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Global environmental protection and energy saving 

In the last 50 years, climate change and resource scarcity raised people’s 

concern about environmental protection and energy saving. The Club of Rome, the 

global policy institute, raised considerable public attention in 1972 with its report 

“The Limits to Growth”. In 1987, the World Commission on Environment and 

Development, created by the United Nations, released the Brundtland report “Our 

Common Future” (Anonymous 1987), in which the term “sustainable development
1
” 

was defined. In 1997, the Kyoto Protocol of the United Nations Framework 

Convention on Climate Change, an international treaty, set binding obligations on 

developed countries to reduce emissions of greenhouse gases.  

The European Union (EU) translated the Kyoto protocol into its own targets for 

2020 (known as the EU Climate and Energy Package). In the Netherlands, the 

government announced the “Clean and efficient” program in 2007, aiming to improve 

energy efficiency in various sectors (Anonymous 2007). One of these was the agro-

sector
2
, in which the sub-sector greenhouse horticulture contributes to about 10% of 

the national consumption of natural gas (CBS et al. 2014; Van der Velden and Smit 

2014). Energy costs constitute about 15-30% of the total annual costs of a greenhouse 

(Vermeulen, 2012). In 2008, the Dutch agro-sectors signed a Public-Private 

Partnership with the government entitled ‘Clean and Efficient Agro-sectors’, agreeing 

to make the agro-sectors more sustainable by 2020 (Anonymous 2008). Within the 

context of the ‘Clean and Efficient Agro-Sectors’ program, the greenhouse 

horticultural sub-sector has signed the Greenhouse and Environment Covenant 

(known as GLAMI) (Anonymous 2010) with the government, which contains 

objectives on the performance of greenhouse horticulture with respect to energy and 

environment.  

The objectives to be achieved are: 1) Total reduction of at least 3.3 megatons 

CO2 emission in 2020 compared to that of 1990; 2) 2% improvement of energy 

efficiency yearly until 2020; 3) Contribution of sustainable energy
3
 to the total energy 

input of 20% in 2020. Subsequently, in 2014 the Dutch government and greenhouse 

horticultural sector agreed upon a long-term agreement for energy transition in the 

greenhouse horticultural sector (“Meerjarenafspraak Energietransitie Glastuinbouw 

2014-2020”). This agreement focuses on a target of maximum 6.2 megatons CO2 

emission in 2020. In 2015 the CO2 emission was already reduced to 5.7 megatons. 

This means that the greenhouse horticulture sector has already reached the goal set for 

2020 (Van der Velden and Smit 2016). In 2015, the sustainable energy was only 5.1% 

of the total energy consumption (Van der Velden and Smit 2016). 

 

Dutch greenhouse horticulture 

The Netherlands has a world-leading position in greenhouse horticulture, with 

                                                           
1
Sustainable development is development that meets the needs of the present without compromising the 

ability of future generations to meet their own needs. (Anonymous 1987) 

2
 Agro sector is defined as the complex of businesses that are involved in agriculture (consisting of sub-

sectors arable farming, livestock farming, horticulture), as well as those businesses that are involved in 

the chain of supply to agriculture and processing of agricultural products. (De Haas 2013) 

3
Sustainable energy is defined as energy that is generated through renewable processes from sun, wind, 

water power, earth warmth and biomass. (Anonymous 2010) 

http://en.wikipedia.org/wiki/The_Limits_to_Growth
http://en.wikipedia.org/wiki/United_Nations_Framework_Convention_on_Climate_Change
http://en.wikipedia.org/wiki/United_Nations_Framework_Convention_on_Climate_Change
http://en.wikipedia.org/wiki/Greenhouse_gas
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glass greenhouse area of about 10,000 hectare (Statline 2016). Mechanization and 

technological developments such as heating, artificial light, CO2 enrichment and 

climate control led to high control of the production process in the greenhouses 

(Breukers et al. 2008). Crop productivity increased by 113% for tomato, 90% for 

sweet pepper, and 35% for cucumber over a period of 27 years from 1983 to 2010 (De 

Gelder et al. 2012). Application of technology, mainly heating and artificial light, 

enabled year-round production, but was also associated with high energy consumption. 

In 2012, 82% of the energy in the agro-sector was consumed by greenhouse 

horticulture (Anonymous 2012), although the energy consumption per unit of 

production (energy use efficiency) decreased by 70% between 1980 and 2008 (Van 

der Velden and Smit 2012). Over the last decades, the Dutch greenhouse horticultural 

sector made remarkable efforts to increase its energy use efficiency. Measures that 

were taken in greenhouse horticulture to reduce the energy consumption were 

summarized by Elings et al. (2005) and Dieleman et al. (2006). These measures 

included improving greenhouse insulation and improving light transmission by 

antireflection coatings (Hemming et al. 2012), applying temperature integration, 

improved energy screen opening strategies (Dieleman and Kempkes 2006) and 

increasing heat buffer capacity.  

 

Various greenhouse concepts toward sustainability 

Various greenhouse concepts aiming at environmental protection and energy 

saving were developed in the last decades. Bot (1992) indicated that the trends in 

greenhouse development for the purpose of environmental protection and energy 

saving would reflect in the use of window ventilation and improving the technology 

of mechanic air treatment. Later Bot et al. (2005) described the solar greenhouse 

concept for high value crop production without the use of fossil fuels. Solar energy 

could be captured in summer, stored in an underground aquifer, and re-used in winter 

for heating. This concept was firstly tested in a 14,000 m
2
 closed greenhouse for 

tomato production (Opdam et al. 2005; De Gelder et al. 2005). Another concept, the 

Watergy greenhouse (Buchholz et al. 2005), was developed for central and southern 

European conditions. The Watergy greenhouse concept consisted of a closed 

greenhouse with solar thermal energy storage, water recycling, and water desalination, 

using a cooling tower and a secondary heat collector. The system had constant air 

humidification, enabling the transfer of large amounts of energy via latent heat from 

the greenhouse to a thermal storage water tank. Bakker et al. (2006) developed the 

energy (heat) producing greenhouse concept, using advanced greenhouse covering 

materials (Sonneveld and Swinkels 2005) to maximize the transmission of solar 

radiation, and to minimize the heat loss from the greenhouse. For efficient air 

conditioning, a fine wire heat exchanger with a very high heat transfer coefficient was 

used. In 2008, the Sunergy greenhouse concept was developed and tested in a 550 m
2
 

greenhouse (De Zwart 2011). The Sunergy greenhouse was a semi-closed greenhouse 

that was closed only during periods with high solar radiation in order to enable 

harvesting of solar energy when temperatures were relatively high. During dull days 

and nights, outside air was taken in for dehumidification purposes. This way of 

dehumidification lowered the investment costs of the air treatment unit and moreover 

lowered the electrical demand in comparison to a completely closed greenhouse with 

mechanical dehumidification. Tantau et al. (2011) described the concept of Low 

energy greenhouse (named Zineg), aiming for energy savings of up to 90%. The 

Zineg concept combined many different methods that had been developed in the past. 

For instance, making use of solar radiation as a sustainable energy source, as in all 
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concepts mentioned above, thereby reducing the energy consumption. Window 

opening was also reduced which results in less CO2 and heat loss.  

 

The closed and semi-closed greenhouse concept 

In a conventional greenhouse, excess heat and moisture are released from the 

greenhouse by window ventilation. In this thesis, these conventional greenhouses are 

referred to as open greenhouses, because window opening is the only means of 

cooling and dehumidification. In a closed greenhouse (Fig. 1.1), cooling and 

dehumidification are done mechanically by an air treatment unit (ATU). The ATU is 

connected to an underground aquifer, which is located about 20-100 meter below the 

soil surface (De Gelder et al. 2012), depending on local soil conditions. The ATU 

contains a heat exchanger and connects to a ventilator. The ventilator sucks air from 

inside the greenhouse and distributes the cooled and dehumidified air back to the 

greenhouse. Most commonly, the ventilator distributes the air via ducts. The ducts are 

usually placed below the growing gutters, since placement overhead causes shading 

and placement within the crop interferes with the cultivation practices. The energy 

flow of the closed greenhouse system is presented in Fig 1.1. For cooling in summer, 

the cold water with a temperature of approximately 7 °C is pumped from the aquifer. 

The surplus heat from the greenhouse is absorbed by the cold water when passing the 

heat exchanger of the ATU. The collected heat in water is transported to the aquifer 

and stored (De Gelder et al. 2012). For heating in winter, water with a temperature of 

approximately 18 °C is pumped from the aquifer to a heat pump. The heat pump 

further increases the water temperature to 35-50 °C (Bot et al. 2005; De Zwart 2012) 

for greenhouse heating. In both summer and winter, if dehumidification is needed, 

humid air from the greenhouse passes the cold surface of the heat exchanger of the 

ATU, resulting in removal of air moisture by condensation. Therewith, extra (latent) 

heat can be harvested. Primary energy, mainly electricity, is required for the operation 

of the heat and other pumps, and the ventilators connected to the ATU. Electricity can 

be obtained from the grid, or produced by the co-generation system of a heat and 

power system. Co-generation of heat and power requires primary energy/fuel input, 

and by burning the fuel, electricity is produced for the heat pump, the duct ventilation 

system, and other pumps, and also heat and CO2 for the greenhouse. 

A fully closed greenhouse requires high investment cost for drilling the pipes 

toward the aquifers, for the ATUs and heat pumps. To have a high cooling capacity, the 

heat exchanger has to have a large exchanging surface and a high heat exchange 

coefficient (De Zwart and Kempkes 2008). The large exchanging surface requires 

plenty of materials. The high exchange coefficient is achieved by forced convection 

induced by ventilators, which consumes large amounts of electricity and therefore 

leads to high running costs. Electricity needed for cooling was mostly twice as high as 

that for heating (Hoes et al. 2008). To reduce these costs, the concept of semi-closed 

greenhouse with smaller cooling capacity was developed. In this concept, window 

ventilation is combined with mechanical cooling: at moments of low cooling demand 

all the cooling is mechanically and windows are kept closed, while at moments of 

high cooling demand both mechanical cooling and window ventilation are used.  
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Figure. 1.1 The energy flow during heating, cooling and dehumidification in the closed 

greenhouse. ATU is Air Treatment Unit and CHP is Combined Heat and Power. 

 

New climate in the closed greenhouse 

An important difference in climates between the closed greenhouse and open 

greenhouse is the CO2 concentration in summer. When outside radiation is high, the 

CO2 concentration in the closed greenhouse can easily be maintained at around 1000 

ppm whereas in an open greenhouse the CO2 concentration can fall below 400 ppm 

due to window ventilation (Opdam et al. 2005). Such a combination of a high CO2 

concentration and high radiation is typical for a closed greenhouse. Another typical 

climate character in a closed greenhouse is the occurrence of vertical temperature and 

humidity gradients, which is a consequence of the placement of the cooling ducts 

beneath the growing gutter. Solar radiation increases temperature at the top of the 

greenhouse, while the cooled and dehumidified air decreases temperature at the lower 
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part of the greenhouse. Air movement in a closed greenhouse is different from that in 

an open greenhouse. The air movement of an open greenhouse depends on the 

ventilation rate of the window, and ranges from 0.1 to 0.5 m s
-1

 (Wang et al. 1999).  

The air movement of a closed greenhouse depends on the forced air circulation by the 

fans connected to ATU and ducts, ranging from 0.2 to 1 m s
-1

 (Elings et al. 2007). In 

the closed greenhouse mechanical cooling and dehumidification make greenhouse air 

temperature and humidity independent from outside radiation. No CO2 is lost via 

windows when outside radiation is high. In short, the use of mechanical cooling 

enables the decoupling of outside radiation and other climate factors, such as 

temperature, CO2 concentration, and humidity. Therefore, a closed greenhouse has 

greater abilities for climate control than an open greenhouse. It might be expected that 

the increased CO2 concentration and improved climate conditions would positively 

affect the production levels that could be realized in a closed or semi-closed 

greenhouse.  

 

Expected effects of the new climate on crops 

The new combinations of climate characters in the closed greenhouse may 

affect crop growth, development and, finally, production. Instantaneous effects are 

likely to have seasonal consequences. A higher CO2 concentration leads to higher leaf 

photosynthesis (Cannell and Thornley 1998). The effect of CO2 concentration on 

photosynthesis shows a strong interaction with the effects of other climate factors 

such as temperature and radiation. When radiation is the limiting factor for 

photosynthesis, increased CO2 concentration has only a limited influence on 

photosynthesis while effects at high radiation are much larger (Körner et al. 2009). 

CO2 concentration is continuously high in a closed greenhouse. Plants grown at high 

CO2 concentrations may in the long term have a lower photosynthesis rate at a given 

CO2 concentration than plants grown at a lower CO2 concentration (Ayari et al. 2000; 

Hao et al. 2006; Yelle et al. 1990). This can be explained by over-accumulation of 

assimilates in leaves, leading to feedback inhibition on leaf photosynthesis (Poorter et 

al. 2009). These studies were done in open greenhouses or climate chambers, and 

mostly with young plants. Whether photosynthetic acclimation to high CO2 

concentrations occurs in the closed greenhouse when cultivating a fruit bearing crop 

and whether photosynthetic acclimation may nullify the effect of high CO2 on 

photosynthetic rate has not been investigated. 

The effects of vertical temperature gradients on crops in a closed greenhouse 

have not been investigated either. Temperature influences various crop growth and 

development processes, such as photosynthesis (Cannell and Thornley 1998; Yamori 

et al. 2010), maintenance respiration (Amthor 1989), leaf and truss initiation (Adams 

et al. 2001; De Koning 1994), and fruit growth (Bertin 2005; Fanwoua 2012). Thus, it 

was expected that a vertical temperature gradient would have effects on crop growth 

and development. For instance, the fruits at the lower part of the crop may be 

subjected to lower temperatures during ripening due to a vertical temperature gradient, 

which might result in longer ripening duration and higher fruit weight (Adams et al. 

2001). Consequently, the combined result of all the possible effects might influence 

the final production in the closed greenhouse. 

 

 

 

 

 



  General introduction 

  7 

 

Aim and outline of the thesis 

When the concept of closed greenhouse was introduced, researchers initially 

focused on its economic and technical aspects. During the development of the closed 

greenhouse, scientists and growers realized that their knowledge on crop 

physiological processes under such new climate conditions was insufficient to fully 

explore the possibilities of climate control in the closed greenhouse. This PhD 

research, therefore, focuses on the crop physiology in closed and semi-closed 

greenhouses, aiming to study the effects of the new climate conditions on crop growth 

and development and underlying processes.  

The outline of this thesis is presented in Fig.1.2. Climate conditions in the 

closed and semi-closed greenhouses are analyzed and compared to those of the open 

greenhouse in Chapter 2 and Chapter 4.1. Most typical climate conditions for closed 

and semi-closed greenhouses are the high CO2 concentration and vertical temperature 

gradients. Plant growth and crop production in closed, semi-closed and open 

greenhouses are investigated in Chapter 2. The effects of two most typical climate 

conditions, high CO2 concentration and vertical temperature gradients on crop growth 

and development are investigated in Chapter 3 and Chapter 4.2, respectively. 

Photosynthesis, as the main physiological process that contributes to plant growth and 

yield, is investigated in Chapter 3 and Chapter 5. Whether photosynthetic 

acclimation occurs at high CO2 concentration in the semi-closed greenhouse is 

investigated in Chapter 3. Chapter 5 quantifies the photosynthesis response to light, 

CO2 concentration, temperature, air humidity and their interactions at wide range. In 

Chapter 6, the general discussion, results of the previous chapters are summarized 

and discussed. Yield increase in the closed and semi-closed greenhouses is analyzed 

by using a component hierarchical scheme. This chapter also discusses the energy 

aspects and application of closed and semi-closed greenhouses in the horticultural 

sector.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure.1.2  Schematic outline of this thesis 

 

 

 

 

 

 

 

Climate 

Chapter 2 & 4.1 

Yield 

Chapter 2 

Growth & Development 

Chapter 3 & 4.2 

Photosynthesis 

Chapter 3 & 5 



Chapter 1  

8 

 

References 

Adams, S.R., Cockshull, K.E., Cave, C.R.J., 2001. Effect of temperature on the 

growth and development of tomato fruits. Annals of Botany. 88: 869-877. 

Amthor, J. S., 1989. Respiration and Crop Productivity. Springer-Verlag, New York, 

USA. 215pp. 

Anonymous, 1987. World Commission on Environment and Development (WCED). 

Our common future. Oxford: Oxford University Press. 43pp.  

Anonymous, 2007. The Netherlands Energy Efficiency Action Plan 2007. The Hague, 

The Netherlands. 69pp. 

Anonymous, 2008. Convenant Schone en Zuinige Agrosectoren (in Dutch). Ministry 

of Agriculture, Nature Conservation, and Fisheries, Den Hague, The Netherlands. 

29pp. 

Anonymous, 2010. Convenant Glastuinbouw en Milieu Evaluerende eindrapportage. 

Platform Duurzame Glastuinbouw (in Dutch). 15 December 2010, Utrecht, The 

Netherlands. 43pp.  

Anonymous, 2012. Agricultural sectors take steps on energy and climate. Renewable 

energy, greenhouse gas reduction and energy savings. NL Agency. Publication 

No. 2AGRO01211. 

Ayari, O., Dorais, M., Gosselin, A., 2000. Daily variations of photosynthetic 

efficiency of greenhouse tomato plants during winter and spring. Journal of 

American Society of Horticultural Science. 125: 235–241. 

Bakker, J. C., De Zwart, H.F., Campen, J.B., 2006. Greenhouse cooling and heat 

recovery using fine wire heat exchangers in a closed pot plant greenhouse: design 

of an energy producing greenhouse. Acta Horticulturae. 719: 263-270.  

Bertin, N., 2005. Analysis of the tomato fruit growth response to temperature and 

plant fruit load in relation to cell division, cell expansion and DNA 

endoreduplication. Annals of Botany. 95: 439-447. 

Bot, G., 1992. Greenhouse growing: outlook 2000. Acta Horticulturae. 304: 43-48. 

Bot, G., van de Braak, N., Challa, H., Hemming, S., Rieswijk, T., van Straten, G., 

Verlodt, I., 2005. The solar greenhouse: state of the art in energy saving and 

sustainable energy supply. Acta Horticulturae. 691: 501-508. 

Breukers, A., Hietbrink, O., Rujis, M.N.A., 2008. The power of Dutch greenhouse 

vegetable horticulture. An analysis of the private sector and its institutional 

framework. LEI Wageningen UR, Den Haag. Report No. 2008-049. 114pp. 

Buchholz, M., Jochum, P.,  Zaragoza, G., 2005. Concept for water, heat and food 

supply from a closed greenhouse-The watergy project. Acta Hortculturae. 691:  

509-516. 

Cannell, M.G.R., Thornley, J.H.M., 1998. Temperature and CO2 responses of leaf and  

canopy photosynthesis: a clarification using the non-rectangular hyperbola model 

of photosynthesis. Annals of Botany. 14: 729–739. 

CBS, PBL, Wageningen UR. 2014. Energieverbruik in de land- en tuinbouw, 1990-

2012 (indicator 0013, versie 13, 27 januari 2014). 

www.compendiumvoordeleefomgeving.nl. CBS, Den Haag; Planbureau voor de 

Leefomgeving, Den Haag/Bilthoven en Wageningen UR, Wageningen.   

De Gelder, A., Heuvelink, E., Opdam, J.J.G., 2005. Tomato yield in a closed 

greenhouse and comparison with simulated yields in closed and conventional 

Greenhouses. Acta Hortculturae. 691: 549-552. 

http://www.cabdirect.org.ezproxy.library.wur.nl/search.html?q=au%3A%22Amthor%2C+J.+S.%22
http://www.cabdirect.org.ezproxy.library.wur.nl/search.html?q=pb%3A%22Springer-Verlag%22


  General introduction 

  9 

 

De Gelder, A.,  Dieleman, J.A.,  Bot, G.P.A., Marcelis,  L.F.M., 2012. An overview of 

climate and crop yield in closed greenhouses. The Journal of Horticultural 

Science & Biotechnology. 87: 193-202. 

De Haas, M., 2013. Two centuries of state involvement in the Dutch agro sector. An 

assessment of policy in a long-term historical perspective. The Hague November 

2013. 100pp. 

De Koning, A.N.M., 1994. Development and dry matter distribution in glasshouse 

tomato: a quantitative approach. PhD Thesis Wageningen Agricultural University. 

240pp. 

De Zwart, H.F., 2011. The sunergy greenhouse – one year of measurements in a next 

generation greenhouse. Acta Horticulturae. 893: 351-358. 

De Zwart, H.F., 2012. Lessons learned from experiments with semi-closed 

greenhouse. Acta Horticulturae. 952: 583-588. 

De Zwart, H.F., Kempkes, F.L.K., 2008. Characterizing of cooling equipment for 

closed greenhouses. Acta Horticulturae. 801: 409-416. 

Dieleman, J.A., Kempkes, F.L.K., 2006. Energy screens in tomato: determining the 

optimal opening strategy. Acta Horticulturae. 718: 599-606. 

Dieleman, J.A., Marcelis, L.F.M., Elings, A., Dueck, T.A., Meinen, E., 2006. Energy 

saving in greenhouses: optimal use of climate conditions and crop management. 

Acta Horticulturae. 718: 203-210. 

Elings, A., Kempkes, F.L.K., Kaarsemaker, R.C., Ruijs, M.N.A., Braak, N.J. van der, 

Dueck, T.A., 2005. The energy balance and energy-saving measures in 

greenhouse tomato cultivation. Acta Horticulturae .691: 67-74. 

Elings, A., Meinen, E., Campen, J., de Gelder, A., 2007. The photosynthesis response 

of tomato to air circulation. Acta Horticulturae. 761: 77-84. 

Fanwoua, J., de Visser, P., Heuvelink, E., Angenent, G., Yin, X. Marcelis, L.F.M., 

Struik, P., 2012. Response of cell division and cell expansion to local fruit 

heating in tomato fruit. Journal of American Society of Horticultural Science.137: 

294-301. 

Hao, X., Wang, Q., Khosla, S., 2006. Responses of a long greenhouse tomato crop to 

summer CO2 enrichment. Canadian Journal of Plant Science. 86: 1395–1400. 

Hemming, S., Kempkes, F.L.K., Janse J., 2012. New greenhouse concept with high 

insulating double glass and new climate control strategies – Modelling and first 

results from a cucumber experiment. Acta Horticulturae. 952: 231-239. 

Hoes, H., Desmedt, J., Goen, K., 2008. The GESKAS Project, closed greenhouse as 

energy source and optimal growing environment. Acta Horticulturae.801: 1355-

1362. 

Körner, O., Heuvelink, E., Niu, Q., 2009. Quantification of temperature, CO2, and 

light effects on crop photosynthesis as a basis for model-based greenhouse 

climate control. Journal of Horticultural Science & Biotechnology. 84:233-239. 

Opdam, J.J.G., Schoonderbeek, G.G., Heller, E.M.B. 2005. Closed greenhouse: a 

starting point for sustainable entrepreneurship in horticulture. Acta Horticulturae. 

691: 517-524. 

Poorter, H., Niinemets, Ü., Poorter, L., Wright, I.J., Villar, R., 2009. Causes and 

consequences of variation in leaf mass per area (LMA): a meta-analysis. New 

Phytologist.182: 565–588. 

Sonneveld, P.J., Swinkels, G.L.A.M., 2005. New developments of energy-saving 

greenhouses with a high light transmittance. Acta Horticulturae. 691: 589-595. 



Chapter 1  

10 

 

Statline, 2016. Land use; main categories; Agriculture; greenhouses. Statline.cbs.nl. 

Accessed 25 February 2016.  

Tantau, H.J., Meyer, J., Schmidt, U., Bessler B., 2011. Low energy greenhouse – a 

system approach. Acta Horticulturae. 893: 75-84. 

Van der Velden, N.J.A., Smit, P.X., 2012. Energiemonitor van de Nederlandse 

glastuinbouw 2012 LEI Report 2013-061. 68 pp.   

Van der Velden, N.J.A., Smit, P.X., 2014. Energiemonitor van de Nederlandse 

glastuinbouw 2013 LEI Report 2014-025. 54 pp.   

Van der Velden, N., Smit, P., 2016. Energiemonitor van de Nederlandse glastuinbouw 

2015. Wageningen, Wageningen Economic Research, Report 2016-099. 50pp 

Vermeulen, P.C.M., 2012. Kwantitatieve Informatie voor de Glastuinbouw 2012-2013 

- Kengetallen voor Groenten - Snijbloemen - Potplanten teelten - Editie 22. 

Wageningen UR Glastuinbouw, Wageningen-Bleiswijk. GTB 5032. 196 pp 

Wang, S., Boulard T., Haxaire, R., 1999. Air speed profiles in a naturally ventilated 

greenhouse with a tomato crop. Agricultural and Forest Meteorology. 96: 181-

188.   

Yamori, W., Evans, J.R., von Caemmerer, S., 2010. Effects of growth and 

measurement light intensities on temperature dependence of CO2 assimilation rate 

in tobacco leaves. Plant, Cell and Environment. 33: 332-343. 

Yelle, S., Beeson Jr., R.C., Trudel, M.J., Gosselin, A., 1990. Duration of CO2 

enrichment influences growth, yield, and gas exchange of two tomato species. 

Journal of American Society of Horticultural Science. 115: 52–57. 



 

 

 

Chapter 2 
  

 

 

Comparison of climate and production in closed, semi-closed and open 

greenhouses 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Published as: 

Qian, T., Dieleman, J. A., Elings, A., Marcelis, L. F. M., van Kooten O., 2011. 

Comparison of climate and production in closed, semi-closed and open greenhouses. Acta 

Horticulturae. 893: 807-814. 

 

 

 

 

 

 



Chapter 2 

12 

 

Abstract 

A (semi-)closed greenhouse is a novel greenhouse with an active cooling system 

and temporary heat storage in an aquifer. Air is cooled, heated and dehumidified by air 

treatment units. The climate in (semi-)closed greenhouses differs from that of 

conventional open greenhouses. The aims of our research were firstly to analyze the 

effect of active cooling on greenhouse climate, in terms of stability, gradient and average 

levels; secondly to determine crop growth and production in closed and semi-closed 

greenhouses. An experiment with tomato crop was conducted from December 2007 until 

November 2008 in a closed greenhouse with 700 W m
-2

 cooling capacity, two semi-

closed greenhouses with 350 W m
-2

 and 150 W m
-2

 cooling capacity, respectively, and an 

open greenhouse. The higher the cooling capacity, the more independent the greenhouse 

climate was of outside climate. As the cooling ducts were placed underneath the plants, 

cooling led to a remarkable vertical temperature gradient. Under sunny conditions 

temperature could be 5 ˚C higher at the top than at the bottom of the canopy in the closed 

greenhouse. Cumulative production in the semi-closed greenhouses with 350 W m
-2

 and 

150 W m
-2

 cooling capacity were 10% (61 kg m
-2

) and 6% (59 kg m
-2

) higher than that in 

the open greenhouse (55 kg m
-2

), respectively. Cumulative production in the closed 

greenhouse was 14% higher than in the open greenhouse in week 29 after planting but at 

the end of the experiment the cumulative increase was only 4% due to botrytis. Model 

calculations showed that the production increase in the closed and semi-closed 

greenhouses was explained by higher CO2 concentration.  
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Introduction 

Energy consumption of Dutch greenhouse industry contributes to about 10% of the 

total national energy use and 79% of the total energy use of agriculture in the Netherlands 

(Lansink and Ondersteijn 2006). Closed and semi-closed greenhouses were innovated to 

reduce the energy consumption. A closed greenhouse has no window ventilation. Air is 

cooled and dehumidified by air treatment units (ATU), which mainly takes place in 

summer. Surplus heat as energy is stored in an underground aquifer and used in winter to 

warm the greenhouse (Opdam et al. 2005). A semi-closed greenhouse has a smaller 

cooling capacity than a closed greenhouse. Window ventilation is combined with active 

cooling when temperature is too high to be managed by the active cooling system.  

The greenhouse macro- and microclimates are distinctly different in (semi-)closed 

greenhouses compared to that of open greenhouses. A high CO2 concentration (about 

1000 ppm) is one of the typical climate characteristics of the (semi-)closed greenhouse 

(De Gelder et al. 2005), which increases the production in the (semi-)closed greenhouse 

(Heuvelink et al. 2008). In particular, the combination of high CO2 and high radiation that 

occurs during summer in a (semi-)closed greenhouse is impossible to realize in an open 

greenhouse. However, there is little detailed information available on climate conditions 

that are realized by different cooling capacities in the (semi-)closed greenhouses. In 

addition, a simultaneous comparison of climate and production between a (semi-)closed 

greenhouse and an open greenhouse is necessary to analyze processes under similar 

outdoor climate conditions. 

The aims of our research are firstly to analyze the effect of active cooling on 

climate, in terms of stability, gradient and average levels, in closed and semi-closed 

greenhouses; and secondly to determine the production increase in closed and semi-closed 

greenhouses. For this reason, we evaluated climate and crop growth and production in 

greenhouses with different cooling capacities. 

 

Materials and methods 

Four experimental Venlo greenhouses were located in Bleiswijk, The Netherlands. 

Each greenhouse was 144 m
2
 (15 m × 9.6 m), with a gutter height of 5.5 m. From these 

four greenhouses, one was a conventional open greenhouse; the other three had cooling 

capacities of 700 W m
-2

, 350 W m
-2

, and 150 W m
-2

, respectively, installed. The air 

conditioning was controlled by a standard horticultural computer (Hoogendoorn-

Economic). Greenhouse air was extracted to the ATU by five ventilators placed at the top 

of each greenhouse. In the ATU the air was cooled and dehumidified, and subsequently 

blown into the greenhouse through five plastic ducts placed beneath the growing gutters. 

Each duct had six holes (16 mm diameter) per meter. Cooling capacity was adjusted 

based on a difference between supply and return water temperature in the ATU. Cooling 

was achieved by controlling air speed and water temperature with a minimum 

temperature of 9 
°
C to obtain a desired greenhouse temperature. If temperature of the 

greenhouse air exceeded the set point for cooling (Table 1), cooling was used. When the 

cooling capacity could not cope with too high temperature, ventilation windows were 

opened to support cooling (Table 1). In the greenhouse with 700 W m
-2

 cooling capacity 

the cooling capacity was high enough to keep the windows closed during the experiment. 

Hence, this greenhouse was defined as a closed greenhouse. The greenhouses with 350 W 

m
-2

 and 150 W m
-2

 cooling capacities represented semi-closed greenhouses, of which the 

latter one had more extended periods of window opening. Climate treatments started on 

10
th

 March 2008 (89 days after planting). Heating was done via the conventional heating 
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pipes. Average temperature set points during treatment for heating in the greenhouses 

with 700 W m
-2

, 350 W m
-2

, and 150 W m
-2

 cooling capacities, and in the open 

greenhouse, were 19.3 °C, 18.6 °C, 18.1 °C, and 17.9 °C, respectively. Pure CO2 was 

supplied with a maximum capacity of 230 kg ha
-1

 h
-1

 during daytime with a set point of 

1000 ppm for all treatments. Outside solar radiation, greenhouse CO2 concentration, 

greenhouse air temperatures and humidity at the top of the canopy and at the growing 

gutter were recorded automatically at a 5 min interval. Relations between outside solar 

radiation and greenhouse CO2 concentration, vertical temperature gradient, and air humidity 

were established for the purpose of trend analysis only. 

 
Table 1. Average temperature set points to start cooling, to open lee side windows and wind side 

windows in the greenhouses with 700 W m
-2

, 350 W m
-2

, and 150 W m
-2

 cooling capacities, 

respectively, and in the open greenhouse. 

Treatment    Cooling       Open lee side windows                 Open wind side windows 

                       (°C)                        (°C)                                               (°C) 

700 W m
-2

        20                          28                                                  29                                   

350 W m
-2

        19                          22                                                  25                                        

150 W m
-2

        18                          20                                                  23                                          

Open
 
                                              19                                                  22                                                  

 

Tomato plants, cultivar Capricia (truss tomato) grafted on the rootstock Emperador, 

were planted in rock wool on 12 December 2007 with an initial stem density of 2.5 stem 

m
-2

. In week 11 after planting, one plant out of each two developed an additional side 

shoot, to increase the stem density to 3.75 stems m
-2

. Fruit harvest was started in 14 week 

after planting. Fresh weights of the harvested fruits were recorded weekly. Scenarios were 

calculated, by using the plant growth model INTKAM (Marcelis et al., 2009), to 

investigate the contribution of the climate factors to the final production increase. 

Calculation started by inputting the actual CO2 concentration, air temperature and VPD of 

the open greenhouse. CO2 concentration, then, was replaced by the actual CO2 

concentrations of the closed greenhouse, the semi-closed greenhouse with 350 W m
-2

 

cooling capacity and the semi-closed greenhouse with 150 W m
-2

 cooling capacity, 

respectively. The same operations were done for air temperature and VPD. 

 

Results and discussion 

Carbon dioxide 

In summer, average day-time CO2 concentration in the closed greenhouse with 700 

W m
-2

 cooling capacity was greater than 1000 ppm, while it was about 600 ppm in the 

open greenhouse (Fig. 1). However, the total amount of CO2 supplied to the open 

greenhouse was almost four times more than that of the closed greenhouse (Table 2). CO2 

concentration in the closed greenhouse was independent of solar radiation, whereas in the 

semi-closed greenhouse with 150 W m
-2

 cooling capacity and the open greenhouse CO2 

concentration decreased with increasing solar radiation (Fig. 2). The differences in CO2 

concentration and CO2 supply rates between treatments were due to differences in 

window opening. During treatments, the average extents of lee side and wind side 

window opening of the closed greenhouse, the semi-closed greenhouses with 350 W m
-2

 

and 150 W m
-2

 cooling capacities, and the open greenhouse, were correspondingly 0%, 

6%, 18%, and 30% for lee side and 0%, 0%, 3%, and 5% for wind side (0% is fully 
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closed and 100% is fully open). Window ventilation during high radiation removed not 

only heat but also CO2 and water vapour.  

 
Figure 1. Weekly average day-time CO2 concentrations in the greenhouses with 700 W m

-2
 (■), 350 

W m
-2

 (▲), and 150 W m
-2

 (●) cooling capacities, respectively, and in the open greenhouse (○). 

 

 
Figure 2. Relation between outside radiation sum and CO2 concentration in the greenhouses with 700 

W m
-2

 (A), 350 W m
-2

 (B), and 150 W m
-2

 (C) cooling capacities, respectively, and in the open 

greenhouse (D). White line indicates the fitted linear curve. 
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Table 2. Early cumulative fruit production in week 29 after planting, final cumulative production in 

week 48 after planting, and total amount of supplied CO2 in the greenhouses with 700 W m
-2

, 350 W 

m
-2

, and 150 W m
-2

 cooling capacities, respectively, and in the open greenhouse. Values between 

brackets indicate increase compared to open greenhouse 

 

Treatment             Early production          Final production                      Supplied CO2  

                                    (kg m
-2

)                        (kg m
-2

)                                 (kg m
-2

) 

700 W m
-2

         28 (14%)                                57 (4%)                                   14 

350 W m
-2

         27 (10%)                                61 (10%)                                 30 

150 W m
-2

         26 (6%)                                  59 (6%)                                   46 

Open
 
                 24                                           55                                            55 

  

Temperature 

Air temperature in the greenhouse showed a positive linear relation with solar 

radiation in all greenhouse types (the slope being about 0.03 J cm
-2

 h
-1

 °C
-1

 for the four 

greenhouses). Realized average day-time temperature (measured at the top canopy) was 

about 21.5 °C, 21.2 °C, 21.3 °C, and 21.0 °C for the closed greenhouse, the semi-closed 

greenhouses with 350 W m
-2

 and 150 W m
-2

 cooling capacities, and the open greenhouse, 

respectively. Since the closed and semi-closed greenhouses had higher CO2 

concentrations compared to that of the open greenhouse, temperature in the closed and 

semi-closed greenhouses was controlled to a higher level to have a higher rate of crop 

development. The vertical temperature gradient pattern differed remarkably between 

greenhouse types, especially when solar radiation was high (Fig. 3). As the cooling ducts 

were placed underneath the plants, cooling led to a lower temperature at the bottom of the 

canopy than at the top of the canopy. In addition, the vertical temperature gradient also 

depended on the temperature and the speed of the air blown into the greenhouse from 

ATU and caused the fluctuation of the vertical temperature gradient (Fig. 3). Temperature 

affects the partitioning of photosynthetic assimilates indirectly by affecting rate of 

development, such as leaf initiation, truss appearance and fruit growth duration (Pek and 

Helyes 2004; Adams et al. 2001; Heuvelink 1995). Since during the treatment, the 

average air temperature at the top of the canopy in the closed greenhouse was higher than 

that of the crop in the open greenhouse (21.8 °C vs. 21.4 °C), plants in the closed 

greenhouse formed more trusses than the plants in the open greenhouse (data not shown). 

However, since the average air temperature around the ripening fruits in the closed 

greenhouse was lower than that of the open greenhouse (19.8 °C vs. 21.2 °C), fresh 

weight of an individual ripen fruit in the closed greenhouse was higher than that in the 

open greenhouse (data not shown). The sensitivity of fruit to temperature is not equal at 

different fruit development stages (De Koning 2000). In closed and semi-closed 

greenhouses with vertical temperature gradient, fruits experienced high temperature after 

anthesis but low temperature during ripening. Just after anthesis, temperature does not 

affect fruit size significantly, due to compensation between the effects of temperature on 

cell number and cell size (Bertin 2005). In the last 1-2 weeks before maturity, lower 

temperature causes fruits to become larger due to a longer growth period (Adams et al. 

2001).  
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Figure 3. Relation between outside radiation sum and vertical temperature gradient (air temperature 

difference) in the greenhouses with 700 W m
-2

 (A), 350 W m
-2

 (B), and 150 W m
-2

 (C) cooling 

capacities, respectively, and in the open greenhouse (D). Air temperature difference is the difference 

between the air temperatures measured at the height of the top canopy (top) and at the height of the 

growing gutter (bottom). White line indicates the fitted linear curve.  

 

Vapour Pressure Deficit 

The VPD of the air inside the greenhouses with a higher cooling capacity was less 

dependent on outside radiation (Fig. 4). When radiation induced a temperature rise in the 

greenhouse, VPD strongly increased in the open greenhouse. Realized average day-time 

VPD (measured at the top canopy) was about 0.4 kPa for the closed greenhouse and semi-

closed greenhouse with 350 W m
-2

 cooling capacity, 0.5 kPa for the semi-closed 

greenhouse with 150 W m
-2

 cooling capacity, and 0.6 kPa for the open greenhouse. In 

general, VPD within the range of 0.2-1.0 kPa has little effect on crop growth and 

development in tomato (Grange and Hand 1987). However, 11%, 6%, 3%, and 1% of the 

time the VPD was higher than 1 kPa, and 5%, 5%, 10%, and 4% of the time the VPD was 

lower than 0.2 kPa, in the open greenhouse, the semi-closed greenhouses with 150 W m
-2

 

and 350 W m
-2

 cooling capacities, and the closed greenhouse, respectively. When VPD 

exceeds 1 kPa, it might promote water stress and stomatal closure, leading to a reduction 

of photosynthesis and transpiration (Grange and Hand 1987; Leonardi et al. 2000). On the 

other hand, too low VPD may also cause physiological disorder by reducing transpiration, 

following by less uptake of water and nutrient (Adams 1991; Del Amor and Marcelis 

2006). 
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Figure 4. Relation between outside radiation sum and vapour pressure deficit in the greenhouses with 

700 W m
-2

 (A), 350 W m
-2

 (B), and 150 W m
-2

 (C) cooling capacities, and in the open greenhouse (D). 

White line indicates the fitted linear curve. 

 

Production 

The early cumulative production in the closed greenhouse, the semi-closed 

greenhouse with 350 W m
-2

 cooling capacity, the semi-closed greenhouse with 150 W m
-2

 

cooling capacity were 14%, 10% and 6% , respectively, higher than that in the open 

greenhouse (Table 2). The final cumulative production in the semi-closed greenhouses 

with 350 W m
-2

 and 150 W m
-2

 cooling capacities were, respectively, 10% and 6% higher 

than that in the open greenhouse (Table 2). However, the final cumulative production in 

the closed greenhouse was only 4% higher than that in the open greenhouse, due to 

infection of botrytis firstly detected in week 29 after planting. Infected stems were 

removed to prevent spreading of botrytis, which caused a diminished increase of the 

production in the closed greenhouse. It was also the reason for a lower actual yield 

increase in the closed greenhouse in some other studies (Heuvelink et al. 2008). Stem 

infection by botrytis increased as a function of air humidity, especially high humidity and 

wound spots on the stems providing a favourable condition for the development of 

botrytis (Eden et al. 1996). However, high humidity is not a likely reason for the botrytis 

problem in the present experiment, since the semi-closed greenhouse with 150 W m
-2

 had 

an even higher percentage of time with high humidity, around the wound spots caused by 

leaf picking on the stem, than that of the closed greenhouse. 

The crop model estimated the increase of production by 5%, 11% and 15% when 

CO2 concentration increased by 4%, 10% and 14%, respectively. These data fitted the 

observation well, suggesting that the difference in CO2 concentration can fully explain the 

difference in production. The model assumed no acclimation of photosynthesis and 

production to long term exposure to high CO2. However, acclimation of photosynthesis 

and production to high CO2 concentration may occur (Besford et al. 1990; Peet et al. 

1986). Dieleman et al. (2006) found in current Dutch greenhouse systems, photosynthesis 

and production did not show adaptation to high CO2 concentration. 
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Conclusions 

In conclusion, the higher the cooling capacity, the more independent the 

greenhouse’s interior climate is of the outside climate. In addition, the active cooling from 

below the canopy introduced new macro and micro climate conditions in the greenhouse, 

which were the vertical temperature gradient and the combination of high radiation and 

high CO2 concentration. Future work will have to be done to quantify the relations 

between climate factors and crop physiological processes, such as photosynthesis and 

transpiration.  
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Abstract 

Semi-closed greenhouses have been developed to reduce the energy consumption in 

horticulture. In these greenhouses, CO2 concentration is higher than in the conventional 

modern greenhouses due to the reduction of window ventilation. Photosynthetic and 

morphological acclimation to elevated CO2 has been found in many plant species with 

feedback inhibition being the main mechanism to explain this. The aim of this study was to 

investigate the occurrence of photosynthetic and morphological acclimation to elevated CO2 

concentration in the semi-closed greenhouse. Our hypothesis was that photosynthetic and 

morphological acclimation to elevated CO2 concentration only occurred in plants with low 

sink strength. Experiments were carried out with tomato plants with varying fruit loads in a 

semi-closed greenhouse and a conventional modern greenhouse. Our results showed that 

photosynthetic acclimation to elevated CO2 concentration only occurred when the number of 

fruits was considerably reduced. Elevated CO2 as well as fruit removal reduced specific leaf 

area. Reduction in photosynthesis rate was associated with, but not caused by reduced 

stomatal conductance. The increase of dry matter production in the semi-closed greenhouse 

was mainly explained by a higher CO2 concentration compared to the open greenhouse. We 

suggested that elevated CO2 concentrations in the semi-closed greenhouse do not cause 

feedback inhibition in high producing crops, because the plants have sufficient sink organs 

(fruits) to utilise the extra assimilates. 
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Introduction 

Greenhouse horticulture has been developed to protect crops from unfavourable 

environmental conditions, thereby extending the growing season, at the cost of a high energy 

demand. Over the last decades, greenhouse concepts were developed aiming at reducing the 

energy consumption (De Gelder et al. 2012; Heuvelink et al. 2008). In these concepts, cooling 

by window ventilation was replaced by mechanical cooling. The excess solar energy was then 

collected and stored, to be reused to heat the greenhouse in winter (Bakker 1992; Blackwell 

and Garzoli 1981; Opdam et al. 2005). The greenhouse with reduced or no window opening 

were named as semi-closed or closed greenhouses. Further advantages of the (semi)closed 

greenhouse are the reduction of CO2 emission and improvement of crop and pest management 

(Bot 1992). The reduced window ventilation in the (semi)closed greenhouses results in a 

continuously high air CO2 concentration of about 800-1000 µmol mol
-1

 throughout the year, 

while nowadays in conventional modern greenhouses the CO2 concentration in summer is 

400-600 µmol mol
-1

 (Jokinen et al. 2011; Chapter 2). In the short-term, elevated CO2 

concentration enhances photosynthesis (Cannell and Thornley 1998). However, in the long-

term, plants grown at an elevated CO2 concentration may have a lower photosynthesis rate at 

a given CO2 concentration than plants grown at a lower CO2 concentration (Chen et al. 2005; 

Pérez et al. 2007; Zhang et al. 2009). Such a decline of photosynthesis rate at a given CO2 

concentration was defined as photosynthetic acclimation to elevated CO2 concentration 

(Wolfe et al. 1998; Xu et al. 1994) and has been found in cucumber (Peet et al. 1986), tomato 

(Besford et al. 1990; Nederhoff 1994; Yelle et al. 1989b), strawberry (Bunce 2001), rice 

(Chen et al. 2005; Zhang et al. 2008), wheat (Pérez et al. 2007) and trees (Urban et al. 2003). 

Furthermore, photosynthetic acclimation to elevated CO2 was often associated with changes 

in stomatal conductance and leaf morphology. For instance, decrease of stomatal conductance 

at elevated CO2 concentration was found in cotton, tomato, and soybean (Ainsworth et al. 

2002; Sasek et al. 1985; Yelle et al. 1990). Increase of leaf thickness at elevated CO2 

concentration, as a consequence of increased leaf weight and unaltered leaf area, was found in 

soybean and tomato (Besford et al. 1990; Clough and Peet 1981; Yelle et al. 1990). 

Feedback inhibition is the main mechanism that explains photosynthetic acclimation to 

elevated CO2 concentration, in which the source-sink balance plays a role. Source organs are 

the net exporters of carbon assimilates (mainly leaves), and source strength is defined as the 

rate at which carbon assimilates are produced (photosynthesis rate) (Marcelis 1996). Sink 

organs are the net importer of assimilates, and sink strength is defined as the competitive 

ability of an organ to attract assimilates (Marcelis 1996). Photosynthesis rate increases at 

elevated CO2 concentration in the short term, reflecting an increase of source strength. Such a 

high photosynthesis rate is sustained in the long term if the sink is not limiting. If the sink is 

limiting, over-accumulation of assimilates in leaves causes feedback inhibition on leaf 

photosynthesis, associated with a decrease of stomatal conductance and increase of leaf 

thickness (Poorter et al. 2009; Stitt et al. 1991). Species in which feedback inhibition at 

elevated CO2 concentration was not found, had large sink organs, e.g. underground storage 

organs like potato (Sage et al. 1989), radish (Usuda 2006), and bulb plants (Gutjahr and 

Lapointe 2008); or were at high sink demand stages, e.g. reproductive stage (Davey et al. 

2006) and fruit producing stage (Heuvelink 1995).  

The aim of this study was to investigate whether there was photosynthetic and 

morphological acclimation to elevated CO2 concentration in semi-closed greenhouses. Our 

hypothesis was that photosynthetic and morphological acclimation to elevated CO2 

concentration only occurred if the sink strength was low. 
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Materials and methods 

Greenhouses and crop management 

The experiments were performed in two adjacent experimental greenhouses of 144 m
2
 

each (15 m × 9.6 m), oriented from north to south, located at Bleiswijk, the Netherlands. A 

standard horticultural computer (Hoogendoorn-Economic, The Netherlands) controlled the 

environment inside the greenhouses. For temperature control, one greenhouse combined 

mechanical cooling of 350 W m
-2

 cooling capacity with window ventilation, whereas the 

other greenhouse only used window ventilation for cooling. Consequently, the greenhouse 

with mechanical cooling had the ventilation windows more closed (defined as ‗semi-closed 

greenhouse‘ hereafter) than the greenhouse without mechanical cooling (defined as ‗open 

greenhouse‘ hereafter), especially in periods with a high cooling demand (Fig. 1). Pure CO2 

was supplied at a maximum rate of 23 g m
-2

 h
-1

 during day-time (between sun rise and sun set) 

with a set point of 1000 µmol mol
-1

 for both greenhouses.  

 
Figure 1. Diel patterns of the extents of the lee side and wind side window opening in the semi-closed and 

open greenhouses in 2009. Data points are average values of week 30-39 after planting. Vertical bars 

indicate the standard error of mean (n=69).  

 

In the 2009 experiment, tomato plants (Solanum lycopersicum ‗Cappricia‘), grafted on 

the rootstock Emperador, were planted on Rockwool
®

 on 23 December 2008 in the two 

greenhouses. Stem density was initially 2.5 stems m
-2

 (1 stem per plant). By maintaining side 

stems, the stem density was increased to 3.3 stems m
-2

 at 8 weeks after planting. Truss 

initiation rate was 0.9 truss week
-1

 in both greenhouses. The first truss flowered at 5 weeks 

after planting.  Trusses were pruned to maintain 6 fruits per truss on all plants. At 32 weeks 

after planting, when the plants had 6 trusses, trusses of six randomly selected plants were 

pruned to 2 fruits per truss and of six other randomly selected plants to 0 fruit per truss in each 

greenhouse.  

At the start of the cultivation, crops in both greenhouses were grown under identical 

climate conditions. The temperature control strategies (semi-closed greenhouse versus open 

greenhouse) started on 23 March 2009 (13 weeks after planting). 
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In the 2010 experiment, tomato plants ‗Cappricia‘ were planted on 18 December 2009 

in two other adjacent experimental greenhouses of 144 m
2
 at the same location. Climate 

control and crop management in the open and semi-closed greenhouses were similar to the 

previous year. Temperature control strategies started on 29 March 2010 (14 weeks after 

planting). 

 

Photosynthesis measurements (Table 1)  

In the 2009 experiment, photosynthesis measurements were carried out on top and 

middle leaves during periods when the average day-time difference in CO2 concentration 

between the open and semi-closed greenhouses was larger than 200 µmol mol
-1

 (Fig. 2). For 

the top, leaf number 5 was taken, which is the uppermost fully unfolded leaf, and which has 

an age of about 11 days. The middle leaf was leaf number 11, a mature leaf in the middle of 

the canopy, with an age of about 25 days. Photosynthesis rate (net CO2 exchange rate) and 

stomatal conductance were measured with LCpro (ADC BioScientific Ltd. UK). Light 

intensity, Photosynthetic Active Radiation (PAR), in the measuring chamber was 1860 µmol 

m
-2

 s
-1

. Two CO2 concentrations were set in the measuring chamber, viz., 600 µmol mol
-1

 and 

1000 µmol mol
-1

. Air temperature in the chamber was controlled at 27°C, and Vapour 

Pressure Deficit (VPD) was controlled to be less than 1 kPa. Photosynthesis rate and stomatal 

conductance of the plants with 6 fruits per truss were measured at 30, 33, 36 and 39 weeks 

after planting, to ensure that middle leaves were initiated when difference in CO2 

concentration was larger than 200 µmol mol
-1

 in the two greenhouses (from week 28 after 

planting onwards). Photosynthesis rate and stomatal conductance of the plants with 0 or 2 

fruits per truss were measured at 33, 36 and 39 weeks after planting (1, 4, and 7 weeks after 

fruit pruning).  

 
Table 1. Overview of the measurements of photosynthesis rate described above 

Year 

 

Fruit load 

(fruit truss
-1

) 

Time 

(week after 

planting) 

Leaf position 

(leaf number) 

CO2 

concentration 

(µmol mol
-1

) 

Replicates 

 

2009 6 30, 33, 36, 39 5, 11 600, 1000  6 

2009 2 33, 36, 39 5, 11 600, 1000  6 

2009 0 33, 36, 39 5, 11 600, 1000 6 

2010 6 27 4, 7, 11, 14, 17 1000 6 

2010 6 27 11 50-1600 6 

 

In the 2010 experiment, the aim was to confirm the absence of photosynthesis 

acclimation in plants with 6 fruit per truss. Therefore, the measurements were taken on more 

leaf layers, namely leaf number 4, 7, 11, 14, and 17, counting from the top to bottom. Leaf 

number 1 was the upmost leaf with the leaf length longer than 5 cm. Leaf number 4, 7, 11, 14, 

and 17 were approximately 9, 16, 25, 32 and 39 days after appearance, respectively. 

Differences in CO2 concentration between the open and semi-closed greenhouses were 

smaller than 200 µmol mol
-1

 until 24 weeks after planting (data not shown). Photosynthesis 

measurements were carried out on the five leaf layers at 27 weeks after planting in the two 

greenhouses. Average day-time CO2 concentrations at 27 weeks after planting were 856 µmol 

mol
-1

 in the semi-closed greenhouse and 575 µmol mol
-1

 in the open greenhouse. Light 

intensity in the measuring chamber was 1860 µmol m
-2

 s
-1

 PAR. CO2 concentration was set to 

1000 µmol mol
-1

. Air temperature in the chamber was controlled at 27 °C, and VPD was 

controlled to be less than 1 kPa. In addition, the response of photosynthesis rate to CO2 

concentration was measured on leaf number 11 at CO2 concentrations varying between 50 and 

1600 µmol mol
-1 

in the  measuring chamber on the plants in the two greenhouses. The starting 
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CO2 concentration was 600 µmol mol
-1

, followed by 400, 200, 50, 600, 800, 1200, 1600 µmol 

mol
-1

. Air temperature, VPD, and light intensity in the leaf chamber were 27 °C, <1 kPa, and 

1395 μmol m
-2

 s
-1

 PAR, respectively.  

 

Plant measurements 

In the 2009 experiment, the leaves on which photosynthesis rate was measured were 

removed from the plant after the measurements (week 39 after planting), and leaf area was 

measured immediately with a leaf area meter (LI-3100C, Li-Cor Inc. USA). Leaves were 

dried for 48 h at 80 °C in the oven to determine their dry weights. Specific Leaf Area (SLA) 

was calculated by dividing leaf area by leaf dry weight. Ripe fruits were harvested weekly, 

starting from 15 weeks after planting. Three bottom leaves were removed weekly, starting 

from 8 weeks after planting. Destructive harvests were performed at 27 and 40 weeks after 

planting. Each compartment was divided into 3 blocks from north to south. Two plants were 

randomly selected from each block. Dry weights (dried at 80 ˚C for over 48 h) of leaves, 

stems and fruits were measured. Dry weight of harvested fruits and the picked old leaves were 

added to the cumulative total dry weights.  

 

Model calculations and scenario studies 

The INTKAM crop growth model, as described in more detail by Marcelis et al. (2009), 

was used to simulate total above-ground dry matter production. The model considers the main 

crop physiological processes, and consists of modules for radiation interception by the canopy, 

leaf and canopy photosynthesis, maintenance respiration, dry matter increase, and dry matter 

partitioning among plant organs (roots, stem, leaves and individual trusses of fruits).  

Interception of radiation, and canopy gross photosynthesis are calculated for a multi-

layered uniform canopy (Spitters 1986; Goudriaan and van Laar 1994). Extinction of radiation 

is calculated according to the law of Lambert-Beer: 

 

                            
 

Where Iabs is radiation absorbed by the canopy (J m
-2

 s
-1

), ρ is canopy reflection 

coefficient (0.04 for diffuse light), Io is the radiation level at the top of the canopy (J m
-2

 s
-1

), k 

is the extinction coefficient (0.77 for diffuse light), and L is leaf area index (LAI) (m
2
 m

-2
). 

Instantaneous gross leaf gross photosynthesis is calculated with the biochemical model of 

Farquhar-von Caemmerer-Berry (Farquhar et al. 1980) for 5 leaf layers in the canopy. 

Instantaneous gross crop photosynthesis rate is obtained by applying a 5-point Gaussian 

integration over LAI (Goudriaan 1986). The five Gaussian depths are at 5%, 23%, 50%, 77% 

and 95% of total LAI. Instantaneous gross crop photosynthesis is computed at 5-60 minutes 

time intervals, depending on the availability of environmental information, and accumulated 

to daily gross crop photosynthesis rate. 

Net assimilate production (Pn) results from the difference between canopy gross 

photosynthesis (Pg) and maintenance respiration (Rm): 

 

          

 

Maintenance respiration is calculated as a function of dry weights of the different plant 

organs, temperature and crop relative growth rate according to Heuvelink (1995). Assimilate 

partitioning between vegetative parts and individual trusses is simulated on the basis of the 

concept of sink strengths, as described by Heuvelink (1996) and Marcelis (1994). In this 

concept the assimilates partitioned to an organ (fi) is proportional to the ratio between its 

potential growth rate (sink strength, S) and that of all plant parts together (ΣS): 
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Dry matter production of the organs is calculated as the amount of assimilates 

partitioned into each organ divided by the assimilate requirements for dry matter production. 

Rates of formation and harvest or removal of fruits and leaves is calculated as a function of 

temperature (De Koning 1994). Appearance rate of new sections and trusses depends on 

temperature solely (De Koning 1994). Early-season and late-season leaf harvest is modelled 

according to realized crop management practices. Otherwise, leaves and a truss from the same 

section are removed when the truss is harvest-ripe. All trusses are assumed to have six fruits. 

Leaf area increase is potential if SLA of the whole canopy is smaller than the maximum 

SLA (SLAmax). Potential leaf area increase is computed as the product of the potential weight 

of new leaf material and the minimum SLA (SLAmin). If the actual SLA is greater than 

SLAmax (if the leaf is thinner than permitted), leaf area increase is equal to the product of the 

weight of new leaf material and SLAmax. SLAmax is a constant, and SLAmin is made dependent 

on the day of the year (DOY, day 1 is 1
st
 January) (Heuvelink  1999): 

 

                                  
 

The model has been proven to accurately simulate tomato production in open and closed 

greenhouses (Heuvelink et al. 2008; Marcelis et al. 2009). Planting date, plant density, 

number of side stems retained and realized climate data (5-minutes averages of global 

radiation, CO2 concentration, temperature, VPD) of the semi-closed and open greenhouses 

from the 2009 experiment were used as input. Scenario studies were done to investigate the 

contributions of CO2 concentration to dry matter production increase by replacing the input 

values for CO2 concentration of one greenhouse type by that of the other one. 

 

Statistical analysis 

Data on photosynthesis rate, stomatal conductance, and SLA were analysed by linear 

mixed models and the variance components were estimated by Restricted Maximum 

Likelihood (REML) in Genstat (14
th

 Edition, VSN International, UK). The linear mixed 

models consisted of two parts: the fixed mode and the random model. The fixed model 

consisted of the main factors: greenhouse (semi-closed and open greenhouses), fruit load (0, 2, 

and 6 fruits per truss), leaf position (top and middle leaves), CO2 concentration in the 

measurement cuvette (600 and 1000 µmol mol
-1

), and time (week after planting). CO2 

concentration in the cuvette was not included in the analysis of SLA. The random model took 

into account that the plant samples from the same greenhouse were correlated. In addition, 

pairwise comparisons of the means were analysed by student t-test (p=0.05), comparing the 

means of photosynthesis rate, stomatal conductance, and SLA of the leaves from the plants 

with different fruit loads in the two greenhouses. Since there were no interaction effects of 

greenhouse × leaf position, greenhouse × CO2 concentration, fruit load × leaf position, and 

fruit load × CO2 concentration on photosynthesis rate and stomatal conductance (p>0.1), we 

present photosynthesis rate and stomatal conductance averaged over leaf positions and CO2 

concentrations, and the SLA averaged over leaf positions.  

For the response of photosynthesis rate to CO2 concentration, the intercellular CO2 

concentration (Ci) was the output from the device calculated based on the function described 

by Von Caemmerer and Farquhar (1981). The maximum carboxylation capacity (Vcmax), the 

electron transport rate (J), and the non-photorespiratory CO2 release (Rd) are parameters of the 

photosynthesis model of Farquhar-von Caemmerer-Berry (Farquhar et al. 1980) and were 

estimated from the data of the response of photosynthesis rate to Ci, using simultaneous 

http://www.vsni.co.uk/downloads/genstat/reference
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estimation method and nonlinear mixed effects model in R (version 2.9.2) described in 

Chapter 5. 

 

Results  

Climate 

The global radiation fluctuated during the 2009 season (Fig. 2). The realized CO2 

concentration in the semi-closed greenhouse was higher than in the open greenhouse (Fig. 2), 

due to less CO2 loss via the window. However, since window ventilation was used in both 

compartments for temperature control, CO2 concentrations in both greenhouses did not reach 

the set point of 1000 µmol mol
-1

 (Fig. 1). During the period of photosynthesis measurements 

(indicated by the arrows in Fig. 2), the average day-time difference in CO2 concentration was 

larger than 200 µmol mol
-1

. The diel pattern of the CO2 concentration (Fig. 3) was largely 

affected by the extent of window opening. The CO2 concentration during night was close to 

ambient since was no CO2 enrichment during the night. The diel pattern of global radiation, 

averaged over the period of photosynthesis measurements, reached a peak around mid-day 

(Fig. 3). The greenhouse temperature and VPD (measured at the top of the canopy) showed 

the same diel pattern as the global radiation. The greenhouse temperature, controlled via 

window ventilation or mechanical cooling, differed less than 0.5°C between the semi-closed 

and open greenhouses. During day-time, the hourly average VPD in the open greenhouse was 

higher than in the semi-closed greenhouse, due to the relatively drier outside air entering the 

greenhouse via window ventilation. In the semi-closed greenhouse, cold air was blown in via 

ducts placed under the growing gutters, resulting in a vertical temperature gradient (data not 

shown). The temperature at the lower part of the semi-closed greenhouse was about 5°C 

lower than at the bottom of the open greenhouse at high outside solar radiation round mid-day. 

There was virtually no vertical temperature gradient in the open greenhouse.  

 

 

 
Figure 2. Weekly average day-time CO2 concentration in the semi-closed and open greenhouses in 2009 

and weekly sum of the global radiation outside the greenhouses. Arrows indicate the weeks when the 

photosynthesis measurements were carried out. 
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Figure 3.  Diel patterns of the global radiation, the greenhouse CO2 concentration, temperature and VPD at 

the top of the canopy in the semi-closed and open greenhouses. Data points are average values of week 30-

39 after planting in 2009. Vertical bars indicate the standard error of mean (n=69).  

 

In 2010, window opening between the open and semi-closed greenhouse differed as 

well, resulting in comparable differences in CO2 concentration and VPD as in 2009 (data not 

shown). Temperatures at the top of both greenhouses were comparable, whereas a vertical 

temperature gradient of up to 5 ˚C was recorded in the semi-closed greenhouse. 

 

Photosynthesis and stomatal conductance 

Fruit load had a significant effect on leaf photosynthesis rate (p<0.001). Photosynthesis 

rate decreased with decreasing fruit load (Fig. 4). Such an effect of fruit load on 

photosynthesis rate was detected from 1 week after fruit pruning (33 weeks after planting), 

when the photosynthesis rates of the plants with 2 and 0 fruits per truss were significantly 

lower than that of the plant with 6 fruits per truss. Greenhouse type (semi-closed vs. open 

greenhouses) had no significant effect on leaf photosynthesis rate averaged over all 

measurement days, of the plants with 0 (p=0.06), 2 (p=0.57), and 6 (p=0.41) fruits per truss 

(Fig. 4). However, in the plants with 0 fruit per truss, the difference in photosynthesis rate 

between the semi-closed and open greenhouses became significant at 39 weeks after planting, 

which was 7 weeks after start of fruit pruning treatments (Fig. 4).  
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Figure 4. Time courses of leaf net photosynthesis rate in the semi-closed and open greenhouses. Data are 

average values of top and middle leaves (leaf numbers 5 and 11, respectively). Error bars indicate the 

standard errors of means. Fruit pruning was started at 32 weeks after planting (n=24). 

 

Leaf photosynthesis rate significantly decreased with increasing canopy depth (p<0.001) 

(Fig. 5). Greenhouse type (p=0.66) and greenhouse type × canopy depth interaction (p=0.96) 

had no significant effect on leaf photosynthesis. The response of photosynthesis rate to CO2 

concentration of the middle leaf (leaf number 11) in the semi-closed and open greenhouses 

was the same (Fig. 6), since the parameters Vcmax  (p=0.65), J (p=0.75), and Rd (p=0.61) were 

not significantly different in the two greenhouses. Vcmax=103 µmol m
-2

 s
-1

, J=196 µmol m
-2

 s
-1

, 

and Rd=1.4 µmol m
-2

 s
-1

. 

 

 
Figure 5. Leaf photosynthesis rate at different heights in the canopy in the plants with 6 fruits per truss in 

the semi-closed and open greenhouses at 27 weeks after planting in 2010. Vertical bars indicate the 

standard errors of means (n=6). 
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Figure 6. Photosynthesis ACi curves measured on leaf number 11 grown in the semi-closed and open 

greenhouses.  Vertical bars indicate the standard errors of means (n=6). 

 

Stomatal conductance decreased with decreasing fruit load (p<0.001). Greenhouse type 

had no significant effect on stomatal conductance (Table 2). 
 

Table 2. Stomatal conductance of plants with three different fruit loads in the semi-closed and open 

greenhouses at week 39 after planting. Values were averaged over top and middle leaves, and over CO2 

concentrations of 600 µmol mol
-1

 and 1000 µmol mol
-1

 (n=24). 
*
 

Fruit load 

(fruit truss
-1

) 

Semi 

(mol m
-2

 s
-1

) 

Open 

(mol m
-2

 s
-1

) 

Average 

(mol m
-2

 s
-1

) 

0 0.37
a
 0.46

a
 0.42

1
 

2 0.53
ab

 0.46
a
 0.49

1
 

6 0.70
b
 0.74

b
 0.72

2
 

Average 0.53
A
 0.55

A
  

*Superscript characters indicate if averages are significantly different (P<0.05). Small letters for comparing 

individual treatments, capital letters for comparing average values of the open versus semi-closed greenhouse 

and numbers for comparison among average values of fruit load treatments.  

 

Leaf morphology 

SLA significantly decreased with decreasing fruit load (Table 3). SLA of the leaves in 

the open greenhouse was significantly higher than in the semi-closed greenhouse. SLA of the 

middle leaves was 6.4% higher than that of the top leaves (data not show). 

 
Table 3. SLA of plants with three different fruit loads in the semi-closed and open  

greenhouses at week 39 after planting. Values were averaged over top and middle leaves (n=12). 
*
  

Fruit load 

(fruit truss
-1

) 

Semi 

(cm
2
 g

-1
) 

Open 

(cm
2
 g

-1
) 

Average 

(cm
2
 g

-1
) 

0 126
a
 155

bc
 140

1
 

2 148
b
 171

c
 159

2
 

6 173
c
 195

d
 184

3
 

Average 149
A
 174

B
  

*Superscript characters indicate if averages are significantly different (P<0.05). Small letters for comparing 

individual treatments, capital letters for comparing average values of the open versus semi-closed greenhouse 

and numbers for comparison among average values of fruit load treatments.  

 

Observed and simulated dry matter production 

In the 2009 experiment, the observed total above-ground dry matter production in the 

semi-closed greenhouse between 27 and 40 weeks after planting was 21% higher compared to 
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the open greenhouse (Table 4). Observed fresh weight of the ripe fruits harvested between 27 

and 40 weeks after planting was 27.1 kg m
-2

 in the semi-closed greenhouse and 21.9 kg m
-2

 in 

the open greenhouse, which is an increase of 24%.  

 
Table 4. Simulated and measured total above-ground dry matter between week 27 and 40 after planting, for 

the semi-closed and open greenhouses as input.  

CO2 

 

VPD 

 

Temperature 

 

Simulation 

(kg m
-2

) 

Measurement 

(kg m
-2

) 

open open open 1.42  1.33 

semi semi semi 1.62  1.61 

open semi semi 1.44  

semi open open 1.60  

 

Simulated total above-ground dry matter production was 14% higher in the semi-closed 

than in the open greenhouse (Table 4). If in model computations, the VPD and temperature of 

the open greenhouse were replaced by those of the semi-closed greenhouse, the simulated 

total dry matter production was only 1% higher than the simulated value of the open 

greenhouse. If the CO2 concentration of the open greenhouse was replaced by the CO2 

concentration of the semi-closed greenhouse, the simulated total dry matter production was 

13% higher than the simulated value of the open greenhouse (Table 4).  

 

Discussion 

Photosynthetic acclimation to elevated CO2 concentration and fruit removal 

Continuously high CO2 concentration is one of the typical characteristics of the semi-

closed greenhouse compared to the conventional greenhouse. Since photosynthetic and 

morphological acclimation to continuously high CO2 concentration have been found in many 

plant species, it is necessary to investigate whether this occurs in semi-closed greenhouses.  

In previous studies where photosynthetic acclimation to elevated CO2 concentration was 

found, plants were young or were not yet producing fruits (Besford 1993; Peet et al. 1986; 

Sims et al. 1998). Young plants without reproductive organs are likely to be sink-limited (Arp 

and Drake 1991). In addition, in some studies, supplemental lighting was applied (Ayari et al. 

2000b; Yelle et al. 1990). Combination of high light intensity with elevated CO2 

concentration enhances source strength. The limited sink cannot sufficiently use the extra 

assimilates, so that feedback inhibition occurs. In other studies where photosynthetic 

acclimation to elevated CO2 concentration was not found, plants had large sinks (Arp and 

Drake 1991; Davey et al. 2006; Gutjahr and Lapointe 2008; Heuvelink and Buiskool 1995; 

Sage et al. 1989; Usuda 2006). In these cases, the sink may not have been limiting, which 

would explain the absence of feedback inhibition. Therefore, the occurrence of photosynthetic 

acclimation to elevated CO2 concentration depended on the sink strength. 

In our study, we also manipulated the sink strength of the plants by altering the fruit 

number to 6 fruits, 2 fruits and 0 fruits per truss. Six fruits per truss is the normal fruit load of 

this cultivar in modern greenhouse cultivation. Under normal greenhouse conditions, tomato 

plants that already produce fruits are source-limited (Heuvelink 2005). In our experiment, no 

photosynthetic acclimation to elevated CO2 concentration was found on plants with 6 fruits 

per truss or even with 2 fruits per truss. The sink strength of tomato fruits normally comprises 

about 70% of the total plant sink strength (Heuvelink 1997). Reducing the number of fruits 

proportionally reduces the sink of all fruits together (Heuvelink 1997). Therefore, when the 

fruit number per truss was reduced from 6 to 2 or 0 fruits, the total fruit sink strength was 

reduced by 67%, or 100%, respectively. Consequently, the total plant sink strength was 

reduced by 47% or 70%, respectively. Hence photosynthetic acclimation to elevated CO2 



  Crop in response to high CO2 

33 

 

concentration only occurred when plant sink strength was reduced by about 70%. We 

concluded that the occurrence of photosynthetic acclimation to elevated CO2 concentration 

depended on the source sink balance. 

Photosynthetic acclimation to elevated CO2 concentration has been attributed to the 

reduction of RuBP carboxylation rate and RuBP regeneration rate in C3 plants (Ainsworth and 

Rogers 2007; Chen et al. 2005; Urban et al. 2003; Zhang et al. 2009). Reduction of RuBP 

carboxylation rate, reflected by a decrease of maximum carboxylation rate (Vcmax), was 

correlated with a decrease of Rubisco content (Makino and Mae 1999) and Rubisco activity 

(Portis 2003). Reduction of RuBP regeneration rate, reflected by a decreased electron 

transport rate (J), was explained by a decline of cytochrome (Cyt) f, which is the key 

component connecting the electron transport between the photosystem II and photosystem I 

(Zhang et al. 2008). No photosynthetic acclimation to elevated CO2 concentration was found 

on plants with 6 fruits per truss. This was confirmed by the identical Vcmax and J derived from 

our ACi curves measured on these plants in both greenhouses, reflecting no decrease of either 

RuBP carboxylation rate or RuBP regeneration rate.  

Reduction of photosynthesis by removing sink organs has been observed in tomato 

(Tanaka and Fujita 1974), sweet pepper (Hall and Milthorpe 1978), cucumber (Marcelis 1991; 

Plaut et al. 1987), potato (Tekalign and Hammes 2005), soybean (Setter and Brenner 1980), 

cotton (Plaut et al. 1987), grape (Petrie et al. 2000), and fruit trees (Cheng et al. 2009; Gucci 

et al. 1995; Syvertsen et al. 2003; Urban et al. 2004). In our study, leaf photosynthesis rate 

was also decreased by fruit removal. In these studies, as well as in our study, reduction of 

photosynthesis was associated with lower stomatal conductance. Some studies suggested that 

sink limitation, induced by removing sink organs, decreased photosynthesis rate via reducing 

stomatal conductance (Cheng et al. 2009; DaMatta et al. 2008). In contrast, other studies 

suggested that decrease of photosynthesis rate by removing sink organs could not be 

attributed to the reduction of stomatal conductance (Petrie et al. 2000; Syvertsen et al. 2003; 

Urban et al. 2004). In our study, the decrease of stomatal conductance was associated with a 

constant intercellular CO2 concentration, demonstrating that the reduction of photosynthesis 

rate at lower fruit load was not attributed to a stomatal-associated decrease in Ci. It is more 

likely that stomatal closure was a consequence of the reduced photosynthesis, as stomata tend 

to open and close to maintain a constant ratio between the intercellular and air CO2 

concentrations (Drake et al. 1997; Wong et al. 1979). We conclude that although stomatal 

conductance was reduced by fruit removing, this in itself did not limit photosynthesis. 

The majority of the studies on photosynthesis acclimation to elevated CO2 were 

conducted in growth chambers (Bunce 2001; Peet et al. 1986; Sims et al. 1998; Van Oosten et 

al. 1995) or the open field (Chen et al. 2005; Pérez et al. 2007; Zhang et al. 2008). A limited 

number of studies were carried out in greenhouses (Ayari et al. 2000a; Hao et al. 2006; Yelle 

et al. 1990). These studies used ambient CO2 concentration (about 400 µmol mol
-1

) as a 

reference (Hao et al. 2006; Yelle et al. 1990). An ambient CO2 concentration of 400 µmol 

mol
-1

 is not relevant for modern greenhouses, since CO2 enrichment is practiced year-round 

(Heuvelink et al. 2008; Opdam et al. 2005), even in summer when ventilation rates are high. 

Therefore, we used CO2 concentrations of about 600 µmol mol
-1

 in summer time in the open 

greenhouses which correspond to CO2 concentrations encountered in modern commercial 

greenhouses. Our results suggest that a continuously high CO2 concentration in a semi-closed 

greenhouse does not cause feedback inhibition in high producing crops, because these plants 

have sufficient sinks (fruits) to utilise the extra assimilates. 

 

Morphological acclimation 

Reduction of SLA at elevated CO2 concentration (Besford et al. 1990; Clough and Peet 

1981; Holbrook et al. 1993; Nederhoff et al. 1992) and by removing fruits (Bertin and Gary 
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1998; Heuvelink and Marcelis 1996; Marcelis 1991; Nii 1997) has been found in many 

studies as well as in our study. Lower SLA was attributed to over-accumulation of starch in 

the leaf at elevated CO2 concentration (Yelle et al. 1989a) and by removing fruits (Poorter et 

al. 2009). The effect of starch accumulation on SLA might be via a regulator, trehalose-6-

phosphate, linking between SLA and carbohydrate availability (Poorter et al. 2009; 

Schluepmann et al. 2003).  

 

The semi-closed greenhouse 

Semi-closed greenhouses have been developed to reduce the energy consumption in 

horticulture. The three main differences in climate of the semi-closed greenhouse compared to 

open greenhouse in our study were a higher CO2 concentration, a lower VPD under sunny 

conditions, and a vertical temperature gradient when outside radiation was high, which is in 

line with reports of De Gelder et al. (2005), Heuvelink et al. (2008), and Opdam et al. (2005). 

Our study main focused on CO2 concentration, but the differences in VPD and temperature 

were also taken into account. Scenario studies were done with the INTKAM crop growth 

model to analyse the effects of the separate climate factors on growth and production. This 

showed that, although more climate factors than the CO2 concentration differed between the 

semi-closed and open greenhouses, CO2 was the most relevant climate factor involved, 

explaining most of the production difference. 

In this study, we mainly focused on the carbon balance in the plant: dry matter 

production and its distribution. CO2 concentration was the main factor that influenced 

photosynthesis, and, consequently, used to explain the increase of dry matter production in the 

semi-closed greenhouse (Chapter 2). Our scenario studies confirmed that the difference in dry 

matter production between the semi-closed and open greenhouses was mainly explained by 

the difference in CO2 concentration (Table 4). The increase in simulated dry mass production 

in a semi-closed greenhouse compared to an open greenhouse was slightly higher than the 

measured increase. As the used simulation model did not consider feedback inhibition of 

photosynthesis, this gives some further support that feedback inhibition did not occur in a 

producing tomato crop in the semi-closed greenhouse. The vertical temperature gradient was 

not expected to affect photosynthesis, since the temperature difference occurred only at the 

bottom of the canopy, where light intensity is low. Leaf photosynthesis was less sensitive to 

temperature at low light intensity (Chapter 5). Lower temperature at the bottom of the canopy 

might influence the sink strength of the organs at the bottom. However if the sink strength of 

all plant organs responds proportionally to temperature, dry matter partitioning does not 

change with temperature (Heuvelink 1995). VPD influences photosynthesis indirectly via 

stomatal conductance (Acock et al. 1976; Stanghellini and Bunce 1993).  

Besides the carbon balance, VPD and vertical temperature gradient influenced the water 

balance in the plant. A lower VPD in the semi-closed greenhouse resulted in a reduced 

transpiration rate compared to the open greenhouse (De Gelder et al. 2005; Jolliet and Baily 

1992). In addition, low VPD could either increase leaf area by increasing leaf expansion or 

decreasing leaf are through calcium deficiency (Bakker et al. 1987). Stanghellini et al. (2012) 

showed that the transpiration rate in the lower leaf levels in the semi-closed greenhouse was 

lower than in the open greenhouse, due to the vertical temperature gradient.  

 

Conclusions 

Our conclusions are 1) Acclimation of photosynthesis to elevated CO2 concentration 

only occurred when the number of sinks was considerably reduced. 2) Elevated CO2 as well 

as fruit removal reduced SLA indicating morphological acclimation of the plants. 3) 

Reduction in photosynthesis was associated with, but not caused by reduced stomatal 



  Crop in response to high CO2 

35 

 

conductance. 4) Increase of dry matter production in the semi-closed greenhouse was mainly 

explained by elevated CO2 concentration.  
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Crop growth and development in response to vertical temperature gra-

dients 

 

Chapter 4.1 Occurrence of vertical temperature and vapour pres-
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Abstract 

Semi-closed greenhouses have been developed in which window ventilation is min-

imized due to active cooling, enabling enhanced CO2 concentrations at high irradiance. 

Cooled and dehumidified air is blown into the greenhouse from below or above the cano-

py. Cooling below the canopy may induce vertical temperature gradients along the height 

of the plants. The aim was to analyse the effect of the positioning of the inlet of cooled 

and dehumidified air on the magnitudes of vertical temperature gradients and vapour 

pressure deficit (VPD) gradients in the semi-closed greenhouses. Tomato crops were 

grown year-round in four semi-closed greenhouses with cooled and dehumidified air 

blown into the greenhouses from below or above the crop. Cooling below the canopy in-

duced vertical temperature and VPD gradients. The temperature at the top of the canopy 

was over 5 °C higher and VPD was 0.7 kPa lower, than at the bottom, when outside solar 

radiation was high (solar radiation > 250 J cm
-2

 h
-1

). The vertical temperature gradients 

and VPD gradients were studied in seasonal pattern, and in diel pattern in detail. The ver-

tical temperature gradients and VPD gradients positively correlated with outside radiation 

and outside temperature.  
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Introduction 

Semi-closed greenhouses were developed to save energy. Greenhouse air is cooled 

and dehumidified by air treatment units and returned to the greenhouse through cooling 

ducts (De Gelder et al. 2012). Active cooling is combined with window ventilation if 

temperatures are too high to be controlled by the air treatment units with limited cooling 

capacity. Cooling ducts are normally placed beneath the growing gutters, because place-

ment overhead or within crops either causes loss of light or interferes with cultivation 

procedures (Wells and Amos 1994). However, cooling from below induces a vertical 

temperature gradient along the canopy (Chapter 2). The occurrence and magnitude of the 

vertical temperature gradient depend on the radiation (Suay et al. 2008), the cooling ca-

pacity, and temperature of the air blown into the greenhouse (Chapter 2). It may vary dur-

ing a day and during the season. We carried out an experiment with tomato crops in semi-

closed greenhouses where a vertical temperature gradient was present or absent. The aim 

was to analyse the effects of the positioning of the inlet of cool and dehumidified air on 

the occurrence and magnitudes of vertical temperature gradients and vapour pressure def-

icit (VPD) gradients in the semi-closed greenhouses. The vertical temperature gradients 

and VPD gradients were studied in seasonal pattern, and in diel pattern in detail. 

 

Materials and methods 

Experiments were conducted in four adjacent semi-closed greenhouses with 350 W 

m
-2 

maximum cooling capacity, located in Bleiswijk, The Netherlands. Each greenhouse 

measured 144 m
2
 (15 m x 9.6 m), with a gutter height of 5.5 m. Transmission of diffuse 

global light was 59 %. Seven growing gutters, about 70 cm above the floor, with rock-

wool slabs, were oriented from east to west, of which five were double-row and two were 

single-row for border plants. Air conditioning was controlled by a standard horticultural 

computer (Hoogendoorn-Economic). Cooling capacity was controlled by adjustment of 

air speed and the temperature of the cooling water. This control was based on the differ-

ence between supply and return water temperature in the air treatment units. Air tempera-

ture set points for cooling and heating were identical for all the four greenhouses. Ventila-

tion windows were opened if the 350 W m
-2

 cooling capacity was insufficient to keep 

greenhouse temperature below the critical level. Pure CO2 was supplied at a maximum 

rate of 23g m
-2

 h
-1

 during daytime with a set point of 1000 μmol mol
-1

 for each green-

house. Outside radiation, greenhouse CO2 concentration, greenhouse air temperature and 

humidity were recorded automatically at a 5 min interval. In addition, temperature and hu-

midity sensors (Hoogendoorn) were placed at four canopy heights in each greenhouse (3.5 

m, 2.5 m, 1.2 m, and 0.3 m above the growing gutters, which were 0.7 m from the ground). 

The highest sensor (3.5 m) was above the top of the canopy. The lowest sensor (0.3 m) was 

between the lowest truss and the rockwool slab. The values of the two sensors in the middle 

(2.5 m and 1.2 m) were averaged, representing the temperature and humidity at the middle 

of the canopy. 

Two treatments were applied, namely cooling from below and from above the can-

opy (Fig. 1). Each treatment was replicated in two greenhouse compartments. The differ-

ence of the realized daily average temperature between the two replicates was less than 

0.5°C. In all the four greenhouses, air was extracted from the greenhouse by five ventila-

tors placed at the top of the greenhouse, cooled and dehumidified in the air treatment 

units. In one treatment, treated air from the air treatment units was returned to the green-

house through five plastic cooling ducts placed horizontally beneath the growing gutters. 

Each duct had six holes (16 mm diameter) per meter. In the other treatment, treated air 
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from the air treatment units was returned at the top of the greenhouse through the ends of 

five blowers at the two ends of the greenhouse.  

 

 
 

Figure 1. Layout of the greenhouse with cooling below the gutter (top figure) and the greenhouse with 

cooling above the canopy (bottom figure). 

 

Truss tomato plants, cultivar Cappricia grafted on the rootstock Emperador, were 

planted on rock wool slabs on December 23
rd

, 2008, at a plant density of 2.5 m
-2

. Initially 

one stem per plant was maintained. In week 8 after planting, an additional side shoot was 

maintained at 1/3 of the plants, increasing stem density to 3.33 m
-2

. Climate treatments 

started on 23
rd

 March 2009.  

Data of the hourly outside radiation, outside temperature, hourly temperature differ-

ence between top and bottom of the canopy, and VPD difference between top and bottom 

of the canopy in the greenhouse with cooling from below, were analysed using SPSS ver-

sion 22. Hourly outside radiation and outside temperature were set as independent varia-

bles and hourly temperature difference and VPD difference between top and bottom of 

the canopy were set as dependent variables. Single effect of outside radiation or outside 

temperature on vertical temperature difference and VPD difference was analysed by Stu-

dent’s t-test (P=0.01), fitting the data with linear regression. Effects of both outside radia-

tion and outside temperature on vertical temperature difference and VPD difference were 

analysed by Student’s t-test (P=0.01), fitting the data with multiple linear regression.   

 

Results and discussion 

Outside global radiation and outside temperature fluctuated during the whole grow-

ing season (Fig. 2). Average climate conditions at top of the canopy were similar between 

the two treatments where cooling was performed from below or above the canopy. Real-

ized seasonal average values for day/night temperature, CO2 concentration, and VPD 
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(measured at the height of the top of the canopy) were 21.6/17.2 °C and 21.8/17.0 °C; 764 

µmol mol
-1

 and 763 µmol mol
-1

 (Fig 3); 0.38 kPa and 0.37 kPa of the treatments with 

cooling from above and from below, respectively. Diel patterns of the CO2 concentrations 

in both treatments were similar (Fig. 3).  

Cooling below the canopy resulted in a vertical temperature gradient which first ap-

peared in March, when the cooling systems were turned on (Fig. 4). Temperatures at the 

top of the canopy were similar between treatments, but were lower in the lower part of the 

canopy. The gradient was most pronounced from June to September when the tempera-

ture difference between the top and the bottom of the canopy was > 2°C for 55% of the 

time, and was > 5°C for 20% of the time. In the treatment with cooling from above, air 

temperatures at the top and the bottom of the canopy were similar (Fig. 4). The VPD 

throughout the canopy hardly differed in the treatment with cooling from above, whereas 

in the treatment with cooling from below, the VPD in the top of the canopy was higher 

than in the lower part of the canopy (Fig. 5).  

 

 
Figure 2. Daily average of the outside temperature (●) and outside solar radiation (Δ) throughout the 

growing season (December 2008 – October 2009), 23 December 2008 is considered as 0 day after 

planting. 

 
Figure 3. Diel patterns of CO2 concentration in treatments with cooling from above (dash line) and 

with cooling from below (solid line) of the canopy throughout the growing season (December 2008 – 

October 2009). Each bell-shape curve shows the 24-h pattern of CO2 concentration averaged over the 

two greenhouses per treatment and over all days in the months indicated on the x-axis. 
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Figure 4. Diel patterns of air temperature at the top and bottom of the canopy in treatments with 

cooling from above (A) and cooling from below (B) of the canopy throughout the growing season 

(December 2008 – October 2009). Each bell-shape curve shows the 24-h pattern of air temperature 

averaged over the two greenhouses per treatment and over all days in the months indicated on the x-

axis. 

 
Figure 5. Diel patterns of vapour pressure deficit (VPD) of the air at the top and bottom of the canopy 

in treatments with cooling from above (A) and with cooling from below (B) of the canopy throughout 

the growing season (December 2008 – October 2009). Each bell-shape curve shows the 24-h pattern of 

VPD averaged over the two greenhouses per treatment and over all days in the months indicated on the 

x-axis. 

 

The hourly temperature and VPD from July to September were averaged to investi-

gate their diel patterns in detail. The magnitudes of vertical temperature and VPD gradi-

ents among top, middle, and bottom of the canopies reached their maxima after midday 

around 4 PM when temperature in greenhouses was highest (Fig. 6b and 7b). The biggest 

difference in VPD between top and bottom of the canopy in the treatment with cooling 



    Occurrence of vertical temperature gradients   

47 

 

from below was 0.7kPa (Fig. 7). However, no distinct vertical temperature and VPD gra-

dients were measured in the greenhouses with cooling from above during the whole day 

(Figs. 6a, and 7a).  

 
  

Figure 6. Average diel air temperature at the top (●), middle (Δ) and bottom (*) of the canopy from 

July to September 2009 in the greenhouses with cooling from above (a) and from below (b). Top of 

canopy is 3.5 m, and bottom of canopy is 0.3 m above the gutter. The values of middle of the canopy 

were the average values measured at 2.5 m and 1.2 m above the gutter. Vertical bars indicate the s.e.m.. 

 
Figure 7. Average diel vapour pressure deficit at top (●), middle (Δ) and bottom (*) of the canopy 

from July to September 2009 in the greenhouses with cooling from above (a) and from below (b). Top 

of canopy is 3.5 m, and bottom of canopy is 0.3 m above the gutter. The values of middle of the canopy 

were the average values measured at 2.5 m and 1.2 m above the gutter. Vertical bars indicate the s.e.m.. 

 

Outside temperature shows a positive linear correlation with global radiation 

(R
2
=0.41).  In the greenhouses with cooling from below, the temperature difference be-

tween the top and the bottom of the canopy correlated positively with increasing outside 

global radiation (Fig. 8a, R
2
=0.64, P<0.01). This difference was larger than 5 °C when 

outside solar radiation was higher than 250 J cm
-2

 h
-1

 (equal to 700 W m
-2

) (Fig. 8a). VPD 

differences between top and bottom of the canopy also showed a positive correlation with 

outside radiation in the greenhouses with cooling from below (Fig. 8b, R
2
=0.67, P<0.01). 

The temperature (Fig 8c, R
2
=0.68, P<0.01) and VPD (Fig 8d, R

2
=0.60, P<01.01) differ-

ences between the top and the bottom of the canopy also positively correlated with out-

side temperature in the treatment with cooling from below. 
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Multiple regression of temperature gradients versus global radiation and outside 

temperature, which were positively correlated themselves (R
2
 =0.41), showed that the 

latter two both had an effect on the vertical temperature gradient (R
2
 =0.62, P<0.01 of 

both factors) and vertical VPD gradient (R
2
 =0.57, P<0.01 of both factors).  High global 

radiation and outside temperature led to a higher cooling demand and therefore a lower 

temperature of the air blown from the ducts. Low temperature of the air blown from the 

ducts underneath the canopy leads to the higher vertical temperature and VPD gradients.  

 

 

 
Figure 8. The relationship of hourly outside radiation and outside temperature with hourly temperature 

difference between top and bottom of the canopy (a, c) and VPD difference between top and bottom of 

the canopy (b, d) in the greenhouse with cooling from above (●) and the greenhouse with cooling from 

below (○). Each data point is the average of the values from two replicates. White lines indicate the 

fitted linear curves. 

 

Conclusions 

Cooling from below the canopy induced vertical temperature and VPD gradients. 

The vertical temperature and VPD gradients were most pronounced from June to Septem-

ber. At high radiation levels temperature at bottom of the canopy was 5°C lower and VPD 

was 0.7 kPa lower than at the top of the canopy, occurring after midday around 4 PM. 

The vertical temperature and VPD gradients were correlated with outside radiation and 

outside temperature. No vertical temperature and VPD gradients were detected in green-

houses with cooling from above.  
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Abstract 

Semi-closed greenhouses have been developed over the last decade to conserve energy. 

Energy consumption is reduced by collecting the excess solar energy in summer, storing it in 

aquifers and reusing it in winter to heat the greenhouse. Cooling systems placed in the lower 

part of the greenhouse, can cause vertical temperature gradients, which can be more than 5°C 

at high levels of solar radiation. Given the substantial effect that air temperature has on a 

number of plant physiological processes, we expected to observe effects on plant growth and 

fruit production. Tomato plants were grown in semi-closed greenhouses with or without a 

vertical temperature gradient. Despite these large vertical temperature gradients, plant growth 

and fruit yields were mostly unaffected. Leaf and truss initiation rates did not differ between 

treatments, since air temperatures at the top of the canopy were comparable. The only 

observed response of plants to the vertical temperature gradient was the reduced rate of fruit 

development in the lower part of the canopy. This resulted in a longer time between anthesis 

and fruit harvest in the treatment with a vertical temperature gradient, and an increase in the 

average fruit weight in summer. However, total fruit production over the whole season was 

not affected. These results are important when designing greenhouses, as well as heating and 

cooling systems for greenhouses. 
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Introduction 

Air temperatures can be spatially and temporally heterogeneous in nature, in a forest 

(Leuzinger and Körner 2007), an orchard or in the open field (Baldocchi et al., 1983). This 

heterogeneity is caused by features of the canopy architecture such as plant height, plant 

density, and leaf orientation (Grace 1977) and by environmental conditions such as solar 

radiation, wind, and rainfall (Parker 1995). Spatial and temporal variations in air temperature 

also exist in a protected environment such as a greenhouse (Bojaca et al. 2009; Kempkes et al. 

2000). This spatial variation in temperature in a greenhouse can be caused by operational 

actions such as window or screen opening (Soni et al. 2005), heating or cooling (Kempkes et 

al., 2000). Canopy architecture, in combination with leaf traits, was shown to affect leaf 

temperature (Leuzinger and Körner 2007). Savvides et al. (2013) showed that at a constant air 

temperature, the difference between the apex temperature and the air temperature in tomato 

plants varied from -3°C to +4°C,  depending on air temperature, vapour pressure deficit, 

radiation, and wind speed, thereby affecting the rate of plant development.  

Semi-closed greenhouses have been developed over the last decade to conserve energy. 

In such greenhouses, energy consumption is reduced by collecting the excess solar energy in 

summer, storing it in aquifers and reusing it in winter to heat the greenhouse (De Gelder et al. 

2012; Opdam et al. 2005; Vadiee and Martin 2012). In this system, active cooling minimizes 

window ventilation, thereby enabling more favourable conditions for plant growth (e.g. a high 

light intensity with a high CO2 concentration and moderate temperatures) which have been 

shown to have a positive effect on production levels (De Gelder et al., 2012; Dannehl et al. 

2012; 2013; Chapter 3). Cooled and dehumidified air is returned to the greenhouse through 

cooling ducts, which are commonly placed beneath the growing gutters (De Gelder et al. 

2012). This system results in a vertical temperature gradient (VTG) that can be considerably 

greater than in a conventional greenhouse with window ventilation. The occurrence and 

magnitude of the VTG depends on the incident radiation (Suay et al. 2008), the cooling 

capacity of the installation, and the temperature of the air being blown into the greenhouse 

(Chapter 2 and Chapter 4.1).  

Air temperature influences a wide range of plant growth and developmental processes. 

Together with the level of solar radiation and CO2, air temperature is therefore one of the 

major factors affecting crop characters such as the balance between generative and vegetative 

growth, the rate of crop development, and, ultimately, crop yield. Thus, it can be expected that 

a VTG would have a noticeable effect on a number of plant physiological processes and, 

ultimately, on crop yield. 

The influence of temperature on the growth and development of tomato plants has been 

studied extensively (reviewed by Van der Ploeg and Heuvelink 2005). The effect of 

temperature on the rate of leaf photosynthesis depends, among other things, on the intensity of 

the light (Chapter 5; Cannell and Thornley 1998; Yamori et al. 2010). At low light levels the 

effect of temperature on the rate of photosynthesis is relatively small. Light intensity is 

relatively low at the bottom of the canopy. So, if the temperature of the lower leaves changes 

due to a VTG in a closed greenhouse, the effect of this gradient on photosynthesis might be 

limited.  

Maintenance respiration rate decreases with temperature (Amthor 1989). Consequently, 

a vertical temperature gradient with a lower air temperature at the bottom of the canopy may 

lead to greater availability of assimilates for crop growth (i.e., source strength), when the rate 

of photosynthesis is largely unaffected and the rate of maintenance respiration is low. 

However, the rate of maintenance respiration also depends on organ weight (Amthor 1989; 

Penning de Vries 1975). If, due to a longer duration of fruit maturation the total crop dry 
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weight (DW) at a specific time-point was higher, the rate of maintenance respiration would 

also be increased. The consequences for the final availability of assimilates are therefore 

difficult to estimate. 

Rates of leaf and truss initiation increase linearly with increasing air temperature 

(Adams et al. 2001; De Koning 1994). The rate of truss initiation is approx. one truss per 

week at an average daytime temperature of 20°C (De Koning 1994). Cooling from above 

could result in lower air temperatures at the top of the canopy, and therefore in a lower rate of 

truss initiation.  

The rate of fruit maturation is also determined by air temperature. A certain number of 

day-degrees (temperature sum) have to be accumulated to reach physiological maturity (De 

Koning 1994). In a semi-closed greenhouse with a VTG, the fruits in the lower part of the 

canopy experience lower temperatures, which would be expected to affect the duration of fruit 

growth and the average fruit fresh weight (Adams et al. 2001; De Koning 1994; Fanwoua et 

al. 2012). Consequently, a lower air temperature would result in delayed (as expressed in the 

number of days required) fruit ripening. Thus, temperature effects on truss initiation and the 

rate of fruit maturation must interact in their effect on fruit load, for example. Lowered 

temperatures may result in fewer new trusses formed per unit of time, but also in a delayed 

fruit ripening. The result of this interaction on the number of trusses per plant is difficult to 

predict. 

In Chapter 4.1, it has been showed that, in semi-closed greenhouses with cooling ducts 

below the canopy, air temperatures in the lower part of the canopy could be > 5°C lower than 

in the top of the canopy. They also provided some overall values for plant and fruit growth.  

This work aimed to study the effects of a vertical temperature gradient on the plant 

physiological processes that determine growth and fruit production (e.g. the rates of truss 

initiation and fruit development, dry matter (DM) production and partitioning). 

 

Materials and methods 

Experimental design 

The experiment was conducted in four adjacent, semi-closed greenhouses (144 m
2
 each) 

with a maximum cooling capacity of 350 W m
-2

 at Bleiswijk, The Netherlands (see Chapter 

4.1). Two treatments were applied, with or without a vertical temperature gradient, each 

replicated twice using two greenhouse compartments. In the treatment with a vertical 

temperature gradient (+VTG), mechanically cooled air was blown into these greenhouses 

through cooling ducts placed horizontally beneath the growing gutters. Each duct had six 

holes (16 mm in diameter) m
-1

. In the treatment without a vertical temperature gradient (-

VTG), cooling was applied above the canopy in two greenhouses. Mechanically cooled air 

was blown into the top of these greenhouses through five blowers (three blowers at the eastern 

end and two blowers at the western end of each greenhouse). Since cold air has a higher 

density, this mixed with the lower layers of warmer air, resulting in no VTG (Fig. 1 of 

Chapter 4.1).   

The air temperature set points at the top of the canopy were similar between both 

treatments. The greenhouse climate was controlled based on measurements of air temperature, 

relative humidity (RH) and CO2 concentration, which were recorded automatically at 5 min 

time intervals, using one climate sensor (Hoogendoorn, Vlaardingen, The Netherlands) per 

greenhouse, placed at the top of the canopy. Pure CO2 was supplied at a maximum rate of 23 g 

m
-2

 h
-1

 between sunrise and sunset with a set point of 1,000 μmol mol
-1

 in each greenhouse. 

Tomato (Solanum lycopersicum ‘Cappricia’) plants, scions grafted on Emperador 

rootstock, were planted on Rockwool slabs on 23 December 2008, at a plant of 2.5 plants m
-2

 



  Effects of vertical temperature gradients on the crop 

 

55 

 

(n=300 per greenhouse). Initially only one stem was maintained per plant. An additional side 

shoot was maintained on one-third of the plants (n=100) 8 weeks after planting, increasing the 

stem density to 3.33 stems m
-2

. Starting 8 weeks after planting, the lowest two-to-three leaves 

per stem were removed each week and the shoots were lowered to keep the tops of the plants 

at a constant height (3.5 m above the gutter). Fruit numbers per truss were manually restricted 

to six fruits per truss.  

The ±VTG treatments started on 23 March 2009 (13 weeks after planting) when the two 

cooling systems were turned on. Pests and diseases were controlled biologically, as much as 

possible, and their incidences were very low. Plants were topped 40 weeks after planting. The 

last fruit harvest occurred 7 weeks after topping (20 November 2009). 

 

Crop measurements 

Eight plants in each greenhouse compartment were marked to record their truss number 

each week throughout the growing season. Plant biomass was measured by harvesting plants 

destructively at planting and 9, 19, 28, 40, and 46 weeks after planting. The fresh weights 

(FW) and dry weights (DW; oven dried at 80°C for > 48 h) of leaves, stems, and fruits were 

measured, as well as the leaf area per plant (LI-3100C Area Meter, LI-COR, Lincoln, NE, 

USA). FWs and DWs of the picked leaves and harvested fruits were recorded and added to 

the cumulative FW and DW values. The leaf area index (LAI; m
2
 m

-2
) was calculated from 

the leaf area per plant and the plant density. The specific leaf area (SLA; cm
2
 g

-1
) was 

calculated as the leaf area per unit leaf DW. To select plants for destructive measurements, 

each compartment was considered to be three blocks, evenly divided from North-to-South. 

Two plants were selected at random from each block. In total, six plants (four with a single 

main stem and two with a side shoot) were selected from each greenhouse compartment at 

each harvest. Plants with a side shoot were always selected from two different blocks. Weekly 

fruit harvests started 15 weeks after planting. Total fruit FW and the total number of harvested 

fruits, from one pre-selected double row were measured in each greenhouse to determine 

yields (kg m
-2

). Average fruit FW were calculated by dividing the total FW of the harvested 

fruits by the total number of harvested fruits. Fruit dry matter contents (DMC) were measured 

19, 24, 28, 34, 37, and 43 weeks after planting. Five trusses were at random selected from the 

harvested trusses in each greenhouse, and the FW and DW (oven-dried at 80°C for > 48 h) of 

the fruits were measured to determine DMC (%).  

 

Measurements of fruit growth and development  

Twenty-one weeks after planting, six Smartdust sensors (Wisensys, Emmen, The 

Netherlands) were attached to six randomly-selected trusses on which the second flower was 

just reaching anthesis, in one greenhouse of each treatment. Air temperature and relative 

humidity around the selected trusses were recorded automatically from 21 - 30 weeks after 

planting, when the trusses were harvested. The dates on which the second fruit on the selected 

truss reached colour stage ‘4’ were recorded as ‘breaker stage’, and the duration of growth 

between anthesis and the breaker stage was determined. Colour stage was defined using a 

standard tomato colour chart (The Greenery, Breda, The Netherlands). Temperature sum 

(expressed in day-degrees; d°C) was calculated using a base temperature of 4°C (as was 

previously used by e.g. De Koning 1994). This procedure was repeated twice, from 30 - 38 

weeks after planting, and from 33 - 42 weeks after planting.  
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Statistical analysis 

Data on fruit yield, DMC, truss number, production and partitioning of DM, LAI, and 

SLA were analysed using a linear mixed model (Potvin et al. 1990). The variance components 

were estimated using Restricted Maximum Likelihood (REML) in Genstat (14
th

 Edition; VSN 

International, Hemel Hempstead, UK). Each linear mixed model consisted of two parts: a 

fixed model and a random model. The fixed model consisted of the main factors: cooling 

position (above and below) and time (weeks after planting). The random model accounted for 

the fact that plant samples from the same greenhouse were linked. Individual data (not 

averaged) on truss numbers and fruit yields were fitted as a linear function of time.  

The slopes and intercepts of the fitted curves of the two treatments were analysed using 

a Student’s t-test (P ≤ 0.05). Individual data (not averaged) on DM production, DM 

partitioning, LAI, and SLA were fitted to non-linear curves as a function of time. The 

parameters of the curves of the two treatments were analysed using Student’s t-test (P ≤ 0.05).  

Pairwise comparisons of means were analysed using Student’s t-test (P ≤ 0.05), 

comparing the duration of fruit growth and the cumulative degree-days (temperature sum) of 

fruits reaching the breaker stage in both greenhouses.  

 

Results 

Greenhouse climate 

Diurnal and seasonal patterns of the climate in the treatments with cooling from above 

and below are described in Chapter 4.1. 

 

Truss initiation, leaf initiation and leaf growth 

Rates of truss initiation did not differ significantly between the two treatments, as is 

shown by the non-significant difference in the slopes of truss number as a function of time 

(Fig. 1A; P = 0.99). Given a fixed ratio of 1:3 between numbers of trusses and leaves once the 

first truss has appeared, the number of leaves per plant did not differ significantly either 

between the two treatments (Fig. 1B; P = 0.78). LAI increased in the beginning of the 

growing season up to almost 4 m
2
 m

-2
 19 weeks after planting (end of April 2009; Fig. 1C). 

Thereafter, the LAI decreased due to leaf picking and did not differ significantly between 

treatments (P = 0.68; Fig. 1C). The SLA showed a seasonal pattern with a higher value in 

early spring than in summer (Fig. 1D), but did not differ significantly between treatments (P = 

0.22).  

 

Dry matter production and partitioning  

Dry matter production did not differ significantly between the two treatments (P = 0.16; 

Fig. 1E). The fraction of dry matter partitioned to the fruits reached a maximum value of 72%, 

but did not differ significantly between the two treatments (Fig. 1F). 

 

Fruit growth and development 

The temperature sum required from anthesis to breaker stage did not differ significantly 

between the two treatments (Table 1). The duration of fruit growth from anthesis to breaker 

stage lasted on average 1.3 days longer in the treatment +VTG compared to the treatment -

VTG (Table 1).  

http://www.vsni.co.uk/downloads/genstat/reference
http://www.vsni.co.uk/downloads/genstat/reference
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Figure 1. Truss numbers (Panel A), leaf numbers (Panel B), leaf area index (LAI; Panel C), specific leaf 

area (SLA; Panel D), cumulative total dry matter (DM) produced (Panel E) and the percentage of DM 

partitioning to fruis (Panel F) throughout the growing season (December 2008 – November 2009) in 

treatments with (closed circles) or without (open circles) a vertical temperature gradient. Vertical bars 

indicate ± standard errors of the mean. 

Table 1. Temperature sum (expressed in degree-days; d°C) and duration of growth of fruits from fruit set 

to breaker stage in treatments with or without a vertical temperature gradient 

 Period Temperature sum (d°C)   Growth duration (d) 

 + VTG – VTG   + VTG – VTG 

Weeks 21-30 

Weeks 30-38 

Weeks 33-42 

923.7
*
 a 

894.7 a 

932.0 a 

931.8 a 

897.1 a 

931.3 a 

 

 

 

 55.9 b 

54.5 ab 

58.7 d 

54.5 ab 

53.1 a 

57.3 c 

Average 916.8 a 920.1 a   56.3 b 55.0 a 

+VTG, with a vertical temperature gradient; -VTG, no vertical temperature gradient 
*
Mean values (n=6) followed by different lower-case letters denote significant differences according to the 

Student’s t-test at P≤ 0.05. 

 

Fruit production 

The cumulative fruit production was not significantly different between treatments (P = 

0.10; Fig. 2A), being 64.5 and 62.5 kg m
-2

 in the treatments with or without a VTG, 

respectively. The average FW of harvested fruits from July to September was significantly 

higher (P = 0.02) in the treatments with (124 g fruit
-1

) or without a VTG (115 g fruit
-1

; Fig. 
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2B). Throughout the growing season (47 weeks between planting and last harvest), the 

average FW of the harvested fruits was 118 and 112 g fruit
-1

 for the treatments with or 

without a VTG, respectively (P = 0.06). Fruit DMC did not differ between treatments at any 

of the six periodic harvests (Fig. 2C) and was 5.29% and 5.35% averaged over the harvests 

for the treatments with or without a VTG (P = 0.56), respectively.  

 

 

Figure 2. Pattern of cumulative fresh fruit weight (FW; Panel A), average fruit FW of harvested fruits 

(Panel B) and dry matter content of the harvested fruits (DMC, Panel C) throughout the season (December 

2008 – November 2009) in treatments with (closed circles) or without (open circles) a vertical temperature 

gradient. Vertical bars indicate ± standard errors of the mean. 

Discussion 

Semi-closed greenhouses have been developed to reduce the energy consumption in 

horticulture, by collecting excess heat in summer, storing it in aquifers and reusing it in 

winter. The use of a cooling system with ducts below the gutters resulted in a VTG (Chapter 

4.1; De Gelder et al. 2012). Since temperature is a main factor influencing a large number of 

plant physiological processes, we expected to observe significant effects of a VTG on tomato 

plant growth and development and underlying processes such as truss initiation rate, 

production and partitioning of DM, fruit growth and development. Interestingly, we found 

hardly any effect of the VTG on plant growth and production, even though the gradient was 

often > 5 °C. Effects of the VTG on underlying plant processes are discussed below. 

 

 



  Effects of vertical temperature gradients on the crop 

 

59 

 

Truss initiation 

In general, rates of leaf and truss initiation increase with air temperature (Adams et al., 

2001). In our experiments, the greenhouse climate was controlled based on online air 

temperature measurements at the top of the canopy which were kept similar between 

treatments (Fig. 1). Therefore, processes occurring in the top of the canopy, i.e. leaf and truss 

initiation were unaffected. 

 

Dry matter production 

Total plant DM production depends on the amount of light intercepted by the canopy 

and its light use efficiency. Light interception is determined by LAI and the light extinction 

coefficient k, which was assumed constant. In our experiment, LAI was not significantly 

different between treatments. Therefore, light interception by the canopy could be assumed to 

be similar in both treatments. In addition, the light intensity, CO2 concentration and 

temperature at the top of the canopy did not differ between treatments in our experiment, most 

likely resulting in similar rates of leaf photosynthesis at the top of the canopy. At the middle 

and lower parts of the canopy, the leaves in treatment +VTG experienced lower temperatures. 

However, leaf photosynthesis is hardly sensitive to temperature at low light intensities 

(Chapter 5; Yamori et al. 2010). The rate of photosynthesis in the lower canopy was therefore 

hardly influenced by temperature due to the low light conditions. In conclusion, the effect of a 

VTG on net production of assimilates was negligible, and did not significantly affect the total 

DM production. 

 

Dry matter partitioning 

DM partitioning to the fruit depends on fruit sink strength and the total number of fruits. 

Sink strength of the fruit is defined as the competitive ability of the fruit to attract assimilates 

(Marcelis 1996), and the potential fruit growth rate is a measure of sink strength of the fruit. 

Temperature does not influence the potential fruit growth rate of tomato (De Koning 1994; 

Heuvelink and Marcelis 1989). In our experiment, the lower canopy experienced lower 

temperatures in the treatment with a VTG. However, all plant organs (leaf, stem and fruit) at 

the lower part of the plant experienced the same lower temperature, and therefore, dry matter 

partitioning among organs was not influenced. The total number of fruits resulted from the 

truss initiation rate, truss number and number of fruits per truss. No differences in truss 

initiation rates were found between treatments, resulting in identical numbers of trusses per 

plant. Fruit number per truss was manually controlled at 6 fruits in both treatments. In 

conclusion, the fact that there were no differences in total sink strength of the fruits and in 

total fruit number explained the absence of treatment effect on DM partitioning to the fruit.  

 

Fruit growth and development 

Temperature affects rates of fruit growth (Adams et al. 2001) and development (De 

Koning 2000). The temperature sensitivity of these rates depends on the stage of fruit 

development. During the first week after anthesis, higher temperatures increase the rate of 

fruit development, and therefore shorten the time to maturity (De Koning 1994; Fanwoua et 

al. 2012). This phase is followed by a period during which temperature hardly affects fruit 

growth and development (Adams et al. 2001; De Koning 1994). In the last 1 to 2 weeks 

before harvest, a lower temperature reduces the rate of fruit development and therefore 

increases the fruit growth duration and fruit FW (Adams et al. 2001; De Koning 1994). In our 

experiment, the number of degree-days for fruit development was identical, but the duration 

(number of days) of fruit growth from anthesis to breaker stage was longer in the treatment 
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with a VTG than without a VTG due to lower temperatures at the final stage of fruit 

development. This resulted in fruits with a significant higher FW during the summer months 

in which the VTG was largest (Figure 5B).  

 

Application 

In our experiment, in which tomatoes were grown in semi-closed greenhouses with 

cooling ducts below the gutter, the plants experienced a VTG of > 5°C during the day in 

summer, which is in agreement with results in other (semi-)closed greenhouses (Hoes et al. 

2008) and in other high-wire grown crops such as cucumber and sweet pepper (De Gelder et 

al. 2012). Gieling et al. (2011) pointed out that a VTG requires special attention, since the 

response of a crop to such a microclimate was unknown. Our results show that the rate of 

truss initiation, production and partitioning of DM, and yield were not different in the 

treatments with or without a VTG, when the temperatures at the top of the canopy were the 

same. Higher yields were found when crops were grown in (semi-)closed greenhouses 

compared to conventionally ventilated greenhouses (De Gelder et al. 2012; Hoes et al. 2008; 

Dannehl et al. 2013), mainly due to increased concentrations of CO2 leading to higher rates of 

photosynthesis (Chapter 2). Furthermore, fruit quality and health-promoting compounds were 

increased by higher CO2 concentrations in semi-closed greenhouses (Dannehl et al. 2012; 

Farneti et al. 2013), implying that semi-closed greenhouses can be beneficial to plant growth, 

yield and product quality. Our results show that a VTG resulting from a cooling system in the 

lower part of the greenhouse did not affect plant growth, development and production. These 

results are important when designing greenhouses and their heating and cooling systems when 

balancing light loss due to cooling systems in the top of the greenhouse with effects of 

vertical temperature gradients. 
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Abstract 

The aims of this paper were to modify the photosynthesis model of Farquhar, von Caemmerer 

and Berry (FvCB) to be able to predict light dependency of the carboxylation capacity (Vc) 

and to improve the prediction of temperature dependency of the maximum carboxylation 

capacity (Vcmax) and the maximum electron transport rate (Jmax). The FvCB model was 

modified by adding a sub-model for Ribulose-1,5-bisphosphate carboxylase (Rubisco) 

activation and validating the parameters for temperature dependency of Vcmax and Jmax. Values 

of parameters for temperature dependency of Vcmax and Jmax were validated and adjusted based 

on data of the photosynthesis response to temperature. Parameter estimation was based on 

measurements under a wide range of environmental conditions, providing parameters with 

broad validity. The simultaneous estimation method and the nonlinear mixed effects model 

were applied to ensure the accuracy of the parameter estimation. The FvCB parameters, Vcmax, 

Jmax, α (the efficiency of light energy conversion), θ (the curvature of light response of 

electron transport), and Rd (the non-photorespiratory CO2 release) were estimated and 

validated on a dataset from two other years. Observations and predictions matched well 

(R
2
=0.94). We conclude that incorporating a sub-model of Rubisco activation improved the 

FvCB model through predicting light dependency of carboxylation rate; and that estimating 

Vcmax, Jmax, α, θ, and Rd requires data sets of both CO2 and light response curves. 
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Introduction 

Many studies have established the relations between photosynthesis and light intensity 

(Ogren and Evans, 1993; Heschel et al., 2004), CO2 concentration (Cannell and Thornley, 

1998), and temperature (Cannell and Thornley, 1998; Yamori et al., 2010). Most studies deal 

with photosynthesis response to only a few environmental factors. Integrated studies, where 

effects of all these environmental factors and their interactions are quantified in a wide range, 

are scarce. 

The model of Farquhar, von Caemmerer and Berry (1980) (‘the FvCB model’ hereafter) 

is the most commonly used over the past three decades to study the response of C3 

photosynthesis to environment. The model predicts net photosynthesis rate (A) at any given 

environmental condition. The CO2 dependency of photosynthesis rate is determined as the 

minimum value of three distinct states, limited by Ribulose-1,5-bisphosphate carboxylase 

(Rubisco) for carboxylation, ribulose-1,5-bisphosphate (RuBP) regeneration, or triose 

phosphate utilization (TPU). The light dependency of photosynthesis rate is determined by the 

light response of electron transport rate (J). The relation between J and light intensity was 

first described as a rectangular hyperbola function (Farquhar and von Caemmerer, 1982) and 

later modified to a non-rectangular hyperbola function (Farquhar and Wong, 1984; Von 

Caemmerer, 2000). The temperature dependency of the FvCB parameters related to kinetic 

properties of Rubisco is described based on the Arrhenius function (Farquhar et al., 1980; 

Bernacchi et al., 2001; Medlyn et al., 2002a). The original functions to describe the 

temperature dependency of Vcmax and Jmax, were modified in many studies (Dreyer et al., 2001; 

Leuning, 2002; Medlyn et al., 2002b; Warren and Dreyer, 2006). The peaked function was 

considered the best, since it predicts the Vcmax and Jmax at the super-optimal temperature with 

the parameter deactivation energy (Hd) (Medlyn et al., 2002b). Parameter values for the 

activation energy (Ha), deactivation energy (Hd), and the entropy factor (S) were estimated for 

different species (Harley et al., 1992b; Bunce, 2000; Bernacchi et al., 2001; Dreyer et al., 

2001;).  

The FvCB model assumes that Rubisco is always fully activated (Farquhar et al., 1980; 

Von Caemmerer, 2000). The consequence of this assumption is that the carboxylation rate of 

Rubisco (Vc) is independent of light intensity. In other words, Vc is assumed to be equal to 

Vcmax. However, several studies (Taylor and Terry, 1984; Salvucci et al., 1986; Von 

Caemmerer and Edmondson, 1986; Brooks et al., 1988;) have shown that the fraction of 

Rubisco activation increases with light intensity. Using Vc as Vcmax derived under low light 

condition to determine photosynthesis rate under high light condition might cause under-

estimation of photosynthesis rate. It is therefore necessary to extend the FvCB model with a 

sub-model of light dependency of Vc, relating Vc to Rubisco activation.  

The FvCB model is often simplified to two limitations, since the TPU limitation occurs 

only occasionally in case of saturated photosynthesis rate or even decreased photosynthesis 

rate with increased CO2 concentration (Long and Bernacchi, 2003; Sharkey et al., 2007). The 

CO2 response curves are then fitted with two nonlinear functions either limited by Rubisco or 

RuBP regeneration, taking the minimum value of the two. The methods used to fit the curves 

to the data and estimate the parameters are not yet consistent in literature. One method is the 

disjunct segments estimation method, separately fitting the functions of Rubisco-limited 

photosynthesis and of RuBP-regeneration-limited photosynthesis (Manter and Kerrigan, 2004; 

Onoda et al., 2005; Sharkey et al., 2007). In this method, gas exchange data are divided into 

two subsets. Sub-setting is usually subjective, as it is not possible to unambiguously allocate 

data points to both processes. Arbitrary division of the two subsets  has a significant effect on 

the estimation of the parameters (Miao et al., 2009). The second method is the simultaneous 

estimation method (Dubois et al., 2007), which simultaneously estimates the parameters for 

both functions using the entire gas exchange data set. This method avoids the need for 
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preliminary division of the gas exchange data before analysis. However, the simultaneous 

estimation method is not commonly applied to gas exchange data for the study of effects of 

environmental factors on photosynthesis.  

Typically, data sets of light and CO2 responses curves possess two characteristics. The 

first characteristic is that the data set usually involves repeated measurements. Gas exchange 

measurements are obtained on one leaf over a series of light intensities or CO2 concentrations. 

Proper data analysis should take into account that observations obtained from the same 

experimental unit (one leaf) are correlated, as otherwise the estimated error variance and 

standard errors of parameter estimates may be wrong (Potvin et al., 1990; Peek et al., 2002). 

The second characteristic is the increase in variation of the photosynthesis rate with increasing 

light intensity or CO2 concentration (Peek et al., 2002; Lin et al., 2008). If the non-constant 

variance is ignored, the standard deviation will be overestimated at low light intensity or CO2 

concentration, and underestimated at high light intensity or CO2 concentration. To 

accommodate for these two characteristics, Peek et al. (2002) proposed the use of nonlinear 

mixed effects models in photosynthesis response curves. However, only a few studies applied 

the nonlinear mixed-effects model to their data analysis to investigate treatment differences 

(Peek et al., 2002; Heschel et al., 2004; McElrone and Forseth, 2004; Ozturk et al., 2011). 

The aims of this paper were to modify the FvCB model to be able to predict light 

dependency of Vc and to improve the prediction of temperature dependency of Vcmax and Jmax. 

Parameter estimation was based on measurements under a wide range of environmental 

conditions, providing parameters with broad validity. CO2 response curves were analysed by 

the simultaneous estimation method rather than the traditional disjunctive segments 

estimation method. A nonlinear mixed effects model was used to account for the fact that 

photosynthesis response measurements involved repeated measurements on the same leaf. 

The simultaneous estimation method and the nonlinear mixed effects model ensured the 

accuracy of the parameter estimation. 

 
Materials and methods 

 

Plant cultivation 

Tomato (Solanum lycopersicum, cultivar ‘Cappricia’) plants, grafted on the rootstock 

Emperador, were planted on Rockwool
®

 on 23 December 2008 in an air conditioned 

greenhouse. The greenhouse had a size of 144 m
2
 with a gutter height of 5.5 m, and was 

located at Bleiswijk, the Netherlands. Initial stem density was 2.5 stem m
-2

. Stem density was 

increased to 3.3 stems m
-2

 eight weeks after planting. A standard horticultural computer 

(Hoogendoorn-Economic) controlled the environment inside the greenhouse. Photosynthesis 

measurements were conducted during July and August 2009. Daily average outside radiation 

in July and August 2009 was 18.17 MJ m
-2

 d
-1

. Realized day/night temperatures, CO2 

concentration and relative humidity averaged over July and August 2009 in the greenhouse 

were 22.3/17.6 °C, 759/486 µmol mol
-1

, and 80/86 %, respectively. Water and nutrients were 

adequately supplied. 

 

Photosynthesis measurements 

Leaf photosynthesis rate was measured with a portable photosynthesis device (LCpro+, 

ADC, UK) at two leaf positions in the canopy, namely the uppermost fully unfolded leaf (top 

leaf) and the leaf near the middle of the canopy (middle leaf). Light intensity, CO2 

concentration, temperature, and humidity were controlled in the leaf chamber of the device. 

Measurements were carried out between 9:00 and 15:00 to avoid photosynthesis afternoon 

depression. 
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CO2 response of photosynthesis was measured at CO2 concentration levels between 50 

and 1600 µmol mol
-1

. The starting CO2 concentration was 600 µmol mol
-1

, followed by 400, 

200, 50, 600, 800, 1200, 1600 µmol mol
-1

. CO2 concentration of the air in the leaf chamber 

(Ca) was measured, and intercellular CO2 concentration (Ci) was the output from the device 

calculated based on the function described by Von Caemmerer and Farquhar (1981). Air 

temperature and vapour pressure deficit (VPD) in the leaf chamber were maintained at 27 °C 

and values below 1 kPa, respectively. CO2 response curves were determined at 1395 and 465 

μmol m
-2

 s
-1

 incident photosynthetic active radiation (PAR). 1395 μmol m
-2

 s
-1

 PAR was 

considered as high light intensity at which Rubisco was fully activated, and 465 μmol m
-2

 s
-1

  

PAR was considered as low light intensity at which Rubisco was not fully activated. For each 

light intensity and canopy depth, six leaves were randomly selected from the greenhouse for 

six CO2 response curves. The order of light intensity and canopy depth observations was 

randomized.  

Light response of photosynthesis was measured at PAR levels between 0 and 1860 μmol 

m
-2

 s
-1

. The starting level of PAR was 465 μmol m
-2

 s
-1

, followed by 233, 93, 0, 465, 930, 

1395, 1860 μmol m
-2

 s
-1

 PAR. Light response measurement did not start at the highest light 

intensity to avoid photo-inhibition (Leverenz et al., 1990). Air temperature and VPD in the 

leaf chamber were maintained at 27 °C and below 1 kPa, respectively. Light response curves 

were measured at four CO2 concentrations, which were set to 400, 800, 1200 and 1600 µmol 

mol
-1

 in the leaf chamber. For each CO2 concentration and each canopy depth, six leaves were 

randomly selected from the greenhouse for six light response curves. The order of CO2 

concentration and canopy depth observations was randomized.  

Temperature response of photosynthesis was measured at air temperatures of 24, 26, 28, 

30, 32, 34, 36, and 38 °C. Temperature response curves were measured at two CO2 

concentrations (1200 and 400 µmol mol
-1

) and two light intensities (1395 and 465 µmol m
-2

 s
-

1
 PAR). For each temperature, light intensity, CO2 concentration, and canopy depth, six leaves 

were randomly selected from the greenhouse. The order of temperature, light intensity, CO2 

concentration and canopy depth observations was randomized. VPD in the leaf chamber was 

maintained below 1 kPa. However, when air temperature in the chamber was increased above 

30 °C, VPD could not be maintained below 1 kPa. Measurements on the VPD response of 

photosynthesis showed that the photosynthesis rate was not affected by VPD between 1 and 3 

kPa (data not shown).  

 

The modified FvCB model  

In our CO2 response measurements, we did not detect saturated or decreased 

photosynthesis rate with increased CO2 concentration. The model, therefore, was simplified to 

two limitations  

},min{ jc AAA          (1)  

Where A (µmol m
-2

 s
-1

) is net photosynthesis rate, Ac (µmol m
-2

 s
-1

) is Rubisco carboxylation 

limited photosynthesis rate, and Aj (µmol m
-2

 s
-1

) RuBP regeneration limited photosynthesis 

rate.  

d

oci

ic
c R

KOKC

CV
A 






)/1(

)( *

      (2) 

Where Vc (µmol m
-2

 s
-1

) is the carboxylation capacity at certain light intensity, Γ
*
 (µmol mol

-

1
)is the CO2 compensation point, Kc (µmol mol

-1
) is the Michaelis-Menten constant of 

Rubisco for CO2, Ko (mmol mol
-1

) is the Michaelis-Menten constant of Rubisco for O2, O 

(210 mmol mol
-1

) is the oxygen concentration,  Rd (µmol m
-2

 s
-1

) is non-photorespiratory CO2 

release, which comprised mitochondrial respiration.  
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Where J (µmol m
-2

 s
-1

) is the electron transport rate at certain light intensity. The light 

dependency of J is determined by a non-rectangular hyperbola (Farquhar and Wong, 1984) 


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2
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2
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J




     (4)   

Where Jmax (µmol m
-2

 s
-1

) is the maximum electron transport rate, α (mol e
-
 mol

-1
 photon) is 

the efficiency of light energy conversion on an incident light basis, θ (dimensionless) is the 

curvature of the light response of J.    

Vc is equal to Vcmax (µmol m
-2

 s
-1

), the maximum carboxylation capacity, if Rubisco is 

fully activated. Literature data in combination with our own data (see 2.4) showed Rubisco 

activation increased with light intensity. This relationship was well described by an empirical 

logistic function (Fig. 1). Assuming Vc to be proportional to Rubisco activation, Vc was 

described by 

100/)))659/exp(1(4.755.24(max PARVV cc       (5) 

Rd, Kc, Ko and Γ
*
 (ParameterTleaf)

 
at leaf temperature Tleaf (°C) were determined by an 

Arrhenius function  

)))15.273(/exp(  leafaTleaf TRHcParameter       (6)      

Where c (dimensionless) is a scaling constant, Ha (J mol
-1

)is the activation energy, and R 

(8.314 J K
-1

 mol
-1

) is the molar gas constant. The values of c and Ha for calculating Rd, Kc, Ko 

and Γ
* 

at Tleaf were from Bernacchi et al. (2001), and listed in Table 1. 

Vcmax and Jmax (ParameterTleaf) at Tleaf were determined by a peaked function, which is a 

modified Arrhenius function (Medlyn et al., 2002a) 

)
)15.237/(
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exp(1

)
)5.273()15.23728(

)28(
exp(28

R

THS
R

HS

TR

TH
ParameterParameter

leafd

d

leaf

leafa

Tleaf 



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            (7)

     

Where Parameter28 (µmol m
-2

 s
-1

) is the value of the parameter Vcmax or Jmax at leaf 

temperature of 28°C. Hd (J mol
-1

) is the deactivation energy. S (J K
-1

 mol
-1

) is the entropy 

factor. The values of Ha, Hd, and S for calculating Vcmax and Jmax
 
at given temperatures were 

from Harley et al. (1992b), and listed in Table 1. 

Equations 1-4 are the basic equations of the FvCB model, predicting photosynthesis 

response to CO2 and light. Adding our empirical eqn. 5, the model is able to predict the light 

dependency of Vc. Coupled with eqns. 6 and 7, the model can also predict photosynthesis 

response to temperature.  
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Table 1. Parameter values and literature sources used for calculating Kc, Ko, Γ
*
, Rd, of eqn. 6, and Vcmax, 

and Jmax of eqn. 7 at given temperatures.  

Parameter Ha  Hd  S  c Reference 

  (J mol
-1

) (J mol
-1

) (J K
-1

 mol
-1

) 

Kc  79430      38.05 Bernacchi et al. (2001) 

Ko  36380      20.30 Bernacchi et al. (2001) 

Γ
*
  38830      19.02 Bernacchi et al. (2001) 

Rd  46390      18.72  Bernacchi et al. (2001) 

Vcmax  91185
1
  202900 650   Harley et al. (1992b) 

Jmax  79500  201000 650   Harley et al. (1992b) 

 
1
 The value of Ha for Vcmax was estimated based on temperature response curves of our own data 

 

 
Figure 1. Dependency of Rubisco activation on light intensity. A logistic function, Rubisco activation = 

24.5+75.4(1-exp(-PAR/659)) (R
2
=0.79), was fitted to literature and own data (the two data points ■ were 

estimated from our own CO2 response curves at two light intensities, assuming Rubisco activation was 

propotional to Vc). 

 

Parameter estimation and validation 

The nonlinear mixed effects model was in the form 

ijiijij euxfy  ),,(            (8) 

Where function  f  is the nonlinear function (eqns. 2, 3, or 4) describing the CO2 or light 

dependency of leaf photosynthesis, xij is the covariate vector for the j
th

 observation on the i
th

 

experimental unit, consisting of CO2 concentration, light intensity, and canopy depth; β is the 

vector of  unknown fixed effect parameters, containing Vcmax, Rd, , and , with possibly 

different values for the two canopy depths; ui is the vector of random effect terms for i
th

 

experimental unit, consisting of random deviations vi and wi of the population parameter 

values Vcmax and Jmax. eij is a vector of unknown random errors. The random deviations vi and 

wi were allowed to be correlated, with possibly different variance-covariance matrices for the 

two canopy depths. The resulting model is an example of a nonlinear random coefficients 

model.   

CO2 response data were used to estimate the Vc at two light intensities by using eqns. 1, 

2, 3, 6 in the nlme (nonlinear mixed effects model) package of the R-software (version 2.9.2). 

The simultaneous estimation method described by Dubois et al. (2007) was applied. The 

estimated value of Vc at 465 µmol m
-2

 s
-1

 PAR was 61% of the value at 1395 µmol m
-2

 s
-1

 PAR. 

In this way, the two data points representing our own data in Fig. 1 were derived, assuming 
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Rubisco was fully activated at 1395 µmol m
-2

 s
-1

 PAR. The other light dependent activation 

data of Rubisco in Fig. 1 were obtained from literature. The relation between Vc and Rubisco 

activation was assumed to be proportional. A logistic function was chosen to describe the 

light dependency of Rubisco activation. The parameters of the logistic function were 

estimated based on the data points in Fig. 1, resulting in the empirical prediction function eqn. 

5.  

Light and CO2 response data were used together to estimate the FvCB parameters Vcmax, 

Jmax, α, θ, and Rd at leaf temperature of 28 °C by using eqns. 1-6  in the nlme package of the 

R-software. The simultaneous estimation method described by Dubois et al. (2007) was 

applied.  

For validation, the derived parameters by using the nonlinear mixed effect model were 

tested against measurements of photosynthesis rate at 28 °C of tomato (Solanum lycopersicum 

‘Cappricia’) in two other years (2008 and 2010). The photosynthesis rates of these two years 

were measured in a greenhouse at varying light intensities (0-1395 µmol m
-2

 s
-1

 PAR) and 

CO2 concentrations (50-1600 µmol mol
-1

 air CO2 concentration). Eqns. 1- 6 were used to 

calculate A from the derived parameters, Vcmax, Jmax, α, θ, and Rd, based on the Ci, PAR and 

Tleaf  measured with each data point.   

To compare the FvCB models that included and excluded the sub-model of Rubisco 

activation, parameter estimation was carried out by using eqns. 1, 2, 3, 4, 6 (excluding eq. 5, 

the sub-model of Rubisco activation). The derived parameters Vcmax, Jmax, α, θ, and Rd, were 

used to calculate the A for light response curves at four air CO2 concentrations (400, 800, 

1200, and 1600 µmol mol
-1

) and 28 °C leaf temperature; for CO2 response curves at two light 

intensities (1395 and 465 µmol m
-2

 s
-1

 PAR) and 28 °C leaf temperature; and for temperature 

response curves at two CO2 concentrations (1200 and 400 µmol mol
-1

) and two light 

intensities (1395 and 465 µmol m
-2

 s
-1

 PAR), using Eqns. 1, 2, 3, 4, 6, based on the Ci, PAR 

and Tleaf  measured with each data point.  

 

Incorporation of temperature dependency of Vcmax and Jmax in the FvCB model 

Estimation of three parameters, Ha, Hd, and S, resulted in an over-parameterization 

problem, as often has occurred in other studies (Harley et al., 1992a; Medlyn et al., 2002b). 

Estimation of only Ha for Vcmax  on the basis of temperature response data was possible, by 

using eqns. 1, 2, 3, 4, 5, 6, and 7. Hd and S for Vcmax were fixed as constant, using the value 

from Harley et al. (1992) (Table 1.). Calculated temperature response curves were compared 

with measured temperature response curves.  

 

Results 

As CO2 concentration increased, the effect of light intensity on photosynthesis rate 

increased (Fig. 2), indicating a shift of photosynthesis from the Rubisco-limited process to the 

RuBP regeneration limited process. Light intensity had a significant effect on Vc (P-value < 

0.001). Vc was 122 µmol m
-2

 s
-1

 at 1395 µmol m
-2

 s
-1

 PAR and 71 µmol m
-2

 s
-1

 at 465 µmol m
-

2
 s

-1
 PAR for the top leaf; and 102 µmol m

-2
 s

-1
 at 1395 µmol m

-2
 s

-1
 PAR and 65 µmol m

-2
 s

-1
 

at 465 µmol m
-2

 s
-1

 PAR for the middle leaf. On average, the value of Vc at 465 µmol m
-2

 s
-1

 

PAR was about 61% of the value of Vc at 1395 µmol m
-2

 s
-1

 PAR.  
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Figure 2. CO2 response of photosynthesis of the top leaf (A) and middle leaf (B) at 1395 and 465 µmol m

-2
 

s
-1

 PAR. Vertical bars indicate standard error of mean (n=6).  Symbols represent measured data. Lines 

indicated the fitted curves of Rubisco limited photosynthesis (solid line) and RuBP regeneration limited 

photosynthesis (dashed line). 

 

CO2 concentration affected the light response of photosynthesis of both top leaf and 

middle leaf (Figs. 3A and 3B). For the top leaf, increasing the CO2 concentration from 400 to 

800, and from 800 to 1200 µmol mol
-1

, increased the maximum photosynthesis rate by 87% 

and 33%, respectively (Fig. 3A). For the middle leaf, increasing the CO2 concentration from 

400 to 800, and from 800 to 1200 µmol mol
-1

, increased the maximum photosynthesis rate by 

65% and 35%, respectively (Fig. 3B). Further increase of CO2 concentration from 1200 to 

1600 µmol mol
-1

 only increased the maximum photosynthesis rate by 6% for the top leaf (Fig. 

3A) and 4% for the middle leaf (Fig. 3B). In addition, the light response curves showed no 

saturation at the highest light intensity 1860 µmol m
-2

 s
-1

 when CO2 concentration was equal 

to or higher than 800 µmol mol
-1

. 
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Figure 3. Observed (symbols) and predicted (lines) light response of photosynthesis of the top leaf (A) and 

middle leaf (B) at 1600 µmol mol
-1

, 1200 µmol mol
-1

, 800 µmol mol
-1

, and 400 µmol mol
-1

 CO2 

concentrations. Vertical bars indicate standard error of mean (n=6).  

 

 The temperature response of leaf photosynthesis showed an optimum at about 32-36 °C 

at 1395 μmol m
-2

 s
-1

 PAR and 1200 µmol mol
-1

 CO2 (Fig. 4A and 4B). However, at low light 

or low CO2 concentration, the peak is less evident.  

 
Figure 4. Observed (symbols) and predicted (lines) temperature response of photosynthesis of the top leaf 

(A) and middle leaf (B) at four combinations of light intensity and CO2 concentration:  1395 µmol m
-2

 s
-1

 

PAR and 1200 µmol mol
-1

  CO2, 1395 µmol m
-2

 s
-1

 PAR and 400 µmol mol
-1

  CO2, 465 µmol m
-2

 s
-1

 PAR 

and 1200 µmol mol
-1

  CO2, 465 µmol m
-2

 s
-1

 PAR and 400 µmol mol
-1

  CO2. Vertical bars indicate standard 

error of mean (n=6). 
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The FvCB parameters were estimated by using a nonlinear mixed effect model (Table 

2). In the analysis, parameters Vcmax, Jmax, α,  θ, and Rd were allowed to be different between 

leaf positions. Leaf position had a significant effect on Vcmax (P-value < 0.001) and Jmax (P-

value < 0.001), but not on α (P-value = 0.39),  θ (P-value = 0.98), and Rd (P-value =0.16). 

Therefore, the effects of leaf position on α,  θ, and Rd were removed from the model. The final 

model included separate values of parameters Vcmax and Jmax for top and middle leaf, and 

random deviations of  Vcmax and Jmax per leaf from the population values. The FvCB 

parameters were also estimated by using the ordinary nonlinear model (Table 2). The analysis 

using an ordinary nonlinear model also showed that leaf position had a significant effect on 

Vcmax (P-value < 0.001) and Jmax (P-value < 0.001), while no effect on α (P-value = 0.82), θ 

(P-value = 0.33), and Rd (P-value =0.76) was found.  

 
Table 2. Parameter values (standard error in parenthesis) of the FvCB photosynthesis model for two leaf 

positions in the canopy estimated on the basis of light and CO2 response curves, using nonlinear mixed 

effect model and ordinary nonlinear model.  

Parameter Leaf position  Value estimated by   Value estimated by 

     Nonlinear mixed effect model      Ordinary model 

Vcmax   Top   117  (4.3)    125 (2.2) 

Middle   97 (3.1)    99 (2.0)           

Jmax  Top   315 (12.3)    331 (10.1) 

  Middle   235 (10.7)    238 (14.3)  

α  Top and middle 0.43 (0.020)    0.39 (0.030)  

θ  Top and middle 0.19 (0.132)    0.22 (0.231)  

Rd  Top and middle 0.70 (0.187)    0.63 (0.324) 

 

Temperature response of photosynthesis was estimated with the FvCB parameter values 

obtained. The predicted and observed values were satisfactorily close at high CO2 levels. A 

mismatch was detected at low CO2 levels (data not shown) when we applied the value of Ha, 

116300 J mol
-1

, for Vcmax from Harley’s work (Harley et al., 1992b). This mismatch was 

caused by an inaccurate temperature dependency of Vcmax in the model. Therefore, we 

estimated the Ha, 91185 J mol
-1

, for Vcmax from our own temperature response data (Table 1), 

resulting in improved prediction (Fig. 4).  

The validation of the model on data from two other years (Fig. 5.) showed that the 

predictions using the values derived by nonlinear mixed effect model were very close  to the 

observed values (R
2
=0.95, estimated relationship y = 1.05x). The importance of the Rubisco 

activation sub-model was tested by comparing the predicted light response curves, CO2 

response curves and temperature response curves, using the parameters derived from the 

FvCB model including and excluding the sub-model of light dependency of Vc. When this 

sub-model was excluded, A was over-estimated near the transition point (intersection of Ac 

and Aj). Consequently, the light response curves at air CO2 concentration of 400 µmol mol
-1

 

showed over-estimation of A at PAR levels of about 200-500 µmol m
-2

 s
-1 

(Fig. 6A). The CO2 

response curve at 465 µmol m
-2

 s
-1

 PAR showed over-estimation of A at Ci concentrations of 

about 300-500 µmol mol
-1 

(Fig. 6B). As a result, the temperature response of A was over-

estimated at 400 µmol mol
-1

 air CO2 concentration and 465 µmol m
-2

 s
-1

 PAR (Fig. 6C). Apart 

from these data points close to the transition point, the predictions by both models including 

and excluding the Rubisco activation sub-model were similar and matched the observed 

values well for the rest of the response curves (data not shown). Similar results were observed 

for top and middle leaves (data not shown).  
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Figure 5. Observed and predicted photosynthesis rate using the estimated FvCB parameters (Table 2). 

Horizontal bars indicate standard error of mean (n=6). 

 

Discussion 

Validity domain 

In this study, the FvCB parameters, Vcmax, Jmax, α,  θ, and Rd, were estimated based on 

photosynthesis data measured at a wide range of light intensities and CO2 concentrations. It 

broadened the validity domain of the estimated parameters for light response ranging from 0 

to almost 2000 µmol m
-2

 s
-1

 and for CO2 response ranging from 50 to 1600 µmol mol
-1

. With 

regards to the temperature response of photosynthesis, joint estimation of Ha, Hd, and S  

suffered from over-parameterization in many studies (Harley et al., 1992a; Medlyn et al., 

2002b). We used Harley’s (1992b) values of Ha, Hd, and S to determine the temperature 

response of Vcmax and Jmax. Harley’s (1992b) values were validated against our temperature 

response curves measured at temperature ranging from 24 to 38 °C under two light intensities 

and two CO2 concentrations). The mismatch between some measured data points and the 

estimation might due to the fact that Harley’s parameter values were derived based on 

measurements on cotton, and our data were measured on tomato. Parameter values of Ha, Hd, 

and S for Vcmax for tomato are available in literature (Bunce 2000), but not for Jmax. We 

therefore decided to use the values of Ha, Hd, and S for both Vcmax and Jmax from Harley’s 

(1992b) work, which are the most used values in other studies. 

There is increasing evidence that mesophyll conductance (gm) might be limiting CO2 

diffusion from the intercellular airspace to the site of carboxylation in the chloroplast, 

resulting in significant lower CO2 concentration at the site of carboxylation (Cc) compared to 

Ci (Flexas et al., 2008). The three most commonly used approaches to estimate gm are based 

on gas exchange data only (Sharkey et al., 2007), combination of gas exchange data with 

fluorescence data (Yin and Struik, 2009), or with data on photosynthesis response to O2 

(Bunce, 2009). However, estimating gm from our gas exchange data only was risky (Pons et 

al., 2009), therefore we used Ci in our study as most studies do. Assuming infinite gm in our 

analysis meant that an appropriate consideration was needed in choosing values of Rubisco 

kinetic constants (Kc, Ko, Γ
*
) (Bernacchi et al., 2002). We choose the parameter values for 

temperature dependency of Kc, Ko, Γ
*
, from Bernacchi et al (2001) and for Vcmax from Harley 

et al (1992), as they also assumed a Ci -based FvCB model. 

 

Rubisco activation 

In the original FvCB model, Vcmax was used instead of Vc in eqn. 2, assuming that 

Rubisco is always fully activated. Taylor and Terry (1984) found that the percentage of 

activated Rubisco increased from 25% to 90%, with increasing light intensity from 100 μmol 

m
-2

 s
-1

 to 1500 μmol m
-2

 s
-1

. Von Caemmerer & Edmondson (1986) also found that the 

activated Rubisco increased with increasing light intensity, and that only 50% Rubisco was 
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activated at a light intensity of 400 μmol m
-2

 s
-1

. Ogren and Evans (1993) indicated that full 

activation often required 1000 μmol m
-2

 s
-1

. However, reported light intensities used in CO2 

response measurements varied from 400 µmol m
-2

 s
-1 

to over 2000 µmol m
-2

 s
-1

, without 

testing whether these light intensities were high enough to fully activate Rubisco 

(Wullschleger, 1993). We modified the FvCB model by including an empirical sub-model of 

light dependency of Vc (eqn. 5). In this way, the estimated Vcmax is similar to Vc when Rubisco 

is fully activated by light. We conclude that  the sub-model of light dependency of Vc was of 

importance, especially at conditions around the transition point, on the basis of a comparison 

of predicted photosynthesis rate when using the FvCB model including and excluding the sub-

model of light dependency of Vc (Fig. 6).  

 
Figure 6. Observed (symbols) and predicted (lines) light response curves at 400 µmol mol

-1
 air CO2 

concentration and 28 °C leaf temperature (A); CO2 response curves at 465 µmol m
-2

 s
-1

 PAR and 28 °C leaf 

temperature (B); and temperature response curves at 400 µmol mol
-1

 air CO2 concentration and 465 µmol 

m
-2

 s
-1

 PAR (C) of the top leaf. The predictions used the estimated parameters of the FvCB models 

including (solid lines) and excluding (dash lines) the sub-model of Rubisco activation. Vertical bars 

indicate standard error of mean (n=6). 

 

Rubisco activation was found to decrease with increased CO2 concentration at low light 

intensity (Sage et al., 1990; Crafts-Brandner and Salvucci, 2004) and high temperature 

(Crafts-Brandner and Salvucci, 2004; Cen and Sage, 2005), indicating that Rubisco activation 

is not only a function of light intensity. However, there is no complete information on how 

light intensity, CO2 concentration, and temperature interact to modulate Rubisco activation. 

This requires more research. 

 

Combination of light and CO2 response curves for parameter estimation 

The FvCB parameters are commonly estimated only from CO2 response curves (ACi 

curves), while only incidentally combined data from CO2 and light response curves are used 

(Braune et al., 2009).  Jmax cannot be directly estimated if only CO2 response curves are used 

(Dubois et al., 2007). In some studies, the CO2 response curves were measured at very high 

light intensities, and was the estimated J assumed to be equal to Jmax. Other studies estimated 

the FvCB parameters from the data of light response curves only (Müller et al., 2005) or even 

point measurements only (Kosugi et al., 2003), by assuming a constant ratio for Jmax/Vcmax. 

However, the Jmax/Vcmax ratio varies with temperature (Bernacchi et al., 2001) and species 

(Poorter and Evans, 1998; Leuning, 2002; Medlyn et al., 2002a). A third way for indirect 

estimation of Jmax is to assume a constant value for the parameters, α and θ in the non-

rectangular hyperbola function. For instance, the value of α was assumed 0.24 mol e
-
 mol

-1
 

photon (Harley et al., 1992b), 0.18 mol e
-
 mol

-1
 photon (Wullschleger, 1993), and 0.3 mol e

-
 

mol
-1

 photon (Medlyn et al., 2002b), and the value of θ was assumed 0.9 (Medlyn et al., 

2002b), 0.5 and 0.95 (Cannell and Thornley, 1998). Our estimated values of α and θ were 0.4 
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mol e
-
 mol

-1
 photon and 0.2, respectively (Table 2), which is higher, respectively lower than 

literature values. However, if we assign values of α to 0.3 mol e
-
 mol

-1
 photon and θ to 0.7, 

the estimated Jmax is 272 µmol m
-2

 s
-1

 and 209 µmol m
-2

 s
-1

 for top and middle leaves, 

respectively. These two values differ substantially from our results (Table 2), which shows 

that the values of α and θ do influence the estimated value of Jmax. This stands in contrast with 

Medlyn et al. (2002b), who indicated only a slight effect. We conclude that estimation of the 

FvCB parameters, without the assumptions α, θ, and Jmax/Vcmax, required both data sets of CO2 

and light response curves. 

 

Nonlinear mixed effects model 

Peek et al. (2002) showed an example of misinterpretation by comparing the 

conclusions drawn by ordinary fixed effects  and mixed effects model analysis. From the 

ordinary model it was concluded that light and species had significant effects on all the 

parameters of a light response function. However, from the mixed effects model it was 

concluded that light and species only had significant effect on the parameter for the maximum 

photosynthesis rate at saturated light intensity. This difference was due to the violated model 

assumption of homogeneity of variances in the ordinary model. We also compared the 

parameter estimates from the ordinary nonlinear model and the nonlinear mixed effects model. 

The analyses using the two models yielded identical conclusions. It was found in both cases 

that leaf position had significant effects on Vcmax and Jmax, but not on α, θ, and Rd. The 

parameter estimates from both models were quite comparable, but some differences in 

standard errors were observed (Table 2). Consequently, we advocate using nonlinear mixed 

effects models for estimating the FvCB parameters, because these models incorporate 

properties of repeated measurements experimental design of photosynthesis studies, which are 

neglected by fixed effects models. The analysis using a nonlinear mixed effect model for data 

of repeated measurements yields more realistic standard errors, since it takes into account the 

correlation among the data points from the same leaf and the non-constant variance. 

 

Conclusions 

The FvCB parameters, Vcmax, Jmax, α, θ, and Rd, were estimated based on CO2 and light 

response curves, using nonlinear mixed effects model. Ha for calculation of Vcmax was 

estimated from temperature response curves. The main conclusions were that (1) 

incorporating a sub-model of Rubisco activation improved the prediction of the FvCB model 

for light dependency of carboxylation rate; (2) Estimating Vcmax, Jmax, α, θ, and Rd requires 

both data sets of CO2 and light response curves. 
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Closed and semi-closed greenhouses were developed to reduce energy 

consumption and increase production,. In these greenhouses, ventilation windows are 

kept fully or largely closed, respectively. Climate conditions in these greenhouses can 

differ from open greenhouses. In summer, high CO2 concentration is combined with 

high light intensity (Chapter 2) and vertical temperature gradients occur due to 

cooling below the gutters (Chapter 4). As described in Chapter 1, knowledge on crop 

growth and development and the underlying physiological processes in (semi)-closed 

greenhouses is the key to fully explore the advantages of these greenhouse systems. 

This PhD research focuses on crop physiology in closed and semi-closed greenhouses, 

aiming to study the effects of the new climate conditions on crop growth, 

development and underlying processes. For this investigation, experiments were 

performed in closed, semi-closed and open greenhouses. Greenhouse climate (Chapter 

2 and 4.1), yield (Chapter 2), crop growth and development (Chapter 3 and 4.2), and 

photosynthesis (Chapter 3 and 5) were analyzed.  

In this Chapter, the results of these experiments are integrated and discussed. 

The yield increase in a closed greenhouse, compared to that in an open greenhouse is 

discussed based on physiological and developmental processes. In addition, 

sustainability of the system is discussed in terms of energy, compared to an open 

greenhouse. This chapter ends with the discussion on the applicability of the closed 

greenhouse concept and other innovations for greenhouse energy conservation. 

 

6.1 Yield analysis 

The effect of the closed greenhouse system on yield is discussed by using a 

component hierarchical scheme (Fig. 6.1, modified from Higashide and Heuvelink 

(2009)). Yield increase (fresh fruit production, kg m
-2

) can be caused by an increase 

of total fruit dry matter (TDMfruit, kg m
-2

) and/or a decrease of fruit dry matter content 

(ratio between dry and fresh mass, %). Increase in TDMfruit can result from an 

increase of total plant dry matter (TDMplant, kg m
-2

) and/or an increase of the fraction 

(%) of dry matter partitioned into the fruit. TDMplant is determined by the light use 

efficiency of the plant (LUE, kg J
-1

), i.e. TDMplant per unit of PAR light that is 

intercepted by the canopy (J m
-2

). Dry matter partitioning to the fruit is determined by 

sink strengths of the fruits relative to those of the vegetative plant organs. Sink 

strength of a fruit is defined as the competitive ability of a fruit to attract assimilates, 

and the potential fruit growth rate is a measure of fruit sink strength (Marcelis 1996). 

Total fruit sink strength of a plant depends on sink strength of the individual fruits and 

the number of fruits. An increase of LUE can be the result of an increase of net leaf 

photosynthesis rate (µmol m
-2

 s
-1

), while a lower light extinction coefficient (k) may 

lead to better distribution of light over the leaves and therefore also lead to higher rate 

of crop photosynthesis (Higashide and Heuvelink 2009). A higher light interception is 

the result of a higher light extinction coefficient and/or a higher leaf area index (LAI, 

m
2
 m

-2
). An increase of number of fruits per plant can be caused by a higher number 

of trusses per plant, more fruits per truss and/or longer fruit growth duration.  
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Figure. 6.1 Scheme of the components that determine the final yield of a tomato crop. The 

scheme is a modification of Fig. 2 from Higashide and Heuvelink (2009). Yield: fresh fruit 

production, TDMfruit: Total fruit dry matter, TDMplant: Total plant dry matter, DM% to fruit: 

fraction (%) of dry matter partitioned into the fruits, LUE: Light use efficiency (dry matter 

production per unit intercepted light), LAI: Leaf Area Index, k: extinction coefficient. Factors that 

substantially contributed to the yield increase in the closed greenhouse compared to open 

greenhouse are highlighted in bold. 

 

Yield increase 

Compared to the open greenhouse, yield increases at 29 weeks after planting in 

the trial of Chapter 2 were 14% in the closed greenhouse, 10% in the semi-closed 

greenhouse with 350 W m
-2

 cooling capacity, and 6% in the semi-closed greenhouse 

with 150 W m
-2

 cooling capacity (Table 2 of Chapter 2). In the trial of Chapter 4, final 

yield increase in the semi-closed greenhouse with 350 W m
-2

 cooling capacity was 12% 

compared to the open greenhouse (data not shown). Production increase was also 

found in other studies on closed and semi-closed greenhouses. Cultivation in closed 

greenhouses in Belgium (Hoes et al. 2008), France (Grisey et al. 2011), and in a semi-

closed greenhouse in Germany (Dannehl et al. 2014) showed increases in tomato 

yield of 7-11%, 34%, and 21%, respectively, compared to cultivation in open 

greenhouses. Differences in production increase might be due to differences in season, 

growing area, climate strategy, and cultivars. Summer production of cucumber in a 

semi-closed greenhouse was 15-23% higher than in an open greenhouse in Finland 

(Kaukoranta et al. 2014). Bean production in a closed greenhouse was 1.9 kg m
-2

 

compared to 1.4 kg m
-2

 in an open greenhouse in Spain, which reflects 36% yield 

increase (Zaragoza et al. 2008). De Gelder et al. (2012a) concluded in their review 

paper that in closed greenhouses an average yield increase of 10-20% compared to 

open greenhouses is realistic. 

 

Botrytis 
In the experiment in 2008 of Chapter 2, from 29 weeks after planting a large 

number of plants in the closed greenhouse were infected by Botrytis. At the end of the 

experiment, 32% of plants were removed from the closed greenhouse due to Botrytis, 

whereas only 1% of plants were removed from the open greenhouse. Due to the 

removal of 32% of the plants from the closed greenhouse, cumulative production was 

only 4% higher compared to that in the open greenhouse. Botrytis is a very common 

fungal disease in major greenhouse crops (Dik and Wubben 2007). Yield loss due to 

Yield 

TDMfruit Dry matter content fruit 

TDMplant DM % to fruit 

LUE Intercepted light 

K Net leaf 

Photosynthesis 

LAI 

Sink strength fruit # fruit 

Truss Initiation rate # fruit per truss 
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Botrytis infection also occurred in other closed greenhouses reviewed by Heuvelink et 

al. (2008) and De Gelder et al. (2012a). Grisey et al. (2011) also reported more 

Botrytis occurrence in the closed than in the open greenhouse (plant loss of 

respectively 8% and 3%). De Gelder et al. (2008) reported a cucumber experiment in 

which 40% of the plants in the closed greenhouses and 20% in open greenhouses were 

infected by Botrytis. 

High air humidity is the most likely reason for the high occurrence of Botrytis in 

experiments with closed greenhouse (Heuvelink et al. 2008; De Gelder et al. 2012a). 

We indeed found that in our experiments air humidity in the closed greenhouse was 

higher than in the semi-closed and open greenhouse (Fig. 4 of Chapter 2), with the 

latter two having very limited occurrence of Botrytis. In the 2008 experiment (Chapter 

2) only 1% and 2% of the plants were affected by Botrytis in the semi-closed 

greenhouses with respectively 150 and 350 W m
-2

 cooling capacity, which was 

comparable to the loss of 1% of the plants in the open greenhouse. In the experiment 

in 2009 (Chapter 4), no Botrytis infection was detected in any of the semi-closed 

greenhouses, which had cooling capacity of 350 W m
-2

.  

Flower, fruit and leaf infection by Botrytis is related to high air humidity in 

particular when combined with an organ temperature that is lower than the air 

temperature, which causes condensation on the organs. The spores of Botrytis needs 

wind or water to spread. This can occur in the morning in a greenhouse, when air 

temperature is rising faster than plant temperature. In practice, the heating system is 

usually turned on before sunrise to gradually increase leaf temperature concomitantly 

with air temperature to avoid condensation, which reduces the risk of Botrytis 

infection of leaves (Dik and Wubben 2007). Stem infection by Botrytis is stimulated 

by high air humidity, but it is not linked directly to condensation. The presence of 

wound spots provides the fungus with sufficient moisture for rapid infection. Eden et 

al. (1996) showed an interaction effect of air humidity and temperature for tomato 

stem infection by Botrytis. Stem infection increased with increasing relative humidity 

from 56%-100%, and with decreasing air temperature from 25 °C to 15 °C. This 

could explain the more frequent occurrence of Botrytis in closed greenhouses, which 

is characterized by relatively humid air. High air humidity and low temperature were 

combined at the lower part of the canopy, where cool air was brought in in summer 

(Chapter 4.1). High humidity in closed and semi-closed greenhouses was also found 

in other experiments (Dannehl et al. 2012, Hoes et al. 2008). Such a combination of 

high humidity and low temperature at the lower part of the canopy can be avoided by 

applying the cooling above instead of below the canopy (Chapter 4). In conclusion, 

close attention should be paid to humidity and temperature, especially at the lower 

part of the canopy, in the closed greenhouse to avoid infection by Botrytis. 

 

Yield increase due to increase of total fruit dry matter 

The yield increase in the closed and semi-closed greenhouses, compared to the 

open greenhouse, was the result of an increase of total dry matter production of the 

fruit, but not of a decrease of the dry matter content of the fruit (Fig. 6.2.). Dannehl et 

al. (2014) also found yield increase in tomato in the closed greenhouse compared to 

an open greenhouse while dry matter content of the fruit was unaffected. This is in 

line with the fact that increased light intensity (Kläring and Krumbein 2013) and CO2 

concentration (Nederhoff 1994) increased fresh and dry weight production but not the 

fruit dry matter content of tomato fruits. Furthermore, Heuvelink (1995) and De 

Koning (1994) showed that the source/sink ratio had no effect on dry matter content 

of tomato fruits, despite its effects on fruit growth rate. In contrast to tomato, in 
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cucumber a higher fruit dry matter content was found in a semi-closed greenhouse 

than in an open greenhouse (Luomala et al. 2008). This is not surprising as for 

cucumber an increase in assimilate supply (Marcelis 1993a) as well as a decrease in 

temperature (Marcelis and Baan Hofman-Eijer 1993) increases the fruit dry matter 

content and affects the developmental stage of the fruits at harvest, which further 

contributes to a change in dry matter content. 

The air humidity in the open greenhouse is in general lower than that in the 

closed greenhouse. Bertin (2000) found an increase in tomato fruit dry matter content 

when the air humidity was lower, but only under saline conditions in summer in the 

south of France. Salinity induced restriction of water supply to the fruit, which 

promoted fruit dry matter content but had a negative effect on yield (Li et al. 2001). In 

several experiments under Dutch greenhouse conditions no (Bakker 1991) or only 

small effects (Li et al. 2001) of air humidity were found in tomato. In our experiments, 

plants were grown under non-saline condition with an EC in the rockwool slab of 

approximately 3.7 dS m
-1

 in all treatments and experiments. We conclude that the 

increase in tomato yield in the closed and semi-closed greenhouse, compared to the 

open greenhouse, was not due to an increase in fruit dry matter content, but due to an 

increase of total dry matter of the fruit. 

 

Total dry matter production of the plant  
Increase in total fruit dry matter can be the result of an increase of total dry 

matter of the plant and/or an increase of dry matter partitioning to the fruit (Fig. 6.1). 

We showed that the increase of total fruit dry matter was the result of an increase of 

total plant dry matter production, rather than a larger fraction of dry matter partitioned 

into the fruit (Chapter 4.2). Higashide and Heuvelink (2009) compared the yield of 

different tomato varieties, and also found that the increase of fruit yield was not due to 

a change in the fraction of dry matter partitioned into fruit but that it positively 

correlated with total plant dry matter production. In the research of Luomala et al. 

(2008) with cucumber, both higher total dry matter production of the plant and higher 

dry matter allocation to the fruits was found in the semi-closed greenhouse compared 

to an open greenhouse.  

 

Dry matter partitioning to the fruits 

Dry matter partitioning is regulated by sink strengths of the organs. Source 

strength has no direct influence on dry matter partitioning to the fruit (reviewed by 

Marcelis 1996) which was confirmed by several studies. Radiation (Marcelis 1992), 

CO2 concentration (Nederhoff 1994) and plant density (indirect influence of light 

interception per plant, Heuvelink 1995) neither influenced the dry matter partitioning 

to the fruit. The importance of sink strength in determining dry matter partitioning in 

tomato was corroborated by experiments where fruit number per truss (fruit load) was 

varied (Heuvelink 1996). In our experiments, as is common practice in commercial 

tomato cultivation, fruit number was restricted by pruning to a fixed number per truss. 

Heuvelink (1996) found that temperature did not affect dry matter partitioning into the 

fruits in tomato. Therefore, it is not surprising that dry matter partitioning to the fruits 

was similar between plants grown in closed and open greenhouses in our experiments. 

Although also in cucumber source strength has no direct effect on dry matter 

partitioning to the fruits, the number of sinks increases when source strength increases, 

in the long run resulting in an increased partitioning to the fruits (Marcelis 1993b). 

Therefore, increased source strength by higher CO2 concentration in the closed 

greenhouse compared to open greenhouse might increase dry matter partitioning to 
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the fruit indirectly via an increase in fruit number on plant, where fruit number is 

affected by the source strength, as is the case in cucumber (Luomala et al. 2008). 

 

Light use efficiency 

Total dry matter production of the plant depends on the light use efficiency 

(ratio dry matter production per unit intercepted light) and the light interception of the 

canopy (Fig. 6.1). The light intercepted by the canopy is determined by LAI and light 

extinction coefficient (k). Light interception by the canopy is highly affected by 

canopy structure, which depends on plant density, leaf pruning, growth conditions and 

variety (Sarlikioti et al. 2011a). In our research, the LAI and k were the same for the 

semi-closed greenhouse and open greenhouse (Fig. 6.2). Therefore, we conclude that 

the increase of total dry matter production of the plant was the result of an increase in 

light use efficiency, rather than a higher light interception. Dannehl et al. (2014) 

found the LAI of a tomato crop in the closed greenhouse was increased compared to 

that in the open greenhouse eight weeks after planting. The authors explained the 

higher LAI by a higher leaf formation rate at higher temperature in the closed 

greenhouse compared to the open greenhouse. The higher temperature in their closed 

greenhouse was due to the absence of window ventilation in early spring. In our 

experiments the average temperature at the top of the canopy was similar to that in the 

open greenhouse (Fig. 3 of Chapter 3). 

Nederhoff (1994) observed no effect of increased CO2 concentration on LAI of 

tomato in spite of a higher leaf weight at higher CO2 concentration. In our 

experiments the leaves in the semi-closed greenhouse were thicker (smaller specific 

leaf area, SLA, m
2
 kg

-1
 DM) than in the open greenhouse while LAI was equal. Hoes 

et al. (2008) did not measure LAI but leaf length and width. They found that the leaf 

length and width of the leaves in the closed greenhouse were smaller compared to the 

open greenhouse. The reason was not clear, but the authors assumed that this was due 

to stress caused by continuous air flow from the ducts. Campen et al. (2008) 

measuring wind speed at different places in a closed greenhouse found the wind speed 

was everywhere lower than 0.9 m s
-1

. Elings et al. (2007) found that wind speed in the 

range of 0.2 - 1.0 m s
-1

 in the canopy had no effect on leaf area in tomato. Therefore, 

air movement per se in closed greenhouses is not likely to affect the leaf area. 

 

 
 
Figure. 6.2 Light extinction in the canopy of a tomato crop in the semi-closed greenhouse and 

open greenhouse measured in in the experiment of Chapter 3. Light intensity in the canopy was 

calculated as a percentage of the light above the canopy. LAI was counted from top to bottom of 

the canopy. Symbols represent average value of the measurements. Lines represent fitted curves 

(Y=100e
-kX

). Estimated extinction coefficient k was 0.61 and 0.58 in the semi-closed and open 

greenhouses, respectively (Error bars indicate SEM, n=3). 
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A lower k value means that more light reaches the lower part of the canopy. The 

vertical light distribution in a canopy with a lower k value is more uniform than that 

in the canopy with a higher k value. Sarlikioti et al. (2011b) concluded, on the basis of 

model calculations for five vertical light distribution scenarios in a tomato canopy that 

the effect of vertical light distribution on crop photosynthesis differed between winter 

and summer light conditions. Under summer light conditions photosynthesis of the 

upper leaves in the canopy is close to saturation, and deeper penetration of the light 

into the lower part of the canopy increases crop photosynthesis. In contrast, under 

winter light condition photosynthesis of the upper leaves is not saturated. With the 

same amount of light, upper leaves have a higher photosynthetic rate than lower 

leaves (in Chapter 5, our research showed top leaf had higher Jmax than middle leaf). 

Sarlikioti et al. (2011b) calculated that deeper penetration of the light into the lower 

part of the canopy therefore decreased the total canopy photosynthesis under winter 

light conditions. In our research, the k value was not different between the semi-

closed and open greenhouses, therefore, it cannot be an explanatory factor for the 

effect on LUE. 

 

Leaf photosynthesis 

Leaf photosynthesis is influenced by light (Ogren and Evans 1993), CO2 

concentration (Cannell and Thornley 1998), and temperature (Yamori et al. 2010). In 

Chapter 5, photosynthetic rates of leaves at the top of the canopy and mature leaves in 

the middle of the canopy were quantified under a wide range of climate conditions. 

Light intensity and CO2 concentration are the two main environmental factors limiting 

photosynthetic rate by either Rubisco carboxylation (carbon reaction part) or RuBP 

regeneration (light reaction part) (Sharkey et al. 2007). The temperature dependency 

of the photosynthetic parameters is related to kinetic properties of the enzymes such 

as Rubisco (Farquhar et al. 1980; Bernacchi et al. 2001). In our research, leaf 

photosynthesis rate was insensitive to air humidity in the range of humidity that 

occurred in open and closed greenhouses (vapour pressure deficit ranging from 0.2 to 

2.5 kPa, data not shown). 

The response of leaf photosynthesis rate to light, CO2 and temperature showed 

strong interaction (Chapter 5). For example, the temperature response of leaf 

photosynthesis rate showed an optimal response curve at high light intensity and CO2 

concentration, while the rate of photosynthesis was hardly affected by temperature at 

either low light intensity or low CO2 concentration. At high light, leaves have a higher 

carboxylation capacity due to an increased percentage of activated Rubisco. The most 

important climatic advantage for photosynthesis in the closed and semi-closed 

greenhouse compared to the open greenhouse is the higher CO2 concentration. Plants 

grown for a prolonged period at an elevated CO2 concentration may have a lower 

photosynthesis rate at a given CO2 concentration than plants grown at a lower CO2 

concentration (Chen et al. 2005; Pérez et al. 2007; Zhang et al. 2009).  Photosynthetic 

acclimation to elevated CO2 has been found in tomato and other crops grown at 

increased CO2 concentration (Peet et al. 1986; Besford et al. 1990; Nederhoff 1994; 

Bunce 2001). However, in our research, photosynthetic acclimation to elevated CO2 

was not found in the semi-closed greenhouse. Dannehl et al. (2013) neither found 

photosynthetic acclimation to elevated CO2 in the closed greenhouse. This can be 

explained by the fact that the crops in the closed and semi-closed greenhouse had 

sufficient sink strength (high fruit load per m
2
) to use the extra assimilates produced at 

higher CO2 concentration. Li et al. (2015) showed that fully fruiting tomato plants 
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when grown according to common practice were source-limited. Based on the 

responses of leaf photosynthesis to climate conditions and the absence of a difference 

in light extinction between closed and open greenhouse, we conclude that the 

increased light use efficiency in the closed greenhouse compared to open greenhouse 

was caused by an increase in the rate of leaf photosynthesis due to increased CO2 

concentration. 

 

Canopy photosynthesis 

In our research (Chapters 3 and 5), leaf photosynthesis rate was measured at two 

heights in the canopy: at the top and middle of the canopy. Parameter values of leaf 

photosynthetic properties of the leaves at these two canopy heights were different; for 

example middle leaves showed a lower maximum carboxylation capacity (Vcmax) and 

lower maximum electron transport rate (Jmax). The relation between the 

photosynthetic parameters and the canopy photosynthesis was not studied in this 

research. At high light intensity and high CO2 concentration in the measurement 

cuvette, photosynthesis of both top and middle leaves responded strongly to 

temperature. However, at low light intensity the temperature response of leaf 

photosynthesis was much weaker. These low light intensities prevail in a large part of 

the canopy. This implies that canopy photosynthesis, which is the integrated value of 

leaf photosynthesis of leaf layers at different light intensities, shows only a weak 

temperature response (Heuvelink et al. 2008). In addition, photosynthesis rate of 

different layers did not differ between the semi-closed greenhouse and open 

greenhouse when measured under the same set of conditions in the measurement 

cuvette (Fig. 5 of Chapter 3).  

In summary, based on the yield component analysis we conclude that the yield 

increase of the (semi-)closed greenhouse, compared to the open greenhouse was 

caused by the increase of total fruit dry matter, that this increase of total fruit dry 

matter was due to an increase of plant total dry matter, and that this increase of plant 

total dry matter was due to a higher LUE, which was the result of an increase of net 

leaf photosynthesis (indicated as bold arrows in Fig 6.1). 

 

6.2 Fruit quality 
Many studies have shown that greenhouse climate during production can affect 

the postharvest quality of the greenhouse products (Riga et al. 2008; Fanourakis et al. 

2011). In the experiment where we investigated semi-closed greenhouses with cooling 

from above and below (Chapter 4), the quality of the harvested tomatoes from semi-

closed greenhouses and open greenhouse was tested in five different months during 

the growing season (Farneti et al. 2013). Quality was measured in terms of firmness 

(N), sugar level (mg g FW
-1

), and acid level (mg g FW
-1

). At the same color stage, the 

fruits harvested from the semi-closed greenhouse were firmer than those from the 

open greenhouse (Figure 6.3). Similarly Dannehl et al. (2014), who used consumer 

panels to assess fruit quality, found that the fruits from the closed greenhouse tasted 

firmer than those from the open greenhouse. Furthermore, Islam et al. (1996) showed 

that increasing CO2 concentration accelerated the coloring but did not affect firmness 

of the fruit. This implies that tomatoes harvested from the semi-closed greenhouse 

with the same color stage as the open greenhouse are firmer, which is a positive 

quality attribute. 

Sugar and acid levels of the fruits from the open greenhouse were slightly 

higher than those of the semi-closed greenhouses (Farneti et al. 2013).Total soluble 

solids followed the same trend observed for sugar but within 1% difference between 
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the open greenhouse and semi-closed greenhouse (Farneti et al. 2013). However, 

consumers will not notice the 1% difference (Harker et al. 2002). Dannehl et al. (2014) 

found that the soluble solids (g kg FW
-1

) of the fruit from the closed greenhouse were 

higher and were rated as sweeter by a consumer panel than that from the open 

greenhouse. Islam et al. (2006) also found increased soluble solids with increased CO2 

concentration. In the research of Dannehl et al. (2014) the temperature in the closed 

greenhouse was higher than in the open greenhouse, which might explain the good 

taste of the fruit from the closed greenhouse. In summary, the firmer fruits in closed 

greenhouses in combination with the small difference in soluble solids in our research 

and the increased soluble solids and sweetness in the study of Dannehl et al. (2014), 

indicates a better quality of the fruits in closed greenhouses.  

 
Figure. 6.3 Firmness of the harvested fruits from open greenhouse (□), semi-closed greenhouse 

with cooling from above the canopy (■), and semi-closed greenhouse with cooling from below the 

canopy (■). Firmness was determined as the maximum force needed to compress the tomato 1 mm 

at 40 mm min
-1

 with a cylindrical probe with 15 mm diameter. Error bars indicate the standard 

deviation (N=45). Greenhouse type and month had significant effects on firmness (P<0.001). 

Figure was reprinted from Farneti et al. (2013). 

 

6.3 Energy 

In the Netherlands, the energy inputs of an open greenhouse consist of solar 

energy and burning of natural gas for heating and CO2 enrichment, as described by 

Elings et al. (2005). Energy outputs consist of energy loss through window ventilation, 

energy intercepted by crops (energy fixed as carbohydrates through photosynthesis), 

and energy loss through walls and roofs and to the ground. Energy fluxes of an open 

greenhouse are summarized in Fig. 6.4. Approximately 2800-3000 MJ m
-2 

y
-1

 solar 

energy is entering a greenhouse in the northwest part of Europe (Bakker et al. 2006). 

An open greenhouse in the Netherlands with tomatoes consumes about 30-40 m
3 

m
-2

 

y
-1

 natural gas, equivalent to 930-1240 MJ m
-2 

y
-1

 energy, mainly for heating (Bot et al. 

2005; De Gelder et al. 2012b; De Zwart 2012). Hence, on an annual basis the solar 

energy entering the greenhouse is more than twice the energy consumption in the 

greenhouse. However, at least 2000 MJ m
-2 

y
-1

 energy is lost through window 

ventilation in an open greenhouse. This consists of 1500 MJ m
-2 

y
-1

 energy loss during 

sunny days for greenhouse cooling and 500 MJ m
-2 

y
-1

 during dull days for 

dehumidification (de Zwart 2008). The concept of closed and semi-closed 

greenhouses (reducing window ventilation, using aquifer for heat and cold storage, 

and air treatment unit (ATU) for temperature and humidity control) enables 

harvesting heat that would otherwise be lost by window ventilation. If all the energy 

lost through the windows would be harvested, a fully closed greenhouse could 
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potentially harvest 2000 MJ m
-2 

y
-1

 energy, while the energy consumption for heating 

of a greenhouse is only 930-1240 MJ m
-2 

y
-1

. It means that the harvested energy is 

more than enough for heating. However, energy saving by a closed greenhouse 

(reduction in % energy consumption compared to an open greenhouse) is not 100% 

because primary energy is needed for running the pumps, the ventilators of the ATU, 

and the heat pump (Bakker et al. 2006; De Zwart 2008; De Gelder et al. 2012).  De 

Zwart mentioned that energy saving is less than 50% and De Gelder et al. (2012a) 

mentioned in their review a saving of 30-40% (heat pumps are needed to bridge the 

gap between the water temperature from the aquifer (18°C) and required heating 

water temperature (above 40°C) in the ATU (Bot et al. 2005; de Zwart 2012). 

Electrical energy for operation of heat pump depends on the heat that the heat pump 

needs to supply and by the COP (coefficient of performance, ratio of heating or 

cooling output to work input).  

 

 
Figure. 6.4 Energy fluxes of an open greenhouse with tomatoes in the Netherlands. Values 

indicate energy input and output in MJ m
-2 

y
-1

. These are rough estimates based on Elings et al. 

(2005) and De Zwart (2008). 

 

In our research, closed, semi-closed and open greenhouses were operated at the 

same time and same location (Chapter 2 and Chapter 4). Figure 6.5 shows the 

monthly average consumed and harvested energy in these greenhouses. The energy 

consumption calculated here was for heating, excluding the primary electricity energy 

for operation of the heat pump, pumps, and ventilator of ATU. The accumulated 

difference between harvested and consumed heat energy shows the net heat energy 

gained by the system. The greenhouse with a higher cooling capacity harvested more 

energy. On an annual basis in the fully closed greenhouse the estimated heat energy 

harvested was 2605 MJ m
-2

 y
-1

, which is equal to the heat that would be produced by 

burning 84 m
3 

m
-2 

y
-1 

natural gas (Table 6.1). The energy consumption for heating in 

the fully closed greenhouse was equal to 39 m
3
 m

-2
 y

-1
 natural gas. In the experiment 

of 2009 in Chapter 3 and 4, the semi-closed greenhouse was found to harvest less 

energy compared to the experiment of 2008 of Chapter 2 (Dieleman et al. 2009; 

Dieleman et al. 2012). A major reason for the differences in harvested energy between 

the two experimental years was that dehumidification was completely realized by 

window ventilation and that the ATU was not used for this purpose in the semi-closed 
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greenhouses in the second year. By dehumidification about 500 MJ m
-2 

y
-1

 could have 

been harvested (De Zwart 2008).  

In conclusion, the amount of harvested energy of a closed greenhouse is higher 

than the amount of consumed energy. The amount of the harvested energy of a 

(semi)-closed greenhouse depends on its cooling capacity (Table 6.1). Ideally, a 

closed greenhouse section should be combined with an open greenhouse section, so 

that the extra heat harvested by the closed greenhouse can be used in the open 

greenhouse section. De Zwart (2008) calculated scenarios of an open greenhouse 

combined with a 10-40% fraction of closed greenhouses under Dutch and 

Mediterranean weather conditions. He concluded that 40% fraction of closed 

greenhouse in Dutch conditions and 20% fraction of closed greenhouse in 

Mediterranean conditions were optimum in terms of financial benefit.  

In different experiments with closed and semi-closed greenhouses energy 

savings (reduction of energy consumption as percentage of that in an open greenhouse) 

were 20-35 % (Opdam et al. 2005), 8-22% (Hoes et al. 2008) and 20% (Grisey et al., 

2011).  

 
Figure. 6.5 Consumption and harvest of heat energy in the closed greenhouse with 700 W m

-2
 

cooling capacity (a), the semi-closed greenhouses with 350 W m
-2

 cooling capacity (b), the semi-

closed greenhouse with 150 W m
-2

 cooling capacity (c), and the open greenhouse (d) during the 

complete growing season of a tomato crop in the year 2008 (experiment as described in Chapter2). 

Electricity energy consumption is not included in this figure.  
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Table 6.1 Summary of the heat and electricity consumption (electricity for fans of the ducts and 

heat pump were not included) and harvest in the form of heat in this research. ATU stands for Air 

Treatment Unit 

Experiment Greenhouse type 

Harvested 

heat (MJ 

m
-2 

y
-1

) 

Consumed 

natural gas 

(MJ m
-2 

y
-1

) 

Electricity 

consumption for 

ATU ventilation (MJ 

m
-2 

y
-1

) 

2008 

closed  2605 1200 139 

semi-closed with 350 W 

m
-2

 cooling  1920 1156 115 

semi-closed with 150 W 

m
-2

 cooling  1125 1020 119 

open 0 958 0 

2009 

semi-closed with 350 W 

m
-2

 cooling above  1078 891 73 

semi-closed with 150 W 

m
-2

 cooling below 1130 880 88 

open 0 844 0 

 

6.4 Application of closed greenhouse knowledge and other innovations 

The first closed greenhouse experiment has been conducted in 2002 in the 

Netherlands (De Gelder et al. 2005). In the beginning, the development of closed 

greenhouses was primarily focused on the technical possibilities of the system 

(Bakker et al. 2006; Buchholz et al. 2005; Bot et al. 2005). Further research on plant 

growth and development in the closed greenhouse followed (Hoes et al. 2008; 

Luomala et al. 2008; Grisey et al. 2011; De Gelder et al. 2012b; Dannehl et al. 2014), 

because knowledge on crop response to the climate condition in the closed 

greenhouse was needed for making optimal use of the new system during 

implementation. Improving sustainability of the greenhouse production systems needs 

control of growth conditions in the greenhouse to meet the demand of the crop, while 

the crop management should aim at a crop that suits better the growth condition in the 

greenhouse (Marcelis and De Pascale 2009; Dieleman and Hemming 2011).  

There are several examples, in which closed greenhouse systems have been 

applied commercially. The first commercially applied closed greenhouse system in 

The Netherlands started in 2003 with 1.4 ha tomatoes. Thereafter, a number of tomato 

growers installed closed and semi-closed greenhouse systems (Raaphorst 2011). 

Semi-closed greenhouse systems were also applied to ornamentals such as cut roses, 

orchids and other potted plants. The largest scale in which a closed greenhouse is 

applied in the Netherlands is 3.4 ha, combined with 5.9 ha open greenhouse (Gieling 

et al. 2011). In total there are about 200 hectares of semi-closed greenhouses in the 

Netherlands (Kas Als Energiebron 2017). The closed greenhouse concept is also 

being applied in several other countries, for instance, in California of USA for tomato 

production (http://www.houwelings.com/files-2/sustainability.php). A 9 ha semi-

closed greenhouse for cucumber production started in Russia in 2013, and was 

expanded later. A 9.4 ha semi-closed greenhouse was established in Kazakhstan in 

2015 for tomato production.  

Growers need several years to learn how to adjust their cultivation and climate 

management strategies in the new system before fully exploring the benefit of the 

http://www.houwelings.com/files-2/sustainability.php
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system. Knowledge transfer and a strong cooperation between researchers and 

growers are key factors in the development and application of closed greenhouses 

(Dieleman and Hemming 2011; De Gelder et al. 2012a). 

Closed and semi-closed greenhouses with aquifer, heat pump and ATU have 

obvious advantages in energy saving and production increase, but the application has 

not been as wide as expected (De Zwart 2012). One of the reasons is the fixed 

investment cost for drilling to reach the aquifers, ATU and heat pump. As mentioned 

above, growers need several years to learn to fully exploit the new system. The profit 

from increased production and reduction in energy consumption might not be able to 

compensate for the investment costs (Ruijs et al. 2010). In addition, Combined Heat 

and Power (CHP) are commonly used in Dutch greenhouse. Growers purchase natural 

gas, by burning natural gas CHP generates electricity and heat (reject heat of the CHP 

engine). The heat can be used for greenhouse heating and surplus electricity, after 

fulfilling greenhouse electricity requirement, can be sold to the public grid. The CO2 

that is produced by burning natural gas is used for CO2 enrichment of the greenhouse. 

Investment in CHP is attractive because of the relatively low natural gas price and 

good infrastructure for selling the electricity to the public grid (Breukers et al. 2008; 

De Zwart 2012). However, investment in CHP is not as interesting anymore as it was 

5-10 years ago, since the price of natural gas increased from 0.16 €m
-3

 in 2000, to 

0.21 €m
-3

 in 2015, and estimated to be about 0.28 €m
-3

 in 2030 (Schoots et al. 2016), 

while electricity price was 0.22 €kwh
-1

 in 2007 but decreased to around 0.12 €kwh
-1

 

in 2014 (Eurostat 2016). 

 

The next generation greenhouse cultivation  

The knowledge obtained from closed greenhouses is currently being applied in 

open greenhouses (De Gelder et al. 2012a; Schuddebeurs et al. 2015; Persoon et al. 

2016). This knowledge has been used in the development of the concept of the next 

generation greenhouse cultivation. This concept strives to reduce the energy 

consumption for heating without reducing yield and quality of the produce (De Gelder 

et al. 2012b), at much lower investment costs than the closed greenhouses. The main 

elements of this concept are 1) Improving insulation by application of multiple 

screens; 2) Controlling air humidity by forced ventilation. 3) Temperature integration 

by accepting higher temperature at high radiation and lowering night temperature. 4) 

Adjustment of the production plan by shifting planting date from December to 

January; 5) Reducing ventilation to retain CO2 in the greenhouse (by fogging the 

temperature is reduced, which diminishes the need for window opening); 6) Using a 

combination of heat pump and aquifer for energy storage and active cooling. This 

concept required commercial availability and modular applicability of techniques. The 

next generation concept has been tested on several crops such as tomato (De Gelder 

and Dieleman 2012; Schuddebeurs et al. 2015), gerbera (De Gelder et al. 2014; 

Persoon et al. 2016), Phalaenopsis (Kromwijk et al. 2012), and Cymbidium 

(Raaphorst and Kromwijk 2012) and resulted in 42-50%, 40%, 14-18%, and 27% 

energy conservation, respectively, while production and quality were maintained 

compared to those of commercial growers.  

 

Other innovations in the greenhouse for energy saving 

Besides the development of closed and semi-closed greenhouses and the next 

generation greenhouse cultivation concepts, a number of innovations are being 

developed for greenhouse industry to reduce energy consumption while improving 

production and product quality. Better understanding of crop physiology in 
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combination with new technologies has significantly contributed to those innovations. 

Dieleman and Hemming (2011) and Marcelis et al. (2014) summarized the most 

recent innovations: double glass with antireflection coatings was used as greenhouse 

cover to improve insulation without influence of light transmission (Hemming et al., 

2012); diffuse glass was used as greenhouse roof cover to have uniform horizontal 

and vertical light distribution in the greenhouse, higher photosynthesis at the middle 

of the canopy and less photo inhibition and consequently higher production (Li et al. 

2015; Dueck et al. 2012); LED light, which has higher efficiency in converting 

electricity into light than HPS lamp, was used as supplement lighting for greenhouse 

cultivation (Dieleman et al. 2016; Trouwborst et al. 2010). Researchers will continue 

to strive for lower energy consumption in greenhouses in different ways. 
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SUMMARY 
 

Climate change and resource scarcity raised people’s concern about environmental 

protection and energy saving. In the greenhouse horticulture sector, various concepts, aiming 

at sustainability and energy saving, were developed in the last decades. One of these concepts 

is the closed greenhouse, in which ventilation by window opening is replaced by mechanical 

cooling. A closed greenhouse has no window ventilation. Air is cooled and dehumidified by 

an air treatment unit, which mainly takes place in summer. The air treatment unit contains a 

heat exchanger and connects to an underground aquifer as well as to a ventilator. The 

ventilator sucks air from inside the greenhouse into the air treatment unit and distributes the 

cooled and dehumidified air back to the greenhouse. For cooling in summer, the cold water is 

pumped up from the aquifer. The surplus heat from the greenhouse is absorbed by the cold 

water and stored in the aquifer. This stored heat is used in winter to heat the greenhouse. A 

semi-closed greenhouse has a smaller cooling capacity than a closed greenhouse. Window 

ventilation is combined with active cooling when the temperature is too high to be managed 

by the active cooling system.  

When the concept of closed greenhouse was introduced, researchers initially focused on 

its economic and technical aspects. During the development of the closed greenhouse concept, 

scientists and growers realized that their knowledge on crop physiological processes under 

such new climate conditions was insufficient to fully explore the possibilities of climate 

control in the closed greenhouse. Closed greenhouses created new climate conditions for 

crops, for instance, the combination of high CO2 concentration and high irradiance, which is 

not possible in an open greenhouse, due to window ventilation. CO2 concentration can be high 

continuously during the whole growing season in a closed greenhouse. There are vertical 

gradients in temperature and vapour pressure deficit (VPD) throughout the canopy in a closed 

greenhouse. Therefore, the effects of these new climates and their combination on crop 

growth and development needed to be investigated.  

This thesis focuses on the crop physiology in closed and semi-closed greenhouses, 

aiming to study the effects of these new climate conditions on crop growth, development and 

underlying processes.  

In Chapter 2, the effect of active cooling on greenhouse climate, in terms of stability, 

gradient and average levels was analysed. Crop growth and production in closed and semi-

closed greenhouses were quantified and compared to those of an open greenhouse. An 

experiment with a tomato crop was conducted in a fully closed greenhouse with 700 W m
-2

 

cooling capacity, two semi-closed greenhouses with 350 W m
-2

 and 150 W m
-2

 cooling 

capacity, respectively, and an open greenhouse. The higher the cooling capacity, the more 

independent of outside climate the greenhouse climate was.  

Cumulative production in the semi-closed greenhouses with 350 W m
-2

 and 150 W m
-2

 

cooling capacity was 10% (61 kg m
-2

) and 6% (59 kg m
-2

) higher than that in the open 

greenhouse (55 kg m
-2

), respectively. Cumulative production in the closed greenhouse was 14% 

higher than in the open greenhouse in week 29 after planting but at the end of the experiment. 

The cumulative increase was only 4% due to Botrytis. Model calculations showed that the 

production increase in the closed and semi-closed greenhouses was explained by higher CO2 

concentration.  

As a high CO2 concentration is one of the most remarkable differences in climate 

between the closed and open greenhouse, Chapter 3 focuses on CO2. Photosynthetic and 

morphological acclimation to high CO2 has been found in many plant species with feedback 

inhibition being the main mechanism to explain this. Chapter 3 investigated the occurrence 

of photosynthetic and morphological acclimation to high CO2 concentration in the semi-

closed greenhouse. The hypothesis was that photosynthetic and morphological acclimation to 



Summary 

102 

 

elevated CO2 concentration only occurred in plants with low sink strength. An experiment 

was carried out with tomato plants with varying fruit loads in a semi-closed greenhouse and a 

conventional modern greenhouse. The results showed that photosynthetic acclimation to 

elevated CO2 concentration only occurred when the number of fruits was considerably 

reduced. High CO2 as well as fruit removal reduced the specific leaf area. Reduction in 

photosynthesis rate was associated with, but not caused by reduced stomatal conductance. The 

increase of dry matter production in the semi-closed greenhouse was mainly explained by a 

higher CO2 concentration compared to the open greenhouse. The results suggest that high 

CO2 concentrations in the semi-closed greenhouse do not cause feedback inhibition in high 

producing crops, because the plants have sufficient sink organs (fruits) to utilise all 

assimilates. 

Vertical temperature and VPD gradients are typical for closed and semi-closed 

greenhouses. In Chapter 4.1 the effects of the positioning of the inlet of cooled and 

dehumidified air on the vertical temperature and VPD gradients in the semi-closed 

greenhouses were analyzed. Tomato crops were grown year-round in four semi-closed 

greenhouses with cooled and dehumidified air blown into the greenhouses from below or 

above the crop. Cooling below the canopy induced vertical temperature and VPD gradients. 

The temperature at the top of the canopy was over 5 °C higher and the VPD was 0.7 kPa 

lower than at the bottom, when outside solar radiation was higher than 250 J cm
-2

 h
-1

. The 

seasonal and diel patterns of vertical temperature gradients and VPD gradients were studied. 

The vertical temperature gradients and VPD gradients correlated with outside radiation and 

outside temperature. Chapter 4.2 investigated the effects of the vertical gradients of 

temperature and VPD on crop growth and development. Despite the occurrence of vertical 

temperature gradients, plant growth and fruit yields were mostly unaffected. Leaf and truss 

initiation rates did not differ between treatments, since air temperatures at the top of the 

canopy were comparable. The only observed response of plants to the vertical temperature 

gradient was the reduced rate of fruit development in the lower part of the canopy. This 

resulted in a longer time between anthesis and fruit harvest in the treatment with a vertical 

temperature gradient, and an increase in the average fruit weight in summer. However, total 

fruit production over the whole season was not affected. These results are important when 

designing greenhouses, as well as heating and cooling systems for greenhouses. 

The effects of the climate factors light, CO2 concentration, temperature, and humidity 

on leaf photosynthesis were investigated in Chapter 5. The photosynthesis model of Farquhar, 

von Caemmerer and Berry (FvCB) was modified to predict light dependency of the 

carboxylation capacity (Vc) and to improve the prediction of temperature dependency of the 

maximum carboxylation capacity (Vcmax) and the maximum electron transport rate (Jmax). The 

FvCB model was modified by adding a sub-model for Ribulose-1,5-bisphosphate carboxylase 

(Rubisco) activation. Values of parameters for temperature dependency of Vcmax and Jmax were 

validated and adjusted based on data of the photosynthesis response to temperature. Parameter 

estimation was based on measurements under a wide range of environmental conditions, 

providing parameters with broad validity. The simultaneous estimation method and the 

nonlinear mixed effects model were applied to ensure the accuracy of the parameter 

estimation. The FvCB parameters, Vcmax, Jmax, α (the efficiency of light energy conversion), θ 

(the curvature of light response of electron transport), and Rd (the non-photorespiratory CO2 

release) were estimated and validated on a dataset from two other years. Observations and 

predictions matched well (R
2
=0.94). We conclude that incorporating a sub-model of Rubisco 

activation improved the FvCB model through predicting light dependency of carboxylation 

rate; and that estimating Vcmax, Jmax, α, θ, and Rd requires data sets of both CO2 and light 

response curves. With these parameters derived from the data obtained in closed and semi-
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closed greenhouse, leaf photosynthesis rate could be estimated under a wide range of climate 

conditions. 

At the end of the thesis, Chapter 6, the results were integrated and discussed. The yield 

increase in a closed greenhouse, compared to that in an open greenhouse was analyzed based 

on physiological and developmental processes. In addition, sustainability of the system was 

discussed in terms of energy, and compared to an open greenhouse. Applicability of the 

closed greenhouse concept and other innovations for greenhouse energy conservation were 

summarized. 
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