
The use of open source aerial photographs and LiDAR data for the semi-automatic mapping of vegetation structure in the Netherlands

EcoSummit 2016

August 29th 2016, Henk Kramer

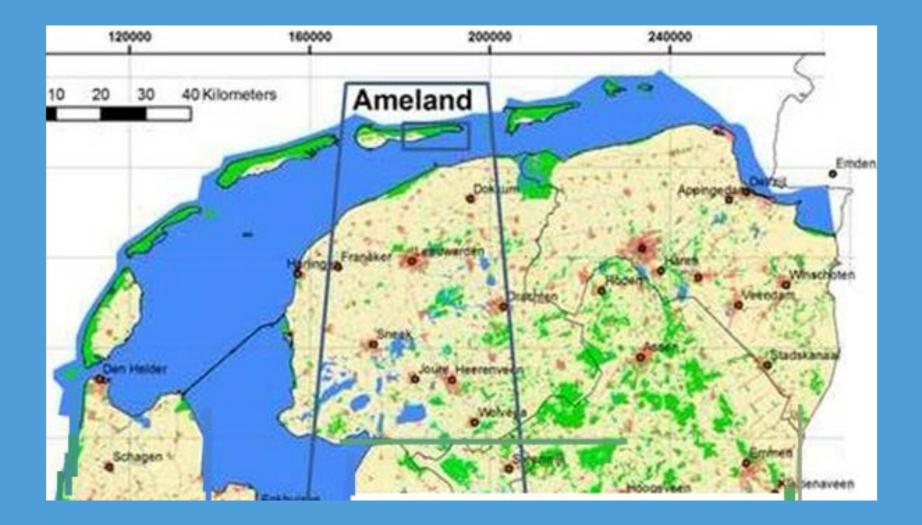
henk.kramer@wur.nl

Introduction

The use of commonly shared aerial photographs and LiDAR data for the semi-automatic mapping of vegetation structure in the Netherlands

Henk Kramer, Sander Mucher, Masih Najafabadi, Lammert Kooistra & Pieter Slim.

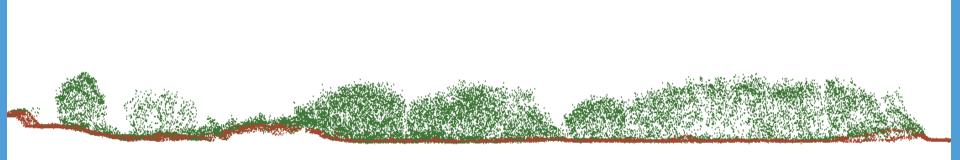
This research was part of the strategic research program KBIV 'Sustainable spatial development of ecosystems, landscapes, seas and regions', funded by the Dutch Ministry of Economic Affairs, Agriculture and Innovation



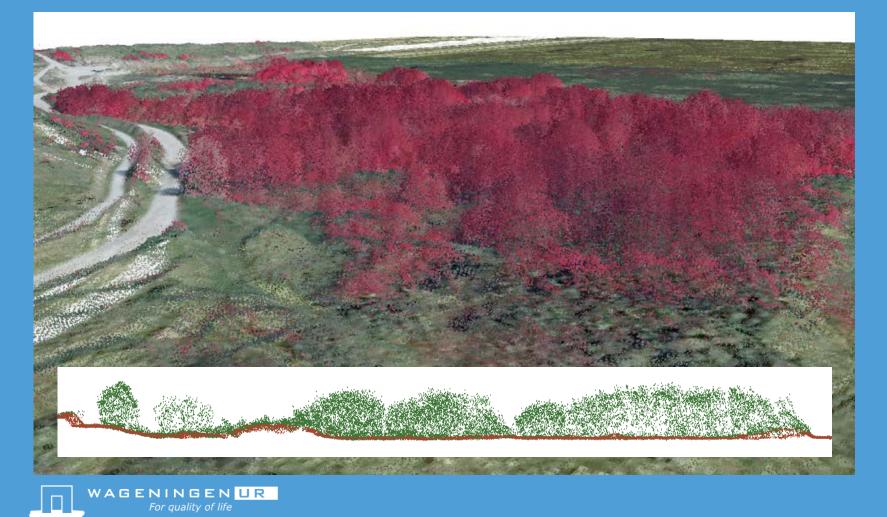
Introduction

Regular mapping of vegetation structure is of importance for biodiversity monitoring. In the Netherlands, vegetation structure mapping is in most cases still done in a traditional way based on field surveys in combination with visual interpretation of aerial photographs. This procedure is time consuming and often limited in its consistency and efficiency to cover large areas. Meanwhile space and airborne imagery are increasingly becoming available at affordable costs. Therefore, the use of alternative and semi-automatic classification techniques was investigated that explores commonly shared Dutch data such as aerial photographs and LiDAR to support the mapping and monitoring of the vegetation structure for larger areas.

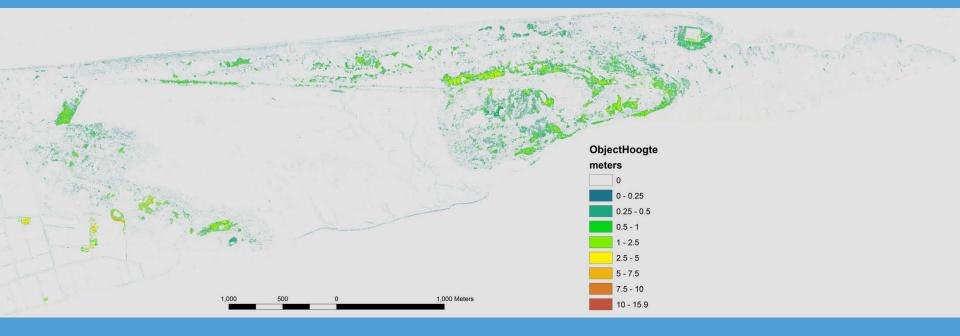
Introduction


Aerial photographs (RGB + NIR)

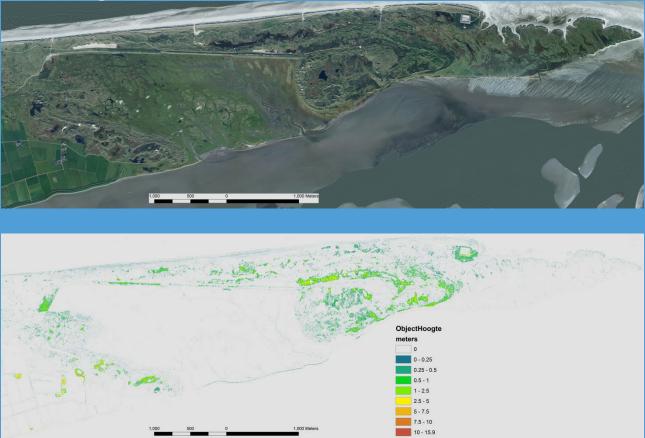
- 25 cm resolution
- Yearly coverage for NL
- commonly shared but not open source



- LiDAR Data (AHN = height model of the Netherlands)
- 11 points/m2 -> DEM with 50 cm resolution
- coverage for NL every 6 years (approx)
- Open source

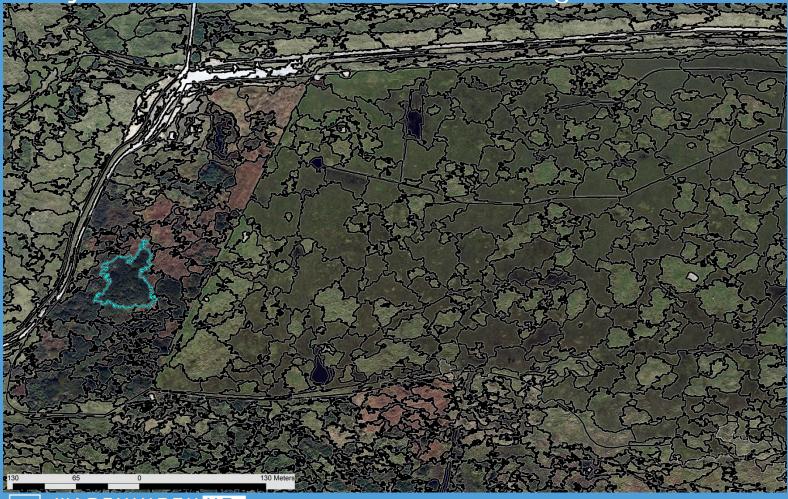


LiDAR Data (AHN = height model of the Netherlands)



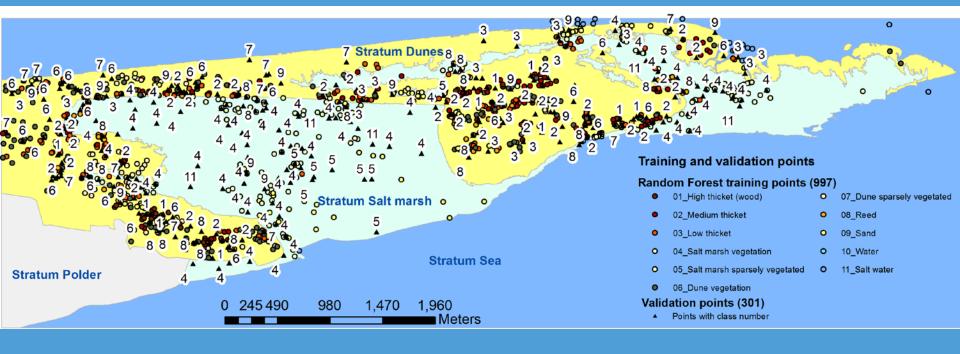
From the LiDAR Data an Object Height Model is derived, containing per 50 cm gridcel the height of the vegetation.

legend

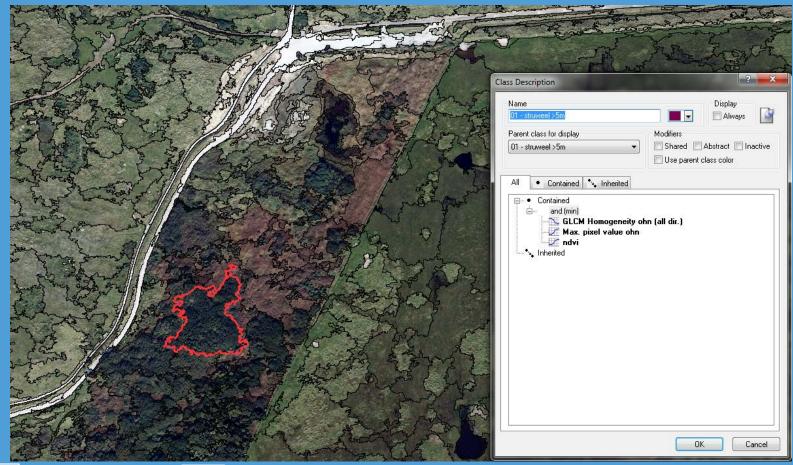

Vegetation structure map

proces

Object based classification with ecognition

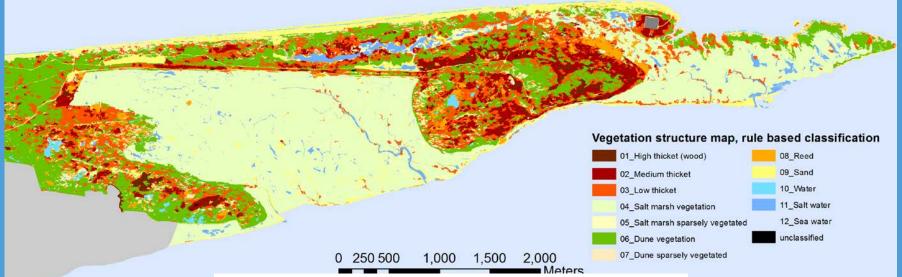

proces

comparing 2 methods, rule based and Random Forest
-> benefits of used method (time, effort)
-> classification accuracy


Fieldwork using gps

 Low accuracy of standard gps (5-10 m) reduces the applicability of the field data. Geometric adjustments are necessary.

Rulebased -> rule development, features and thresholds


Iterative,time consuming

Class number & name	Feature					
	OHN max OHN	Index	Spectral	GLCM Homogeneity	Ratio	Stratum
	in m	NDVI	brightness	OHN	red	
First classification round						
01 High thicket (wood)	> 5	> 0.16		< 0.45		
02 Medium thicket	2 - 5	> 0.16		< 0.45	< 0.31	
03 Low thicket	0.5 - 2	> 0.16		< 0.65	< 0.31	
04a Salt marsh vegetation		> 0.25	55 -110	> 0.95		Salt marsh
04b Salt marsh vegetation		0.14 - 0.25	65 - 110	> 0.95		Salt marsh
06a Dune vegetation		> 0.25	55 - 110	> 0.95		Dunes
06b Dune vegetation		0.14 - 0.25	65 - 110	> 0.95		Dunes
08 Reed	< 3.5	0.05 - 0.31	< 110	< 0.95	> 0.31	
09 Sand		-0.25 - 0.1	> 100			
10a Water		< 0	< 110	> 0.95		Dunes
10b Water		< 0.3	< 50	> 0.95		Dunes
10c Water		< 0.45	< 60	> 0.98		Dunes
10d Water		< -0.1	< 110			Dunes
11a Salt water		< 0	< 110	> 0.95		Salt marsh
11b Salt water		< 0.3	< 50	> 0.95		Salt marsh
11a Salt water		< 0.45	< 60	> 0.98		Salt marsh
11a Salt water		< -0.1	< 110			Salt marsh
Second classification round (applied at unclassified first round)						
01 High thicket (wood)	> 5	> 0.16		> 0.45		
02 Medium thicket	2 - 5					
03 Low thicket	0.5 - 2	> 0.16		> 0.45		
08 Reed	< 3.5	< 0.31	< 110	< 0.45		
05 Salt marsh sparsely vegetated	< 0.5	> 0.16				Salt marsh
07 Dune sparsely vegetated	< 0.5	> 0.16				Dunes
09 Sand		< 0.16				
1						

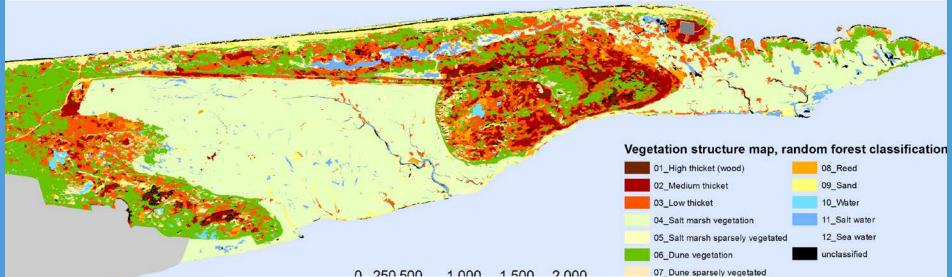
Results Rule based object classification

(Count)	Field refer	ence												
KB classification	1	2	ۇ	4	э	0	1	8	У	10	11	12	Iotal	Reliability
01_High thicket (wood)	15	1											16	93.8
02_Mediumthicket		54				1		1		1			57	94.7
03_Lowthicket			24	1		4		1					30	80.0
04_Salt marsh vegetation			1	70	5			1			2		79	88.6
05_Salt marsh sparsely veg.					4			2	1		2		9	44.4
06_Dunevegetation			1			24	3	2					30	80.0
07_Dune sparsely vegetated						1	7	2					10	70.0
08_Reed		1				1		15					17	88.2
09_Sand					1		5		13				19	68.4
10_Water						2		1		10			13	76.9
11_Salt water				1							16		17	94.1
12_Sea water									1			1	2	50.0
Unclassified								1		1			2	100.0
Total	15	56	26	72	10	33	15	26	15	12	20	1	301	
N														
life Accuracy	100.0	96.4	92.3	97.2	40.0	72.7	46.7	57.7	86.7	83.3	80.0	100.0		

WAGENING

Overall accuracy

84.1


For quality

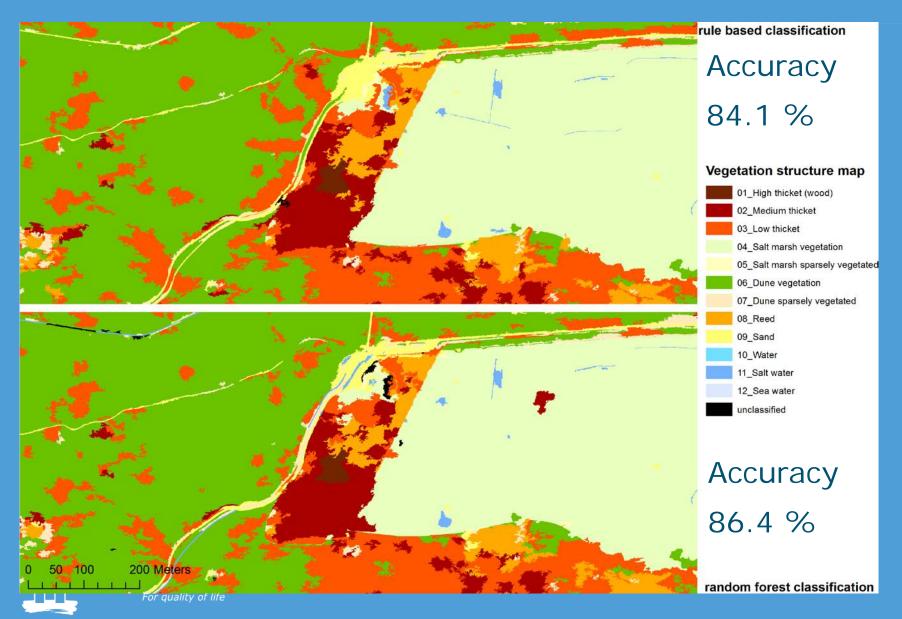
Random Forest

- prepare training data
- select features
- No need to set thresholds
- Less time consuming , high demand on quality of training data
- Iterative proces, remove bad training points or add additional training points

Results Random Forest object classification

0 250 500 1 000 1 500 2 000 Validation matrix of the Random Forest classification (veg. = vegetated).

(Count) Field reference														
RF classification	1	2	3	4	5	6	7	8	9	10	11	12 0	Count	Reliability
01_High thicket (wood)	13												13	100.0
02_Medium thicket		54				1				1			56	96.4
03_Lowthicket			26	1		3					1		31	83.9
04_Salt marsh vegetation				71	2			1					74	95.9
05_Salt marsh sparsely veg.		1			7			2	1		1		12	58.3
06_Dune vegetation						26	3	1					30	86.7
07_Dune sparsely vegetated						2	7	3					12	58.3
08_Reed								18					18	100.0
09_Sand					1		5		9				15	60.0
10_Water						1		1		11			13	84.6
11_Salt water									4		17		21	81.0
12_Sea water									1			1	2	50.0
Unclassified	2	1									1		4	100.0
Total	15	56	26	72	10	33	15	26	15	12	20	1	301	
Accuracy	86.7	96.4	100.0	98.6	70.0	78.8	46.7	69.2	60.0	91.7	85.0	100.0		


WAGENINGE

Overall accuracy

86.4

For quality of

results

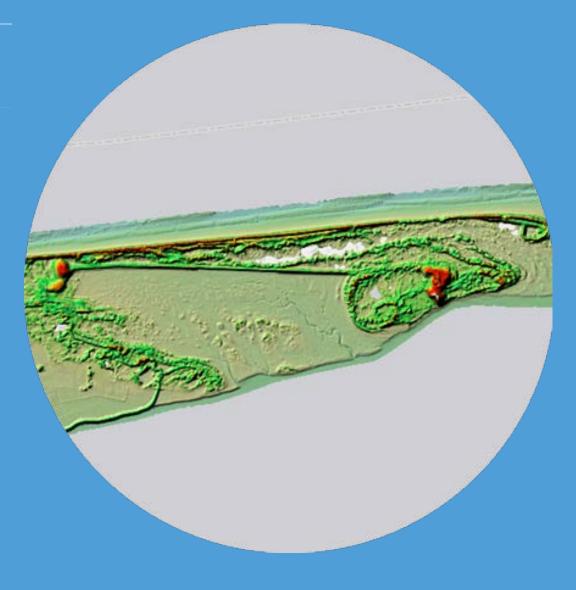
conclusions

Aerial photos and LiDAR data are good sources for Vegetation Structure classification.

- These provide the basic information; colour and height
- Object based classification method is a suitable method for Vegetation Structure classification.
- Random Forest classification is a suitable classification algorithm for Vegetation Structure classification
 - Less time consuming compared to rule based classification

recommendations

A high accuracy gps (< 1m) is very useful for fieldwork


- Less geometric adjustments when used for Random Forest training data are required
- The use of high resolution satellite images (Quikbird, Sentinel, Pleiades) is expected to improve the classification result
 - More suitable acquisition dates in regard to optimal capture of vegetation are possible

Thank you

Henk Kramer

henk.kramer@wur.nl

