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1 MOTIVERING 

Van sommige onderzoekingen kan men het resultaat moeilijk in het Land-
bouwk. Tijdschr. bespreken, omdat moet worden aangenomen, dat de lezers 
de gebruikte begrippen niet goed kennen. We hebben hier op het oog onder­
zoekingen waarbij een groot aantal variabelen optreden. 

Als enkele uit vele voorbeelden van zulke onderzoekingen noemen we : 
Bij rassenonderzoek kan de opbrengst van ieder ras worden opgevat als een aparte variabele. 

Wanneer een aantal proefvelden wordt bestudeerd, waarop b.v. 20 rassen voorkomen, dan 
moet men rekenen niet 20 variabelen. 

Bij onderzoekingen over herkenbaarheid van graankorrels is iedere eigenschap die men 
opmeet een variabele, dus lengte, breedte, dikte, gewicht, soortelijk gewicht enz. 

Bij vruchtbaarheidsonderzoek zijn de verschillende resultaten van grondonderzoek en veld-
verkenning als even zovele variabelen op te vatten. 

Al deze onderzoekingen hebben met elkaar gemeen dat de gegevens in een 
tabel kunnen worden verzameld. 

2 OPBOUW VAN EEN TABEL 

In tabel A is voor de gehuchten Ergen, Nergen en Overa het aantal manne­
lijke inwoners gegeven, ingedeeld naar leeftijdsklassen. 

Tabel A. Leeftijdsopbouw van de mannelijke bevolking in drie gehuchten. 

Woonplaats 

Ergen . 
Nergen 
Overa . 

Totaal . 

0-19 

43 
73 
58 

174 

Leeftijdsklassen 

20-39 40-59 

40 
68 
59 

167 

35 
61 
44 

140 

Totaal 

60 en ouder i 

38 
62 
60 

160 

156 
264 
221 

641 

») Ter publicatie ontvangen 17 Oct. 1953. 
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In tabel A vormen de cijfers die naast elkaar staan een rij, de cijfers die 
onder elkaar staan een kolom. Voor ieder gehucht is er dus een rij ; voor iedere 
leeftijdsklasse een kolom. 

De laatste kolom geeft de rijtotalen, de onderste rij de kolomtotalen ; rechts­
onder staat het algemeen totaal. Wanneer we alle totalen weglaten, blijft een 
deel van de tabel over, dat wij het lichaam van de tabel willen noemen. 

In tabel A zijn de gehuchten in alfabetische volgorde geplaatst ; we hadden 
ze ook volgens grootte kunnen rangschikken, dus in de volgorde Nergen, 
O vera, Ergen. liet veranderen van de volgorde der rijen willen we rijenruil 
noemen. Er is natuurlijk ook kohmmenruil mogelijk, al ligt dat in dit voor­
beeld niet voor de hand. 

Het zou ook mogelijk zijn voor ieder gehucht een kolom te bestemmen en 
voor iedere leeftijdsklasse een rij. In tabel B is deze rangschikking gebruikt. 

Tabel B. Do spiegeling van tabel A. 

Leeftijdsklassen 

0-19 
20-39 
40-59 

Totaal 

---
Ergen 

43 
40 
35 
38 

156 

Woonplaats 

- - ,-
Nergen \ 

i 

73 
68 
61 
62 

264 ; 

.._.. 
Overa 

58 
59 
44 
60 

221 

Totaal 

174 
167 
140 
160 

641 

In wezen is er geen verschil tussen tabel A en tabel B ; slechts de plaatsing 
is anders. We noemen tabel B de spiegeling van tabel A. Kortheidshalve laten 
we het woord tabel weg, en zeggen dat B de spiegeling van A is. Zo is A de 
spiegeling van B. Inplaats van „spiegeling van A" schrijft men A', dus 

B = A' 
A = B' = (A')' (1) 

Het is handig steeds hoofdletters te gebruiken als algemeen symbool voor 
tabellen. 

In formule (1) zien we dat tabellen in algebraïsche vergelijkingen worden 
geplaatst. 

3 ONDERVERDELING VAN EEN TABEL 
In tabel A zien we getallen en kopjes (d.w.z. opschriften van rijen en 

kolommen). Een tabel zonder kopjes heet een matrix, indien men er op een 
bepaalde wijze mee wil rekenen. De rekenvoorschriften zullen in volgende 
paragrafen worden gegeven. 

Ieder getal, dat in de matrix voorkomt, heet een element van de matrix. 
Ieder element heeft zijn plaats ; deze plaats wordt aangeduid door de rijen te 
nummeren van boven naar beneden, en de kolommen van links naar rechts. 

De elementen van matrix A worden vaak door een a aangeduid, voorzien 
van twee indices. Het element au ligt in matrix A op de plaats (ij) in de ie rij 
in de j e kolom. Het element a24 in tabel A b.v. is dus 62. 
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Een matrix met slechts één rij noemt men een rij-vector ; wij willen zo'n 
vector aanduiden als (a, of (b enz. Een matrix met slechts één kolom is dan 
een kolomvector ; weer te geven door a), of b). De matrix A bestaat uit de 
rijvectoren (a, , (a, , . . . ; maar ook uit de kolomvectoren a , ), a 2) 
In het symbool (a, geeft de punt aan, dat in alle kolommen een element van 
(a, voorkomt; zo komt in alle rijen een element van a ,) voor. 

De matrix A' bestaat uit de rijvectoren (a', , ( a ' 2 , . . . De eerste rij van A' 
is de eerste kolom van A ; in symbolen kunnen we zeggen dat (a', de spie­
geling van a | ) is. Vaak willen we de spiegeling van een vector aanduiden 
door alleen de haak te verplaatsen. We duiden de spiegeling van a , ) dus 
aan door (a , . Blijkbaar is (a', = (a , . Zo is ook a, I = a'#i ). 

Men moet dus vooral op de plaatsing van de punt letten. 
Vaak is het nodig de bouw van een matrix iets nauwkeuriger te laten zien. 

In zo'n geval schrijft men b.v. in symbolen 

(a — [a,. a2. a3 ap ] 

(a2 = [a2 | . *ï2.
 a 2 3 " a - ' » | 

a) = (a,. a2. a3 } 
a . | ) = {*>)• a-i a 'i • • -a»i} 

In sommige voorbeelden is het laatste element vermeld, nl. ap , a2m. anj . 
In het laatste voorbeeld is gezegd dat een willekeurig element als aif wordt 

aangeduid. Bij een kolomvector worden andere haken gebruikt, dan bij een 
rijvector. 

Voor het weergeven van de gehele matrix A kunnen de volgende symbo­
lische schrijfwijzen gemakkelijk zijn : 

A = [a,,] = [a., ), a.2) a.3) . . a.m) ] — 
= {(a,. , (a2.. (a3 a„. j = 

ait au ai3 . . . 

= ; â i â 2 a;3 . . . 
I 

Hierdoor wordt resp. aangegeven : 

Ie dat een willekeurig element van A wordt aangegeven als aif ; 

2e dat een matrix een rijvector is van kolomvectoren ; 

3e dat een matrix ook een kolomvector is van rijvectoren ; 

4e dat de matrix een rechthoek van elementen is. 

Een matrix, die uit n rijen bestaat en uit m kolommen, is van de orde n X m -
Zo vormen de getallen uit het lichaam van tabel A een matrix van de orde 
3 X 4 ; met inbegrip van de totalen is de orde 4 X 5 - De orde wordt dus 
aangegeven door twee getallen, verbonden met een X-

4 OPTELLEN 

In tabel C is de leeftijdsopbouw gegeven van de vrouwen in de genoemde 
drie gehuchten. 
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Tabel C. Leeftijdsopbouw der vrouwelijke bevolking in drie gehuchten. 

Leeftijdsklassen 

Woonplaats 

j 0-19 

Ergen . 
Nergen 
Overa . 

Totaal 

34 
67 
65 

166 

20-39 

44 
76 
58 

178 

40-59 

43 
66 
47 

156 

6 0 -

47 
58 
61 

166 

Totaal 

168 
267 
231 

666 

In tabel D is de leeftijdsopbouw gegeven van de gehele bevolking. 

Tabel D. Leeftijdsopbouw der bevolking van drie gehuchten. 

| Leeftijdsklassen 

Woonplaats Totaal 

0-19 20-39 40-59 6 0 -

Ergen . 
Nergen 
Overa . 

Totaal 

77 
140 
123 

84 
144 
117 

! 78 
127 
91 

85 
120 ! 
121 ; 

324 
531 
452 

340 345 296 326 1307 

l iet is duidelijk dat tabel D verkregen is door de tabellen A en C bij elkaar 
te tellen, dus 

A -f C = D en ook 
D — A r r C (2) 

Kennelijk kunnen we zeggen A -f- C = D wanneer ajf +
 cij = dlf voor 

iedere combinatie (ij). 

5 HET LOCAAL PRODUCT 

In de genoemde gehuchten hebben bietenproefvelden gelegen met vier 
rassen p, q, r en s. 

De opbrengsten aan verse bieten per veldje, de droge-stofgehalten en de (uit 
deze twee gegevens afgeleide) droge-stofopbrengsten zijn resp. in tabel E, 
F en G vermeld. 

Tabel E. Verse opbrengst aan bieten in 
kg per veldje Tabel F. Droge-stofgehalten (in %) 

Proefveld 

Ergen . . . . 
Nergen . . . . 
Overa . . . . 

P 

97 
45 
63 

Bietenrassen 

q 1 r 

80 
37 
58 

77 
38 
54 

s 

65 
30 
47 

Proefveld 

Ergen . . . . 
Nergen . . . . 
Overa . . . . 

! P 

1 
1 9 
; ïo 
i i l 

j 

Bietenrassen 

j q ! r 

11 13 
. 13 ! 14 

11 ] 14 
! 

15 
16 
15 
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Tabel G. Droge-stofopbrengsten in dag per veldje. 

Bietenrassen 

p ' q ' r ! s 
Proefveld 

Ergen . . . . 
Nergen . . . . 
Overa . . . . 

873 
450 
693 

880 
481 
638 

1001 I 975 
532 ; 480 
756 705 

l iet is duidelijk, dat tabel G verkregen is door de tabellen E en F met 
elkaar te vermenigvuldigen, dus 

E X F = G(d.w.z. e „ X * „ = £ , ) (3) 
Wij willen G het locaal product van E en F noemen, omdat slechts die 

elementen van E en F met elkaar worden vermenigvuldigd, die op dezelfde 
plaats staan. E en F verbinden we door een X teken ; dit teken mag niet 
worden weggelaten. Kennelijk kunnen we ook zeggen 

G : F - E (d.w.z. g(, : f „ = e i( ) (4) 

E is het locaal quotient van de deling. 
Alle regels van de gewone algebra gelden voor optellen en locaal vermenig­

vuldigen, dus b.v. 

(A + B) X (A + B) = (A X A) + 2 (A X B) + (B X B) (5) 
In formule 5 komt voor het vermenigvuldigen van een matrix (A X B) met 

het getal 2. Hieronder wordt verstaan dat ieder element van de matrix met 2 
wordt vermenigvuldigd. Zo geldt voor ieder willekeurig getal p dat 

B = pA indien b i f = pajf (6) 

De matrices A en B heten evenredig wanneer (6) geldt. 
In de literatuur was het begrip locaal product tot dusver niet gedefinieerd. 

In uiteenzettingen over proefveldverwerking hebben we het evenwel nodig. 

6 HET GEWOON PRODUCT 

Indien niet speciaal is aangegeven welk product bedoeld is, is steeds sprake 
van het gewoon product. Het gewoon product van A en B wordt aangegeven 
door A B, dus zonder X teken. Het gewoon product A A wordt geschreven A2 ; 
deze schrijfwijze mag dus niet gebruikt worden bij het locaal product. 

Voorbeeld. De boekhandelaren A, B, C hebben de boeken g, h, i, j in 
vooraad. Bijzonderheden over deze boeken staan in tabel M ; de voorraad­
positie is opgegeven in tabel K. 

Tabel M. Aspecten der voorraadspositie. 

Bijzonderheden 
Boektitels 

b i 

Pagina's per boek . . . . 
Prijs per boek 
Aantal dagen in voor­
raad 
Dagguldens 
= (m.>. X (m,s. 

257 
6,50 

40 

260 

58 
1,00 

13 

13 

132 
3,00 

182 

374 
9,75 

16 

546 156 

Tabel K. 

Boek­
titels 

g 
h 

i 

j 

Voorraadpositie bij 
drie boekhandelaren. 

Handelaren 

A ! B ! c 
1 

14 | 5 ' 0 

50 j 7 ! 16 
5 44 I 11 

13 I 29 : 37 
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Met het oog op ds vereiste bergruimte is do grootte van de boeken belangrijk. Als maat 
daarvoor is het aantal pagina's genomen. De tweede rij van tabel M vermeldt de prijs van 
de boeken. Hiervan is het vastgelegde kapitaal afhankelijk. Het aantal dagen dat de boeken 
in voorraad zijn is een (gebrekkige) maat voor de voorraadpolitiek. 

Door de prijs met dit aantal dagen locaal te vermenigvuldigen, krijgen we het aantal 
dagguldens dat het kapitaal renteloos vast ligt. Dit is dus een maat voor het renteverlies. 
In tabel N zijn de gegevens verwerkt. 

Tabel N. Aspecten van het bedrijf van drie boekhandelaren. 

Handelaren 

Bijzonderheden 

B 

Bergruimte 
Vastgelegd kapitaal 
Voorraadpolitiek . . . 
Renteverlies 

12 020 
282,75 
2 328 
9 048 

18 345 
454,25 
8 763 

29 939 

16 218 
409,75 
2 802 

11986 

Tabel N is uit K en M berekend. N is het gewoon product van K en M. 
In formule: MK = N (7) 

Omdat het locaal product tot dusver niet gebruikt werd, is ook de naam 
„gewoon product" nieuw. 

Het is goed er op te letten hoe het gewoon product wordt berekend. Eerst 
worden de bijzonderheden per boektitel berekend, vervolgens worden de uit­
komsten voor de verschillende boektitels opgeteld. Zo is b.v. n 4 i = 9048 = 
260 X 14 + 13 X 50 + 546 X 5 + 156 X 13. Een element n„ wordt dus 
berekend uit de rij i van matrix M en kolom j van matrix K. Eerst wordt be­
paald het locaal product (m, X (k.( = ( p . Vervolgens worden de elementen 
van (p opgeteld. 

Het is duidelijk dat de kolommen van N corresponderen met de kolommen 
van K, dus n , ) = Mk , ) ; zo corresponderen de rijen van N met de rijen 
van M, dus (n( = (m, K. Het merkwaardige gevolg hiervan is dat de kolom­
men van M corresponderen met de rijen van K. Dit brengt weer mee dat een 
rij van M met een kolom van K wordt vermenigvuldigd. 

Laat A van de orde 1 X q zijn en B van de orde q X 1. Dus A is de rij-
vector (a en B de kolomvector b). Het gewoon product (ab) is van de orde 
l X l , dus een getal. Het is 

q 
2 ai bi 

i = l 

Zo zijn alle elementen van N getallen die verkregen zijn door een rijvector 
van M met een kolomvector van K te vermenigvuldigen. We kunnen daarom 
schrijven 

MK = N indien n 0 = (m , .k . , ) (7a) 
Vermenigvuldigen van twee matrices is niet altijd mogelijk. Laat A van de orde p X q 

zijn en B van de orde r X s. Het gewoon product AB bestaat slechts als q = r. Dan 
is AB van de orde p X s. 



BEKENEN MET TABELLEN 157 

Laat M van de orde a X b zijn en K van de orde b X a. Dan is MK van de orde 
a X a en KM van de orde b X b. Wanneer jzé is dit onmogelijk. We mogen dus niet 
veronderstellen dat MK = KM. Dit in afwijking van de rekenregels voor getallen. 

Bij matrices is de volgorde der factoren belangrijk. In (7) is K voorvcrmenig-
vuldigd met M, en M is achtervermenigvuîdigd met K. M noemen we de 
voorste factor en K de achterste factor. 

In N', de spiegeling van N, slaan de rijen op de boekhandelaren. Deze 
corresponderen met de rijen van K'. Zo corresponderen de kolommen van N' 
met de kolommen van M'. Omdat de rijen van N' corresponderen met de rijen 
van de voorste factor moeten we schrijven 

N' = K' M' (8) 
Omdat N = MK kunnen we ook schrijven N' = (MK)'. Door dit te ver­

gelijken met (8) zien we (MK)' = K'M'. 

Zo ook (ABCD)' = D ' C' B' A' (8a) 

Dus : Bij het spiegelen van een product worden alle factoren gespiegeld en 
in tegengestelde volgorde geplaatst. 

7 ENKELE BEKENBEGELS 

Zonder bewijs geven we hier enkele rekenregels. Sommige van deze regels 
zijn eenvoudig te verifiëren. De lijst maakt geen aanspraak op volledigheid. 
Met behulp van cijfervoorbeelden kan men de betekenis van de regels in zich 
opnemen. 

1 A + B = B + A 
2 A -f A = 2 A 
3 optellen van A en B is alleen mogelijk als ze van dezelfde orde zijn. 
4 (A + B) + C = A + (B + C) = A + B + C 
5 ( A X B ) X C = A X ( B X C ) = A X B X C 
6 Locaal vermenigvuldigen van A en B is alleen mogelijk als ze van de­

zelfde orde zijn. 
7 (A + B)2 = (A + B) (A + B) = AA + BA + AB + BB = A2 + 

BA + AB + B 2 . 
Dit is alleen mogelijk als A en B vierkant zijn, d.w.z. evenveel rijen als 
kolommen hebben. 

8 Wanneer in een uitdrukking gewoon vermenigvuldigen, locaal vermenig­
vuldigen en optellen voorkomen, hebben ze in de genoemde volgorde 
voorrang. Dus 
A + B X C D = A + { B X (CD) } 

9 AB (C X p D) X EqF = pq AB (C X D) X EF 
als p en q gewone getallen zijn. We mogen gewone getallen dus in de 
producten naar believen verplaatsen. Indien we a)(b met p willen ver­
menigvuldigen, schrijven we a)p(b. 

10 (ab is het locaal product (a X (b. 

8 SOORTEN MATRICES 

a Een matrix die evenveel rijen heeft als kolommen is vierkant. De ele­
menten aj, vormen de diagonaal van matrix A ; de diagonaal loopt dus van 
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linksboven naar rechtsonder. De elementen, die op de diagonaal liggen heten 
diagonale elementen, de overige zij-elementen. De zij-elementen rechts boven 
de diagonaal noemen we bovenelementen ; die links onder de diagonaal noe­
men wij benedenelementen. 

b Een vierkante matrix waarvan alle bovenelementen nul zijn, noemen we 
een lage driehoek ; bij een hoge driehoek zijn de benedenelementen nul. 

c Een vierkante matrix waarvan alle zij-elementen nul zijn is een diagonale 
matrix. Evenals in een vector is er maar één index nodig om de elementen 
van een diagonale matrix te onderscheiden. Als symbool voor een diagonale 
matrix willen we nemen een kleine letter tussen speciale haken, b.v. 

| T ( = | \ , d2 , d3 dp i = j 'di 0 0 0 j 
- J I 0 d2 0 0 ! 

I 0 0 d s 0 i 
I j 

| o o o dp ! 

d Een diagonale matrix waarvan de (diagonale) elementen 1 zijn, heeft een 
eenheidsmatrix ; deze stellen we voor door I. 

Door de eenheidsmatrix met het getal d te vermenigvuldigen krijgen we 
dl, een diagonale matrix waarvan de (diagonale) elementen onderling gelijk 

zijn. Er kan dus verschil zijn tussen d l en d j . Bij de notatie j d | mogen 

de elementen ongelijk zijn. 
e Een rijvector die uit elementen 1 bestaat, stellen we voor door (1 ; zo 

is a(l een rijverctor die uit gelijke elementen a bestaat. Er zij aan herinnerd 
dat (a de rijvector | a1} a2, a;! . . | i s ; hier mogen de elementen ongelijk 
zijn. Door 1) wordt een kolomvector aangeduid, die uit elementen 1 bestaat ; 
1) a heeft gelijke elementen a. Door gewoon te vermenigvuldigen blijkt dat 

a)(b = [ a,b, 1 (9) 
d.w.z. het resultaat is een matrix C waarvan het element c^ = a,bj t Als 
speciale gevallen kunnen genoemd worden l)(a, een matrix die uit gelijke rijen 
(a bestaat ; en 1)(1, een matrix die geheel uit elementen 1 bestaat. 

Het is een goede oefening na te rekenen dat 

(a ]~d | = (a X (d = (ad 

A | d | = A X l)(d (10) 

fd J A = A X d)(l 

Speciaal wanneer | d I = 1 

A I = A X 1)(1 = A 
I A = A X 1)(1 = A (11) 

De formules (11) verklaren de naam eenheidsmatrix ; gewoon vermenigvul­
digen met I heeft geen invloed. Men mag dus naar believen matrices I tussen-
voegen of weglaten bij gewoon vermenigvuldigen. 

f Een matrix A is symmetrisch wanneer A = A'. Kennelijk is iedere dia­
gonale matrix symmetrisch. Verder is ieder product A'A symmetrisch, want 
(wegens 8a) 



REKENEN M E T TABELLEN 159 

(A'A)' = A'(A')' = A'A (12) 
g Een matrix die geheel uit nullen bestaat heet een nulmatrix en wordt ge­

schreven als 0. Een nulvector wordt door hetzelfde symbool aangeduid. 
Het product (a.1) = (l.a) = -T a. We kunnen de 1 weglaten en schrij­

ven (a). Onder (a) wordt dus verstaan de som van de elementen van (a. Blijk­
baar is (ab.1) = (ab) = (a.b). 

9 ONTBINDEN IN DRIEHOEKEN 

Eventueel na rijenruil en kolommenruil kan iedere vierkante matrix A wor­
den geschreven als het product van twee driehoekige matrices B en C. Aan 
B kunnen we de eis stellen dat het een lage driehoek is met diagonale ele­
menten 1 ; van C kunnen we eisen dat het een hoge driehoek is. Dus 

A = B C (13) 
Indien A geheel uit nullen bestaat, dus een nulmatrix is, kunnen we schrijven 

A = B 0 
De nulmatrix 0 kan worden opgevat als een hoge driehoek, waarvan ook 

de diagonale elementen en bovenelementen toevallig nul zijn. 
In dit geval is dus aan (13) voldaan. 
Indien A niet een nulmatrix is, is er minstens één element dat niet nul is. 

Laat dit a^ zijn. Door rij i met de eerste rij te ruilen en kolom j met de 
eerste kolom, komt dit element in de positie ai x te staan. Om afrondingsfouten 
te voorkomen, is het vaak wenselijk het element met de grootste absolute 
waarde op deze manier naar de plaats (11) te brengen. 

Voor het bestuderen van de verdere werkwijze willen we formule (13) uit­
voeriger uitschrijven in een voorbeeld van matrices van de orde 3 X 3 . Ele­
menten die verplicht nul zijn, duiden we even aan als 0,, om hun plaats te 
kunnen aangeven ; elementen die verplicht 1 zijn als 1,,. Zo krijgen we 

(13a) 

Volgens (7a) is a u = (b, c ,) = 

I n Cu + °12 o2 i -f o 1 3 o 3 1 = Cu . 
Voor ieder element van (a, geldt zo'n formule, dus a12 = (b, c 2) 

ai 3 = ( b , . c . 3 ) . 
Samenvattend kunnen we schrijven 

( a , .= (b,.C = I n (c, -f o 1 2 ( c 2 .+ o 1 3 ( c 3 . = (c,. 
De eerste rij van C is dus gelijk aan de eerste rij van A. 
Zo is ook 

a.i) = B c.,) = b , ) c „ + b.2) o 2 1 + b 3 ) o 3 1 = b , ) c l x 

We krijgen de eerste kolom van B door alle elementen van de eerste kolom 
van A te delen door c n = a u . Kennelijk is b u = a u / a u = 1. 

Doordat we een element van A, dat niet nul is, naar de plaats van a u 
hebben gebracht, is deling steeds mogelijk. Het zal duidelijk zijn dat de af­
rondingsfouten des te kleiner zijn, naarmate a u in absolute waarde groter is. 

Nu moet een tweede kolom van B en een tweede rij van C worden be­
rekend. We kunnen A = B C als volgt schrijven 

au 
a2i 

a3i 

ai2 
a22 
a32 

ai3 

a2 3 

a33 

In 
b21 

b3i 

o12 

lo. 

b32 

Ol3 
°2 3 

I33 

C u 

°21 
o3i 

Cl 2 
c 2 2 

O32 

Cl 3 

C23 

C33 
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b.,) (c,. + b.2) (c2. + A = [ b . , ) , b . ,) . . . I { (c,., (c2. . . . } 

of A - b. ,) (c,. = b.2) (c2. + • • . 
Om b 2) en (c2 te berekenen, berekenen we U = A — b , ) (c, . Door een 

cijfervoorbeeld uit te werken ziet men dat de eerste rij en eerste kolom van U 
uit nullen bestaan. Het is theoretisch ook gemakkelijk in te zien. 

Indien U geheel uit nullen bestaat, kiezen we de ontbrekende elementen 
van C gelijk aan nul, zodat de keuze van de elementen van B verder niet be­
langrijk is. Indien U niet geheel uit nullen bestaat, brengen we het grootste 
element (in absolute waarde) naar de plaats van u2o. Nu stellen we 

(c2 = (u2 en 

b2.) = u.2) - — 
" 2 2 

Zo doorgaande laten B en C zich geheel berekenen. 
Een matrix heet ontaard, wanneer C minstens één diagonaal element nul 

heeft. 
Laat A een hoge driehoek zijn. Wanneer we nu A volgens (13) ontbinden, 

vinden we dat er geen rijenruil nodig is. 
In dit geval is B = I en C = A. Het begrip „ontaard" is dus op C even­

zeer toepasselijk als op A. 

10 D E INVERSE MATRIX 

Bij iedere niet ontaarde driehoek P is een driehoek Q te vinden, zodanig 
dat P Q = I. 

We tonen dit aan door een rekenvoorschrift te geven. We geven weer een 
voorbeeld met matrices van de orde 3 X 3 . 

p i l 
P21 
P31 

Ol 2 

P22 
P3 2 

Oj.3 

«2 3 

P3 3 

qn 
q2i 

q3i 

Ol 2 

q22 

qs2 

Ol3 

°2 3 

q.i3 

• 
l i l 

°21 

031 

012 

122 
032 

Ol 3 

023 

I33 

(14) 

We zien 
I n = P u q u + O12 q 2 i + O13 q 3 i = p n q u ; dus q n = l / p u 

021 = P21 qu + P22 q2i (+ o23 qsi); dus q2i = - p2i qn/p22. 

De deling is mogelijk want P is niet ontaard, dus p 2 2 is niet nul. Op de 
aangegeven wijze laten de verschillende kolommen van Q zich berekenen van 
boven naar beneden. 

Op dezelfde wijze laat zich een driehoek R berekenen, zodanig dat R P = I. 
Wanneer R P = I en P Q = I, dan is R = Q. 
Want uit R P = I volgt R P Q = I Q = Q. 
Maar wegens P Q = I geldt ook R P Q = R I = R. Dus R = Q. 
Inplaats van R e n Q kunnen we ook schrijven P"1. P"1 heet de inverse van P. 
We kunnen een matrix A ontbinden volgens (13), dus A = B C, Indien B 

en C niet ontaard zijn bestaan B_1 en O 1 . Stel D = O 1 B"1. 
Door beide leden van 13 achter te vermenigvuldigen met D vinden we 

A D = B C D = B C C 1 B-1 = B I B 1 = B B 1 = I. 
Zo ook D A = D B C = C-' B"1 B C = C"1 I C = O 1 C = I. 

Dus D is de inverse van A. We zien dus dat iedere vierkante matrix die 
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niet ontaard is een inverse heeft, die zowel bij vóór- als achtervermenigvuldigen 
de eenheidsmatrix oplevert. 

Uit de berekeningswijze volgt tegelijk : Een matrix die ontaard is, heeft 
geen inverse. 

Wanneer A B = I zijn A en B eikaars inversen, d.w.z. (a, b ,, ) = 1 voor 
alle i, en (a, b _. ) = 0 als j jL i. Het is duidelijk dat een rijenruil in A gepaard 
moet gaan met een overeenkomende kolommenruil in B. Omdat ook B A = I, 
geldt ook het omgekeerde ; bij een kolommenruil in A hoort een overeenkom­
stige rijenruil in B. 

11 D E RANG 

In § 9 hebben we een regel gegeven voor het ontbinden van een matrix 
in driehoeken. 

Het aantal van de diagonale elementen van C die niet nul zijn, heet nu 
de rang van A ; het aantal nullen in de diagonaal heet het rangtekort. Er wordt 
aan herinnerd dat een rij van C geheel uit nullen bestaat indien het diagonale 
element nul is. De rang geeft dus aan hoeveel rijen C bevat, die niet geheel 
uit nullen bestaan. Evenals het woord „ontaard" zijn ook de woorden rang en 
rangtekort gelijkelijk op C van toepassing. Een matrix die niet ontaard is heeft 
geen rangtekort. 

Het gegeven voorschrift van § 9 brengt mee, dat de eerste r diagonale 
elementen van C ongelijk nul zijn, indien de rang r is, de verdere diagonale 
elementen zijn alle nul. 

In het algemeen is A — [ b , ) , b 2), ••• ] {(ci.- (c2.> } = 

b . , ) ( c , . + b . 2 ) ( c 2 . + . . . . 
Indien de rang r is, behoeven slechts r termen in het laatste lid te worden 

vermeld omdat de overige toch nul zijn. 
Voor een bepaalde rij (ak uit A kunnen we schrijven 

(ak. = b k l (c . + fck2 (c2. + b k J (c,. 
indien de rang van A 3 is. Op deze manier kan iedere rij van A worden ge­
schreven als een lineaire combinatie van de drie vectoren (C|_, (c2 en (c3 . 

In het algemeen heet een vector (a een lineaire combinatie van de vectoren 
(b, (c, , indien (a = p (b + 1 (c + • • •> waarbij p, q . . gewone ge­
tallen zijn. In dit geval mogen we ook schrijven —l(a -f- p(b + q(c + = 0 . 
We zeggen dat (a, (b, (c, . . . . lineair afhankelijk zijn indien er getallen p i , 
p 2 , p3 kunnen worden aangegeven, zodanig dat p ^ a + p2(b + p3(c 
+ = 0 , zonder dat alle p's nul zijn. 

Indien we uit C alle rijen wegstrepen, die geheel uit nullen bestaan, blijft 
er een matrix over die we E zullen noemen. Uit B strepen we alle kolommen 
weg, met dezelfde nummers, de matrix die overblijft noemen we D. Nu is dus 

A = D E (15) 
Indien de rang van A r is, heeft D r kolommen en E r rijen. De rijen van 

E zijn niet lineair afhankelijk. Laten we even veronderstellen, dat ze wel af­
hankelijk zijn, dus dat er een (p bestaat zo, dat (p E = 0. Door (p met de 
eerste kolom van E te vermenigvuldigen vinden we dat p i = 0, want p 2 enz. 
worden met nul vermenigvuldigd. Zo doorgaande bewijzen we van alle ele­
menten van (p dat ze nul zijn, dus de gevraagde (p bestaat niet. 
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Indien matrix A ontaard is, is er een rangtekort. Dan zijn tevens de rijen 
van A lineair afhankelijk. Om dit te laten zien duiden we de matrix die ge­
vormd wordt door de bovenste r rijen van D { zie (15) \ aan door F (de 
rang van A zij r). 

Door F E worden nu r rijen uit A aangeduid, die we A zullen noemen. 
Dus A = F E. Voorvermenigvuldigen met F"1 geeft F - 1 A = E. 

Dit substitueren we in (15) zodat we vinden A = D F ' 1 X. Schrijven we 
D F-1 = K dan staat hier A = K Ä*. 

Laat (au een rij uit A zijn die niet in A is opgenomen. 
Blijkbaar geldt (a, — (k( A of 

- 1 (a,. + k,, (â,. -f kj2 fc. + . . . . = 0. 
Dit is de gezochte lineaire betrekking. 

Kolommenruil van A komt overeen met kolommenruil van E. Hierdoor wordt 
het aantal rijen van E niet beïnvloed. Dit aantal rijen is de rang van A. De 
rang van A verandert dus niet door kolommenruil, en evenmin door rijenruil. 

Indien we p maal de rij (aT. optellen bij rij (af dan kunnen we ook zeggen, 
dat we p (d, optellen bij (dj . Het aantal kolommen van D wordt hierdoor 
niet beïnvloed, de rang evenmin. Laat H een willekeurige matrix zijn met 
evenveel rijen als A kolommen heeft. A II = D E II ( = G zullen we zeggen) 
E II heeft r rijen evenals E ; de rang van E II is dus niet groter dan r. Door 
vermenigvuldigen met een matrix kan de rang dus nooit worden verhoogd. 

Veronderstel nu dat II vierkant is en niet ontaard. Dan is A = G II"1, dus 
de rang van A is ook niet groter dan de rang van G, omdat G II"1 geen hogere 
rang heeft dan G. 

We vonden dus twee regels : De rang van een matrix verandert niet wan­
neer de matrix met een niet ontaarde matrix wordt vermenigvuldigd. 

En : de rang van de matrix die ontstaat als een product van matrices, kan 
niet groter zijn dan de kleinste rang onder de factoren. 

We kunnen (15) ook schrijven A' = E' D'. Het spiegelen heeft geen invloed 
op het aantal rijen en kolommen, dus ook geen invloed op de rang. Alle regels, 
die we vonden voor de rijen van A, gelden dus ook voor de kolommen. 

Dus wanneer van matrix A alle rijen kunnen worden geschreven als lineaire 
combinaties van k vectoren, dan is k de rang en kunnen alle kolommen even­
eens worden geschreven als lineaire combinaties van k kolomvectoren. 

Laten er twee matrices zijn A en II ; beide zijn ontbonden volgens (15), de 
factoren van II noemen we K en L, dus 

A = D E en II = K L. 
Nu is (A + H) = D E + K L. 
Het rechterlid kunnen we schrijven als het product van een rijvector [ D, K | 

en een kolomvector { E, L } . N u zijn de elementen van [ D, K ] geen ge­
tallen, zoals in [ 2, 3 ] , en ook geen kolomvectoren, maar gehele matrices. 
In [ D, K ] zijn de kolommen van K gewoon achter die van D geplaatst. 
Zo zijn in { E, L } de rijen van L onder E geplaatst. Door een eenvoudig 
getallenvoorbeeld kan men de gang van zaken gemakkelijk controleren. 

Wanneer nu A van de rang r is en II van de rang s, dan heeft E precies 
r rijen en L heeft s rijen ; de matrix ( E, L } heeft dus r + s rijen. De rang 
van A -f- H kan dus niet groter zijn dan r -f s ; wel kleiner, er kan een 
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lineaire betrekking zijn tussen de rijen van { E, L \ b.v. doordat de eerste 
rij van E gelijk is aan de derde rij van L, in zo'n geval is de rang lager dan 
het aantal rijen. 

Laat nu A + II = li zijn, de rang van B is t ; we weten dus t < . r -f- s. 
De rang van II is dezelfde als de rang van —II. Nu is A = B — II = B -f-
(—II). Wegens bovenstaande rangregel geldt r ^ t - s of t ^ r — s. 

Dus de rang van de som van twee matrices is niet groter dan de som van 
de rangen, en niet kleiner dan het verschil. 

12 SYMMETRISCHE MATRICES 

We zagen reeds dat een matrix B symmetrisch heet indien B = B'. In de 
practijk wordt gewoonlijk gebruik gemaakt van symmetrische matrices van de 
vorm A'A. 

A is dan de oorspronkelijke staat met gegevens en A'A is nauw verwant 
aan de tabel met correlatie-coëfficiënten. Om deze reden verdienen symme­
trische matrices een eigen bespreking. 

Laat R een symmetrische matrix zijn, dus r,, = r r , . Ontbindt R volgens 
(13) in twee driehoeken. Om de symmetrie te handhaven spreken we af, dat 
eventuele kolommenruil en rijenruil steeds samengaan, dus als de rijen 2 en 4 
worden geruild, dan gebeurt dit ook met de kolommen 2 en 4. 

Een diagonaal element blijft hierbij steeds diagonaal element. Deze afspraak 
maakt een ontbinding volgens 13 soms onmogelijk, b.v. als alle diagonale ele­
menten nul zijn. Deze moeilijkheid komt niet voor met matrices van de vorm A'A. 

Wegens de symmetrie geldt (r, = (r.,. Volgens het gegeven voorschrift 
(in § 9) geldt (r,_ = (c(.en 1 / rn (r , = (b. , . Dus (b , en (c, zijn evenredig. 

Hun product is b , ) (c, = r ,) - (r, = s, ) (s, indien (s, = 1/ j 1 X (r, 
r n 

Het is duidelijk dat s, ) (s, symmetrisch is, dus ook R — s, ) (s, . Hieruit 
kan weer een symmetrische matrix s2. ) (s2 worden berekend. 

Zo voortgaande vinden we 
R = S'S (16) 

Indien r de rang van R is, is r ook het aantal rijen van S, als we de drie­

hoek niet met nullen opvullen. Laat nu s de diagonale matrix zijn met 

dezelfde diagonale elementen als de r rijen van S hebben. De inverse van 

ls,i ' i s ' ! / s , • 

Nu is 

R = S' ' ï / s „ : "s , , ! S (17) 

Hiermee is de vorm (15) terugverkregen als S' l/s„ = D 

en ! s„ j S = E wordt gesteld. 
Wij willen de rang van R bepalen wanneer gegeven is, dat R = A'A, ter­

wijl r de rang van A is. Voor het gemak nemen we aan dat A vierkant is. 
Nu ontbinden we A' volgens (13) dus A' = B C. C bestaat volgens § 11 

uit r rijen, die niet geheel nul zijn, en verder uit nullen. 
Nu is R = A'A = B C C' B'. 
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Omdat B en B' niet ontaard zijn (alle diagonale elementen zijn 1) hebben ze 
geen invloed op de rang, liet is dus voldoende de rang van C C' te weten. 

Uit C kunnen we een matrix E vormen, zoals ook in (15) is gedaan, door 
de rijen met nullen weg te laten ; dit heeft geen invloed op de rang. We 
moeten dus de rang van E E' weten. 

Onze voorlopige aanname dat we over vierkante matrices spreken, laten we 
dus los ; E is vaak niet vierkant. Iedere matrix kunnen we door ontbinden 
herleiden tot een andere met onderling onafhankelijke rijen. Dit laatste is de 
wezenlijke eigenschap van E. 

Het is duidelijk dat E E' een vierkante matrix is met r rijen en r kolommen. 
Indien de rang van E E' lager zou zijn dan r, dan zou er lineaire afhankelijk­
heid zijn tussen de rijen, d.w.z. dan zou er een vector (p te vinden zijn zo­
danig dat (p E E ' = 0 terwijl (p j£ 0. Achtervermenigvuldigen met p) geeft 
(p E E' p) = 0. 

Omdat de rang van E r is, bestaat er geen lineaire betrekking tussen de 
rijen van E, dus (p E is niet nul; stel (p E = (z. Dan moet (p E E' p) = (zz) 
= 2 z2 = 0 zijn. Dit kan niet, dus een vector (p zodanig dat (p E E' = 0 
bestaat niet. De rang van E E' is dus ook r. We zagen dat dit de rang van 
R is, dus wanneer R = A'A dan heeft R dezelfde rang als A. 

Wanneer R = A'A volgens (16) gesplitst wordt in S'S, dan is geen enkele 
s,,2 negatief ( s„ imaginair). Dit kan wel gebeuren wanneer we een wille­
keurige symmetrische matrix opschrijven, b.v. — I. Onze stelling blijkt als 
volgt. We ontbinden R volgens (16) dus R = S'S. 

Door symmetrische rijen- en kolommenruil worden diagonale elementen nul 
in S geheel naar rechts beneden gebracht. Laten we even veronderstellen dat 
er wel imaginaire diagonale elementen in S kunnen voorkomen. Laat s1(

 2 het 
eerste negatieve kwadraat zijn dat gevonden wordt. De eerste i kolommen 
van A (na de kolommenruil van R te hebben toegepast) verzamelen we nu 
in een matrix B. Stel D = B'B. Wanneer we D volgens (16) splitsen vinden 
we een driehoekige matrix, die gelijk is aan het stuk van S dat we al hebben. 

y s „ - is het laatste element dat berekend moet worden. Volgens veronder­
stelling is sü - negatief. We voegen aan B nog een rij toe, die in de ie kolom 

tot element ) —s„ 2 heeft, en verder uit nullen bestaat ; —s„ 2 is positief vol­
gens veronderstelling. 

De rang van B wordt hierdoor niet beïnvloed, omdat deze extra rij geen 
lineaire afhankelijkheid tussen de kolommen van B kan veroorzaken. 

De enige invloed op D is, dat dü met —slf
 2 wordt vermeerderd, zodat het 

element dat berekend moet worden nu 0 is. Maar hierdoor zou de rang van 
D verlaagd worden ; dit is in strijd met de gevonden regel dat D = B'B de­
zelfde rang heeft als B ; dus een imaginaire s„ komt niet voor, sn

 2 is posi­
tief of nul. 

1 3 D E O R T H O G O N A L E M A T R I X 

Een matrix W is orthogonaal indien 

W' = W-1 (18) 

Dus de spiegeling is gelijk aan de inverse. 
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1 
1 
1 
1 

1 
1 

- 1 
- 1 

1 
- 1 
- 1 

1 

1 
- 1 

1 
- 1 

Bijv. de matrix % '. ; is orthogonaal 

Orthogonale matrices vormen de grondslag van de variantie-analyse en van 
vele andere methoden van onderzoek. 

In verband met orthogonale matrices moeten we nog een paar termen 
noemen. Twee vectoren (a en (b heten onderling loodrecht wanneer (a b) = o. 
Een vector (a heet genormaliseerd als (a a) = 1. In een orthogonale matrix 
zijn alle rijen en kolommen genormaliseerd. Verder zijn alle rijen onderling 
loodrecht ; de kolommen eveneens. 

Het product van twee orthogonale matrices U en V is orthogonaal. Om dit 
te laten zien, vermenigvuldigen we U V met (U V)' = V' U'. 

We vinden 
U V V' U' = U V V-1 U' = U I U' = U U' = U U-1 = I, dus 
V' U' = (U V)' = (U V)-1. 

Dus voor de matrix (U V) geldt formule (18). 

S U M M A R Y ; "TABLE" ALGEBRA 

The fundamental idea's of matrix algebra are explained without any use of determinants. 
The notions explained are addition, subtraction, multiplication, inverse matrix, rank and 

nullity of matrices, linear dependancy and orthogonal matrices. 
In addition there is proved that the product A'A has the same rank as A has, and is 

positively semidefinite. 
A new notion is introduced viz. "local product", the defining equation being A = B X C 

if a„ = b, j X c,, . 


