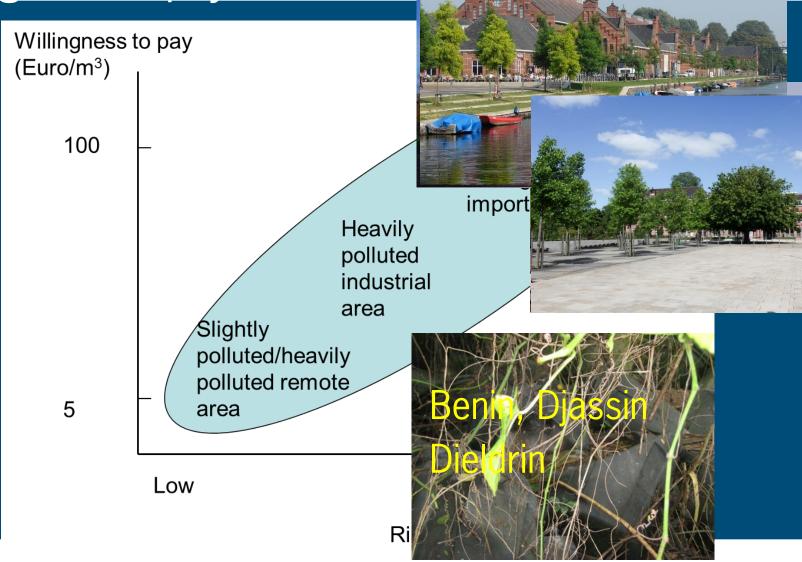
FROM SOIL POLLUTION TO A RISK BASED SOLUTION

Joop Harmsen

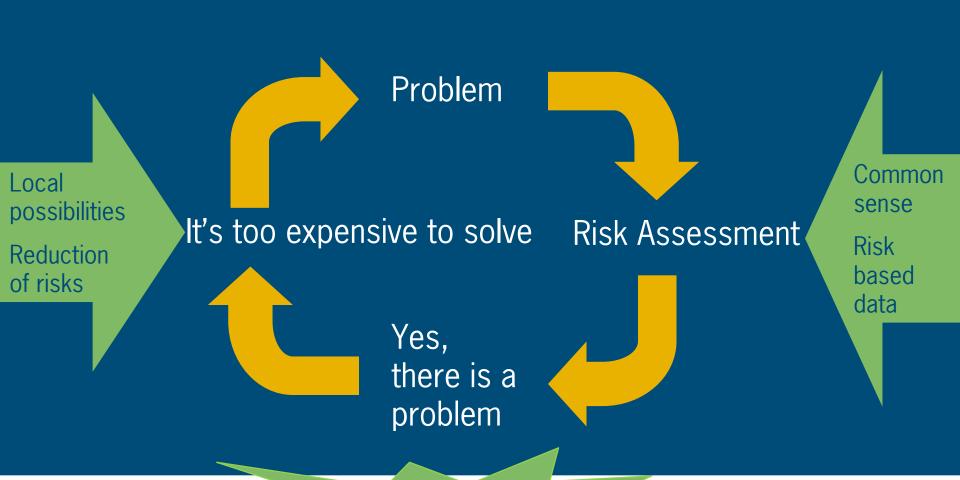
International Conference
Protection of soil functions – challenges for the future
15th – 18th October 2013, Puławy, Poland


How to solve contamination problems in Benin

Willingness to pay

Sednet

Traditional approach


- Suspected site (Problem)
 - Sampling and analysis
- Assessment
 - Compare with target
 Human and ecological risks
- Solution
 - Removal of soil (depot)
 - Treatment on special sites (technological approach)
 - Covering, In-Situ (technological approacl
 Not available

- Logistic problems
- Sampling
- Analysis
 - Logistic problems
 - Distance
 - Costs

costs

The assessment circle

Bioavailability

Basic elements of Reduction of Risks

African approach

Bioavailability

Prevent direct contact

Common sense

Local possibilities

Bioavailability

"...individual physical, chemical, and biological interactions that determine the exposure of plants and animals to chemicals

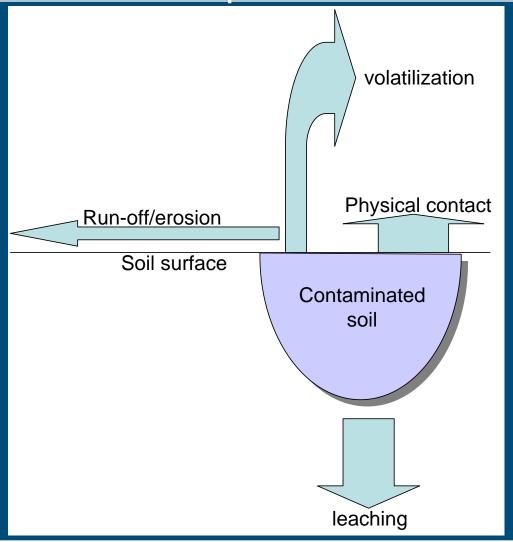
associated with soils and sedir

Council, 2003)."

Specifically, bioavailability addres fraction of the contaminant contaminant contaminant may be taken up or result in an effect on an organism!

Situation in 2013 - Better understanding

- Bioavailable part is causing risks
 - Bioavailable part can be measured (Guideline, ISO 17402; Use of extracts for trace elements, ISO 14858)
- Actual available (concentration in pore water)
 - Trace elements (0.001 M CaCl₂ ISO 21268-1)
 - POP's (Passive sampling)
- Potential available (amount in equilibrium with pore water, reactive fraction)
 - Trace elements (0.43 M HNO₃, ISO 17586)
 - POP's (Tenax; Cyclodextrine, ISO 16751-1)
- Models on fate of contaminants include availability

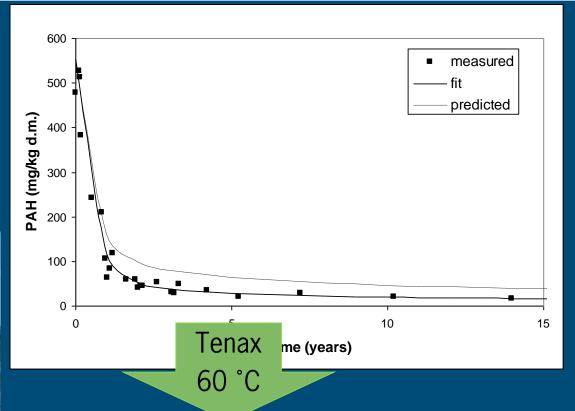

How can bioavailability make a difference?

- If contaminants are not physically accessible, or chemically or biologically available, they should not be included in the calculation of risk
- Can optimize the extent of cleanup required to be protective
- Can provide optimization of remedial approach and cost
- Can be an important factor in balancing the risks caused by remedial action

Common sense: Which risks are present?

- Risks are site specific
- Field observations
- Monitoring to confirm

Local conditions


- Risks are reduced if local conditions:
 - Stimulate biodegradation
 - Reduce bioavailability
 - Isolate the contaminant physically
- Investigate in the field (observation, common sense)

Biodegradation of PAHs, removal of risks

$$\frac{C_t}{C_0} = F_{fast} \cdot e^{-k_{fast} \cdot t} + F_{slow} \cdot e^{-k_{slow} \cdot t} + F_{very slow} \cdot e^{-k_{very slow} \cdot t}$$

Tenax 20 °C

Application of this knowledge

- Create situations were PAHs degradation will continue
 - Agricultural function
 - Combination with energy crop
 - Creation of temporary depot
- Improve local conditions (vegetation, ground water level)

Degradability of pesticides

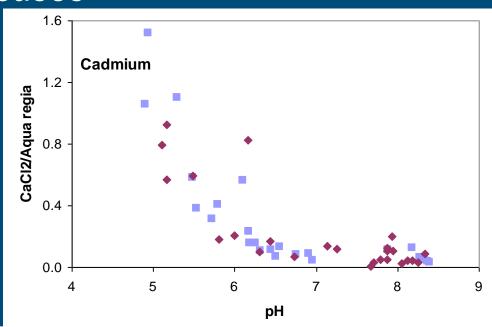
Pesticide	DT 50 in Soil (d)	Pesticide	DT 50 in Soil (d)	
		Methamidophos	rapidly	
Aldrin	20-100	Monocrotophos	17-96	
Captafol	3-55	Paraquat	8-12	
Carbaryl	7-28	Parathion ethyl	rapidly	
Chlordimeform		Parathion methyl	rapidly	
Chlorpyrifos ethyl	10-120	Pentachlorophenol	rapidly	
Chlorvinvos	10-45	Phenthoate	rapidly	
Chlorbenzilate	10-35	Phosalone	1-4	
Cyanophos		Phosphamidon	21-32	
Cyhalothrin	28-84	Propoxur	44-59	
Deltamethrin	21-25	Pyridaphenthion	11-24	
Diazinon	9-35	2,4,5,T	14-300	
Dimetheoate	4-122	Tetrachlorvinphos	2	
Dinoseb	5-31			
Endosulfan (alpha)	60	NOT or difficult degrad	able	
Fenitrothion	12-28	Chlordan	>1500	
Fenthion	34	DDT	>1500	
Fenvalerate	75-80	Dieldrin	> 2500	
Fluoracetamide	50	Endosulfan (beta)	>800	
α-НСН	140	Endrin	>1500	
Heptachlor	250	β-НСН	>500	
Lamdacyhalothine	6-40	Hexachlorobenzene	>1500	
Malathion	4-6	γ-HCH (Lindane)	>500	
Mancozeb	1-7	Toxaphene	>2500	

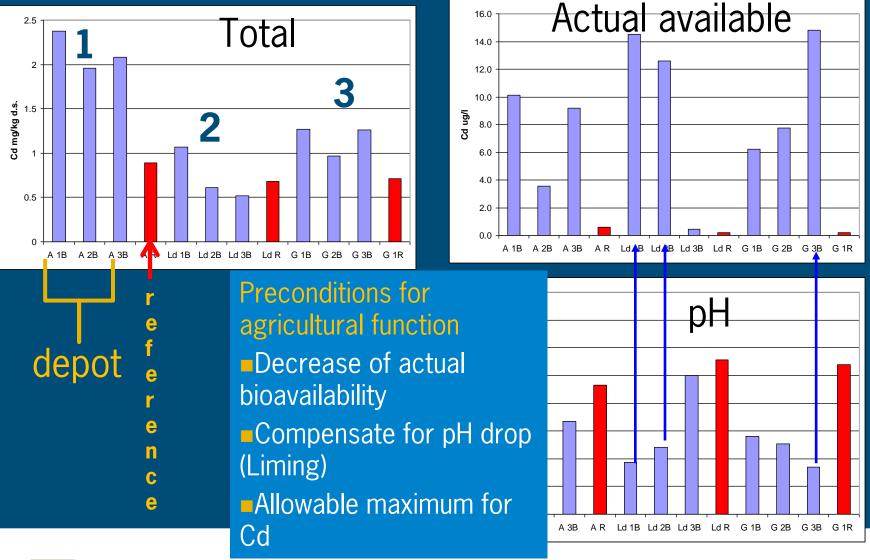
Create proper conditions to degrade parathion ethyl (Molodo, Mali)

Results degradation parathion ethyl

	July 16, 2008			November 11, 2008		
	Parathion-ethyl	Dieldrin	Ratio	Parathion-ethyl	Dieldrin	Ratio
	g/kg d.m.	g/kg d.m.		g/kg d.m.	g/kg d.m.	
1	0.53	0.79	0.67	0.0095	0.44	0.021
2	1.50	0.52	2.89	0.021	0.75	0.028
3	1.62	0.87	1.86	0.011	2.78	0.004
4	3.09	1.08	2.85	0.01	0.78	0.013
5	0.87	0.46	1.89	< 0.003	0.12	<0.025
Average	1.52	0.74	2.03	0.011	0.97	0.018

Biodegradation of Parathion methyl on Oganla Site, Benin?


Risk of heavy metals in a sediment depot



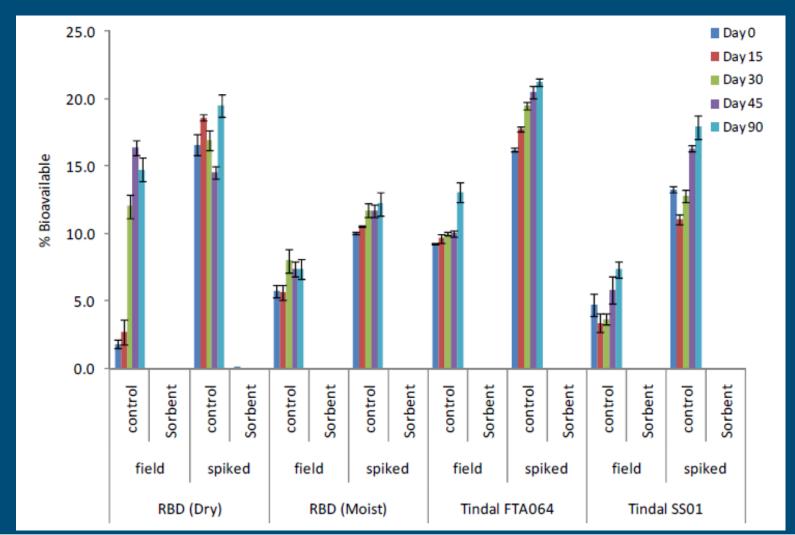
Without management of depots risks by Cd

- Sulphides present in sediments will oxidise
 2FeS + 4 1/2 O₂ + 2H₂O -> Fe₂O₃ + 2 SO₄²⁻ + 4H⁺
- pH will drop
- Mobile fraction Cd increases

Cadmium in 3 depots

Development of strategies to immobilize PFOS

- PFOS Perfluoroctane sulfonate (fire fighting agent), persistant compound, not biodegardable
- Development of modified natural material with capacity to immobilize PFOS
- Investigation of bioavailability of PFOS in treated soils.


Application of MatCARETM

PFOS biobeschikbaarheid, Darwin

Isolation, prevent contact and decrease leaching

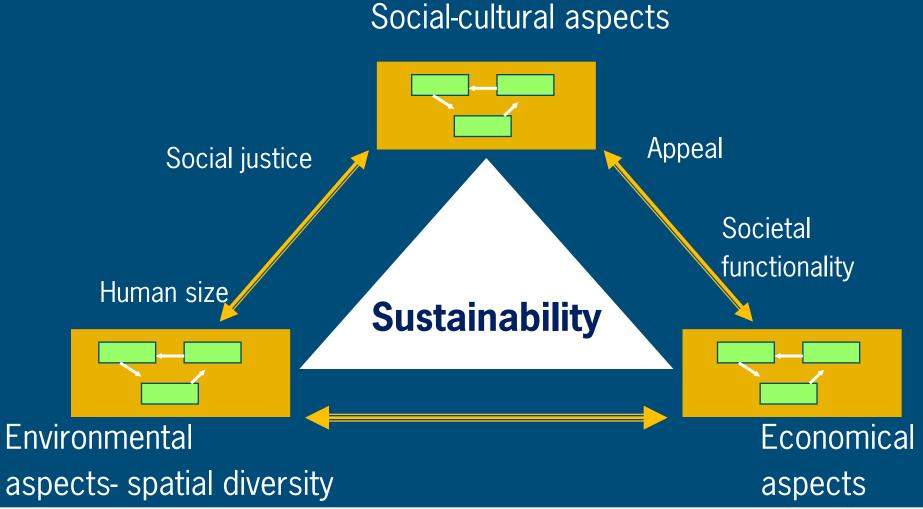
- Dieldrin contamination
 - Middle of nowhere
 - Partly covered with sand dunes

Removal not an option (\$1.500.000)

- Risks
 - Direct contact
 - Transport to groundwater
- Cover
 - Stabilization
 - Evaporation of rainfall
 - Fence vegetation, non consumable,
 Vetiver, Jatropha
- Define use

Increase adsorption (non degradable POP's)

- Black carbon (soot, activated carbon....) increases adsorption
- Dieldrin contamination in Mali (Africa)
 - OM is low (high temperture)
 - Char coal is locally available
 - Use for isolation in depot



Conclusions

- On many contaminated sites it is necessary to break the assessment circle to give the site a function
- Tools are:
 - Bioavailability
 - Prevent direct contact
 - Common sense
 - Local possibilities
- Risks can be reduced by using:
 - Stimulation of biodegradation
 - Reduction of bioavailability
 - Isolation of the contaminant
- Regulatory and public acceptance ????

Sustainable >> Remediation

Thank you for your attention

