.09 
BIOC_IL1RPATHWAY 22 -1.89 0.20 
NCI_ATF2_PATHWAY 27 -1.86 0.18 
BIOC_KERATINOCYTEPATHWAY 35 -1.84 0.18 
BIOC_NTHIPATHWAY 20 -1.81 0.20 
WIP_HS_OXIDATIVE_STRESS 18 -1.79 0.19 
KEGG_OSTEOCLAST DIFFERENTIATION 94 -1.77 0.20 
NCI_AP1_PATHWAY 36 -1.77 0.18 
 

Size indicates the number of total genes which are involve in the corresponding pathway. (NES):  
    normalised enrichment scores and (FDR): false discovery rate. 
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Table S2. Overview of significantly (FDR<0.2) up- and down-regulated gene sets during 
postprandial mixed meal challenge response between abdominally obese and lean subjects. 

 

Upregulated gene sets 
NAME SIZE NES FDR 

 q-val 
Direction 

    obese    Lean 

NCI_IL6_7PATHWAY 35 2.13 0.01 up         down 

NCI_IFNGPATHWAY 35 2.01 0.04 up         down 

KEGG_LYSOSOME 97 2.01 0.03 up         down 

KEGG_TUBERCULOSIS 114 2.00 0.02 up         down 

WIP_HS_TYPE_II_INTERFERON_SIGNALING_(IFNG) 27 1.99 0.02 up         down 

KEGG_STAPHYLOCOCCUS AUREUS INFECTION 28 1.99 0.02 up         down 

KEGG_PORPHYRIN AND CHLOROPHYLL 
METABOLISM 

18 1.98 0.02 up         down 

KEGG_INFLUENZA A 121 1.97 0.02 up         down 

KEGG_LEISHMANIASIS 51 1.96 0.02 up         down 

KEGG_PERTUSSIS 43 1.94 0.02 up         down 

KEGG_STARCH AND SUCROSE METABOLISM 20 1.89 0.04 up         down 

WIP_HS_EPITHELIUM_TARBASE 200 1.89 0.04 up         down 

NCI_ENDOTHELINPATHWAY 36 1.89 0.03 up         down 

REACT_TOLL LIKE RECEPTOR 7_8 (TLR7_8) CASCADE 60 1.89 0.03 up         down 

REACT_MYD88 DEPENDENT CASCADE INITIATED 
ON ENDOSOME 

60 1.89 0.03 up         down 

NCI_UPA_UPAR_PATHWAY 19 1.89 0.03 up         down 

REACT_TOLL LIKE RECEPTOR 9 (TLR9) CASCADE 62 1.87 0.03 up         down 

KEGG_SALMONELLA INFECTION 52 1.86 0.04 up         down 

WIP_HS_PROSTAGLANDIN_SYNTHESIS_AND_REGU
LATION 

16 1.86 0.04 up         down 

REACT_METABOLISM OF CARBOHYDRATES 88 1.84 0.04 up         down 

KEGG_PHAGOSOME 94 1.83 0.05 up         down 

REACT_TRAF6 MEDIATED INDUCTION OF  
NFKB AND MAP KINASES UPON TLR7_8 OR 9 
ACTIVATION 

59 1.82 0.05 up         down 

NCI_ANTHRAXPATHWAY 16 1.82 0.05 up         down 

NCI_ATF2_PATHWAY 27 1.81 0.05 up         down 

REACT_GOLGI ASSOCIATED VESICLE BIOGENESIS 42 1.81 0.05 up         down 

REACT_CLATHRIN DERIVED VESICLE BUDDING 49 1.81 0.05 up         down 

REACT_TRANS-GOLGI NETWORK VESICLE BUDDING 49 1.80 0.05 up         down 

KEGG_OSTEOCLAST DIFFERENTIATION 94 1.78 0.06 up         down 

BIOC_KERATINOCYTEPATHWAY 35 1.78 0.06 down   down 
WIP_HS_IL-6_SIGNALING_PATHWAY 35 1.78 0.06 up         down 

KEGG_NEUROACTIVE LIGAND-RECEPTOR 
INTERACTION 

38 1.77 0.06 up         down 

WIP_HS_LEUKOCYTE_TARBASE 107 1.76 0.07 up         down 
 
 
 
 

Table s2. Overview of significantly (FDR<0.2) up- and down-regulated gene sets during postprandial 

mixed meal challenge response between abdominally obese and lean subjects.
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Table S2. Upregulated gene sets continued 
 

    

REACT_MEMBRANE TRAFFICKING 97 1.75 0.07 up         down 

BIOC_TIDPATHWAY 15 1.75 0.07 up         down 

NCI_TOLL_ENDOGENOUS_PATHWAY 19 1.75 0.07 up         down 

WIP_HS_OXIDATIVE_STRESS 18 1.74 0.08 up         down 

KEGG_COMPLEMENT AND COAGULATION 
CASCADES 

15 1.74 0.08 up         down 

NCI_HES_HEYPATHWAY 28 1.74 0.07 up         down 

BIOC_IL1RPATHWAY 22 1.73 0.08 up         down 

REACT_P75 NTR RECEPTOR-MEDIATED SIGNALLING 62 1.73 0.07 up         down 

REACT_MAP KINASE ACTIVATION IN TLR CASCADE 42 1.73 0.08 up         down 

WIP_HS_REGULATION_OF_TOLL-
LIKE_RECEPTOR_SIGNALING_PATHWAY 

96 1.72 0.08 up         down 

KEGG_MALARIA 23 1.72 0.07 up         down 

NCI_LYSOPHOSPHOLIPID_PATHWAY 38 1.72 0.07 up         down 

KEGG_FRUCTOSE AND MANNOSE METABOLISM 22 1.71 0.08 up         down 

WIP_HS_SENESCENCE_AND_AUTOPHAGY 61 1.69 0.10 up         down 

WIP_HS_SQUAMOUS_CELL_TARBASE 94 1.69 0.10 up         down 

REACT_CYTOKINE SIGNALING IN IMMUNE SYSTEM 154 1.69 0.10 up         down 

REACT_GLUCOSE METABOLISM 44 1.68 0.10 up         down 

NCI_HNF3APATHWAY 18 1.68 0.10 up         down 

REACT_ASSOCIATION OF TRIC_CCT WITH TARGET 
 PROTEINS DURING BIOSYNTHESIS 

23 1.67 0.11 up         down 

KEGG_FATTY ACID METABOLISM 26 1.67 0.10 down   down 
WIP_HS_NOD_PATHWAY 28 1.67 0.10 up         down 

REACT_INTERLEUKIN-1 SIGNALING 34 1.67 0.11 up         down 

REACT_ERK_MAPK TARGETS 17 1.66 0.11 up         down 

REACT_MAPK TARGETS_ NUCLEAR EVENTS 
MEDIATED 
 BY MAP KINASES 

25 1.66 0.11 up         down 

WIP_HS_PHYSIOLOGICAL_AND_PATHOLOGICAL_ 
HYPERTROPHY_OF_THE_HEART 

17 1.65 0.11 down   down 

KEGG_PENTOSE PHOSPHATE PATHWAY 19 1.65 0.12 up         down 

REACT_TRAF6 MEDIATED INDUCTION OF 
PROINFLAMMATORY CYTOKINES 

51 1.65 0.12 up         down 

KEGG_GALACTOSE METABOLISM 17 1.64 0.12 up         down 

WIP_HS_IL-3_SIGNALING_PATHWAY 37 1.63 0.12 up         down 

REACT_SIGNALING BY INTERLEUKINS 85 1.63 0.13 up         down 

WIP_HS_GPCR_LIGAND_BINDING 24 1.63 0.13 up         down 

REACT_INTERFERON SIGNALING 75 1.63 0.12 up         down 

REACT_NRAGE SIGNALS DEATH THROUGH JNK 30 1.62 0.13 up         down 

REACT_HEXOSE TRANSPORT 33 1.62 0.13 up         down 

NCI_P38ALPHABETADOWNSTREAMPATHWAY 29 1.62 0.13 up         down 

KEGG_SPHINGOLIPID METABOLISM 23 1.62 0.13 up         down 

NCI_GMCSF_PATHWAY 31 1.62 0.13 up         down 

WIP_HS_KIT_RECEPTOR_SIGNALING_PATHWAY 39 1.62 0.13 up         down 
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Downregulated gene sets 
  

  Size indicates the number of total genes which are involve in the corresponding pathway. (NES):  
    normalised enrichment scores and (FDR): false discovery rate. 
 

 
 

 

 

 

NCI_KITPATHWAY 37 1.51 0.19 up         down 
 
 
 
 
 

Table S2. Upregulated gene sets continued 
 

    

NCI_RAC1_REG_PATHWAY 28 1.51 0.19 up         down 

NCI_S1P_S1P3_PATHWAY 20 1.51 0.19 up         down 

NAME SIZE NES FDR q-val Direction 
    obese Lean 

 

NCI_CD8TCRPATHWAY 47 -2.12 0.02 down    up 

REACT_GENERATION OF SECOND MESSENGER  
MOLECULES 

29 -1.91 0.13 down    up 

REACT_BRANCHED-CHAIN AMINO ACID CATABOLISM 15 -1.87 0.12 down    up 

REACT_BIOSYNTHESIS OF THE N-GLYCAN PRECURSOR 24 -1.83 0.14 down    up 

WIP_HS_GENERIC_TRANSCRIPTION_PATHWAY 15 -1.81 0.12 down    up 

NCI_TCR_PATHWAY 58 -1.70 0.26 down    up 

KEGG_T CELL RECEPTOR SIGNALING PATHWAY 81 -1.69 0.24 down    up 

NCI_CD8TCRDOWNSTREAMPATHWAY 46 -1.69 0.22 down    up 

WIP_HS_INFLAMMATORY_RESPONSE_PATHWAY 15 -1.68 0.20 down    up 

BIOC_AMIPATHWAY 17 -1.67 0.20 up          up 

KEGG_ABC TRANSPORTERS 19 -1.67 0.18 up          up 

REACT_TCR SIGNALING 57 -1.66 0.18 up          up 

REACT_GENERIC TRANSCRIPTION PATHWAY 134 -1.65 0.18 down    up 

BIOC_CSKPATHWAY 17 -1.62 0.19 down    up 

NCI_IL2_STAT5PATHWAY  25 -1.61 0.20 up          up 

 
 
 
 

Table S2. Upregulated gene sets continued 
 

    
 

KEGG_TOLL-LIKE RECEPTOR SIGNALING PATHWAY 69 1.62 0.13 up         down 

NCI_MAPKTRKPATHWAY 27 1.61 0.13 up         down 

REACT_GLUCOSE TRANSPORT 33 1.61 0.13 up         down 

KEGG_FC GAMMA R-MEDIATED PHAGOCYTOSIS 73 1.61 0.13 up         down 

NCI_RB_1PATHWAY 42 1.61 0.13 up         down 

KEGG_RHEUMATOID ARTHRITIS 48 1.60 0.14 up         down 

BIOC_NTHIPATHWAY 20 1.59 0.14 up         down 

WIP_HS_IL-5_SIGNALING_PATHWAY 29 1.59 0.14 up         down 

WIP_HS_TOLL-
LIKE_RECEPTOR_SIGNALING_PATHWAY 

69 1.59 0.15 up         down 

REACT_TOLL LIKE RECEPTOR 3 (TLR3) CASCADE 56 1.59 0.15 up         down 

REACT_INFLAMMASOMES 16 1.58 0.15 up         down 

KEGG_PPAR SIGNALING PATHWAY 22 1.58 0.15 up         down 

NCI_ARF_3PATHWAY 19 1.58 0.15 up         down 

REACT_INTERFERON GAMMA SIGNALING 54 1.57 0.15 up         down 

NCI_RAC1_PATHWAY 44 1.57 0.16 up         down 

REACT_INTERFERON ALPHA_BETA SIGNALING 43 1.57 0.16 up         down 

KEGG_ADIPOCYTOKINE SIGNALING PATHWAY 40 1.57 0.16 up         down 

KEGG_NEUROTROPHIN SIGNALING PATHWAY 88 1.56 0.17 up         down 

WIP_HS_MRNA_PROCESSING 114 1.55 0.17 up         down 

WIP_HS_FOLATE_METABOLISM 29 1.55 0.17 up         down 

WIP_HS_LYMPHOCYTE_TARBASE 305 1.55 0.17 up         down 

REACT_RECYCLING PATHWAY OF L1 26 1.55 0.17 up         down 

BIOC_HIVNEFPATHWAY 45 1.55 0.17 up         down 

KEGG_NOD-LIKE RECEPTOR SIGNALING PATHWAY 43 1.55 0.17 up         down 

REACT_NUCLEAR EVENTS (KINASE AND 
TRANSCRIPTION  
FACTOR ACTIVATION) 

20 1.54 0.17 up         down 

WIP_HS_APOPTOTIC_EXECUTION_PHASE 22 1.54 0.18 up         down 

KEGG_GLYCOLYSIS _ GLUCONEOGENESIS 33 1.54 0.18 up         down 

WIP_HS_INTRINSIC_PATHWAY_FOR_APOPTOSIS 16 1.54 0.17 up         down 

NCI_IL8CXCR1_PATHWAY 22 1.54 0.18 up         down 

REACT_G ALPHA (12_13) SIGNALLING EVENTS 47 1.54 0.18 up         down 

NCI_CDC42_PATHWAY 52 1.54 0.18 up         down 

REACT_CHAPERONIN-MEDIATED PROTEIN FOLDING 33 1.53 0.19 up         down 

WIP_HS_TNF-ALPHA-NF-KB_SIGNALING_PATHWAY 161 1.52 0.19 up         down 

NCI_TXA2PATHWAY 40 1.52 0.19 up         down 

NCI_CERAMIDE_PATHWAY 37 1.52 0.19 up         down 

REACT_L1CAM INTERACTIONS 50 1.52 0.19 up         down 

KEGG_AMOEBIASIS 40 1.52 0.19 up         down 

NCI_HIF1_TFPATHWAY 44 1.52 0.19 up         down 

KEGG_BLADDER CANCER 21 1.51 0.19 up         down 

NCI_RHOA_REG_PATHWAY 25 1.51 0.19 up         down 
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Downregulated gene sets 
  

  Size indicates the number of total genes which are involve in the corresponding pathway. (NES):  
    normalised enrichment scores and (FDR): false discovery rate. 
 

 
 

 

 

 

NCI_KITPATHWAY 37 1.51 0.19 up         down 
 
 
 
 
 

Table S2. Upregulated gene sets continued 
 

    

NCI_RAC1_REG_PATHWAY 28 1.51 0.19 up         down 

NCI_S1P_S1P3_PATHWAY 20 1.51 0.19 up         down 

NAME SIZE NES FDR q-val Direction 
    obese Lean 

 

NCI_CD8TCRPATHWAY 47 -2.12 0.02 down    up 

REACT_GENERATION OF SECOND MESSENGER  
MOLECULES 

29 -1.91 0.13 down    up 

REACT_BRANCHED-CHAIN AMINO ACID CATABOLISM 15 -1.87 0.12 down    up 

REACT_BIOSYNTHESIS OF THE N-GLYCAN PRECURSOR 24 -1.83 0.14 down    up 

WIP_HS_GENERIC_TRANSCRIPTION_PATHWAY 15 -1.81 0.12 down    up 

NCI_TCR_PATHWAY 58 -1.70 0.26 down    up 

KEGG_T CELL RECEPTOR SIGNALING PATHWAY 81 -1.69 0.24 down    up 

NCI_CD8TCRDOWNSTREAMPATHWAY 46 -1.69 0.22 down    up 

WIP_HS_INFLAMMATORY_RESPONSE_PATHWAY 15 -1.68 0.20 down    up 

BIOC_AMIPATHWAY 17 -1.67 0.20 up          up 

KEGG_ABC TRANSPORTERS 19 -1.67 0.18 up          up 

REACT_TCR SIGNALING 57 -1.66 0.18 up          up 

REACT_GENERIC TRANSCRIPTION PATHWAY 134 -1.65 0.18 down    up 

BIOC_CSKPATHWAY 17 -1.62 0.19 down    up 

NCI_IL2_STAT5PATHWAY  25 -1.61 0.20 up          up 
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Table S3. Correlation of the fasting plasma metabolome at baseline with HOMA 

A  Acylcarnitine C2/Cn vs. HOMA C2vs. HOMA Cn vs. HOMA 
 Cn P ρ P ρ P ρ 
 AAAC       
 C4 (butyryl) <0.001 -0.44 0.70 -0.04 <0.001 0.41 
 C3 (propionyl) 0.01 -0.30   0.003 0.38 
 C5(2-

methylbutyroyl) 0.09 -0.21   0.02 0.28 

 C0 (carnitine) 0.1 -0.20   0.07 0.22 
 FAAC       
 C6 (hexanoyl) <0.001 -0.55   0.01 0.31 
 C18 (stearoyl) 0.4 -0.10 

  
0.9 0.01 

 C16 (palmitoyl) 0.07 -0.22   0.1 0.20 
 C14 (myristol) 0.1 -0.20   0.3 0.10 

B      AA vs. HOMA 
 BCAA     P ρ 
 Isoleucine     0.06 0.34 
 Leucine     0.02 0.30 
 Valine     0.02 0.30 
 Amino acids     P ρ 
 Tyrosine     <0.001 0.57 
 Phenyl alanine     0.02 0.30 
 2aminoadipic acid     0.06 0.24 

 
 
AAAC: amino acid derived acylcarnitine, FAAC: fatty acid derived acylcarnitines. AA: amino acid.  
ρ: Spearman's rank correlation coefficient. Fasting levels (T0) of all subjects (lean and abdominally ob
ese) before  
and after interventions were included. 
 
 

 

 

 

 

Table s3. Correlation of the fasting plasma metabolome at baseline with HOMA
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Table S4. Overview of significantly (FDR<0.05) upregulated and downregulated gene sets in 
WL abdominally obese subjects at fasting (T0) before and after weight loss intervention (D2 
vs. D1) 

Upregulated gene sets 

NAME SIZE NES FDR q-val 

NCI_IL12_2PATHWAY 45 2.27 0 
KEGG_T CELL RECEPTOR SIGNALING PATHWAY 81 2.14 0.01 
KEGG_T CELL RECEPTOR SIGNALING PATHWAY 81 2.14 0.01 
BIOC_NTHIPATHWAY 20 2.05 0.02 
BIOC_PPARAPATHWAY 35 2.03 0.02 
NCI_FGF_PATHWAY 26 1.99 0.03 
NCI_FCER1PATHWAY 51 1.97 0.03 
REACT_NRAGE SIGNALS DEATH THROUGH JNK 30 1.95 0.03 
REACT_SIGNALING BY RHO GTPASES 77 1.94 0.03 
KEGG_SALMONELLA INFECTION 52 1.94 0.03 
REACT_RHO GTPASE CYCLE 77 1.94 0.03 
BIOC_IL1RPATHWAY 22 1.92 0.03 
NCI_TCRCALCIUMPATHWAY 18 1.91 0.03 
WIP_HS_NOD_PATHWAY 28 1.9 0.03 
KEGG_NEUROTROPHIN SIGNALING PATHWAY 88 1.9 0.03 
NCI_AP1_PATHWAY 36 1.89 0.03 
NCI_IL23PATHWAY 18 1.88 0.03 
REACT_SIGNALING BY GPCR 152 1.88 0.03 
REACT_INTERACTIONS OF THE IMMUNOGLOBULIN 
SUPERFAMILY (IGSF)  31 1.88 0.03 
KEGG_LEISHMANIASIS 51 1.88 0.03 
KEGG_CARBOHYDRATE DIGESTION AND ABSORPTION 19 1.87 0.03 
NCI_ERBB4_PATHWAY 20 1.86 0.03 
NCI_HIF1_TFPATHWAY 44 1.86 0.03 
KEGG_TOLL-LIKE RECEPTOR SIGNALING PATHWAY 69 1.86 0.03 
KEGG_NOD-LIKE RECEPTOR SIGNALING PATHWAY 43 1.84 0.04 
WIP_HS_RANKL-RANK_SIGNALING_PATHWAY 41 1.84 0.04 
REACT_G ALPHA (12_13) SIGNALLING EVENTS 47 1.84 0.04 
WIP_HS_TOLL-LIKE_RECEPTOR_SIGNALING_PATHWAY 69 1.83 0.04 
NCI_EPHBFWDPATHWAY 21 1.83 0.03 
NCI_ATF2_PATHWAY 27 1.83 0.03 
WIP_HS_INSULIN_SIGNALING 113 1.82 0.04 
NCI_IL1PATHWAY 26 1.82 0.04 
KEGG_OSTEOCLAST DIFFERENTIATION 94 1.81 0.04 
REACT_GPCR DOWNSTREAM SIGNALING 143 1.81 0.04 
NCI_CD8TCRDOWNSTREAMPATHWAY 46 1.8 0.04 
BIOC_KERATINOCYTEPATHWAY 35 1.8 0.04 
NCI_CXCR4_PATHWAY 78 1.8 0.04 
REACT_ION CHANNEL TRANSPORT 18 1.79 0.04 

Table s4. Overview of significantly (FDR<0.05) upregulated and downregulated gene sets in WL abdominally obese 

subjects at fasting (T0) before and after weight loss intervention (D2 vs. D1)
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Table S4. Upregulated gene sets continued    
KEGG_MTOR SIGNALING PATHWAY 36 1.79 0.04 
BIOC_TOLLPATHWAY 28 1.79 0.04 
 
Downregulated gene sets  
 
NAME SIZE NES FDR q-val 

KEGG_PARKINSON'S DISEASE 86 -2.5 0 
REACT_RESPIRATORY ELECTRON TRANSPORT 56 -2.45 0 
KEGG_OXIDATIVE PHOSPHORYLATION 92 -2.42 0 
WIP_HS_OXIDATIVE_PHOSPHORYLATION 46 -2.36 0 
WIP_HS_ELECTRON_TRANSPORT_CHAIN 76 -2.24 0 
REACT_FORMATION OF THE TERNARY COMPLEX, AND SUBSEQUENTLY, 
THE 43S COMPLEX 

39 -2.21 0 

REACT_PLATELET DEGRANULATION 46 -2.19 0 
REACT_CDK-MEDIATED PHOSPHORYLATION AND REMOVAL OF CDC6 45 -2.17 0 
REACT_UBIQUITIN-DEPENDENT DEGRADATION OF CYCLIN D1 45 -2.15 0 
REACT_UBIQUITIN-DEPENDENT DEGRADATION OF CYCLIN D 45 -2.13 0 
KEGG_PROTEASOME 40 -2.13 0 
REACT_DESTABILIZATION OF MRNA BY AUF1 (HNRNP D0) 50 -2.12 0 
REACT_SCF(SKP2)-MEDIATED DEGRADATION OF P27_P21 49 -2.11 0 
REACT_REGULATION OF APOPTOSIS 51 -2.09 0 
REACT_REGULATION OF ACTIVATED PAK-2P34 BY PROTEASOME 
MEDIATED DEGRADATION 

45 -2.09 0 

REACT_RESPONSE TO ELEVATED PLATELET CYTOSOLIC CA2+ 50 -2.07 0 
WIP_HS_PROTEASOME_DEGRADATION 56 -2.07 0 
REACT_P53-INDEPENDENT DNA DAMAGE RESPONSE 45 -2.04 0 
REACT_REGULATION OF ORNITHINE DECARBOXYLASE (ODC) 44 -2.03 0.01 
REACT_AUTODEGRADATION OF CDH1 BY CDH1_APC_C 55 -2.02 0 
REACT_VIF-MEDIATED DEGRADATION OF APOBEC3G 49 -2.02 0 
REACT_UBIQUITIN MEDIATED DEGRADATION OF PHOSPHORYLATED 
CDC25A 

45 -2.02 0 

REACT_APC_C_CDC20 MEDIATED DEGRADATION OF SECURIN 55 -2.01 0.01 
REACT_P53-INDEPENDENT G1_S DNA DAMAGE CHECKPOINT 45 -1.99 0.01 
REACT_CDT1 ASSOCIATION WITH THE CDC6_ORC_ORIGIN COMPLEX 49 -1.98 0.01 
REACT_DNA REPLICATION PRE-INITIATION 60 -1.97 0.01 
REACT_M_G1 TRANSITION 60 -1.97 0.01 
REACT_ACTIVATION OF APC_C AND APC_C_CDC20 MEDIATED 
DEGRADATION OF MITOTIC PROTEINS 

56 -1.97 0.01 

REACT_APC_C_CDC20 MEDIATED DEGRADATION OF MITOTIC PROTEINS 56 -1.97 0.01 
REACT_CYCLIN E ASSOCIATED EVENTS DURING G1_S TRANSITION 54 -1.97 0.01 
REACT_SCF-BETA-TRCP MEDIATED DEGRADATION OF EMI1 48 -1.96 0.01 
REACT_CDC20_PHOSPHO-APC_C MEDIATED DEGRADATION OF CYCLIN A 56 -1.95 0.01 
REACT_MITOTIC G1-G1_S PHASES 76 -1.93 0.01 
REACT_SYNTHESIS OF DNA 73 -1.92 0.01 
REACT_CYCLIN A_CDK2-ASSOCIATED EVENTS AT S PHASE ENTRY 56 -1.91 0.01 
REACT_REGULATION OF APC_C ACTIVATORS BETWEEN G1_S AND EARLY 
ANAPHASE 

61 -1.91 0.01 
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Table S4. Downregulated gene sets continued    
KEGG_RIBOSOME 66 -1.91 0.01 
KEGG_HUNTINGTON'S DISEASE 126 -1.89 0.01 
REACT_FORMATION OF A POOL OF FREE 40S SUBUNITS 74 -1.88 0.01 
REACT_ASSEMBLY OF THE PRE-REPLICATIVE COMPLEX 53 -1.88 0.01 
REACT_REGULATION OF DNA REPLICATION 58 -1.87 0.01 
REACT_G1_S TRANSITION 72 -1.87 0.01 
REACT_AUTODEGRADATION OF THE E3 UBIQUITIN LIGASE COP1 47 -1.86 0.01 
REACT_VIRAL MRNA TRANSLATION 63 -1.86 0.01 
REACT_PREFOLDIN MEDIATED TRANSFER OF SUBSTRATE  TO CCT_TRIC 18 -1.86 0.01 
REACT_COOPERATION OF PREFOLDIN AND TRIC_CCT  IN ACTIN AND 
TUBULIN FOLDING 

18 -1.85 0.01 

REACT_INFLUENZA VIRAL RNA TRANSCRIPTION AND REPLICATION 63 -1.85 0.01 
REACT_SWITCHING OF ORIGINS TO A POST-REPLICATIVE STATE 58 -1.85 0.01 
BIOC_PROTEASOMEPATHWAY 20 -1.84 0.01 
REACT_ORC1 REMOVAL FROM CHROMATIN 58 -1.84 0.01 
REACT_VPU MEDIATED DEGRADATION OF CD4 47 -1.84 0.01 
KEGG_ALZHEIMER'S DISEASE 112 -1.83 0.01 
REACT_RIBOSOMAL SCANNING AND START CODON RECOGNITION 44 -1.83 0.01 
REACT_EUKARYOTIC TRANSLATION TERMINATION 65 -1.82 0.02 
REACT_REMOVAL OF LICENSING FACTORS FROM ORIGINS 58 -1.81 0.02 
REACT_P53-DEPENDENT G1 DNA DAMAGE RESPONSE 51 -1.81 0.02 
REACT_S PHASE 82 -1.8 0.02 
REACT_P53-DEPENDENT G1_S DNA DAMAGE CHECKPOINT 51 -1.8 0.02 
REACT_APC_C-MEDIATED DEGRADATION OF CELL CYCLE PROTEINS 63 -1.79 0.02 
REACT_TRANSLATION INITIATION COMPLEX FORMATION 44 -1.78 0.02 
REACT_REGULATION OF MITOTIC CELL CYCLE 63 -1.77 0.02 
REACT_STABILIZATION OF P53 48 -1.77 0.02 
REACT_NONSENSE MEDIATED DECAY INDEPENDENT OF THE EXON 
JUNCTION COMPLEX 

70 -1.77 0.02 

REACT_G1_S DNA DAMAGE CHECKPOINTS 51 -1.76 0.02 
REACT_SIGNALING BY WNT 60 -1.75 0.02 
REACT_EUKARYOTIC TRANSLATION ELONGATION 67 -1.75 0.02 
REACT_DEGRADATION OF BETA-CATENIN BY THE DESTRUCTION 
COMPLEX 

60 -1.74 0.02 

REACT_REGULATION OF BETA-CELL DEVELOPMENT 67 -1.73 0.03 
REACT_INSULIN SYNTHESIS AND PROCESSING 101 -1.72 0.03 
KEGG_SPLICEOSOME 111 -1.71 0.03 
REACT_REGULATION OF GENE EXPRESSION IN BETA CELLS 67 -1.71 0.03 
REACT_POST-ELONGATION PROCESSING OF INTRONLESS PRE-MRNA 17 -1.7 0.03 
REACT_CHROMOSOME MAINTENANCE 47 -1.69 0.03 
REACT_NUCLEOSOME ASSEMBLY 25 -1.69 0.03 
PPARA_TARGETS 81 -1.68 0.04 
REACT_PROCESSING OF CAPPED INTRONLESS PRE-MRNA 17 -1.68 0.04 
    

 

Size indicates the number of total genes which are involve in the corresponding pathway. (NES): normalised 
enrichment scores and (FDR): false discovery rate 



130

 

Table S5.Fasting (T0) and postprandial effects of abdominally obese 
 that underwent the control intervention.   

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Metabolites FC(T0) iAUC 

  P 
Acylcarnitines 

 
 

2.Methylbutyroylcarnitine 1.13 
Propionylcarnitine 1.17 
Isobutyrylcarnitine 1.22 0.04 
Stearoylcarnitine  0.01 
Octanoylcarnitine  0.04 
Decanoylcarnitine  0.04 
Amino acids and related 
metabolites 

 

 

Choline 1.02  
Methionine 1.17  
Phosphocholine 1.15  
Dimethylglycine 1.21*  
Leucine 1.06  
Isoleucine 1.07  
Arginine 1.15*  
Tyrosine 1.07 0.02 

Valine 1.1* <0.01 * 
N6.N6.N6.trimethyl.L.lysine 1.08*  
Ornithine 1.06  
Phenylalanine 1.1  
2.aminoadipic.acid 1.12 0.01 
Sarcosine  0.01 
Dimethylglycine  0.03 
Dimethylamine  0.04 
TCA cycle and related 
metabolites 

 

 

Aspartic acid 1.18  
Fumaric acid  <0.01* 
Oxylipins   
12.13.DiHOME  <0.01 
FC: Fold change (T0, T2, before and after control 
intervention, respectively), iAUC: Incremental area under 
the curve, *: Significant at P<0.05,lFDR<0.2. 
 

Table s5. Fasting (T0) and postprandial effects of abdominally obese

 that underwent the control intervention.  
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Table S6. Overview of significantly (FDR<0.2) upregulated and downregulated gene sets in 
abdominally obese subjects in response to mixed meal challenge before and after weight loss 
intervention (Δ T4-T0, D2, vs. Δ T4-T0, D1). 

Upregulated gene sets 

NAME SIZE NES FDR q-val Direction 
    D2    D1 

 
WIP_HS_OXIDATIVE_PHOSPHORYLATION 46 2.09 0.03 up     down 

KEGG_OXIDATIVE PHOSPHORYLATION 92 1.94 0.09 up     down 

WIP_HS_ELECTRON_TRANSPORT_CHAIN 76 1.87 0.14 up     down 

REACT_RESPIRATORY ELECTRON TRANSPORT 56 1.84 0.14 up     down 

REACT_RESPIRATORY ELECTRON TRANSPORT 69 1.83 0.12 up     down 

KEGG_PARKINSON'S DISEASE 86 1.77 0.18 up     down 

 

 
Downregulated gene sets 

NAME SIZE NES FDR  
q-val 

Direction 

    D2     D1 
KEGG_GALACTOSE METABOLISM 17 -2.26 0.00 down   up 

NCI_HIF1_TFPATHWAY 44 -2.07 0.03 down   up 

WIP_HS_ESTROGEN_SIGNALING_PATHWAY 17 -2.01 0.05 down   up 

KEGG_CARBOHYDRATE DIGESTION AND ABSORPTION 19 -1.92 0.06 down   up 

BIOC_KERATINOCYTEPATHWAY 35 -1.93 0.07 down   up 

REACT_NRAGE SIGNALS DEATH THROUGH JNK 30 -1.93 0.08 down   up 

WIP_HS_PHYSIOLOGICAL_AND_PATHOLOGICAL_HYPERTROPHY_O
F_THE_HEART 

17 -1.95 0.08 down   up 

NCI_IL6_7PATHWAY 35 -1.82 0.09 down   up 

REACT_ION TRANSPORT BY P-TYPE ATPASES 17 -1.82 0.09 down   up 

NCI_EPOPATHWAY 27 -1.80 0.09 down   up 

WIP_HS_IL-3_SIGNALING_PATHWAY 37 -1.88 0.09 down   up 

BIOC_NTHIPATHWAY 20 -1.83 0.09 down   up 

WIP_HS_SREBP_SIGNALLING 22 -1.85 0.09 down   up 

NCI_ERBB2ERBB3PATHWAY 31 -1.80 0.09 down   up 

KEGG_PHOSPHATIDYLINOSITOL SIGNALING SYSTEM 55 -1.84 0.09 down   up 

WIP_HS_WNT_SIGNALING_PATHWAY 28 -1.83 0.10 down   up 

REACT_ION CHANNEL TRANSPORT 18 -1.86 0.10 down   up 

NCI_IL2_1PATHWAY 46 -1.81 0.10 down   up 

WIP_HS_RANKL-RANK_SIGNALING_PATHWAY 41 -1.86 0.10 down   up 

WIP_HS_KIT_RECEPTOR_SIGNALING_PATHWAY 39 -1.77 0.12 down   up 

REACT_GLUCOSE TRANSPORT 33 -1.75 0.12 down   up 

REACT_HEXOSE TRANSPORT 33 -1.73 0.12 down   up 

NCI_MAPKTRKPATHWAY 27 -1.74 0.13 down   up 
 

Table s6. Overview of significantly (FDR<0.2) upregulated and downregulated gene sets in 

abdominally obese subjects in response to mixed meal challenge before and after weight loss 

intervention (Δ T4-T0, D2, vs. Δ T4-T0, D1).
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Table S6. Downregulated gene sets continued     

KEGG_ADIPOCYTOKINE SIGNALING PATHWAY 40 -1.75 0.13 down   up 

WIP_HS_MICRORNAS_IN_CARDIOMYOCYTE_HYPERTROPHY 53 -1.76 0.13 down   up 

NCI_ATF2_PATHWAY 27 -1.75 0.13 down   up 

KEGG_STARCH AND SUCROSE METABOLISM 20 -1.72 0.13 down   up 

NCI_AVB3_OPN_PATHWAY 26 -1.73 0.13 down   up 

NCI_IL1PATHWAY 26 -1.74 0.13 down   up 

NCI_NECTIN_PATHWAY 19 -1.71 0.13 down   up 

NCI_AMB2_NEUTROPHILS_PATHWAY 25 -1.71 0.13 down   up 

NCI_AR_TF_PATHWAY 39 -1.71 0.13 down   up 

KEGG_NEUROTROPHIN SIGNALING PATHWAY 88 -1.68 0.14 down   up 

WIP_HS_IL-1_PATHWAY 42 -1.68 0.14 down   up 

BIOC_IL1RPATHWAY 22 -1.69 0.14 down   up 

KEGG_FOCAL ADHESION 93 -1.68 0.15 down   up 

REACT_SIGNALLING TO ERKS 25 -1.69 0.15 down   up 

NCI_IL23PATHWAY 18 -1.65 0.15 down   up 

REACT_RHO GTPASE CYCLE 77 -1.65 0.15 down   up 

REACT_P75 NTR RECEPTOR-MEDIATED SIGNALLING 62 -1.65 0.15 down   up 

REACT_SIGNALING BY RHO GTPASES 77 -1.65 0.15 down   up 

NCI_ANGIOPOIETINRECEPTOR_PATHWAY 34 -1.67 0.15 down   up 

KEGG_ECM-RECEPTOR INTERACTION 15 -1.65 0.16 down   up 

NCI_PI3KCIPATHWAY 41 -1.66 0.16 down   up 

BIOC_IL7PATHWAY 15 -1.64 0.16 down   up 

REACT_INTEGRIN CELL SURFACE INTERACTIONS 37 -1.64 0.16 down   up 

BIOC_GLEEVECPATHWAY 21 -1.63 0.16 down   up 

WIP_HS_IL-7_SIGNALING_PATHWAY 22 -1.65 0.16 down   up 

NCI_VEGFR1_2_PATHWAY 56 -1.63 0.16 down   up 

REACT_MITOCHONDRIAL TRNA AMINOACYLATION 15 -1.66 0.16 down   up 

WIP_HS_FOCAL_ADHESION 91 -1.63 0.16 down   up 

REACT_SIGNALLING BY NGF 160 -1.66 0.16 down   up 

BIOC_PPARAPATHWAY 35 -1.62 0.17 down   up 

REACT_INTERACTIONS OF THE IMMUNOGLOBULIN SUPERFAMILY 
(IGSF) MEMBER PROTEINS 

31 -1.58 0.17 down   up 

KEGG_MISMATCH REPAIR 18 -1.59 0.17 down   up 

REACT_NCAM SIGNALING FOR NEURITE OUT-GROWTH 21 -1.59 0.17 down   up 

WIP_HS_INTEGRIN-MEDIATED_CELL_ADHESION 59 -1.62 0.17 down   up 

REACT_NETRIN-1 SIGNALING 19 -1.57 0.17 down   up 

WIP_HS_EGF_RECEPTOR_SIGNALING_PATHWAY 116 -1.58 0.17 down   up 

KEGG_FC EPSILON RI SIGNALING PATHWAY 51 -1.59 0.17 down   up 

WIP_HS_IL-4_SIGNALING_PATHWAY 36 -1.59 0.17 down   up 

NCI_GMCSF_PATHWAY 31 -1.59 0.17 down   up 

KEGG_ALDOSTERONE-REGULATED SODIUM REABSORPTION 17 -1.58 0.17 down   up 

REACT_REGULATION OF GLUCOKINASE BY GLUCOKINASE 
REGULATORY PROTEIN 

27 -1.58 0.17 down   up 

NCI_NETRIN_PATHWAY 19 -1.58 0.17 down   up 

NCI_NETRIN_PATHWAY 19 -1.58 0.17 down   up 

NCI_ATM_PATHWAY 27 -1.59 0.17 down   up 

BIOC_EDG1PATHWAY 15 -1.58 0.17 down   up 
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Size indicates the number of total genes which are involve in the corresponding pathway.(NES): normalised 
enrichment scores and (FDR): false discovery rate 

 

 

 

 

 

 

 

Table S6. Downregulated gene sets continued     

REACT_GTP HYDROLYSIS AND JOINING OF THE 60S RIBOSOMAL 
SUBUNIT 

83 -1.57 0.17 down   up 

REACT_SIGNALING BY INTERLEUKINS 85 -1.57 0.17 down   up 

BIOC_TNFR2PATHWAY 16 -1.61 0.17 down   up 

KEGG_RIBOSOME BIOGENESIS IN EUKARYOTES 57 -1.60 0.17 down   up 

REACT_EFFECTS OF PIP2 HYDROLYSIS 15 -1.61 0.17 down   up 

NCI_FAK_PATHWAY 47 -1.60 0.17 down   up 

NCI_IFNGPATHWAY 35 -1.60 0.18 down   up 

BIOC_INTEGRINPATHWAY 26 -1.56 0.18 down   up 

WIP_HS_EBV_LMP1_SIGNALING 16 -1.56 0.18 down   up 

NCI_MTOR_4PATHWAY 58 -1.60 0.18 down   up 

REACT_SIGNALLING TO RAS 18 -1.60 0.18 down   up 

NCI_CXCR4_PATHWAY 78 -1.55 0.18 down   up 

KEGG_TIGHT JUNCTION 61 -1.54 0.18 down   up 

NCI_CD40_PATHWAY 23 -1.55 0.18 down   up 

REACT_GLOBAL GENOMIC NER (GG-NER) 27 -1.55 0.18 down   up 

KEGG_INOSITOL PHOSPHATE METABOLISM 42 -1.55 0.19 down   up 

KEGG_HOMOLOGOUS RECOMBINATION 17 -1.54 0.19 down   up 

BIOC_IL2RBPATHWAY 28 -1.54 0.19 down   up 

NCI_REG_GR_PATHWAY 54 -1.53 0.19 down   up 

KEGG_VEGF SIGNALING PATHWAY 45 -1.53 0.19 down   up 

REACT_NUCLEAR IMPORT OF REV PROTEIN 30 -1.53 0.19 down   up 

WIP_HS_INSULIN_SIGNALING 113 -1.53 0.19 down   up 

REACT_APOPTOTIC EXECUTION  PHASE 36 -1.50 0.19 down   up 

NCI_ERBB4_PATHWAY 20 -1.50 0.20 down   up 
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Table S7. Overview of downstream oxylipins produced from AA, LA, ALA, DGLA, EPA, 
and DHA by the COX, LOX and CYP oxidizing enzymes. Spearman correlations between 
oxylipins and their precursors (AA and LA) have been presented (P<0.05)  

Precursor Downstream oxylipin Enzyme P Ρ 

 
 

AA 

5.HETE 5-LOX  <0.001 0.34 
11.HETE COX2 <0.001 0.37 
PGE2 COX <0.001 0.24 
TXB2 COX <0.001 0.22 
12S.HHTrE COX0 <0.001 0.17 

 
 

LA 

12.13.EpOME CYP450 NS  
9.HODE 5-LOX NS  
13.HODE 15-LOX <0.001 0.30 
12.13.DiHOME CYP4500 0.003 -0.14 
9.12.13.TriHOME CYP450 <0.001 -0.42 

ALA 9.HOTrE LOX <0.001 -0.20 
DGLA PGF1a COX   
EPA 17.18.DiHETE CYP450   
DHA 19.20.DiHDPA CYP450   

10.HDoHE Auto-oxidation   
ρ: Spearman rank correlation coefficient, NS: Not significant. 

 

 

Table s7. Overview of downstream oxylipins produced from AA, LA, ALA, DGLA, EPA, and DHA by the COX, LOX 

and CYP oxidizing enzymes. Spearman correlations between oxylipins and their precursors (AA and LA) have been 

presented (P<0.05) 
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Table S7. Overview of downstream oxylipins produced from AA, LA, ALA, DGLA, EPA, 
and DHA by the COX, LOX and CYP oxidizing enzymes. Spearman correlations between 
oxylipins and their precursors (AA and LA) have been presented (P<0.05)  

Precursor Downstream oxylipin Enzyme P Ρ 

 
 

AA 

5.HETE 5-LOX  <0.001 0.34 
11.HETE COX2 <0.001 0.37 
PGE2 COX <0.001 0.24 
TXB2 COX <0.001 0.22 
12S.HHTrE COX0 <0.001 0.17 

 
 

LA 

12.13.EpOME CYP450 NS  
9.HODE 5-LOX NS  
13.HODE 15-LOX <0.001 0.30 
12.13.DiHOME CYP4500 0.003 -0.14 
9.12.13.TriHOME CYP450 <0.001 -0.42 

ALA 9.HOTrE LOX <0.001 -0.20 
DGLA PGF1a COX   
EPA 17.18.DiHETE CYP450   
DHA 19.20.DiHDPA CYP450   

10.HDoHE Auto-oxidation   
ρ: Spearman rank correlation coefficient, NS: Not significant. 

 

 

Table s8. Amino acid (AAAC) and fatty acid (FAAC) derived acylcarnitines covered in this study.
Table S8. Amino acid (AAAC) and fatty acid (FAAC) derived acylcarnitines covered in this 
study. 

 -Carnitine Abbreviation Origin 
 
 
AAAC (C2-5) 

Acetyl- C2 Leu, Ile 
Proprionyl- C3 Ile, Val 
Isobutyryl- C4 Val 
2-Methylbutyryl- C5 Ile 
Isovaleryl- C5 Leu 

 
 
 
FAAC (C6-18) 

Hexanoyl- C6:0 Caproic, hexanoic acid 
Octanoyl- C8:0 Octanoic acid 
Octenoyl- C8:1 Octenoic acid 
Decanoyl- C10:0 Decanoiccapric acid 
Myristoyl- C12:0 Myristic acid 
Tetradecanoyl C14:0  
Palmitoyl- C16:0 Palmitic acid 
Stearoyl- C18:0 Stearic acid 
Linoleyl- C18:2  

    
 

 

Table s9.Correlation of ∆Nadir and Nadir of plasma acylcarnitines levels with phenotypic parameters.

 

Table S9.Correlation of ∆Nadir and Nadir of plasma acylcarnitines levels with phenotypic 

parameters. 

 ∆Nadir  vs. HOMA ∆Nadir  vs. LBM Nadir vs. HOMA Nadir vs. LBM 

Acylcarnitines P  ρ  P  ρ P  ρ P  ρ 
Acetylcarnitine (C2) 0.01 0.30   0.03 0.26   
2Methylbutyrilcarnitine (C4) 0.04 -0.25       
Deoxycarnitine (C0) 0.03 -0.26       
Tetradecanoylcarnitine (C14)   0.005 0.34     
Linoleylcarnitine (C18:2)   0.02 0.37     
Octanoylcarnitine (C8)   0.02 0.30     
Tetradecenoylcarnitine (C14)   0.02 0.27     
Hexanoylcarnitine (C6)     0.001 0.39   
Butyrylcarnitine (C4)     0.0003 0.44   
Propionylcarnitine (C3)     0.001 0.39   
Carnitine (C0)       0.01 0.30 
Isobutyrylcarnitine (C4)       0.01 -0.31 

          LBM: Lean body mass, ρ: Spearman's rank correlation coefficient. Only correlations with p<0.05 have been indicated. 
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AbsTRAcT

It has been proposed that the ability of a person to respond to a metabolic stressor reflects 

the capacity to adapt to a new situation and that this can provide a better indication of health 

and disease risk than a measurement at fasting.For individual metabolites such correlations 

can be established, but this provides a fragmented view on the involved pathways. This can 

be overcome by Goeman’s global testing approach, which explicitly considers that metabolites 

are connected in pathways. The application of Goeman’s global test to two intervention stud-

ies indicates that it can provide a direct view on involvement of a priori defined pathways in 

phenotype shifts. In one study obese subjects received a mixed meal challenge before and af-

ter weight loss and in a second study obese subjects received a high fat mixed meal challenge 

before and after a polyphenol intervention. The effect of weight loss intervention on a priori 

defined metabolic pathways observed in the fasting and postprandial plasma metabolome 

was consistent with previous studies. In both studies Goeman’s global test showed that inter-

ventions affected more metabolic pathways at fasting than during the postprandial response. 

For the population of the weight loss intervention study, Goeman’s global test revealed that 

HOMA correlated with the fasting levels of the TCA cycle, BCAA catabolism, the lactate, Ar-

ginine-Proline and Phenylalanine-Tyrosine pathways. For the population of the polyphenol 

intervention study, HOMA correlated with fasting metabolite levels of TCA cycle, fatty acid ox-

idation and Phenylalanine-tyrosine pathways. Also these correlations were more pronounced 

for metabolic pathways in the fasting state, than during the postprandial response. Hence we 

cannot confirm that the postprandial metabolic response to a mixed meal challenge provides 

a more sensitive read-out for a shift in phenotypic flexibility than fasting metabolism.

Keywords. Goeman’s global test,phenotypic flexibility
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InTROducTIOn

Health is maintained by well-orchestrated interactions between physiological processes. 

These processes have to function in a changing environment and thus they collectively strive 

to maintain homeostasis by continuous adaptations. The ability to adapt to stressors such as 

diet and exercise has been coined as phenotypical flexibility (PF) and has been proposed as a 

measure for health [1, 2]. PF has been brought forward as a broad concept [1], but comprises 

the well-established concept of metabolic flexibility (MF), which is the efficiency of the post-

prandial switch between fasting lipid catabolism to postprandial carbohydrate anabolism [3]. 

Several studies have claimed that the ability of a person to respond to a metabolic stressor re-

flects the capacity to adapt to the new situation and this provides a better indication of health 

and disease risk comparing to fasting measure [4, 5]. Challenge tests have been put forward to 

measure the phenotypic flexibility of a biological system, meaning how well the system is able 

to undo the perturbation of a challenge and bring the system back to steady state. 

In earlier studies univariate statistics was used to find differences between metabolic phe-

notype, at the level of baseline metabolism or in the response to a challenge. This approach 

is compromised by the multiple testing problem, and also cannot unambiguously establish 

whether a phenotype shift is better reflected in a shift in baseline metabolism or in an altered 

response to a dietary challenge. 

In this work we will explore an approach where we exploit prior knowledge on involve-

ment of metabolic pathways in shifts in baseline metabolism or altered postprandial respons-

es. In order to exploit this prior knowledge we will use Goeman’s global test, which is a robust 

test whether metabolites that are connected in a pathway collectively respond to a change in 

conditions [6]. 

We will explore this approach in two studies, where mixed-meal challenges were car-

ried out to assess the efficacy of two types of dietary interventions. The first study examined 

whether a mixed meal challenge response could provide a readout for a shift in phenotypical 

flexibility upon weight loss in obese male subjects. This study showed a significant effect of 

weight loss on improved insulin sensitivity [7] and thus provides a relevant case for testing 

our approach. In the second study, the effect of long term polyphenol consumption on phe-

notypical flexibility was also assessed by means of a mixed meal challenge. The polyphenol 

intervention did not have an effect on insulin sensitivity and MF but increased baseline and 

postprandial fat oxidation as compared to placebo [8]. In both studies the responses of amino 

acids and acylcarnitines were measured, as well as metabolites related to the TCA cycle. This 

set of metabolites was selected since previous studies most convincingly related them with the 
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ability to effectively switch from lipid to carbohydrate metabolism in the postprandial phase, 

i.e. metabolic flexibility. We explore Goeman’s global testing approach to assess the effect of 

the weight loss and polyphenol intervention on both baseline and mixed meal challenge re-

sponse. Furthermore, we will use this approach to establish correlations between phenotypi-

cal parameters related to insulin sensitivity and metabolic flexibility. 

MATeRIAls And MeThOds

subject characteristics 
Weight loss intervention study. 29 abdominally overweight / obese men (BMI= 30.3 ± 2.4kg/

m2) participated in the study. None of the subjects were diagnosed with clinical diseases. Sub-

jects characteristics can be found in Supplementary Table S1-a.

Polyphenol intervention study. 38overweight and obese subjects (BMI= 29.7 ± 0.5 kg/m2) 

participated in this study, 28 subjects were randomly selected for metabolomics analysis. 

Characteristics of the subjects who completed the study are summarized in Supplementary 

Table S1-b. 

study design 
Weight loss intervention study. Lean subjects were only studied cross-sectional, and obese/

overweight subjects before and after random assignment to a weight-loss intervention of 8 

weeks. Before the weight loss intervention (D1), all subjects underwent a mixed meal chal-

lenge test and subsequently blood samples were collected during 4 hours. Subjects assigned 

to either a weight-loss (WL) or control (CTRL) programme for 8 wk. After this period (D2), sub-

jects again underwent a mixed meal challenge and blood samples were collected at the same 

time intervals as on D1. HOMA was measured at both D1 and D2. Details on the design can be 

found in an earlier study [7] . 

Polyphenol intervention study. In this randomized, double-blind, placebo-controlled, par-

allel-intervention trial, subjects received either a polyphenol supplement (epigallocatechin 

gallate and resveratrol; 282 and 80 mg/d, respectively) or a placebo (partly hydrolyzed mi-

crocrystalline cellulose-filled capsules) for a period of 12 wk to assess effects of polyphenol 

supplementation on tissue-specific insulin sensitivity (primary outcome) and metabolic pro-

file, skeletal muscle oxidative capacity, fat oxidation, and lipolysis (secondary outcomes). The 

supplementation period started the day after the last baseline measurement in week 0 and 

was continued throughout measurements in week 12. In total, subjects were asked to visit 

the university 10 times for medical screening, 3 clinical investigation days (CIDs) before the 
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start of supplementation (within 7 d), 3 control visits during the supplementation period, and 

3 CIDs in the last week of supplementation (within 7 d). In this study we use the data from 

CID2 where high-fat mixed meal (HFMM) challenges was performed. At CID2, besides HOMA 

also energy expenditure (EE), respiratory quotient (RQ), fat and carbohydrate oxidation were 

measured by indirect calorimetry by using the open-circuit ventilated hood system (Omnical; 

Maastricht University) and were calculated according to the formulas of Weir and Frayn, re-

spectively. Also a hyperinsulinemic-euglemic clamp with an isotope labelled glucose infusion 

tracer was performed to assess rate of disappearance (Rd, as measured for peripheral insulin 

sensitivity) and endogenous glucose production (% EGPm a measure for hepatic insulin resis-

tance). Full details of the study can be found elsewhere [8]. 

sample collection
Weight loss intervention study. Subjects were asked not to perform any strenuous physical 

exercise or to consume alcohol and high-fat foods on the day before blood sampling. Blood 

samples were taken at fasting and after mixed meal consumption both before and after the 

weight loss intervention at 6 time points (fasting (T0) and 30, 60,120,180 and 240 minutes in 

the postprandial state). The standardized mixed meal consisted of two muffins and 300 ml 0% 

fat milk, which provided 1100 kcal: 56.6 g fat, 26.5 g protein and 121 g carbohydrate. Metabolic 

profiling was performed on all time points.

Polyphenol intervention study. After inserting a cannula into the antecubital vein, substrate 

oxidation was measured for 30 min under fasting conditions (T0) and for 4 h after the inges-

tion of a liquid high-fat mixed meal (HFMM) (625 kcal, 61% of energy from fat, 33% of energy 

from carbohydrate, 6% of energy from protein), which was consumed within 5 min at t = 0. 

Blood samples were taken under fasting (0 min) and postprandial (t = 30, 60, 90, 120, 150, 180, 

210, and 240 min) conditions. Full details of the study can be found elsewhere [8].

Plasma metabolic profiling
Amino acids and biogenic amines, organic acids and acylcarnitines were measured for 

both the weight loss and polyphenol intervention studies, with a total 170 metabolites. Amino 

acids and biogenic amines in plasma were derivatized (Acc-TAG) and measured by a UPLC sys-

tem which was interfaced to quadrupole mass spectrometer. Acylcarnitines in plasma were 

also measured by UPLC-MS, but without derivatisation. Organic acids in plasma were mea-

sured by GC-MS, after oximation and silation derivatization. Oxylipins were only analyzed for 

the weight loss study. First an SPE extraction was performed and subsequently aLC separation 

coupled to ESI on a triple quadrupole mass spectrometer. Oxylipins were detected in negative 

ion mode using dynamic SRM. Full details of these platforms have been described in earlier 
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studies [9-12]. Serum metabolites were measured by NMR in a quantitative manner, full ex-

perimental details can be found in earlier work [11]. In short, serum samples were ultrafiltrat-

ed and automated quantum mechanical line shape fitting of 1H NMR spectra was performed 

using PERCH in order to obtain absolute metabolite concentrations.

statistical analysis
Analysis of variance (ANOVA) was used for between group comparisons at baseline. Lin-

ear mixed model was used to assess the fasting comparison and difference of response effect 

between groups. P<0.05 was considered to be statistically significant. To account for multiple 

testing, local false discovery rates (lFDR) were calculated for each metabolite [13, 14]. The post-

prandial response was considered as incremental area under the curve (iAUC), taking the first 

measurement (t0) as a reference. The iAUC was calculated in two ways. First, by considering 

that the AUC comprises both negative AUC (AUC−) and positive AUC (AUC+) contributions, we 

refer to this value as iAUC. Secondly, we also calculated the positive iAUC where the absolute 

values contributing to the curve were summed up, we refer to these values as piAUC [15, 16]. 

For both iAUC and piAUC we use the trapezoidal calculation method [17].

For pathway analysis, Goeman’s global test for metabolomics was applied to test groups of 

covariates (or features) for association with a response variable using the global test R library 

[6, 18]. In this approach a priori biological information, such as knowledge of pathways is used 

as cellular processes arise as the result of many reactions between metabolic intermediates 

[19]. In the metabolomics field, predefined groups of pathways or functional modules can be 

used [19-21]. More detail about this approach can be find elsewhere [6, 18]. Nadir acylcarni-

tine values were defined as the lowest value achieved during the 4 hours after the meal [22]. Δ 

nadir was calculated as difference between nadir and T0 values. All analyses were done using 

R (version 3.1.2).

ResulTs

univariate assessment of intervention effects and correlations with 
phenotype parameters

Weight loss intervention study. Figure 1A and B shows the P-value distribution of values for 

the weight loss effect on respectively fasting metabolite levels and their postprandial response 

as expressed by iAUC. As it is shown in the figure there is a more pronounced effect at fasting as 

compared to the postprandial response. Comparing obese subjects that underwent the weight 

loss and control interventions at fasting and with respect to challenge response, we found that 
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a range of metabolites are significantly different between two groups in either comparison. 

Metabolites that are significantly different between groups at fasting upon weight loss (Sup-

plementary Table S2A) are not changed upon a mixed meal challenge (Supplementary Table 

S2B). Branched chain amino acids (BCAA) and amino acid derived acylcarnitines (AAAC) were 

among the most significantly different metabolites between groups at baseline. 

Polyphenol intervention study. The P-value distribution of the polyphenol intervention ef-

fect on metabolite baseline and response (iAUC) values are presented in Figure 1C and D, re-

spectively. The P-value distribution shows that only a small number of metabolites are signifi-

cantly different between two groups either at fasting or in their postprandial response. This is 

also in line with the small number of metabolites on which the polyphenol intervention had a 

significant effect according to univariate testing (Supplementary Table S3A and 3B). 

Correlation with phenotype parameters. For the weight loss study population a number 

of univariate correlations between metabolite levels and HOMA can be established [12]. The 

correlations between HOMA and branched chain amino acids, phenylalanine and tyrosine 

are in line with previous studies [23, 24]. In addition we could also find correlations between 

HOMA and C2/Cn acylcarnitine ratios, which were recently brought forward as putative read-

outs for β-oxidation rate [25]. In an earlier study, we also found correlation between HOMA 

and Δ nadir and nadir acylcarnitine levels, in particular for amino acid derived ones [12]. The 

Δ nadir and nadir acylcarnitine values can be considered as a single parameter summary of 

their postprandial response [22] and the correlations with HOMA suggest they are related to 

fatty acid oxidation flux.

For the polyphenol intervention study, besides HOMA also ΔRQ and fat oxidation were 

measured via indirect calorimetry. We can observe a number of significant correlations be-

tween these phenotypical parameters with metabolites at fasting (Supplementary Table S4). 

These correlations however provide a scattered view on involvement of metabolic pathways. 

We also assessed whether fasting plasma C2/Cn acylcarnitine ratios correlated with HOMA, 

ΔRQ, and fat oxidation. The only significant effect was correlation of C2/2-methylbutyroylca-

nitine with HOMA (P= 0.02, ρ=-0.31). For the population of the polyphenol intervention study, 

correlation of ∆ nadir and nadir acylcarnitine levels with phenotypic parameters (HOMA, 

ΔRQ, fat oxidation) did not show any significant effects. 

Goeman’s global test for assessment of intervention effects on plasma 
metabolome

Metabolites from the TCA cycle and the lactate pathway were grouped according to the 

KEGG database. For amino acid and fatty acid derived acylcarnitines no pathway informa-

tion has been entered in KEGG. Hence we grouped metabolites according to branched amino 
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acid catabolism, comprising branched chain amino acids and derived acylcarnitines. Fatty 

acid derived carnitines (C8-C18) were also grouped in a pathway. We also grouped phenylala-

nine and tyrosine, since both these amino acids have consistently been associated with insu-

lin resistance [24]. Oxylipins derived from arachidonic acid were also grouped in a pathway. 

An overview of metabolites collected in pathways is given in Table 1. The result of Goeman’s 

global testing for assessment of lean vs obese differences and effect of weight loss on obese 

is presented in Table 2. Three pathways, including the TCA cycle and BCAA catabolism are 

different between obese and lean subjects at fasting. The combination of phenylalanine and 

tyrosine was also significantly different between lean and obese. The last two pathways were 

also different between obese subjects before and after a weight loss intervention. Regarding 

the postprandial metabolic response, the difference between obese and lean subjects was lim-

ited to lactate and the Arg-Pro pathway. We note that here we present effects for iAUC values, 

which account for positive and negative contributions. The effects are similar when piAUC 

values are considered (Supplementary Table S5). The Goeman’s global test could however not 

reveal significant (P<0.05) weight loss induced differences in postprandial response in obese 

subjects. The effect of weight loss on the enzymatic oxidation pathway of arachidonic acid 

did not reach statistical significance (P<0.09). The Goeman’s global testing approach was also 

deployed to reveal pathways that were affected by the polyphenol intervention. No significant 

effect could however be observed for neither baseline metabolite levels nor the metabolic 

postprandial responses, irrespective of whether iAUC or piAUC values were used. 

Goeman’s global test for assessment of correlations of plasma metabolome 
with phenotypical variables

The populations of the weight loss and polyphenol intervention studies were well charac-

terized with respect to insulin sensitivity (HOMA), metabolic flexibility (RQ) and baseline fat ox-

idation (Table 1a and 1b). HOMA was determined in both the weight loss and polyphenol inter-

vention studies, whereas RQ and baseline fat oxidation were only determined in the polyphenol 

study. We explored whether the Goeman’s global testing approach would provide a means to 

establish correlations between phenotype parameters and metabolic pathways. Goeman’s glob-

al test revealed that for the population of the weight loss intervention study HOMA correlated 

with the fasting levels of metabolites from the TCA cycle, BCAA catabolism, lactate-glucose, Argi-

nine-Proline and Phenylalanine-tyrosine pathways (Table 3). For this population the correlation 

between pathways and HOMA were more pronounced at fasting than for the postprandial re-

sponse as expressed by iAUC (Table 3) or piAUC (Supplementary Table S5).

For the polyphenol study Goeman’s global test revealed that HOMA is correlated with TCA 

cycle (P=0.02) and fatty acid oxidation pathways (P=0.06) as observed in fasting levels (Ta-
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ble 3). For ΔRQ, fat oxidation, hepatic insulin resistance and peripheral insulin sensitivity no 

correlations could be established for any of the pathways when fasting levels were consid-

ered. Goeman’s test also found no correlations between any of the phenotypical parameters 

(HOMA, ΔRQ, fat oxidation, hepatic insulin resistance, peripheral insulin sensitivity) and post-

prandial responses (iAUC and piAUC) when these were grouped in pathways.

dIscussIOn 

Global testing of intervention effects on metabolic pathways. We applied Goeman’s global 

test to determine whether sets of metabolites that are connected within a pathway collectively 

respond to an intervention. Our aim was to examine whether a phenotypic flexibility can be 

defined as a shift in baseline metabolism or by the postprandial metabolic response. A study 

by Hendrickx et al. revealed that Goeman’s global test can be used to determine if the be-

haviour of a group of metabolites within the same pathway, is related to a specific outcome of 

interest [6]. We applied the Goeman’s global test on two studies where volunteers respectively 

underwent a weight loss and polyphenol intervention. The weight loss intervention caused 

a more pronounced shift in baseline levels rather than in postprandial response as is shown 

in P distribution plot in Figure 1. For the weight loss intervention Goeman’s global tests in-

deed showed significant effects at pathway level at fasting (Table 2). Metabolites involved in 

the TCA cycle have significantly different pattern between obese and lean subjects at fasting, 

which is in line with other studies [24]. Moreover, we observed an effect of weight loss on 

BCAA catabolism, and the combination of Phe-Tyr, which is in line with previous observations 

of changes in metabolic profiles accompanying an improvement in insulin resistance [23, 24]. 

In Chapter 4 we observed that the main metabolites for which the postprandial response was 

different before/after weight loss were oxylipins derived from arachidonic acid by enzymatic 

oxidation.  Although the individual P values were significant for arachidonic acid  derived 

oxylipins, when we test them collectively in Goeman’s test the effect of weight loss  on the 

postprandial response of this pathway was only P = 0.09.

In the dietary polyphenol intervention study, the P distribution plot indicated that only a 

small number of metabolites were affected at baseline or in their postprandial response. This 

was also reflected in the small number of metabolites that showed a significant effect accord-

ing to univariate testing (Supplementary Table S3). Goeman’s global test indeed did not reveal 

pathways that were significantly different before and after the polyphenol intervention. This 

is in line with the relative small effect of the polyphenol intervention on phenotypical pa-

rameters. Although the prolonged polyphenol supplementation stimulated fat oxidation and 
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increased mitochondrial capacity comparing to placebo, no significant effect on tissue-specific 

insulin sensitivity and metabolic flexibility in obese subjects was observed [8].  

Goeman’s global testing of correlations between pathways and phenotype parameters. The 

observed correlations of HOMA with metabolites involved in TCA cycle, BCAA catabolism and 

lactate pathway can be explained by their positive correlation with insulin resistance [23, 24]. 

However, Goeman’s global test showed that the changes in postprandial response are smaller 

than the change at T0 after the intervention (Table 3). In the population of the weight loss 

study, more pathways were significant than for the polyphenol intervention study, in particu-

lar at fasting. As the HOMA range of obese subjects  of  two studies is comparable (Supplemen-

tary Table S1a, S1b), the lack of pronounced effects in polyphenol study might be due to lack 

of power and/or confounding with other phenotype parameters.

cOnclusIOn

The application of Goeman’s global test to two intervention studies indicates that it can 

provide a direct view on involvement of a priori defined pathways in phenotype shifts. The 

effect of weight loss intervention on a priori defined metabolic pathways was consistent with 

previous studies, as well as correlation of pathways with insulin sensitivity as described by 

HOMA. Goeman’s global test, indicated that metabolic flexibility is more strongly reflected in 

pathways observed at baseline, than in their postprandial response. Hence we cannot confirm 

that the postprandial metabolic response to a mixed meal challenge provides a more sensitive 

read-out for a shift in phenotypic flexibility than fasting metabolism.
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Table 1. Collection of metabolites in pathways for Goeman’s global testing  

Pathway 
 

Number of metabolites 
in the group 

Metabolites 

TCA cycle 8 Citric acid, malic acid,2-ketoglutaric 
acid, succinic acid, fumaric acid, 
pyroglutamic acid, cis-aconitic acid, 
pyrovate 

BCAA catabolism 8 C3, C4, C4DC, C5, C5, Val, Leu, Ile 
Fatty acid oxidation 17 C8, C10, C12, C14, C16, C18 
Lactate pathway 2 Lactate, Pyruvate, Glucose 
Arg, Pro  6 Methionine, Proline, 

Ornithine,Citrulline,4-hydroxyproline, 
Arginine 

Phe, Tyr 2 Phenylalanine, Tyrosine 
Enzymatic oxidation of 
arachidonic acid 

5 TXB2, PGE2, 12S.HHTrE, 5.HETE, 
11.HETE 

   
 

 

 

Table 1. Collection of metabolites in pathways for Goeman’s global testing 

Table 2. Goeman’s global testing of differences in metabolic pathways (Table 1) between lean and obese volunteers 

and the effect of a weight loss (WL) intervention (compared to a control (CRT) intervention). Differences were tested 

for baseline values (T0) and postprandial response (iAUC).

Table 2. Goeman’s global testing of differences in metabolic pathways (Table 1) between lean and 

obese volunteers and the effect of a weight loss (WL) intervention (compared to a control (CRT) 

intervention). Differences were tested for baseline values (T0) and postprandial response (iAUC). 

 

 

 

 

 

 

 

 
 

Pathways and number of metabolites 

Fasting Response 
T0 

Obese vs lean 
∆ T0 

WL vs CRTL 
iAUC 

Obese vs lean 
∆iAUC 

WL vs CRTL 
TCA cycle 8 0.01 0.2 0.4 0.3 

BCAA catabolism 7 0.02 0.02 0.5 0.5 
Fatty acid oxidation 17 0.07 0.4 0.7 0.5 

Lactate pathway 3 0.06 0.5 0.03 0.3 
Arg, Pro  6 0.5 0.1 0.02 0.6 

Phe, Tyr 2 0.01 0.03 0.3 0.3 

Enzymatic oxidation of Arachidonic acid 5 0.6 0.5 0.3 0.09 
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Table 3. Goeman’s global test results for correlations between baseline values, postprandial response (expressed 

as iAUC) and HOMA. The Goeman’s global tests were performed separately for volunteers from the weight loss 

and polyphenol intervention studies. No significant effects were observed of effect of polyphenol intervention on 

postprandial response. Note that no arachidonic acid (AA) metabolites (oxylipins) were measured for the polyphenol 

intervention study.

Table 3. Goeman’s global test results for correlations between baseline values, postprandial response 
(expressed as iAUC) and HOMA. The Goeman’s global tests were performed separately for 
volunteers from the weight loss and polyphenol intervention studies. No significant effects were 
observed of effect of polyphenol intervention on postprandial response. Note that no arachidonic acid 
(AA) metabolites (oxylipins) were measured for the polyphenol intervention study. 

 

 

 

 

 

 

 

 
 

Pathways and number of metabolites 

Fasting Postprandial 
response 

Weight loss 
intervention 

group 

Polyphenol 
intervention 

group 

Weight loss 
intervention group 
 

TCA cycle 8 0.01 0.02 0.4 

BCAA catabolism 7 0.04 0.4 0.6 
Fatty acid oxidation 17 0.7 0.06 0.4 

Lactate pathway 3 0.05 0.9 0.02 
Arg, Pro 6 0.04 0.6 0.7 

Phe, Tyr 2 0.02 0.04 0.5 

Enzymatic oxidation of arachidonic acid 5 0.7 NA 0.4 
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Figure 1. P- value distribution of effect of weight loss on baseline values in obese subjects (ΔWL T0 vs. Δ CTRL 

T0) (A), effect of weight loss on challenge response values in obese subjects (iAUC WL vs. iAUC CTRL) (B), effect 

of polyphenol intervention on baseline values in obese subjects (Δ PolyphenolT0 vs. Δ Placebo T0) (C), effect of 

polyphenol intervention on challenge response values in obese subjects (iAUC Polyphenol vs. iAUC Placebo) (D).

Metabolites with P<0.05 were coloured green and otherwise red.

 

 

Figure 1. P- value distribution of effect of weight loss on baseline values in obese subjects (ΔWL T0 
vs. Δ CTRL T0) (A), effect of weight loss on challenge response values in obese subjects (iAUC WL 
vs. iAUC CTRL) (B), effect of polyphenol intervention on baseline values in obese subjects (Δ 
PolyphenolT0 vs. Δ Placebo T0) (C), effect of polyphenol intervention on challenge response values 
in obese subjects (iAUC Polyphenol vs. iAUC Placebo) (D).Metabolites with P<0.05 were coloured 
green and otherwise red. 
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suPPleMenTARy MATeRIAl

Table S1-a.Characteristics of lean subjects and obese subjects before and after weight loss (WL) or 
control (CRTL) interventions. 

 Lean  WL(D1) WL(D2) CTRL(D1) CTRL(D2) 
Number 15 14 14 15 15 
Age(y)  47.4 ± 4.5 44 ± 3.7  44.8 ± 3.4  
BMI(kg/m2) 23.0 ± 0.6 30.0 ± 0.5 26.9 ± 0.5* 30.7 ± 0.7 30.4 ± 0.7 
Glucose (mol/L) 5.1 ± 0.07 5.3 ± 0.12 5.0 ± 0.09 5.3 ± 0.09 5.3 ± 0.37 
HOMA(IR) 1.62±0.1 3.00±0.4 1.75±0.2* 2.89±0.4 2.92±0.3 
Data are presented as mean ± SEMs. *: A significant effect of weight loss (P<0.05). WL: weight loss, CTRL: 
control, D1, D2: before and after intervention (see also Figure 1), BMI: Body mass index. 

 

 

Table s1-a. Characteristics of lean subjects and obese subjects before and after weight loss (WL) or control (CRTL) 

interventions.

Table s1-b. Characteristics of the subjects of the polyphenol study before and after intervention.

 

Table S1-b. Characteristics of the subjects of the polyphenol study before and after intervention. 

 Placebo Polyphenol 
 Week 0 Week 12 Week 0 Week 12 
Number  14  13  
Age (y) 41.4 ± 2.5  35 ± 3.1  
BMI (kg/m2) 28.5 ± 0.8  29.6 ± 0.8  
Glucose(mol/L) 5.1 ± 0.1 5.1 ± 0.1 5.1 ± 0.07 5.1 ± 0.1 
HOMA(IR) 2.2± 0.4 2.3 ± 0.3  1.9 ± 0.2 1.7 ± 0.1 
RQ 0.78 ± 0.01 0.82 ± 0.02 0.80 ± 0.01 0.79 ± 0.01 
ΔRQ 0.08 ± 0.01 0.06 ± 0.01  0.07 ± 0.01 0.08 ± 0.01 
Fat oxidation  0.08 ± 0.006 0.06 ± 0.01 0.07 ± 0.005 0.07 ± 0.008 
Data are means ± SEMs. BMI: Body mass index 
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Table s2A. Univariate comparisons of effect of weight loss intervention 

on baseline values in obese subjects (ΔWLT0 vs. Δ CTRL T0)

Table S2A. Univariate comparisons of effect of weight loss intervention on baseline values in obese 
subjects (ΔWLT0 vs. Δ CTRL T0)  
 
Metabolite P lFDR 
Amino acids & related 
metabolites   
Creatinine <0.01 NS 
Glycine <0.01 NS 
2 aminoadipic acid 0.01 NS 
Isoleucine 0.01 NS 
Leucine 0.01 NS 
Creatine 0.02 NS 
Carnitine 0.02 NS 
Betaine 0.02 NS 
4 hydroxyproline 0.03 NS 
Tyrosine 0.05 NS 
Valine 0.05 NS 
Acylcarnitines   
Propionylcarnitine (C3) <0.01 NS 
2-Methylbutyroylcarnitine (C5) <0.01 NS 
TCA cycle & related metabolites   
Succinic acid 0.03 NS 
Glutamic acid 0.04 NS 

P<0.05 was considered significant. lFDR: local false discovery rate 

 

NS:not significant
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Table S2B. Comparison of effect of weight loss intervention on challenge response values in 
obese subjects ( iAUC WL vs. iAUC CTRL ) 
 
Metabolites Day*Condition lFDR 
Amino acids & related 
metabolites   
 SDMA 0.02 NS 
 Dimethylglycine 0.03 NS 
Methionine 0.04 NS 
Asparagine 0.04 NS 
 Succinate 0.04 NS 
Arginine 0.05 NS 
Acylcarnitines   
Myristoyl (C12) 0.05 NS 
 Choline 0.05 NS 
Oxylipins   
12.13.DiHOME <0.01 NS 
12S.HHTrE 0.04 NS 
9.10.DiHOME 0.04 NS 
   

P<0.05 was considered significant subjects according to 
univariate linear mixed models.lFDR: local false discovery rate 
  NS: not significant

Table s2b. Comparison of effect of weight loss intervention on challenge 

response values in obese subjects ( iAUC WL vs. iAUC CTRL )
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Table S3A.Univariate comparisons of effect of polyphenol intervention on baseline values in 
obese subjects (Δ Polyphenol T0 vs. Δ Placebo T0) 
 
Metabolite P lFDR 
Amino acids & 
related metabolites   
Histidine 0.03 NS 
 Dopamine 0.05 NS 
Acylcarnitines   
Octanoyl (C8) 0.01 NS 
Decanoyl (C10) 0.03 NS 

P<0.05 was considered significant.lFDR: local false discovery rate 

 

NS:not significant

Table s3A. Univariate comparisons of effect of polyphenol 

intervention on baseline values in obese subjects (Δ Polyphenol T0 

vs. Δ Placebo T0)

Table s3b. Comparison of effect of the polyphenol intervention on challenge 

response values in obese subjects ( iAUC Polyphenol vs. iAUC Placebo )

 
Table S3B. Comparison of effect of the polyphenol intervention on challenge response values in 
obese subjects ( iAUC Polyphenol vs. iAUC Placebo ) 
 
Metabolite Day*Group lFDR 
Amino acids & related 
metabolites   
 Cystathionine 0.01 NS 
Acylcarnitines   
Myristoyl (C12) 0.01 NS 
 Deoxy (C0) 0.01 NS 
Isovaleryl (C5) 0.05 NS 
Organic acids    
3 Hydroxybutyric acid 0.04 NS 

P<0.05 was considered significant. lFDR: local false discovery rate 

 

NS:not significant
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Table S4. Univariate correlation of the fasting plasma metabolome of volunteers in polyphenol 

intervention study with HOMA, fat oxidation and ΔRQ. 

  ∆RQ HOMA FAT Oxidation 
Metabolites P ρ P ρ P ρ 

Proline <0.01 -0.42         
Tiglylcarnitine <0.01 -0.39         
Isovalerylcarnitine <0.01 -0.38         
Glutathione 0.01 0.34 0.03 -0.30     
Betaine 0.01 -0.33         
Glycylglycine 0.02 0.32         
Methionine.sulfone 0.03 0.30         
Saccharopine 0.03 -0.30         
Pivaloylcarnitine 0.04 -0.30         
DL.3.aminoisobutyric acid 0.04 -0.28         
Propionylcarnitine 0.05 -0.28         
3.Methoxytyramine     <0.01 0.48     
Citricacid     <0.01 -0.46     
Beta.Alanine     <0.01 0.41     
Acetylcarnitine     <0.01 -0.37     
Oleylcarnitine     0.01 -0.36     
Asparagine     0.02 -0.33     
4.hydroxy.proline     0.02 0.32     
Norepinephrine     0.03 -0.32     
Tyrosine     0.03 0.31     
Cis.aconitic acid     0.03 -0.30     
Homocysteine         <0.01 0.40 
S.Methylcysteine         <0.01 0.40 
Kynurenine         0.01 0.36 
Succinic acid         0.01 -0.34 
Cysteine         0.02 0.32 
Cystathionine         0.04 0.28 

 
ρ: Pearson correlation coefficient. 

 

 
 

Table s4. Univariate correlation of the fasting plasma metabolome of volunteers in polyphenol intervention study 

with HOMA, fat oxidation and ΔRQ.
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Table S5. Goeman’s global testing of differences in metabolic pathways observed during the 

postprandial response, expressed as piAUC. Goeman’s global tests were performed separately for 

volunteers from the weight loss and polyphenol intervention studies. No significant effects were 

observed for effect of weight loss or polyphenol intervention on postprandial response, expressed as 

piAUC (data not shown). 

 

 

 

 

 

 

 

 
Pathways and number of metabolites 

 Difference 
obese vs lean 

Correlation with 
HOMA for weight 
loss intervention 
group 
 

TCA cycle 8 NS NS 

BCAA catabolism 7 NS  NS 
Fatty acid oxidation 17 NS NS 

Lactate pathway 3 0.06 0.05 
Arg, Pro  6 0.1 NS 

Phe, Tyr 2 NS NS 

Enzymatic oxidation of arachidonic acid 5 NS NS 

NS:not significant

Table s5. Goeman’s global testing of differences in metabolic pathways observed during the 

postprandial response, expressed as piAUC. Goeman’s global tests were performed separately for 

volunteers from the weight loss and polyphenol intervention studies. No significant effects were 

observed for effect of weight loss or polyphenol intervention on postprandial response, expressed 

as piAUC (data not shown).
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General discussion
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Recapturing aim 
The metabolic phenotype is the product of interactions between several factors such as ge-

netics, diet, lifestyle, and environment. The aim of this thesis was to measure health improve-

ments by assessing subtle shifts in metabolic phenotype. Two approaches were applied to 

identify a phenotype shift. First, by looking at the effect of prolonged resistance-type exercise 

training on skeletal muscle tissue in older subjects and examining the possible shift toward 

younger subjects as a reference for a healthier phenotype. Second, by observing the response 

to a dietary challenge in obese subjects and examining the possible shift toward lean subjects 

as a reference for a healthier phenotype.

Main findings of this thesis
Chapter 2 and 3 of this thesis showed how the significant remaining plasticity of ageing 

skeletal muscle can adapt to resistance-type exercise training. It was shown that frail and 

healthy older subjects are two distinct phenotypes according to the skeletal muscle tissue me-

tabolite profiles and that exercise training shifts aged muscle towards a more younger phe-

notype. It was also shown that the effect of exercise on amino acid derived acylcarnitines 

(AAAC’s) in older subjects points towards decreased branched chain amino acid catabolism, 

possibly due to compromised activation of the branched chain α-keto acid hydrogenase (BCK-

DH) complex. The protocadherin gamma gene cluster was identified as a possible contributor 

to aged-muscle denervation and re-innervation. Moreover, it was found that plasma is not a 

direct indicator of muscle metabolism, emphasizing the need for direct assessment of metab-

olism in muscle tissue.

Chapter 4 and 5 of this thesis addresses whether a mixed meal challenge response could 

provide a readout for a shift in phenotype upon weight loss in obese male subjects. It was 

concluded that the impact of weight loss on the mixed meal postprandial response of plasma 

metabolites and PBMC gene expression was modest. Furthermore, assessment of metabolic 

health at the fasted state and during a post-prandial test yield distinct types of information.

Training induced shifts of older phenotypes toward young 
In this thesis, healthy and frail older subjects were subjected to supervised resistance-type 

exercise training, a widely accepted strategy for tackling muscle wasting and weakness. Our 

study suggests a significant remaining plasticity of ageing skeletal muscle to adapt to regular 

resistance-type exercise and also a shift in the expression of a subset of genes towards levels 

observed in the younger group. At the gene expression level, the most striking finding in our 

study was the association of protocadherin gamma gene cluster (related to denervation and 

re-innervation) in skeletal muscle with age and muscle weakness, which might provide novel 
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insights into whether or not denervation and re-innervation is modulated by interventions 

or lifestyle factors such as nutrition and physical activity. Nevertheless, there is a lack of the 

knowledge at the pathway level to be able to target the expression of protocadherin gamma to 

improve age-related muscle weakness and functional decline (Chapter 2).

It has been shown that resistance-type exercise combined with amino acid ingestion elicits 

the greatest anabolic response and may help older subjects in producing a ‘youthful’ muscle 

protein synthetic response [1]. However, it is still debated whether older subjects respond in a 

similar manner to that of younger adults [2]. In this thesis, it was found that skeletal muscles 

of older subjects move toward a younger phenotype after resistance-type exercise training. 

Accordingly, resistance-type exercise in the elderly causes skeletal muscle to adopt features of 

more youthful skeletal muscle.

The primary differences in skeletal muscle metabolite levels between healthy older and 

young subjects were related to mitochondrial function, fibre type, and tissue turnover (Chap-

ter 3). At the metabolite level, the most remarkable effects of resistance-type exercise training 

in older subjects were a significant decrease in the level of amino acid derived acylcarnitines 

(AAAC’s) accompanied by an increase in branched chain amino acids level after training. This 

suggests a compromised response of a flux-determining mitochondrial branched chain α-keto 

acid hydrogenase (BCKDH) to prolonged resistance-type exercise training[3]. A decrease in 

branched chain amino acids oxidation may stimulate mTOR (a protein complex influencing 

protein synthesis and breakdown) related pathways activation [4, 5] and consequently pro-

tein synthesis, which is likely beneficial for older subjects. However, this mechanism occurs at 

the level of enzymatic activity, which prevents us from reaching strong conclusions based on 

the present data. Dickinson et al. demonstrated that mTOR signalling is necessary to stimulate 

the rate of muscle protein synthesis after resistance exercise [6]. A meta-analysis by Markofski 

et al. showed that there is no difference in fasting protein synthesis rates between young and 

old skeletal muscle, but both total and phosphorylated mTOR were elevated in muscle from 

fasted elderly individuals [7]. This may be due to either a compensatory response reflecting 

increased relative muscle loading in daily life or may be due to a dysregulation of the mTOR 

complex, influencing muscle mass in a complex and non-linear manner [8].

The gains in muscle strength and function in response to resistance-type exercise reflect 

improvements in multiple physiological factors, including coordination, muscle mass, and 

neuromuscular function. These improvements are observed in most healthy subjects that 

take up a resistance exercise program. Whether this also holds true for older subjects with 

pre-existing skeletal problems or disease such as diabetes is not fully clear [2]. A study by 

Churchward et al. demonstrated that there are no non-responders to the benefits of resis-

tance-type exercise training (regarding lean body mass, fiber size, strength or function) in 



162

older subjects. This implies that resistance-type exercise should be promoted without restric-

tion to support healthy aging in the older population [9]. In our study population, all older 

subjects regardless of their health status (frail or healthy)and gender improved in muscle 

performance following 6 months of resistance-type exercise training, as illustrated by a sig-

nificantly increase in leg extension and leg press strength post training [10-12]. However, lean 

body mass did not necessarily increase in all subjects, indicating that the strength increase 

must be primarily due to an increase in muscle quality, calcium handling, cross-bridge cy-

cling, and neuromuscular adaptation instead of an increase in muscle cross-sectional area 

[10]. A review by Timmons et al., however, concluded that in human studies the demonstra-

tion of the efficacy of resistance-type training in older subjects is compromised by ‘population 

stratification’ [13]. Many human studies report spurious observations based on small sample 

size and high inter-subject variation. Therefore, not all researchers in the field agree on the 

scale of heterogeneous outcomes from exercise training. Using larger-scale prolonged studies 

and improving diagnostics of an individual’s potential to respond to standardised physical 

training will help to perform studies with sufficient statistical power to allow for population 

stratification [13]. The key question is whether these kinds of studies are actually feasible? In 

this context, the standardisation of protocols (such as exercise load, meal composition, etc.) 

will be of prime importance to enable integration of independent studies. For body fluids the 

use of such standardised protocols has now become common practice in large scale metabo-

lomics studies [14-16].

weight loss induced shift of obese phenotypes 
This thesis examined the phenotypic flexibility after applying a mixed meal challenge test 

with a combination of carbohydrates, fat and protein, i.e., an oral protein–glucose–lipid toler-

ance test. The assumption that underlies the use of mixed meal challenges is that it triggers 

all aspects of phenotypic flexibility [17].The observed plasma glucose responses in response 

to the mixed meal challenge were similar as compared to an OGTT, while the insulin response 

was prolonged in comparison with the glucose response [18]. The postprandial metabolic re-

sponse was found to be different between obese and lean subjects, yet the difference was not 

as pronounced as for the OGTT challenge [19], which may be explained by the complexity of 

our mixed meal, affecting multiple metabolic pathways. A study by Esser at al. revealed that 

a MUFA challenge is more potent in eliciting differences between lean and obese subjects as 

compared to a SFA challenge [20]. Notably, the lipid composition of the mixed meal in our 

study is similar to SFA. It is possible that the usage of one single nutrient might be more effec-

tive at evoking differences in phenotypic responses between subjects. In addition, it allows for 

better understanding of the underlying biological mechanisms.
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A mixed meal challenge is expected to provoke a more prolonged insulin response [17], 

possibly allowing for better differentiation between individuals. However, differentiation 

based on postprandial mixed meal responses was modest. Although a clear improvement in 

insulin sensitivity could be observed, the weight loss intervention had only a subtle effect on 

fasting and especially postprandial metabolites[21, 22] [4]. A recent study by Kardinaal et al. 

found that the changes observed in response to a challenge are a more sensitive biomarker 

of metabolic resilience than changes in fasting concentrations [23]. Compared to our study, 

the discrepancy might be due to the population under study, as the study by Kardinaal et 

al. involved subjects with the metabolic syndrome, whereas in our study the subjects were 

healthy overweight/obese. An alternative explanation may be differences in the type of chal-

lenge used. Indeed, Kardinaal et al. performed a high fat challenge, whereas in our weight loss 

study a mixed meal challenge was applied. 

Therefore, based on our data we conclude that there is a moderate effect of weight loss on 

the mixed meal challenge response of the plasma metabolome and transcriptome of periph-

eral blood mononuclear cells of obese subjects. A recent study also found a modest number of 

differences in postprandial response to an OGTT between obese and lean subjects [19]. These 

differences were discussed qualitatively, without attempt to discuss statistical significance. 

The authors noticed a much stronger heterogeneity in the OGTT postprandial response of 

obese compared to lean. It is very likely that the heterogeneity in postprandial response to a 

mixed meal also explains why in our study only modest effects of weight loss were observed. 

Moreover, it is possible that the differences between lean and obese in the postprandial met-

abolic switch may be concealed by the direct influx of dietary amino acids and fatty acids. 

FuTuRe PeRsPecTIves

how to follow up with the challenge concept? 
Chapter 4 and 5 showed, that the impact of weight loss on the mixed meal postprandi-

al response of plasma metabolites and PBMC gene expression was modest. Based on these 

observation, the concept of using dietary challenge test to amplify differences in phenotypic 

flexibility between individuals may itself be challenged.

Firstly, the design of the challenge test should be carefully considered. Currently, there 

is no consensus on the composition of challenge tests for quantifying phenotype flexibility. 

Measuring a person’s phenotypic flexibility can be performed by perturbing the homeostasis 

of that person, and quantifying the response of single or multiple markers during the post-

prandial phase. In Figure 1 the main physiological processes relevant to phenotypical flexibil-
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ity are shown [17]. The overview in this figure illustrates the multitude of processes that can 

be perturbed by dietary challenges. Even a single dietary challenge like OGTT will impact on 

multiple organs, either directly or indirectly. In the postprandial phase also these organs will 

mutually interact as they are networked in our body. Unravelling the direct and indirect post-

prandial responses induced by single challenges is challenging but feasible [24]. It has been 

claimed that a multiple challenge such as a mixed meal is preferable since it more closely re-

sembles metabolic perturbations encountered in daily life [17]. The outcome of the analysis in 

Chapter 4 however indicate that the metabolic response to a mixed meal challenge is difficult 

to be interpreted, even when using a range of profiling platforms to widely cover the plasma 

metabolome.

Secondly, those metabolic markers should be identified that can provide information on 

specific organ-dependent processes involved in phenotypical flexibility. Such processes can 

be measured by identifying the dynamics of the metabolic stress response in blood [17]. Upon 

a mixed meal challenge, the system is however flooded with dietary amino acids, fatty acids, 

carbohydrates, which may conceal the detection of the effects of the intervention on path-

ways involved in phenotypical flexibility. This can be resolved by observing the postpran-

dial dynamics of acylcarnitines as acylcarnitines are only produced in the body and can be 

considered as proxies of amino acid and fatty acid metabolism. Both in muscle metabolom-

ics (Chapter 3) and in the challenge responses (Chapter 4), clear effects of phenotype shifts 

were observed in the levels of acylcarnitines. A study by Ramos-Roman suggested the use of 

postprandial changes in plasma acylcarnitine concentrations as markers of fatty acid flux in 

overweight subjects [25]. Plasma acylcarnitines also have been proposed as biomarkers of in-

sulin resistance and metabolic inflexibility in adults [26, 27], although this notion was recently 

contested [28]. It has been suggested that increased acylcarnitine levels in obese subjects may 

not only be due to an impairment in metabolism, but may also represent a natural response to 

an excess supply of lipid. Indeed, the increased production of acylcarnitine could result from 

excess fatty acid flux originating from lipid stored either intracellularly or peripherally [25].

These findings underscore the need for a better understanding of the postprandial response 

of acylcarnitines during the transition from fasting state to fed states in determining of how 

substrate overload might contribute to postprandial metabolic dysfunction.
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Figure 1.Overview of the physiological processes involved in phenotypic flexibility. By applying an optimal nutritional 

challenge, health effects related to nutrition can be quantified. (Figure reproduced from Stroeve et al. [17]).

Integration of metabolome with transcriptome. 
Data integration is now a very commonly used practice in the life sciences and refers to 

the situation where, for a given system, multiple sources of data are available that are studied 

integratively to improve knowledge discovery [29]. It is becoming increasingly accepted that 

the integration of ‘omics’ data, such as transcriptomics, proteomics, and metabolomics will 

provide a better understanding of biological systems [30]. One of the challenges in data inte-

gration is the generation of interpretable results, which should help answer questions such as: 

which variables from multi-omics data sets are correlated with each other and which relevant 

variables provide the most insight into the biology underlying the experimental hypotheses?

This challenge can be addressed by performing variable selection, while combining the 

two types of variables in the modelled integration process. Gonzalez et al. developed and im-

plemented a useful approach: a variant of partial least squares (PLS) regression called sparse 

PLS [30, 31], which simultaneously integrates and selects variables using lasso penalization 

[32]. In Chapter 2 sPLS regression analysis was carried out to calculate leg strength based on 

the expression levels of genes that are robustly changed after prolonged exercise training in 
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both groups in the baseline samples. It was shown using sPLS that there is a link between mus-

cle strength and protocadherin gamma gene cluster. In Chapter 3 sPLS was used to integrate 

muscle changes in transcriptome and metabolome after training. We observed that amino 

acids, particularly branched chain amino acids, correlate with genes related to connective tis-

sue/extracellular matrix. A direct link between the expression of these genes and the levels of 

these metabolites is unlikely, yet it does imply that these changes in amino acid levels are part 

of the adaptive response to resistance-type exercise training. In Chapter 4 it was shown that 

the effect of a stressor (mixed meal) on PBMC gene expression is rather weak. Accordingly, 

using PBMC gene expression to measure phenotypic flexibility might not be an appropriate 

approach. Moreover, integrated interpretation of the PBMC transcriptome with the plasma 

metabolome is difficult since they both represent systemic effects, meaning that they reflect 

the response of multiple organs to a phenotype shift. Besides that, many regulatory mecha-

nisms occurs at the enzymatic level, requiring a proteomics type of approach. Furthermore, 

attempts to integrate the plasma metabolome, proteome and gene expression in PBMCs may 

be hampered due to different time-scales in regulation of metabolism, protein turnover and 

gene expression. Integration of different omics levels (metabolomics, proteomics, transcrip-

tomics) applied to body fluids sampled from the systemic circulation will therefore not likely 

be successful. An organ-focussed approaches that integrate multiple omics levels using system 

biology approaches is expected to be more feasible [33]. In such approaches, the metabolome, 

proteome and transcriptome can be sampled from a single compartment, and time-depen-

dent relationships can be modelled in a direct manner.

Metabolomics profiling of tissues: how to move on? 
Chapter 3 showed that the correlation between skeletal muscle and plasma metabolites 

is rather weak. This finding indicates that plasma metabolites provide a poor reflection of 

muscle metabolism, suggesting that they cannot be used as a substitute biomarker. Current 

procedures for obtaining tissue biopsies from human volunteers are labour intensive, can 

cause discomfort, pain and in some cases risk, thereby raising the bar for obtaining ethical 

approval. Examples are liver biopsy or repeated muscle biopsies. As a consequence, most hu-

man studies focusing on organ metabolomics and/or transcriptomics are carried out on a min-

imal number of volunteers and are poorly powered. To allow for larger scale organ specific 

studies, we need innovative tissue sampling methods that can be used with high-throughput 

and without discomfort and risk for human volunteers. Availability of less invasive/painful 

sampling techniques would in particular enable larger scale studies on adipose tissue and 

skeletal muscle.

The Bergstrom needle muscle biopsy technique has long been considered as the gold stan-
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dard in muscle tissue sampling [34] and has provided a wealth of information for researchers. 

However, its major drawback is that it is moderately invasive, requiring an incision through 

the skin and fascia ranging from 5 to 10 mm [34]. Consequently, this technique may not be suit-

able for research designs that require repeated sampling. As a minimally invasive technique 

‘microbiopsy’ (or fine needle aspiration) has been implemented using a small gauge needle 

for tissue sampling without the need for an incision [35, 36], allowing for less invasive col-

lection of skeletal muscle samples. However, the small sample size obtained is often deemed 

insufficient for certain analyses. Using a recently developed robust extraction procedure, me-

tabolites could be recovered at high yields and in a reproducible manner [37, 38]. For dietary 

studies, Beynen and Katan [39] adapted the original needle-biopsy method of Hirsch et al. [40] 

by using an 18-gauge needle, and reported collecting a ‘small amount of visible material’. This 

mini-biopsy technique collects essentially small globules of fat sufficient for dietary studies. 

Another study compared two sampling methods of subcutaneous adipose tissue using either a 

14 gauge needle with incision versus a 16 gauge needle without incision to examine biomark-

ers of cancer risk [41]. Having less invasive sampling techniques and using small amounts of 

tissue would enable larger scale human studies to more accurately define phenotypical shifts 

due to diet or lifestyle interventions.
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Human health is impacted by a complex network of interactions between biological path-

ways, mechanisms, processes, and organs, which need to be able to adapt to a continuously 

changing environment to maintain health. This adaptive ability is called ‘phenotypic flexibil-

ity’. It is thought that health is compromised and diseases develop when these adaptive pro-

cesses fail. As the product of interactions between several factors such as genetic makeup, diet, 

lifestyle, environment and the gut microbiome, the ‘metabolic phenotype’ provides a readout 

of the metabolic state of an individual. Understanding these relationships will be one of a ma-

jor challenges in nutrition and health research in the next decades. To address this challenge, 

the development of high-throughput omics tools combined with the application of elaborate 

statistical analyses will help characterize the complex relationship of (bio) chemicals in hu-

man systems and their interaction with other variables including environment and lifestyle 

to produce the measured phenotype.

An important aim of this thesis was to identify phenotype shifts by looking at effect of 

prolonged resistance-type exercise training on skeletal muscle tissue in older subjects and the 

possible shift toward the features of younger subjects as a reference for a healthier pheno-

type. A second aim was to identify phenotype shifts by looking at the response to a challenge 

in obese subjects and the possible shift toward lean subjects as a reference for a healthier 

phenotype.

Chapter 2 and 3 of this thesis show how the significant remaining plasticity of ageing skel-

etal muscle can adapt to resistance-type exercise training. The data indicate that frail and 

healthy older subjects have two distinct phenotypes according to the skeletal muscle tissue 

metabolite profiles and that exercise training shifts aged muscle towards a younger pheno-

type. We showed that the effect of exercise on amino acid derived acylcarnitines (AAAC’s) in 

older subjects points towards decreased branched chain amino acid catabolism, likely due to 

compromised activation of the branched chain α-keto acid hydrogenase (BCKDH) complex. 

Furthermore, we found that the protocadherin gamma gene cluster might be involved in 

aged-muscle denervation and re-innervation. Finally, plasma was found to be a poor indicator 

of muscle metabolism, emphasizing the need for direct assessment of metabolites in muscle 

tissue. 

Chapter 4 of this thesis examines whether a mixed meal challenge response provides a 

readout for a shift in phenotype upon weight loss in obese male subjects. We concluded that 

weight loss moderately affects the mixed meal challenge response of both plasma metabo-

lome and transcriptome of peripheral blood mononuclear cells in obese subjects. Measure-

ments at the fasted and postprandial state also provide us with a different type of information. 

In Chapter 5 it is demonstrated that the global testing of pathways could provide a concise 

summary of the multiple univariate testing approach used in Chapter 4.
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In Chapter 6 it is discussed how the findings of this thesis increase our understanding of 

how to measure phenotypic flexibility as a proxy of health. In this thesis it is shown that the 

correlations between tissue and plasma metabolites are rather weak, emphasising the need 

to perform organ-specific studies. Availability of less invasive/painful sampling techniques 

and the use of small amounts of tissue would enable larger scale human studies on adipose 

tissue and skeletal muscle to more accurately define phenotypical shifts due to diet or lifestyle 

interventions. With respect to the assessment of phenotypical flexibility by omics approaches, 

significant complications can be expected in trying to relate plasma metabolism to PBMC gene 

expression. Organ-focussed approaches that integrate multiple omics levels using system biol-

ogy approaches are considered to be a lot more promising.
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